FIFTH EDITION

VBA FOR MODELERS

Developing Decision Support Systems
with Microsoft® Office Excel®

S. CHRISTIAN ALBRIGHT




VBA FOR MODELERS

DEVELOPING DECISION
SUPPORT SYSTEMS WITH
MICROSOFT® OFFICE EXCEL®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning re

rights, some third party content may be suppressed from the eBook and/or eChapter(s).
the right to remove additional content at any time if subsequent rights restrictions require it.




Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



VBA FOR MODELERS

DEVELOPING DECISION
SUPPORT SYSTEMS WITH
MICROSOFT® OFFICE EXCEL®

FIFTH EDITION

S. Christian Albright

Kelley School of Business, Indiana University

s~ CENGAGE
Learning

Australia « Brazil « Mexico « Singapore « United Kingdom « United States

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s
ditorial review has deemed that any suppressed




This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to
remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by
ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



)

CENGAGE
Learning’

VBA for Modelers: Developing Decision
Support Systems with Microsoft® Office
Excel®, Fifth Edition
S. Christian Albright

Vice President, General Manager Science,
Math, and Quantitative Business: Balraj Kalsi

Product Director: Joe Sabatino

Product Manager: Aaron Arnsparger
Associate Content Developer: Brad Sullender
Manufacturing Planner: Ron Montgomery
Marketing Manager: Heather Mooney

Art and Cover Direction, Production
Management, and Composition:
Lumina Datamatics, Inc.

Cover Image: © Awstok/Shutterstock
Intellectual Property
Analyst: Christina Ciaramella
Project Manager: Betsy Hathaway

Unless otherwise noted, all items
© Cengage Learning

© 2016, 2012 Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2014958175
ISBN: 978-1-285-86961-2

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Printed in the United States of America
Print Number: 01 Print Year: 2015

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To my wonderful wife, Mary—she is my best friend and constant companion.
To our talented son, Sam, his equally talented wife, Lindsay, and our two amazing
grandsons, Teddy and Archer. And to Bryn, our dear Welsh corgi who still just
loves to play ball.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



About the Author

=
o
(1]
o
o
n

S. Christian Albright

Chris Albright got his B.S. degree in Mathematics from Stanford in 1968 and his
Ph.D. degree in Operations Research from Stanford in 1972. Until his retirement
in 2011, he taught in the Operations & Decision Technologies Department in
the Kelley School of Business at Indiana University. His teaching included courses
in management science, computer simulation, and statistics to all levels of busi-
ness students: undergraduates, MBAs, and doctoral students. He has published
over 20 articles in leading operations research journals in the area of applied
probability and he has authored several books, including Practical Management
Science, Data Analysis and Decision Making, Data Analysis for Managers, Spread-
sheet Modeling and Applications, and VBA for Modelers. He jointly developed
StatTools, a statistical add-in for Excel, with the Palisade Corporation. In “retire-
ment,” he continues to revise his books, he works as a consultant for Palisade,
and he has developed a commercial product, Excel Now!, an Excel tutorial.

On the personal side, Chris has been married to his wonderful wife Mary for
43 years. They have a special family in Philadelphia: their son Sam, his wife Lindsay,
and their two sons, Teddy and Archer. Chris has many interests outside the aca-
demic area. They include activities with his family (especially traveling with Mary),
going to cultural events at Indiana University, power walking, and reading. And
although he earns his livelihood from statistics and management science, his real
passion is for playing classical music on the piano.

vi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents

Preface  xvi

PART | VBA Fundamentals 1

1 Introduction to VBA Development in Excel 3

1.1 Introduction 3

1.2 VBA in Excel 2007 and Later Versions 4
1.3 Example Applications 5

1.4 Decision Support Systems 7

1.5 Required Background 7

1.6 Visual Basic Versus VBA 8

1.7 Some Basic Terminology 9

1.8 Summary 9

2 The Excel Object Model 10

2.1 Introduction 10

2.2 Objects, Properties, Methods, and Events 10
2.3 Collections as Objects 11

2.4 The Hierarchy of Objects 12

2.5 Object Models in General 13

2.6 Summary 17

3 The Visual Basic Editor 18

3.1 Introduction 18

3.2 Important Features of the VBE 18

3.3 The Object Browser 22

3.4 The Immediate and Watch Windows 23
3.5 A First Program 24

3.6 Intellisense 29

3.7 Color Coding and Case 30

3.8 Finding Subs in the VBE 31

3.9 Summary 33

vii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



viii  Contents

4 Recording Macros 35

4.1 Introduction 35

4.2 How to Record a Macro 35

4.3 Changes from Excel 2007 to Later Versions 37
4.4 Recorded Macro Examples 37

4.5 Summary 47

B Getting Started with VBA 49

5.1 Introduction 49

5.2 Subroutines 49

5.3  Declaring Variables and Constants 50

5.4  Built-in Constants 58

5.5  Input Boxes and Message Boxes 59

5.6  Message Boxes with Yes and No Buttons 61
5.7  Using Excel Functions in VBA 63

5.8 Comments 64

5.9 Indenting 65

5.10 Strings 66

5.11 Specifying Objects, Properties, and Methods 70
5.12 With Construction 73

5.13 Other Useful VBA Tips 74

5.14 Good Programming Practices 76

5.15 Debugging 78

5.16 Summary 85

6 Working with Ranges 89

6.1 Introduction 89

6.2 Exercise 89

6.3 Important Properties and Methods of Ranges 91
6.4 Referencing Ranges with VBA 94

6.5 Examples of Ranges with VBA 97

6.6 Range Names and Their Scope 111

6.7 Summary 114

7 control Logic and Loops 117

7.1 Introduction 117

7.2 Exercise 117

7.3 If Constructions 120
7.4 Case Constructions 126
7.5 For Loops 129

7.6 For Each Loops 136
7.7 Do Loops 138

7.8 Summary 143

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents  ix

8 Working with Other Excel Objects 149

8.1 Introduction 149

8.2 Exercise 149

8.3 Collections and Members of Collections 151
8.4 Examples of Workbooks in VBA 153

8.5 Examples of Worksheets in VBA 157

8.6 Examples of Charts in VBA 163

8.7 Summary 174

9 Arrays 177

9.1 Introduction 177

9.2 Exercise 177

9.3 The Need for Arrays 179

9.4 Rules for Working with Arrays 180
9.5 Examples of Arrays in VBA 183
9.6 Array Functions 199

9.7 Summary 199

10 More on Variables and Subroutines 204

10.1 Introduction 204

10.2  Exercise 204

10.3 Scope of Variables and Subroutines 207
10.4 Modularizing Programs 209

10.5 Passing Arguments 213

10.6 Function Subroutines 219

10.7 The Workbook_Open Event Handler 225
10.8 Summary 226

1 1 User Forms 231

11.1  Introduction 231

11.2  Exercise 231

11.3  Designing User Forms 234

11.4  Setting Properties of Controls 238
11.5  Creating a User Form Template 242
11.6  Writing Event Handlers 243

11.7  Looping Through the Controls on a User Form 254
11.8  Working with List Boxes 255

11.9  Modal and Modeless Forms 256
11.10 Working with Excel Controls 258
11.11 Summary 262

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



x  Contents

12 Error Handling

12.1 Introduction 268

12.2  Error Handling with On Error Statement 268
12.3 Handling Inappropriate User Inputs 270

12.4 Summary 272

13 Working with Files and Folders

13.1 Introduction 275

13.2  Exercise 275

13.3 Dialog Boxes for File Operations 277
13.4 The FileSystemObject Object 283
13.5 A File Renaming Example 286

13.6 Working with Text Files 289

13.7 Summary 293

14 Importing Data into Excel from a Database

14.1 Introduction 295

14.2 Exercise 295

14.3 A Brief Introduction to Relational Databases 297
14.4 A Brief Introduction to SQL 302

14.5 ActiveX Data Objects (ADO) 306

14.6 Discussion of the Sales Orders Exercise 311

14.7 Summary 315

15 Working with Pivot Tables and Tables

15.1 Introduction 317

15.2 Working with Pivot Tables Manually 317
15.3 Working with Pivot Tables Using VBA 327
15.4 An Example 329

15.5 PowerPivot and the Data Model 335

15.6 Working with Excel Tables Manually 337
15.7 Working with Excel Tables with VBA 340
15.8 Summary 344

16 Working with Ribbons, Toolbars, and Menus

16.1 Introduction 346

16.2 Customizing Ribbons 347

16.3 Using RibbonX and XML to Customize Ribbons
16.4 Using RibbonX to Customize the QAT 354
16.5 CommandBar and Related Office Objects 356
16.6 A Grading Program Example 357

16.7 Summary 358

268

275

295

317

346

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents  xi

17 Automating Solver and Other Applications 360

17.1 Introduction 360

17.2  Exercise 361

17.3 Automating Solver with VBA 363

17.4 Possible Solver Problems 373

17.5 Programming with Risk Solver Platform 375

17.6 Automating @RISK with VBA 378

17.7 Automating Other Office Applications with VBA 383
17.8 Summary 389

18 uUser-Defined Types, Enumerations, Collections,
and Classes 393

18.1 Introduction 393

18.2 User-Defined Types 393
18.3 Enumerations 395

18.4 Collections 396

18.5 Classes 399

18.6 Summary 406

PART Il VBA Management Science Applications 409

19 Basic Ideas for Application Development with VBA 411

19.1 Introduction 411

19.2  Guidelines for Application Development 411
19.3 A Car Loan Application 416

19.4 Summary 435

20 A Blending Application 437

20.1 Introduction 437

20.2 Functionality of the Application 437
20.3 Running the Application 438

20.4 Setting Up the Excel Sheets 445
20.5 Getting Started with the VBA 445
20.6 The User Forms 447

20.7 The Module 451

20.8 Summary 452

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xii  Contents

21 A Product Mix Application 454

21.1 Introduction 454

21.2  Functionality of the Application 455
21.3 Running the Application 455

214 Sectting Up the Excel Sheets 458
21.5 Getting Started with the VBA 458
21.6 The User Form 459

21.7 The Module 461

21.8 Summary 471

22 A Worker Scheduling Application 475

22.1 Introduction 475

22.2 Functionality of the Application 475
22.3 Running the Application 476

22.4 Setting Up the Excel Sheets 479
22.5 Getting Started with the VBA 480
22.6 The User Form 481

22.7 The Module 484

22.8 Summary 486

23 A Production-Planning Application 488

23.1 Introduction 488

23.2  Functionality of the Application 488
23.3 Running the Application 489

23.4 Setting Up the Excel Sheets 496
23.5 Getting Started with the VBA 498
23.6 The User Forms 499

23.7 The Module 504

23.8 Summary 511

24 A Transportation Application 513

24.1 Introduction 513

24.2 Functionality of the Application 514
24.3 Running the Application 514

24.4 Setting Up the Access Database 516
24.5 Setting Up the Excel Sheets 519
24.6 Getting Started with the VBA 519
24.7 The User Form 521

24.8 The Module 523

24.9 Summary 531

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents  xiii

25 A Stock-Trading Simulation Application 534

25.1 Introduction 534

25.2  Functionality of the Application 535
25.3 Running the Application 535

25.4 Sectting Up the Excel Sheets 538
25.5 Getting Started with the VBA 540
25.6 The Module 541

25.7 Summary 546

26 A capital Budgeting Application 548

26.1 Introduction 548

26.2 Functionality of the Application 549
26.3 Running the Application 549

264 Sectting Up the Excel Sheets 551
26.5 Getting Started with the VBA 553
26.6 The User Form 554

26.7 The Module 555

26.8 Summary 560

27 A Regression Application 562

27.1 Introduction 562

27.2  Functionality of the Application 562
27.3 Running the Application 563

27.4 Setting Up the Excel Sheets 565
27.5 Getting Started with the VBA 566
27.6 The User Form 567

27.7 The Module 569

27.8 Summary 574

28 An Exponential Utility Application 576

28.1 Introduction 576

28.2 Functionality of the Application 577
28.3 Running the Application 577

28.4 Setting Up the Excel Sheets 578
28.5 Getting Started with the VBA 582
28.6 The User Form 582

28.7 The Module 585

28.8 Summary 589

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xiv  Contents

29 A Queueing Simulation Application 590

29.1 Introduction 590

29.2  Functionality of the Application 591
29.3 Running the Application 591

294 Sectting Up the Excel Sheets 593

29.5 Getting Started with the VBA 593

29.6 Structure of a Queucing Simulation 594
29.7 The Module 596

29.8 Summary 606

30 An Option-Pricing Application 608

30.1 Introduction 608

30.2 Functionality of the Application 609
30.3 Running the Application 609

30.4 Setting Up the Excel Sheets 612
30.5 Getting Started with the VBA 615
30.6 The User Form 616

30.7 The Module 621

30.8 Summary 632

31 An Application for Finding Betas of Stocks 634

31.1 Introduction 634

31.2 Functionality of the Application 634
31.3 Running the Application 635

31.4 Setting Up the Excel Sheets 638
31.5 Getting Started with the VBA 639
31.6 The User Form 640

31.7 The Module 644

31.8 Summary 651

32 A Portfolio Optimization Application 653

32.1 Introduction 653

32.2  Functionality of the Application 654
32.3 Running the Application 654

32.4 Web Queries in Excel 659

32.5 Setting Up the Excel Sheets 661
32.6 Getting Started with the VBA 662
32.7 The User Forms 663

32.8 The Module 667

32.9 Summary 678

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contents XV

33 AData Envelopment Analysis Application 680

33.1 Introduction 680

33.2 Functionality of the Application 680

33.3 Running the Application 681

33.4 Setting Up the Excel Sheets and the Text File 682
33.5 Getting Started with the VBA 684

33.6 Getting Data from a Text File 685

33.7 The Module 686

33.8 Summary 698

34 An AHP Application for Choosing a Job

You can access chapter 34 at our website, www.CengageBrain.com

35 A Poker Simulation Application

You can access chapter 35 at our website, www.CengageBrain.com

Index 700

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface

I wrote VBA for Modelers for students and professionals who want to create deci-
sion support systems (DSSs) using Microsoft Excel-based spreadsheet models. The
book does not assume any prior programming experience. It contains two parts.
Part I covers the essentials of VBA (Visual Basic for Applications) programming,
and Part II provides many applications with their associated programming code.
This part assumes that readers are either familiar with spreadsheet modeling or are
taking a concurrent course in management science or operations research. There
are many excellent books available for VBA programming, many others covering
decision support systems, and still others for spreadsheet modeling. However, I
have not found a book that attempts to unify these subjects in a practical way.
VBA for Modelers is designed for this purpose, and I hope you will find it to be an
important resource and reference in your own work.

Why This Book?

The original impetus for this book began about 20 years ago. Wayne Winston
and I were experimenting with the spreadsheet approach to teaching management
as we were writing the first edition of our Practical Management Science (PMS)
book. Because I have always had an interest in computer programming, I decided
to learn VBA, the relatively new macro language for Excel, and use it to a limited
extent in my undergraduate management science modeling course. My intent was
to teach the students how to wrap a given spreadsheet model, such as a product
mix model, into an application with a “front end” and a “back end” by using
VBA. The front end would enable a user to provide inputs to the model, usually
through one or more dialog boxes, and the back end would present the user with
a nontechnical report of the results. I found it to be an exciting addition to the
usual modeling course, and my students overwhelmingly agreed.

The primary problem with teaching this type of course was the lack of an
appropriate VBA textbook. Although there are many good VBA trade books
available, they usually go into much more technical VBA details than I have time
to cover, and their objective is usually to teach VBA programming as an end in
itself. I expect that many adopters of our Practical Management Science book
will decide to use parts of VBA for Modelers to supplement their management sci-
ence courses, just as I have been doing. For readers who have already taken a
management science course, there is more than enough material in this book to
fill an entire elective course or to be used for self-study.

However, even for readers with no background or interest in management

. science, the first part of this book has plenty of value. We are seeing an increasing
Xvi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface  xvii

number of our business students and graduates express interest in automating
Excel with macros. In short, they want to become Excel “power users.” After
the first edition of this book appeared, I taught a purely elective MBA course cov-
ering the first part of the book. To my surprise and delight, it regularly attracted
about 40 MBA students per year. Yes, it attracted MBA students, not computer
science majors! (Since I have retired from teaching, the VBA course is still being
taught, and it continues to attract these types of audiences.). The students see real
value in knowing how to program for Excel. And it is amazing and gratifying to
see how far these students can progress in a short 7-week course. Many find pro-
gramming, especially for Excel, to be as addictive as I find it.

Objectives of the Book

VBA for Modelers shows how the power of spreadsheet modeling can be
extended to the masses. Through VBA, complex management science models
can be made accessible to nontechnical users by providing them with simplified
input screens and output reports. The book illustrates, in complete detail, how
such applications can be developed for a wide variety of business problems. In
writing the book, I have always concerned myself with the following questions:
How much will readers be able to do on their own? Is it enough for readers to
see the completed applications, marvel at how powerful they are, and possibly
take a look at the code that runs in the background? Or should they be taken to
the point where they can develop their own applications, code and all? I suspect
this depends on the audience, but I know I can get students to the point where
they can develop modest but useful applications on their own and, importantly,
experience the thrill of programming success.

With these thoughts in mind, I have written this book so that it can be used
at several levels. For readers who want to learn VBA from scratch and then apply
it, I have provided a “VBA primer” in Part I of the book. It is admittedly not as
complete as some of the thick Excel VBA books available, but I believe it covers
the basics of VBA quite adequately. Importantly, it covers coding methods for
working with Excel ranges in Chapter 6 and uses these methods extensively in
later chapters, so that readers will not have to use trial and error or wade through
online help, as I had to do when I was learning VBA. Readers can then proceed to
the applications in Chapters 19 through 35 and apply their skills. In contrast, there
are probably many readers who do not have time to learn all of the details, but they
can still use the applications in Part II of the book for demonstration purposes.
Indeed, the applications have been developed for generality. For example, the
transportation model in Chapter 24 is perfectly general and can be used to solve
any transportation model by supplying the appropriate input data.

Approach

I like to teach (and learn) through examples. I have found that I can learn a pro-
gramming language only if I have a strong motivation to learn it. I suspect that

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xvili  Preface

most of you are the same. The applications in the latter chapters are based on
many interesting management science models. They provide the motivation for
you to learn the material. The examples illustrate that this book is not about pro-
gramming for the sake of programming. Instead, it is about developing useful
applications for business. You probably already realize that Excel modeling skills
make you more valuable in the workplace. This book will help you develop VBA
skills that make you much more valuable.

Contents of the Book

The book is written in two parts. Part I, Chapters 1-18, is a VBA primer for read-
ers with little or no programming experience in VBA (or any other language).
Although all of these chapters are geared to VBA, some are more about general
programming concepts, whereas others deal with the unique aspects of program-
ming for Excel. Specifically, Chapters 7, 9, and 10 discuss control logic (If-Then-
Else constructions), loops, arrays, and subroutines, topics that are common to all
programming languages. In contrast, Chapters 6 and 8 explain how to work with
some of the most common Excel objects (ranges, workbooks, worksheets, and
charts) in VBA. In addition, several chapters discuss aspects of VBA that can be
used with Excel and any other applications (Access, Word, PowerPoint, and so
on) that use VBA as their programming language. Specifically, Chapter 3 explains
the Visual Basic Editor (VBE), Chapter 4 illustrates how to record macros,
Chapter 11 explains how to build user forms (dialog boxes), and Chapter 12
discusses the important topic of error handling.

The material in Part I is reasonably complete, but it is available, in greater
detail and with a somewhat different emphasis, in several other books. The
unique aspect of #his book is Part II, Chapters 19-35. (Due to length, the
last two chapters, Chapter 34, An AHP Application for Choosing a Job, and
Chapter 35, A Poker Simulation Application, are available online only. You can
find them at www.CengageBrain.com.) Each chapter in this part discusses a specific
application. Most of these are optimization and simulation applications, and many
are quite general. For example, Chapter 21 discusses a general product mix applica-
tion, Chapter 23 discusses a general production scheduling application, Chapter 24
discusses a general transportation application, Chapter 25 discusses a stock-trading
simulation, Chapter 29 discusses a multiple-server queue simulation, Chapter 30
discusses a general application for pricing European and American options, and
Chapter 32 discusses a general portfolio optimization application. (Many of the
underlying models for these applications are discussed in Practical Management
Science, but 1 have attempted to make these applications stand-alone here.)

The applications can be used as they stand to solve real problems, or they
can be used as examples of VBA application development. All of the steps in
the development of these applications are explained, and all of the VBA source
code is included. Using an analogy to a car, you can simply get in and drive, or
you can open the hood and see how everything works.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface  xix

Chapter 19 gets the process started in a “gentle” way. It provides a general
introduction to application development, with an important list of guidelines. It
then illustrates these guidelines in a car loan application. This application should
be within the grasp of most readers, even if they are not yet great programmers.
By tackling this application first, readers get to develop a simple model, with
dialog boxes, reports, and charts, and then tie everything together. This car loan
application illustrates an important concept that I stress throughout the book.
Specifically, applications that really do something are often long and have a lot of
details. But this does not mean that they are difficuit. With perseverance—a word
I use frequently—readers can fill in the details one step at a time and ultimately
experience the thrill of getting a program to work correctly.

Virtually all management science applications require input data. A very
important issue for VBA application development is how to get the required
input data into the spreadsheet model. I illustrate a number of possibilities in
Part II. If only a small amount of data is required, dialog boxes work well. These
are used for data input in many of the applications. However, there are many
times when the data requirements are much too large for dialog boxes. In these
cases, the data are usually stored in some type of database. I illustrate some com-
mon possibilities. In Chapter 21, the input data for a product mix model are
stored in a separate worksheet. In Chapter 31, the stock price data for finding
the betas of stocks are stored in a separate Excel workbook. In Chapter 33, the
data for a DEA model are stored in a text (.txt) file. In Chapter 24, the data for a
transportation model are stored in an Access database (.mdb) file. Finally, in Chap-
ter 32, the stock price data required for a portfolio optimization model are located
on a Web site and are imported into Excel, at runtime. In each case, I explain the
VBA code that is necessary to import the data into the Excel application.

New to the Fifth Edition

The impetus for writing the fifth edition was the release of Excel 2013. In terms
of VBA, there aren’t many changes from Excel 2010 to Excel 2013 (or even from
Excel 2007 to Excel 2013), but I used the opportunity to incorporate changes
that were made in Excel 2013, as well as to modify a lot of the material
throughout the book.

e  Programmers can never let well enough alone. We are forever tinkering with
our code, not just to make it work better, but often to make it more elegant
and easier to understand. So users of previous editions will see minor changes
to much of the code throughout the book.

e The biggest change, which has nothing to do with the version of Excel, is the
way information is passed between modules and user forms. In previous edi-
tions, I did this with global variables, a practice frowned upon by many pro-
fessional programmers. In this edition, I pass the required information
through arguments to “ShowDialog” functions in the user forms. This new
method is explained in detail in Chapter 11 and is then used in later chapters
where user forms appear.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Xx  Preface

e Chapter 15 contains a brief discussion of the new PowerPivot tool introduced
in Excel 2013. This tool can actually be automated with VBA, but because of
its advanced nature, I don’t discuss the details. Maybe this will appear in the
next edition of the book, by which time Excel’s online help will hopefully be
improved.

How to Use the Book

I have already discussed several approaches to using this book, depending on how
much you want to learn and how much time you have. For readers with very little
or no computer programming background who want to learn the fundamentals
of VBA, Chapters 1-12 should be covered first, in approximately that order.
(I should point out that it is practically impossible to avoid “later” programming
concepts while covering “early” ones. For example, I admit to using a few If state-
ments and loops in early chapters, before discussing them formally in Chapter 7.
I don’t believe this should cause problems. I use plenty of comments, and you
can always look ahead if you need to.) After covering VBA fundamentals in the
first 12 chapters, the next six optional chapters can be covered in practically any
order.

Chapter 19 should be covered next. Beyond that, the applications in the
remaining chapters can be covered in practically any order, depending on your
interests. However, some of the details in certain applications will not make much
sense without the appropriate training in the management science models. For
example, Chapter 34 discusses an AHP (Analytical Hierarchy Process) application
for choosing a job. The VBA code is fairly straightforward, but it will not make
much sense unless you have some knowledge of AHP. I assume that the knowl-
edge of the models comes from a separate source, such as Practical Management
Science; 1 cover it only briefly here.

Finally, readers can simply use the Excel application files to solve problems.
Indeed, the applications have been written specifically for nontechnical end users,
so that readers at all levels should have no difficulty opening the application files
in Part II of the book and using them appropriately. In short, readers can decide
how much of the material “under the hood” is worth their time.

Premium Web Site Content

The companion Web site for this book can be accessed at www.cengagebrain
.com. There you will have access to all of the Excel (.xlsx and .xIsm) and other
files mentioned in the chapters, including those in the exercises. The Excel files
require Excel 97 or a more recent version, but they are realistically geared to
Excel 2007 and later versions. Many of the files from Chapter 17 and later chapters
“reference” Excel’s Solver. They will not work unless the Solver add-in is installed
and loaded. Chapters 14 and 24 uses Microsoft’s ActiveX Data Object (ADO)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface  xxi

model to import the data from an Access database into Excel. This will work only
in Excel 2000 or a more recent version. Finally, Chapter 13 uses the Office File-
Dialog object. This works only in Excel XP (2002) or a more recent version.

The book is also supported by a Web site at www kelley.iu.edu/albrightbooks.
The Web site contains errata and other useful information, including information
about my other books.

Acknowledgments

I would like to thank all of my colleagues at Cengage Learning. Foremost among
them are my current editor, Aaron Arnsbarger, and my former editors, Curt
Hinrichs and Charles McCormick. The original idea was to develop a short VBA
manual to accompany our Practical Management Science book, but Curt
persuaded me to write an entire book. Given the success of the first four
editions, I appreciate Curt’s insistence. I am also grateful to many of the profes-
sionals who worked behind the scenes to make this book a success:

e Brad Sullender, Content Developer; Heather Mooney, Marketing Manager;
Kristina Mose-Libon, Art Director; and Sharib Asrar as the Project Manager
at Lumina Datamatics.

Next, I would like to thank the reviewers of past editions of the book.
Thanks go to

e  Gerald Aase, Northern Illinois University; Ravi Ahuja, University of Florida;
Grant Costner, University of Oregon; R. Kim Craft, Rollins College; Lynette
Molstad Gorder, Dakota State University; and Jim Hightower, California State
University-Fullerton; Don Byrkett, Miami University; Kostis Christodoulou,
London School of Economics; Charles Franz, University of Missouri; Larry
LeBlanc, Vanderbilt University; Jerry May, University of Pittsburgh; Jim Morris,
University of Wisconsin; and Tom Schriber, University of Michigan.

Finally, I want to thank my wife, Mary. She continues to support my book-
writing activities, even when it requires me to work evenings and weekends
in front of a computer. I also want to thank our Welsh corgi Bryn, who faith-
fully accompanies her daddy when he goes upstairs to do his work. She doesn’t
add much technical assistance, but she definitely adds a lot of motivational
assistance.

S. Christian Albright

(e-mail at albright@indiana.edu,

Web site at www .kelley.iu.edu/albrightbooks)
Bloomington, Indiana

January 2015

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



VBA Fundamentals

This part of the book is for readers who need an introduction to programming in
general and Visual Basic for Applications (VBA) for Excel in particular. It dis-
cusses programming topics that are common to practically all programming lan-
guages, including variable types and declarations, control logic, looping, arrays,
subroutines, and error handling. It also discusses many topics that are specific to
VBA and its use with Excel, including the Excel object model; recording macros;
working with ranges, workbooks, worksheets, charts, and other Excel objects;
developing user forms (dialog boxes); and automating other applications, includ-
ing Word, Outlook, Excel’s Solver add-in, and Palisade’s @RISK add-in, with
VBA code.

Many of the chapters in Part I present a business-related exercise immediately
after the introductory section. The objective of each such exercise is to motivate
you to work through the details of the chapter, knowing that many of these
details will be required to solve the exercise. The finished files are included in the
online materials, but I urge you to try the exercises on your own, before looking
at the solutions.

The chapters in this part should be read in approximately the order they are
presented, at least up through Chapter 12. Programming is a skill that builds
upon itself. Although it is not always possible to avoid referring to a concept
from a later chapter in an earlier chapter, I have attempted to refrain from doing
this as much as possible. The one small exception is in Chapters 6 (on ranges)
and 7 (on control logic and loops). It is almost impossible to do any interesting
programming in Excel without knowing about ranges, and it is almost impossible
to do any interesting programming in general without knowing about control
logic and loops. I compromised by putting the chapter on ranges first and using
some simple control logic and loops in it. I don’t believe this should cause any
problems.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Introduction to VBA Development
in Excel

1.1 Introduction

My books Practical Management Science (PMS) and Business Analytics: Data
Analysis and Decision Making (DADM), both co-authored with Wayne Winston,
illustrate how to solve a wide variety of business problems by developing appro-
priate Excel models. If you are familiar with this modeling process, you probably
do not need to be convinced of the power and applicability of Excel. You realize
that Excel modeling skills will make you a valuable employee in the workplace.
This book takes the process one giant step farther. It teaches you how to develop
applications in Excel by using Excel’s programming language, Visual Basic for
Applications (VBA).

In many Excel-modeling books, you learn how to model a particular business
problem. You enter given inputs in a worksheet, you relate them with appropriate
formulas, and you eventually calculate required outputs. You might also optimize
a particular output with Solver, and you might create one or more charts to
show outputs graphically. You do all of this through the Excel interface, using its
ribbons (as of Excel 2007), menus, and toolbars, entering formulas into its cells,
using the chart tools, using the Solver dialog box, and so on. If you are conscien-
tious, you document your work so that other people in your company can under-
stand your completed model. For example, you clearly indicate the input cells so
that other users will know which cells they should use for their own inputs and
which cells they should leave alone.

Now suppose that your position in a company is to develop applications for
other less-technical people in the organization to use. Part of your job is still to
develop spreadsheet models, but the details of these models might be incom-
prehensible to many users. These users might realize that they have, say, a
product mix problem, where they will have to supply certain inputs, and then
some computer magic will eventually determine a mix of products that optimizes
company profit. However, the part in between is beyond their capabilities. Your
job, therefore, is to develop a user-friendly application with a model (possibly
hidden from the user) surrounded by a “front end” and a “back end.” The front
end will present the user with dialog boxes or some other means for enabling
them to define their problem. Here they will be asked to specify input values
and possibly other information. Your application will take this information, build
the appropriate model, optimize it if necessary, and eventually present the back
end to the user—a nontechnical report of the results, possibly with accompanying

charts.
3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4 Chapter 1

This application development is possible with VBA, as I will demonstrate in
this book. I make no claim that it is easy or that it can be done quickly, but I do
claim that it is within the realm of possibility for people like yourself, not just for
professional programmers. It requires a logical mind, a willingness to experiment
and take full advantage of online help, plenty of practice, and, above all, persever-
ance. Even professional programmers seldom accomplish their tasks without
difficulty and plenty of errors; this is the nature of programming. However, they
learn from their errors (and their colleagues), and they refuse to quit until they
get their programs to work properly. Computer programming is essentially a
process of overcoming one small hurdle after another. This is where perseverance
is so important. But if you are not easily discouraged, and if you love the feeling
of accomplishment that comes from getting something to work, you will love the
challenge of application development described in the book.

1.2 VBA in Excel 2007 and Later Versions

As you are probably aware, Excel went through a major face lift in 2007. The
look of Excel, especially its menus and toolbars, is now much different than in
Excel 2003 and earlier. Unfortunately, some users have not converted to Excel
2007 or a later version, so book authors, including myself, are in the uncom-
fortable position of having to write simultaneously for several audiences. Fortu-
nately, not much about VBA changed in the transition from 2003 to 2007 or
from 2007 to 2010 or from 2010 to 2013. I will try to point out the differences
as necessary throughout the book, hopefully without interrupting the flow too
much.

Perhaps the main difference is in the file extensions you will see. In Excel
2003 and earlier, all Excel files (except for add-ins, not covered here) ended in
xls. It didn’t matter whether they contained VBA code or not; they were still .xls
files. In Excel 2007 and later versions, there are two new extensions. Files without
VBA code now have .xlsx extensions, whereas files with VBA code must use xlsm
extensions. If you try to save a file with VBA code as an .xlsx file, you won’t be
allowed to do so. There is one exception: you can save your new files in the old
Excel 2003 format, which is still an option (with Save As), in which case they will
have .xIs extensions. Why would you do this? The probable reason is that you
want to share a file you created in Excel 2007 or a later version with a friend
who still uses Excel 2003. Of course, if your file includes features new to Excel
2007 or a later version, your friend won’t be able to see them.

I have been using Excel 2007, 2010, and now 2013 since their original
releases, and I personally think they are great improvements over earlier versions,
at least in most respects. So I will provide my example files in .xIsx and .xIsm for-
mats. If you are using Excel 2003, you will be able to open these if you first
install a free Office Compatibility Pack from Microsoft (just search the Web for
it). Without this compatibility pack, Excel 2003 users cannot read files in the new
xlsx or .xlsm formats (although users of Excel 2007 and later versions can always
read files in the old .xIs format).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Introduction to VBA Development in Excel 5

The fortunate part is that VBA has changed very little. I will usually not
include new features of Excel 2007 or later versions in my example files that
Excel 2003 users (even those with the compatibility pack) could not see. And in
the few cases where I need to do so, I will make it clear that these examples are
for users of Excel 2007 or later versions only.

1.3 Example Applications

If you have used my PMS or DADM books, you probably understand what
a spreadsheet model is. However, you might not understand what I mean by
spreadsheet applications with front ends and back ends. In other words, you
might not understand what this book intends to teach you. The best way to find
out is to run some of the applications that will be explained in Part II of the
book. At this point, yo# can become the nontechnical user by opening any of the
following files that accompany this book: Product Mix.xlsm, Scheduling.xlsm,
Stock Options.xlsm, and Transportation.xlsm. Simply open any of these files and
follow instructions. It should be easy. After all, the purpose of writing these appli-
cations is to make it easy for a nontechnical user to run them and get results they
can understand. Now step back and imagine what must be happening in the back-
ground to enable these applications to do what they do. This is what you will be
learning in the book. By running a few applications, you will become anxious
to learn how to do it yourself. These sample applications illustrate just how pow-
erful a tool VBA for Excel can be.

Security Settings and Trusted Locations

You might encounter annoying messages when you try to open these applica-
tions. Microsoft realizes that viruses can be carried in VBA code, so it tries to
protect users. First, it sets a macro security level to High by default. This level dis-
allows any VBA macros to run. Obviously, this is not good when you are trying
to learn VBA programming. The fix is easy.

e For users of Excel 2010 and 2013, open Excel, click the File button, then
Options, then the Trust Center tab, then Trust Center Settings, then the
Macro Settings tab, and check the “Disable all macros with notification”
option.

e For users of Excel 2007, it is the same as for Excel 2010 and 2013 except
that you click the Office button, not the File button. (The Office button
was replaced by the File button in 2010.)

e For users of Excel 2003 or earlier, open Excel, select the Tools - Macro —
Security menu item, and select Medium.

e You should need to do this only once. However, even with this macro security
setting, you are always asked whether you want to enable macros when you open
a file that contains VBA code. Of course, you should typically enable macros.
Otherwise, you will be safe from viruses, but none of the VBA code will run!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6 Chapter 1

There is another option, at least in Excel 2007 and later versions, which
avoids the security settings altogether. If you find that most of the Excel files
with VBA code are in a particular folder on your hard drive, you can add this
folder to the list of trusted locations on your computer. To do this, a one-time
task on a given computer, go to the Trust Center Settings, as explained in the
first bullet above, then Trusted Locations, then “Add new location,” and
browse for the folder you want to add. (In the resulting dialog box, you will
probably want to check the “Subfolders of this location are also trusted”
option.) From then on, any .xlsm files in this folder (or its subfolders) will
open without any warning about enabling macros.

I will make one final comment about enabling macros that pertains to
Excel 2007 or later versions only. If you open a file that contains macros, that
is, an .xlsm file, and it isn’t in a trusted location, you sometimes see the message
in Figure 1.1 and you sometimes instead see the button in Figure 1.2 (right
above the formula bar). Thanks to John Walkenbach, a fellow VBA author,
I finally learned the pattern. If the VB editor (discussed in Chapter 3) is already
open when you open the file, you will see the message in Figure 1.1. If it isn’t
open, you will see the button in Figure 1.2. Why did Microsoft do it this way?
I have no idea.

Figure 1.1 Enable Macro Message with VB Editor Open

o b

Microsoft Excel Security Notice | @ - ZE

O Microsoft Office has identified a potential security concern.

Warning: It is not possible to determine that this content came
from a trustworthy source. You should leave this content disabled
unless the content provides critical functionality and you trust its
SOUrce.

File Path:  C:\Temp'\Formatting 2.xdsm

Macros have been dizabled, Macros might contain viruses or other security
hazards. Do not enable this content unless you trust the source of this file.

Mare information

Enable Macros | | Dizable Macros |

Figure 1.2 Enable Macro Button with VB Editor Not Open

! Security Warning  Macros have been disabled, Enable Content

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Introduction to VBA Development in Excel 7

1.4 Decision Support Systems

In many companies, programmers provide applications called decision support
systems (DSSs). These are applications, based on Excel or some other package,
that help managers make better decisions. They can vary from very simple to
very complex, but they usually provide some type of user-friendly interface so
that a manager can experiment with various inputs or decision variables to see
their effect on important output variables such as profit or cost. Much of what
you will be learning, especially in Part II of the book, is how to create Excel-
based DSSs. In fact, if you ran the applications in the previous section, you should
already understand what decision support means. For example, the Transporta-
tion application helps a manager plan the optimal shipping of a product in a logis-
tics network, and the Stock Options application helps a financial analyst price
various types of financial options. The value that you, the programmer, provide
by developing these applications is that other people in your company can then
run them—easily—to make better decisions.

1.5 Required Background

Readers of this book probably vary widely in their programming experience. At
one extreme, many of you have probably never programmed in VBA or any
other language. At the other extreme, a few of you have probably programmed
in Visual Basic but have never used it to automate Excel and build Excel applica-
tions. In the middle, some of you have probably had some programming experi-
ence in another language such as C or Java but have never learned VBA. This
book is intended to appeal to all such audiences. Therefore, a simplified answer
to the question, “What programming background do I need?” is “None.” You
need only a willingness to learn and experiment.

If you ran the applications discussed in Section 1.2, you are probably anxious
to get started developing similar applications. If you already know the fundamen-
tals of VBA for Excel, you can jump ahead to Part II of the book. But most of
you will have to learn how to walk before you can run. Therefore, the chapters
in Part I go through the basics of the VBA language, especially as it applies to
Excel. The coverage of this basic material will provide you with enough explana-
tions and examples of VBA’s important features to enable you to understand the
applications in Part II—and to do some Excel development on your own.

If you want more detailed guidance in VBA for Excel, you can learn from
Microsoft’s online help or the many user groups on the Web. Indeed, this is per-
haps the best way to learn, especially in the middle of a development project. If
you need to know one specific detail to overcome a hurdle in the program you
are writing, you can look it up quickly in online help or do an online search for
it. A good way to do this will be demonstrated shortly.

Part IT of the book does presume some modeling ability and general business
background. For example, if you ran the Product Mix application, you
probably realize that it develops and optimizes a product mix model, a classic

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8 Chapter 1

linear programming model. One (but not the only) step in developing this appli-
cation is to develop a product mix model exactly as in Chapter 3 of PMS. As
another example, if you ran the Stock Options application, you realize the need
to understand option pricing, explained briefly in the second simulation chapter
of PMS. Many of the applications in this book are based on examples (product
mix, scheduling, transportation, and so on) from PMS or DADM. You can refer
to these books as necessary.

1.6 Visual Basic Versus VBA

Before going any further, I want to clarify one common misconception. Visual
Basic (VB) is not the same as VBA. VB is a software development language
that you can buy and run separately, without the need for Excel or Office. Actu-
ally, there are several versions of VB available. The most recent is called
VB.NET, which comes with Microsoft’s Visual Studio software development
suite. (The .NET version of VB has many enhancements to the VB language.)
Before VB.NET, there was VBO, still in use in thousands of applications.
In contrast, VBA comes with Office. If you own Microsoft Office, you own
VBA. The VB language is very similar to VBA, but it is not the same. The
main difference is that VBA is the language you need to manipulate Excel, as
you will do here.

You can think of it as follows. The VBA language consists of a “backbone”
programming language with typical programming elements you find in all pro-
gramming languages: looping, logical If-Then-Else constructions, arrays, subrou-
tines, variable types, and others. In this respect, VBA and VB are essentially
identical. However, the “A” in VBA means that any application software package,
such as Excel, Access, Word, or even a non-Microsoft software package, can
“expose” its object model to VBA, so that VBA can manipulate it programmati-
cally. In short, VBA can be used to develop applications for any of these software
packages. This book teaches you how to do so for Excel.

Excel’s objects are discussed in depth in later chapters, but a few typical
Excel objects you will recognize immediately are ranges, worksheets, work-
books, and charts. VBA for Excel knows about these Excel objects, and it
enables you to manipulate them with code. For example, you can change the
font of a cell, name a range, add or delete a worksheet, open a workbook, and
change the title of a chart. Part of learning VBA for Excel is learning the VB
backbone language, the elements that have nothing to do with Excel specifi-
cally. But another part, the more challenging part, involves learning how to
manipulate Excel’s objects in code. That is, it involves learning how to write
computer programs to do what you do every day through the familiar Excel
interface. If you ever take a course in VB, you will learn the backbone elements
of VBA, but you will not learn how to manipulate objects in Excel. This
requires VBA, and you will learn it here.

By the way, there are also VBA for Access, VBA for Word, VBA for Power-
Point, VBA for Outlook, and others. The difference between them is that each

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Introduction to VBA Development in Excel 9

has its own specific objects. To list just a few, Access has tables, queries, and
forms; Word has paragraphs and footnotes; PowerPoint has slides; and Outlook
has mail. Each version of VBA shares the same VB backbone language, but each
requires you to learn how to manipulate the objects in the specific application.
There is certainly a learning curve in moving, say, from VBA for Excel to VBA
for Word, but it is not nearly as difficult as if they were totally separate languages.
In fact, the power of VBA, as well as the relative ease of programming in it, has
prompted many third-party software developers to license VBA from Microsoft
so that they can use VBA as the programming language for their applications.
One example is Palisade, the developer of the @RISK and PrecisionTree add-ins
for Excel, as will be discussed briefly in Chapter 17. In short, once you know
VBA, you know a lot about what is happening in the programming world—and
you can very possibly use this knowledge to obtain a valuable job in business.

1.7 Some Basic Terminology

Before proceeding, it is useful to clarify some very basic and important terminol-
ogy that will be used throughout the book. First, whenever you program in any
language, your basic building blocks are lines of code, short for programming
code. Any line of code is intended to accomplish something, and it must obey
the rules of syntax for the programming language being used. This book is all
about coding in VBA.

Typically, a set of logically related lines of code that accomplishes a specific
task is called a subroutine, a procedure, or a macro. In fact, one of the first key-
words you will learn in VBA is Sub. This keyword begins all subroutines. The
terms subroutine, procedure, and macro are essentially equivalent, although pro-
grammers tend to use the terms subroutine and procedure, whereas spreadsheet
users tend to use the term macro. 1 tend to refer to any of these as a sub.

Finally, the term program is typically used to refer to all of the subs in an
application. When you explore the more complex applications in Part II of the
book, you will see that they often include many subs, where each sub is intended
to perform one specific task in the overall program. (Chapter 10 discusses why
this division of a program into multiple subs makes a lot of sense.)

1.8 Summary

VBA is the programming language of choice for an increasingly wide range of
application developers. The main reason for this is that VBA uses the familiar
Visual Basic programming language and then adapts it to many Microsoft and
even non-Microsoft application software packages, including Excel. In addition,
VBA is a relatively easy programming language to master. This makes it accessible
to a large number of nonprofessional programmers in the business world—
including you. By learning how to program in VBA, you will definitely enhance
your value in the workplace.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10

2.1

2.2

The Excel Object Model

Introduction

This chapter introduces the Excel object model—the concept behind it and how
it is implemented. Even if you have programmed in another language, this will
probably be new material, even a new way of thinking, for you. However, with-
out understanding Excel objects, you will not be able to proceed very far with
VBA for Excel. This chapter provides just enough information to get you started.
Later chapters focus on many of the most important Excel objects and how they
can be manipulated with VBA code.

Objects, Properties, Methods, and Events

Consider the many things you see in the everyday world. To name a few, there
are cars, houses, computers, people, and so on. These are all examples of objects.
For example, let’s focus on a car. A car has attributes, and there are things you
can do to (or with) a car. Some of its attributes are its weight, its horsepower, its
color, and its number of doors. Some of the things you can do to (or with) a car
are drive it, park it, accelerate it, crash it, and sell it. In VBA, the attributes of an
object are called properties: the size property, the horsepower property, the color
property, the number of doors property, and so on. In addition, each property
has a value for any particular car. For example, a particular car might be white
and it might have four doors. In contrast, the things you can do to (or with) an
object are called methods: the drive method, the park method, the accelerate
method, the crash method, the sell method, and so on. Methods can also have
qualifiers, called arguments, that indicate sow a method is performed. For exam-
ple, an argument of the crash method might be speed—how fast the car was
going when it crashed.

The following analogy to parts of speech is useful. Objects correspond to
nouns, properties correspond to adjectives, methods correspond to verbs, and
arguments of methods correspond to adverbs. You might want to keep this anal-
ogy in mind as the discussion proceeds.

Now let’s move from cars to Excel. Imagine all of the things—objects—you
work with in Excel. Some of the most common are ranges, worksheets, charts,
and workbooks. (A workbook is really just an Excel file.) Each of these is an
object in the Excel object model. For example, consider the single-cell range B5.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Excel Object Model 11

This cell is a Range object.’ Like a car, it has properties. It has a Value property:
the value (either text or number) displayed in the cell. It has a HorizontalAlignment
property: left-, center-, or right-aligned. It has a Formula property: the formula
(if any) in the cell. These are just a few of the many properties of a range.

A Range object also has methods. For example, you can copy a range, so
Copy is a method of a Range object. You can probably guess the argument of
the Copy method: the Destination argument (the paste range). Another range
method is the ClearContents method, which is equivalent to selecting the range
and pressing the Delete key. It deletes the contents of the range, but it does not
change the formatting. If you want to clear the formatting as well, there is also a
Clear method. Neither the ClearContents method nor the Clear method has any
arguments.

Learning the various objects in Excel, along with their properties and meth-
ods, is a lot like learning vocabulary in English—especially if English is not your
native language. You learn a little at a time and generally broaden your vocabulary
through practice and experience. Some objects, properties, and methods are natu-
rally used most often, and you will learn quickly. Others you will never need, and
you will probably remain unaware that they even exist. However, there are many
times when you wil/ need to use a particular object or one of its properties or
methods that you have not yet learned. Fortunately, there is excellent online help
available—a type of dictionary—for learning about objects, properties, and meth-
ods. It is called the Object Browser and is discussed in the next chapter.

There is one other important feature of objects: events. Some Excel objects
have events that they can respond to. A good example is the Workbook object
and its Open event. This event happens—we say it fires—when the workbook is
opened in Excel. In fact, you might not realize it, but the Windows world is full
of events that fire constantly. Every time you click or double-click a button, press
a key, move your mouse over some region, or perform a number of other actions,
various events fire. Programmers have the option of responding to events by writ-
ing event handlers. An event handler is a section of code that runs whenever the
associated event fires. In later chapters, particularly Chapter 11, you will learn
how to write your own event handlers. For example, it is often useful to write an
event handler for the Open event of a Workbook object. Whenever the workbook
is opened in Excel, the event handler then runs automatically. It could be used,
for example, to ensure that the user sees a certain worksheet when the workbook
opens.

2.3 Collections as Objects

Continuing the car analogy, imagine that you enter a used car lot. Each car in the
lot is a particular car object, but it also makes sense to consider the collection of all

' From here on, “proper” case, such as Range or HorizontalAlignment, will be used for objects, properties,
and methods. This is the convention used in VBA. Also, they appear in this book in a different font.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12 Chapter 2

cars in the lot as an object. This is called a Collection object. Clearly, the collection
of cars is not conceptually the same as an individual car. Rather, it is an object
that includes all of the individual car objects.

Collection objects also have properties and methods, but they are not the
same as the properties and methods of the objects they contain. Generally, there
are many fewer properties and methods for collections. The two most common
are the Count property and the Add method. The Count property indicates the
number of objects in the collection (the number of cars in the lot). The Add
method adds a new object to a collection (a new car joins the lot).

It is easy to spot collections and the objects they contain in the Excel object
model. Collection objects are plural, whereas a typical object contained in a collec-
tion is singular. A good example involves worksheets in a given workbook. The
Worksheets collection (note the plural) is the collection of all worksheets in the
workbook. Any one of these worksheets is a Worksheet object (note the singular).
Again, these must be treated differently. You can count worksheets in the Work-
sheets collection, or you can add another worksheet to the collection. In contrast,
typical properties of a Worksheet object are its Name (the name on the sheet tab)
and Visible (True or False) properties, and a typical method of a Worksheet object
is the Delete method. (Note that this Delete method reduces the Count of the
Worksheets collection by one.)

The main exception to this plural/singular characterization is the Range
object. There is no “Ranges” collection object. A Range object cannot really be
considered singular o7 plural; it is essentially some of each. A Range object can
be a single cell, a rectangular range, a union of several rectangular ranges, an
entire column, or an entire row. Range objects are probably the most difficult to
master in all of their varied forms. This is unfortunate because they are the most
frequently used objects in Excel. Think of your own experience in Excel, and you
will realize that you are almost always doing something with ranges. An entire
chapter, Chapter 6, is devoted to Range objects so that you can master some of
the techniques for manipulating these important objects.

2.4 The Hierarchy of Objects

Returning one last time to cars, what is the status of a car’s hood, a car’s trunk,
or a car’s set of wheels? These are also objects, with their own properties and
methods. In fact, the set of wheels is a collection object that contains individual
wheel objects. The point, however, is that there is a natural hierarchy, as illus-
trated in Figure 2.1. The Cars collection is at the top of the hierarchy. It contains
a set of individual cars. The notation Cars (Car) indicates that the collection object
is called Cars and that each member of this collection is a Car object. Each car
“contains” a number of objects: a Wheels collection of individual Wheel objects,
a Trunk object, a Hood object, and others not shown. Each of these can have its
own properties and methods. Also, some can contain objects farther down the
hierarchy. For example, the figure indicates that an object down the hierarchy
from Hood is the HoodOrnament object. Note that each of the rectangles in this

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Excel Object Model 13

Figure 2.1 Object Model for Cars

Cars (Car)

I- Trunk

Wheels (Wheel)

Hood

——1 HoodOrnament

figure represents an object. Each object has properties and methods that could be
shown emanating from its rectangle, but this would greatly complicate the figure.

The same situation occurs in Excel. The full diagram of the Excel object model
appears in Figure 2.2. (This is the Excel 2003 version; versions for Excel 2007 or
later are only slightly different.?) This figure shows how all objects, including collec-
tion objects, are arranged in a hierarchy. At the top of the hierarchy is the Application
object. This refers to Excel itself. One object (of several) one step down from Appli-
cation is the Workbooks collection, the collection of all open Workbook objects. This
diagram is admittedly quite complex. All you need to realize at this point is that
Excel has a very rich object model—a lot of objects; fortunately, you will need only
a relatively small subset of this object model for most of your applications. This rela-
tively small subset is the topic of later chapters.

2.5 Object Models in General

Although the Excel object model is used in this book, you should now have some
understanding of what it would take to use VBA for other applications such as
Word, Access, or even non-Microsoft products. In short, you would need to
learn 4ts object model. You can think of each application “plugging in” its object
model to the underlying VB language. Indeed, third-party software developers
who want to license VBA from Microsoft need to create an object model appro-
priate for their application. Programmers can then use VBA to manipulate the
objects in this model. This is a powerful idea, and it is the reason why VBA is
the programming language of choice for so many developers—regardless of
whether they are working in Excel or any other application.

Figures 2.3 and 2.4 illustrate two other object models. (Again, these are the
Office 2003 versions.) The object model in Figure 2.3 is for Word. A few of these
objects are probably familiar, such as Sentence, Paragraph, and Footnote. If you

2For example, if you perform a Web search for “Excel 2013 object model diagram,” you will see a
number of such diagrams.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14 Chapter 2

Figure 2.2 Excel Object Model

|Application |
HAddIns | |—| Range (continued) | H RecentFiles |
L addin | [ iatObject | ccene |
HAutoRecover | ListColumns | HRTD |
H CellFormat | ListRows | Hsheets |
Borders | XmiMap | HPageBreaks |
L{ﬂnrder | Phonetic | L{I-I‘Pageﬂraak |
Font | HPhonetics | VPageBreaks |
Interior | HPivotCell | VPageBreak |
H DefaultWebOptions | PivotitemList | HSmartTagR izers |
H Dialogs | HPivotField | SmartTagRecognizer |
L iaiog | cubereia | Hapesch |
[ErrerCheckingOptions | PivotTtem | [SpellingOptions |
HHNames | HPivotTable | HUsedObjects |
- ODBCErrors | CalculatedMembers | Hwatches |
H OLEDBErrors | CubeFiclds | L{Wat!:h
Range | PivotFormulas | Hwindows |
HAreas | HQueryTable Window
HBorders | Parameters | L{Pimﬁ
Lﬂhrder Hsoundiote Hworkbook |
[ Characters | Hvalidation H CustomViews
HComment | HWorksheet [ Mailer
L{shape [ AutoFilter | [ PublishObjects
HErrors | HG ts | PublishObject
Error H CustomProperties | HRoutingSlip
HFont | HHPageBreaks | HSmartTagOptions
HFormatConditions | [ ListObjects | HStyles
{Hyperlinks | | Outline | style
 Interior | HPageSetup | Hweb0ptions
p— HProtection | HXmlMaps
|:| Object and collection [ | Bl St
Object only {Shapes | —Xmillamespaces
HTab | Xmilfilamespace
—VPageBreaks | [{workbooks |
HXPath —WorksheetFunction |
XmiMap |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 2.3 Word Object Model

The Excel Object Model

15

[spplication

Style

| HFootnotes

HFileConverters

HFormFields

HaddIns | |—|5election Hselection |
HAutoCaptions | HBookmarks H5hading |
HaAuteCorrect | HBorders HshapeRange |
AutoCorrectEntries | Hcells HsmartTags |
FirstLetterExnceptions | Hcharacters HTables |
HangulandalphabetExceptions | Hcolumns Hwords |
OtherCorrectionsExceptions | HComments HxMLNode |
TwolnitialCapsExceptions | HDocument —*MLNodes |
HBrowser | HEditors H5martTagRecognizers |
HcaptionLabels | HEndnoteOptions HsmartTagTypes |
Hpialogs | HEndnotes Hsynonyminfo |
Hpictionaties | HFields HSystem |
HDocuments | HFind HTaskPanes |
HEmailOptions | HFont HTasks |
EmailSignature | HFooknoteOptions HTemplate |

AutoTextEntries

ListTemplates

RecentFiles

ﬂFontNames | ﬂFrames ﬂTempIates |
HHangulHanjaConversionDictionaries| HHeaderFooter Hwindows |
|—{Dictit‘.tnar'gw | HHTMLDivisions —XMLN. paces |
HkeyBinding | HHyperlinks
HkeyBindings | HInlineshapes
Legend
HKeysBoundTo | HPageSetup
|:| Object and collection
ﬂLanguages | —|ParagraphFormat Object only
HListGalleries | HParagraphs
HMailingLabel | Hrange
CustomLabels | HRows
HMailMessage | Hsections
ﬂl:lptions | —|Sentences

were learning VBA for Word, you would need to learn the most common elements

of this object model. Figure 2.4 shows part (about 40%) of the object model for
Microsoft Office as a whole. You might wonder why Office has a separate object

model from Excel or Word. The reason is that Office is an integrated suite, where
all of its programs—Excel, Word, PowerPoint, Outlook, and the rest—share a
number of features. For example, they all have menus and toolbars, referred to
collectively as the CommandBars collection in the object model. Therefore, if you

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16 Chapter 2

Figure 2.4 Part of Office Object Model

[AnswerWizard |

L{AnswerWizardFiles |

|A55i5tant |
L{Balluun |

[BalloonCheckboxes |

L{Balluun[heckhuu |

[BalloonL abels |

L{BalluunLahEI |

|COMAddIns |

L{cuMAddIn |

[CommandBarButton |

L{EummandBar |

L{EummandBarEuntruls |

L{EummandBarEuntrul |

|[CommandBarComboBox |

L{EummandBar |

L{EummandBarEuntruls |

L{Eummandﬂar[untrul |

[CommandBarPopup |

CommandBar |

CommandBarControls |

L{Eummandﬂar[untrul |

[CommandBars |

L{EummandBar |

L{Eummandﬂar[untruls |

L{EummandBarEuntrul |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Excel Object Model 17

want to use VBA to manipulate toolbars or menus in Excel, as many programmers
do, you have to learn part of the Office object model. But then this same knowl-
edge would enable you to manipulate menus and toolbars in Word, PowerPoint,
and the others. (Actually, menus and toolbars were replaced for the most part by
ribbons in Excel 2007 and later versions, but the CommandBar object is
still present. This topic is discussed in Chapter 16.)

The Excel object model continues to evolve as new versions of Excel are
released. Sometimes new objects, properties, or methods are added. Other times,
some are dropped from the official object model but still continue to work, for
backward compatibility. Occasionally, some are dropped completely, so that pro-
grams written in an earlier version no longer work. Fortunately, these are the rare
exceptions. If you are working in Excel 2007 or later versions and are interested
in seeing the types of changes that have been made, open the Visual Basic Editor
(Alt+F11 from Excel), press the F1 key for help, and search for “object model
changes.” Although the list is fairly long, not much in terms of VBA code has
changed since this book was originally written for Excel 2003.

2.6 Summary

This chapter has introduced the concept of an object model, and it has briefly
introduced the Excel object model that is the focus of the rest of the book. If
you have never programmed in an object-oriented environment, you can look
forward to a whole new experience. However, the more you do it, the more nat-
ural it becomes. It is certainly the dominant theme in today’s programming
world, so if you want to be part of this world, you have to start thinking in
terms of objects. You will get plenty of chances to do so throughout the book.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18

3.1

3.2

The Visual Basic Editor

Introduction

At this point, you might be asking where VBA lives. I claimed in Chapter 1 that if
you own Excel, you also own VBA, but many of you have probably never seen it.
You do your VBA work in the Visual Basic Editor (VBE), which you can access
casily from Excel by pressing the Alt+F11 key combination. The VBE provides
a very user-friendly environment for writing your VBA programs. This chapter
walks you through the VBE and shows you its most important features. It also
helps you write your first VBA program. By the way, you might also hear the
term Integrated Development Environment (IDE). This is a general term for
an environment where you do your programming, regardless of the programming
language. The VBE is the IDE for programming with VBA in Excel.

Important Features of the VBE

To understand this section most easily, you should follow along at your computer.
Open Excel and press Alt+F11 to get into the VBE.! It should look something
like Figure 3.1, although the configuration you see might be somewhat different. By
the time this discussion is completed, you will be able to make your screen look like
that in Figure 3.1 or change it according to your own preferences. This is your pro-
gramming workspace, and you have a lot of control over how it appears. This chapter
provides some guidance, but the best way to learn is by experimenting.

The large blank pane on the right is the Code window. This is where you
write your code. (If any of the windows discussed here are not visible on your
screen, you can select the View menu from the VBE and then select the window
you want to make visible.) The rest of the VBE consists of the top menu, one or
more toolbars, and one or more optional windows. Let’s start with the windows.

'1n Excel 2003 and earlier, the Tools > Macro — Visual Basic Editor menu item also gets you into the
VBE, but Alt+F11 is quicker. In Excel 2007 and later versions, you should first make the Developer ribbon
visible. To do this in Excel 2007, click the Office button and then Excel Options. Under the Popular tab,
select the third option at the top: Show Developer tab in the Ribbon. In Excel 2010 and later versions,
right-click any ribbon and select Customize the Ribbon. Then check the Developer item in the right pane.
You need to do this only once. The Developer tab is a must for programmers. Among other things, you
can get to the VBE by clicking on its Visual Basic button, but again, Alt+F11 is quicker.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 19

Figure 3.1 Visual Basic Editor (VBE)

7 Microsoft ¥isual Basic - Book2 - [Modulel (Code)] i —Inl.ﬁi
‘g1 Ble  Edt Mew [set Fomat Debug Run  Tools  Adddns  Window  Help Typeaquestion farhelp = 2 @ %
'EF"'Q|£~_-:3§.§%'EI@';‘ 0 om B eE R @ !
B R R a | E :xé-ﬁfé-f%?%! Wy E8EEEOBS -5!
Pro]ect ¥BAPraject I(General} j I(I]el:lara‘tions} g
a3 0] | — T
Option Explicit =

-8 funcres (FUNCRES.XLA)
%% Personal (PERSDNAL.XLS)
B SOLVER (SOLVER.XLA)
: &i StatToolsXL (StatTools.xla)
=8 @ ¥BAProject {Book2)
E| @ Micrasoft Excel Objects
1 Sheetl {Sheet1)
@ ThisWoarkboak.
B 5 Modules

ot [

Properties - Modulel

L ¢

|Mudule1 Madule
Alphabetic | categarized |
Madulel

The Project Explorer window, repeated in Figure 3.2, shows an Explorer-
type list of all open projects. (Your list will probably be different from the one
shown here. It depends on the files you have open and the add-ins that are
loaded.) For example, the active project shown here has the generic name VBA-
Project and corresponds to the workbook Book2—that is, the file Book2.xlsx.?
Below a given project, the Project Explorer window shows its “clements.” In the
Microsoft Excel Objects folder, these elements include any worksheets or chart
sheets in the Excel file and an element called ThisWorkbook, which refers to the
workbook itself. There can also be folders for modules (for VBA code), user
forms (for dialog boxes), and references (for links to other libraries of code you
need), depending on whether you have any of these in your project. Modules,
user forms, and references are discussed in detail in later chapters.

il
W

2For our purposes, there is no difference between a project and a workbook. However, VBA allows
them to have separate names: VBAProject and Book2, for example. If you save Book2 as
Practice.xlsm, say, the project name will still be VBAProject. Admittedly, it is somewhat confusing,
but just think of projects as Excel files.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



20 Chapter 3

Figure 3.2 Project Explorer Window

Projeckt - ¥BAProject E3

B = |G B

&4 funcres (FUNCRES.XLA)
& Personal (PERSONAL.XLS)
8% SOLYER {SOLYER.XLA)
E.ﬁ StatToolsXL {(StatTools.xla)
=& ¥BAProject (Book2)

-2 Microsoft Excel Obijects

H] sheet (Shest1)
{ @ Thiswarkbook
Enﬁi Modules

"t T

The Properties window, shown in Figure 3.3, lists a set of properties. This list
depends on what is currently selected. For example, the property list in Figure 3.3
is relevant for the project itself. It indicates a single property only—the project’s
name. Therefore, if you want to change the name of the project from the generic
VBAProject to something more meaningful, such as MyFirstProgram, this is the
place to do it. Chapter 11 discusses the use of the Properties window in much more
detail. At this point, you don’t really need the Properties window, so you can close
it by clicking on its close button (the upper right X).

The VBE also has at least three toolbars that are very useful: Standard, Edit,
and Debug. They appear in Figures 3.4, 3.5, and 3.6, where some of the most
useful buttons are indicated. (If any of these toolbars are not visible on your

Figure 3.3 Properties Window

Properties - YBAProject ]
|¥BAProject Project =]
Alphabetic |Categn:nrize.|:||
'u'B.ﬂ.F'rnjeci:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 21

Figure 3.4 Standard Toolbar

) P @ e e i

S~
| Show Control Toolbox |

&5
| Show Properties Window |
Stop a program

| Show Project Window |

& | lnl,Call -

| Show Object Browser |

Figure 3.5 Edit Toolbar

# é" =

| Uncomment a block |

Indent a block
Outdent a block

Comment a block

[ Set a Break |

Figure 3.6 Decbug Toolbar

B b @ | BELE S| B E s 5

Toggle breakpoint S Quick watch
- | Step out |
Step into

computer, you can make them visible through the View menu.) From the
Standard toolbar, you can run, pause, or stop a program you have written. You can
also display the Project or Properties window (if it is hidden), and you can display
the Object Browser or the Control Toolbox (more about these later). From the
Edit toolbar, you can perform useful editing tasks, such as indenting or outdenting
(the opposite of indenting), and you can comment or uncomment blocks of code,
as is discussed later. Finally, although the Debug toolbar will probably not mean
much at this point, it is invaluable when you need to debug your programs—as
you will undoubtedly need to do. It is discussed in more detail in Chapter 5. For
future reference, here are a few menu items of particular importance.

®  You usually need at least one module in a project. This is where you will typ-
ically store your code. To insert a module, use the Insert >~ Module menu
item. If you ever have a module you do not need, highlight the module in
the Project Explorer window and use the File -~ Remove Module menu
item. (Answer No to whether you want to export the module.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



22  Chapter 3

e Chapter 11 explains how to build your own dialog boxes. VBA calls these
user forms. To insert a new user form into a project, use the Insert - User
Form menu item. You can delete an unwanted user form in the same way
you delete a module.

e  Under the Insert menu, there is also a Class Module item. You can usually
ignore this. It is more advanced, but it is discussed briefly in Chapter 18.

e The Tools ~ Options menu item allows you to change the look and feel of the
VBE in a variety of ways. You should probably leave the default settings alone—
with one important exception. Try it now. Select Tools — Options, and make
sure the Require Variable Declarations box under the Editor tab s checked.
The effect of this is explained in Chapter 5. You might also want to uncheck the
Auto Syntax Check box, as I always do. Ifit is checked, the editor beeps at you
each time you make a syntax error in a line of code and then press Enter. This can
be annoying. Even if this box is unchecked, the editor will still warn you about a
syntax error by coloring the offending line red.

e If you ever want to password-protect your project so that other people can-
not see your code, use the Tools > VBA Properties menu item and click
the Protection tab. This gives you a chance to enter a password. (Just don’t
forget it, or you will not be able to see your own code.)

e Ifyou click the familiar Save button (or use the File - Save menu item), this
saves the project currently highlighted in the Project Explorer window. It saves
your code and anything in the underlying Excel workbook. (It is all saved in
the .xIsm file.) You can achieve the same objective by switching back to Excel
and saving in the usual way from there. (Note, however, that in Excel 2007
and later versions, if your file started as an .xlsx file without any VBA code,
you will have to save it as an .xlsm file once it contains code.)

3.3 The Object Browser

VBA’s Object Browser is a wonderful online help tool. To get to it, open the VBE
and click the Object Browser button on the Standard toolbar (see Figure 3.4). If you
prefer keyboard shortcuts, you can press the F2 key. Either way, this opens the win-
dow shown in Figure 3.7. At the top left, there is a dropdown list of /Zibraries that
you can get help on. Our main interest is in the Excel library, the VBA library, and,
to a lesser extent, the Office library. The Excel library provides help on all of the
objects and their properties and methods in the Excel object model. The VBA library
provides help on the VBA elements that are common to 2/l applications that can use
VBA: Excel, Access, Word, and others. The Office library provides help on objects
common to all Office programs, such as CommandBars objects (menus and toolbars).

For now, select the Excel library. In the bottom left pane, you see a list of
all objects in the Excel object model, and in the right pane, you see a list of all
properties and methods for any object selected in the left pane. A property is des-
ignated by a hand icon, and a method is designated by a green rectangular icon.
A few objects, such as the Workbook object, also have events they can respond to.
An event is designated by a lightning icon.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 23

Figure 3.7 Object Browser
= o <] sl g

(AN Litw aeien > ] ﬂ_'?
Office I

wlhihode |

vRA

| Clats | Memoar ]

VBAPropect

Mambars of ‘«globalss’

>E >

o>

To get help on any of these items, select it and then click the question mark
button at the top. It is too early in our VBA discussion to be asking for online
help, but you should not forget about the Object Browser. It can be invaluable
as you develop your projects. I use it constantly, and you should too. Of course,
you can get similar help by performing online searches for specific items, but the
Object Browser stores everything in one place.

3.4 The Immediate and Watch Windows

There are two other windows in the VBE that you should be aware of: the
Immediate and Watch windows. Each can be opened through the View menu
or the Debug toolbar. (The Immediate window can also be opened quickly with
the Ctrl+g key combination.) The Immediate window, shown in Figure 3.8, is use-
ful for issuing one-line VBA commands. If you type a command and press Enter,
the command takes effect immediately. For example, the first line in Figure 3.8
selects the range A1:B10 of the Data worksheet (assuming there is a Data work-
sheet in the active workbook). If you type this, press Enter, and switch back to
Excel, you will see that the range A1:B10 has been selected. If you precede the
command by a question mark, you can get an immediate answer to a question.
For example, if you type the second line in the figure, which asks for the address
of the range named MyData, and then press Enter, you immediately get the answer
on the third line.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



24 Chapter 3

Figure 3.8 Immediate Window

Immediate

Worksheetz ("Data™) .Fange ("A1:E10™) .S3elect
WMorksheetz ("Data™) . Range ("MyData™) . Addrezsz
$B$5:5C820

Ll

KT o

Many programmers send information to the Immediate window through
their code. If you see the command Debug.Print, followed by something to be
printed, the programmer is asking for this to be printed to the Immediate win-
dow. This is not a permanent copy of the printed information. It is usually a
quick check to see whether a program is working properly.

The Watch window is used for debugging. Programs typically include several
variables that change value as the program runs. If the program does not appear
to be working as it should, you can put a watch on one or more key variables to
see how they change as the program progresses. Debugging in this way is dis-
cussed in some detail in Chapter 5.

3.5 A First Program

Although you do not yet know much about VBA programming, you know
enough to write a simple program and run it. Besides, sooner or later you will
have to stop reading and do some programming on your own. Now is a good
time to get started. Although the example in this section is very simple, there are
a few details you probably won’t understand completely, at least not yet. Don’t
worry. Later chapters will clarify the details. For now, just follow the directions
and realize the thrill of getting a program to work.

This example is based on a simple data set in the file First Program.xlsx.
It shows sales of a company by region and by month for a 3-year period. (See
Figure 3.9, where some rows have been hidden. The range B2:G37 has the
range name SalesRange.) Your boss wants you to write a program that scans the
sales of each region and, for each, displays a message that indicates the number of
months that sales in that region are above a user-selected value such as $150,000.
To do this, go through the following steps. (In case you get stuck, the finished
version is stored in the file First Program Finished.xlsm.)

1. Open the file. Get into Excel and open the First Program.xlsx file. Because
it is going to contain VBA code, save it as First Program.xlsm.

2. Get into the VBE. Press Alt+F11 to open the VBE. Make sure the Project
Explorer Window is visible. If it isn’t, open it with the View — Project Explorer
menu item.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 25

Figure 3.9 Sales by Region and Month

A B C D E F G
1 Month Region1  Region 2 Region 3  Region 4 Region 5 Region 6
| 2 | Jan-08 144770 111200 163140 118110 105010 167350
| 3 | Feb-08 155180 155100 129850 133940 140880 104110
| 4 | Mar-08 86230 162310 142950 131490 150160 158720
5 Apr-08 148800 165160 123840 141050 175870 108100
z May-08 157140 130300 114990 128220 147790 167470
7 Jun-08 126150 163240 149360 152240 167320 181070
31| Jun-10 124320 148410 162310 186440 147200 146200
E Jul-10 135100 131520 151780 153920 121200 141430
33| Aug-10 150790 151970 168800 144170 140360 139990
E Sep-10 93740 168100 142040 126440 113500 130500
35| Oct-10 124160 148560 120190 155600 132590 155510
36| Nov-10 109840 189790 127460 135160 149470 163330
37| Dec-10 127100 108640 145300 127920 151130 122900
3. Add a module. In the Project Explorer window, make sure the First
Program.xlsm project is highlighted (select it if’ necessary), and use the
Insert > Module menu item to add a module to this project. This module
is automatically named Module1, and it will hold your VBA code.
4. Start a sub. Click anywhere in the Code window, type Sub CountHighSales,

and press Enter. You should immediately see the following code. You have
started a program called CountHighSales. (Any other descriptive name could
be used instead of CountHighSales, but it shouldn’t contain any spaces.)
The keyword Sub informs VBA that you want to write a subroutine (also
called a procedure or a macro), so it adds empty parentheses next to the
name CountHighSales and adds the keywords End Sub at the bottom—two
necessary elements of any subroutine. The rest of your code will be placed
between the Sub and End Sub lines. Chapters 5 and 10 discuss subroutines
in more detail, but for now, just think of a subroutine as a section of code
that performs a particular task. For this simple example, there is only one
subroutine.

Sub CountHighSales( )
End Sub

5. Type the code. Type the code exactly as shown below between the Sub and
End Sub lines. It is important to indent properly for readability. To indent as
shown, press the Tab key. Also, note that there is no word wrap in the VBE.
To finish a line and go to the next line, you need to press the Enter key.
Other than this, the Code window is much like a word processor. You will
note that keywords such as Sub and End Sub are automatically colored blue
by the VBE. This is a great feature for helping you program. Also, spaces are
often inserted for you to make your code more readable. For example, if you

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



26 Chapter 3

type nHigh=nHigh+1, the editor will automatically insert spaces on either side
of the equals and plus signs.

Sub CountHighSales( )
Dim i As Integer
Dim j As Integer
Dim nHigh As Integer
Dim cutoff As Currency

cutoff = InputBox("What sales value do you want to check for?")
Forj=1To 6
nHigh = 0
Fori =1 To 36
If wsData.Range("Sales").Cells(i, j) >= cutoff Then _
nHigh = nHigh + 1
Next i
MsgBox "For region " & j & ", sales were above " & Format(cutoff, "$0,000") _
& " on " & nHigh & " of the 36 months."
Next j
End Sub

6. Avoid syntax errors. Two special characters in this code are the ampersand,
&, and the underscore, _. Make sure each ampersand has a space on either
side of it, and make sure each line-ending underscore has a space before it.
(These spaces are not added automatically for you.) There are other syntax
errors you could make, but these are the most likely in this short subrou-
tine. Be sure to check your spelling carefully and fix any errors before
proceeding.

7. Run the program from the VBE. Your program is now finished. The next
step is to run it. There are several ways to do so, two of which are demon-
strated here. For the first method, make sure the cursor is anywhere within
your subroutine and select the Run - Run Sub/UserForm menu item.
(Alternatively, click the “green triangle” button on the Standard toolbar, or
press the F5 key.) If all goes well, you should see the input box in Figure
3.10, where you can enter a value such as 150000. The program will then
search for all values greater than or equal to $150,000 in the data set. Next,
you will see a series of message boxes such as the one in Figure 3.11. Each
message box tells you how many months the sales in some region are above
the sales cutoff value you entered. This is exactly what you wanted the pro-
gram to do.

8. Run the program with a button. The run method in the previous step
is fine for you, the programmer, but your users won’t want to get into the
VBE to run the program. They probably don’t even want to see the VBE.
They will instead want to run the program directly from the Excel worksheet
that contains the data. You can make this easy for them. First, switch back to
Excel (click the Excel button on the taskbar of your screen). Then click the
Insert dropdown list on the Developer ribbon (see footnote 1 of this chapter
for how to make the Developer tab visible), click the upper left “button”
control, and drag a rectangular button somewhere on your worksheet, as

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 27

Figure 3.10 InputBox for Sales Cutoft Value

Figure 3.11 MessageBox for Region 2

(Wicrosolt vl ' =

For region 2, sales were above 5150000 on 23 of the 26 months.

shown in Figure 3.12.% You will immediately be asked to assign a macro to this
button. This is because the only purpose of a button is to run a macro. You
should assign the CountHighSales macro you just wrote. Then you can type a
more meaningful caption on the button itself. (Again, see Figure 3.12 for a
possible caption.) At this point, the button is “selected”—there is a dotted bor-
der around it. To deselect it, just click anywhere else on the worksheet. Now
your button is ready to go. To run your program, just click the button.

9. Save the file. In case you haven’t done so already, save the file under the orig-
inal (or a new) name. This will save your code and the button you created.
Again, make sure you save it with the .xIsm extension.

A note on saving. You have undoubtedly been told to save frequently in all of your
computer-related courses. Frequent saving is at least as important in a programming
environment. After all the effort you expend to get a program working correctly, you
don’t want that sinking feeling when your unsaved work is wiped out by a sudden
power outage or some other problem. So I will say it, too—save, save, save!

*In Excel 2003 and earlier, the button control is on the Forms toolbar, which you can make visible
by right-clicking any toolbar and checking the Forms option. Although buttons are ready-made for
running macros, Excel shapes can also be used. Give it a try. From the Insert menu, select and then
drag a shape such as a rectangle. Then right-click, and you will see an Assign Macro menu item.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



28 Chapter 3

Figure 3.12 Button on the Worksheet

A B C D E F G H ] [ v T k T L
Month Region 1 Region 2 Region 3 Region 4 Region5  Region 6
Jan-08 144770 111200 163140 118110 105010 167350
Feb-08 155180 155100 129850 133940 140880 104110
Mar-08 86230 162310 142950 131490 150160 158720
Apr-08 148800 165160 123840 141050 175870 108100
May-08 157140 130300 114990 128220 147790 167470
Jun-08 126150 163240 149360 152240 167320 181070
Jul-08 174010 183360 122120 149730 134220 135530 [COUHY High Sales Va‘ueS]
Aug-08 171780 130050 124130 134510 175590 122230
Oct-10 124160 148560 120190 155600 132590 155510
Nov-10 109840 189790 127460 135160 149470 163330
Dec-10 127100 108640 145300 127920 151130 122900

LR REREERE

Troubleshooting

What if you get an error message when you run your program:? First, read your
program carefully and make sure the code is exactly like the code shown here.
Again, the underscores at the ends of the If and MsgBox lines must be preceded
by a space. (Their purpose is to extend long lines of code to the next line.) Also,
the ampersand (&) characters in the MsgBox line should have a space on either
side of them. If you have any lines colored red, this is a sure sign you have typed
something incorrectly. (This is another feature of the VBE that helps program-
mers. Red lines signify syntax errors.) In any case, if you get some version of the
dialog box in Figure 3.13, click the End button. This stops a program with bugs
and lets you fix any errors. Alternatively, click the Debug button, and you will
see a line of code in yellow. This line is typically the offending line, or close to it.
(Again, debugging is discussed in some detail in Chapter 5.)

If your typing is correct and you still get an error, check steps 7 and 8. If you
are using step 7 to run the program, make sure your cursor is somewhere inside
the subroutine. If you are using the button method in step 8, make sure you
have assigned the CountHighSales macro to the button. (Right-click the button

Figure 3.13 A Typical Error Dialog Box

-
Microsoft Vizual Basic

Run-time error "1004:

Method 'Range’ of object’_Warksheet' failed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 29

and select the Assign Macro menu item.) There are not too many things that can
go wrong with this small program, so you should eventually get it to work.
Remember, perseverance is the key.

Brief Analysis of the Program

I could not expect you to write this program without my help at this point. But
you can probably understand the gist of it. The four lines after the Sub line
declare variables that are used later on. The next line displays an InputBox (see
Figure 3.12) that asks for a user’s input. The section starting with Forj =1 To 6
and ending with Next j is a loop that performs a similar task for each sales region.
As you will learn in Chapter 7, loops are among the most powerful tools in a pro-
grammer’s arsenal. For example, if there were 600 regions rather than 6, the only
required change would be to change 6 to 600 in the Forj = 1 To 6 line. Compu-
ters are excellent at performing repetitive tasks.

Within the loop on regions, there is another loop on months, starting with
For i = 1 To 36 and ending with Next i. Within this loop there is an If statement
that checks whether the sales value for the region in that month is at least as large
as the cutoff value. If it is, the variable nHigh is increased by 1. Once this inner loop
has been completed, the results for the region are reported in a MessageBox.

Again, the details might be unclear at this point, but you can probably under-
stand the overall logic of the program. And if you typed everything correctly and
ran the program as instructed, you now know the thrill of getting a program to
work as planned. I hope you experience this feeling frequently as you work
through this book.

3.6 Intellisense

A lot of things are advertised to be the best thing since sliced bread. Well, one of
the features of the VBE really is. It is called Intellisense. As you were writing the
program in the previous section, you undoubtedly noticed how the editor gave
you hints and tried to complete certain words for you. You see Intellisense in
the following situations:

e Every time you type the first line of a sub and then press Enter, Intellisense
adds the End Sub line automatically for you.*

e Whenever you start declaring a variable in a Dim statement, Intellisense helps
you with the variable type. For example, if you type Dim nHigh As In, it will

*There are many other VBA constructs that are bracketed with a beginning line and an ending line:
If and End If, For and Next, Do and Loop, and others. You might imagine that if VBA is smart enough
to add End Sub for you after you type the Sub line, it is smart enough to add an End If line after an If
line, a Next line after a For line, and so on. However, it isn’t that smart, at least not yet. My guess is
that Microsoft simply hasn’t gotten around to it yet. Interestingly, the Visual Studio editor for NET
is that smart. It even indents automatically for you.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



30 Chapter 3

guess that you want In to be Integer. All you have to do at this point is press
the Tab key, and Integer will appear.

e Intellisense helps you with properties and methods of objects. For example, if
you type Range("A1:C10"). (including the period), you will see all of the prop-
erties and methods of a Range object. At this point you can scroll through
the list and choose the one you want.

e Intellisense helps you with arguments of methods. For example, if you type
Range("A1:C10").Copy and then a space, you will see all of the arguments
(actually, only one) of the Copy method. (Any arguments shown in square
brackets in this list are optional. All others are required.)

e Intellisense helps you with hard-to-remember constants. For example, if you
type Range("A1").End(, you will see that there are four constants to choose
from: xIDown, xIUp, xIToRight, and xIToLeft. (This corresponds to pressing
the End key and then one of the arrow keys in Excel. You will learn more
about it in Chapter 6.)

e Sometimes you create fairly long variable names like productCost or firstCusto-
mer. Then you need to use them repeatedly in your code. If you start typing
one of them, like firs, and then press Ctrl+Space, you will get a list of all vari-
ables that start with these letters, and you can choose the one you want. In
fact, if there is only one variable that starts with these letters, it will be
inserted automatically. This can save a lot of typing—and typing errors.

In short, Intellisense is instant online help. It doesn’t necessarily help you
with the logic of your program, but it speeds up your typing, and it helps ensure
that you get the syntax and spelling correct. After you get used to Intellisense,
you will find that it is absolutely indispensable.

3.7 Color Coding and Case

Another feature of the VBE that enhances readability and helps you get your
code correct is color coding.

e All keywords, such as Sub, End, For, and many others, are automatically col-
ored blue.

e All comments (discussed in Chapter 5) are colored green.

e All of the rest of your code is colored black.

e Ifyou make a syntax error in a line of code and then press Enter, the offend-
ing line is colored red. This is a warning that you should fix the line before
proceeding.

Besides coloring, the editor corrects case for you.

e All keywords start with a capital letter. Therefore, if you type sub and press
Enter, the editor changes it to Sub.

e If you declare a variable with the spelling unitCost and then type it as UNIT-
Cost later on in the program, the editor automatically changes it to unitCost.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 31

(Whatever spelling you use in the Dim statement is the one used subsequently,
even if it is something weird like uNitCost.) Actually, case doesn’t matter at all
to VBA—it treats unitCost the same as uNitCost or any other variation, but
the editor at least promotes consistency.

3.8 Finding Subs in the VBE

For the next few chapters, each of your programs will consist of a single sub, so
when you select the file’s module in the VBE’s Project Explorer, your sub will
appear in the Code window. However, in the programs in Part II of the book,
there are multiple subs, and not all of them are in modules. In this case, it can be
tedious to locate them in the Code window. Fortunately, the VBE provides tools
to make this easy.

To follow along, open the Car Loan.xlsm file from Chapter 19. It not only
has multiple subs in its module, but it has code in other locations, including code
behind user forms (discussed in Chapter 11). The point is that it has multiple
subs in various places. For now, double-click Module1 in the Project Explorer.
You will see the MainProgram sub in the Code window. Now click the right drop-
down arrow above the Code window. (See Figure 3.14.) You will see a list of all
subs in Module1. To go quickly to any of them, just select the one you want.

Next, right-click the first form, frminputs, in the Project Explorer and select
View Code. This shows the code behind this form. (Again, all of this is explained
in Chapter 11.) Now click the left dropdown arrow above the Code window.
(See Figure 3.15.) You will see a list of all the controls on the form. Any of
these can have associated code that responds to its events. For example, select

Figure 3.14 List of Subs in a Module

A Mo olt Vel Ui (o0 Apph stions - (ae Loansbesn - [Module | (Code)] =100
i Bee fof Yew Jriet Format Oebug Bun  foshs  Adddni  Wendow e h - o @ X
HE-d anm P U UM YT @ nuc 6
Jda ER O 0 0 > "I_( A B D0gw i
Pomt manas B | e 7] [ociarstiome) -
£ pLion Explicir e -
Loansdsm) ﬂ At
Sbanat s FimLe o 2= 1 &b Los - :
{ Asmnetizs 1 1 Spe e . g tay ' me
P e Setvaltavty
For mSensitivity
—— e Senalor gkt 0 Ay T o ol ol T
) vepianation (Daghanaly explanatioe an explensticn ot Tt |
) oMol (Mool . aris e re h' hant
) werSonmtmity (Seevstivlty) ‘Wrewt xptanation .
= ¢ analysisOption Aa Imtege: T '-J
@ frmdrputs ¢ SENSITIVILYOpTtion As Integer
B frmOpiong ii0 explanation As String
B FrmSanmiivy
= N Modulles fubs BainProgras|)
- -
T [ R ! £ I — ;rl

Source: Microsoft Corporation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



32  Chapter 3

Figure 3.15 List of Controls on a User Form

& Ble [t Yew jmen Fomst Debug Bun Jeok Addims Window Help
AR 0 > 1N SFY - O M uaaa.
| [ioectarmtons)

ermOm |
Lateiy
Label

Tamel
Lateid

{xplanaticn As String) As Scclean

2

in the Ipprepriate oelle.

-
Fange ("FEice™ .Valee = Val itxePrice.Value)
-Range ("DevnFayment®) . Value = Val (txtDownPayment Value)
.Range ("IntesestRace”).Value = Val (catintesestRate.Value)

Select Case True
Cape optlil.Vaiuve: .Range(*Tem*).Value 12
Case cptid.Value: .Range("Tem").Value 4
Case cp:d.Valus: .Rsnge("Tem®) .Value 36
Cane opt42.Value: .Range("Temm®).Valus LL]
Case optéd.Value: .Range("Tem"™).Valus €0 _r._‘
’

the button control cmdOK, and then click the right dropdown list above the
Code window. (See Figure 3.16.) You will see a list of all events that the cmdOK
control can respond to, and any that have associated code (event handlers) are
boldfaced. In this case, the Click event is the only one boldfaced, and if you select
it, you will see the corresponding code.

All you need to remember at this point is that these dropdown lists are always
available, and they make it easy to navigate around a large program.

Figure 3.16 List of Events That a Control Can Respond To

M) e ot Yew (et fomat Oebug Bun Teok Addim Window MHelp
BN 90 ) 1A SFY - @

| emaox

Ena Funciion

Private Sub omdOK_Click()
If Valid Then Me.Hide
cancel = False

End S2ob

Private Sub cmdCancel Click()
Me . Ride !
cancel = Irue i v

Ead Sub — ==

Private 3ub UsezFor= QuesyClose(cancel As Intege:, CloseMode As Intege:
If ClcaeMode = vbFormControlMenu Than omdCancel Click

Ead Bub

Private Jub benCancel Click()
DOnload Me
Ead

End Sub

= |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Visual Basic Editor 33

3.9 Summary

This chapter has introduced the Visual Basic Editor (VBE)—its toolbars, some of
its menu items, and its windows. It has also briefly discussed online VBA help and
the Object Browser. You will be doing most of your development work in the
VBE, so you should become familiar with it right away. You will come to appreci-
ate what a friendly and helpful programming environment it provides.

EXERCISES

1. Open Excel and open two new workbooks, which will probably be called Bookl
and Book2 (or some such generic names). Get into the VBE and make sure the
Project Explorer window is visible. Insert a module into Bookl and click the
plus sign next to Modules (for Bookl) to see the module you just inserted. Now
type the following sub in the Code window for this module and then run it. It
should display the name of the workbook.

Sub ShowNameO
MsgBox "The name of this workbook is " & ThisWorkbook.Name
End Sub

Finally, go to the Project Explorer window and drag the module you inserted
down to Book2. This should create a copy of the module in Book2. Run the
sub in the copied module. It should display the name of the second workbook.
The point of this exercise is that you can copy code from one workbook to
another by copying the module containing the code. Fortunately, copying a mod-
ule is as simple as dragging in the Project Explorer window.

2. Open the First Program.xlsm file you created in Section 3.5, and get into the
VBE so that you can look at the code. Select the Debug - Add Watch menu
item, and type nHigh in the text box. You are adding a watch for the variable
nHigh, so that you can see how it changes as the program runs. Next, place the
cursor anywhere inside the code, and press the F8 key repeatedly. This steps
through the program one line at a time. Every time the program sees a sales
figure greater than the cutoff value you specify, nHigh will increase by 1, which
you should see in the Watch window. (You will probably get tired of pressing
F8. You can stop the program prematurely at any time by clicking the blue square
Reset button on the Standard toolbar. Alternatively, you can click the green trian-
gle Run button to run the rest of the program all at once.)

3. Get into the VBE and open the Immediate window. (Again, the shortcut for
doing so is Ctrl+g.) Then type the following lines, pressing the Enter key after
each line. You should now understand why it is called the Immediate window.

?Application.Name
?Application.DefaultFilePath
?Application.Path
?Application.Version

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



34 Chapter 3

?Application.UserName
?IsDate("February 29, 2009")
?IsDate("February 29, 2008")
?Workbooks.Count
?ActiveWorkbook.Name

4. Open a new workbook in Excel, get into the VBE, and insert a module into this
new workbook. Type the following code in the Code window. Make sure there is
no Option Explicit line at the top of the code window. (If there is one, delete it.)

Sub EnterUserNameSlowly( )
Range("A1").Value = "The user of this copy is Excel is listed below."
yourName = Application.UserName
nChars = Len(yourName)
For i = 1 To nChars
Range("A3").Value = Left(yourName, i)
newHour = Hour(Now( ))
newMinute = Minute(Now( ))
newSecond = Second(Now( )) + 1
waitTime = TimeSerial(newHour, newMinute, newSecond)
Application.Wait waitTime
Next
End Sub

Next, return to Sheetl of this workbook, add a button and assign the EnterUser-
NameSlowly sub to it, and then run the program by clicking the button. Can you
now explain what the code is doing? (If you like, look up the Wait method of
the Application object in the Object Browser for online help.)

5. Open the First Programs.xlsm file you created in Section 3.5, and get into the
VBE. Use the Tools =~ VBAProject Properties menu item, and click the Protec-
tion tab. Check the “Lock project for viewing” option, enter a password in the
other two boxes—don’t forget it—and click OK. Go back to Excel, save the file,
and close it. Now reopen the file and try to look at the code. You have just
learned how to password-protect your code. Of course, you have to remember
the password. Otherwise, not even you, the author, can look at the code. (If you
ever want to remove the protection, just uncheck the “Lock project for viewing”
option and delete the passwords from the boxes.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recording Macros

4.1 Introduction

This chapter illustrates a very quick way to start programming—by recording
while you perform a task in Excel. Just as you can record yourself singing or
playing the piano, you can record your actions as you work in Excel. As the
recorder records what you are doing, it generates VBA code in a module. If
this sounds too good to be true, it is—at least to an extent. There are certain
things you cannot record—loops and control logic, for example—and the
recorded code, even though correct, is usually not very “stylish.” Still, there are
two reasons why recording can be useful. First, it is helpful for beginners. A
beginning programmer can immediately generate code and then look at it and
probably learn a few things. Second, it is useful even for experienced programmers
who need to learn one particular detail of VBA code. For example, what is the
VBA code for entering a comment in a cell? You could look it up in online help,
but you could also record the process of entering a comment in a cell and then
examine the resulting code. Recording often provides the clue you need to over-
come a particular coding hurdle.

4.2 How to Record a Macro

Recording is easy. In Excel 2007 and later versions, select Record Macro from
the Developer ribbon (see Figure 4.1) to display the dialog box in Figure 4.2.
(In Excel 2003 and earlier, select the Tools — Macro — Record New Macro
menu item.) Alternatively, you can click the small button to the right of READY
on the status bar at the bottom left of the Excel screen to bring up the same
Record Macro dialog box (see Figure 4.3). Then you can give the macro a
descriptive name, provide an optional description of the macro, give it an
optional shortcut key, and tell Excel where to store the recorded code.’

A shortcut key is useful if you want to be able to run the macro with a Ctrl+key combination. For
example, if you enter the letter k in the box, the macro will run when you press the Ctrl+k key com-
bination. Just be aware that if there is already a Ctrl+key combination, especially one that you use
frequently, your new one will override it. For example, many people like to use Ctrl+s to save a file,
so it is not wise to override this with your own use of Ctrl+s.

35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



36 Chapter 4

Figure 4.1 Record Macro Button on Developer Ribbon

Stop Recording

@ Use Relative References
Visual Macros

Basic ﬁh Macro Security
Code

Figure 4.2 Record Macro Dialog Box

Macro name:
I ModifyTexthox

| shorteut key:
Cirl+ D
Store macro in:
This Workbook

Personal Macro Workbook
SlMew Workbook
This Workbook

Figure 4.3 Record Macro Button on Status Bar
37 |
38
Sheetl

READY 3

The storage location for the macro is particularly important. As Figure 4.2
indicates, you can store the macro in the current workbook, in a new workbook,
or in a special workbook called your Personal Macro Workbook. If you store
the macro in the current workbook, you can use it in that workbook but not in
others, at least not without some extra work. This is sometimes acceptable, but
suppose you want to record macros for tasks you do repeatedly. In fact, suppose
your whole purpose in recording these macros is to have them available at al/
times when you are working in Excel. Then the Personal Macro Workbook should
be your choice. It is a special file that Excel stores in its XLStart folder so that it is

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recording Macros 37

opened every time Excel is opened.? It is actually opened as a hidden file so that
you are not even aware of its presence—but its macros are always available.

Take a look at your Project Explorer window in the VBE to see if you have a
Personal.xlsb (or Personal.xls) item. If you do not, record a macro and select
the Personal Macro Workbook option in Figure 4.2 This will create a
Personal.xlsb (or Personal.xls) file on your hard drive, which you can then add
to as often as you like. By the way, you can either 7ecord macros to your Personal
Macro Workbook, or you can type code directly into it in the VBE. That is, once
you learn to program and not just record, you can add to your Personal Macro
Workbook anytime you like. Just select one of its modules in the VBE and start
typing your code—and save when you are finished.

After you complete the dialog box in Figure 4.2 and click OK| you should see a
Stop Recording button on the Developer ribbon. (In Excel 2003 and earlier, this but-
ton is in its own toolbar.) Alternatively, you can click the Status Bar button. (Once you
start recording, this button becomes a Stop Recording button.) Just remember that
the recorder will record virtually everything you do until you click a Stop Recording
button, so be careful—and don’t forget to stop recording when you are finished.

Suppose you already have a module in your current workbook (or your Per-
sonal Macro Workbook, if that is where you are storing the recorded macro).
Then the chances are that Excel will create a zew module and place the recorded
macro in it. Actually, the rules for whether it opens a new module or uses an
existing module are somewhat obscure, but the point is that you might have to
search through your modules to find the newly recorded code.

4.3 Changes from Excel 2007 to Later Versions

Some people, especially VBA programmers, have said that Excel 2007 was really
just the “beta” for Excel 2010. One reason for this claim is that recording simply
doesn’t work for certain actions in Excel 2007—Microsoft released the product
before it was completely finished. For example, if you record certain actions on
charts in Excel 2007, you get no recorded code whatsoever. This is especially frus-
trating if your whole purpose in recording is to see what the resulting code will
look like, as I often do. This seems to be fixed in later versions of Excel, but I
haven’t tested it completely. There still might be certain actions that produce no
recorded code. In such cases, you have to do some detective work, using online
help or Web searches, to find the VBA code corresponding to these actions.

4.4 Recorded Macro Examples

This chapter includes two files, Recording Macros.xlsm and Recording Macros
Finished.xlsm, to give you some practice in recording macros. The first file

2The XLStart folder is way down the directory structure on your hard drive. To see where it is in Excel
2007 or later versions, go to Excel Options, choose the Advanced group, and scroll down to the General
options. You will see an “At startup, open all files in:” item, where you can see or change the startup
folder location. Actually, if this box is blank, the XLStart folder is in its default location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



38 Chapter 4

includes six worksheets, each with a simple task to perform with the recorder
on. The tasks selected are those that most spreadsheet users perform frequently.
This section goes through these tasks and presents the recorded code. Although
this recorded code gets the job done, it is not very clegant code. Therefore, the
finished version of the file contains the recorded code and modifications of it.
This is a common practice when using the recorder. You often record a macro to
get one key detail. You then modify the recorded code to fit your specific purposes
and discard any excess code you do not need. In short, you clean it up.

For the rest of this section, it is best to open the Recording Macros.xlsm file
and work through each example with the recorder on. Your recorded code might
be slightly different from the code in the finished version of the file because you
might do the exercises slightly differently. Don’t worry about the details of the
recorded code or the modified code at this point. Just recognize that recorded
code often benefits from some modification, either to make it more general,
improve its readability, or delete unnecessary lines.

Exercise 4.1 Entering a Formula

This exercise, shown in Figure 4.4, asks you to name a range and enter a formula
to sum the values in this range.

The recorded code and modifications of it appear below in the SumFormula
and SumFormulal subs. If you think about range operations in Excel, you will
realize that you usually select a range—that is, highlight it—and then do some-
thing to it. Therefore, when you record a macro involving a range, you typically
see the Select method in the recorded code. This is actually not necessary. When
you want to do something to a range with VBA, you do #ot need to select it first.
As you can see in the modified version, the Select method is never used. How-
ever, there is a reference to the Exercisel worksheet, just to clarify that the ranges
referred to are in this worksheet and not one of the others.

Note how the recorded macro names a range. It uses the Add method of the
Names collection of the ActiveWorkbook. This Add method requires two argu-
ments: the name to be given and the range being named. The latter is done in

Figure 4.4 Exercise 1 Worksheet

A I B | ¢ | b | E T F 1T 6 T H
Naming a range and entering a formula

Month Cost
Jan-00  $10,897
Feb-00 $11,164 Turn the recorder on, name the range with

the numbers MonthlyCosts, then enter the
formula =SUM(MonthlyCosts) at the
bottom of the column, then turn the
recorder off.

Mar-00  $10,062
Apr-00  $12,039
May-00  $11,111
Jun-00  $10,223
Jul-00  $11,558
Aug-00 $12,553
Total cost

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recording Macros 39

RI1C1 notation. For example, R7C2 refers to row 7, column 2—that is, cell B7.
This is a typical example of recorded code being difficult to read. The modified
code shown below uses a much easier way of naming a range (by setting the
Name property of the Range object). It also uses the code name I gave to the
worksheet, wsExercise1. Code names are explained in the next chapter.

Recorded Code

Sub SumFormula()

' SumFormula Macro
Range("B4:B11").Select
ActiveWorkbook.Names.Add Name:="MonthlyCosts", RefersToR1C1:= _
"=Exercise1!R4C2:R11C2"
Range("B12").Select
ActiveCell.FormulaR1C1 = "=SUM(MonthlyCosts)"
Range("B13").Select
End Sub

Modified Code

Sub SumFormulai()
With wsExercisel
.Range("B4:B11").Name = "MonthlyCosts"
.Range("B12").Formula = "=SUM(MonthlyCosts)"
End With
End Sub

Exercise 4.2 Copying and Pasting

This exercise, shown in Figure 4.5, asks you to copy a formula down a column.
The recorded code and modifications of it are shown below in the CopyPaste
and CopyPaste1 subs. Here again, you see Select and Selection several times in the

Figure 4.5 Exercise 2 Worksheet

A [ B [ ¢ I Db [T E T F T 6 T H T 1 T4

L Copying and pasting a formula
| 2 |
| 3| Month Region 1sales Region 2 sales Total sales
i Jan-00 $14,583 $10,531 $25,114

5 Feb-00 $10,030 $12,861 Column D is the sum of columns B and C. The
T Mar-00 $14,369 $11,172 typical formula is shown in cell D7. Turn on
7] Apr-00 $13,108 $14,957 the recorder, copy this formula down column
T May-00 $14.410 $13.395 D, and turn the recorder off.
9] Juno0 $11,439 $12,306
10|  Jul-00 $12,753 $12,593
| 11]  Aug-00 $13,074 $11,631

12 Sep-00 $10,957 $11,651

Source: Microsoft Corporation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



40 Chapter 4

recorded code. The recorded code also contains the strange line ActiveSheet.Paste.
Why does it paste to the active sheet and not to a particular range? I still find this
hard to understand. The modified version is much simpler and easier to read.

Recorded Code

Sub CopyPaste()
' CopyPaste Macro

Range("D4").Select

Selection.Copy

Range("D5:D12").Select

ActiveSheet.Paste

Application.CutCopyMode = False
End Sub

Modified Code

Sub CopyPaste1()
With wsExercise2
.Range("D4").Copy Destination:=.Range("D4:D12")
End With
' The next line is equivalent to pressing the Esc key to get
' rid of the dotted line around the copy range.
Application.CutCopyMode = False
End Sub

This exercise indicates how you can learn something fairly obscure by recording.
Remember that when you copy and then paste in Excel, the copy range retains a
dotted border around it? You can get rid of this dotted border in Excel by press-
ing the Esc key. How do you get rid of it in VBA? The answer appears in the
recorded code—you finish with the line

Application.CutCopyMode = False

Exercise 4.3 Copying and Pasting Special as Values

This exercise, shown in Figure 4.6, asks you to copy a range of formulas and then
use the Paste Values option to paste it onto itself.

The recorded code and its modifications are listed below in the PasteValues
and PasteValues1 subs. This time the recorded code is used as a guide to make a
slightly more general version of the macro. Instead of copying a specific range
(D4:D12), the modification copies the current selection, whatever it might be.
Also, note that when recorded code contains a method, such as the PasteSpecial
method of a Range object, it includes a// of the arguments of that method. Typi-
cally, many of these use the default values of the arguments, so they do not really

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 4.6 Exercise 3 Worksheet

Recording Macros 41

A B C D F | G T H ] Ty

L Copying a range of formulas and pasting onto itself with the PasteSpecial Values option
| 2|

3 Month Region 1sales Region 2sales  Total sales
4] san-00 $14,583 $10,531  $25,114
| S | Feb-00 $10,030 $12,861 $22,891 Column D is the sum of columns B and C.

6 Mar-00 $14,369 $11,172 $25,541 Replace the formulas in column D with
7] Apr-00 $13,108 $14,957 $28,065 values. Specifically, turn on the recorder,
T May-00 $14,410 $13,395 $27,805 Copy column D, Paste Special (with the
79 | Jun-00 $11,439 $12,306 $23,745 Values option), then turn off the recorder.
(10|  Jur-oo $12,753 $12,593 $25,346
11| Aug-00 $13,074 $11,631 $24,705
? Sep-00 $10,957 $11,651 $22,608

need to be included in the code. The modified code has dropped the Operation, Skip-
Blanks, and Transpose arguments because the actions performed in Excel did not
change any of these. My point here is that recorded code is often bloated code.

Recorded Code

Sub PasteValues()

' PasteValues Macro
Range("D4:D12").Select
Selection.Copy
Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks:=False,
Application.CutCopyMode = False
End Sub

Transpose:=False

Modified Code

Sub PasteValuesi()

' Note: This macro is somewhat more general. It copies and pastes to the current selection, whatever
' range it happens to be.

With Selection

.Copy
.PasteSpecial Paste:=xIPasteValues
End With
Application.CutCopyMode = False
End Sub

Exercise 4.4 Formatting Cells

This exercise, shown in Figure 4.7, asks you to format a range of labels in several
ways. The recorded code and its modifications appear below in the Formatting and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



42  Chapter 4

Figure 4.7 Exercise 4 Worksheet

A [ B [ ¢ [ b [ e [ F [ 6 [ H [ T [ J T K [ L
Formatting the cells in a range

Jan Feb Mar Apr May Jun -

Format the cells to the left so that the font

is Times New Roman, size 12, bold, and red. -
Select the range before turning on the
recorder.

Formattingl subs. This is a typical example of bloated code generated by
the recorder. The exercise changes a few properties of the Font object, but the
recorded code shows @/l of the Font properties, whether changed or not. The
modified code lists only the properties that are changed.

Recorded Code

Sub Formatting()

' Formatting Macro
With Selection.Font
.Name = "Times New Roman"
.Size = 11
.Strikethrough = False
.Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.Colorindex = 3
.TintAndShade = 0
.ThemeFont = xIThemeFontNone
End With
With Selection.Font
.Name = "Times New Roman"
.Size = 12
.Strikethrough = False
.Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.Colorindex = 3
.TintAndShade = 0
.ThemeFont = xIThemeFontNone
End With
Selection.Font.Bold = True
With Selection.Font
.Color = -16776961
.TintAndShade = 0
End With
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recording Macros 43

Modified Code

Sub Formatting1()
With Selection.Font
.Name = "Times New Roman"

.Size = 12
.Bold = True
.Colorindex = 3
End With
End Sub

Exercise 4.5 Creating a Chart

This exercise, shown in Figure 4.8, asks you to create a chart (as shown in
Figure 4.9) on the same sheet as the data for the chart.

The recorded code and its modifications are listed in the CreateChart and
CreatChart1 subs. It is helpful to use the recorder when you want to use VBA to
create or modify a chart. There are too many objects, properties, and methods

Figure 4.8 Exercise 5 Worksheet

A ] B [ ¢ T b T E ] F | G
1 |Creating a chart
2]
| 3 Grade Number
| 4 | A 25 Create a bar chart on this sheet for the -
| 5 | B 57 grade distribution to the left.
i C 43
| 7 D 10
8 F 4

Figure 4.9 Chart on Exercise 5 Worksheet

Grade Distribution
60

40

30

20 -

10

o I B B N
A B c D F

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




44  Chapter 4

associated with charts to remember, so you can let the recorder help you. Note
that the modified version leaves most of the recorded code alone. It simply inserts
some With constructions to avoid repetitive references to the same object. (The
With construction is explained in the next chapter.)

If you are using Excel 2007 or 2010, your recorded code will differ from
what is shown here, which was recorded in Excel 2013. This is an example of
the problem mentioned earlier, where the Excel 2007 recorder does not supply
recorded code for all of your actions. Thankfully, this was fixed in Excel
2010, but even so the recorded code is slightly different in Excel 2013 than in
Excel 2010.

Recorded Code

Sub CreateChart()

' CreateChart Macro
Range("A3:B8").Select
ActiveSheet.Shapes.AddChart2(201, xIColumnClustered).Select
ActiveChart.SetSourceData Source:=Range("Exercise5!$A$3:$B$8")
ActiveChart.ChartTitle.Select
Selection.Caption = "Grade Distribution"
Range("A1").Select

End Sub

Modified Code

Sub CreateChart1()
With wsExercise5
.Range("A3:B8").Select
.Shapes.AddChart2(201, xIColumnClustered).Select
With ActiveChart
.SetSourceData Source:=Range("Exercise5!$A$3:$B$8")
.ChartTitle.Caption = "Grade Distribution"
End With
.Range("A1").Select
End With
End Sub

Exercise 4.6 Sorting

This final exercise, in Figure 4.10, asks you to sort a range in descending order
based on the Total column.

The recorded code and its modifications are listed in the Sorting and Sorting1
subs. This again illustrates how you do not need to select a range before doing
something to it. It also shows how the recorded code lists a// arguments of the
Sort method. The ones that have not been changed from their default values are
omitted in the modified code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recording Macros 45

Figure 4.10 Exercise 6 Worksheet

A [ B [ C | o | e [ F |1 6 [ H

L Sorting a range
| 2 |
iSales rep January sales February sales Total

4 [Adams $3,843 $3,848 $7,691
zJones $2,895 $3,223 $6,118

6 |Miller 3,707 2,788 6,495
7 |Nixon 23 544 22 745 26 289 Sort on the Total column,
- ’ ’ ’ from highest to lowest.
| 8 |Roberts $3,672 $2,360 $6,032

9 |Smith $2,825 $2,369 $5,194
WThomas $2,270 $2,035 $4,305
11 [wilson $2,740 $2,625  $5,365

Recorded Code

Sub Sorting()
' Sorting Macro

Range("D3").Select
ActiveWorkbook.Worksheets("Exercise6").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Exercise6").Sort.SortFields.Add Key:=Range('D3"), _
SortOn:=xISortOnValues, Order:=xIDescending, DataOption:=xISortNormal
With ActiveWorkbook.Worksheets("Exercise6").Sort
.SetRange Range("A4:D11")
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
-Apply
End With
End Sub

Modified Code

Sub Sorting1()
With wsExercise6
.Range("D3").Sort Key1:=.Range("D3"), Order1:=xIDescending, Header:=xlYes
End With
End Sub

As these exercises illustrate, you can learn a lot by recording Excel tasks and then
examining the recorded code. However, you often need to modify the code to
make it more readable and fit your specific needs. Also, be aware that there are
many things you cannot record. Specifically, there is no way to record control
logic and loops, two of the most important programming constructs available to
a programmer. You have to program these manually—the recorder cannot do it

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



46 Chapter 4

for you. Finally, I repeat my frustration that recording doesn’t always work as
expected. For example, recording chart manipulations in Excel 2007 often yields
no code at al. So don’t be surprised if you experience similar recording “errors”
from time to time.

The following exercise allows you to try some recording on your own and
then create a handy button on your Quick Access Toolbar (QAT) for the

recorded macro.

Exercise 4.7 Recording Print Settings and Modifying Your QAT

We all have our favorite print settings, and I can’t count the number of times I have
gone through the print settings dialog box to change the settings. This process always
includes exactly the same steps, and it takes a number of mouse clicks. In short, it is a
bother. This is a perfect situation for a recorded macro that does it once and saves it
in the Personal Macro Workbook for easy future use. Here are the steps.

1. Turn the recorder on, give the macro a name such as PrintSettings, and indi-
cate that you want to store it in the Personal Macro Workbook.

2. Open the print settings dialog box, change the settings to the way you want
them, and turn the recorder off.

3. Check the code. You will see that every possible print setting has been
recorded, not just those you changed. You can leave this as is, or you can
streamline the code to change only settings of interest.

4. In Excel 2003 and earlier, you could now create a new toolbar with a new

toolbar button to run your PrintSettings macro. (This process was explained

in the second edition of the book.) This is no longer possible in Excel 2007

or later versions,® but there is an alternative. At the top of the Excel screen,

you see the Quick Access Toolbar (QAT). This is where you can create a but-
ton to run your favorite macros. The following steps explain the process.

Click the dropdown next to the QAT and select More Commands.

6. In the top left dropdown, select Macros. You should see your PrintSettings
macro in the list. Select it, and click the Add>> button to add it to your
QAT. By default, it will have a generic button icon. To change the icon,
click the Modify button and choose from the available icons. Then back
your way out. (By the way, it would be nice to change the available icons or
add to them. This isn’t necessarily easy, but it can be done. See Section 16.4
for details.)

o

This process of recording a macro, saving it to your Personal Macro Work-
book, and creating a button on the QAT to run the macro makes you an instant
programmer. You will be amazed at how useful simple little macros can be if you
design them to automate tasks you perform frequently.

3Well, this isn’t really true in Excel 2010 and later versions, which allow you to create your own cus-
tomized ribbon with buttons that run your macros. Still, for quick tasks like print settings, the QAT is
arguably the preferable way to go.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recording Macros 47

45 Summary

The macro recorder serves two basic purposes: (1) It allows beginning program-
mers to learn how common Excel operations translate into VBA code; and (2) it
allows more advanced programmers to discover the one detail they need to get
a program working. However, there are also two drawbacks to the recorder:
(1) The recorded code is often far from elegant and is often bloated with unneces-
sary lines; and (2) it is incapable of capturing logic or loops, two of the most pow-
erful aspects of VBA. In short, the recorder can be very useful, but it has its limits.

EXERCISES

1. VBA can be used to format worksheet ranges in a variety of ways—the font, the
interior (background of the cells), the alignment, and others. The recorder can
be useful for learning the appropriate properties and syntax. Try the following.
Open a new workbook and type some labels or numbers into various cells. Then
turn on the recorder and format the cells in any of your favorite ways. Examine
the recorded code. You will probably find that it sets many properties that you
never intended to set. Delete the code that appears to be unnecessary and run
your modified macro.

2. The ThemeColor and TintAndShade properties of the Font object (or the Interior
object) determine the color of the font (or the background of a cell). Unfortu-
nately, it is virtually impossible to remember which property values go with which
color. Try the following. Open a new workbook and type a label in some cell.
Select this cell, turn the recorder on, and change the color of the font (or the
cell’s background) repeatedly, choosing any colors you like from the color palettes.
As you do so, keep track of the colors you have selected and then examine the
recorded code. You should be able to match colors with property values. (Actually,
this changed in Excel 2007, where “themes” were introduced. When you record these
types of actions in Excel 2003 or earlier, you get values of the Colorindex property. Still,
recording is helpful in either case.)

3. Using the recorder can be particularly useful for learning how to use VBA to
modify charts. The file Chart Practice.xlsx contains a small data set and a chart
that is based on it. Open this file, turn the recorder on, and change any of the ele-
ments of the chart—the type of chart, the chart title, the axis labels, and so on.
(You might be surprised at how many things you can change in a chart.) As you
do this, write down the list of changes you make. Then examine the recorded
code and try to match the sections of code with the changes you made. (If you
want more information on any particular chart property you see in the code,
select it and press the F1 key. This provides immediate online help for the ele-
ment you selected. Alternatively, look it up in the Object Browser.)

4. The previous exercise shows how to use the recorder to learn about properties of
an existing chart. You can also use the recorder to learn how VBA can create a
chart from scratch. Try the following. Open the Chart Practice.xlsx file, delete
the chart, and then recreate it with the recorder on. Examine the recorded code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



48 Chapter 4

to learn even more about how VBA deals with charts. (As with many recording
sessions, you might want to practice building a chart before turning the recorder
on. You don’t want the recorder to record your mistakes.)

5. An operation I often perform is to select a range of cells that contain numbers
and format them as integers, that is, as numbers with no decimals. This is easy to
do with Excel’s Format Cells menu item, but it takes a few steps. Record a gen-
eral macro for performing this operation, store it in your Personal Macro Work-
book, and create a button on the QAT to run this macro (if you are running
Excel 2007 or a later version). Once you are finished, you will always be a click
away from formatting a range as integer. (Hinz: Select a range of numbers before
turning the recorder on. Your macro will then always work on the currently
selected range, whatever it happens to be.)

6. (Note: This exercise and the next one are adapted from those in the second edition,
which asked you to autoformat a range. Starting with 2007, Excel no longer sup-
ports autoformats, at least not officially, but similar functionality is still possible, as
indicated here.) Many spreadsheets in the business world contain tables of various
types. To dress them up, people often format them in various ways. To do this,
select a table of data, including headers, and select an option of your choice from
the Format as Table dropdown on the Home ribbon. Try it now with the
recorder on, using the table in the Table Data.xlIsx file. Then examine the code.
You will see that it first creates a new ListObject object—that is, a table, as discussed
in Chapter 15—and it then sets the TableStyle property of the table to one of sev-
eral built-in Excel styles, such as "TableStyleMedium2". (If you ever need to learn
the name of one of these style names, just repeat this exercise. It is a perfect exam-
ple of how the recorder can be used to learn one critical detail of a program.)

7. Continuing the previous exercise, record a macro that formats a table with your
favorite table style option, and store the macro in your Personal Macro Work-
book. Then create a button on your QAT that runs this macro. When you are fin-
ished, you will be a click away from formatting any table with your favorite style.

8. I like to color-code certain cells in my spreadsheets. For example, I like to make
the background of input cells blue, and I like to color cells with decision variables
red. This is easy enough with the Fill Color (paint can) dropdown list on the
Home ribbon, but it is even easier if I create “color” buttons on my QAT. Try
doing this with the recorder. Open a blank file, select any range, turn on the
recorder, and color the background a color of your choice. Make sure you store
the macro in your Personal Macro Workbook. Then create a button with an
appropriate icon on your QAT to run this macro. (Note: By selecting the range
before you turn the recorder on, your macro will be more general. It will color
whatever range happens to be selected when you run it.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA

5.1

5.2

Introduction

Now it is time to start doing some 7ea/ programming in VBA—not just copying
code in the book or recording, but writing your own code. This chapter gets you
started with the most basic elements—how to create a sub, how to declare variables
with a Dim statement, how to get information from a user with an InputBox, how to
display information in a MsgBox, and how to document your work with comments.
It also briefly discusses strings, it explains how to specify objects, properties, and
methods in VBA code, and it discusses VBA’s extremely useful With construction
and several other VBA tips. Finally, it discusses techniques for debugging, because
programmers virtually never get their programs to work the first time through.

Subroutines

The logical section of code that performs a particular task is called a subroutine,
or simply a sub. Subroutines are also called macros, and they are also called
procedures. There is also a particular type of subroutine called a function subrou-
tine that is discussed in Chapter 10. Subroutines, macros, and procedures are all
essentially the same thing. I will call them all subs. A sub is any set of code that per-
forms a particular task. It can contain one line of code or it can contain hundreds of
lines. However, it is not good programming practice to let subs get too long. If the
purpose of your application is to perform several related tasks, it is a good idea to
break it up into several relatively short subs, ecach of which performs a specific task.
In this case there is often a “main” sub that acts as the control center—it “calls” the
other subs one at a time. The collection of subs that fit together is called a program.
In other words, a program is a collection of subs that achieves an overall objective.

There are several places you can store your subs, but for now, you should
store all of your subs in a module. When you look at a new project in the VBE,
it will have no modules by default. However, you can add a module through the
Insert menu, and then you can start adding subs to it. It is also possible to
double-click a sheet or ThisWorkbook in the VBE Project Explorer to bring up a
code window, but you should 7ot enter your subs there, at least not yet. They
are reserved for event handlers, which are discussed in Chapter 11. So again, for
now, you should place all of your subs in modules.

Each sub has a name, which must be a single word. This word, which can be
a concatenation of several words such as GetUserlnputs, should indicate the

49

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



50 Chapter 5

purpose of the sub. You can use generic names such as Sub1 or MySub, but this is
a bad practice. You will have no idea in a week what Sub1 or MySub is intended
to do, whereas GetUserlnputs clearly indicates the sub’s purpose.

All subs must begin with the keyword Sub and then the name of the sub fol-
lowed by parentheses, as in:

Sub GetUserlnputs()

You can type this line directly into a module in the VBE, or you can use the
Insert — Procedure menu item, which will prompt you for a name. (Again, if
there is no module for the current project, you must insert one.) The editor will
immediately insert the following line for you:

End Sub

Every sub must start with the Sub line, and it must end with the End Sub
line. You will notice that the editor also colors the reserved words Sub and End
Sub blue. In fact, it colors all reserved words blue as an aid to the programmer.
Now that your sub is bracketed by the Sub and End Sub statements, you can
start typing code in between.

Why are there parentheses next to the sub’s name? As you will see in Chapter 10,
a sub can take arguments, and these arguments must be placed inside the parenthe-
ses. If there are no arguments, which is often the case, then there is nothing inside
the parentheses; but the parentheses still must be included. (This is similar to a few
Excel worksheet functions that take no arguments, such as =RAND(), where the
parentheses are also required.)

If a program contains several logically related subs, it is common to place all
of them in a single module, although some programmers put some subs in one
module and some in another, primarily for organizational purposes. The subs in
a particular module can be arranged in any order. If there is a “main” sub that
calls other subs to perform certain tasks, it is customary to place the main sub at
the top of the module and then place the other subs below it, in the order they
are called. But even this is not necessary; any order is accepted by VBA.

Later sections ask you to run a sub. There are several ways to do this, as
explained in Chapter 3. For now, the easiest way is to place the cursor anywhere
within the sub and click the Run button (the green triangle) on the VBE
Standard toolbar. Alternatively, you can press the F5 key, or you can use the
Run — Run Sub/UserForm menu item.

5.3 Declaring Variables and Constants

Virtually all programs use variables. Variables contain values, much like the
variables x and y you use in algebra. For example, the next three lines illustrate a
simple use of variables. The first line sets the unitCost variable equal to 1.20, the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 51

second line sets the unitsSold variable to 20, and the third line calculates the
variable totalCost as the product of unitCost and unitsSold. Of course, the value of
totalCost here will be 24.0.

unitCost = 1.20
unitsSold = 20
totalCost = unitCost * unitsSold

Unlike algebra, you can also have a line such as the following:

totalCost = totalCost + 20

To understand this, you must understand that each variable has a location in
memory, where its value is stored. If a variable appears to the left of an equals
sign, then its new value in memory becomes whatever is on the right side of the
equals sign. For example, if the previous value of totalCost was 260, the new value
will be 280, and it will replace the old value in memory.

Although it is not absolutely required (unless the line Option Explicit is at the
top of the module), you should always declare all of your variables at the begin-
ning of each sub with the keyword Dim.! (Dim is an abbreviation of dimension, a
holdover from the old BASIC language. It would make more sense to use the
word Declare, but we are stuck with Dim.) Declaring variables has two advantages.
First, it helps catch spelling mistakes. Suppose you use the variable unitCost several
times in a sub, but in one case you misspell it as unitsCost. If you have already
declared unitCost in a Dim statement, VBA will catch your spelling error, reason-
ing that unitsCost is not on the list of declared variables.

The second reason for declaring variables is that you can then specify the zypes
of variables you have. Each type requires a certain amount of computer memory,
and each is handled in a certain way by VBA. It is much better for you, the pro-
grammer, to tell VBA what types of variables you have than to let it try to deter-
mine them from context. The variable types used most often are the following.

String (for text like “Bob” or “The program ran without errors.”)

Integer (for integer values in the range —-32,768 to 32,767)

Long (for really large integers beyond the Integer range)

Boolean (for variables that can be True or False)

Single (for numbers with decimals)

Double (for numbers with decimals where you require more accuracy than
with Single)

Currency (for monetary values)

e Variant (a catch-all, where you let VBA decide how to deal with the variable)

"If you declare a variable inside a sub, it is called a local variable. It is also possible to declare a variable
outside of subs, in which case it is a module-level variable. This issue is discussed in Chapter 10.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



52 Chapter 5

Variable declarations can be placed anywhere within a sub, but it is customary
to include them right after the Sub line, as in the following;:

Sub Test()
Dim i As Integer, unitCost As Currency, isFound As Boolean
Other statements

End Sub

Some programmers prefer a separate Dim line for each variable. (I tend to
favor this, but I’'m not always consistent.) This can lead to a long list of Dim state-
ments if there are a lot of variables. Others tend to prefer a single Dim, followed
by a list of declarations separated by commas. You can use either convention or
even mix them. However, you must follow each variable with the keyword As
and then the variable type. Otherwise, the variable is declared as the default
Variant type, which is considered poor programming practice. For example, vari-
ables i and j in the following line are (implicitly) declared as Variant, not as Integer.
Only k is declared as Integer.

Dim i, j, k As Integer
If you want all of them to be Integer, the following declaration is necessary:

Dim i As Integer, j As Integer, k As Integer

Symbols for Data Types

It is also possible to declare (some) data types by the symbols in Table 5.1. For
example, you could use Dim unitCost@ or Dim nUnits%, where the symbol follows
the variable name. This practice is essentially a holdover from older versions of the
BASIC language, and you might see it in legacy code (as I recently did). How-
ever, I don’t recommend using this rather obscure shorthand way of declaring
variables. After all, would yox remember them?

Table 5.1 Symbols for Data Types

Integer
Long
Single
Double
Currency
String

© @ #* "~ g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 53

Figure 5.1 Error Message for Undeclared Variable

Compile error:

Variable not defined

o]

Using Option Explicit

You should force yourself to adopt the good habit of declaring all variables. You can
do this by using the tip mentioned in Chapter 3. Specifically, you should select the
Tools — Options menu item in the VBE and check the Require Variable
Declarations box under the Editor tab. (By default, it is zot checked. I still have no
idea why Microsoft makes this the default setting.) From that point on, every time
you open a new module, the line Option Explicit will be at the top. This simply means
that VBA will force you to declare your variables. If you forget to declare a variable, it
will remind you with an error message when you run the program and it sees an unde-
clared variable. If you ever see the message in Figure 5.1—and you almost certainly
will—you will know that you forgot to declare a variable (or misspelled one).

Object Variables

There is one other type of variable. This is an Object variable, which “points” to
an object. For example, suppose you have a Range object, specified by the range
name Scores on a worksheet named Data, that you intend to reference several
times in your program. To save yourself a lot of typing, you can Set a range
object variable named scoreRange to this range with the lines

Dim scoreRange As Range
Set scoreRange = ActiveWorkbook.Worksheets("Data").Range("Scores")

From then on, you can simply refer to scoreRange. For example, you could
change its font size with the line

scoreRange.Font.Size = 12
This is a lot easier than typing

ActiveWorkbook.Worksheets("Data").Range("Scores").Font.Size = 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



54 Chapter 5

There are two fundamental things to remember about Object variables.

e They must be declared just like any other variables in a Dim statement. The
type can be the generic Object type, as in

Dim scoreRange as Object
or it can be more specific, as in
Dim scoreRange as Range

The latter is much preferred because VBA does not then have to figure out
what #ype of object you want scoreRange to be. (It is #ot enough to include
Range in the name of the variable.)

e  When you define an Object variable—that is, put it on the left of an equals
sign—you must use the keyword Set. In fact, this is the only time you use
the keyword Set. The following line will produce an error message because
the keyword Set is missing;:

scoreRange = ActiveWorkbook.Worksheets("Data").Range("Scores")

In contrast, assuming that totalCost is a variable of type Currency (or any non-
object variable type), the following line will produce an error message because the
keyword Set should #ot be included:

Set totalCost = 24.0

The moral is that you should always use the keyword Set when defining
object variables, but you should never use it when defining other variables (num-
bers, dates, and strings).

Built-In Objects and Code Names

In previous editions of the book, I often referred to a particular worksheet in
code with lines like the following;:

Dim wsData as Worksheet
Set wsData = Worksheets("Data")

That is, I declared a Worksheet variable wsData and then Set it to refer to the
worksheet named Data. (I use prefix ws to remind me that this is a Worksheet
variable.) This practice is fine, but I now believe there is a better way, and I have

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 55

used it in virtually all of the examples in the rest of the book. This method relies on the
code names of built-in worksheet (and chart sheet) objects in any Excel file.

Every worksheet in an Excel file is a Worksheet object with two properties
(among others): Name and CodeName. The Name property is the name you see
on the worksheet’s tab. If you manually change the name of the tab, the Name
property changes automatically. Alternatively, if you wanted to change the name
with VBA from Sheetl to Data, say, you could use a line like the following:

Worksheets("Sheet1").Name = "Data"

Now, imagine that you write code that includes the following reference:
Worksheets("Data"). This is fine, but what happens if the user manually changes
the name on the worksheet’s tab to something else, like Datal? This will create
an error in your code, because the Data reference no longer works.

Fortunately, the CodeName property provides a safer method. If you look at
the Project Explorer in the VBE (see Figure 5.2), you will see the built-in

Figure 5.2 Names and Code Names

Project - VBAProject x|
ENE B
E;ﬁ VBAProject (Code Names.xlsm) -~

E% Microsoft Excel Objects
i -] Chart? {GradeChart)
@ Sheetl (Data)
.48 Thisworkbaak
=-E5 Modules |"='_|
Loyl Modulel -
- 5 o x|

Sheetl Worksheet ‘:J

Alphabetic | categorized |

wsData
DisplayPaneBreaks |False
DisplayRightToleft  |False
EnableAutoFiter |False
EnableCalaulation [True
EnableFormatConditions True
EnableOutlining |False
EnableFivotTable Falze
EnableSelection |0 - xiNoRestrictions
Mame Data
Scrollarea [
Standardwidth 8.43
Visible -1 - isheetsible

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



56 Chapter 5

worksheet, chart sheet, and workbook objects. In the figure, for example, there is
one worksheet listed as Sheet1 (Data). This indicates that the worksheet’s name
(the one that appears on its tab) is Data, but that its code name is currently
Sheet1. Below, in the Properties window, you see two properties on the left:
(Name) and Name. The (Name) property is really the CodeName property, and it
can be changed as indicated. In this case, it is being changed to wsData. So why
would you bother to do this? There are two very good reasons.

First, you can refer to the code name directly in code. For example, you can
refer to its cell Al as wsData.Range("A1"). There is no need to declare a Worksheet
variable and then use a Set statement, so this saves two lines of code. In fact, as
soon as you type a worksheet’s code name and then a period, you immediately
get Intellisense. The second reason is that if a user changes the worksheet’s tab
name, your code will still work. You might argue that they could break the code
by changing the worksheet’s code name, and this is true, but they would have to
visit the VBE to do so, and this is much less likely to happen.

Therefore, the practice you will see in almost all examples from here on is to
change the default code names from their default generic names like Sheet1 to
more meaningful names like wsData. (Again, I always use the ws prefix to remind
me that this is a worksheet.) When I created the examples, I had to make the
changes as shown in Figure 5.2, which required a little extra work up front, but
then I was able to refer to the code names in my code from then on—without
worrying that a user might change the worksheet tab names.

Interestingly, the CodeName property is a 7ead but not a write property. This
means that you can find the code name of a worksheet with a line like

If ActiveSheet.CodeName = "wsData" Then

However, the following line produces an error. If you want to change a
worksheet’s code name, you have to do so through the Properties window, as in
Figure 5.2.

ActiveSheet.CodeName = "wsData" ' Produces an error

The same comments apply to chart sheets. As you can see in Figure 5.2, there is a
chart sheet with the generic code name Chart2 but with tab name GradeChart. If 1
wanted to refer to this chart in code, I would probably change its code name to some-
thing like chtGrades, using the prefix cht to remind me of the sheet’s type.

Finally, you see one other built-in object in Figure 5.2, ThisWorkbook. This is
the code name for the file itself. You could again change it in the Properties win-
dow, but there is no good reason to do so. In later examples where an application
involves several Excel files (for example, files with data that you want your appli-
cation to import), you always know that ThisWorkbook refers to the workbook
that contains your code. As an example, ThisWorkbook.Path returns the path to
the folder containing the file with your code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 57

Intellisense with Variable Names: Ctrl+Space

I discussed this in Chapter 3, but it is so handy that I will briefly mention it again.
After you have declared your variables in Dim statements, you will then refer to
them in lines of code. To save yourself typing and avoid spelling mistakes, start
typing your variable name and then press Ctrl+Space. If there is only one variable
that starts with the letters you typed, it will be inserted automatically. If there are
several candidates, you can choose the one you want. If you tend to use long var-
iable names, you will love this feature.

Variable Naming Conventions

Programmers have surprisingly strong feelings about variable naming conventions.
The one thing they all agree on is that variable names should indicate what the
variables represent. So it is much better to use a name such as taxRate than to
use a generic name like x. Your code becomes much easier to read, both for
others and for yourself, if you use descriptive names.

Beyond this basic suggestion, however, there are at least three naming con-
ventions used in the programming world, and each has its proponents. The
Pascal convention uses names like TaxRate, where the first letter in each “word”
in the name is upper case. The camel convention is similar, but it does not capi-
talize the first word. Therefore, it would use the name taxRate. (The term
camel indicates that the hump is in the middle, just like a camel.) Finally, the
Hungarian convention, named after a Hungarian programmer, prefixes variables
with up to three characters to indicate their variables types. For example, it might
use the name sngTaxRate to indicate that this variable is of type Single. Other
commonly used prefixes are int (for Integer), bin (for Boolean), str (for String),
and so on. The proponents of the Hungarian convention like it because it is self-
documenting. If you see the variable sngTaxRate in the middle of a program, you
immediately know that it is of type Single, without having to go back to the Dim
statement that declares the variable.

Which convention should you use? This seems to depend on which conven-
tion is currently in style, and this changes over time. For a while, it seemed that
the Hungarian convention was the “in thing,” but it results in some rather long
and ugly variable names. At present, the camel convention appears to be the
most popular, so I have adopted it throughout this book. But if you end up pro-
gramming for your company, there will probably be a corporate style that you will
be required to follow.

Constants

The term yariable means that it can change. Specifically, the variables discussed
earlier can change values as a program runs—and they often do. There are times,
however, when you want to define a constant that never changes during the pro-
gram. The reason is usually the following. Suppose you have a parameter such as
a tax rate that plays a role in your program. You know that its value is 28% and
that it will never change (at least, not within your program). You could type the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



58 Chapter 5

value 0.28 every place in your program where you need to use the tax rate.
However, suppose the tax rate changes to 29% next year. To use your old pro-
gram, you would need to search through all of the lines of code and change
0.28 to 0.29 whenever it appears. This is not only time-consuming, but it is
prone to errors. (Maybe one of the 0.28 values you find is not a tax rate but is
something else. You don’t want to change it!)

A Dbetter approach is to define a constant with a line such as the following.

Const taxRate = 0.28

This line is typically placed toward the beginning of your sub, right below the
variable declarations (the Dim statements). Then every place in your sub where
you need a tax rate, you type taxRate rather than 0.28. If the tax rate does happen
to change to 29% next year, all you have to change is the value in the Const line.

Another advantage to using constants is that your programs don’t have
“magic numbers.” A magic number is a number found in the body of a program
that seems to appear out of nowhere. A person reading your program probably
has no idea what a number such as 0.28 represents (unless you explain it with a
comment or two). In contrast, if the person sees taxRate, there is no question
what it means. So try your best to use constants and avoid magic numbers.®

5.4 Built-in Constants

There are many built-in constants that you will see in VBA. They are either built
into the VBA language, in which case they have the prefix vb, they are built into
the Excel library, in which case they have the prefix xl, or they are built into the
Microsoft Office library, in which case they have the prefix mso. Actually, these
constants all have integer values, and they are all members of enumerations. A
simple example illustrates the concept of an enumeration. Consider the Color
property of a Font object. It can be one of eight possible integer values, and no
one on earth would possibly memorize these eight values. (They are not 1
through 8.) Instead, you remember them by their constant names: vbBlack,
vbBlue, vbCyan, vbGreen, vbMagenta, vbRed, vbWhite, and vbYellow. Using these
constants, you can change the color of a font in a line such as

Range("A1").Font.Color = vbBlue

2Some programmers like to spell their constants with all uppercase letters, such as TAXRATE, to
emphasize that they are constants. However, I have not adopted this convention.

3The same idea applies to formulas in Excel. You should avoid embedding numbers in formulas.
Instead, you should list these numbers in input cells and cell reference the input cells in your
formulas.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 59

Similarly, Excel has a number of enumerations. One that is useful when deal-
ing with ranges is the set of possible directions, corresponding to the four arrow
keys: xIDown, xlUp, xIToRight, and xIToLeft. Again, these constants are really inte-
ger values that no one in the world remembers. You remember them instead by
their more suggestive names.

To view the many enumerations for VBA, Excel, and Office, open the Object
Browser, select the VBA, Excel, or Office library, and search the class list for items
starting with Vb, Xl, or Mso. Each of them is an enumeration that holds a number
of built-in constants. For example, the XIDirection enumeration holds the con-
stants xIDown, xIUp, xIToRight, and xIToLeft, and the VbMsgBoxStyle enumeration
holds all the constants that correspond to message box icons and buttons. You
will see a few of these in the next section.

5.5 Input Boxes and Message Boxes

Two of the most common tasks in VBA programs are to get inputs from users
and to display messages or results in some way. There are many ways to perform
both tasks, and many of them are illustrated in later chapters. This section illus-
trates a very simple way to perform these tasks. It takes advantage of two built-in
VBA functions: the InputBox and MsgBox functions. They are not complex or
fancy, but they are very useful.

The InputBox function takes at least one argument: a prompt to the user.* A
second argument that is often used is the title that appears at the top of the dialog
box. An example is the following;:

price = InputBox("Enter the product's unit price.", "Selling price")

If you type this line in a sub and run the sub, the dialog box in Figure 5.3
will appear.

Figure 5.3 Typical InputBox

Foim =

Selling price

Enter the product's unit price.

*If you look up InputBox in the VBA online help, you will see two items: the InputBox method and
the InputBox function. The discussion here is really about the function, the one most commonly used.
The InputBox method differs from the InputBox function in that it allows selective validation of the
user’s input, and it can be used with Microsoft Excel objects, error values, and formulas. Notice that
Application.InputBox calls the InputBox method; InputBox with no object qualifier calls the InputBox
function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



60 Chapter 5

This generic dialog box has OK and Cancel buttons, a title (which would be
Microsoft Excel if you didn’t supply one), a prompt, and a textbox for the user’s
input. When the user enters a value and clicks the OK button, the user’s input is
assigned to the variable price.

The MsgBox function takes at least one argument: a message that you want to
display. Two other optional arguments often used are a button indication and a
title. A typical example is the following:

MsgBox "The product's unit price is $2.40.", vbinformation, "Selling price"

The first argument is the text "The product’s unit price is $2.40." The second
argument is vbInformation, a built-in VBA constant that inserts an “i” icon in the
message box. The third argument is the title, "Selling price". If you type this line in
a sub and run the sub, the message box in Figure 5.4 will appear.

I will finish this section with some rather advanced code involving InputBox.
You can ignore it at this point if you like, but my own students always ask about
it. Suppose you prompt a user for a value with an InputBox, and the user either
clicks the OK button without entering anything in the text box or clicks the
Cancel button (or the upper right X). Try it out, and you will find that Excel
produces an obscure error message. As a good programmer, you should antici-
pate this and handle it nicely.

It turns out that InputBox returns an empty string, " , if the user does any of
the preceding actions. So you can check (by using an If construction) whether the
response is an empty string. Furthermore, by using an undocumented VBA func-
tion, StrPtr, it is possible to check whether the user clicked the OK button or the
Cancel (or the X) button. Finally (and this is optional), you can embed the check
in a loop so that you allow the user to “quit the game” by clicking the Cancel (or
the X) button, but you keep asking for an input if the user clicks the OK button
with no input in the text box. The code in the file OK vs Cancel in
InputBox.xlsm contains the required code. Open it, and try all the possibilities
you can think of. I call this bulletproof code. It forces the user to do something
correctly—and there are no obscure error messages. I will return to bulletproof-
ing in Chapter 11.

Figure 5.4 Typical Message Box

:Seilj'ng price

\
@I The product's unit price is 52.40,

" y

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 61

5.6 Message Boxes with Yes and No Buttons

The previous section illustrates the most common use of MsgBox: to display a
message. However, MsgBox can be used for simple logic by including the appro-
priate buttons. For example, the following line not only displays the message with
Yes and No buttons (see Figure 5.5), but it also captures the button pressed in
the result variable. In this case, the second argument, vbYesNo, indicates that Yes
and No buttons will be included. The value of result will be vbYes or vbNo, two
built-in VBA constants. You could then use a logical If statement to proceed
appropriately, depending on whether the result is vbYes or vbNo.

result = MsgBox("Do you want to continue?", vbYesNo, "Chance to quit")
You can even use the InputBox and MsgBox functions in the same line, as in
MsgBox InputBox("Type your name.", "User's name"), vbinformation, "User's Name"

The first argument of the MsgBox function is now the 7esult of the InputBox func-
tion. When I ran this, I first saw the input box and typed my name, as in Figure 5.6.
1 then saw the message box in Figure 5.7, the message being my name.

Here are a couple of other points that apply to InputBox and MsgBox, as well
as to other VBA statements.

Figure 5.5 Message Box with Yes and No Buttons

Chance to quit

Do you want to continue?

Type your name,

Chriz Albright

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



62 Chapter 5

Figure 5.7 Message Box

e Continuing statements on more than one line. Lines of code can often get
long and run past the right side of the screen, particularly with messages. You
can continue them on another line by using the underscore character, _, pre-
ceded by a space. (Don’t forget the space.) For example, you can write

MsgBox InputBox("Type your full address: city, state, zip code.", "User's address"), _
vbinformation, "User's Address"

This is treated as a single line of code. Actually, a line can be broken as many
times as you like with the underscore character. When I do this, I typically
indent the continuation lines for readability.

e  Whether to use parentheses. If you have been paying close attention, you
have noticed that the arguments of InputBox and MsgBox are sometimes
included in parentheses, but sometimes they are not. For example, compare
the line

MsgBox "Thank you for supplying your name.", vbExclamation, "Name accepted"
to the line
result = MsgBox("Do you want to continue?", vbYesNo, "Chance to quit")

The first simply displays a message. The second captures the result of MsgBox
(vbYes or vbNo) in the result variable. The rule for parentheses, for the Input-
Box function, the MsgBox function, and other VBA functions, is that paren-
theses are required when the result is captured in a variable or used in some
way. In contrast, parentheses are optional (and are usually omitted) when no
result is being captured or used in some way. This parentheses rule is rather
difficult to understand until you become more proficient in VBA. However,
if your program fails to work and you cannot find anything else wrong,
check whether you have violated this rule. Then remove the parentheses or
add them, and hopefully the bug will disappear.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 63

Exercise 5.1 Displaying a Message

Before proceeding, try the following exercise. Open a new workbook and save it
as Input Output 1.xIsm. Then create a sub called RevenueCalc that does the fol-
lowing: (1) It asks the user for the unit price of some product and stores it in the
variable unitPrice, defined as Currency type; (2) it asks the user for the number of
items sold and stores it in the variable quantitySold, defined as Integer type; (3) it
calculates the revenue from this product and stores it in the variable revenue,
defined as Currency type; and (4) it displays a message such as “The revenue
from this product was $380.”

Try to do as much of this as you can without help. Then consult the file Input
Output 1.xIsm for a solution. You will probably have trouble with the MsgBox line.
The message consists of two parts: a literal part ("The revenue from this product
was ") and a variable part (the calculated revenue).> These two parts need to be
concatenated with the ampersand symbol, &, a very common operation that is
explained later in the chapter. The solution also contains a Format function to display
the revenue as, say, $380 rather than 380. This is also explained in a later section.

5.7 Using Excel Functions in VBA

Excel has hundreds of functions you commonly use in Excel formulas: SUM, MIN,
MAX, SQRT, VLOOKUP, SUMIF, and so on.® It would be a shame if program-
mers had to reinvent this rich set of functions with their own VBA code. Fortunately,
you do not have to. You can “borrow” Excel functions with a line such as

WorksheetFunction.SUM(Range("A1:A10"))

When you type WorksheetFunction and then a period, a list of most Excel
functions appears. For example, if you choose SUM, as above, you have to supply
the same type of argument (a range or ranges) that you would in an Excel for-
mula. (Note: In early editions, I said to use Application.WorksheetFunction instead
of simply WorksheetFunction, where Application refers to Excel itself. Either version
works fine, but Application is not necessary.)

There is one peculiar “gotcha” with borrowing Excel functions.” It turns out
that the VBA language has a few functions of its own. For example, open the
Object Browser, choose the VBA library, and look at the Math class. Three

®It also has a third part if you want to end the sentence with a period.

SWhen I refer to Excel functions in this book, I capitalize them, as in SUM. This is primarily to dis-
tinguish them from VBA functions. Of course, you don’t need to capitalize them when you enter
them into Excel formulas.

71 almost deleted this part. I tried the line ?WorksheetFunction.Ln(1) in the Immediate Window, and it
worked fine, returning the correct value 0. Therefore, I guessed that the problem discussed here had
been fixed. However, I then realized that WorksheetFunction.Ln(1) in a sub still does produce an error.
Very strange!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



64 Chapter 5

notable VBA math functions you will see are log (natural logarithm), sqr (square
root), and rnd (random number). You probably know that Excel also has these
functions, except that they are spelled LN, SQRT, and RAND. The “gotcha” is
that if VBA has a function, you are not allowed to borrow Excel’s version of that
function. Therefore, the statement WorksheetFunction.SQRT(4) produces an error.
If you want the square root of 4 in VBA, you must get it with sqr(4).
Fortunately, there are not many of these duplicated functions. You just have
to be aware that a few, such as LN, SQRT, and RAND, will not work in VBA.

5.8 Comments

You might think that once you get your program to run correctly, your job is fin-
ished. This is not the case. Sometime in the future, you or someone else might
have to modify your program as new situations arise. Therefore, it is extremely
important that you document your work. There are several ways to document a
program, including the use of meaningful names for subs and variables. However,
the best means of documentation is the liberal use of comments. A comment is
text that you type anywhere in your program to indicate to yourself or someone
else what your code means or how it works. It is very easy to insert a comment
anywhere in the program, inside a sub or outside a sub. You start the line with a
single quote. That line is then colored green and is ignored by VBA. However,
comments are #zot ignored by those who read your program. For them, the com-
ments are often the most interesting part.
The following line is a typical comment:

' The purpose of the following section is to calculate revenue.

It is also possible to include a comment in the same line as a line of code. To
do so, type the code, follow it with one or more spaces, then a single quote, and
then the comment, as in

Range("A1").Value = "March Sales" ' This is the title cell for the worksheet.

There is a tendency on the part of programmers (myself included) to wait
until the last minute, after the code has been written, to insert comments—if
they insert them at all. Try instead to get into the good habit of inserting com-
ments as you write your code. Admittedly, it takes time, but it also aids your log-
ical thought process if you force yourself to explain what you are doing as you are
doing it. Of course, comments can also be overdone. There is usually no point in
documenting every single line of code. Use your discretion on what really needs
to be documented. My best advice is that if you believe you or someone else
might have trouble understanding what a block of code is supposed to do or
how it works, add a comment. When you revisit your code in a few weeks or a
few years, you will 7eally appreciate the comments.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 65

5.9 Indenting

Besides comments, the best thing you can do to make your programs more read-
able is to indent religiously. You will see numerous examples to emulate in the
rest of the book, but for now, take a look at the two following subs. They are
completely equivalent, and VBA treats each of them in an identical way. But
which of the two would you rather read?

This version indents properly:

Sub CountHighSales()
Dim i As Integer
Dim j As Integer
Dim nHigh As Integer
Dim cutoff As Currency
cutoff = InputBox("What sales value do you want to check for?")
Forj=1To 6
nHigh = 0
Fori = 1 To 36
If wsData.Range("Sales").Cells(i, j) >= cutoff Then _
nHigh = nHigh + 1
Next i
MsgBox "For region " & j & ", sales were above
& "on " & nHigh & " of the 36 months."

& Format(cutoff, "$0,000") _

Next j
End Sub

This version doesn’t indent at all.

Sub CountHighSales()

Dim i As Integer

Dim j As Integer

Dim nHigh As Integer

Dim cutoff As Currency

cutoff = InputBox("What sales value do you want to check for?")
Forj=1To 6

If wsData.Range("Sales").Cells(i, j) > = cutoff Then _

nHigh = nHigh + 1

Next i

MsgBox "For region " & j & ", sales were above " & Format(cutoff, "$0,000") _
& "on " & nHigh & " of the 36 months."

Next j

End Sub

It is easy to indent, so you should start doing it right away in a// of your
programs.® To indent a single line, use the Tab key; don’t simply insert spaces.

8 Microsoft’s Visual Studio .NET, its integrated development environment, automatically indents for
you. Unfortunately, the VBE for Excel is not quite up to this level yet, so you have to indent
manually.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



66 Chapter 5

To outdent (the opposite of indent) a single line, use the Shift+Tab key combi-
nation. To indent or outdent entire blocks of code, highlight the block and then
use the indent and outdent buttons on the VBE’s Edit toolbar.

5.10 Strings

The InputBox function takes at least one argument, a prompt such as "Enter your
name." Similarly, the MsgBox function takes at least one argument, a message
such as "Thank you for the name." Technically, each of these is called a string. A
string is simply text, surrounded by double quotes. Strings are nearly always argu-
ments to InputBox, MsgBox, and other functions, and they are also used in many
other ways in VBA. For example, because a string essentially corresponds to a
label in Excel, if you want to use VBA to enter a label in a cell, you set the
Value property of the Range object representing the cell to a string. You will see
many examples of this throughout the book. The point now is that strings are
used in practically all VBA programs.

Often a string is a literal piece of text, such as "The user's name is Chris Albright."
(Again, remember that the double quotes are part of the string and cannot be
omitted.) Many times, however, a string cannot be written literally and must be
pieced together in sections. This is called string concatenation. As an example, sup-
pose the following InputBox statement is used to get a product name:

product = InputBox("Enter the product's name.")

The user types the product’s name into the text box, and it is stored as a
string, "LaserJet 1100" for example, in the product variable. Now suppose you
what to display a message in a message box such as "The product’s name is LaserJet
1100." What should the first argument of the MsgBox be? It cannot be the literal
"The product’s name is LaserJet 1100." This is because you, the programmer, do
not know what product name will be entered in the InputBox. Therefore, you
must “build” the message string by concatenating three strings: the literal "The
product’s name is ", the variable string product, and the literal period ".". To con-
catenate these, you use the ampersand concatenation character, &, surrounded
on cither side by a space (and the spaces are necessary). The resulting MsgBox
statement is

MsgBox "The product's name is " & product & "."

Note how the ampersand is used twice to separate the variable information
from the literal parts of the string. String concatenation—the alternation of literal
and variable parts of a string—is extremely important and is used in practically all
programs.

A completed sub that gets a product’s name and then displays it in a message
box appears below, along with the results from running it, in Figures 5.8 and 5.9.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 67

Figure 5.8 InputBox

Enter the product's name.

Laserlet 1100

Figure 5.9 MessageBox

Sub GetProductName()

Dim product As String

product = InputBox("Enter the product's name.")

MsgBox "The product's name is " & product & ".", vbinformation
End Sub

One tricky aspect of string concatenation occurs when you use the under-
score character to break a long string, even a totally literal one, into two lines.
You might think that the following would work:

MsgBox "This is a long string, long enough to extend _
beyond the screen, so it is broken up into two lines." ' This produces an error.

However, this produces an error message. If you break a string across two
lines, you must concatenate it:

MsgBox "This is a long string, long enough to extend " & _
"beyond the screen, so it is broken up into two lines."

(Note that there is a space after the word extend, so that extend and beyond
will not run together in the message. There is also a space on each side of the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



68 Chapter 5

ampersand, as required by VBA.) Alternatively, you could place the ampersand on
the second line:

MsgBox "This is a long string, long enough to extend " _
& "beyond the screen, so it is broken up into two lines."

Whether you put the ampersand at the end of the first line or the beginning
of the second line is a matter of taste.

Exercise 5.2 Displaying a Message

Return to Exercise 5.1 from Section 5.4. There you obtained a unit price and
a quantity sold from input boxes, calculated the revenue, and then displayed a
message such as "The revenue from this product was $380." You should now under-
stand that the last part of this message, the actual revenue, requires string concat-
enation. (See my Input Output 1.xIsm file.) Now try expanding your program
slightly (and save your results in the file Input Output 2.xlsm). Start by using
an input box to get the product’s name. Then use input boxes to get the pro-
duct’s unit price and the quantity sold, and include the product’s name in the
prompts for these inputs. For example, a prompt might be "Enter the unit price for
LaserJet 1100." Next, calculate the revenue. Finally, display a message that con-
tains all of the information, something like "For the LaserJet 1100, the unit price is
$500, the quantity sold is 25, and the revenue is $12,500." Do as much as you can on
your own. If you need help, look at the file Input Output 2.xIsm.

Formatting Strings

If the revenue is 12500, how do you get it to appear as $12,500 in a message? This can
be done with VBA’s Format function. This function takes two arguments: the number
to be formatted and a format code string that indicates how to format the number.
To format 12500 in the usual currency format (with a dollar sign and comma separa-
tors), you can use Format(12500,"$#,##0"). If the variable revenue holds the actual
revenue, then you would use Format(revenue,"$# ##0"). Using the Format function is
tricky. Rather than memorizing formatting codes, it is best to select the Format option
in Excel (right-click any cell and choose Format Cells, or press Ctrl+1) and choose the
Custom option. It will list a number of formatting codes you can use in VBA.

Useful String Functions

String concatenation is useful when you need to piece together several small
strings to create one long string. You might also need to get part of a string.
There are three useful VBA string functions for doing this: Right, Left, and Mid.
They are illustrated in the following lines.

shortStringl = Right("S. Christian Albright", 8)
shortString2 = Left("S. Christian Albright", 12)
shortString3 = Mid("S. Christian Albright", 4, 5)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 69

The first line returns "Albright". In general, the Right function takes two arguments,
a string and an integer #, and it returns the rightmost 7 characters of the string. The
Left function is similar. It returns the leftmost 7 characters. In the second line, it returns
"S. Christian". (The space after "S." is considered a character.) Finally, the Mid function
takes a string and two integer arguments. The first integer specifies the starting charac-
ter and the second specifies the number of characters to return. Therefore, the third
line returns "Chris". Starting at the fourth character, "C", it returns the next five charac-
ters. Note that the third argument of Mid can be omitted, in which case Mid returns all
characters until the end of the string. For example, Mid("Albright",3) returns "bright".

Another useful string function is the Len function. It takes a single argument, a
string, and returns the number of characters in the string. For example, the following line

nCharacters = Len("S. Christian Albright")

returns 21. Again, remember that spaces count.

One other string function that can come in handy is the Instr function. It
checks whether a substring is anywhere inside a given string, and if it is, where it
begins within the string. For example, the following line returns 9 because the
comma is the ninth character. (The first argument indicates where to start the
search. It is optional and is assumed to be 1 if omitted.)

Instr(1,"Albright, Chris",",")

If the substring isn’t found, Instr returns 0. For example, this would occur
with the line

Instr(1,"Albright, Chris",".")

These string functions can be used in many combinations. Suppose you want
all but the last two characters of some string called thisString, but you don’t know
the number of characters in thisString. Then the following combination of Len
and Left will do the job.

allBut2 = Left(thisString, Len(thisString) - 2)

For example, if thisString turns out to have 25 characters, allBut2 will contain
the leftmost 23 characters.

The VBA string functions discussed here are only several of those available.
To see others, open the Object Browser in the VBE, select the VBA library, and
click the Strings category on the left. On the right, you can scan for functions,
such as Join, Replace, and Trim, that might look useful. By the way, you can
ignore those that end with a dollar sign, such as Mid$. They are essentially the
same as the corresponding functions without the dollar sign.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



70 Chapter 5

5.11 Specifying Objects, Properties, and Methods

Objects, properties, and methods were introduced in Chapter 2. Now it is time to
see how they are implemented in VBA code. This is important material. Virtually
nothing can be done in VBA for Excel without knowing how to manipulate its
objects in code. The basic rules are as follows.

Specifying a Member of a Collection

To specify a particular member of a collection, you use the plural name of the collec-
tion, with the particular member specified in parentheses and enclosed inside quotes,
as in Worksheets("Data"). (Remember from Section 5.3 that you could also refer to a
worksheet by its code name.) In the special case of the Range object, where there is
no plural, you just write Range, followed by a specification of the range inside paren-
theses. (The next chapter is devoted entirely to Range objects because they are so
important—and tricky.) You can generally specify any particular member of a collec-
tion in one of two ways: by index (a number) or by name (a string). For example,
you can specify Worksheets(2) or Worksheets("Data").” The name method is mz2ech pre-
ferred. After all, if someone inserts a new worksheet or moves an existing worksheet,
the worksheet in question might no longer be the second one. It is much easier to
understand the reference to the worksheet’s name. Note that the argument 2 actually
refers to the second sheet from the left, not necessarily the second sheet created.

Specifying Objects down a Hierarchy

To specity objects down a hierarchy, you separate them with a period, with
objects farther down the hierarchy to the right, as in

Workbooks("Sales").Worksheets("March").Range("A1")

You essentially read this line backward. It specifies cell Al from the March
worksheet of the Sales workbook. We say that an object is qualified by any
objects listed to its left. It is possible that you have several worksheets and even
workbooks open. The above line specifies the cell you want: cell Al in the
March worksheet of the Sales workbook.

This rule has a number of variations. For example, if you refer simply to
Range("A1"), do you need to qualify it with a particular workbook and work-
sheet? Let’s just say that you are safer to specify at least the worksheet. The
rule is very simple. If you refer simply to Range("A1"), you are referring to the
active sheet of the active workbook, whatever they happen to be at the time.
Actually, there are built-in VBA objects called ActiveWorkbook and ActiveSheet
(but no ActiveWorksheet). They refer to the workbook and sheet currently
selected. If you refer simply to Range("A1"), this is equivalent to

For a worksheet, you can again refer to it by its code name. I usually prefer this to either of the
other two methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 71

ActiveWorkbook.ActiveSheet.Range("A1")

If this is what you want, the shorter Range("A1") is perfectly acceptable.
However, if you do it this way, make sure that the active worksheet of the
active workbook contains the cell Al you are interested in. In other words,
if you do not qualify Range("A1"), VBA will guess which cell A1 you mean,
and it might not guess correctly. It is safer to qualify it, as in
Worksheets("Data").Range("A1"), for example. Alternatively, you can qualify it
by the worksheet’s code name, as in wsData.Range("A1"). This is how I will
do it in most examples.

Specifying a Property
To specify a property of an object, you list the property name to the right of the
object, separated by a period, as in

Range("A1").Value

This refers to the Value property of the range Al—that is, the contents of
cell Al. A property can be set or returned. For example, the following line enters
the string "Sales for March" in cell Al:

Range("A1").Value = "Sales for March"

In contrast, the following line gets the label in range Al and stores it as a
string in the variable title:

tite = Range("A1").Value

Specifying a Method

To specify a method for an object, you list the method name to the right of the
object, separated by a period:

Range("A1:D500").ClearContents

Specifying Arguments of a Method

If a method has arguments, you list them, separated by commas, next to the
method’s name. Each argument should have the name of the argument (which

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



72 Chapter 5

can be found from online help), followed by :=, followed by the value of the
argument. For example, the following copies the range A1:B10 to the range D1:
E10. Here, Destination is the name of the argument of the Copy method.

Range("A1:B10").Copy Destination:=Range("D1:E10")
It is possible to omit the argument name and the := and to write
Range("A1:B10").Copy Range("D1:E10")

However, this can be dangerous and can lead to errors unless you know
the rules well. It is better to supply the argument name and :=. Even if you are an
experienced programmer, this practice makes your code more readable for others.”

By the way, when methods have arguments, Intellisense helps a great deal. In
the above line, as soon as you type .Copy and then a space, Intellisense shows you
a list of the arguments, both required and optional, of the Copy method. In this
case, there is only one argument, Destination, and Intellisense shows it in square
brackets, indicating that is optional.

These are the rules, and you can return to this section as often as you like
to refresh your memory. They are reinforced with many examples in later
chapters.

Exercise 5.3 Calculating Ordering Costs

The file Input Output 3_1.xIsx is a template for calculating the total order cost
for ordering a product with quantity discounts. The table, range-named LTable,
in the range A4:C8 contains unit costs for various order quantity intervals. The
range B11:B13 contains a typical order cost calculation, where the input is the
order quantity in cell B11 and the ultimate output is the total cost in cell B13.
Take a look at this file to see how a VLOOKUP function is used to calculate the
appropriate unit cost in cell B12.

The file Input Output 3_2.xIsm indicates what the exercise is supposed to
accomplish. Open it now and click the “Create table” button. It asks for three
possible order quantities, and then it fills in the table in the range D12:E14 with
these order quantities and the corresponding total costs. Basically, it plugs each
potential order quantity into cell B11 and transfers the corresponding total cost
from cell B13 to column E of the table. If you then click the “Clear table” but-
ton, the information in this table is deleted.

19Methods often have multiple arguments, listed in a certain order. If you omit the argument names,
you must supply the arguments in that order. However, if you use argument names and :=, you are
allowed to list the arguments in any order.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 73

Now that you see what the finished application should do, go back to the
Input Output 3_LxlIsx file, save it as an .xlsm file, and attempt to write two
subs, CreateTable and ClearTable, which will eventually be attached to buttons.
Go as far as you can on your own. If you need help, look at the code in my
Input Output 3_2.xIsm file.

This exercise will undoubtedly leave you wishing for more. First, even with
only three order quantities, there is a lot of repetitive code. By copying and pasting
your code (and then making suitable modifications), you can minimize the amount
of typing required. Second, the program ought to allow any number of entries in
the table, not just three. To see how these issues can be addressed, open the file
Input Output 3_3.xlsm, click its buttons, and look at its code. There are proba-
bly a few lines you will not understand yet, but at least this gives you something to
strive for. You will eventually understand all of the code in this file. In fact, you will
eventually appreciate that it is quite straightforward.

5.12 With Construction

There is an extremely useful shortcut you can use when working with objects and
their properties and methods. This is the With construction. Unless you have pro-
grammed in VBA, you have probably never seen it. The easiest way to explain the
With construction is by using an example. Suppose you want to set a number of
properties for the range Al in the March worksheet of the Sales workbook. You
could use the following code.

Workbooks("Sales").Worksheets("March").Range("A1").Value = "Sales for March"
Workbooks("Sales").Worksheets("March").Range("A1").HorizontalAlignment = xILeft
Workbooks("Sales").Worksheets("March").Range("A1").Font.Name = "Times New Roman"
Workbooks("Sales").Worksheets("March").Range("A1").Font.Bold = True
Workbooks("Sales").Worksheets("March").Range("A1").Font.Size = 14

As you can see, there is a lot of repetition in these five lines, which means a
lot of typing (or copying and pasting). The With construction enables you to do
it much more easily:

With Workbooks("Sales").Worksheets("March").Range("A1")
.Value = "Sales for March"
.HorizontalAlignment = xILeft

With .Font
.Name = "Times New Roman"
.Bold = True
.Size = 14
End With
End With

The first line has the keyword With, followed by an object reference. The last
line brackets it with the keywords End With. In between, any object, property, or
method that starts with a period “tacks on” the object following With. For exam-
ple, .Value in the second line is equivalent to

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



74  Chapter 5

Workbooks("Sales").Worksheets("March").Range("A1").Value

This example also illustrates how With constructions can be nested. The line
With .Font is equivalent to

With Workbooks("Sales").Worksheets("March").Range("A1").Font

Then, for example, the .Name reference inside this second With is equivalent to
Workbooks("Sales").Worksheets("March").Range("A1").Font.Name

With (and nested With) constructions can save a lot of typing, and they
improve readability. They also speed up the execution of your programs slightly.
However, there are two things to remember. First, remember that the End With
line must accompany each With line. A good habit is to type the End With line
immediately after typing the With line. That way, you don’t forget. Second, you
should indent appropriately. As mentioned earlier, indenting is not required—
your programs will run perfectly well without it—but errors are much easier to
catch (and avoid) if you indent, and your programs are much casier to read. Com-
pare the above code to the following version:

With Workbooks("Sales").Worksheets("March").Range("A1")
.Value = "Sales for March"

.HorizontalAlignment = xILeft

With .Font

.Name = "Times New Roman"

.Bold = True

.Size = 14

End With

End With

Although it is correct, this version without indenting is certainly harder to
read, and if you forgot the next-to-last line, it could be difficult to find the error.

Exercise 5.4 Using With Constructions

Open the file Input Output 3_2.xlsm (or your own finished version in Input
Output 3_1.xIsm) from the previous exercise and save it as Input Output 3_4.
xlsm. Then use the With construction wherever possible. For one possible solu-
tion, see the file Input Output 3_4.xIsm.

5.13 Other Useful VBA Tips

This section illustrates a few miscellaneous features of VBA that are frequently
useful.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 75

Screen Updating

A VBA program for Excel sometimes makes many changes in one or more work-
sheets before eventually showing results. During this time the screen can flicker,
which wastes time and is certainly annoying. The following line turns oft screen
updating. It essentially says, “Do the work and just show me the results at the end.”

Application.ScreenUpdating = False

To appreciate how this works, open the file Screen Updating.xlsm. It has
two buttons, each attached to a sub. Each sub performs the same operations,
but one turns off screen updating and the other leaves it on. Unless you have a
really fast machine, you will notice the difference.

If you do decide to turn off screen updating (typically at the beginning of a
sub), it is good programming practice to turn it back on just before the end of
the sub. You do this with the line

Application.ScreenUpdating = True

Display Alerts

If you use the Excel interface to delete a worksheet, you get a warning, as shown
in Figure 5.10. In some applications you don’t want this warning; you just want
the worksheet to be deleted. In this case (and other cases where you don’t want
an Excel warning), you can use the following line:

Application.DisplayAlerts = False

This can actually be a bit dangerous—you might want a warning later on—so
it is a good idea to turn display alerts back on immediately, as in the following lines:

Application.DisplayAlerts = False
wsReport.Delete
Application.DisplayAlerts = True

Figure 5.10 Excel Warning Message
Microsoft Excel o = ;i = I .&.

Data may existin the sheet{s) selected for deletion. To permanently delete the data, press Delete.

[ Delete | | cancel

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



76 Chapter 5

Timer Function

Programmers often like to see how long their programs (or parts of their pro-
grams) take to run. This is easy to do with VBA’s Timer function. It returns the
current clock time. If it is used twice, once at the beginning of some code and
once later on, then the difference in the two times is the elapsed run time. The
following lines illustrate how it can be used. The start time is captured in the var-
iable startTime. This is followed by any number of programming lines. Finally, the
variable elapsedTime captures the current time (from Timer) minus the start time.
Note that these times are measured in seconds.

startTime = Timer

' Enter any code in here.

elapsedTime = Timer - startTime

MsgBox "This section took " & elapsedTime & " seconds to run."

5.14 Good Programming Practices

As a programmer, your primary goal is to write code that works correctly to
accomplish a specified task. However, good programmers are not satisfied with
accuracy. They want their programs to be readable and easy to maintain, so that
if changes are necessary sometime in the future, they won’t be too difficult to
make. (Keep in mind that the person responsible for making these changes is
often ot the original programmer.) Therefore, good programmers consistently
follow a set of good habits. Even if you are a beginning programmer, you should
follow these good habits right from the start. Admittedly, you can practice poor
habits and still write programs that work, but your programs will probably not
be very readable or easy to maintain. Besides, poor habits typically lead to more
programming errors.

Not all programmers agree completely on a programming style that should
be followed, but they would almost certainly agree on the following list.

e Provide sufficient comments. As discussed earlier in this chapter, providing
a liberal number of comments is the best way to make your programs under-
standable, both to others and to yourself (at a later date). It is always better
to include too many comments than too few.

e Indent consistently. This was also mentioned earlier, but it bears repeating.
Some programmers write code with no indenting—all lines are left-aligned
on the page. Unless the program is short and simple, this type of code
is practically impossible to read, and the potential for errors increases
dramatically. Indenting provides a logical structure to your program, and it
indicates that you are aware of this logical structure. You will have plenty of

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 77

chances to see the proper use of indenting as you read through the examples
in the book.

e Use white space liberally. Don’t be afraid to insert blank lines in your
subs, which are ignored by VBA. Like indenting, this tends to provide a
more logical structure to your code, and it is greatly appreciated by
those who try to read your code. Generally, lines of code fall into logical
blocks. Therefore, it is a good idea to separate these blocks by white
space.

e Break long lines into multiple lines. It is no fun to read a line of code that
scrolls off to the right of the screen. Therefore, keep your lines short enough
that they fit inside the Code window. When necessary, use the underscore
character, _, to break long lines.

e Name your variables appropriately. I already discussed this earlier in the
chapter, but it also bears repeating. Thankfully, the days when programmers
could get away with meaningless variable names like KK, X, and PR, are gone.
(Don’t laugh. Programs in the old days were filled with variables like this.) Var-
iable names like fixedCost and lastName produce much more readable code.

e Declare all of your variables, usually at the beginnings of subs. I already
stated that Option Explicit should be at the top of each of your modules.
This forces you to declare your variables with Dim statements.
Actually, these Dim statements can be placed just about anywhere within
a sub (before the variable is used), but it is a good programming
practice to place them right after the Sub line. This makes it easy to
find a list of all your variables. (This doesn’t count module-level vari-
ables, which must be declared before any subs. They are discussed in
Chapter 10.)

e  Use the Variant type as little as possible. Remember that a Variant type is a
catch-all; it can hold any type of variable. The way a Variant variable is stored
and manipulated depends on the context of the program. Essentially, you are
making the computer determine the type of variable you have, and this is not
efficient. If you know that your variable is really an integer, for example, then
declare it as Integer, not as Variant. The use of Variant types is usually a sign of
sloppy programming. And remember that not specifying a type at all is the
same as specifying a Variant type.

e Break a complex program into small subs. This is the topic of Chapter 10,
but even at this point it should make sense. It is much more difficult to read
and debug a long complex sub than to work with a series of shorter subs,
each devoted to performing a single task. Think of this as the “divide and
conquer” rule.

As you start writing your own programs, refer back to this list from time
to time. If you find that you are consistently violating one or more of these
rules, you know that you have room to improve—and you should strive to
do so.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



78 Chapter 5

5.15 Debugging

Some programmers are more skillful and careful than others, but the sad fact is
that we a/l make errors, known in the programming world as bugs. The art of
finding and getting rid of bugs, debugging, is almost as important as program-
ming itself. Debugging is basically detective work, and, like programming, it
takes practice. This section gets you started.

There are really three types of errors: syntax errors, runtime errors, and
logic errors.

Syntax Errors

Syntax errors are usually the easiest to spot and fix. They occur when you spell
something wrong, omit a keyword, or commit various other “grammatical”
errors. They are easy to spot because the VBE typically detects them immediately,
colors the offending line red, and displays a warning in a message box."* You have
probably experienced this behavior several times already, but in case you haven’t,
type the following line of code and press the Enter key:

If FirstNumber > SecondNumber

You will be reminded immediately that this line contains a syntax error—the key-
word Then is missing. Sometimes the resulting error message tells you in clear terms
what the error is, and other times it is misleading. But at least you know that there is
something wrong with your syntax, you know approximately where the error is, and
you have a chance to fix it right away. There is no excuse for not doing so. If you are
not sure of the correct syntax, you can search online help.

Runtime Errors

Runtime errors are more difficult to spot and fix. They occur when there is some-
thing wrong with your code, but the error is not discovered until you run your
program. The following is a typical example.

Option Explicit
Option Base 1

Sub Test()
Dim myArray(10) As Integer, i As Integer, nReps As Integer
nReps = InputBox("Enter the number of replications.")
For i = 1 To nReps
myArray(i) = 20 * i
Next
End Sub

" This is the default behavior of the VBE, and you can leave it as is. However, if you get tired of the
warnings, you can select VBE’s Tools—Options menu item and uncheck Auto Syntax Check under
the Editor tab.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 79

Figure 5.11 Error Dialog Box

P = =

Micrasoft Visual Basic. _A&L.

Run-time error 9%

Subscript out of range

Continue

This code has no syntax errors, but it is likely to produce a runtime error.
The user is asked to enter a number of replications, which is stored in the variable
nReps. If the user enters a value less than or equal to 10, the program will run
fine. However, if the user enters a number greater than 10, the program will try
to fill an array with more values than it is dimensioned for. (Arrays are covered in
Chapter 9.) If you run this program and enter 15 in the input box, you will get
the error message shown in Figure 5.11. It is one of Microsoft’s cryptic error
messages that you will come to despise, both because it means that yo# made an
error and because you can’t understand the message.

At this point, you have the three options indicated by the enabled buttons:
(1) You can ask for help, which is almost never helpful; (2) you can end the
program, which doesn’t do anything to help you locate the bug; or (3) you can
click the Debug button. This latter option displays the offending line of code
and colors it yellow. If you then move the cursor over variables, you can see
their current values, which often provides the clue you need. Figure 5.12 shows
what happens if you click the Debug button and then place the cursor over the

Figure 5.12 Code After Clicking Debug

I(General} ﬂ i ITes‘t _ﬂ
=

Option Explicit
Option Base 1
3ub Testi)
Dim myirray(10) As Integer, 1 As Integer, nBEeps is Integer
nkeps = InputBox ("Enter the nunber of replications.™)
For i = 1 To nReps
o | myhrray | = 20 % 1
I Next
End Sub =
! -
== e e . e

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



80 Chapter 5

variable i in the offending line. Its current value is 11, and the array is dimen-
sioned for only 10 elements.

This is the clue you need to fix the program, as shown below. The trick is to
redimension the array after discovering the value of nReps. The details of the fix
are not important at this point. The important thing is that you found the loca-
tion of the bug, and that is often all you need to fix the problem.

Option Explicit
Option Base 1

Sub Test()
Dim myArray() As Integer, i As Integer, nReps As Integer
nReps = InputBox("Enter the number of replications.")
ReDim myArray(nReps)
For i = 1 To nReps
myArray(i) = 20 * i

Next
End Sub
The problem with runtime errors is that there is an infinite variety of them,
and the error messages provided by Microsoft can sometimes be misleading. Con-
sider the following sub, which purposely violates the cardinal rule of indenting to
mask the bug in the program. Can you spot it?
Sub Test()

Dim cell As Range
For Each cell In Range("A1:D10")
If cell.Value > 10 Then

With cell.Font
.Bold = True
talic = True
End If
Next
End Sub
The properly indented version listed below clearly indicates the problem—the
With construction is missing an End With line.
Sub Test()

Dim cell As Range
For Each cell In Range("A1:D10")
If cell.Value > 10 Then

With cell.Font
.Bold = True
talic = True
End If
Next
End Sub

However, if you run this program (either version), you will get the error mes-
sage in Figure 5.13, and the End If line of the sub will be highlighted in yellow.
As you can imagine, this type of misleading information can drive a programmer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 81

Figure 5.13 Misleading Error Message

-

Microsaft Visual Basic for Appqlqaﬁ.,,ﬂ;

2

. Compile errorn

[f=

" End I without block I

QK I Help

crazy. Of course, some snooping around indicates that the problem is 7ot with
End If but is instead with End With. However, an unsuspecting programmer could
be led down a time-consuming blind alley searching for the bug. Therefore, it is
best to interpret runtime error messages with caution. They typically point you in
the general neighborbood of the offending code, but they do not always pinpoint
the problem. And, as you can probably guess, the Help button in this case is not
of any help at all.

When you get any of these runtime error messages, your program goes into
break mode, which essentially means that it is on hold. You always know a program
is in break mode when a line of code is highlighted in yellow. Sometimes you can fix
a line of code while in break mode and then click the Run Sub/UserForm button
on the VBE Standard toolbar to let the program finish. (See Figure 5.14.) Other
times, it is impossible to continue. You need to click the Reset button, fix the bug,
and then rerun the program. It is usually best to do the latter. If you ever get a
message to the effect that something can’t be done because the program is in break
mode, get back into the VBE and click the Reset button. In this case, the reason
you can’t run your program is that it is already running.

Logic Errors

The third general type of error, a logic error, is the most insidious of the three
because you frequently don’t even know that you made an error. You run the
program, it produces some results, and you congratulate yourself on work well
done. However, if your program contains any logic errors, even a single tiny
error, the results can be totally wrong. You might or might not get an error mes-
sage to alert you to the problem.

Here is a typical example. (This file is not included with the book, but you
might want to create it for practice.) You want to average the numbers in column

Figure 5.14 VBE Standard Toolbar

'H F3-H % =B ﬁ/ I A S T o=
| Run Sub/UserForm |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



82 Chapter 5

Figure 5.15 Scores to Average

A | B
Scores
87
78
98
82
77
99
80
85
76

84.67

Figure 5.16 Display of Incorrect Average

Microsoft Excel

The average of the scores i5 76.2 F

o« |

A (through row 10) in Figure 5.15 and display the average in a message box. The
correct average, calculated with Excel’s AVERAGE function, appears in cell A12.

The AverageScores sub listed below contains no syntax errors and no runtime
errors.'? If you run it, it will display the message in Figure 5.16—with the wrong
average! Unless you have read ahead to the next chapter, you probably don’t
know enough about Range objects to spot the problem, but there is a bug, and
it is quite subtle.

Sub AverageScores()
Dim scoreRange As Range, cell As Range, sum As Single

With Range("A1")
Set scoreRange = Range(.Offset(0, 0), .End(xIDown))
End With

For Each cell In scoreRange
If IsNumeric(cell.Value) Then sum = sum + cell.Value
Next

MsgBox "The average of the scores is " & sum / scoreRange.Cells.Count
End Sub

12 Of course, you would never write such complex code to perform such a simple task. It is done here
only to illustrate a point.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 83

Figure 5.17 VBE Debug Toolbar

D2 p mom | MSE(ECE 0 E S e L-;;_I.J!

|Togg|e breakpoint| | Step into | | Step over | | Step out | | Quick watch |

There are actually two problems. The first problem, and probably the more
important one, is that if the correct average had not been calculated separately in cell
Al2, you would probably have accepted the answer in the message as being correct.
(How many programs in the real world contain errors that no one is even aware of? I
suspect the number is huge. Is it possible, for example, that there are errors in the
gigantic programs used by the IRS to check your tax returns? It’s a scary thought!)

However, assuming that you are suspicious of the answer in the message box, the
second problem is that you have to find the error and fix it. Fortunately, the VBE has
some powertul tools for debugging your programs. One of the most useful methods is
to step through a program one line at a time, possibly keeping a watch on one or more
key variables. VBE’s Debug toolbar is very handy for doing this. (See Figure 5.17.)
Equivalently, you can use menu items and shortcut keys to perform the same tasks.

Let’s use this method to find the faulty logic in the average example. To do
this—and you should follow along at your own computer—get into the VBE and
put a watch on the key variable sum. The easiest way to do this is to put the cur-
sor anywhere on the sum variable (anywhere it appears in the code) and click the
Quick watch button. The Watch window then opens, as shown in Figure 5.18.
It allows you to watch the contents of sum as the program executes. In general,
you can put watches on as many variables as you like.

At this point, sum has not yet been defined, so its value is listed as “out of
context.” But it changes as you step through the program. To do this, put the cur-
sor anywhere inside the sub and repeatedly click the Step into button. (Alternatively,
press the F8 key repeatedly.) This executes a line of code at a time. If the line
changes the value of sum, the updated value will appear in the Watch window. By
the time the For Each loop is finished, the Watch window appears as in Figure 5.19.

If you sum the numbers in the range A2:A10 of Figure 5.15, you will find
that the sum is indeed 762. This means that the problem is not with the logic
for calculating sum. The only other possible problem is with the number that
sum is divided by to obtain the average. (Now do you see the error?) A careful

Figure 5.18 Watch Window

W atches

Expression alue Type Contesd
&d Sum =0ut of context= Emmpty Modulet AverageScores

!

5 ER—

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



84 Chapter 5

Figure 5.19 Watch Window After For Each Loop

Watches %]
Expression alue T—yﬂpa Contexdt -
G Sum 762 Single Modulel AverageScores
|

look at the code shows that scoreRange includes the label in cell Al. Therefore,
scoreRange.Cells.Count returns 10, not 9. The correct average is 762/9, not
762 /10. (You might recall that Excel’s COUNT worksheet function counts only
cells with numbers. In contrast, VBA’s Count property, as used here, counts all
cells, even empty cells or cells with labels.)

The general point made by this example is that stepping through a program,
together with a careful use of the Watch window, can localize a problem and enable
you to fix it. You can also employ some other debugging tools to fine-tune your search
for bugs. This is particularly important if you have a large program with several subs and
you are confident that most of them are bug-free. You then can use the following tools.

e Set breakpoints. Place the cursor on any line of code and click the Toggle
breakpoint button. This puts a red dot in the left-hand margin of the Code
window (or it removes the red dot if one was already there). If you now run
the program, it will execute until it encounters this line of code, at which time
it goes into break mode. Then you can examine values of variables or step
through the program from this point on. In general, whenever you click the
Run Sub/Userform button, the program advances to the next breakpoint.
(If there isn’t another breakpoint, the program runs to completion.)

e Step over subs. As you are stepping through a program, you might get to a
line that calls another sub. (Calling other subs is discussed in Chapter 10.) If
you do not want to step through that sub line by line (because you are confi-
dent it is bug-free), click the Step over button. This executes the sub all at
once, without stepping through it line by line.

e Step out of subs. Similarly, if you are stepping through a sub and decide
there is no point in stepping through the rest of it, click the Step out button.
The rest of the sub is executed all at once and control passes back to the call-
ing sub, which you can then continue to step through.

These tools are great for debugging, but they are not magic bullets. Incorrect
logic creeps into almost all programs of any reasonable size, and it is the
programmer’s task to find them. This requires a thorough knowledge of the
program, a lot of detective work, and perseverance. The easy way out is to
seek immediate help from someone else (your instructor?) as soon as some-
thing goes wrong. However, you should try to find the bugs yourself, using
the tools described here. It is probably the most effective way to become a
good programmer. You will learn at least as much from your errors as from
any programming manuals.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 85

5.16 Summary

This chapter has covered a lot of VBA programming fundamentals, including sub-
routines (subs); variables; the InputBox and MsgBox functions; comments; strings
and string operations; specification of objects, properties, and methods; With con-
structions; a few other VBA elements; and debugging. All of these fundamentals
are used repeatedly in later chapters. Don’t worry if they are not yet completely
clear. It takes plenty of practice to master these VBA fundamentals.

EXERCISES

1. Open a new workbook, get into the VBE, insert a module, and enter the follow-
ing code:

Sub Variables()

Dim nPounds As Integer, dayOfWeek As Integer

nPounds = 17.5

dayOfWeek = "Monday"

MsgBox nPounds & " pounds were ordered on " & dayOfWeek
End Sub

There are two problems here. One causes the program to fail, and the other
causes an incorrect result. Explain what they are and then fix them.

2. Open a new workbook, get into the VBE, insert a module, and enter the follow-
ing code:

Sub CalculateExpenses()
customerName = InputBox("Enter the name of a customer.")
nPurchases = InputBox("Enter the number of purchases made by " _
& customerName & " during the month.")
totalSpent = 0
For counter = 1 To nPurchases
amountSpent = InputBox("Enter the amount spent by " & customerName
& " on purchase " & counter)
totalSpent = totalSpent + amountSpent
Next
MsgBox customerName & " spent a total of " & Format(totalSpent, _
"$#,##0.00") & " during the month.", vbinformation
End Sub

a.  Make sure there is no Option Explicit line at the top of the module. (If there
is, delete it.) Then run the program. It should work fine. (If it doesn’t, check
your spelling.)

b. Enter an Option Explicit line at the top of the module. Now run the program.
It should produce an error message. The problem is that the Option Explicit
statement forces you to declare variables, and none of the variables in this
sub have been declared. Declare them appropriately with a Dim statement
(or several Dim statements) and rerun the program. Now it should work.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



86 Chapter 5

3.  Write a program, and store it in a file called Travel Expenses.xlsm, that does the
following: (a) It asks for a person’s first name and stores it in firstName; (b) it asks
for a person’s last name and stores it in lastName; (c) it asks for the number of
miles the person traveled on a recent trip and stores it in nMiles; (d) it asks for
the average miles per gallon the person got on the trip and stores it in milesPer-
Gallon; (e) it asks for the average price per gallon paid for gas on the trip and
stores it in avgPrice; (f) it calculates the cost of the trip and stores it in tripCost;
and (g) it displays a message such as "Bob Jones traveled 800 miles, got 31.3 miles
per gallon on average, paid $3.49 per gallon on average, and paid a total of $89.20 for
gas." Make sure there is an Option Explicit line at the top of the module and that
you declare all of your variables appropriately.

4. Write a program, and store it in a file called String Funtions.xlsm, that does the fol-
lowing: (a) It asks the user for a word with at least 10 characters and stores it in
myWord; (b) it displays a message indicating the number of characters in the word; (c)
it displays a message showing the first four characters of the word; (d) it displays a mes-
sage showing the last six characters of the word; (e) it displays a message showing the
fifth character in the word; (f) it displays a message showing all but the first two and
last two characters in the word; and (g) it displays the word in reversed order. (Hint:
For the last part, look up Strings in the VBA library of the Object Browser.)

5. The file Formatting l.xlsm contains the following code for formatting some
data. It is all correct. Rewrite the code so that there are no With constructions,
and then run the modified program to make sure it still works. Can you see how
With constructions reduce repetitive code?

Sub Formatting()
With ActiveWorkbook.Worksheets("Sheet1")
With .Range("A1")
.Value = "Expenses for March"

With .Font
.Name = "Arial"
.Bold = True
.Colorindex = 5
.Size = 14
End With
.HorizontalAlignment = xILeft
End With
With Range("A3:A6")
.Insertindent 1
With .Font
talic = True
.Bold = True
End With
End With

With .Range("B3:B6")
.Interior.Color = vbBlue
NumberFormat = "$# ##0"

End With

End With
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Getting Started with VBA 87

6. The file Formatting 2.xIsm contains the following code for formatting some
data. This code works perfectly well, but it is quite repetitive. Rewrite it by using
as many With constructions as make sense, using appropriate indentation, and
then run your modified code to make sure it still works.

Sub Formatting()
ActiveWorkbook.Worksheets("Sheet1").Range("
ActiveWorkbook.Worksheets("Sheet1").Range("
ActiveWorkbook.Worksheets("Sheet1").Range("
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Font.Bold = True
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Font.Iltalic = True
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Font.Color = vbGreen

( ("A1").Font.Bold = True

( (

( (

( (

S
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Insertindent 1

( (

( (

( (

( (

( (

( (

1
1").Font.Size = 14
1

A
A
A1").HorizontalAlignment = xILeft
A

).

;.
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").Font.Bold = True
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").Font.ltalic = True
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").Font.Color = vbBlue
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").HorizontalAlignment = xIRight
ActiveWorkbook.Worksheets("Sheet1").Range("B3:D6").Font.Color = vbRed
ActiveWorkbook.Worksheets("Sheet1").Range("B3:D6").NumberFormat = "$#,##0"

End Sub

7. The file Formatting 3.xlsm contains code that is very difficult to read. Besides
that, it contains an error. Reformat it with indenting, white space, and comments,
and fix the error so that it runs correctly.

8. The file Count Large.xlsm has quantities sold for 1000 products for each of
60 months, for a total of 60,000 values. The following code counts the number
of these that are greater than 100. Check how long it takes to do this by inserting
Timer functions appropriately in the code and displaying the elapsed time in a
message box.

Sub CountlLarge()
Dim cell As Range, nLarge As Long
For Each cell In Range("Sales")
If cell.Value > 100 Then nLarge = nLarge + 1
Next
MsgBox nLarge & " cells in the Sales range have a quantity larger than 100.", _
vbInformation
End Sub

9. Write single lines of code for each of the following.

a.  Set the value of cell A17 in the Sales sheet of the active workbook to 1325.

b. Capture the value of cell B25 in the Quantities sheet of the workbook
Sales.xlsx in the variable marchSales.

c.  Clear the contents of the range named Sales.

d. Copy the range A1:A10 on the Sheetl worksheet of the active workbook to
the range Al:Al0 of the MarchSales sheet in the Sales.xlsx workbook.
Assume that Sales.xlsx is #ot the active workbook.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



88 Chapter 5

10. The file Exam Scores.xlsx has scores for an exam in the range A1:A100. Write a
sub that reports the average, standard deviation, minimum, and maximum of the
scores in a message box. Use Excel’s functions (with WorksheetFunction) to do the
arithmetic.

11. Open a new workbook, name it Random Number.xlsm, and delete all but the
first sheet if necessary. Write a sub that enters a random number in cell Al. Try
this two ways. First, use Excel’s RAND function (with WorksheetFunction) to set
the Value property of this cell. Does this work? It shouldn’t. Second, set the
Value property of the cell to VBA’s rd function. Does this work? It should. The
moral is that if VBA has a function that does something, you have to use it; you
can’t borrow Excel’s function that does the same thing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges

6.1 Introduction

This chapter focuses on ways to work with ranges in VBA. This is a particularly
important topic because the majority of operations in Excel are range operations.
You select ranges, you enter values and formulas in ranges, you format ranges in
various ways, you copy ranges, and so on. Therefore, it is important to be able to
automate these common tasks with VBA. Unfortunately, it can be difficult to do
even the simplest tasks unless you know the correct techniques, and online help is
sometimes more confusing than helpful. This chapter presents sample VBA code
that accomplishes many common tasks. You can then adapt this code to your own
programs.

6.2 Exercise

The following exercise illustrates the type of problem you will be able to solve
once you master the techniques in this chapter. You should probably not try this
exercise yet, but you should keep it in mind as you read through the rest of the
chapter. By the end, you should have more than enough tools to solve it—one
way or another.

Exercise 6.1

The file Calculate NPV.xlsx contains a model for calculating the net present value
(NPV) from an investment. (See Figure 6.1.) Five inputs are listed in the range
B4:B8. These are used to implement the calculations for cash inflows in row 12,
and the NPV is then calculated with the formula =NPV(B8,B12:K12)-B4 in
cell B14. All of the logic to this point is incorporated in the worksheet and does
not need to be changed at all. When you enter different inputs in the B4:B8
range, the NPV in cell B14 automatically recalculates.

Rows 18-22 contain possible values of the inputs, where each row is sorted
in increasing order. The values shown are for illustration only—you can change
them if you like. The goal of the exercise is to ask the user for any #wo of
the five inputs. Then the application should find the minimum and maximum
values for these two inputs from the corresponding 18-22 rows, substitute
each combination (minimum of first and minimum of second, minimum of
first and maximum of second, maximum of first and minimum of second, and

89

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



90 Chapter 6

A [ B J ¢ [ o [ €E [ F T & T H T v T J T K T L

L Calculating the net present value of a stream of cash flows

2
[ 3] Inputs
[ 4 |1.cash outflow, beginning of year 1 $40,000
5 [2.cCash inflow, end of year 1 $12,000
z 3. Pct increase in cash inflow per year 12%
L4. Number of years of cash inflows 10

8 |5. Discount rate 16%
| 9]
[ 10 |Model of cash inflows (all occur at the ends of years)
[ 11 |Year 1 2 3 4 5 6 7 8 9 10
E Cash inflow $12,000 $13,440 $15,053 $16,859 $18,882 $21,148 $23,686 $26,528 $29,712 $33,277
% Net present value (NPV) $48,787 Note that the values in each of rows 18-22 are in increasing order, so that the
15 | minimum value is at the left and the maximum value is at the right. Even if more

wre = val hat th il al | inil i .
16 |Possible values of the inputs to test values are added, you can assume that they will always be placed in increasing order.

17

[ 18 |1. cash outflow, beginning of year 1 $10,000  $15,000  $20,000  $25,000  $30,000  $35,000  $40,000

E 2. Cash inflow, end of year 1 $4,000 $5,000 $6,000 $7,000 $8,000 $9,000 $10,000 $11,000 $12,000

_0 3. Pct increase in cash inflow per year 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
21 |4. Number of years of cash inflows 5 6 7 8 9 10

| 22 5. Discount rate 8% 9% 10% 11% 12% 13% 14% 15% 16%

[ 23]

z Sensitivity table (NPV for combinations of min and max of two selected inputs)
25 NPV

Figure 6.2 Completed Solution

A [ B8 [ ¢ D E F G H ) K L
Calculating the net present value of a stream of cash flows

Inputs

1. Cash outflow, beginning of year 1 $40,000
2. Cash inflow, end of year 1 $12,000
3. Pctincrease in cash inflow per year 12%
4. Number of years of cash inflows 10
5. Discount rate 16%

Model of cash inflows (all occur at the ends of years)
Year 1 2 3 4 5 6 7 8 9 10
Cash inflow $12,000 $13,440 $15,053 $16,859 $18,882 $21,148 $23,686 $26,528 $29,712  $33,277

Net present value (NPV) $48,787 Note that the values in each of rows 18-22 are in increasing order, so that the minimum

* value is at the left and the maximum value is at the right. Even if more values are added,
Possible values of the inputs to test you can assume that they will always be placed in increasing order.

1. Cash outflow, beginning of year 1 $10,000 $15,000 $20,000 $25,000 $30,000 $35,000 $40,000

2. Cash inflow, end of year 1 $4,000  $5000 $6,000 $7,000  $8,000  $9,000 $10,000 $11,000 $12,000

3. Pctincrease in cash inflow per year 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
4. Number of years of cash inflows 5 6 7 8 9 10

5. Discount rate 8% 9% 10% 11% 12% 13% 14% 15% 16%

Sensitivity table (NPV for combinations of min and max of two selected inputs)

NN I NN IR NNEN
wIml\‘ImlmIblwl"'|’_‘Io|L°I°°|\‘|m|m|'>|w|N|H|°|m|m|\‘|m|m|blw|'\llp

Input 3 Input 5 NPV
0.02 0.08 $47,074
0.02 0.16  $22,029
0.12 0.08 $91,583
0.12 0.16  $48,787

maximum of first and maximum of second) in the appropriate cells in the B4:B8
range, and finally report the input values and corresponding NPVs in a table,
starting in row 25. As an example, if the user selects inputs 3 and 5, the final
result should appear as in Figure 6.2. Note that the values for the third input

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 91

go from 2% to 12%, whereas the values for the fifth input go from 8% to 16%. Of
course, these limits could change if the values in rows 18-22 are changed. The
VBA should be written to respond correctly, regardless of the values in rows
18-22, assuming they are always listed in increasing order from left to right.

Figure 6.2 is taken from the file Calculate NPV Finished.xlsm. You can
open this file and click the Run Sensitivity Analysis button to see in more detail
how the application should work. (Don’t forget to enable the macros when you
open the file.) However, try not to look at the code in this file until you have
tried to develop the application on your own, starting with the file Calculate
NPV.xlsx. (This example is obviously limited. Why only #woe of the five inputs?
Why not three or more? For a more ambitious version, take a look at the file Cal-
culate NPV Finished with Loops.xlsm.)

6.3 Important Properties and Methods of Ranges

This section lists several of the more important and frequently used properties and
methods of Range objects. You can skim over it on a first reading, because it is primarily
for reference. However, you should find this section useful as you work through the
exercises and examples in this chapter and later chapters. Of course, you can find all of
this information (and much more) online or in the Object Browser.

Properties

The following properties of a Range object are listed alphabetically, not necessar-
ily in order of their importance or usefulness (and there are many other properties
not listed here).

Address. This returns the address of a range as a string, such as “B2:C6”.
Cells. This returns a reference to a Range object and is often used to refer to a
particular cell. For example, Range("D1:D10").Cells(3) refers to the third cell in
the range, D3, whereas Range("E10:G15").Cells(3,2) refers to the cell in the
third row and second column of the range, cell F12. If the range has multiple
rows and columns, then it is customary to use two arguments in Cells, where
the first is the row and the second is the column. However, if the range is only
part of a single column or a single row, a single argument of Cells suffices.

Before proceeding, you might have noticed a subtle point in the definition of
the Cells property. Many objects, including the Range object, have properties that
are in fact references to objects down the hierarchy. The Cells property is an exam-
ple. If you look up the Range object in the Object Browser, you will see that Cells is
classified as a property. However, the purpose of this property is to return an object.
For example, consider the code Range("A1:G10").Cells(3,5).Value. Here, Cells(3,5) is
a property of the Range("A1:G10") object, but it returns an object, Range("E3"), a
reference to cell E3. The Value property then returns the contents of cell
E3. Another example is the Font property of a Range object. The code
Range("A1").Font.Bold = True uses the Font property to reference a Font object, and
then its Bold property is set to True. Again, this distinction between objects and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



92 Chapter 6

properties is subtle, especially for beginners. Fortunately, it has little impact on you
as you do your actual programming.

e  Column. This returns the index of the first column in the range, where col-
umn A has index 1, column B has index 2, and so on.

e  CurrentRegion. This returns a reference to a range bounded by any combina-
tion of blank rows and blank columns. For example, the current region of cell
A3 in Figure 6.2 is the range A3:B8. As another example, if the range con-
sists of A1:B10 and C5:D8, the current region is the smallest rectangular
region enclosing all of this, A1:D10.!

e EntireColumn. This returns a reference to the range consisting of the entire
column(s) in the range. For example, Range("A1").EntireColumn returns the
entire column A.

e Font. This returns a reference to the font of the range, and then the proper-
ties (such as Size, Name, Bold, Italic, and so on) of this font can be changed,
as in Range("A1:D1").Font.Bold = True.

e Formula. This returns or sets the formula in the range as a string, such as
"=SUM(A1:A10)". Note that this string includes the equals sign. Surprisingly,
the Formula property can be used even if a cell doesn’t contain a formula.
For example, if cell Al contains the value 10, Range("A1").Formula returns
10. However, you are most likely to use the Formula property for ranges that
do indeed contain formulas.

e FormulaR1C1. This returns the formula in a range as a string in RIC1 (row-
column) notation. This is particularly useful for formulas that are copied down or
across. As an example, suppose each cell in the range C3:C10 is the sum of the
corresponding cells in columns A and B. For example, cell C3 is the sum of cells
A3 and B3. Then the FormulaR1C1 property of the range C3:Cl0 is
"=RC[-2]+RC[-1]". The R by itself means to stay in the same row. The [-2] and
[-1] next to C reference two cells to the left and one cell to the left, respectively.
To gain some experience with R1C1 notation, try the following. Enter some num-
bers in the range A1:D10 and calculate row sums and column sums with the SUM
function in column E and row 11, respectively. Now go to Excel Options, and
under the Formulas group, check the R1CI reference style option. (To get there
in Excel 2003, use the Tools - Options menu item, and click the General tab.)
You might be surprised at how your formulas now appear. (You can then uncheck
the R1CI reference style option to get back to the usual “Al” notation.)

e HorizontalAlignment. This returns the horizontal alignment of the cells in the
range. The three possible values are xIRight, xILeft, and xICenter.

e Interior. This returns a reference to the interior of the cells in a range. It is
often used to color the background of the cells, as in Range("A1").Interior.
Color = vbRed. (This colors cell Al red, because vbRed is a built-in constant
that corresponds to red.)

LIf you have ever used Excel’s pivot tables, the current region is how Excel guesses where your data
set lives, assuming the cursor is somewhere within the data set. It returns the current region of the
cursor location. The same goes for Excel tables in Excel 2007 and later versions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 93

e Name. This returns the name of the range (if any has been specified). If it is
used in a line such as Range("B3:E20").Name = "Sales", it creates a range
name for the specified range.

e NumberFormat. This returns the format code (as a string) for the range. This
is usually used to specify the number format for a range, as in Range
("C3:C10").NumberFormat = "#,##0.00". However, it is difficult to remember these
format codes, so you might try the following. Format a cell such as A1 manually in
some way and then use the line Debug.Print Range("A1").NumberFormat. (Alterna-
tively, type the line ?Range("A1").NumberFormat in the Immediate Window of the
VBE.) This will print the number format of cell Al to the Immediate Window.
You can then see the appropriate format code.

e Offset. This returns a reference relative to a range, where the range is usually a
single cell. This property is very useful and is used constantly in the applica-
tions in later chapters. It is explained in more detail in the next section.

* Row, EntireRow. These are similar to the Column and EntireColumn properties.

e  Value. This is usually used for a single-cell range, in which case it returns the value
in the cell, which could be a label, a number, or the result of a formula. Note that
the syntax Range("A1").Value can be shortened to Range("A1"). That is, if .Value is
omitted, it is taken for granted. This is because the Value property is the defauit
property of a Range object. When I was first learning VBA programming, I used
this shortcut a lot. Now I try to remember to include .Value, even though it isn’t
necessary, because it makes my code more readable.

Methods

The following list, again shown in alphabetical order, indicates some of the more
useful methods of a Range object.

e Clear. This deletes everything from the range—the values and the formatting.

e ClearContents. This can be used instead of Clear to delete only the values (and
formulas) and leave the formatting in place.

e Copy. This copies a range. It has a single (optional) argument called Destina-
tion, which is the paste range. For example, the line Range("A1:B10").Copy
Destination:=Range("E1:F10") copies the range A1:B10 to the range E1:F10.
Note that if the Destination argument is omitted, the range is copied to the
clipboard.

e PasteSpecial. This pastes the contents of the clipboard to the range according
to various specifications spelled out by its arguments. A frequently used option
is the following. Suppose you want to copy the range C3:D10, which contains
formulas, to the range F3:G10 as values. The required code is as follows.

Range("C3:D10").Copy
Range("F3:G10").PasteSpecial Paste:=xIPasteValues

The Paste argument, which can be one of several built-in Excel constants,
indicates how you want to paste the copy. (To appreciate how many ways

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



94  Chapter 6

you can “paste special,” copy a range in Excel and then click the Paste drop-
down on the Home ribbon. You will see quite a few possibilities.)

e Resize. This takes two integer arguments, RowSize and ColumnSize. Start
from the upper left cell in the range; this returns a range with RowSize rows
and ColumnSize columns.

e Select. This selects the range, which is equivalent to highlighting the range in
Excel.

e Sort. This sorts the range. The specific way it sorts depends on the argu-
ments used. For a typical example, suppose you want to sort the data set in
Figure 6.3 (sce section 6.5) in ascending order on Score 2 (column C). The
following line does the job. The Key1 argument specifies which column to
sort on, the Order1 argument indicates whether to sort in ascending or des-
cending order (with the built-in constants xlAscending and xIDescending),
and the Header argument specifies that there are column headings at the
top of the range that should not be part of the sort.

Range("A1:F19").Sort Key1:=Range("C2"), Order1:=xlAscending, Header:=xIYes

The lists shown here indicate only a fraction of the properties and methods
of the Range object, but they should suffice for many of your programming
needs. If you want to learn more, or if you want to look up any specific property
or method, the best way is to open the Object Browser in the VBE, select the
Excel library, select the Range object in the left pane, select any property or
method in the right pane, and click the question mark button for help.

6.4 Referencing Ranges with VBA

Once a range is referenced properly in VBA code, it is relatively easy to set (or
return) properties of the range or use methods of the range. In my experience, the
hard part is usually referencing the range in the first place. Part of the reason is that
there are so many ways to do it. This section describes the basic syntax for several of
these methods, and the next section presents a number of small subs that imple-
ment the methods. Like the previous section, the material here is mostly for refer-
ence. However, keep the exercise in section 6.2 in mind as you read this section
and the next. You will need to implement some of these ideas to do the exercise.
The most common ways to reference a range are as follows:

e Use an address. Follow Range with an address in double quotes, such as
Range("A1") or Range("A1:B10").

e Use a range name. Follow Range with the name of a range in double
quotes, such as Range("Sales"). This assumes there 75 a range with the name
Sales in the active workbook.

e Use a variable for a range name. Declare a string variable, such as salesName,
and set it equal to the name of the range. This would be done with a line such as

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 95

salesName = Range("Sales").Name

Then follow Range with this variable, as in Range(salesName). Note that
there are now no double quotes. They are already included in the variable
salesName (because it is a String variable).

e Use a Range object variable. Declare a variable, such as rngSales, as a Range
object and define it with the keyword Set. This can be done with the follow-
ing two lines:

Dim rngSales as Range
Set rngSales = Range("Sales")

Then simply refer to mgSales from then on. For example, to change the font
size of the range, you could write rgSales.Font = 12. The advantage of doing
it this way is that as soon as you type rgSales and then a period, you get
Intellisense. Once you get used to Intellisense, you will really miss it when it
doesn’t appear—which does happen in some cases.

e Use the Cells property. Follow Range with the Cells property, which takes
one or two arguments. For example,

Range("B5:B14").Cells(3)

refers to the third cell in the range B5:B14—that is, cell B7. In contrast,

Range("C5:E15").Cells(4,2)

refers to the cell in the fourth row and second column of the range C5:E15—
that is, cell D8. In the first case, B5:B14 is a single-column range, so it suffices
to use a single argument for the Cells property. (The same is true for a single-
row range.) However, in the second case, where C5:E15 spans multiple rows
and columns, it is more natural to use two arguments for the Cells property.
The first argument refers to the row, the second to the column. Actually, the
Cells property (a property of the Application object) can be used all by itself, as
in Cells(3,2). This refers to cell B3.

e Use the Offset property. Follow Range with the Offset property, which
takes two arguments. For example, the reference

Range("A5").Offset(2,3)

says to start in cell A5, then go 2 rows down and 3 columns to the right. This
takes you to cell D7. The first argument of Offset indicates the 7ow offset. Use
a positive offset to go down and a negative offset to go up. The second

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



96 Chapter 6

argument indicates the column offset. Use a positive offset to go to the right
and a negative offset to go to the left. Either argument can be 0, as in

Range("A5").Offset(0,3)

This refers to cell D5. As you will see in later chapters, the Offset property is
one of my favorites. I use it all the time.

e Use top left and bottom right arguments. Follow Range with two argu-
ments, a top left cell and a bottom right cell, separated by commas. This
corresponds to the way you often select a range in Excel. You select the top
left cell, hold down the Shift key, and select the bottom right cell. For
example,

Range(Range("C1"),Range("D10"))

returns the range C1:D10. Another example, which uses a With construction
to save typing, is as follows:

With Range("A1")
Range(.Offset(1, 1), .Offset(3, 3)).Select
End With

This code selects the range B2:D4. The top left cell is the cell offset by 1 row
and 1 column from Al, namely, B2. Similarly, the bottom right cell is the cell
oftset by 3 rows and 3 columns from Al, namely, D4. Note, for example,
that .Offset(1,1) is equivalent to Range("A1").Offset(1,1) because it is inside the
With construction.

e Use the End property. You have probably used the End-Arrow key combi-
nations to select ranges in Excel, particularly if they are large ranges. For
example, if the range A1:M100 is filled with values and you want to select
it, you can select cell Al, hold down the Shift key, then press the End and
down arrow keys in succession (not at the same time), and finally press the
End and right arrow keys in succession. (You might prefer the Ctrl+Arrow
or Shift+Ctrl+Arrow key combinations to do the same thing. But in cither
case, this is much better than scrolling, especially with large data ranges.)
The question is how to do this in VBA. It is easy once you know the End
property. This takes one argument to determine the direction. It can be any
of the built-in constants xIDown, xIUp, xIToRight, or xIToLeft. The following
example is typical, where the goal is to select a data set that starts in cell Al.

With Range("A1")
Range(.Offset(0,0), .End(xIDown).End(xIToRight)).Select
End With

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 97

The middle line selects a range that is specified by a top left cell and
a bottom right cell. The first argument, .Offset(0,0), which is equivalent to
Range("A1").Offset(0,0) because it is inside a With, is simply cell Al. The
second argument, .End(xIDown).End(xIToRight), which is equivalent to Range
("A1").End(xIDown).End(xIToRight) again because it is inside a With, is at the
bottom right of the rectangular range that begins in cell Al. The advantage
of using the End property is that you do not need to know the size of the
range. The above code specifies the correct range regardless of whether the
data set range is A1:B10 or A1:M500.

To use the End property correctly in VBA, you have to understand exactly
how the End-Arrow key combinations work in Excel. Depending on the posi-
tion of blank cells in your worksheet, it is easy to make mistakes. See the file
Using End-Down Correctly.xlsm for an illustration of the pitfalls you might
experience. They are fairly easy to avoid if you know how to recognize them.

e Use the Resize property. Starting with a given range and RowSize and
ColumnSize arguments for Resize, this returns the range with the upper left
cell of the given range, but with RowSize rows and ColumnSize columns. For
example, the following line refers to the range C1:D10.

Range("A1").Offset(0,2).Resize(10,2)

e Use square brackets. Surprisingly, the code ['A1:B10"].Select has the same
cffect as Range("A1:B10").Select. (Actually, the square bracket code is equiva-
lent to Application.Evaluate("A1:B10").Select.) I mention this option only
because you might see it in someone else’s code. I don’t recommend it
because it’s less efficient in terms of computing time, and it’s not recognized
by most users.

6.5 Examples of Ranges with VBA

It is one thing to know the information in the previous two sections in an abstract
sense. It is another to use this information correctly to perform useful tasks. This
section presents a number of small subs for illustration. (All of these subs are listed
in Module1 of the file Ranges.xlsm.) When presenting example subs that actually
do something, it is difficult to avoid aspects of VBA that have not yet been cov-
ered. Whenever this occurs, I include a brief explanation of anything new.

Watching Your Subs Run

It is very informative to run these subs and watch what they do. Here is a useful
strategy. First, make sure that only Excel and the VBE are open. (You might want
to close any programs other than Excel.) Then position the Excel and VBE win-
dows so that they are side by side. (It helps if you have a large monitor or two

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



98 Chapter 6

Figure 6.3 Employee Data

A B C D E F G H
1 | Employee Scorel Score2 Score3 Score4d Score5 Extra junk
2 1 90 87 76 95 86
3 2 78 90 99 84 84
4 3 72 60 84 58 69
5 4 82 66 81 69 72
6 5 95 85 82 77 93
7 6 90 93 66 88 93
8 7 90 100 57 70 89
9 8 90 98 61 56 83
10
11| Employee [SSN
12 1 677-56-3523
13 2 368-18-8238
14 3 767-97-6963
15 4 597-60-9462
16 5 469-96-1823
17 6 577-68-8445
18 7 755-43-1476
19 8 161-82-2041

monitors.) Next, place the cursor anywhere within a sub you want to run, and
press the F8 key repeatedly. This steps through your sub one line at a time. By
having the Excel window visible, you can immediately see the effect of each line
of code.

The Data Set

Most of the examples in this section are based on a small database of perfor-
mance scores on various activities and Social Security Numbers for a com-
pany’s employees. These data are in the Ranges.xlsm file and are listed in
Figure 6.3. The subs in this section all do something with this data—perhaps
nothing earthshaking, but illustrative of the methods you can use to work
with ranges. (The label in cell H1 is used to indicate that the performance
scores are separated by a blank column from other data that might be on the
worksheet.)

Note that there is only one worksheet in this file, the Data sheet. Therefore,
there is no real need to qualify ranges such as Range("A1") with a worksheet name;
there is only one cell Al in the file. However, to set the stage for more complex
examples, I gave the code name wsData to the Data sheet (remember from the
last chapter that you do this in the VBE Properties window), and I qualified all
ranges by wsData, as in wsData.Range("A1"). Again, this isn’t really necessary, but
I think it is a good habit to get into. I could even qualify the ranges by ThisWork-
book, as in ThisWorkbook.wsData.Range("A1"), but I think this is excessive.
Remember that qualifying ranges is only 7eally necessary when there a chance for
ambiguity, where there are multiple Al cells in open workbooks.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 99

EXAMPLE 6.1  Using Addresses

The Rangel sub refers to ranges by their literal addresses. This is the easiest
method if you know that the location and size of a data range are not going to
change. For several ranges, this sub displays the address of the range in a message
box by using the Address property of a Range object. For example, the line

MsgBox Range("A2:A19").Address

displays the address of the range “A2:F19” in a message box.

Sub Range1()

' This sub refers to ranges literally. It would be used if you
' know the size of a data range is not going to change.
With wsData

MsgBox .Range("A1").Address

MsgBox .Range("B1:F1").Address

MsgBox .Range("A2:A19").Address

MsgBox .Range('B2:F19").Address

' The following two lines are equivalent because the Value
' property is the default property of a Range object. Note
' how string concatenation is used in the message.
MsgBox "The first employee's first score is " & .Range("B2").Value
MsgBox "The first employee's first score is " & .Range("B2")
End With
End Sub

Toward the end of this sub, note how .Value can be used but is not neces-
sary. Many programmers tend to take advantage of this shortcut. I try to avoid it
for two reasons. First, your code is more straightforward if you include all proper-
ties explicitly, including default properties. Second, if you move from VBA to
Microsoft’s newer programming language, VB.NET, you will find that there are
no default properties; you are required to include all properties explicitly.

EXAMPLE 6.2 Creating and Deleting Range Names

The Range2 sub first uses the Name property of a Range object to create several
range names. Then to restore the workbook to its original condition, which is
done for illustration purposes only, these range names are deleted. To delete a
range name, you first set a reference to a particular name in the Names collection
of the ActiveWorkbook. Then you use the Delete method.

Sub Range2()
' This sub creates range names for various ranges, again
' assuming the data range is not going to change.
With wsData
.Names.Add Name:="ScoreNames", RefersTo:=.Range("B1:F1")

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



100 Chapter 6

.Names.Add Name:="EmployeeNumbers", RefersTo:=.Range("A2:A19")
.Names.Add Name:="ScoreData", RefersTo:=.Range("B2:F19")

End With

MsgBox "Sheet names have been created.", vbinformation

' Delete these range names if you don't really want them.

With wsData
.Names("ScoreNames").Delete
.Names("EmployeeNumbers").Delete
.Names("ScoreData").Delete

End With

MsgBox "Names have been deleted.”, vbinformation

' Alternatively, delete them all with the following lines.
Dim nm As Name
For Each nm In wsData.Names
nm.Delete
Next
End Sub

If there were, say, 50 names in the Names collection, it would be tedious to write
50 similar lines of code to delete each one. The For Each construction at the bottom of
the sub illustrates a much quicker way. For Each loops are not discussed formally until
the next chapter, but you can probably see what this one is doing. It goes through each
member of the Names collection, using a generic variable name nm for a typical mem-
ber. Then nm.Delete deletes this range name from the collection.

There is a subtle issue with range names in the Range2 sub. (See Section 6.6 for
more details.) The beginning section uses wsData.Names.Add to add three range
names. Because this starts with the worksheet reference wsData, these range names
have worksheet-level scope. (You can see this in Excel’s Name Manager dialog box.)
Therefore, these range names can be deleted later on by again referencing the work-
sheet, as in wsData.Names("ScoreNames").Delete, and the program works correctly.

However, if T used the more common way of adding range names, as in wsData.
Range("B1:F1").Name = "ScoreNames", the range names would have workbook-level
scope, and lines such as wsData.Names("ScoreNames").Delete would fail, essentially
because this range name belongs to the workbook, not to the worksheet. Such lines
would need to be replaced by Activeworkbook.Names("ScoreNames").Delete.

Admittedly, this is pretty obscure, but it is exactly the type of thing that can
drive you crazy when you keep getting an error message you can’t understand. Of
course, once you figure it out, you have really learned something and you are
unlikely to make the same error again.

EXAMPLE 6.3 Formatting Ranges

The Range3 sub first names a range, then it uses the range name to turn the Bold
property of the font of this range to True. For illustration (and to restore the
sheet to its original condition), it then sets the Bold property to False. Note that
the Bold property of a Font object is one of many Boolean properties in Excel. A
Boolean property has only two possible values, True and False.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 101

Sub Range3()
' If a range has a range name, you can refer to it by its name.
With wsData
.Names.Add Name:="ScoreData", RefersTo:=.Range("B2:F19")
.Range("ScoreData").Font.Bold = True
End With
MsgBox "The ScoreData range has been boldfaced."

' Now turn bold off, and delete the range name.
With wsData
.Range("ScoreData").Font.Bold = False
.Names("ScoreData").Delete
End With
MsgBox "The ScoreData range is no longer boldfaced."
End Sub

Note the object hierarchy in the line

Range("ScoreData").Font.Bold = True

Each Range object has a Font object down the hierarchy from it, and the Font
object then has a Bold property. This line shows the proper syntax for referring
to this property.

EXAMPLE 6.4 Using a String Variable for a Range Name

The Range4 sub is almost identical to the Range3 sub, except that it uses the
string variable rngName to capture and then use the name of a range.

Sub Range4()
' This is the same as the previous sub except that the range name
' has been stored in the string variable rngName. Note the lack of
' double quotes except in the line defining rngName. Being a string
' variable, rngName already includes the double quotes, so they
' aren't needed later on.
Dim rngName As String
rmgName = "ScoreData"
With wsData
.Names.Add Name:=rngName, RefersTo:=.Range("B2:F19")
.Range(rngName).Font.Bold = True
End With
MsgBox "The ScoreData range has been boldfaced."

' Now turn bold off, and delete the range name.
With wsData
.Range(rngName).Font.Bold = False
.Names(rngName).Delete
End With
MsgBox "The ScoreData range is no longer boldfaced."
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



102  Chapter 6

Note the lack of double quotes around rngName in the line

Range(rngName).Font.Bold = True

Because rmgName is a string variable, it already includes the double quotes, so
they shouldn’t be entered in the code.

EXAMPLE 6.5 Using the Cells Property and the Top Left, Bottom Right
Combination

The Range5 sub refers to ranges with the Cells property. Remember that if the
Cells property uses two arguments, the first refers to the row and the second to
the column. This sub also shows how to refer to a range by its top left and
bottom right cells. As explained in the comments, it is a good idea to use a With
construction to save typing.

Sub Range5()
' This sub illustrates how to refer to a range with the Cells property.
With wsData
.Names.Add Name:="ScoreData", RefersTo:=Range("B2:F19")

' The following displays the address of the 2nd row,
' 3rd column cell of the ScoreData range. (This is cell D3.)
With .Range("ScoreData").Cells(2, 3)

.Select

MsgBox "The address of the selected cell is " & .Address
End With

' The following shows how to specify a range in the format
' Range(TopLeft,BottomRight)
' where TopLeft refers to the top left cell in the range,
' BottomRight refers to the bottom right cell in the range. The top
' left in the following is cell C3, the bottom right is cell E4.
With Range(.Range("ScoreData").Cells(2, 2)
.Range("ScoreData").Cells(3, 4))
.Select
MsgBox "The address of the selected range is " & .Address
End With

" A better method is to Set a range object variable first

' and then refer to it as follows.

Dim scoreRange As Range

Set scoreRange = .Range("ScoreData")

With Range(scoreRange.Cells(2, 2), scoreRange.Cells(3, 4))
.Select
MsgBox "The address of the selected range is " & .Address

End With

.Names("ScoreData").Delete
.Range("A1").Select
End With
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 103

EXAMPLE 6.6 Using the End Property and the Offset Property

The Range6 sub uses the End property to specify the bottom right cell of a range
that might expand or contract as data are added to, or deleted from, a worksheet.
It also uses the Offset property as a convenient way to specify other ranges relative
to some “anchor” cell. In the middle of the sub, the Count property of the Columns
collection is used to count the columns in a range. Similarly, .Rows.Count counts
the rows. Finally, note how string concatenation is used in the MsgBox statements.

Sub Range6()
' Up to now, there has been an implicit assumption that the range
' of the data will not change, so that it can be referred to literally
' (e.g., B2:F19). But a more general approach is to assume the number
' of rows and/or columns could change. This sub shows how to find the range.
' Think of cell A1 as an anchor that everything else is offset relative to.
Dim a1l As Range

Set a1 = wsData.Range("A1")
With wsData
.Names.Add Name:="ScoreNames", RefersTo:=Range(a1.Offset(0, 1)
al.End(xIToRight))
.Names.Add Name:="EmployeeNumbers", RefersTo:=Range(a1.Offset(1, 0)
a1.End(xIDown))
.Names.Add Name:="ScoreData", RefersTo:=Range(al.Offset(1, 1), _
a1.End(xIDown).End(xIToRight))
End With

-

' Alternatively, we could first find the number of columns and the number
' of rows in the data set, and then use these.
Dim nScores As Integer, nEmployees As Integer
With at
nScores = Range(.Offset(0, 1), .End(xIToRight)).Columns.Count
MsgBox "There are " & nScores & " scores for each employee.", _
vbinformation, "Number of scores"
nEmployees = Range(.Offset(1, 0), .End(xIDown)).Rows.Count
MsgBox "There are " & nEmployees & " employees in the data set.", _
vbinformation, "Number of employees"

' Now (just for variety) include row 1, column A in the range.
wsData.Names.Add Name:="EntireDataSet", _
RefersTo:=Range(.Offset(0, 0), .Offset(nEmployees, nScores))
MsgBox "The entire data set is in the range " & _
Range("EntireDataSet").Address, vbInformation, "Address"
End With

' Delete all range names.
Dim nm As Name
For Each nm In wsData.Names
nm.Delete
Next
End Sub

EXAMPLE 6.7 Other Ways to Refer to Ranges

The Range7 sub illustrates some other methods to refer to ranges. Note that the
range of SSNs in Figure 6.3 is separated by a blank row from the range of

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



104  Chapter 6

performance scores. Therefore, the easiest way to refer to the SSN range is to
start at the bottom of the worksheet, not the top. Here, Cells(Rows.Count, 1) refers
to the last cell in column A (cell A1048576 in Excel 2013), .End(xIUp) zooms up
to the last SSN row, and the Row property returns the row number, 19.
Next, .End(xIUp) is used again to find the row number of the first SSN, 12. After
nEmployees is found by simple arithmetic, the Resize property is used to find the
address, B12:B19, of the range containing the SSNs. Keep in mind that the vari-
ables in this sub could be found in many different ways, but the method used
here results in very compact code.

Sub Range7()
' This sub shows an easy way to find the range that holds the
' SSNs. Because it is separated from the top score data set by
' a blank row, End(xIDown), starting at cell A1, would have to
' be used multiple times to get to the SSN data set. It is easier
' to use End(xIUp), starting at the bottom of the worksheet.
Dim firstRow As Integer, lastRow As Integer
Dim nEmployees As Integer
Dim SSNAddress As String

lastRow = Cells(Rows.Count, 1).End(xIUp).Row
firstRow = Cells(lastRow, 1).End(xIUp).Row + 1
nEmployees = lastRow - firstRow + 1

' For variety, use the Resize property.

SSNAddress = Cells(firstRow, 2).Resize(nEmployees, 1).Address

MsgBox "There are " & nEmployees & " with SSNs, and the range " _
& "that contains these SSNs is " & SSNAddress & ".", vbInformation

End Sub

EXAMPLE 6.8 Referring to Rows and Columns

It is often necessary to refer to a row or column of a range. It might also be neces-
sary to refer to an entire row or column, as you do when you select a row number
of a column label in the margin of a worksheet. The Range8 sub shows how to do
either. For example, .Rows(12) refers to the 12th row of a range, whereas
.Columns(4).EntireColumn refers to the entire column corresponding to the 4th col-
umn in the range (in this case, column D). The end of this sub indicates that you
cannot refer to multiple columns with numbers, such as .Columns("4:5"). However,
it is possible to refer to a single column with a number, such as .Columns(4).

Sub Range8()
' This sub shows how to select rows or columns.
With wsData
With .Range("A1:F19")

.Rows(12).Select
MsgBox "12th row of data range has been selected."
.Rows(12).EntireRow.Select
MsgBox "Entire 12th row has been selected."
.Columns(4).Select
MsgBox "4th column of data range has been selected."
.Columns(4).EntireColumn.Select

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 105

MsgBox "Entire 4th column has been selected."
End With
.Rows("4:5").Select
MsgBox "Another way to select rows."
.Columns("D:E").Select
MsgBox "Another way to select columns."

' The following line does NOT work; it produces an error.
! .Columns("4:5").Select
.Range("A1").Select
End With
End Sub

EXAMPLE 6.9 Formatting Cells in a Range

One of the most useful things you can do with VBA is format cells in a range.
The Range9 sub illustrates how to apply various formats to a range. Note in par-
ticular the Color property of the Font or Interior of a range. This property can be
specified as one of the eight VBA constants (vbBlack, vbBlue, vbCyan, vbGreen,
vbMagenta, vbRed, vbWhite, and vbYellow), or as any of more than 16 million
combinations of red-green-blue (RGB) values. For example, red is equivalent to
RGB(255,0,0), so instead of the line .Color=vbRed, you could use the line
.Color = RGB(255,0,0). Each RGB argument is an integer from 0 to 255 and indi-
cates the amount of red, blue, and green in the color.

You can also specify “theme” colors by their ThemeColor and TintAndShade prop-
erties, as has been done toward the bottom of the sub. In fact, these two properties are
set if you color a font or interior with the recorder on. (Themes were introduced in
Excel 2007.) To understand these better, look at a color palette in Excel 2007 or a
later version. In the Theme Colors section, each column corresponds to a ThemeColor
value, such as xIThemeColorAccent2, and each TintAndShade value is a percentage for
the lightness or darkness of this color. If you specify theme colors and then change the
theme (from Excel’s Page Layout ribbon), the colors in the worksheet will change
automatically to those in the new theme. I found the ThemeColor and TintAndShade
values from recording. This is the best way to find them.

This whole topic of colors in Excel and VBA is rather complex, so I created
the file Colors in Excel.xIsm to help you out. Note that Microsoft changed the
theme colors in Excel 2013 for reasons we can only surmise. If you prefer those
in Excel 2007 and 2010, you can specify the “Excel 2007-2010” theme in the
Colors dropdown of the Page Layout ribbon.

Sub Range9()
' Here are some common ways to format data in ranges.
Dim a1l As Range

Set a1 = wsData.Range("A1")
With wsData
.Names.Add Name:="ScoreNames", RefersTo:=Range(a1.Offset(0, 1)
a1.End(xIToRight))
.Names.Add Name:="EmployeeNumbers", RefersTo:=Range(a1.Offset(1, 0)
a1.End(xIDown))

’ —

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



106 Chapter 6

.Names.Add Name:="ScoreData", RefersTo:=Range(a1.Offset(1, 1)
al.End(xIDown).End(xIToRight))

' Do some formatting.

With .Range("ScoreNames")
.HorizontalAlignment = xIRight

y —

With .Font
.Bold = True
.Color = vbRed
.Size = 16
End With
.EntireColumn.AutoFit
End With

With .Range("EmployeeNumbers").Font
talic = True
.Color = vbBlue
.Size = 12

End With

With .Range("ScoreData")
.Interior.Color = vbYellow
.Font.Name = "Times Roman"
.NumberFormat = "0.0"

End With

MsgBox "Formatting has been applied"

' Restore the original style (called "Normal"
.Range("ScoreNames").Style = "Normal"
.Range("EmployeeNumbers").Style = "Normal"
.Range("ScoreData").Style = "Normal"
MsgBox "Original formatting restored"

' Apply theme colors (there are many to choose from).
With .Range("B2")
With Range(.Offset(0, 0), .End(xIDown).End(xIToRight)).Interior
.ThemeColor = xIThemeColorDark1
.TintAndShade = -0.149998474074526
End With
With Range(.Offset(0, 0), .End(xIDown).End(xIToRight)).Font
.ThemeColor = xIThemeColorAccent2
.TintAndShade = -0.249977111117893
End With
End With
MsgBox "Theme colors have been applied."

' Restore the original style.
.Range("A1").Style = "Normal"
.Range("ScoreNames").Style = "Normal"
.Range("EmployeeNumbers").Style = "Normal"
.Range("ScoreData").Style = "Normal"
MsgBox "Original formatting restored"

End With

' Delete all range names.
Dim nm As Name
For Each nm In wsData.Names
nm.Delete
Next
End Sub

This is a particularly good example for tiling the Excel and VBE windows verti-
cally and then stepping through the code one line at a time with the F8 key. You can
then see the code in one window and the effect of the formatting in the other window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




Working with Ranges 107

EXAMPLE 6.10 Entering Formulas

The Range10 sub illustrates how to enter formulas in cells with VBA. There are
two properties you can use, the Formula property and the FormulaR1C1 prop-
erty. The Formula property requires a string that matches what you would
type if you were entering the formula directly into Excel. For example, to enter
the formula =AVERAGE(Scorel), you set the Formula property equal to the
string "=Average(Score1)".

The FormulaR1C1 property is less obvious, but it is sometimes more natural
because of the way relative addresses work in Excel. For example, suppose you have
two columns of numbers and you want to form a third column to their right where
each cell in this third column is the sum of the two numbers to its left. You would
then set the FormulaR1C1 property of this range equal to "=Sum(RC[-2]:RC[-1])".
The R with no brackets next to it means to stay in the same row. The C with brackets
next to it means, in this case, to go from 2 columns to the left to 1 column to the left.
That is, using square brackets is equivalent to relative addressing in Excel. Remember
that for rows, plus means down, minus means up. For columns, plus means to the
right, minus means to the left. If you want an absolute address in R1C1 notation, you
omit the square brackets and use numbers to refer to rows and columns. For example,
R2C4 is equivalent to $D$2.

Note that this sub uses a couple of For loops in the middle. For loops are discussed
in detail in the next chapter. All you need to know here is that the variable i goes from
1 to the number of scores. Firstitis 1, then 2, then 3, and so on. You should study this
sub carefully. It is probably the most difficult example so far. Also, it is another excel-
lent candidate for placing the Excel and VBE windows next to one another and then
using the F8 key to step through the code one line at a time.

Sub Range10()
' This sub shows how to enter formulas in cells. You do this with
' the Formula property or the FormulaR1C1 property of a range.
' Either property takes a string value that must start with an equals
' sign, just as you enter a formula in Excel. First, | name a range
' for each column of scores, and then | use the Formula property to
' get the average of each column below the scores in that column.
Dim nScores As Integer, nEmployees As Integer, i As Integer
Dim a1l As Range

Set a1 = wsData.Range("A1")
' Determine the number of score columns and the number of employees.
' Then name the score ranges Scorel, Score2, and so on.
With at
nScores = Range(.Offset(0, 1), .End(xIToRight)).Columns.Count
nEmployees = Range(.Offset(1, 0), .End(xIDown)).Rows.Count
For i = 1 To nScores
wsData.Names.Add Name:="Score" & i, _
RefersTo:=Range(.Offset(1, i), .Offset(1, i).End(xIDown))
Next
End With

' For each score column, enter the average formula below the last score.
' Note how string concatenation is used. For i = 1, for example, the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



108  Chapter 6

' string on the right will be "=Average(Score1)".
For i = 1 To nScores

a1.Offset(nEmployees + 1, i).Formula = "=Average(Score" & i & ")"
Next

' Now use the FormulaR1C1 property to find the average score for each
' employee. Note how each cell in the column of averages has the SAME
' formula in R1C1 notation. It is the average of the range from nScores
' cells to the left to 1 cell to the left. For example, if nScores is 4,
' this is RC[-4]:RC[-1]. The lack of brackets next to R mean that these
' scores all come from the same row as the cell where the formula is
' being placed.
With ai1.Offset(0, nScores + 1)

Range(.Offset(1, 0), .Offset(nEmployees, 0)).FormulaR1C1 = _

"=Average(RC[-" & nScores & "]:RC[-1])"

End With

MsgBox "All row and column averages have been entered as formulas.

' Delete averages.

With at
For i = 1 To nScores
.Offset(nEmployees + 1, i).Clear
Next
For i = 1 To nEmployees
.Offset(i, nScores + 1).Clear
Next
End With

MsgBox "All row and column averages have been deleted."

' Delete all range names.
Dim nm As Name
For Each nm In wsData.Names
nm.Delete
Next
End Sub

If you want to enter a formula in a cell through VBA, it seems natural to use
the Formula (or FormulaR1C1) property. However, the following two lines have
exactly the same effect—they both enter a formula into a cell:

Range("C1").Formula = "=SUM(A1:B1)"
Range('C2").Value = "=SUM(A1:B1)"

Given that this is true—and you can check it yourself—why should you
bother with the Formula property at all? The only time it makes a difference
is if you read the property in VBA. In the above lines, I have written the
Formula and Value properties, that is, I have specified the values for these
properties. But suppose I enter the following two lines after the above two
lines:

MsgBox Range("C1").Formula
MsgBox Range("C2").Value

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 109

The first will return "=SUM(A1:B1)", and the second will return 10 (assuming
that cells Al and B1 each contain 5). Here, I am reading the properties, and here
it makes a difference.

Another related property of a range is the Text property. It is very similar to the
Value property. Let’s say that cell DI is the average of several values, and this aver-
age turns out to be 38.33333... However, you format cell DI to have only two dec-
imals. Then the following two lines will return 38.33333... and 38.33, respectively.
In words, the Text property returns what you see in the cell after formatting.

MsgBox Range("D1").Value
MsgBox Range('D2").Text

The Text property is a read only property. If you try to use it to write a value
to a range, you will get an error. For example, the following line will zoz work.
You would have to use the Value property instead.

Range("A1").Text = "Sales"

EXAMPLE 6.11 Referring to Other Range Objects

The Rangel1 sub introduces the CurrentRegion and UsedRange properties, as
explained in the comments. It also demonstrates the Union property for referring
to possibly noncontiguous ranges. Finally, it illustrates the Areas property of a
range. Of all these properties, CurrentRegion is probably the one you will use
most frequently in your own programs.

Sub Range11()
' Here are some other useful range properties. The CurrentRegion
' and UsedRange properties are rectangular ranges. The former is
' the range "surrounding" a given range. The latter is a property
' of a worksheet. It indicates the smallest rectangular range
' containing all nonempty cells.
Dim a1 As Range, a21 As Range, h1 As Range

Set a1 = wsData.Range("A1")
Set a21= wsData.Range("A21")
Set h1 = wsData.Range("H1")

MsgBox "The range holding the dataset is " & al.CurrentRegion.Address, _
vbInformation, “Current region"

MsgBox "The range holding everything is " & wsData.UsedRange.Address, _
vbinformation, "Used range"

"It is sometimes useful to take the union of ranges that are not
' necessarily contiguous.

Dim unionRange As Range

Set unionRange = Union(a1.CurrentRegion, a21, ht)

With unionRange

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



110  Chapter 6

MsgBox "The address of the union is " & .Address, vbInformation
"Address of union"

' The Areas property returns the "pieces" in the union.
MsgBox "The union is composed of " & .Areas.Count & " distinct areas.", _
vbinformation, "Number of areas"
End With
End Sub

EXAMPLE 6.12 Adding or Deleting Comments

The Range12 sub shows how to add a comment to a cell or delete a comment from
a cell. You do this with the AddComment method of a range and the Delete method
of a Comment object. A Comment object, like all other objects, has a rather bewilder-
ing number of properties and values, and I have illustrated some of them. As usual,
you can learn more about comments from the Object Browser or by recording.

I have introduced error checking in this example, which is discussed in more
detail in Chapter 12. Specifically, the line On Error Resume Next can be used to
anticipate errors. Without it, the line b1.Comment.Delete would produce an error
(assuming that cell B1 has no comment). However, On Error Resume Next says to
turn on error checking and ignore any errors that might be encountered. Once
you are past the code where you anticipate errors, you can turn off error checking
with the really strange line On Error GoTo 0.

Sub Range12()
' This sub shows how you can enter a comment in a cell or delete
' a comment in a cell. Inserting is easy, but deleting is trickier.
' Before you delete a comment, you should handle the situation where
' there is no comment to delete. If you try to delete a cell comment
' that doesn't exist, you will get an error (unless you perform the
' appropriate error checking).
Dim a1 As Range, b1 As Range
Dim cmt As Comment

Set a1 = wsData.Range("A1")
Set b1 = wsData.Range("B1")

" Insert a comment.
al.AddComment "This is a data set of employee scores on 5 aptitude tests."
Set cmt = a1.Comment
With cmt.Shape
.Left = wsData.Range("B1").Left
.Top = wsData.Range("B2").Top
End With
MsgBox "A comment has been added to cell A1."

' Delete a comment, but error check in case there is none to delete.

On Error Resume Next

al1.Comment.Delete

b1.Comment.Delete

On Error GoTo 0

MsgBox "The comments in cells A1 and B1, if any, have been deleted."
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 111

6.6 Range Names and Their Scope

The easiest way to name a range through the Excel interface is to select a range,
type a name in the Name box (to the left of the formula bar), and press Enter.
However, the topic of range names is considerably more complex than this, espe-
cially in VBA. The range names you create by typing a name in the Name box are
called workbook-level range names. There are also worksheet-level range
names. To create one of these in the Name box, you type the name of the work-
sheet, then an exclamation point, and then the name, as in Sheet2!UnitCost.
You can also create range names in Excel’s Name Manager, available from the
Defined Names dropdown arrow on the Formulas ribbon. After clicking the
New button in the Name Manager, you get the dialog box in Figure 6.4. You
type a name, select the scope to be the workbook or any of the worksheets, and
point to a range. The scope determines whether the name is workbook-level or
worksheet-level.

Why does Microsoft allow this level of complexity? The main reason is that it
allows you to use the same name in multiple worksheets. For example, suppose
you have multiple worksheets set up approximately the same way, with a unit
cost cell in each. You would like each of these cells to be range-named UnitCost.
Worksheet-level names allow you to do this by setting the scope of each to the
corresponding worksheet. Then your Name Manager might look something like
Figure 6.5.2 If you want a formula in Sheetl to refer to izs UnitCost cell, you
can write =UnitCost. But if you want the formula on Sheetl to refer to the Unit-
Cost on Sheet2, you must write =Sheet2!UnitCost.

Figure 6.4 Adding a Range Name in the Name Manager

| UnitCost

! Scope: [\orkbook

Comment: |Workbook
il = Sheet1
Sheet2
Shestd

[

2You could have a Sheet2-level range name that refers to a range in Sheetl, but you would be going
out of your way to confuse yourself and your users!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112 Chapter 6

Figure 6.5 Multiple Worksheet-Level Range Names Using the Same Name

P T
Mame Manager m
New.oo | [ Edt. | [ D Eiter -

Name Value Refers To Scope Comment
=1 UnitCost =Sheet115852 Sheetl
=1 UnitCost =Sheet2IsE52 Sheet2
‘= UnitCost =shest315852 Sheet3

Refers to;

[X][~] [=shestziss2. |

If you don’t need multiple versions of the same name, you can use all
workbook-level range names, as most of us do. If TotalRevenue is a workbook-
level range name, the formula =TotalRevenue can be used unambiguously in
any of the worksheets, even though TotalRevenue refers to a range in a particular
worksheet.

In terms of Excel’s object model, each workbook-level range name is
a member of the Names collection of the Workbook object, and each
worksheet-level range name is a member of the Names collection of the cor-
responding Worksheet object. In other words, there are separate Names
collections for the workbook and for each worksheet in the workbook. This
has a big impact on how you refer to, add, or delete to range names in VBA
code.

To provide a prototype of what you can and can’t do, I developed the file
Range Names.xlsm. There are three worksheets named Sheetl, Sheet2, and
Sheet3. Sheetl and Sheet2 have exactly the same data (see Figure 6.6), and
Sheet3 is blank. Cell E1 of Sheetl has the workbook-level name Total spent,
and Sheet2 has Sheet2-level name Total_spent.

The following RangeName1 sub indicates how you can refer to existing range
names of either scope. You might be surprised (like I was) that some of these
lines work the way they do.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 113

Figure 6.6 Data in Sheetl and Sheet2

A [ B | c | D E
Person Spent Total spent 6827
1 402
751
541
941
783
857
897
707
948

W N O U WN

Sub RangeName1( )
' This sub shows how to reference named ranges. These range
' names were created through the Excel interface. One is a
' workbook-level name for a cell in Sheet1, and the other is
' a Sheet2-level name for a cell in Sheet2. Both names are Total_spent.
' No ranges in Sheet3 are named.

' Note that ws1 and ws2 are the code names for Sheet1l and Sheet2.
' The following gives the total in the active sheet unless the

' active sheet is Sheet3. Then it gives the total in Sheet1, which

' has the workbook-level name.

MsgBox "Total spent: " & Range("Total_spent").Value

' The following both give the total in Sheetl, regardless

' of which sheet is active. Surprisingly, the second works even
' though there is no Sheet1-level name Total_spent.

MsgBox "Total spent: " & ws1.Range("Total_spent").Value
MsgBox “Total spent: * & Range("Sheet1!Total_spent").Value

' The following both give the total in Sheet2, regardless

' of which sheet is active.

MsgBox "Total spent: " & ws2.Range("Total_spent").Value

MsgBox "Total spent: " & Range("Sheet2!Total_spent").Value
End Sub

The RangeName2 sub indicates how you can add and then delete new range
names of either scope. It indicates one thing that will not work and will produce
an error—namely, if you try to delete something from the Names collection of a
worksheet when that collection is empty.

Sub RangeName2( )
' This sub shows how to create and then delete workbook-level
' and worksheet-level range names.

' Note that ws1 and ws2 are the code names for Sheet1l and Sheet2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



114 Chapter 6

Const namel1 = "Indexes"
Const name2 = "Expenses"
Const addr1 = "A2:A10"
Const addr2 = "B2:B10"

' Here are two ways to add workbook-level names.
ws1.Range(addr1).Name = name1

ActiveWorkbook.Names.Add Name:=name2, RefersTo:="Sheet1!" & addr2
' Here are two ways to add worksheet-level names.
ws2.Range(addr1).Name = "Sheet2!" & name1

ws2.Names.Add Name:=name2, RefersTo:="Sheet2!" & addr2

MsgBox "Range names have been added."

' The following two lines delete the two workbook-level names.
' However, they can't be replaced by the two commented-out
' lines because there are no Sheeti-level names, i.e.,

' the Names collection belonging to Sheet1 is empty.
ActiveWorkbook.Names(name1).Delete
ActiveWorkbook.Names(name2).Delete
ws1.Names(name1).Delete ' produces an error
ws1.Names(name2).Delete ' produces an error

' The following two lines delete the two worksheet-level names.
' They could be replaced by the two commented-out lines.
ws2.Names(name1).Delete
ws2.Names(name2).Delete

! ActiveWorkbook.Names("Sheet2!" & name1).Delete

! ActiveWorkbook.Names("Sheet2!" & name2).Delete

End Sub

If you plan to use range names extensively in multiple-worksheet applications,
you should keep these subs handy for reference. Or you can do what I did—
experiment with trial and error.

6.7 Summary

The examples in this chapter present a lot of material, more than you can prob-
ably digest on first reading. However, they give you the clues you need to com-
plete Exercise 6.1 and to understand the applications in later chapters. Indeed,
you can borrow any parts of these examples for your own work, either for exer-
cises or for later development projects. As stated in the introduction, most of
the operations you perform in Excel are done with ranges, and one of my pri-
mary objectives in the book is to show you how to perform these operations
with VBA. Therefore, I expect that you will frequently revisit the examples in
this chapter as you attempt to manipulate ranges in your own VBA programs.

EXERCISES

1. The file Employee Scores.xlsx contains the same data set as in the Ranges.xlsm
file (the file that was used for the examples in Section 6.5). However, the VBA
code has been deleted. Also, there is now a heading in cell Al, and the data set

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Ranges 115

begins in row 3. Save a copy of this file as Employee Scores 1.xIsx and work with

the copy to do the following with VBA. (Place the code for all of the parts in a

single sub.)

a. Boldface the font of the label in cell Al, and change its font size to 14.

b. Boldface and italicize the headings in row 3, and change their horizontal
alignment to the right.

c.  Change the color of the font for the employee numbers in column A to blue
(any shade you like).

d. Change the background (the Interior property) of the range with scores to
gray (any shade you like).

e. Enter the label Averages in cell A22 and boldface it.

f. Enter a formula in cell B22 that averages the scores above it. Copy this
formula to the range C22:F22.

2. Repeat the previous exercise, starting with a fresh copy, Employee Scores 2.xlsx,
of the original Employee Scores.xlsx file. Now, however, begin by using VBA to
name the following ranges with the range names specified: cell Al as Title, the
headings in row 3 as Headings, the employee numbers in column A as EmpNum-
bers, and the range of scores as Scores. Refer to these range names as you do
parts a-f of the previous exercise.

3. Repeat Exercise 1 once more, starting with a fresh copy, Employee Scores 3.xlsx, of
the original Employee Scores.xlsx file. Instead of naming ranges as in Exercise 2,
declare Range object variables called titleCell, headingRange, empNumbersRange,
and scoresRange, and Set them to the ranges described in Exercise 2. Refer to
these object variables as you do parts a—f.

4. Repeat the previous three exercises. However, write your code so that it will work
even if more data are added to the data set—new scores, new employees, or both.
Try your programs on the original data. Add an extra column of scores and some
extra employees, and see if it still works properly.

5. Write a reference (in VBA code) to cach of the following ranges. You can assume
that each of these ranges is in the active worksheet of the active workbook, so
that you don’t have to qualify the references by worksheet or workbook.

a. The third cell of the range A1:A10.
b. The cell at the intersection of the 24th row and 10th column of the range
Al:Z500.
c.  The cell at the intersection of the 24th row and 10th column of a range that
has the range name Sales.
d. The cell at the intersection of the 24th row and 10th column of a range that
has been Set to the Range object variable salesRange.

The entire column corresponding to cell D7.

The set of entire columns from column D through column K.

A range of employee names, assuming the first is in cell A3 and they extend

down column A (although you don’t know how many there are).

A range of sales figures in a rectangular block, assuming that region labels are to

their left in column A (starting in cell A4) and month labels are above them in

row 3 (starting in cell B3). You don’t know how many regions or months there
are, and you want the range to include only the sales figures, not the labels.

= omomo

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



116 Chapter 6

i.  The cell that is 2 rows down from and 5 columns to the right of the active
cell. (The active cell is the cell currently selected. If a rectangular range is
selected, the active cell is the first cell that was selected when the range was
selected. It can always be referred to in VBA as ActiveCell.)

6. The file Product Sales.xlsx has sales totals for 12 months and 10 different pro-
ducts in the range B4:M13. Write a VBA sub to enter formulas for the totals in
column N and row 14. Use the FormulaR1C1 property to do so. (You should set
this property for two ranges: the one in column N and the one in row 14.)

7. Repeat the previous exercise, but now assume the data set could change, either by
adding more months, more products, or both. Using the FormulaR1C1 property,
fill the row below the data and the column to the right of the data with formulas
for totals. (Hint: First find the number of months and the number of products,
and store these numbers in variables. Then use string concatenation to build a
string for each FormulaR1C1 property. Refer to the Rangel10 sub in the
Ranges.xIsm file for a similar formula.)

8. Do the previous two exercises by using the Formula property rather than the
FormulaR1C1 property. (Hint: Enter a formula in cell N4 and then use the Copy
method to copy down. Proceed similarly in row 14. Do #ot use any loops.)

9. The file Exam Scores.xlsx has four exam scores, in columns B through E, for
each of the students listed in column A.

a.  Write a VBA sub that sorts the scores in increasing order on exam 3.

b. (More difficult, requires an If statement and can be postponed until after
reading Chapter 7.) Repeat part a, but now give the user some choices. Spe-
cifically, write a VBA sub that (1) uses an InputBox to ask for an exam from
1 to 4, (2) uses an InputBox to ask whether the user wants to sort scores in
ascending or descending order (you can ask the user to enter A or D), and
(3) sorts the data on the exam requested and the order requested. Make
sure the headings in row 3 are not part of the sort.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops

7.1 Introduction

All programming languages contain logical constructions for controlling the
sequence of statements through a program, and VBA is no exception. This
chapter describes the two constructions used most often: the If and Case con-
structions. The If construction has already been used informally in previous
chapters—it is practically impossible to avoid in any but the most trivial pro-
grams—but this chapter discusses it in more detail. The Case construction is an
attractive alternative to a complex If construction when each of several cases
requires its own code.

This chapter also discusses the extremely important concept of loops. Have
you ever had to stuff hundreds of envelopes? If you have ever had to perform
this or any similar mind-numbing task over and over, you will appreciate loops.
Perhaps the single most useful feature of computer programs is their ability to
loop, that is, to repeat the same type of task any number of times—10 times,
100 times, even 10,000 or more times. All programming languages have this
looping ability, the only difference being their syntax. VBA does it with For
loops, For Each loops, and Do loops, as this chapter illustrates. Fortunately, it is
quite easy. It is amazing how much work you can make the computer perform
by writing just a few lines of code.

The material in this chapter represents essential elements of almost all pro-
gramming languages, including VBA. Without control logic and loops, computer
programs would lose much of their power. Therefore, it is extremely important
that you master the material in this chapter. You will get a chance to do this
with the exercise in the next section and the exercises at the end of the chapter.
Beyond this, you will continue to see control logic and loops throughout the
rest of the book.

7.2 Exercise

The following exercise is typical in its need for control logic and loops. You can
keep it in mind as you read through this chapter. It is not too difficult, but it
will keep you busy for a while. Even more important, it will give you that won-
derful feeling of accomplishment once you solve it. It is a great example of the
power of the tools in this chapter.

117

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



118 Chapter 7

Exercise 7.1 Finding Record Highs and Lows for Stock Prices

The file Records.xlsx contains two worksheets. The Prices worksheet con-
tains monthly closing prices (adjusted for dividends and stock splits) for sev-
cral large companies from January 2002 to August 2014. The Records
worksheet is a template for calculating the record highs and lows for any
one of these companies. It is shown in Figure 7.1 (with a number of hidden
rows). The Walmart prices in column B have been copied from the WMT
column of the Prices worksheet.

You can first choose a month in cell F1 from a dropdown list. Then the pur-
pose of the exercise is to scan column B from top to bottom. If you see a price
that is higher than any price so far, it is called a “record high.” Similarly, if a price
is lower than any price so far, it is called a “record low.” The objective is to find
each record high and record low that occurs from the selected month on and
record these record highs and lows in columns D, E, and F. Column D records
the date, column E records the price, and column F records whether it is a record
high or a record low. Note that the records are based on a// of the data, but
records are listed only from the selected date on.

The file Records Finished 1.xIsm contains the finished application. You can
open it, copy (manually) any stock’s price data from the Prices worksheet to the
Records worksheet, and then click the button. Figures 7.2 and 7.3 indicate
the results you should obtain for Walmart. The message box in Figure 7.2 sum-
marizes the results, whereas columns D, E, and F show the details of the record
prices. Feel free to run the program on other stocks’ prices, but do #oz look at
the VBA code in the file until you have given it your best effort.

If you like, you can extend this exercise in a natural direction. Modify your code
so that there is now a loop over all stocks in the Prices worksheet. For each stock,
your modified program should copy the prices from the Prices worksheet to the
Records worksheet and #hen continue as in the first part of the exercise. Essentially,

Figure 7.1  Template for Record Highs and Lows for Walmart

| A B | c | D E F
1 |Adjusted closing prices Record values from Jan-04
2 |Date WMT Date Price' High or Low
3 |Jan-02 48 .27
4 |Feb-02 49.91
5 |Mar-02 459 39
6 Apr-02 4501
T |May-02 4359
181 | May-14 T6.77
152 |lun-14 75.07
1863 | Jul-14 73.58
154 | Aug-14 73.54

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 119

Figure 7.2 Summary of Record Results

P,
@ WHMT had 17 highs and 2 lows from Jan-2004 on,
o

Figure 7.3  Detailed Record Results

O E F

1 Record values from - Jan-04

2 Date Price High or Low
3 Aug-05  37.310 Low
4 Sep-05  36.370 Low
5 Apr-08  50.150 High
B Jul-08) 50.520 High
7 Aug-08  51.520 High
8 Sep-08  52.230 High
5 Oct-11 53.020 High
10 Mow-11 55.060 High
H Dec-11 56.210 High
12 lan-12. 57.720 High
13 Mar-12 57.950 High
14| May-12  62.750 High
15 Jun-12 66.470 High
16 Jul-12 70.960 High
1T Oct-12 71.910 High
18 Mar-13. 72.530 High
19|  Apr-13  75.3%0 High
20 Jul-13. 76.060 High
21 MNov-13 79.530 High

the code from the first part of the exercise should be placed inside a loop on the
stocks. The finished version of this part of the exercise is in the file Records Fin-
ished 2.xIsm. Again, feel free to open the file and click the button to see the results
you should obtain, but do not look at the code until you have attempted it yourself.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



120 Chapter 7

7.3 If Constructions

An If construction is useful when there are one or more possible conditions, each
of which requires its own code. Here, a condition is any expression that evaluates
to cither True or False. Typical conditions are Total <= 200, SheetName = "Data",
and isFound (where isFound is a Boolean variable that evaluates to True or False).
You often need to check whether a condition is true or false and then proceed
accordingly. This is the typical situation where an If construction is useful.

There are several versions of the If construction, in increasing order of
complexity.

e Single-line If. The simplest version can be written on a single line. It has the
form

If condition Then statement1 [Else statement2]

Here, condition is any condition and statementl and statement2 are any
statements. (The convention in writing generic code like this is that any parts
in square brackets are optional. In other words, the Else part of this statement
is optional. Note that you do not actually type the square brackets.) This
simple form requires only a single line of code (and there is no End If). An
example is

If numberOrdered <= 200 Then unitCost = 1.30
Another example is

If numberOrdered <= 200 Then unitCost = 1.30 Else unitCost = 1.20

e If-Then-Else-End If. A more common version of the If construction requires
several lines and has the form:

If condition Then
statements1
[Else
statements2]
End If

(Again, the square brackets denote that the lines within them are optional.)
In this form, condition is first tested. If it is true, the statements denoted by state-
mentsl are executed. You might also want to execute another set of statements,
denoted by statements2, in case the condition does not hold. If so, you must
insert these after the keyword Else. In fact, there are four keywords in this form:
If, Then, Else, and End If. (Note the required space between End and If. However,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 121

the editor will enter the space for you if you omit it.) An example of this con-
struction is the following:

If numberOrdered <= 200 Then

unitCost = 1.3

MsgBox "The unit cost is " & unitCost
Else

unitCost = 1.25

MsgBox "The unit cost is " & unitCost
End If

e If-Then-Elself-Else-End If. The most general version of the If construction
allows more than a single condition to be tested by using one or more Elself
keywords. (Note that there is 70 space between Else and If. It is all one word.)
The general form is

If condition1 Then
statements1

[Elself condition2 Then
statements2

Elself condition3 Then
statements3

Else
other statements]

End If

This construction performs exactly as it reads. There can be as many Elself
lines as needed (denoted by the...), and the Else part is not required. It is used
only if you want to execute some statements in case all of the above conditions
are false. An example of this version is the following:

If numberOrdered <= 200 Then
unitCost = 1.3

Elself numberOrdered <= 300 Then
unitCost = 1.25

Elself numberOrdered <= 400 Then

unitCost = 1.2
Else

unitCost = 1.15
End If

In this version, the program goes through the conditions until it finds one
that is true. Then it executes the corresponding statement(s) and jumps down
to the End If line. If none of the conditions hold and there is an Else line, the
statement(s) following it are executed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



122 Chapter 7

e Nested If statements. It is also possible to nest If constructions, in which
case proper indentation is crucial for readability. Here is an example:

If Product = "Widgets" Then
If numberOrdered <= 200 Then

unitCost = 1.3
Else

unitCost = 1.2
End If

Elself product = "Gadgets" Then
If numberOrdered <= 500 Then

unitCost = 2.7
Elself numberOrdered <= 600 Then
unitCost = 2.6
Else
unitCost = 2.5
End If
Else
unitCost = 2
End If

The meaning of this code should be self-evident, but only because the lines
are indented properly. Try to imagine these lines without any indentation, and
you will understand why the indentation is crucial. Besides indentation, make
sure you follow every If with an eventual End If (unless the If construction is of
the simple one-line version). In fact, it is a good practice to type the End If line
right after you type the If line, just so you don’t forget. Also, every condition
must be followed by the keyword Then. If you mistakenly type something like If
numberOrdered <= 200 and press Enter, you will immediately see your mistake—
the offending line will be colored red. You can fix it by adding Then.

e Immediate If function. There is one other function you might occasionally
find useful: the “immediate” If function. It has the syntax IIf( condition,state-
mentlstatement2), where the arguments are the same as in Excel’s IF func-
tion. Its advantage is that it can be used to evaluate an expression in the
midst of any line of code, such as the following:

MsgBox "The unit price is " & Ilf(unitsSold > 100, 20, 25) & " dollars."

The file If Examples.xIsm contains several examples to illustrate If construc-
tions. They are all based on the small data set shown in Figure 7.4. Each example
changes the formatting of the data in some way. The Restore button is attached
to a sub that restores the data to its original plain vanilla formatting. In each
example there is a For Each loop that goes through all of the cells in some range.
(For Each loops are discussed in detail in Section 7.6.) There is then at least one If
construction that decides how to format cells in the range. (Note: In all of these
If subs, I use the variable cell. This is #ot a keyword in VBA. I could just as well
have used cel or cl or cll, or any other spelling.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 123

Figure 7.4 Data Set for If Examples

| A B | C D
3 | Employee Scorel Score2 Score3
4 1 50 87 76
5 2 78 30 95
6 3 72 60 84
[ 4 82 66 81
g 5 g5 a5 a2
9 | 7 30 33 66
10 7 S0 100 57
il [ 8 30 95 61
12 9 56 67 85
13 10 87 65 7
14 11 81 68 61
15 12 58 57 72
16 13 70 92 59
17 14 a9 71 a9
18 15 85 94 66
19 [ 16 55 79 95
20 17 60 75 63
21 13 83 33 88
EXAMPLE 7.1 Single-Line If Construction

The If1 sub illustrates a one-line If construction. If an employee’s first score
(in column B) is greater than 80, the corresponding employee number is bold-
faced. Note that the range A4:A21 has been range-named Employee.

Sub [fStatement1()
' Example of a one-line If (note there is no End If).
Dim cell As Range
Const cutoff = 80

' Go down the Employee column. If the Employee’s first score is
' greater than the cutoff, boldface the font of the Employee number.
For Each cell In wsData.Range("Employee")
If cell.Offset(0, 1).Value > cutoff Then cell.Font.Bold = True
Next
End Sub

EXAMPLE 7.2 If-Elself-End If Construction

The If2 sub illustrates an If with a single Elself (and no Else). If an employee’s first score
is less than 70, the sub colors the corresponding employee number red. Otherwise, if
it is greater than 85, the sub colors the employee number blue. If the score is from
70 to 85, no action is taken. Hence there is no need for an Else.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



124  Chapter 7

Sub IfStatement2()
' Example of a typical If-Elself-End If construction. Note that
' Elself is one word, but End If is two words.
Dim cell As Range
Const cutoffi = 70, cutoff2 = 85

' Go down the Employee column. If the Employee’s first score is
' less than cutoff1, color the Employee number red; if greater
' than cutoff2, color it blue. Because there is no Else condition,
' nothing happens for scores between cutoff1 and cutoff2.
For Each cell In wsData.Range("Employee")
If cell.Offset(0, 1).Value < cutoffl Then
cell.Font.Color = vbRed
Elself cell.Offset(0, 1).Value > cutoff2 Then
cell.Font.Color = vbBlue
End If
Next
End Sub

EXAMPLE 7.3 If-Elself-Else-End If Construction

The If3 sub extends the If2 sub. Now there is an Else part to handle scores from
70 to 85. All such scores are colored green.

Sub IfStatement3()
' Example of a typical If-Elself-Else-End If construction.
Dim cell As Range
Const cutoffl = 70, cutoff2 = 85

' Go down the Employee column. If the Employee's first score is
' less than cutoff1, color the Employee number red; if greater than
' cutoff2, color it blue. Otherwise, color it green.
For Each cell In wsData.Range("Employee")
If cell.Offset(0, 1).Value < cutoffli Then
cell.Font.Color = vbRed
Elself cell.Offset(0, 1).Value > cutoff2 Then
cell.Font.Color = vbBlue
Else
cell.Font.Color = vbGreen
End If
Next
End Sub

EXAMPLE 7.4 Nested If Constructions

The If4 sub illustrates how a nested If construction allows you to test whether all
three of an employee’s scores are greater than 80 (in which case the employee’s
number is boldfaced). Note that the statement setting Bold to True is executed
only if each of the three conditions is true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 125

Sub IfStatement4()
' Example of nested If's.
Dim cell As Range
Const cutoff = 80

' Go down Employee column. If all scores for a Employee are greater
' than cutoff, boldface the Employee number. Note the indenting.
"It is crucial for readability!
For Each cell In wsData.Range("Employee")
If cell.Offset(0, 1).Value > cutoff Then
If cell.Offset(0, 2).Value > cutoff Then
If cell.Offset(0, 3).Value > cutoff Then
cell.Font.Bold = True
End If
End If
End If
Next
End Sub

EXAMPLE 7.5 Compound (And, Or) Conditions

Conditions can be of the compound variety, using the keywords And and Or. It is
often useful to group the conditions in parentheses to eliminate any ambiguity.
For example, the compound condition in the line

If condition1 And (condition2 Or condition3) Then

is true if conditionl is true and at least one of condition2 and condition3 is true.
Note that the individual conditions must be spelled out completely. For example,
it is tempting to write

If Range("A1").Font.Color = vbRed Or vbBlue Then
However, this will generate an error message. The corrected line is
If Range("A1").Font.Color = vbRed Or Range("A1").Font.Color = vbBlue Then

The If5 sub illustrates a typical compound condition. It first checks whether
an employee’s first score is greater than 80 and at least one of the employee’s
last two scores is greater than 85. If this compound condition is true, it boldfaces
the employee’s number, it colors the first score red, and it colors blue any second
or third score that is greater than 85.

Sub [fStatement5()
' Example of compound conditions (with And/Or).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



126 Chapter 7

Dim cell As Range
Const cutoffl = 80, cutoff2 = 85

' Boldface Employee numbers who did well on the first score and even
' better on at least one of the last two scores. Note the indenting
' for clear readability.
For Each cell In wsData.Range("Employee")
If cell.Offset(0, 1).Value > cutoffl And _
(cell.Offset(0, 2).Value > cutoff2 _
Or cell.Offset(0, 3).Value > cutoff2) Then
cell.Font.Bold = True
cell.Offset(0, 1).Font.Color = vbRed
If cell.Offset(0, 2).Value > cutoff2 Then _
cell.Offset(0, 2).Font.Color = vbBlue
If cell.Offset(0, 3).Value > cutoff2 Then _
cell.Offset(0, 3).Font.Color = vbBlue
End If
Next
End Sub

7.4 Case Constructions

If constructions can become fairly complex, especially when there are multiple
Elself parts. The Case construction discussed here is often used as a less complex
alternative. Suppose the action you take depends on the value of some variable.
For example, you might have a product index that can have values from 1 to 10,
and for each product index you need to take a different action. This could
be accomplished with an If construction with multiple Elself lines. However, the
Case construction provides an alternative. The general form of this construction is

Select Case variable
Case valuet
statements1
Case value2
statements2

[Case Else
statementsElse]
End Select

(As usual, the square brackets are not typed. They indicate only that the Else
part is optional.) Here, the keywords are Select Case, Case, and End Select, and
variable is any variable on which the various cases are based. Then valuel, value2,
etc., are mutually exclusive values of variable that require different actions, as speci-
fied by statementsl, statements2, and so on. Actually, these values can be single
values or ranges of values. For example, if variable is named productindex, you
might need to do one thing if productindex is from 1 to 5, another thing
if productindex is 6, and still another if productindex is from 7 to 10. You can also
include a Case Else, although it is not required. It specifies the action(s) to take if
none of the other cases hold.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 127

The following is a typical example of how the cases can be specified.

Select Case productindex
Case Is <= 3
unitPrice = 1.2 * unitCost
Case 4 To 6
unitPrice = 1.3 * unitCost
Case 7
unitPrice = 1.4 * unitCost
Case Else
unitPrice = 1.1 * unitCost
End Select

Note the three ways the values are specified after the keyword Case: Is <= 3,
4 To 6, and 7 (where Is and To are keywords). You can find the precise rules in
VBA help, or you can mimic the examples shown here. Alternatively, there is
nothing you can accomplish with Case constructions that you cannot also accom-
plish with (somewhat complex) If constructions. The construction chosen is often
a matter of programming taste.

The file Case Examples.xlsm illustrates Case constructions. It is based on
the small data set in Figure 7.5. As with the If examples, the examples here
change the formatting of the data, so the Restore button is attached to a macro
that restores the formatting to its original form. Note that the range A4:A21 has
been named Family.

Figure 7.5 Data Set for Case examples

LA B
3 | Family Income
41 1 $43,300
5| 2 $40,200
6| 3 $23,100
7| & $47,400
8| 5 $39,700
9| 6 $27,700
0 7 $43,600
| 8 $51,300
2] 9 837,600
13 10 537,200
14 11 574,800
15 12 S$57,400
16 13 538,000
17 14 555,400
18 15 544,800
19 16 855,400
20| 17 $41,400
21 18 554,500

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



128 Chapter 7

EXAMPLE 7.6 Single Statement After Each Case

The Case1 sub uses a For Each loop to go through each cell in the Family range.
The Case construction is then based on the family’s income, that is, the value in
cell.Offset(0,1). Depending on which of four income ranges the family’s income
is in, the income is colored red, green, blue, or magenta. (I assume that all
values are listed to the nearest dollar; there are no values such as $50,000.50.)
The data are then sorted according to Income, so that all of the incomes of a
particular color are adjacent to one another.

Sub Casel( )
Dim cell As Range
Const cutoffi = 35000, cutoff2 = 50000, cutoff3 = 65000

' Go through families, color the income a different color
' for different income ranges, then sort on income.
For Each cell In wsData.Range("Family")
With cell
Select Case .Offset(0, 1).Value
Case Is <= cutoff1
.Offset(0, 1).Font.Color = vbRed
Case cutoffi+1 To cutoff2
.Offset(0, 1).Font.Color = vbGreen
Case cutoff2+1 To cutoff3
.Offset(0, 1).Font.Color = vbRed
Case Else ' above cutoff3
.Offset(0, 1).Font.Color = vbMagenta
End Select
End With
Next

With wsData
.Range("B3").Sort Key1:=.Range("B4"), Order1:=xlAscending, _
Header:=xlYes
End With
End Sub

EXAMPLE 7.7 Multiple Statements After Cases

The Case2 sub is very similar to the Casel sub. The main difference is that it
shows that multiple statements can follow any particular case. Here, the incomes
less than or equal to 35,000 are colored red. In addition, if they are less than
30,000, they are also italicized. Similarly, incomes greater than 65,000 are colored
magenta, and if they are greater than 70,000, they are boldfaced.

Sub Case2()
' This is the same as Casel, but if shows how multiple statements
' can be used in any particular case.
Dim cell As Range
Const cutofft = 35000, cutoff2 = 50000, cutoff3 = 65000

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 129

Const cutoff0 = 30000, cutoff4 = 70000

For Each cell In wsData.Range("Family")
With cell
Select Case .Offset(0, 1).Value
Case Is <= cutoff1
.Offset(0, 1).Font.Color = vbRed
If .Offset(0, 1) < cutoff0 Then _
.Offset(0, 1).Font.ltalic = True
Case cutoffl1+1 To cutoff2
.Offset(0, 1).Font.Color = vbGreen
Case cutoff2+1 To cutoff3
.Offset(0, 1).Font.Color
Case Else ' above cutoff3
.Offset(0, 1).Font.Color = vbMagenta
If .Offset(0, 1) > cutoff4 Then _
.Offset(0, 1).Font.Bold = True

vbBlue

End Select
End With
Next
With wsData
.Range("B3").Sort Key1:=.Range('B4"), Order1:=xlIAscending, _
Header:=xIYes
End With
End Sub

If you find that you favor Case constructions to If constructions in situations like
these, just remember the following: The construction must begin with Select Case, it
must end with End Select, and every case line in between must start with Case.

Using a Colon to Separate Two VBA Lines

When you see Case constructions, they often include two lines of VBA code on a
single physical line. This is allowable if you separate the two lines with a colon. This
is usually done when the lines are very short. The following is a typical example.

With Range("A1")
Select Case .Value
Case 1: .Font.Color = vbRed
Case 2: .Font.Color = vbBlue
Case 3: .Font.Color = vbGreen
End Select
End With

Actually, a colon can be used to separate any two short VBA lines on a single
physical line. However, I have seen it most often in Case constructions.

7.5 For Loops

Loops allow computers to do what they do best—repetitive tasks. There are
actually two basic types of loops in VBA: For loops and Do loops. Of these two
types, For loops are usually the easier to write, so I will discuss them first.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



130 Chapter 7

For loops take the following general form, where the keywords are For, To,
Step, and Next.

For counter = first To last [Step increment]
statements
Next [counter]

(As usual, square brackets indicate optional elements. You should not type
the brackets.) There is always a counter variable. Many programmers, including
myself, name their counters i, j, k, m, or n, although any variable names can be
used. The first line states that the counter goes from first to last in steps of incre-
ment. For each of these values, the statements in the body of the loop are executed.
The default value of the Step parameter is 1, in which case the Step part can be
omitted (as it usually is). The loop always ends with Next. It is possible, but not
required, to write the counter variable at the end of the Next line. This is sometimes
useful when there are multiple For loops and there could be some ambiguity about
which Next goes with which For.

The following is a simple example of a For loop that sums the first 1000 posi-
tive integers and reports their sum. This is actually a very common operation,
where you accumulate a total within a loop. It is always a good idea to initialize
the total to O just before starting the loop, as is done here.

sum = 0
For i = 1 To 1000
sum = sum + i
Next
MsgBox "The sum of the first 1000 positive integers is " & sum

Virtually any types of statements can be used in the body of the loop. The
following example illustrates how If logic can be used inside a loop. Here, you
can assume that the worksheet with code name wsSalaries has 500 employee
names in column A (starting in row 2) and that their corresponding salaries are
in column B. This code counts the number of employees with salaries greater
than $50,000. The loop finds this number, nHigh, by adding 1 to the current
value of nHigh cach time it finds a salary greater than $50,000. Note how the
counter variable i is used in .Offset(i, 1) to find the salary for employee i.

nHigh = 0
With wsSalaries.Range("A1")
Fori = 1 To 500
If .Offset(i, 1) > 50000 Then nHigh = nHigh + 1
Next
End With
MsgBox "The number of employees with salaries greater than $50,000 is " & nHigh

Exiting a For Loop Prematurely

Sometimes you need to exit a For loop prematurely. This is possible with the Exit
For statement. It immediately takes you out of the loop. For example, suppose

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 131

again that 500 employee names are in column A, starting in row 2, and you want
to know whether there is an employee named James Snyder. The following code
illustrates one way to do this. It uses a Boolean variable isFound that is initially set
to False. The program then loops through all employees. If it finds James Snyder,
it sets isFound to True, exits the loop, and reports that James Snyder has been
found. However, if it gets through the loop without finding Snyder, then isFound
is still False, and it displays a message to this effect.

Dim isFound As Boolean
isFound = False
With wsSalaries.Range("A1")
For i = 1 To 500
If .Offset(i, 0).Value = "James Snyder" Then
isFound = True
Exit For
End If
Next
End With
If isFound Then
MsgBox "James Snyder is in the employee list."
Else
MsgBox "James Snyder is not in the employee list."
End If

By the way, most beginning programmers (and even some experienced
programmers) would write the fifth from last line as

If isFound = True Then

This is technically correct, but the = True part is not necessary. Remember
that a condition in an If statement is any expression that evaluates to True or
False. Therefore, the condition isFound, all by itself, works just fine. It is Boolean,
so its value is True or False. Similarly, the line

If Not isFound Then

could be used for the opposite condition. The keyword Not in front of a
condition switches True to False and vice versa. Therefore, an equivalent way to
end this example is as follows:

If Not isFound Then

MsgBox "James Snyder is not in the employee list."
Else

MsgBox "James Snyder is in the employee list."
End If

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



132 Chapter 7

Again, the point of this discussion is that if you use a Boolean variable as the
condition in an If statement, you do #ot have to include = True or = False in the
condition.

Nested For Loops

It is also common to nest For loops. This is particularly useful if you want to
loop through all of the cells in a rectangular range. Then there is one counter
such as i for the rows and another counter such as j for the columns.' The follow-
ing example illustrates nested loops.

EXAMPLE 7.8 Nested For Loops

Consider the worksheet code-named wsSales with the data in Figure 7.6. (This
data set and accompanying code are in the file For Loop Examples.xlsm.) Each
row corresponds to a sales region, and each column corresponds to a month. The
numbers in the body of the table are sales figures for various regions and months,
and the goal is to find the total sales over all regions and months. Then the nested
For loops in the following GetGrandTotal sub do the job. Note how the sales figure
for region i and month j is captured by the offset relative to cell A3. Note also how
the counter variables are included in the Next lines (Next i and Next j) for clarity.
Actually, the indentation achieves the same effect—easy readability.

Sub GetGrandTotal()
' Calculate and display the total of all sales.
Dim total As Single
Dim iRow As Integer
Dim iCol As Integer

' The following line is not absolutely necessary because numeric
' variables are initialized to 0. But it never hurts to play it safe.
total = 0

' Loop through all rows and all columns within each row.
With wsSales.Range("A3")
For iRow = 1 To 13
For iCol = 1 To 9
total = total + .Offset(iRow, iCol)
Next iCol
Next iRow
End With

MsgBox "Total sales for the 13 regions during this 9-month period is " _
& total
End Sub

1 . . . . .
I sometimes use more meaningful counter names, such as iRow and iCol. However, the generic
names i and j are most often used by programmers, including myself, in such situations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 133

Figure 7.6  Monthly Sales by Region

A | B | ¢ | © | E | F | G | H ] 3
L Sales by region and month
| 2|
i Jan-08 Feb-08  Mar-08 Apr-08  May-08 Jun-08 Jul-08 Aug-08 Sep-08
i Region 1 2270 1290 1600 2100 1170 1920 1110 2060 3130
| 5 [Region 2 1730 3150 1180 740 1650 900 1830 1220 1620
| 6 [Region3 1840 1700 2170 3300 1390 1660 1720 2090 880
L Region 4 3280 1920 2000 1270 1510 2280 2730 2160 1380
i Region 5 2090 2110 2040 2270 1650 1910 2220 3380 1850
| 9 [Region 6 1820 2570 2060 2190 1840 3310 1920 1080 940
ﬁ Region 7 2400 1880 2980 2370 1910 2580 3470 2220 2200
L Region 8 1680 1680 3120 1010 1550 2880 1410 2800 1520
| 12[Region 9 2230 2960 2240 2120 1870 2790 1390 2290 1620
ﬁ Region 10 2040 2310 2120 2750 1220 1270 2080 2150 2650
ﬁ Region 11 1430 2970 1800 2510 1660 1900 2910 770 2740
| 15[Region 12 1760 1590 1610 1550 1730 1150 3660 1670 3440
16 |Region 13 1870 1330 1930 2080 2210 1850 3360 1930 1100

Continuing this example, suppose you want to append a Totals row to the
bottom, where you sum sales across regions for each month, and a Totals column
to the right, where you sum sales across months for each region. The following
GetTotals sub accomplishes this. It is actually quite general. It first finds the num-
ber of months and number of regions in the data set so that it will work for any
numbers of months and regions, not just those in Figure 7.6. For example, the
following line, inside With wsSales.Range("A3"), shows how to count the number
of month labels to the right of cell A3.

nMonths = Range(.Offset(0, 1), .Offset(0, 1).End(xIToRight)).Columns.Count

This is a very common operation for counting columns (or rows), so you should
examine it carefully.

Sub GetTotals()
Dim nMonths As Integer, nRegions As Integer
Dim iRow As Integer, iCol As Integer
Dim regionTotal As Single, monthTotal As Single

With wsSales.Range("A3")
' Capture the number of months and number of regions.
nMonths = Range(.Offset(0, 1), .Offset(0, 1).End(xIToRight)) _
.Columns.Count
nRegions = Range(.Offset(1, 0), .Offset(1, 0).End(xIDown)) _
.Rows.Count

' Insert labels.
.Offset(0, nMonths + 1) = "Totals"

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



134  Chapter 7

.Offset(nRegions + 1, 0) = "Totals"

' Get totals in right column.

For iRow = 1 To nRegions
regionTotal = 0 ' This is absolutely necessary!
For iCol = 1 To nMonths

regionTotal = regionTotal + .Offset(iRow, iCol)

Next iCol
' Display total.
.Offset(iRow, nMonths + 1) = regionTotal

Next iRow

' Get totals in bottom row.

For iCol = 1 To nMonths
monthTotal = 0 ' This is also absolutely necessary.
For iRow = 1 To nRegions

monthTotal = monthTotal + .Offset(iRow, iCol)

Next iRow
' Display total.
.Offset(nRegions + 1, iCol) = monthTotal

Next iCol

End With
End Sub

Pay particular attention in this sub to the initialization statements for region-
Total and monthTotal. For example, in the first pair of loops, where the totals
in the right column are calculated, the outer loop goes through all of the rows
for the regions. For a particular region, you must first reinitialize regionTotal to 0,
and then loop through all of the months, adding each month’s sales value to the
current regionTotal value. Make sure you understand why the regionTotal = 0 and
monthTotal = O statements are not only necessary, but why they must be placed
exactly where they have been placed for the program to work properly.

In fact, a good way to learn how this works is to purposely do it wrong and
see what happens. For example, delete (or comment out) the regionTotal = 0 and
monthTotal = 0 lines in the For Examples.xlsm file, run the program, and step
through the code, periodically checking the value of regionTotal. You really can
learn from your mistakes. (I have been programming for years, but I still have
to think through this type of initialization logic each time I do it. It is very casy
to do it wrong.)

In all of the For loop examples to this point, the counter has gone from 1 to some
fixed number in steps of 1. Other variations are possible, including the following;:

® Variable upper limit. It is possible for the upper limit to be a variable that
has been defined earlier. In the following lines, the number of customers is
first captured in the variable nCustomers (as the number of rows in the Data
range). Then nCustomers is used as the upper limit of the loop.

Dim nCustomers As Integer
nCustomers = Range("Data").Rows.Count
For i = 1 To nCustomers
statements
Next

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 135

e Lower limit other than 1. It is possible for the lower limit to be an integer
other than 1, or even a variable that has been defined earlier, as in the follow-
ing lines. Here, the minimum and maximum scores in the Scores range are
first captured in the minScore and maxScore variables. Then a loop uses
these as the lower and upper limits for its counter.

Dim minScore As Integer, maxScore As Integer
minScore = WorksheetFunction.Min(Range("Scores"))
maxScore = WorksheetFunction.Max(Range("Scores"))
For i = minScore To maxScore

statements
Next

e  Counting backward. It is possible to let the counter go backward by using a
negative value for the Step parameter, as in the following lines. Admittedly,
this is not common, but there are times when it is very useful. Here is a typi-
cal example. Suppose you have numbers in the range A2:A21. You want to
delete all rows where the number is greater than 100. The following code
will do this correctly.

Sub DeleteRowsCorrectly()
Dim i As Integer
With Range("A1")
Fori = 20 To 1 Step -1
If .Offset(i, 0).Value > 100 Then
.Offset(i, 0).EntireRow.Delete
End If
Next
End With
End Sub

However, the following code will do it incorrectly. Can you see why? It is far
from obvious. If you are curious, open the file Deleting Rows.xlsm and step
through each of the subs. You will learn a lot!

Sub DeleteRowslIncorrectly()
Dim i As Integer
With Range("A1")
Fori = 1 To 20
If .Offset(i, 0).Value > 100 Then
.Offset(i, 0).EntireRow.Delete
End If
Next
End With
End Sub

e Lower limit greater than upper limit. Another relatively uncommon situa-
tion, but one that can occur, is when the lower limit of the counter is

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



136 Chapter 7

greater than the upper limit (and the Step parameter is positive). This
occurs in the following lines. What does the program do? It never enters
the body of the loop at all; it just skips over the loop entirely. And, unlike
what you might expect, there is no error message. It is instructive to under-
stand why this is the case. When VBA encounters a For loop, it sets the
counter equal to the lower limit. Then it checks whether the counter is less
than or equal to the upper limit. If it is, the body of the loop is executed,
the counter is incremented by the step size, and the same check is made
again. As soon as this check is not satisfied, execution passes to the line
right after the loop.

lowLimit = 10

highLimit = 5

For i = lowLimit To highLimit
statements

Next

7.6 For Each Loops

There is another type of For loop in VBA that is not present in all other program-
ming languages: the For Each loop. Actually, this type of loop has been used a few
times in this and previous chapters, so you are probably somewhat familiar with it
by now. It is used whenever you want to loop through all objects in a collection,
such as all cells in a Range object or all worksheets in a workbook’s Worksheets
collection. Unlike the For loops in the previous section, you (the programmer)
might have no idea how many objects are in the collection, so you don’t know
how many times to go through the loop. Fortunately, you don’t need to know.
The For Each loop figures it out for you. For example, if there are three work-
sheets, it goes through the loop three times. If there are 15 worksheets, it goes
through the loop 15 times. The burden is not on you, the programmer, to figure
out the number of objects in the collection.
The typical form of a For Each loop is the following.

Dim item As object

For Each item In collection
statements

Next

Here, the declaration of the object variable ézem is shown explicitly. Also, item,
object, and collection have been italicized to indicate that they will vary depending
on the type of collection. In any case, étem is a generic name for a particular item
in the collection. Programmers generally use a short variable name, depending on
the type of item. For example, if you are looping through all worksheets, you
might use the variable name ws. Actually, any name will do. In this case, object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 137

should be replaced by Worksheet, and collection should be replaced by Worksheets
(or ActiveWorkbook.Worksheets). The following code illustrates how you could
search through all worksheets of the active workbook for a sheet code-named
wsData. If you find one, you can exit the loop immediately. Note that you must
declare the generic ws variable as an object—specifically, a Worksheet object.

Dim ws As Worksheet
Dim isFound As Boolean

isFound = False
For Each ws In ActiveWorkbook.Worksheets
If ws.CodeName = "wsData" Then
isFound = True
Exit For
End If
Next

If isFound Then

MsgBox "There is a worksheet named Data."
Else

MsgBox "There is no worksheet named Data."
End If

The important thing to remember about For Each loops is that the generic
item, such as ws in the above code, is an ofject in a collection. Therefore, it has
the same properties and methods as any object in that collection, and they can
be referred to in the usual way, such as ws.CodeName. Also, there is no built-in
loop counter unless you want to create one—and there are situations where you
will want to do so. As an example, the code below generalizes the previous code
slightly. It counts the number of worksheets with a name that starts with "Sheet".
(To do this, it uses the string function Left. For example, Left("Sheet17",5) returns
the leftmost 5 characters in "Sheet17", namely, "Sheet".)

Dim ws As Worksheet
Dim counter As Integer

counter = 0
For Each ws In ActiveWorkbook.Worksheets
If Left(ws.Name, 5) = "Sheet" Then
counter = counter + 1
End If
Next
MsgBox "There are " & counter & " sheets with a name starting with Sheet."

For Each with Ranges

One special type of collection is a Range object. Remember that there is no Ranges
collection, but the singular Range acts like a collection, and you can use it in a For
Each loop. Then the individual items in the collection are the cells in the range.
The following is a typical example. It counts the number of cells in a range that

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



138  Chapter 7

contain formulas. To do so, it uses the built-in HasFormula property, which returns
True or False. Note again that cell is 7ot a keyword in VBA. It is used here to
denote a typical member of the Range collection—that is, a typical cell. Instead of
cell, any other name (such as cl) could have been used for this generic object. In
any case, this generic member must first be declared as a Range object.

Dim cell As Range
Dim counter As Integer

counter = 0
For Each cell In Range("Data")

If cell.HasFormula Then counter = counter + 1
Next
MsgBox "There are

& counter & " cells in the Data range that contain formulas."

If you have programmed in another language, but not in VBA, it might take
you a while to get comfortable with For Each loops. They simply do not exist in
programming languages that do not have objects and collections. However, they
can be extremely useful. For examples, refer back to any of Examples 7.4-7.7 in
this chapter. They all use a For Each loop to loop through all cells in a range.

To see a few more For Each examples, examine the code in the file For Each
Examples.xlsm. This code illustrates how you can loop through the Worksheets
collection, the Charts collection (that includes chart sheets), the Sheets collection
(that includes worksheets and chart sheets), and the Names collection (that
includes range names). Actually, there are many more collections in Excel that
you can loop through with For Each loops.

7.7 Do Loops

For loops (not For each loops) are perfect for looping a fixed number of times.
However, there are many times when you need to loop while some condition
holds or #ntil some condition holds. You can then use a Do loop. Do loops are
somewhat more difficult to master than For loops, partly because you have to
think through the logic more carefully, and partly because there are four possible
variations of Do loops. Usually, any of these variations can be used, but you have
to decide which one is most natural and easiest to read.

The four variations are as follows. In each variation, the keyword Do appears
in the first line of the loop, and the keyword Loop begins the last line of the loop.
The first two variations check a condition at the top of the loop, whereas the last
two variations check a condition at the bottom of the loop.

Variation 1: Do Until ... Loop

Do Until condition
statements
Loop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 139

Variation 2: Do While ... Loop

Do While condition
statements
Loop

Variation 3: Do ... Loop Until

Do
statements
Loop Until condition

Variation 4: Do ... Loop While

Do
statements
Loop While condition

Here are some general comments that should help you understand Do loops.

e Conditions at the top. In the first two variations, the program checks the
condition just before going through the body of the loop. In an Until loop,
the statements in the body of the loop are executed only if the condition is
false; in a While loop, the statements are executed only if the condition is zrue.
If you stop and think about it, this is not something you need to memorize; it
makes sense, given the meaning of the words “until” and “while.”

e Conditions at the bottom. The same holds in variations 3 and 4. The difference
here is that the program decides whether to go through the loop again. The effect
is that the statements in the loop will certainly be executed at least once in the last
two variations, whereas they might zever be executed in the first two variations.

e Exit Do statement. As with a For loop, you can exit a Do loop prematurely.
To do so, you use an Exit Do statement inside the loop.

e DPossibility of infinite loops. A Do loop has no built-in counter as in a For
loop. Therefore, you as a programmer must change something within the
loop to give it a chance of eventually exiting. Otherwise, it is easy to be
caught in an infinite loop from which the program can never exit. The fol-
lowing is a simple example. It shows that it is easy to get into an infinite
loop. It happens to all of us. You can assume that isValid has been declared
as a Boolean variable—it is either True or False.

Sub Test()
Dim isvalid As Boolean, password As String
isvalid = False
Do Until isvalid
password = InputBox("Enter a valid password.")
Loop
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



140 Chapter 7

Go through the logic in these statements to see if you can locate the prob-
lem. Here it is. The Boolean variable isValid is never changed inside the loop.
It is initialized to False, and it never changes. But the loop continues until isValid
is True, which will never occur. If you type this code into a sub and then run it,
the sub will never stop.

Breaking Out of an Infinite Loop: A Lifesaver

This might not sound too bad, but suppose you have spent the last hour writing a pro-
gram, you have not saved your work (shame on you!), and you decide to test your pro-
gram by running it. All of a sudden, you realize that you are in an infinite loop that you
cannot get out of, and panic sets in. How can you save your work? Fortunately, there is
a way to break out of an infinite loop (or terminate a program that has been running
too long)—you can use the Ctrl+Break key combination. (The Break key is at the
top right of most keyboards. However, some keyboards, including those on Macs,
don’t have a Break key. In this case, you can press the Esc key, which appears to do
the same thing.?) This allows you to exit the program and save your work. This
brush with disaster also reminds you to save more often. Try it now. Run the above
password program and see whether you can break out of the loop.

How do you avoid the infinite loop in this example? Let’s suppose that any pass-
word of the form “VBAPass” followed by an integer from 1 to 9 will be accepted. In
this case, the following code will do the job. It checks whether the user enters one of
the valid passwords, and if so, it sets isValid to True, allowing an exit from the loop.
But there is still a problem. What if the poor user just doesn’t know the password?
She might try several invalid passwords and eventually give up, either by entering
nothing in the input box or by clicking on the Cancel button (or the X button). The
program checks for this by seeing whether password, the string returned from the
InputBox statement, is an empty string, "". (Clicking the Cancel button or the X button
of an input box returns an empty string.) In this case, the program not only exits the
loop, but it ends abruptly because of the keyword Exit Sub. After all, you don’t want
the user to be able to continue if she doesn’t know the password.

Sub Test()
Dim isvalid As Boolean, password As String
isvalid = False
Do Until isvalid
password = InputBox("Enter a valid password.")

If password = " Then
MsgBox "Sorry, but you cannot continue."
Exit Sub

Else
Fori =1 To 9

If password = "VBAPass" & i Then

2 Unfortunately, as I just discovered when I lost some of my own unsaved code, this doesn’t necessar-
ily work. First, my keyboard on a Windows 8 machine doesn’t have a Break key. Second, pressing the
Esc key has no effect at all. If you search the Web for “VBA infinite loops,” you will see that other
programmers have discovered the same problem, along with some possible remedies.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 141

isvalid = True
Exit For
End If
Next
End If
Loop
End Sub

Study this code carefully. Note that the Exit For statement provides an exit
from the For loop, because the program has found that the user entered a valid
password such as VBAPass3. In this case there is no need to check whether she
entered VBAPass4, VBAPass5, and so on. In addition, by this time, isValid has
just been set to True. Therefore, when control passes back to the top of the Do
loop, the condition will be true, and the Do loop will be exited.

There is an important lesson in this example. It is easy to get into an infinite
loop—we all do it from time to time. If you run your program and it just seems to
hang, the chances are good that you are in an infinite loop. In that case, press Ctrl
+Break (or Esc) to stop the program, save your file, and check your loops carefully.

EXAMPLE 7.9 Locating a Name in a List

The file Do Loop Examples.xlsm illustrates a typical use of Do loops. It starts with a
database of customers in a Data worksheet, as shown in Figure 7.7 (with several hidden
rows). Column A contains a company’s customers last year, and column B contains the
customers this year. Next year has not yet occurred, so the company doesn’t know its
customers for next year—hence the empty list in column C. The user first selects a

Figure 7.7 Customer Lists

A B C
| 1 |Customer last year  Customer this year  Customer next year
| 2 |Barlog Aghimien

3 |Barnett Bang
| 4 |Bedrick Barnett
T Brulez Bedrick
z Cadigan Brulez
| 7 |Castleman Cadigan
| 8 |Chandler Castleman
| 92 |Yablonka Tracy

93 (Zick Ubelhor
WZiegler Usman
E Vicars
[ 96 | Villard
| 97| Wendel
| 98 | Wier
ﬂ Wise
100 Yablonka
E Yeiter
102] Zakrzacki
103] Zhou

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



142  Chapter 7

column from 1 to the number of columns (here 3, but the program is written more
generally for any number of columns). The goal of the program is to check
whether a customer with a user-selected name is in the selected column. (The
blank “Customer next year” column is included here for illustration. It shows
what happens if you try to locate a particular name in a dlank list.)

The DolLoop1 sub shows how to perform the search with a Do Until loop. It
searches down the selected column for a user-supplied name until it finds the
name or it runs into a blank cell, the latter signifying that it has checked the entire
customer list for that column. If it finds the name along the way, it exits the loop
prematurely with an Exit Do statement. Note that the program works even if
column C is chosen. You should reason for yourself exactly what the program
does in this case—and why it works properly.

Sub Doloop1()
Dim selectedColumn As Integer
Dim nColumns As Integer
Dim rowCount As Integer
Dim foundName As Boolean
Dim requestedName As String

' Count the columns.
With wsData.Range("A1")

nColumns = Range(.Offset(0, 0), .End(xIToRight)).Columns.Count
End With

' Ask for a name to be searched for.
requestedName = InputBox("What last name do you want to search for?")

' No error checking -- assumes user will enter an appropriate value!
selectedColumn = InputBox("Enter a column number from 1 to " & nColumns)

' Go to the top of the selected column.

With wsData.Range("A1").Offset(0, selectedColumn - 1)
rowCount = 1
foundName = False

' Keep going until a blank cell is encountered. Note that if there
' are no names at all in the selected column, the body of this loop
" will never be executed.
Do Until .Offset(rowCount, 0).Value = " "
If UCase(.Offset(rowCount, 0).Value) = UCase(requestedName) Then
foundName = True
MsgBox requestedName & " was found as name " & rowCount _
& " in column " & selectedColumn & ".", vbinformation
' Exit the loop prematurely as soon as a match is found.
Exit Do
Else
' Unlike a For loop, any counter must be updated manually
"in a Do loop.
rowCount = rowCount + 1
End If
Loop
End With

' Display appropriate message if no match is found.
If Not foundName Then

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 143

MsgBox "No match for " & requestedName & " was found.", vbinformation
End If
End Sub

Probably the most important parts of this loop are the row counter variable,
rowCount, and the updating statement, rowCount = rowCount + 1. Without these,
there would be an infinite loop. But because rowCount increases by 1 every time
through the loop, the condition following Do Until is always based on a new cell.
Eventually, the program will find the requested name or it will run out of custo-
mers in the selected column. In either way, it will eventually end.

VBA's UCase and LCase Functions

The condition that checks for the requested name uses VBA’s built-in UCase
(uppercase) function. This function transforms any string into one with all upper-
case characters. This is often useful when you are not sure whether names are cap-
italized fully, partially, or not at all. By checking for uppercase only, you take all
guesswork out of the search. Similarly, VBA has an LCase (lowercase) function
that transforms all characters to lowercase.

Changing Do Until to Do While

It is easy to change a Do Until loop to a Do While loop or vice versa. You just
change the condition to its opposite. The Do Loop Examples.xlsm file contains
a DoLoop2 sub that uses Do While instead of Do Until. The only change is that the
Do Until line becomes the following. (Note that <> means “not equal to.”)

Do While .Offset(rowCount, 0).Value <> "

Putting Conditions at the Bottom of the Loop

It is also possible to perform the search for the requested name using variation 3
or 4 of a Do loop—that is, to put the conditions at the bottom of the loop. The
DoLoop3 and DoLoop4 subs of the Do Loop Examples.xlsm file illustrate these
possibilities. However, for this particular task (of finding a particular name), it is
probably more natural to place the condition at the top of the loop. This way,
if the first element of the selected column’s list is blank, as for the next year
column, the body of the loop is never executed at all.

7.8 Summary

The programming tools discussed in this chapter are arguably the most important
tools in VBA or any other programming language. It is hard to imagine many
interesting, large-scale applications that do not require some control logic and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



144  Chapter 7

loops. They appear everywhere. Fortunately, they are not difficult to master, and
you will see them in numerous examples in later chapters.

EXERCISES

1. Write a sub that requests a positive integer with an InputBox. Then it uses a For
loop to sum all of the odd integers up to the input number, and it displays the
result in a MsgBox.

2. Change your sub from the previous exercise so that it enters all of the odd inte-
gers in consecutive cells in column A, starting with cell Al, and it shows the sum
in the cell just below the last odd integer.

3. The file Sales Data.xlsx contains monthly sales amounts for 40 sales regions.
Write a sub that uses a For loop to color the interior of every other row (rows 3,
5, etc.) gray. Color only the data area, columns A to M. (Check the file Colors in
Excel.xlsm to find a nice color of gray.)

4. Starting with the original Sales Data.xlsx file from the previous exercise, write a
sub that italicizes each monthly sales amount that is greater than $12,000 and
changes the font color to red for each label in column A where the yearly sales
total for the region is greater than $130,000.

5. Starting with the original Sales Data.xlsx file from the previous exercise, write a
sub that examines each row for upward or downward movements in quarterly
totals. Specifically, for each row, check whether the quarterly totals increase each
quarter and whether they decrease each quarter. If the former, color the region’s
label in column A red; if the latter, color it blue.

6. An InputBox statement returns a string—whatever the user enters in the box.
However, it returns a blank string it the user enters nothing and clicks the OK
or Cancel button (or the X button). Write a sub that uses an InputBox to ask the
user for a product code. Embed this in a Do loop so that the user has to keep try-
ing until the result is #ot a blank string.

7. Continuing the previous exercise, suppose all valid product codes start with the
letter P and are followed by four digits. Expand the sub from the previous exercise
so that the user has to keep trying until a yalid code has been entered.

8. In Exercise 6, you chose one of the four possible versions of Do loops in your
code: using a While or Until condition, and placing the condition at the top of
the loop or the bottom of the loop. Regardless of how you did it, rewrite your
sub in each of the three other possible ways.

9. Write a sub that displays a MsgBox. The message should ask whether the total
receipt for a sale is greater than $100, and it should display Yes and No buttons.
If the result of the MsgBox is vbYes (the built-in VBA constant that results from
clicking the Yes button), a second message box should inform the user that she
gets a 10% discount.

10. Write a sub that asks for the unit cost of a product with an InputBox. Embed this
within a Do loop so that the user keeps being asked until she enters a positive
numeric value. (Hint: Use VBA’s IsNumeric function. Also, remember that if the
user clicks the Cancel button or the X button, an empty string is returned.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 145

11. Write a sub that asks for a product index from 1 to 100. Embed this within a
Do loop so that the user keeps being asked until he enters an integer from 1 to
100. (Hint: Use a For loop for checking.)

12. All passwords in your company’s system must be eight characters long, start with
an uppercase letter, and consist of uppercase letters and digits—no spaces.
Employees are issued a password, but then they are allowed to change it to one
of their own choice.

a.  Write a sub to get a user’s new password. It should use an InputBox, embed-
ded within a Do loop, to get the password. The purpose of the loop is to
check that they indeed enter a valid password.

b. Expand your sub in part a to include a second InputBox that asks the user
to verify the password in the first input box (which by then is known to be
valid). Embed the whole procedure within an outer Do loop. This outer loop
keeps repeating until the user provides a valid password in the first InputBox
and enters the same password in the second InputBox.

13. Repeat the previous exercise, but now assume that, in addition to the other restric-
tions on valid passwords, passwords can have at most two digits—the rest must be
uppercase letters.

14. Repeat Exercise 12, but now perform a second check. Use the file Passwords.xlsx,
which has a single worksheet called Passwords. This sheet has a list of all pass-
words currently being used by employees in column A, starting in cell Al.
If the new employee selects one of these passwords, an appropriate warning
message is displayed, and the user has to choose another password. When the
user finally chooses a valid password that is not being used, a “Congratulations”
message should be displayed, and the new password should be added to the list
at the bottom of column A.

15. Write a sub that asks the user for three things in three InputBox lines: (1) a last
name, (2) a “first” name (which can actually be their middle name if they go by
their middle name), and (3) an initial. Use Do loops to ensure that the first name
and last name are all letters—no digits, spaces, or other characters. Also, check
that the initial is a single letter or is blank (because some people don’t like to use
an initial). If an initial is given, ask the user in a MsgBox with Yes and No buttons
whether the initial is a middle initial. (The alternative is that it is a fizst initial.)
Then display a MsgBox listing the user’s full name, such as “Your full name
is F. Robert Jacobs”, “Your name is Wayne L. Winston”, or “Your name is Seb
Heese”.

16. Assume you have a mailing list file. This file is currently the active workbook, and
the active sheet of this workbook has full names in column A, starting in cell Al,
with last name last and everything in uppercase letters (such as STEPHEN E.
LEE). Write a sub that counts the number of names in the list with last name
LEE and then displays this count in a MsgBox. Note that there might be last
names such as KLEE, which should not be counted.

17. The file Price Data.xlsx has a single sheet that lists your products by product
code. For each product, it lists the unit price and a discount percentage that
customers get if they purchase at least a minimum quantity of the product. For
example, the discount for the first product is 7%, and it is obtained if the customer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



146  Chapter 7

purchases at least 20 units of the product. Write a sub that asks for a product code
with an input box. This should be placed inside a Do loop that checks whether the
code is one in the list. It should then ask for the number of units purchased, which
must be a positive number. (You don’t have to check that the input is an inzteger.
You can assume that the user doesn’t enter something like 2.73.) Finally, it
should display a message something like the following: “You purchased _ units
of product _. The total cost is _. Because you purchased at least _ units, you
got a discount of _ on each unit.” Of course, your code will fill in the under-
scores in this message. Also, the last sentence should not be displayed if the
user didn’t purchase enough units to get a discount. (Noze: You should write
this sub, and the subs in the next two exercises, so that they are valid even if
the list of products expands in the future.)

18. Continuing the previous exercise, write a sub that first asks the user for the num-
ber of different products purchased. Then use a For loop that goes from 1 to this
number, and place the code from the previous exercise, modified if necessary,
inside this loop. That is, each time through the loop you should get and display
information about a particular product purchased. At the end of the sub, a message
should be displayed that shows the total amount spent on all purchases.

19. Again, use the Price Data.xlsx file described in Exercise 17. Write a sub that
asks the user for a purchase quantity that can be any multiple of 5 units, up to
50 units. Then enter a label in cell E3 something like “Cost of _ units”, where the
underscore in the message is filled in by the user’s input. Below this, enter the total
cost of this many units for each product. For example, cell E4 will contain the pur-
chase cost of this many units of the first product in the list. Enter these as values,
not formulas.

20. The file Customer Accounts.xlsx contains account information on a company’s
customers. For each customer listed by customer 1D, the Data worksheet has the
amount the customer has purchased during the current year and the amount the
customer has paid on these purchases so far. For example, the first customer pur-
chased an amount worth $2466 and has paid up in full. In contrast, the second
customer purchased an amount worth $1494 and has paid only $598 of this.
Write a sub to create a list on the Results worksheet of all customers who still
owe more than $1000. (It should first clear the contents of any previous list on
this worksheet.) The list should show customer IDs and the amounts owed. This
sub should work even if the data change, including the possibility of more or
fewer customer accounts.

21. (More difficult) The file Customer Orders.xlsx shows orders by date for a com-
pany’s customers on the Data worksheet. Many customers have ordered more
than once, so they have multiple entries in the list. Write a sub that finds the
total amount spent by each customer on the list and reports those whose total is
more than $2000 on the Report worksheet. As part of your sub, sort the list on
the Report worksheet in descending order by total amount spent. (Hint: The
orders in the Data worksheet are currently sorted by date. It might be helpful to
use VBA to sort them by Customer ID. Then at the end of the sub, restore the
list to its original condition by sorting on date.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Control Logic and Loops 147

22. You are a rather paranoid business executive, always afraid that a competitor
might be snooping on your sensitive e-mail messages. Therefore, you decide to
use a very simple form of encryption. The table in the file Scramble.xlsx shows
your scheme. For example, all instances of the letter “a” are changed to the letter
“e”, all instances of “b” are changed to “v”, and so on. Note at the bottom of the
table that uppercase letters are scrambled differently than lowercase letters. For
example, all instances of “A” are changed to “D”. (Spaces, periods, and other
nonalphabetic characters are not changed.) Write two subs, Scramble and
Unscramble. In each, ask the user for a message in an InputBox. In the Scramble
sub, this will be an original message; in the Unscramble sub, it will be a scrambled
message. Then in the Scramble sub, scramble the message and display it. Similarly,
in the Unscramble sub, unscramble the message and display it. (Of course, in
a real situation, you and the person you are e-mailing would each have the
Scramble.xlsm file. You would use the Scramble sub, and the person you are
e-mailing would use the Unscramble sub.)

23. (More difficult) A prime number is one that is divisible only by itself and 1. The
first few prime numbers are 2, 3, 5, 7, 11, and 13. Note that 2 is the only even
prime number.

a. Write a sub that finds the first # prime numbers, where you can choose #,
and lists them in column B of the First_n worksheet of the Primes.xlIsx file.
The first few are already listed for illustration. (Hint: You should use VBA’s
Mod function. It returns the remainder when one number is divided by
another. For example, 45 Mod 7 returns 3. A number # is not prime if
n Mod & = 0 for some integer % between 1 and #. For example, 39 is not
prime because 39 Mod 3 = 0.)

b. Change the sub in part a slightly so that it now finds all prime numbers less
than or equal to some number 2, where you can choose m, and lists them in
the UpTo_m worksheet of the Primes.xIsx file.

24. (More difficult) The cipher in Exercise 22 is a really simple one that hackers
would break in no time. The file Cipher.xlsx explains a much more sophisticated
cipher. (It has been around for centuries, and it too can be broken fairly casily by
experts, but it is safe from most onlookers.) Write a sub that first asks the user for
a key, a word with all uppercase letters. Then it asks the user for a message that
contains only lowercase words and spaces. The sub should delete all of the spaces
from this message and then encode what remains, using the explanation in the file
and the given key. It should report the encoded message, without any spaces, in
a MsgBox. (You can test it on the following. If the key is VBAMODELERS and
the message is “the treasure is buried in the garden”, the encoded message, with
spaces reinserted, is “OIE FFHEDYTW DT BGFLIO ME LCF GMFGIY”. In
the same sub, and using the same encoded message and key, decode the message
and report it in a message box. Of course, it should be the same as the original
message.

25. (More difficult) Consider the following model of product preferences. Assume
that a retailer can stock any of products 1 through ». Each customer is one of sev-
eral customer segments. The customers in a given segment all rank the products
in the same way. For example, if # = 5 and a segment has ranked preferences

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



148 Chapter 7

{2, 1, 4}, any customer in this segment would purchase any of products 1, 2, and
4, but not products 3 or 5. Furthermore, any such customer prefers product 2 to
product 1 and product 1 to product 4. So if the retailer stocks products 1, 3, 4,
and 5, this customer will purchase her highest ranked stocked product, product
1. (She would prefer product 2, but it isn’t stocked.) But if the retailer stocks
only products 3 and 5, this customer won’t purchase anything. The file
Preferences.xlsx has instructions, where your task is to write a sub that takes
(1) a customer population size, (2) any given set of customer segments, (3) the
proportions of all customers in the customer segments, (4) the profit margin for
cach product, and (5) the products offered by the retailer. It should then find
(1) which product each customer segment purchases, if any; (2) the number of
customers who purchase each offered product; and (3) the retailer’s total profit.
(Note: You might think that with all profit margins being positive, it would cer-
tainly make sense for the retailer to offer all » products. However, this is not nec-
essarily true. For example, imagine that product 1 has a relatively small profit
margin, product 2 has a relatively large profit margin, and a lot of the customers’
first and second preferences, in that order, are products 1 and 2. Then by noz
offering product 1, a lot of customers would go to their second preference, prod-
uct 2, and the retailer would probably earn a larger profit.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects

8.1 Introduction

This chapter extends the information given in Chapters 6 and 7. Chapter 6 focused
on ranges. This chapter illustrates how to work with three other common objects in
Excel: workbooks, worksheets, and charts. In doing so, it naturally illustrates further
uses of control logic and loops, which were discussed in Chapter 7. Workbooks,
worksheets, and charts are certainly not the only objects you will encounter in Excel,
but if you know how to work with these objects, along with ranges, you will be well
along the way. (Although they aren’t discussed here, the files Comments.xlsm,
Hyperlinks.xlsm, and Web Queries.xlsm illustrate how VBA can be used to manipulate
other fairly common Excel objects.) All of the objects in this chapter have many prop-
erties and methods, and only a small fraction of them are illustrated. As usual, you can
learn much more from online help, particularly the Object Browser.

8.2 Exercise

The exercise in this section illustrates the manipulation of multiple workbooks,
worksheets, and ranges. It is fairly straightforward, although you have to be careful
to keep your bearings as you move from one workbook or worksheet to another.
You should work on this exercise, or at least keep it in mind, as you read through
the rest of this chapter. All of the tools required to solve it are explained in this
chapter or were already explained in a previous chapter. When you finally get it
working, you can consider yourself a legitimate Excel programmer.

Exercise 8.1 Consolidating Data from Multiple Sheets

Consider a company that sells several of its products to five large customers. The
company currently has a file with two worksheets, Revenues and Costs, for each
customer. These files are named Customerl.xlsx through Customer5.xlsx.
Each worksheet shows the revenues or costs by day for all products sold to that
customer. For example, a sample of the revenue data for customer 1 appears in
Figure 8.1. Each of the customer files has data for the same dates (currently,
from January 2015 through June 2015, although new data could be added in
the future). In contrast, different customers have data for different numbers of
products. For example, customer 1 purchases products 1 to 4, customer 2 pur-
chases products 1 to 6, and so on.

149

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



150 Chapter 8

Figure 8.1 Sample Revenue Data for Customer 1

| A | B | & | B | E |
1 |Date Product 1 Product2 Product3 Product4
2 :25-_13!’1-15 1830 2010 1150 2480
3 |26-Jan-15 2880 2670 2280 3520
4 |27-Jan-15 1520 2400 3430 1710
5 |28-Jan-15 2270 2530 3220 2050
b |31-Jan-15 3280 2730 2080 2670
7 |01-Feb-15 2630 1970 2900 1930
3 jDZ—Feb—IS 3030 3250 2410 3260
9 |03-Feb-15 1930 1600 2360 2220
10 04-Feb-15 2300 1570 2630 2450
Figure 8.2 Template for Consolidated File
A 1T B [ ¢ [ ©p [T E T F T 6 [ H [ v T J T K [T L [ ™
| 1] Customer 1 Customer 2 Customer 3 Customer 4 Customer 5 Total all customers
| 2 |Date Revenues Costs Revenues Costs Revenues Costs Revenues Costs Revenues Costs Revenues Costs
3

The purpose of the exercise is to consolidate the data from these five
workbooks into a single Summary worksheet in a workbook named
Consolidating.xIsm. This file already exists, but it includes only headings, as
shown in Figure 8.2. When finished, the dates will go down column A, the revenues
and costs for customer 1 will go down columns B and C, those for customer 2 will
go down columns D and E, and so on. The revenues and costs for all customers
combined will go down columns L and M. Note that the revenues and costs in col-
umns B and C, for example, are totals over all products purchased by customer 1.

Figure 8.3 shows part of the results for the finished application. There is a button
to the right that runs the program. The program should have a loop over the custo-
mers that successively opens each customer’s file, sums the revenues and costs for that
customer, places the totals in the consolidated file, and then closes that customer’s
file. Finally, after entering all of the information in Figure 8.3 through column K,
the program should enter formulas in columns L and M to obtain the totals.

Figure 8.3 Results from Finished Application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 151

To see how this application works, make sure none of the individual custo-
mer’s files is open, open the Consolidating Finished.xIsm file, and click the but-
ton. Although you will have to watch closely to notice that anything is happening,
each of the customer’s files will be opened for a fraction of a second before being
closed, and the results in Figure 8.3 will appear. As usual, you can look at the
VBA code in the finished file, but you should resist doing so until you have
given it your best effort.

8.3 Collections and Members of Collections

Collections and members of collections (remember, plural and singular?) were
already discussed in Chapter 5, but these ideas bear repeating here as I discuss
workbooks, worksheets, and charts. There are actually two ideas you need to mas-
ter: (1) specifying a member of a collection, and (2) specifying a hierarchy in the
object model.

The three collections required for this chapter are the Workbooks, Worksheets,
and Charts collections." The Workbooks collection is the collection of all open
workbooks. (It does zoz include Excel files on your hard drive that are not cur-
rently open.) Any member of this collection—a particular workbook—can be
specified with its name, such as Workbooks("Customers.xlsx"). This refers to the
Customers.xlsx file (assumed to be open in Excel). Similarly, a particular work-
sheet such as the Data worksheet can be referenced as Worksheets("Data"), and a
particular chart sheet such as the Sales chart sheet can be referenced as Charts
("Sales"). The point is that if you want to reference any particular member of a
collection, you must spell out the plural collection name and then follow it in
parentheses with the name of the member in double quotes.

It is possible to refer to a member with a numeric index, such as Worksheets(3),
but this method is typically not used. It is difficult to remember what the hird
worksheet is, for example. By the way, third refers to the third sheet from the left.

As discussed in Chapter 5, you can also refer to worksheets and chart sheets by
their code names, and I will do this frequently in this chapter. Remember that there
are two primary advantages of doing it this way. First, if a user changes the tab name
of a worksheet from Data to Datal, the code name stays fixed, so programs are less
likely to be broken by such changes. Second, you can refer directly to a code name
such as wsData, with a line like wsData.Range("A1"). You don’t need to declare a
Worksheet object and then Set it, as in the following two lines:

Dim ws as Worksheet
Set ws = Worksheets("Data")

As for hierarchy, it works as follows. The Workbooks collection consists of
individual Workbook objects. Any particular Workbook object contains a Worksheets

!The ChartObjects collection is also mentioned in Section 8.6.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



152  Chapter 8

collection and a Charts collection. If a particular worksheet, such as the Data
worksheet, belongs to the active workbook, you can refer to it simply as
Worksheets("Data"). You can also refer to it as ActiveWorkbook.Worksheets("Data").
However, there are times when you need to spell out the workbook, as in
Workbooks("Customers.xIsx").Worksheets("Data"). This indicates explicitly that you
want the Data worksheet from the Customers workbook.

In a similar way, you can specify the Sales chart sheet as Charts("Sales") or,
if the Sales sheet is in the active workbook, as ActiveWorkbook.Charts("Sales").
Alternatively, to designate the Sales chart sheet in the Customers workbook, you
can write Workbooks("Customers.xlIsx").Charts("Sales"). Finally, you can refer to the
code names of chart sheets exactly like you do with worksheets. I like to prefix
these code names with cht, as in chtSales.

The Worksheets collection is one step down the hierarchy from the Work-
books collection. Range objects are one step farther down the hierarchy. Suppose
you want to refer to the range A3:C10. If this is in the active worksheet, you can
refer to it as Range("A3:C10") or as ActiveSheet.Range("A3:C10"). If you want to
indicate explicitly that this range is in the Data sheet, you should write
Worksheets("Data").Range("A3:C10") or wsData.Range("A3:C10") if wsData is the
code name of the worksheet. But even this assumes that the Data sheet is in the
active workbook. If you want to indicate explicitly that this sheet is in the Custo-
mers file, then you should write Workbooks("Customers.xIsx").Worksheets("Data").
Range("A3:C10"). You always read this type of reference from right to left—the
range A3:C10 of the Data sheet in the Customers file.

Once you know how to refer to these objects, you can easily refer to their
properties by adding a dot and then a property or method after the reference.
Some examples are:

ActiveWorkbook.Worksheets("Data").Range('C4").Value = "Sales for 2009"

and

Charts("Sales").Delete

Many other examples appear throughout this chapter.

One final concept mentioned briefly in Chapter 2 is that the Workbooks,
Worksheets, and Charts collections are also objects and therefore have properties
and methods. Probably the most commonly used property of each of these col-
lections is the Count property. For example, ActiveWorkbook.Worksheets.Count
returns the number of worksheets in the active workbook. Probably the most
commonly used method of each of these collections is the Add method. This adds
a new member to the collection, which then becomes the active member. For
example, consider the following lines:

ActiveWorkbook.Worksheets.Add

ActiveSheet.Name = "NewData"

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 153

The first line adds a new worksheet to the active workbook, and the second line
names this new sheet NewData. (This new worksheet also has a generic code
name such as Sheet2, but you cannot change it with VBA code because it is a
read only property; you can change it only in the Properties window of the
VBE.)

Before proceeding to examples, I want to make some comments about refer-
ence to objects and Intellisense. Once you type an object and then a period, if
VBA recognizes the zype of object (range, worksheet, or whatever), Intellisense
should provide a list of its properties and methods. It is very disconcerting when
this list doesn’t appear. In fact, I usually assume I have made an error when Intel-
lisense doesn’t appear. But VBA doesn’t seem to be totally consistent about pro-
viding Intellisense for objects. For example, I opened a new workbook and
entered the code Worksheets ("Sheet1"). (including the period), but no Intellisense
appeared. Why not? I have no idea. There shouldn’t be any doubt that this refers
to a Worksheet object, but Intellisense acts as if it isn’t sure.

There are two remedies for this. The first is to Set object variables and then
refer to them. If you declare ws as a Worksheet object, then type the line Set
ws = Worksheets("Sheet1"), and finally type ws. (including the period), you will
get Intellisense. Maybe this is why experienced programmers declare and use so
many object variables. The second remedy is to use code names for worksheets
and chart sheets. (Other objects don’t have code names.) In fact, this has led me
to use code names much more than in earlier editions.

8.4 Examples of Workbooks in VBA

The file Workbooks.xlsm illustrates how to open and close workbooks, how to
save them, how to specify the paths where they are stored, and how to display sev-
eral of their properties, all with VBA. It is the basis for the following examples.

EXAMPLE 8.1 Working with Workbooks

The Workbooks1 sub shows how to open and close a workbook. It also uses the
Count property of the Worksheets collection to return the number of worksheets
in a workbook, and it uses the Name property of a Workbook to return the name
of the workbook. As illustrated in the sub, the opening and closing operations are
done slightly differently. To open a workbook, you use the Open method of the
Workbooks collection, followed by the Filename argument. This argument speci-
fies the name (including the path) of the workbook file. To close a workbook,
you use the Close method of that Workbook object without any arguments.?

2This is not precisely true. The Open and Close methods both have optional arguments I have not
mentioned here. You can find details in online help.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



154 Chapter 8

Note that the file you are trying to open must exist in the location you specify.
Otherwise, you will obtain an error message. Similarly, the file you are trying to
close must currently be open.

Sub Workbooks1()
' This sub shows how to open or close a workbook. They are done
' differently. To open a workbook, use the Open method of the
' Workbooks collection, followed by the name of the workbook file.
' To close a workbook, use the Close method of that workbook.

' The following line assumes there is a file called Text.xIsx in the

' C:\Temp folder. If you want to run this (without an error message),
' make sure there is such a file.

Workbooks.Open Filename:="C:\Temp\Test.xIsx"

' Count the worksheets in this file and display this in a message box.
MsgBox “There are " & ActiveWorkbook.Worksheets.Count _
& " worksheets in the " & ActiveWorkbook.Name & " file."

' Close the workbook.
Workbooks("Test.xIsx").Close
End Sub

If you run this sub, then assuming the Test.xlsx file exists in the C:\Temp folder
and has three worksheets, the message in Figure 8.4 will be displayed.

As I mentioned earlier, you will get an error if you try to open a workbook
that doesn’t exist (at least not in the path specified), and you will also get an
error if you try to close a workbook that isn’t currently open. The following sub
shows how to avoid the latter error. It uses the On Error Resume Next statement
to turn on error checking but to ignore any errors encountered. (This statement
is covered in more detail in Chapter 12.) However, if an error is encountered, the
built-in Err object captures details about the error, including the Number property.
This property is nonzero if there is an error, and it is zero if there is no error. So if
the workbook to be closed isn’t open, this code provides a nice message to this
effect—not a nasty error message.

Figure 8.4 Information About Opened File

P TR It
Microsoft Excel m

There are 3 worksheets in the Test.xlsx file,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 155

Sub Workbooks1a()
' This sub illustrates a way you can avoid an error when you
' try to close a workbook that might not be open.

On Error Resume Next
Workbooks("Test.xIsx").Close
If Err.Number <> 0 Then _
MsgBox "The Test.xIsx workbook can’t be closed. It isn’t open."
End Sub

It is slightly more difficult to provide an error check for opening a workbook
that might not exist. A method for doing this is presented in Chapter 13.

EXAMPLE 8.2 Saving a Workbook

The Workbooks2 sub illustrates how to save an open workbook. This requires
cither the Save method or the SaveAs method, both of which mimic the similar
operations in Excel. The Save method requires no arguments—it simply saves the
file under its current name—whereas the SaveAs method typically has arguments
that specify how to perform the save. There are quite a few optional arguments
for the SaveAs method. The code below illustrates two of the more common
arguments: Filename (the name and path of the file) and FileFormat (the type of
format, such as the .xlIs or .xlsx format, to save the file as). The type for .xIs for-
mat is xIWorkbookNormal; for .xlsx format, it is xIOpenXMLWorkbook; and for
xlsm, it is xIOpenXMLWorkbookMacroEnabled. You can look up other arguments
in online help.

Sub Workbooks2()
' This sub shows how to save an open workbook. It mimics the familiar
' Save and SaveAs menu items.
With ActiveWorkbook
' This saves the active workbook under the same name, no questions asked.
.Save

' The SaveAs method requires as arguments information you would
' normally fill out in the SaveAs dialog box.
.SaveAs Filename:="C:\Temp\Test", _

FileFormat: =xIOpenXMLWorkbookMacroEnabled

' Check the name of the active workbook now.
MsgBox “The name of the active workbook is " & .Name
End With
End Sub

If you run this sub from the Workbooks.xlsm file, the SaveAs method will
save a copy of this file in the C:\Temp folder as Test.xlsm and the message in
Figure 8.5 will be displayed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



156 Chapter 8

Figure 8.5 Confirmation of Saved Name

Microsoft Excel =

The name of the active workbook is Testxlsm

A

EXAMPLE 8.3 Locating the Path of a Workbook

When you open a workbook in Excel through the usual interface, you often
need to search through folders to find the file you want to open. This example
illustrates how the path to a file can be specified in VBA. Suppose, as in
Exercise 8.1, that you are writing a sub in one workbook that opens another
workbook. Also, suppose that both of these workbooks are in the same folder
on your hard drive. Then you can use ThisWorkbook.Path to specify the path of
the workbook to be opened. Remember that ThisWorkbook always refers to the
workbook containing the VBA code. It then uses the Path property to specify
the path to this workbook. For example, if the workbook containing the code
is in the folder C:\VBA Examples\Chapter 8, then ThisWorkbook.Path returns
the string "C:\VBA Examples\Chapter 8". If another file in this same folder has
file name Test.xlsx, then you can refer to it with the concatenated string

ThisWorkbook.Path & "\Test.xlIsx"

Note that the second part of this string starts with a backslash. The Path
property does not end with a backslash, so the backslash required for separating
the folder from the filename must begin the literal part of the string.

The Workbooks3 sub illustrates the entire procedure. It assumes that another
file named Customerl.xlsx exists in the same folder as the one in which the
workbook containing the VBA resides.

Sub Workbooks3()
' This sub assumes a file named Customeri.xlsx exists in the
' same folder as the file containing this code. Otherwise,
' an error message will be displayed.
Workbooks.Open ThisWorkbook.Path & "\Customeri.xlIsx"
MsgBox "The Customeri.xlsx file is now open.", vbinformation

Workbooks("Customer1.xlsx").Close
MsgBox "The Customeri.xlsx file is now closed.", vbinformation
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 157

EXAMPLE 8.4 Checking Properties of a Workbook

The Workbooks4 sub illustrates a few properties you can check for an open work-
book. These include its name, its file format, whether it is password-protected,
whether it is an add-in, its path, whether it is read only, and whether it has been
changed since the last time it was saved. Most of these properties will find limited
use, but it nice to know that they are available.

Sub Workbooks4()
' This sub shows some properties you can obtain from an open workbook.
With ActiveWorkbook
' Display the file’s name.
MsgBox "The active workbook is named " & .Name

' Check the file format (.xIsx, .xIlsm, .csv, .xla, and many others).

' Actually, this will display an obscure number, such as 52 for .xlsm.
' You have to search online help to decipher the number.

MsgBox "The file format is " & .FileFormat

' Check whether the file is password protected.
MsgBox “Is the file password protected? " & .HasPassword

' Check whether the file is an add-in, with an .xla extension.
MsgBox "Is the file an add-in? " & .IsAddin

' Check the file’s path.
MsgBox "The path to the file is " & .Path

' Check whether the file is ReadOnly.
MsgBox "Is the file read only? " & .ReadOnly

' Check whether the file has been saved since the last change.
MsgBox "Has the file been changed since the last save? " & .Saved
End With
End Sub

8.5 Examples of Worksheets in VBA

This section presents several examples to illustrate typical operations with work-
sheets. Each example is included in the file Worksheets.xIsm. It contains an
AllStates worksheet (with code name wsAllStates) that lists states in column A
where a company has offices, as shown in Figure 8.6. Then for each state in
the list, there is a sheet for that state that shows where the company’s headquar-
ters are located, how many branch offices it has, and what its sales in the current
year were. For example, there is a sheet named Texas, and it contains the infor-
mation in Figure 8.7. (Actually, the year listed in Figure 8.7 is dynamic; it is the
year when you open the file. See the formula in cell A3.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



158 Chapter 8

Figure 8.6 State List

A B C
States where the company has offices
Michigan
Illinois
Ohio
Massachusetts
California
Minnesota
New York
Indiana
Pennsylvania
Texas

=

Figure 8.7 Information for a Typical State

A [ B
| 1 |Headquarters Dallas
| 2 |Branch offices 4
3 |Sales in 2014 $17,500

EXAMPLE 8.5 Displaying Information on All States

The Worksheets1 sub loops through all sheets other than the AllStates sheet and
displays information about each state in a separate message box. A typical state’s
worksheet is referred to as ws, although any other generic variable name could
be used. The loop excludes the AllStates worksheet by using an If statement to
check whether the worksheet’s code name is not wsAllStates. If this condition is
true—the worksheet’s code name is not wsAllStates—the message is displayed.
(Again, remember that <> means “not equal to.”)

Sub Worksheets1()
Dim ws As Worksheet

' Go through each state and display info for that state.
For Each ws In ActiveWorkbook.Worksheets
With ws
If .CodeName <> "wsAllStates" Then
MsgBox "The headquarters of " & .Name & " is "
& .Range('B1").Value & ", there are " _
& .Range('B2").Value & " branch " _
& "offices, and sales in " & Year(Date) & " were " _
& Format(.Range("B3").Value, "$#,##0") & ".", _
vbinformation, .Name & " info"
End If
End With
Next
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 159

Figure 8.8 Information About a Typical State

0 The headquarters of Texas is Dallas, there are 4 branch offices, and sales

in 2014 were 517.500.

If you run this sub, you will see a message such as the one in Figure 8.8 for
each state.

EXAMPLE 8.6 Displaying States and Headquarters

The Worksheets2 sub is similar to the Worksheets1 sub. It lists all states in the
workbook and their headquarters in a single message box, with each state on a
different line. The new line is accomplished with the built-in constant vbCrLf
(short for carriage return and line feed, from ancient typewriters). Another built-
in constant vbTab is used to indent. Note how string concatenation is used to
build the long message variable.

Sub Worksheets2()
' This sub just lists all of the states and their headquarters.

Dim ws As Worksheet
Dim message As String

message = "The states and their headquarters in this workbook are:"

' Note the built-in vbCrLf constant. It codes in a line break.
For Each ws In ActiveWorkbook.Worksheets
With ws
If .CodeName <> "wsAllStates" Then _
message = message & vbCrLf & .Name & ": " & .Range("B1")
End With
Next

MsgBox message, vbinformation, "State info"
End Sub

When you run this sub, the message in Figure 8.9 is displayed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



160 Chapter 8

Figure 8.9 State and Headquarters Information

State info . w
-

I@I The states and their headquarters listed in this workbock are:
WY Michigan: Detroit
llinois: Chicago
Ohio: Cincinnati
Massachusetts: Boston
California: 5an Jose
Minnesota: 5t Paul
Mew York: New York
Indiana: Indianapolis
Pennsylvania: Philadelphia
Texas: Dallas

EXAMPLE 8.7 Adding a New State

The Worksheets3 sub allows a new state to be added. It first asks the user to spec-
ify a new state not already in the list and then asks the user for information about
this new state. The sub then copies an existing state’s sheet to create a new sheet
(essentially a template), it names the new sheet appropriately, and puts its infor-
mation in cells B2, B3, and B4. Note how the Do loop is used to keep asking
the user for a new state until one not already on the current list is provided.

Sub Worksheets3()
' This sub asks the user for a new state and its information,
' then creates a new sheet for the new state.

Dim isNew As Boolean
Dim newState As String
Dim headquarters As String
Dim nBranches As Integer
Dim sales As Currency
Dim ws As Worksheet

Dim wsNew As Worksheet

' Keep asking for a new state until the user provides one that is new.
Do
newState = InputBox("Enter a new state.", "New state")
isNew = True
For Each ws In ActiveWorkbook.Worksheets
If newState = ws.Name Then
MsgBox "This state already has a worksheet. " _
& "Enter another state.", vbExclamation
isNew = False
Exit For

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 161

End If
Next
Loop Until isNew

' Get the required information for the new state. There is

' no error checking here. It probably should be added to

' check for improper inputs.

headquarters = InputBox("Enter the headquarters of " & newState)

nBranches = InputBox("Enter the number branch offices in " & newState, _
"Branch offices")

sales = InputBox("Enter sales in " & Year(Date) & " in " & newState)

' Add the name of the new state to the list in the AllStates sheet.
wsAllStates.Range("A1").End(xIDown).Offset(1, 0).Value = newState

' Copy the second sheet (or any other state’s sheet) to obtain a new
' sheet, which becomes the active sheet. Then change its name and info.
Worksheets(2).Copy after:=Worksheets(Worksheets.Count)
With ActiveSheet
.Name = newState
.Range("B1").Value = headquarters
.Range("B2").Value = nBranches
.Range("B3").Value = sales
End With
End Sub

Examine the line

wsAllStates.Range("A1").End(xIDown).Offset(1, 0).Value = newState

Starting in cell Al, this line uses .End(xIDown) to go to the bottom of the current
list. Then it uses .Offset(1,0) to go one more row down. This is the first blank cell,
where the name of the new state is placed.

Note also the line

Worksheets(2).Copy after:=Worksheets(Worksheets.Count)

This line makes a copy of the second sheet, the one used as a template, and it
places the copy after the worksheet referred to as Worksheets(Worksheets.Count).
To see the effect of this, assume there are currently eight worksheets. Then
Worksheets.Count is 8, so the copy is placed after Worksheets(8). This means it is
placed just after (to right of) all existing worksheets. This provides the rare exam-
ple where it zs useful to refer to a worksheet by number rather than by name.

EXAMPLE 8.8 Sorting Worksheets

The Worksheets4 sub illustrates how to sort the worksheets for the individual
states in alphabetical order. The trick is to use VBA’s Sort method to sort the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



162 Chapter 8

states in column A of the AllStates sheet. It then uses the Move method of a
worksheet, with the After argument, to move the sheets around according to the
sorted list in the AllStates sheet.

Sub Worksheets4()
' This sub puts the state sheets (not including the AllStates sheet)
' in alphabetical order. It first sorts the states in the AllStates
' sheet, then uses this order.

Dim shtName1 As String
Dim shtName2 As String
Dim cell As Range

' Sort the states in the AllStates sheet.
With wsAllStates
.Range("A1").Sort Key1:=.Range("A1"), Order1:=xlIAscending,
Header:=xIYes
With .Range("A1")
Range(.Offset(1, 0), .End(xIDown)).Name = "States"
End With
End With

' Rearrange the order of the other sheets according to the sorted
" list in the AllStates sheet. shtName1 is always the name of the
' "current" sheet, whereas shtName2 is always the name of the next
' sheet in alphabetical order.
shtName1 = "AllStates"
For Each cell In Range("States")
shtName2 = cell.Value
Worksheets(shtName2).Move after:=Worksheets(shtName1)
shtName1 = shtName2
Next

With wsAllStates
Activate
.Range("A1").Select
End With
MsgBox "State sheets are now in alphabetical order."
End Sub

Pay very close attention to how the For Each loop works because it is typical
of the way programmers learn to think. The worksheet that shtName1 refers to is
initially the AllStates worksheet. After that, shtName1 always refers to the current
worksheet in alphabetical order, and shtName2 refers to the next worksheet in
alphabetical order, which is moved to the right of shtName1. After the move, the
value of the variable shtName1 is replaced by the value of shtName2 to get ready
for the next move. This logic is a bit tricky, especially if you are new to program-
ming. To understand it better, try the following. Open the Worksheets.xlsm file,
get into the VBE, and create watches for the shtName1 and shtName2 variables.
(You do this with the Debug — Add Watch menu item.) Then put your cursor
anywhere inside the Worksheets4 sub and step through the program one line at a
time by repeatedly pressing the F8 key. Once you get toward the bottom of the
sub, you can see in the Watch window how the values of shtName1 and shtName2
keep changing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 163

8.6 Examples of Charts in VBA

The Chart object is one of the trickiest Excel objects to manipulate with VBA. The rea-
son is that a chart has so many objects associated with it, and each has a large number of
properties and methods. If you need to create charts in VBA, it is probably best to
record most of the code and then modify the recorded code as necessary, making fre-
quent visits to online help. Alternatively, you can use the Excel’s chart tools to create
the chart, and then use VBA only to modify the existing chart in some way.

Another reason for the difficulty is that Microsoft keeps changing the rules. As
you are almost certainly aware, both the Excel tools for manipulating charts and the
look of the charts themselves have changed in each new version of Excel: from
2003 to 2007, from 2007 to 2010, and from 2010 to 2013. The VBA code,
including recorded code, hasn’t changed as much, but it has changed. Specifically,
if you are using the recorder to learn VBA code for creating or manipulating charts
in one version of Excel, you might generate some code that will zot work in previ-
ous versions.® For example, if you insert a line chart with the recorder on in Excel
2013, you will generate a line something like the following:

ActiveSheet.Shapes.AddChart2(332, xILineMarkers).Select

When I did this, I was surprised at the AddChart2 method, which I’d never seen
before. I looked it up in online help, and I learned that it was added to the object
model in Excel 2013. So not only do you need to learn something new, but if you use
this method to create a chart, your code won’t work in previous versions of Excel!

This state of affairs presents obvious difficulties for programmers, but there is
no option except to learn as much as possible through recording and online help,
and to be careful that you program for your intended users. For example, if your
intended users are still using Excel 2007 or 2010, you should avoid using code,
like the AddChart2 method, that won’t work in those versions.

The following four examples indicate some of the possibilities. They are based
on the file Modifying Charts.xlsm. This file has monthly sales for several products;
a portion is shown in Figure 8.10. I first used Excel 2013’s chart tools manually (no
VBA) to create a line chart on the same sheet as the data. This chart shows the
monthly time series movement of two of the products, as illustrated in Figure 8.11.
VBA could be used to create this chart from scratch, as I will illustrate shortly, but it
is easier to use VBA to modify an existing chart.

Location of a Chart

The first issue is the location of the chart. As you probably know, a chart can be
placed on a separate chart sheet (a special type of sheet reserved only for charts,
with no rows and columns), or it can be embedded in a worksheet. The choice is

3 Actually, as mentioned in Chapter 4, if you are recording in Excel 2007, you might not get any
recorded code at all.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



164 Chapter 8

Figure 8.10 Monthly Product Sales Data

A B | & | ® E F G H
1 |Month Productl Product2 Product3 Productd Product5 Productsé Product?
2 |Jan-13 791 613 450 434 488 400 539
3 fFeEJ—13 781 643 646 548 442 652 423
4 Mar-13 520 631 488 622 513 545 726
5 ;Apr—13 635 615 568 709 636 461 623
B ;May—IB 418 463 433 523 548 635 420
T Ejun—13 431 504 580 540 767 487 631
8 [Jul-13 786 534 450 408 633 704 708
9 ;Aug-l3 695 734 618 S64 620 453 553
10 ;Sep—13 547 671 699 721 657 448 760

Figure 8.11 Sales Chart of Two Selected Products

Sales of Selected Products

T
o
@
2
=
=]
300
200
—@— Product1
100 —l— Product2 | |
0 T T T T T T T T T T T T T
(\'\‘b 2 {,{b NSRSV d\v X {,\b‘ P Q'\(o o
WY O E Y

Month

usually a matter of taste. (If you are using Excel’s tools, you make this choice in
the Design ribbon under the Chart Tools group.) In the first case, assuming the
name of the chart sheet is SalesChart, you would refer to it in VBA as Charts
("SalesChart"). Here, Charts is the collection of all chart sheets, and it is followed
by the name of the particular chart sheet. Alternatively, if you give it a code name
such as chtSales, you can refer directly to the code name.

In the second case, assuming this chart has been named Sales and the code
name of the worksheet is wsSales, you must first refer to the object “containing”
the chart.* This container is called a ChartObject object. The Chart object itself is

*You can change the name of the chart by selecting the chart and entering a name in the Name box
to the left of the Formula bar.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 165

then one step down the hierarchy from the ChartObject object, and you can refer to
it in code as wsSales.ChartObjects("Sales").Chart. Admittedly, it is confusing and
probably sounds like double-talk, but just think of a ChartObject object as floating
above a worksheet’s cells. This object’s only purpose is to hold a Chart object. You
can resize and move the ChartObject containers, and then you can manipulate the
properties of the underlying chart, such as its axes and its legend. Finally, just to
make sure the point is clear, remember that the ChartObject object is relevant only
for charts placed on a worksheet. It is not relevant for chart sheets.

EXAMPLE 8.9 Displaying Properties of a Chart

The Charts1 sub works with the Sales chart in the Sales worksheet of the
Modifying Charts.xlsm file. Remember that the chart itself was not created
with VBA. The VBA below simply displays properties of the chart that already
exists. It first refers to the ChartObject container and displays its Left, Top, Height,
and Width properties. These are properties of many objects in Excel that can be
moved and resized, and they are always measured in points, where a point is
1/72 of an inch. Top is the distance from the top of the container to the top of
row 1, Left is the distance from the left of the container to the left of column A,
and Height and Width are the height and width of the container.

The Charts1 code indicates the hierarchy in charts. At the top is the Chart-
Object object. Below it is the Chart object. Below it are a number of objects: the
two Axis objects (xICategory for the horizontal axis, xIValue for the vertical axis), a
Series object for each series plotted, a SeriesCollection object for the collection of
all series plotted, a Legend object, and others. Of course, all of these have plenty
of properties and a few methods. The Charts1 sub indicates only a few of them.

When working with charts in VBA, I find it very useful to Set object variables
for the various objects down the hierarchy, in this case chtObj, cht, ser, axH and
axV. As I have learned from many frustrating sessions, this has two benefits.
First, it makes the code more readable. Second and perhaps more important, it
guarantees Intellisense. In this example, if you type cht.Axes(xIValue) and then a
period, you won’t get any Intellisense to help with Axis objects. However, if you
Set an Axis object, such as axH, you will get Intellisense when you type axH fol-
lowed by a period. With so many confusing properties for objects in charts, this
Intellisense help is invaluable.

When you run this sub, you will get some strange results, due to built-in
Excel constants. For example, the ChartType property in this example returns 65,
the index for a line chart of the type shown. Fortunately, you never have to learn
these numbers. When you want to set the chart type, you can type cht.ChartType
and then a period, and Intellisense will give you a list of all the built-in constant
names. In this case, 65 is equivalent to xlLineMarkers. (In more technical terms,
when you read a property, as has been done here, you will see a number
that makes no sense. But when you write a property, you can refer to it by its
meaningful name.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



166 Chapter 8

Sub Charts1()
' This sub illustrates some of the properties of a chart. The chart already
' exists (was built with Excel’s chart tools) on the Sales sheet.
Dim message As String
Dim chtObj As ChartObject
Dim cht As Chart
Dim ser As Series, serCount As Integer
Dim axH As Axis, axV As Axis

Set chtObj = wsSales.ChartObjects("Sales")
Set cht = chtObj.Chart

Set axH = cht.Axes(xICategory)

Set axV = cht.Axes(xIValue)

message = "Here are some properties of the chartobject." & vbCrLf
With chtObj
message = message & vbCrLf & "Left: " & .Left
message = message & vbCrlLf & "Top: " & .Top
message = message & vbCrlLf & "Height: " & .Height
message = message & vbCrLf & "Width property: " & .Width
message = message & vbCrLf & "Name: " & .Name
End With
MsgBox message, vbinformation

message = "Here are some properties of the chart." & vbCrLf
With cht
message = message & vbCrLf & "ChartType: " & .ChartType
message = message & vbCrLf & "HasLegend: " & .HasLegend
message = message & vbCrLf & "HasTitle: " & .HasTitle
If .HasTitle Then _
message = message & vbCrlLf & "Title: " & .ChartTitle.Text
message = message & vbCrLf & "Number of series plotted: " _
& .SeriesCollection.Count
End With
MsgBox message, vbinformation

message = "Here are some properties of the series in the chart." & vbCrLf
For Each ser In cht.SeriesCollection
serCount = serCount + 1
With ser
message = message & VbCrLf & "Name of series " _
& serCount & ": " & .Name
message = message & VbCrLf & "MarkerSize for series " _
& serCount & " " & .MarkerSize
message = message & vbCrLf & "MarkerBackgroundColor for series "
& serCount & ": " & .MarkerBackgroundColor
message = message & VvbCrLf & "MarkerForegroundColor for series " _
& serCount & ": " & .MarkerForegroundColor
message = message & VvbCrLf & "MarkerStyle for series " _
& serCount & ": " & .MarkerStyle
message = message & vbCrLf
End With
Next
MsgBox message

message = "Some properties of the horizontal axis:" & vbCrLf
With axH
message = message & vbCrlLf & "Format of tick labels:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




Working with Other Excel Objects 167

& .TickLabels.NumberFormat
If .HasTitle Then
message = message & vbCrLf & "Title: " & .AxisTitle.Text
message = message & vbCrLf & "Font size of title: " _
& .AxisTitle.Font.Size
Else
message = message & vbCrLf & "Horizontal axis has no title."
End If
End With
MsgBox message

message = "Some properties of the vertical axis:" & vbCrLf
With axV
If .HasTitle Then
message = message & vbCrLf & "Title: " & .AxisTitle.Text
message = message & vbCrLf & "Font size of title: " _
& .AxisTitle.Font.Size
Else
message = message & vbCrLf & "Vertical axis has no title."
End If
message = message & vbCrLf & "Minimum scale: " & .MinimumScale
message = message & vbCrLf & "Maximum scale: " & .MaximumScale
End With
MsgBox message
End Sub

EXAMPLE 8.10 Changing Properties of a Chart

The previous sub simply displays the current values of various chart properties.
The Charts2 sub modifies the chart. Specifically, it allows the user to choose
which two products (out of the seven available) to plot. It uses the SeriesCollec-
tion object, which is one step down the hierarchy from the Chart object. In gen-
eral, a chart plots a number of Series objects, labeled SeriesCollection(1),
SeriesCollection(2), and so on. The properties of each series can be changed, as
described in the comments in the sub, to plot different data. Specifically, the
Values property designates the data range for the series (a Range object), the
XValues property designates the range for the values on the horizontal axis
(another Range object), and the Name property is a descriptive name for the
series that is used in the legend. Note that the data ranges in the Sales sheet
have already been range-named Productl through Product?. These range names
are used in the sub. Also, note how the line

.Name = Range("Product" & productindex1).Cells(1).Offset(-1, 0).Value

uses .Cells(1) to go to the first sales figure in a product range and then uses .Offset
(-1,0) to go one row above to find the product’s name, such as Productl.

Sub Charts2()
' This sub allows you to change the product columns (two of them)
' charted. It assumes the chart currently has two series plotted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



168 Chapter 8

Dim productindex1 As Integer
Dim productindex2 As Integer
Dim chtObj As ChartObject
Dim cht As Chart

Dim ser As Series

MsgBox "You can choose any two of the products to plot versus time."
productindex1 = InputBox("Enter the index of the first " _
& "product to plot (1 to 7)")
productindex2 = InputBox("Enter the index of the second product " _
& "to plot (1 to 7, not " & productindex1 & ")")

' Note that the columns of data already have range names
' Product1, Product2, etc.

Set chtObj = wsSales.ChartObjects("Sales")

Set cht = chtObj.Chart

With cht

Set ser = .SeriesCollection(1)

With ser
' The Values property indicates the range of the data
' being plotted. The XValues property indicates the values
' on the X-axis (in this case, the months). The Name property
' is the name of the series (which is shown in the legend).
' This name is found in row 1, right above the first cell in
' the corresponding Product range.
.Values = Range("Product" & productindex1)
XValues = Range("Month")
.Name = Range("Product" & productindex1) _

.Cells(1).Offset(-1, 0).Value
End With

' The XValues property doesn’t have to be set again, since
' both series use the same values on the horizontal axis.
Set ser = .SeriesCollection(2)
With .SeriesCollection(2)
.Values = Range("Product" & productindex2)
.Name = Range("Product" & productindex2) _
.Cells(1).Offset(-1, 0).Value
End With
End With
End Sub

EXAMPLE 8.11 More Properties and Methods of Charts

The Charts3 sub indicates some further possibilities when working with charts.
Try running it to see the effects on the chart. I got the part about the plot area
and grid lines from recording. However, something strange occurs. If you run
this sub by clicking the Run Charts3 button on the worksheet, the plot area and
grid lines do not change as they should. However, if you step through the code in
the VBE, they do change. This same behavior occurred in Excel 2010 (as men-
tioned in the previous edition of the book), and it still occurs in Excel 2013. 1
still don’t know why, or how to fix it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 169

Sub Charts3()
' This sub shows some other things you can do to
' fine tune charts. In general, you learn some of the
' coding from recording, some from the Object Browser.

Dim red1 As Integer, green1 As Integer, bluel As Integer
Dim red2 As Integer, green2 As Integer, blue2 As Integer
Dim chtObj As ChartObject

Dim cht As Chart

Dim ser As Series

Dim ax As Axis

' Use this next statement so that the random colors chosen
' later on will be different from run to run.
Randomize

Set chtObj = wsSales.ChartObjects("Sales")
Set cht = chtObj.Chart

With cht

' Change properties of plot area.

With .PlotArea.Format.Fill
MsgBox "The plot area will be changed from blank to gray."
.ForeColor.ObjectThemeColor = msoThemeColorBackground1
.ForeColor.Brightness = -0.150000006
.Visible = msoTrue

End With

MsgBox "It will now be restored to blank."
.PlotArea.Format.Fill.Visible = msoFalse

' Remove and restore grid lines.

Set ax = .Axes(xIValue)

With ax.MajorGridlines.Format.Line
MsgBox "The horizontal grid lines will be deleted."
.Visible = msoFalse

MsgBox "They will now be restored."
.Visible = msoTrue
End With

' Generate two random colors (with no green in the first,

' no red in the second).

MsgBox "The two series will now change to some random colors."
red1 = Int(Rnd * 255)

green1 = 0
bluel = Int(Rnd * 255)
red2 = 0

green2 = Int(Rnd * 255)
blue2 = Int(Rnd * 255)

' Change some colors in the chart.

Set ser = .SeriesCollection(1)

With ser
.Border.Color = RGB(red1, greeni, bluel)
.MarkerBackgroundColor = RGB(red1, greent, bluel)
.MarkerForegroundColor = RGB(red1, greeni, bluel)

End With

Set ser = .SeriesCollection(2)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




170 Chapter 8

With ser
.Border.Color = RGB(red2, green2, blue2)
.MarkerBackgroundColor = RGB(red2, green2, blue2)
.MarkerForegroundColor = RGB(red2, green2, blue2)
End With
End With
End Sub

EXAMPLE 8.12 Adding Multiple Series to the Chart

The Charts4 sub generalizes the Charts2 sub. It allows the user to choose which
of the seven products to chart. It begins by clearing all series from the chart.
Then for the first series chosen, it inserts the horizontal axis month labels. (This
needs to be done only for the first series; the other series share the same
months.) Then the user gets to choose which series to chart. Note that the Do
loop forces the user to select at least one series to chart.

Sub Charts4()
' This sub generalizes Charts2 to allow any number of
' products to be charted.
Dim i As Integer, nChosen As Integer
Dim nProducts As Integer
Dim chtObj As ChartObject
Dim cht As Chart
Dim ser As Series
Dim serColl As SeriesCollection
Dim isFirst As Boolean
Dim dataRange As Range
Dim monthRange As Range

Set chtObj = wsSales.ChartObjects("Sales")
Set cht = chtObj.Chart

' Count number of products.
With wsSales.Range("A1")

nProducts = Range(.Offset(0, 1), .End(xIToRight)).Columns.Count
End With

' Clear all series from chart.

For Each ser In cht.SeriesCollection
ser.Delete

Next

' Only need to set the date range for X axis for the first series.
isFirst = True
With wsSales.Range("A1")

Set monthRange = Range(.Offset(1, 0), .End(xIDown))

End With
Do
nChosen = 0
For i = 1 To nProducts

If MsgBox("Do you want to plot product " & i & "?", vbYesNo) = vbYes Then
nChosen = nChosen + 1
With wsSales.Range("A1")

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




Working with Other Excel Objects 171

Set dataRange = Range(.Offset(1, i), .Offset(1, i).End(xIDown))
End With
Set serColl = cht.SeriesCollection
Set ser = serColl.NewSeries
With ser
.Name = "Product" & i
.Values = dataRange
If isFirst Then
XValues = monthRange
isFirst = False
End If
End With
End If
Next
If nChosen = 0 Then _
MsgBox "Try again. You must choose at least one product.”, vbExclamation
Loop Until nChosen >= 1
End Sub

EXAMPLE 8.13 Creating a Chart

This example is based on the file Creating Charts.xIsm. It starts with the data in
Figure 8.12 and nothing else—no existing charts. It illustrates how you can create
a chart from scratch with VBA, and it illustrates two other useful features of charts.
First, different series can have different chart types. Second, if two series of very dif-
ferent magnitudes are charted, they can have different vertical axes, one on the left
and one on the right. The axis on the right is then called a secondary axis. After
running the code in this file, the chart in Figure 8.13 is created.
There are two keys to the code for this example. The first is the line

Set chtObj = wsSales.ChartObjects.Add(l, t, w, h)

Figure 8.12 Data for Chart

A _ B _ C
1 |Month Productl Product2
2 Jan-13 791 613000
3 | Feb-13 JE1 649000
4 Mar-13 320 631000
5 | Apr-12 g3s 615000
6 May-13 418 463000
7 _ Jun-13 431 504000
8 Jul-13 786 534000
9 _ Aug-13 ga5 734000
10 Sep-13 547 671000
11 [ Oct-13 703 580000
12 Mow-13 579 653000
13 [ Dec-13 601 592000

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



172 Chapter 8

Figure 8.13 Chart Created with VBA

900 800000
800 - 700000
700 7 - 600000
600 -

- 500000
500 -

- 400000
400 -

- 300000
300 -
200 - 200000
100 ~ 100000

0 -0

PN\ TN C I\ I\ I\ S\ NN N N\

’ ’ ’

X
: ) ; ; ; : N ; ;
S S I T A R A A= AR N N

= Product2  —€@— Producti |

This line creates a new ChartObject object and stores it in the object variable chtObj.?
This requires the left, top, width, and height arguments for positioning and
sizing the chart. After this line executes, you will see an empty rectangle on the
worksheet, but no chart. The rest of the code fills in the chart.

The second key is the following code:

Set serColl = .SeriesCollection
Set ser = serColl.NewSeries

The first line defines the object variable serColl, which ensures that you get Intel-
lisense in the second line. The second line creates a new series and stores it in the
object variable ser. From then on, when you type ser followed by a period, you
get Intellisense on Series objects.

Here is the entire CreateChart sub:

Sub CreateChart()
' This sub creates a chart from scratch.
Dim topCell As Range
Dim chtObj As ChartObject
Dim cht As Chart

Remember from earlier in this section that you can use the AddChart2 method in Excel 2013, but
then your code wouldn’t work in previous versions of Excel.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects

Dim serColl As SeriesCollection
Dim ser As Series

' Delete the old chart (if there is one).
On Error Resume Next
wsSales.ChartObjects("Sales").Delete

' The following (left, top, width, height) are for positioning and

' sizing a chart. They are used (always in this order) for positioning
' and sizing a lot of objects that "float above" the worksheet.

Dim | As Single, t As Single, w As Single, h As Single

Set topCell = wsSales.Range("A1")

' Start one column to the right of the data and in row 3.
| = topCell.End(xIToRight).Offset(0, 2).Left
t = Rows(3).Top

w = 500
h

Set chtObj = wsSales.ChartObjects.Add(l, t, w, h)
With chtObj

.Name = "Sales"

Set cht = .Chart

End With

With cht
.HasLegend = True
Set serColl = .SeriesCollection
Set ser = serColl.NewSeries
With ser

.Name = topCell.Offset(0, 1).Value
XValues = Range(topCell.Offset(1, 0), topCell.End(xIDown))
.Values = Range(topCell.Offset(0, 1), topCell.Offset(0, 1).End(xIDown))
' Each series can have its own chart type.
.ChartType = xlLineMarkers

End With

Set ser = serColl.NewSeries

With ser
.Name = topCell.Offset(0, 2).Value
.Values = Range(topCell.Offset(0, 2), topCell.Offset(0, 2).End(xIDown))
.ChartType = xIColumnClustered
' Use a secondary axis on the right for this series.
.AxisGroup = xISecondary

End With

End With

End Sub

173

Speaking from extensive experience in getting chart code wrong in every con-
ceivable way, I urge you to mimic the code in the above examples. By using
object variables for chartobjects, charts, series, and so on, you avoid the frustra-
tion of typing a perfectly good reference, like cht.SeriesCollection(1) and then a
period, and not getting Intellisense. I hope this will improve in future versions of

Excel, but for now, object variables are definitely the way to go.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



174  Chapter 8

8.7 Summary

This chapter has built upon your knowledge of Range objects from Chapter 6. It is
necessary to be able to manipulate workbooks, worksheets, and charts with VBA
code in many applications, and this chapter has illustrated some of the most useful
techniques for doing so. At this point, it is not important that you memorize all the
properties and methods of these objects. It is more important that you have some
feeling for what is possible and that you know how to find help when you need it.
You can always revisit the examples in this chapter to search for key details, and you
can always try the recorder or visit the Object Browser for online help.

EXERCISES

1. Suppose you have a lot of Excel files currently open. You would like to count the
number of these files that contain a worksheet with the name Revenues. Write a
sub that reports the result in a MsgBox.

2. Repeat the previous exercise, but now count the number of files that contain a
worksheet with Revenue somewhere in the name. For example, this would
include sheets with names “2005 Revenues” and “Revenues for Quarter 1”.

3. Write a general purpose sub that opens a particular workbook, such as
C:\MyFiles\Company Data.xlsx, adds a new worksheet named Formula List
after the original worksheets, and then goes through all of the original worksheets
hunting for cells with formulas. Each time it finds a formula, it enters information
about it in a new row of the Formula List worksheet. Specifically, it records the
worksheet’s name in column A, it enters the formula as a string in column B,
and it enters the formula’s value in column C. (Hint: To check whether a cell
contains a formula, use VBA’s HasFormula property of a range.)

4. Write a sub that counts the number of worksheets in a particular (open) work-
book and also counts the number of sheets. Note that the Worksheets collection
includes only worksheets (those with rows and columns), whereas the Sheets col-
lection contains worksheets and chart sheets. Then test your sub by creating a
workbook with some worksheets and at least one chart sheet and running your
sub on it.

5. The file Chart Example.xlsx contains two sheets. The first sheet is a worksheet
that contains some data and four column charts based on the data. The second
sheet is a chart sheet that is also based on the data. Write a sub that counts the
number of ChartObject objects in the workbook and also counts the number of
Chart objects in the workbook. The counts should be 4 and 5, respectively.

6. Open a new workbook and insert a module in this workbook. Then write a sub
that does the following: (1) It opens some workbook that you know exists on
your hard drive—you can choose which one; (2) it displays a message indicating
the number of worksheets in this workbook; (3) it closes the workbook; and
(4) it tries to open a workbook that you know does not exist on your hard drive.
What happens when it tries to open this latter workbook?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Other Excel Objects 175

7. Open a new workbook and save it under any name you like. Then write a sub
that displays a message like: “The name of this workbook is _, and it was created
by _.” The underscores in this message should be filled in by appropriate proper-
ties of the ActiveWorkbook (or the Application) object. (Hint: Look up the
BuiltinDocumentProperties property of a workbook. This provides one way to get
the author’s name, but this isn’t the only way.)

8. Suppose you have a folder on your hard drive that contains a number of Excel
files with the names Customerl.xlsx, Customer2.xlsx, and so on. You are not
sure how many such files there are, but you know they are named this way, with
consecutive integers. Write a sub to open each file, one at a time, save it under a
new name, and then close it. The new names should be CustomerOrdersl.xlsx,
CustomerOrders2.xlsx, and so on.

9. Continuing the previous exercise, suppose you want to check whether the Cus-
tomer files are “read only.” Write a sub that counts the number of Customer
files in the folder and the number of them that are read only and then displays
this information in a message.

10. The file Cities.xIsx contains an AllCities sheet that lists all cities where a company
has offices. Write a sub that does the following: (1) For each city in the list, it
checks whether there is a worksheet with the name of that city in the workbook,
and if there isn’t one, it adds one; and (2) it deletes any city worksheet if the
worksheet’s name is not in the current AllCities list. The sub should be written
so that it can be run at any time and will always respond with the current list of
cities in the AllCities sheet. ( Note: Your sub should also work if the AllCities list
contains exactly one city or no cities.)

11. The Data worksheet in the file Product Info.xIsx lists information on various
software packages a company sells. Each product has an associated category listed
in column B. Write a sub that creates a worksheet for each category represented
in the list, with the name of the worksheet being the category, such as Business.
For each category worksheet, it should enter the product names and their prices
in columns A and B, starting in row 4. Each category worksheet should have an
appropriate label, such as “Products in the Business category”, in cell Al; it
should have labels “Product” and “Price” in cells A3 and B3; and the column
width for its column A should be the same as the column width of column A in
the Data worksheet. (Note that there are only three categories represented in the
current data. However, the program should be written so that it works for any
number of categories—and any number of products—that might be present.)

12. The Data worksheet in the file Product Purchases.xlsx has unit prices for all
software packages a mail-order company sells. It also has an Invoice worksheet.
Whenever the company takes an order from a customer, the order taker gets the
customer’s name, the date, and the quantity of each product the customer wants
to purchase. These quantities are written in column C of the Data worksheet. The
information in this worksheet is then used to create an invoice for the customer in
the Invoice worksheet. The current Invoice worksheet is a “template” for a gen-
eral invoice. You should write two subs, ClearOld and Createlnvoice, and attach
them to the buttons at the top of the Data worksheet. They should do the
following.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



176 Chapter 8

a. The ClearOld sub should clear any quantities from a previous order from col-
umn C of the Data worksheet. It should also clear any old data from the
Invoice worksheet from row 5 down.

b. The Createlnvoice sub should be run right after the order taker has gotten
the information from the customer and has entered quantities in column C
of the Data worksheet. (When you test your macro, you should first enter
some quantities in column C.) The sub should use input boxes to ask for
the customer’s name and the date, and it should use these to complete the
labels in cells Al and A2 of the Invoice worksheet. It should then transfer
the relevant data about products (only those ordered) to the Invoice work-
sheet, it should calculate the prices for each product ordered (unit price
times quantity ordered), and it should calculate the tax on the order (5%
sales tax) and the total cost of the order, including tax, in column D, right
below the prices of individual products, with appropriate labels in column C
(such as “5% sales tax” and “Total Cost”).

c.  Asa finishing touch, add some code to the Createlnvoice sub to print the fin-
ished invoice. (Although the chapter didn’t discuss printing, you should be
able to discover how to do it, either by using the recorder or by looking it
up in online help.)

13. The file Sales Chart Finished.xlsm has monthly data on two products, a corre-
sponding chart and four buttons. The ranges of the product data in columns B
and C are range-named Productl and Product2. To understand what you are
supposed to do, open this file and click the buttons. It should be clear what’s
going on. However, the code behind the buttons is password-protected. Your
job is to create similar code yourself in the file Sales Chart.xlsx. This file has the
same chart and same buttons, but there is no code yet (which means that the but-
tons aren’t attached to any macros). This code is tricky, and you will probably
have to look through the code in the examples a few times, as well as online
help, to get everything working correctly. (I did!)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays

9.1 Introduction

Chapter 7 emphasized the benefits of loops for performing repeated tasks. Loops
are often accompanied by the topic of this chapter, arrays. Arrays are lists, where
each element in the list is an indexed element of the array. For example, suppose
you need to capture the names and salaries of your employees, which are
currently listed in columns A and B of a worksheet. Later on in the program,
you plan to analyze them in some way. You might use a loop to go through
each employee in the worksheet, but how do you can store the employee infor-
mation in memory for later processing? The answer is that you can store it in
employee and salary arrays. The name and salary of employee 1 are stored in
employee(1) and salary(1), those for employee 2 are stored in employee(2) and
salary(2), and so on.

A useful analogy is to the small mailboxes you see at a post office. An array
is analogous to a group of mailboxes, numbered 1, 2, and so on. You can put
something into a particular mailbox—that is, into an array element—in a statement
such as

employee(5) = "Bob Jones"

Similarly, you can read the contents of a particular mailbox with a statement
such as

MsgBox "The fifth employee is " & employee(5)

In other words, array elements work just like normal variables, except that
they are indexed. This indexing makes them particularly suitable for looping, as
this chapter illustrates.

9.2 Exercise

The following exercise is typical in its use of arrays. Although there are certainly
ways to do the exercise without arrays, they make the job much easier. Actually,
this exercise is simpler than the examples discussed later in this chapter, but you
should still study the examples before attempting it.

177

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



178 Chapter 9

Exercise 9.1 Aggregating Sales Data

Consider a large appliance/electronics store with a number of salespeople. The
company keeps a spreadsheet listing the names of the salespeople and the dollar
amounts of individual sales transactions. This information is in the file
Transactions.xlsx, as illustrated in Figure 9.1 (with many hidden rows). Periodi-
cally, salespeople are hired and fired. The list in column A is always the most cur-
rent list, and it is always shown in alphabetical order. Column B lists
the corresponding Social Security numbers. The sales data in columns D to F are
sorted by date. Also, some of these sales are for salespeople who are no longer
with the company. That is, some of the Social Security numbers in column D
have no corresponding values in column B.

The purpose of the exercise is to write a program to fill columns H and I
with aggregate dollar amounts for each salesperson currently employed. You can
open the file Transactions Finished.xlsm and click its button to see the results,
which should appear as in Figure 9.2. However, do not look at the VBA code
until you have tried writing the program yourself. Make sure you think through
a solution method before you begin programming. Most important, think about
what arrays you will need and how they will be used.

Figure 9.1 Salespeople and Transaction Data

LA B | €& | D B F | & | H '

1 |Data on sales people Individual sales Aggregated sales
2 |Name Ss# Salesperson SS# Date Dollar amount Salesperson  Dollaramount
3 |Adams 776-61-4492 640-34-5749 1-Mar-15 5323

4 iBarnes 640-34-5749 365-99-1247 1-Mar-15 5260

5 |Cummings 115-12-5882 365-99-1247 1-Mar-15 5305

6 | Davis 736-95-5401 932-62-4204 1-Mar-15 5366

7 |Edwards 880-52-9379 986-38-6372 1-Mar-15 5217

g :Falks 348-79-3515 449-44-7141  1-Mar-15 5294

9 |Gregory 546-44-7576 640-34-5749 1-Mar-15 5289

10 _Highsmi‘th 467-86-5786 769-79-9580 1-Mar-15 460

11 |Invery 765-85-7850 932-62-4204 1-Mar-15 5567

12 _Jacobs 986-38-6372 449-44-7141  1-Mar-15 5970

13 |Ketchings 769-75-9580 919-58-6925 1-Mar-15 5426

14 ELeonard 468-38-8871 115-12-5882 1-Mar-15 5214

15 | Moore 5919-58-6925 546-44-7576  1-Mar-15 5306

16 | Nixon 126-27-9832 467-86-5786 1-Mar-15 5258

17 |Price 631-55-5579 546-44-7576  1-Mar-15 5287

18 iReynoIds 5259-61-3561 765-85-7850 2-Mar-15 5183

19 |Stimson 474-60-8847 640-34-5749 2-Mar-15 5196

20 | Travis 449-44-7141 365-99-1247 2-Mar-15 5322

21 |Vexley 539-55-4012 640-34-5749  3-Mar-15 5180

22 :Wheaton 833-44-9683 474-60-8847 3-Mar-15 5205

23 |Zimmerman 932-62-4204 126-96-8510 3-Mar-15 5286

24 | 126-96-8510 3-Mar-15 5264

?81_ 348-73-3515  23-Jul-15 5333

?82_ 932-62-4204  23-Jul-15 5167

?83_ 952-12-3694  24-Jul-15 5253

?84_ 776-61-4492  24-Jul-15 5211

785 952-12-3694  24-Jul-15 856

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays 179

Figure 9.2 Results

H I J K
1 |Aggregated sales
2 |Salesperson  Dollaramount Firstsale Lastsale
3 Adams $12,429 3/4/2015 7/24/2015
4 |Barnes $11,308 3/1/2015 7/1/2015
5 |Cummings $8,117 3/1/2015 7/20/2015
6 |Davis $9,831 3/7/2015 7/22/2015
7 |Edwards $7,602 3/6/2015 7/16/2015
8 |Falks $9,223 3/4/2015 7/23/2015
9 |Gregary §7,112 3/1/2015 7/18/2015
10 |Highsmith $7,234 3/1/2015 7/14/2015
11 |Invery $9,436  3/2/2015 7/17/2015
12 Jacobs $12,012  3/1/2015 7/21/2015
13 |Ketchings $10,935 3/1/2015 7/23/2015
14 |Leonard $8,765 3/7/2015 7/17/2015
15 |Moare $8,551 3/1/2015 7/22/2015
16 | Nixon $11,374 3/4/2015 7/20/2015
17 | Price $8,055 3/5/2015 7/6/2015
18 |Reynolds $9,246 3/10/2015 7/19/2015
19 |Stimson $10,161 3/3/2015 7/15/2015
20 | Travis $8,202 3/1/2015 7/6/2015
21 |Vexley $8,594 3/7/2015 7/22/2015
22 |Wheaton $9,030| 3/14/2015 7/17/2015
23 |Zimmerman $10,224 3/1/2015 7/23/2015

9.3 The Need for Arrays

Many beginning programmers think that arrays are difficult to master, and they react
by arguing that arrays are not worth the trouble. They are wrong on both counts.
First, arrays are not that difficult. If you keep the mailbox analogy in mind, you
should catch on to arrays quite easily. Second, arrays are definitely not just a luxury
for computer programmers; they are absolutely necessary for dealing with lists.
Consider a slightly different version of the employee salary example from the intro-
duction. Now suppose you would like to go through the list of employees in columns
A and B (again inside a loop) and keep track of the names and salaries of all employees
who make a salary greater than $50,000. Later on, you might want to analyze these
employees in some way, such as finding their average salary.

The easiest way to proceed is to go through the employee list with a
counter initially equal to 0. Each time you encounter a salary greater than
$50,000, you add 1 to the counter and store the employee’s name and salary
in hiPaidEmp and hiSalary arrays. Here is how the code might look (assuming
the employees start in row 2 and the number of employees in the data set is
known to be nEmployees).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



180 Chapter 9

counter = 0
With Range("A1")
For i = 1 To nEmployees
If .Offset(i, 1).Value > 50000 Then
counter = counter + 1
hiPaidEmp(counter) = .Offset(i, 0).Value
hiSalary(counter) = .Offset(i, 1).Value
End If
Next
End With

After this loop is completed, you will know the number of highly paid
employees—it is the final value of counter. More important, you will know the
identities and salaries of these employees. The information for the first highly
paid employee is stored in hiPaidEmp(1) and hiSalary(1), the information for the
second is stored in hiPaidEmp(2) and hiSalary(2), and so on. You are now free to
analyze the data in these newly created lists in any way you like.

Admittedly, there is a nonarray solution to this example. Each time you find a
highly paid employee, you could immediately transfer the information on this
employee to another section of the worksheet (columns D and E, say) rather
than storing it in arrays." Then you could analyze the data in columns D and E
later. In other words, there is usually a way around using arrays—especially if
you are working in Excel, where you can store information in cells of a work-
sheet. However, most programmers agree that arrays represent the best method
for working with lists, not only in VBA but in all other programming languages.
They ofter power and flexibility that simply cannot be achieved without them.

9.4 Rules for Working with Arrays

When you declare a variable with a Dim statement, VBA knows from the variable’s
type how much memory to set aside for it. The situation is slightly different for
arrays. Now, VBA must know how many elements are in the array, as well as
their variable type, so that it can set aside the right amount of memory for the
entire array. Therefore, when you declare an array, you must indicate to VBA
that you are declaring an array of a certain type, not just a single variable. You
must also tell VBA how many elements are in the array. You can do this in the
declaration line or later in the program. Finally, you must indicate what index
you want the array to begin with. Unlike what you might expect, the default
first index is not 1; it is 0. However, you can override this if you like.
Here is a typical declaration of two arrays named employee and salary:

Dim employee(100) As String, salary(100) As Currency
! This same type of comment is true for the other examples in this chapter. However, if the lists are really

long, the array solutions will be considerably faster. Besides, in situations where the lists are extremely
long, the contents might not even fit in a worksheet.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays 181

This line indicates that (1) each element of the employee array is a string variable,
(2) each element of the salary array is a currency variable, and (3) each array has
100 elements. (This assumes an Option Base of 1. See below.)

The Option Base Statement

Surprisingly, unless you add a certain line to your code, the first employee will zot
be employee(1) and the last employee will not be employee(100); they will be
employee(0) and employee(99). This is because the default in VBA is called
0-based indexing.

This means that the indexes of an array are 0, 1, 2, and so on. There is a tech-
nical reason for having 0-based indexing as the default; however, most of us do not
think this way. Most of us prefer 1-based indexing, where the indexes are 1, 2, 3,
and so on. The simple reason is that when we count, we typically begin with 1. If
you want your arrays to be 1-based, you can use the following Option Base line:

Option Base 1

This line should be placed at the top of each of your modules, right below the
Option Explicit line (which, if you remember, forces you to declare your
variables).

Alternatively, if 0-based indexing is in effect, you can override it by indicating
explicitly how you want a particular array to be indexed. The following line shows
how you can do this for the employee and salary arrays.

Dim employee(1 To 100) As String, salary(1 To 100) As Currency

Now the first employee will be employee(1) and the last will be employee(100),
regardless of any Option Base line at the top of the module.? By the way, if you do
not use an Option Base 1 line and declare an array, say, as salary(100), the array will
have 101 elements, indexed 0 to 100. In other words, if you include only one
number inside parentheses, it specifies the largest index, not necessarily the
number of elements in the array.

Dynamic Indexing and Redim

There are many times where you know you need an array, but when you are writ-
ing the code, you have no way of knowing how many elements it will contain. For
example, you might have an InputBox statement near the top of your sub asking the
user for the number of employees at her company. Once she tells you that there are

2 Interestingly, Microsoft’s .NET technology requires programmers to use 0-based indexing—it cannot
be overridden. I doubt that this will happen to VBA in the future because it would break too many
existing VBA programs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



182 Chapter 9

150 employees, then, but not until then, you will know you need an array of size
150. So how should you declare the array in this case? You can do it in two steps.
First, you declare that you need an array, as opposed to a single variable, in the Dim
statement by putting empty parentheses next to the variable name, as in

Dim employee() as String

Then in the body of the sub, once you learn how many elements the array should
have, you use the Redim statement to set aside the appropriate amount of mem-
ory for the array. The following two lines illustrate a typical example.

nEmployees = InputBox("How many employees are in your company?")
Redim employee(1 to nEmployees)

If the user enters 10, the employee array will be of size 10. If she enters 1000, it
will be of size 1000. The Redim statement enables the array to adjust to the pre-
cise size required.

You can actually use the Redim statement as many times as you like in a sub
to readjust the size of the array. (The examples later in the chapter illustrate why
you might want to do this. It is actually quite common.) The only problem is
that when you use the Redim statement to change the size of an array, all of
the previous contents of the array are deleted. This is usually not what you want.
Fortunately, you can override this default behavior with the keyword Preserve, as
in the following lines.

nEmployees = nEmployees + 1
Redim Preserve employee(1 to nEmployees)

These lines would be appropriate if you just discovered that you have one extra
employee, so that you need one extra element in the employee array. To keep from
deleting the names of the previous employees when you redimension the array, you
insert the keyword Preserve in the Redim line. This gives you an extra array element,
but the previous elements retain their current values. If you ever use Redim some-
where in your program and nothing seems to work properly, the chances are that
you forgot a Preserve and your data were deleted. (It has happened to me often.)

Multiple Dimensions

Arrays can have more than one dimension. (The arrays so far have been
one-dimensional.) For example, a two-dimensional array has two indexes, as in
employee(2,18). This might be appropriate if you want to index your employees
by location and by number, so that this refers to the 18th employee at location
2. The main difference in working with multidimensional arrays is that you must
indicate the number of elements for each dimension. As an example, the following

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays 183

line indicates that the employee array requires 10 elements for the first dimension
and 100 for the second dimension:

Dim employee(1 to 10, 1 to 100) As String

Therefore, VBA will set aside 10*100 = 1000 locations in memory for this array.
Note that this counld be quite wasteful. If the first dimension is the employee
location and the second is the employee number at a location, suppose there are
100 employees at location 1 but only 5 at location 2. Then the array elements
employee(2,6) through employee(2,100) are essentially wasted. Even though
today’s computer memory is cheap and abundant, computer programmers worry
about this sort of thing. Therefore, they warn against using multidimensional
arrays unless it is really necessary. You will sometimes see code with two-
dimensional arrays, but you will rarely see arrays with three or more dimensions.

9.5 Examples of Arrays in VBA

The best way to understand arrays—and to appreciate the need for them—is to
look at some examples. The first example is a fairly simple one. The next three
are more challenging and interesting. They are typical of the examples that really
benefit from arrays.

EXAMPLE 9.1 Looking Up a Price

The VLOOKUP and HLOOKUP functions in Excel are very useful for looking
up information in a table. This example illustrates how you can accomplish the
same thing with VBA and arrays. The file Unit Prices.xlsm contains a table of
product codes and unit prices, as shown in Figure 9.3 (with many hidden rows).
We want to write a program that asks the user for a product code. It then
searches the list of product codes for a matching product code. If it finds one, it
displays an appropriate message, such as in Figure 9.4. If it does not find a match,
it displays a message to this effect.

Although there are many ways to write the required program, the LookupPrice
sub listed below illustrates how it can be done with arrays. The number of products
is found first, then the productCode and unitPrice arrays are redimensioned appropri-
ately and a For loop is used to populate these arrays with the data in columns A and
B of the worksheet. Next, after a user specifies a product code, another For loop
searches the productCode array for a match to the requested code. If one is found,
the corresponding element of the unitPrice array is stored in the requestedPrice
variable. In either case an appropriate message is displayed at the end. Note that
the line Option Base 1 is not used at the top of the module, although it could be.
Instead, the two ReDim statements specify the indexing explicitly.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



184 Chapter 9

Figure 9.3 Table of Product Information

A | B [ cC

1 |Table of unit prices for products

2

3 [Product code Unit price

4 L2201 50.99

5 [N1351 34.99

6 [N7622 10.95

7 [B7118 99.95

8 |R1314 105.99
1212|D8665 51.95
1213|R7932 93.95
1214(R8509 14.95
1215|4701 3.95

Figure 9.4 Unit Price of Requested Product

Product found w

Option Explicit

Sub LookupPrice()
Dim productCode() As String
Dim unitPrice() As Currency
Dim i As Integer
Dim found As Boolean
Dim requestedCode As String
Dim requestedPrice As Currency
Dim nProducts As Integer

' Find the number of products, redimension the arrays, and fill them
' with the data in the lists.
With wsData.Range("A3")
nProducts = Range(.Offset(1, 0), .End(xIDown)).Rows.Count
ReDim productCode(1 To nProducts)
ReDim unitPrice(1 To nProducts)
For i = 1 To nProducts
productCode(i) = .Offset(i, 0).Value
unitPrice(i) = .Offset(i, 1).Value
Next
End With

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays 185

' Get a product code from the user (no error checking).
requestedCode = InputBox("Enter a product code (an uppercase letter " _
& "followed by four digits).")

' Look for the code in the list. Record its unit price if it is found.
found = False
For i = 1 To nProducts
If productCode(i) = requestedCode Then
found = True
requestedPrice = unitPrice(i)
Exit For
End If
Next

' Display an appropriate message.
If found Then
MsgBox "The unit price of product code " & requestedCode & "is " & _
Format(requestedPrice, "$0.00"), vbinformation, "Product found"
Else
MsgBox "The product code " & requestedCode & " is not on the list.", _
vblnformation, "Product not found"
End If
End Sub

EXAMPLE 9.2 Keeping Track of Products Sold

A company keeps a spreadsheet of each sales transaction it makes. These transac-
tion data, sorted by date, are listed in columns A to C of the Product Sales.xlsm
file. (See Figure 9.5, which has many hidden rows.) Each row shows the
four-digit code of the product sold, plus the date and dollar amount of the
transaction. Periodically, the company wants to know how many separate
products have been sold, and it wants a list of all products sold, the number of
transactions for each product sold, and the total dollar amount for each product
sold. It wants this list to be placed in columns E, F, and G, and it wants the list
to be sorted in descending order by dollar amount.

Figure 9.5 Transaction Data

A B c

1 |Individual sales data

2 | Product Code Date Amount ($)
3 2508 1/2/2015 469
4| 1111 1/5/2015 481
3 1107 1/6/2015 434
8 | 1119 1/6/2015 596
130 2515 12/23/2015 532
191 1104 12/25/2015 524
132 1111 12/26/2015 535
193 2510 12/30/2015 512

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



186 Chapter 9

Figure 9.6 Number of Products Sold

- s B
Microsoft Excel a3

There are 49 different products that have been sold.

4

The ProductSales sub listed below does the job. When a button is clicked
to run this sub, the message in Figure 9.6 appears, and the list in Figure 9.7 is
created. (This figure does not show all 49 products sold. Some rows have been
hidden.)

The idea behind the program is to loop through the product codes in column
A, which are stored in an array called productCodesData, one at a time. These
are used to build an array called productCodesFound. It eventually contains the
distinct product codes in column A. At each step of the loop, a product code in
column A is compared with all product codes already found. If this product code
has already been found, 1 is added to its number of transactions, and the dollar
amount of the current transaction is added to the total dollar amount for this
product. Otherwise, if the product code has not already been found, an item is
added to the productCodesFound array, the number of transactions for this new
product is set to 1, and its total dollar amount is set to the dollar amount of the
current transaction. Three other arrays facilitate the bookkeeping. The dollarsData
array stores the data in column C, and the transactionsCount and dollarsTotal
arrays store the numbers of transactions and total dollar amounts for all product
codes found.

Figure 9.7 Results

E [ F G
1 |Summary data
2 | Product Code| Quantity| Amount (S)
| 3| 1118 7 3818
4 1106 8 3764
| 5| 2520 7 3696
6 1120 6 3415
| 7| 2505 6 3306
45 2517 2 861
| 46 | 1113 1 735
47 2518 1 637
48 1102 1 581
49 2510 1 512
50 1109 1 451
51 2514 1 342

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays 187

Once all product codes in column A have been examined, the data from
the productCodesFound, transactionsCount, and dollarsTotal arrays are stored in
columns E, F, and G, and they are sorted on column G in descending order.

Again, no Option Base 1 statement is used. Instead, the arrays are dimen-
sioned explicitly (as 1 to nSales, for example).

Option Explicit

Sub ProductSales()
' These are inputs: the number of transactions, the product code for each
' sale, and the dollar amount of each sale.
Dim nSales As Integer
Dim productCodesData() As Integer
Dim dollarsData() As Single

' The following are outputs: the product codes found, the number of transactions
' for each product code found, and total dollar amount for each of them.

Dim productCodesFound() As Integer

Dim transactionsCount() As Integer

Dim dollarsTotal() As Single

' Variables used in finding unique product codes.

Dim isNewProduct As Boolean

Dim nFound As Integer

' Counters.
Dim i As Integer
Dim j As Integer

' Clear any old results in columns E to G.
With wsData.Range("E2")

Range(.Offset(1, 0), .Offset(0, 2).End(xIDown)).ClearContents
End With

' Find number of sales in the data set, redimension the productCodesData and
' dollarsData arrays, and fill them with the data in columns A and C.
With wsData.Range("A2")
nSales = Range(.Offset(1, 0), .End(xIDown)).Rows.Count
ReDim productCodesData(1 To nSales)
ReDim dollarsData(1 To nSales)
For i = 1 To nSales
productCodesData(i) = .Offset(i, 0).Value
dollarsData(i) = .Offset(i, 2).Value
Next
End With

' Initialize the number of product codes found to O.
nFound = 0

' Loop through all transactions.
For i = 1 To nSales

' Set the Boolean isNewProduct to True, and change it to False only
' if the current product code is one already found.
isNewProduct = True
If nFound > 0 Then
' Loop through all product codes already found and compare them
' to the current product code.

Copyright 2016 Cengage Learning. All Rights 