

VBA FOR MODELERS
DEVELOPING DECISION
SUPPORT SYSTEMS WITH

MICROSOFT® OFFICE EXCEL®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

VBA FOR MODELERS
DEVELOPING DECISION
SUPPORT SYSTEMS WITH

MICROSOFT® OFFICE EXCEL®

FIFTH EDITION

S. Christian Albright
Kelley School of Business, Indiana University

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

VBA for Modelers: Developing Decision
Support Systems with Microsoft® Office
Excel®, Fifth Edition
S. Christian Albright

Vice President, General Manager Science,
Math, and Quantitative Business: Balraj Kalsi

Product Director: Joe Sabatino

Product Manager: Aaron Arnsparger

Associate Content Developer: Brad Sullender

Manufacturing Planner: Ron Montgomery

Marketing Manager: Heather Mooney

Art and Cover Direction, Production
Management, and Composition:
Lumina Datamatics, Inc.

Cover Image: © Awstok/Shutterstock

Intellectual Property

Analyst: Christina Ciaramella

Project Manager: Betsy Hathaway

Unless otherwise noted, all items
© Cengage Learning

© 2016, 2012 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2014958175

ISBN: 978-1-285-86961-2

Cengage Learning
20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Printed in the United States of America
Print Number: 01 Print Year: 2015

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-200-203

To my wonderful wife, Mary—she is my best friend and constant companion.
To our talented son, Sam, his equally talented wife, Lindsay, and our two amazing
grandsons, Teddy and Archer. And to Bryn, our dear Welsh corgi who still just
loves to play ball.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

About the Author

Chris Albright got his B.S. degree in Mathematics from Stanford in 1968 and his
Ph.D. degree in Operations Research from Stanford in 1972. Until his retirement
in 2011, he taught in the Operations & Decision Technologies Department in
the Kelley School of Business at Indiana University. His teaching included courses
in management science, computer simulation, and statistics to all levels of busi-
ness students: undergraduates, MBAs, and doctoral students. He has published
over 20 articles in leading operations research journals in the area of applied
probability and he has authored several books, including Practical Management
Science, Data Analysis and Decision Making, Data Analysis for Managers, Spread-
sheet Modeling and Applications, and VBA for Modelers. He jointly developed
StatTools, a statistical add-in for Excel, with the Palisade Corporation. In “retire-
ment,” he continues to revise his books, he works as a consultant for Palisade,
and he has developed a commercial product, Excel Now!, an Excel tutorial.

On the personal side, Chris has been married to his wonderful wife Mary for
43 years. They have a special family in Philadelphia: their son Sam, his wife Lindsay,
and their two sons, Teddy and Archer. Chris has many interests outside the aca-
demic area. They include activities with his family (especially traveling with Mary),
going to cultural events at Indiana University, power walking, and reading. And
although he earns his livelihood from statistics and management science, his real
passion is for playing classical music on the piano.

S. Christian Albright

vi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

Preface xvi

PART I VBA Fundamentals 1

1 Introduction to VBA Development in Excel 3

1.1 Introduction 3
1.2 VBA in Excel 2007 and Later Versions 4
1.3 Example Applications 5
1.4 Decision Support Systems 7
1.5 Required Background 7
1.6 Visual Basic Versus VBA 8
1.7 Some Basic Terminology 9
1.8 Summary 9

2 The Excel Object Model 10

2.1 Introduction 10
2.2 Objects, Properties, Methods, and Events 10
2.3 Collections as Objects 11
2.4 The Hierarchy of Objects 12
2.5 Object Models in General 13
2.6 Summary 17

3 The Visual Basic Editor 18

3.1 Introduction 18
3.2 Important Features of the VBE 18
3.3 The Object Browser 22
3.4 The Immediate and Watch Windows 23
3.5 A First Program 24
3.6 Intellisense 29
3.7 Color Coding and Case 30
3.8 Finding Subs in the VBE 31
3.9 Summary 33

vii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Recording Macros 35

4.1 Introduction 35
4.2 How to Record a Macro 35
4.3 Changes from Excel 2007 to Later Versions 37
4.4 Recorded Macro Examples 37
4.5 Summary 47

5 Getting Started with VBA 49

5.1 Introduction 49
5.2 Subroutines 49
5.3 Declaring Variables and Constants 50
5.4 Built-in Constants 58
5.5 Input Boxes and Message Boxes 59
5.6 Message Boxes with Yes and No Buttons 61
5.7 Using Excel Functions in VBA 63
5.8 Comments 64
5.9 Indenting 65
5.10 Strings 66
5.11 Specifying Objects, Properties, and Methods 70
5.12 With Construction 73
5.13 Other Useful VBA Tips 74
5.14 Good Programming Practices 76
5.15 Debugging 78
5.16 Summary 85

6 Working with Ranges 89

6.1 Introduction 89
6.2 Exercise 89
6.3 Important Properties and Methods of Ranges 91
6.4 Referencing Ranges with VBA 94
6.5 Examples of Ranges with VBA 97
6.6 Range Names and Their Scope 111
6.7 Summary 114

7 Control Logic and Loops 117

7.1 Introduction 117
7.2 Exercise 117
7.3 If Constructions 120
7.4 Case Constructions 126
7.5 For Loops 129
7.6 For Each Loops 136
7.7 Do Loops 138
7.8 Summary 143

viii Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 Working with Other Excel Objects 149

8.1 Introduction 149
8.2 Exercise 149
8.3 Collections and Members of Collections 151
8.4 Examples of Workbooks in VBA 153
8.5 Examples of Worksheets in VBA 157
8.6 Examples of Charts in VBA 163
8.7 Summary 174

9 Arrays 177

9.1 Introduction 177
9.2 Exercise 177
9.3 The Need for Arrays 179
9.4 Rules for Working with Arrays 180
9.5 Examples of Arrays in VBA 183
9.6 Array Functions 199
9.7 Summary 199

10 More on Variables and Subroutines 204

10.1 Introduction 204
10.2 Exercise 204
10.3 Scope of Variables and Subroutines 207
10.4 Modularizing Programs 209
10.5 Passing Arguments 213
10.6 Function Subroutines 219
10.7 The Workbook_Open Event Handler 225
10.8 Summary 226

11 User Forms 231

11.1 Introduction 231
11.2 Exercise 231
11.3 Designing User Forms 234
11.4 Setting Properties of Controls 238
11.5 Creating a User Form Template 242
11.6 Writing Event Handlers 243
11.7 Looping Through the Controls on a User Form 254
11.8 Working with List Boxes 255
11.9 Modal and Modeless Forms 256
11.10 Working with Excel Controls 258
11.11 Summary 262

Contents ix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 Error Handling 268

12.1 Introduction 268
12.2 Error Handling with On Error Statement 268
12.3 Handling Inappropriate User Inputs 270
12.4 Summary 272

13 Working with Files and Folders 275

13.1 Introduction 275
13.2 Exercise 275
13.3 Dialog Boxes for File Operations 277
13.4 The FileSystemObject Object 283
13.5 A File Renaming Example 286
13.6 Working with Text Files 289
13.7 Summary 293

14 Importing Data into Excel from a Database 295

14.1 Introduction 295
14.2 Exercise 295
14.3 A Brief Introduction to Relational Databases 297
14.4 A Brief Introduction to SQL 302
14.5 ActiveX Data Objects (ADO) 306
14.6 Discussion of the Sales Orders Exercise 311
14.7 Summary 315

15 Working with Pivot Tables and Tables 317

15.1 Introduction 317
15.2 Working with Pivot Tables Manually 317
15.3 Working with Pivot Tables Using VBA 327
15.4 An Example 329
15.5 PowerPivot and the Data Model 335
15.6 Working with Excel Tables Manually 337
15.7 Working with Excel Tables with VBA 340
15.8 Summary 344

16 Working with Ribbons, Toolbars, and Menus 346

16.1 Introduction 346
16.2 Customizing Ribbons 347
16.3 Using RibbonX and XML to Customize Ribbons 348
16.4 Using RibbonX to Customize the QAT 354
16.5 CommandBar and Related Office Objects 356
16.6 A Grading Program Example 357
16.7 Summary 358

x Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17 Automating Solver and Other Applications 360

17.1 Introduction 360
17.2 Exercise 361
17.3 Automating Solver with VBA 363
17.4 Possible Solver Problems 373
17.5 Programming with Risk Solver Platform 375
17.6 Automating @RISK with VBA 378
17.7 Automating Other Office Applications with VBA 383
17.8 Summary 389

18 User-Defined Types, Enumerations, Collections,

and Classes 393

18.1 Introduction 393
18.2 User-Defined Types 393
18.3 Enumerations 395
18.4 Collections 396
18.5 Classes 399
18.6 Summary 406

PART II VBA Management Science Applications 409

19 Basic Ideas for Application Development with VBA 411

19.1 Introduction 411
19.2 Guidelines for Application Development 411
19.3 A Car Loan Application 416
19.4 Summary 435

20 A Blending Application 437

20.1 Introduction 437
20.2 Functionality of the Application 437
20.3 Running the Application 438
20.4 Setting Up the Excel Sheets 445
20.5 Getting Started with the VBA 445
20.6 The User Forms 447
20.7 The Module 451
20.8 Summary 452

Contents xi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21 A Product Mix Application 454

21.1 Introduction 454
21.2 Functionality of the Application 455
21.3 Running the Application 455
21.4 Setting Up the Excel Sheets 458
21.5 Getting Started with the VBA 458
21.6 The User Form 459
21.7 The Module 461
21.8 Summary 471

22 A Worker Scheduling Application 475

22.1 Introduction 475
22.2 Functionality of the Application 475
22.3 Running the Application 476
22.4 Setting Up the Excel Sheets 479
22.5 Getting Started with the VBA 480
22.6 The User Form 481
22.7 The Module 484
22.8 Summary 486

23 A Production-Planning Application 488

23.1 Introduction 488
23.2 Functionality of the Application 488
23.3 Running the Application 489
23.4 Setting Up the Excel Sheets 496
23.5 Getting Started with the VBA 498
23.6 The User Forms 499
23.7 The Module 504
23.8 Summary 511

24 A Transportation Application 513

24.1 Introduction 513
24.2 Functionality of the Application 514
24.3 Running the Application 514
24.4 Setting Up the Access Database 516
24.5 Setting Up the Excel Sheets 519
24.6 Getting Started with the VBA 519
24.7 The User Form 521
24.8 The Module 523
24.9 Summary 531

xii Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25 A Stock-Trading Simulation Application 534

25.1 Introduction 534
25.2 Functionality of the Application 535
25.3 Running the Application 535
25.4 Setting Up the Excel Sheets 538
25.5 Getting Started with the VBA 540
25.6 The Module 541
25.7 Summary 546

26 A Capital Budgeting Application 548

26.1 Introduction 548
26.2 Functionality of the Application 549
26.3 Running the Application 549
26.4 Setting Up the Excel Sheets 551
26.5 Getting Started with the VBA 553
26.6 The User Form 554
26.7 The Module 555
26.8 Summary 560

27 A Regression Application 562

27.1 Introduction 562
27.2 Functionality of the Application 562
27.3 Running the Application 563
27.4 Setting Up the Excel Sheets 565
27.5 Getting Started with the VBA 566
27.6 The User Form 567
27.7 The Module 569
27.8 Summary 574

28 An Exponential Utility Application 576

28.1 Introduction 576
28.2 Functionality of the Application 577
28.3 Running the Application 577
28.4 Setting Up the Excel Sheets 578
28.5 Getting Started with the VBA 582
28.6 The User Form 582
28.7 The Module 585
28.8 Summary 589

Contents xiii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29 A Queueing Simulation Application 590

29.1 Introduction 590
29.2 Functionality of the Application 591
29.3 Running the Application 591
29.4 Setting Up the Excel Sheets 593
29.5 Getting Started with the VBA 593
29.6 Structure of a Queueing Simulation 594
29.7 The Module 596
29.8 Summary 606

30 An Option-Pricing Application 608

30.1 Introduction 608
30.2 Functionality of the Application 609
30.3 Running the Application 609
30.4 Setting Up the Excel Sheets 612
30.5 Getting Started with the VBA 615
30.6 The User Form 616
30.7 The Module 621
30.8 Summary 632

31 An Application for Finding Betas of Stocks 634

31.1 Introduction 634
31.2 Functionality of the Application 634
31.3 Running the Application 635
31.4 Setting Up the Excel Sheets 638
31.5 Getting Started with the VBA 639
31.6 The User Form 640
31.7 The Module 644
31.8 Summary 651

32 A Portfolio Optimization Application 653

32.1 Introduction 653
32.2 Functionality of the Application 654
32.3 Running the Application 654
32.4 Web Queries in Excel 659
32.5 Setting Up the Excel Sheets 661
32.6 Getting Started with the VBA 662
32.7 The User Forms 663
32.8 The Module 667
32.9 Summary 678

xiv Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

33 A Data Envelopment Analysis Application 680

33.1 Introduction 680
33.2 Functionality of the Application 680
33.3 Running the Application 681
33.4 Setting Up the Excel Sheets and the Text File 682
33.5 Getting Started with the VBA 684
33.6 Getting Data from a Text File 685
33.7 The Module 686
33.8 Summary 698

34 An AHP Application for Choosing a Job

You can access chapter 34 at our website, www.CengageBrain.com

35 A Poker Simulation Application

You can access chapter 35 at our website, www.CengageBrain.com

Index 700

Contents xv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

I wrote VBA for Modelers for students and professionals who want to create deci-
sion support systems (DSSs) using Microsoft Excel–based spreadsheet models. The
book does not assume any prior programming experience. It contains two parts.
Part I covers the essentials of VBA (Visual Basic for Applications) programming,
and Part II provides many applications with their associated programming code.
This part assumes that readers are either familiar with spreadsheet modeling or are
taking a concurrent course in management science or operations research. There
are many excellent books available for VBA programming, many others covering
decision support systems, and still others for spreadsheet modeling. However, I
have not found a book that attempts to unify these subjects in a practical way.
VBA for Modelers is designed for this purpose, and I hope you will find it to be an
important resource and reference in your own work.

Why This Book?

The original impetus for this book began about 20 years ago. Wayne Winston
and I were experimenting with the spreadsheet approach to teaching management
as we were writing the first edition of our Practical Management Science (PMS)
book. Because I have always had an interest in computer programming, I decided
to learn VBA, the relatively new macro language for Excel, and use it to a limited
extent in my undergraduate management science modeling course. My intent was
to teach the students how to wrap a given spreadsheet model, such as a product
mix model, into an application with a “front end” and a “back end” by using
VBA. The front end would enable a user to provide inputs to the model, usually
through one or more dialog boxes, and the back end would present the user with
a nontechnical report of the results. I found it to be an exciting addition to the
usual modeling course, and my students overwhelmingly agreed.

The primary problem with teaching this type of course was the lack of an
appropriate VBA textbook. Although there are many good VBA trade books
available, they usually go into much more technical VBA details than I have time
to cover, and their objective is usually to teach VBA programming as an end in
itself. I expect that many adopters of our Practical Management Science book
will decide to use parts of VBA for Modelers to supplement their management sci-
ence courses, just as I have been doing. For readers who have already taken a
management science course, there is more than enough material in this book to
fill an entire elective course or to be used for self-study.

However, even for readers with no background or interest in management
science, the first part of this book has plenty of value. We are seeing an increasing

xvi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number of our business students and graduates express interest in automating
Excel with macros. In short, they want to become Excel “power users.” After
the first edition of this book appeared, I taught a purely elective MBA course cov-
ering the first part of the book. To my surprise and delight, it regularly attracted
about 40 MBA students per year. Yes, it attracted MBA students, not computer
science majors! (Since I have retired from teaching, the VBA course is still being
taught, and it continues to attract these types of audiences.). The students see real
value in knowing how to program for Excel. And it is amazing and gratifying to
see how far these students can progress in a short 7-week course. Many find pro-
gramming, especially for Excel, to be as addictive as I find it.

Objectives of the Book

VBA for Modelers shows how the power of spreadsheet modeling can be
extended to the masses. Through VBA, complex management science models
can be made accessible to nontechnical users by providing them with simplified
input screens and output reports. The book illustrates, in complete detail, how
such applications can be developed for a wide variety of business problems. In
writing the book, I have always concerned myself with the following questions:
How much will readers be able to do on their own? Is it enough for readers to
see the completed applications, marvel at how powerful they are, and possibly
take a look at the code that runs in the background? Or should they be taken to
the point where they can develop their own applications, code and all? I suspect
this depends on the audience, but I know I can get students to the point where
they can develop modest but useful applications on their own and, importantly,
experience the thrill of programming success.

With these thoughts in mind, I have written this book so that it can be used
at several levels. For readers who want to learn VBA from scratch and then apply
it, I have provided a “VBA primer” in Part I of the book. It is admittedly not as
complete as some of the thick Excel VBA books available, but I believe it covers
the basics of VBA quite adequately. Importantly, it covers coding methods for
working with Excel ranges in Chapter 6 and uses these methods extensively in
later chapters, so that readers will not have to use trial and error or wade through
online help, as I had to do when I was learning VBA. Readers can then proceed to
the applications in Chapters 19 through 35 and apply their skills. In contrast, there
are probably many readers who do not have time to learn all of the details, but they
can still use the applications in Part II of the book for demonstration purposes.
Indeed, the applications have been developed for generality. For example, the
transportation model in Chapter 24 is perfectly general and can be used to solve
any transportation model by supplying the appropriate input data.

Approach

I like to teach (and learn) through examples. I have found that I can learn a pro-
gramming language only if I have a strong motivation to learn it. I suspect that

Preface xvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

most of you are the same. The applications in the latter chapters are based on
many interesting management science models. They provide the motivation for
you to learn the material. The examples illustrate that this book is not about pro-
gramming for the sake of programming. Instead, it is about developing useful
applications for business. You probably already realize that Excel modeling skills
make you more valuable in the workplace. This book will help you develop VBA
skills that make you much more valuable.

Contents of the Book

The book is written in two parts. Part I, Chapters 1–18, is a VBA primer for read-
ers with little or no programming experience in VBA (or any other language).
Although all of these chapters are geared to VBA, some are more about general
programming concepts, whereas others deal with the unique aspects of program-
ming for Excel. Specifically, Chapters 7, 9, and 10 discuss control logic (If-Then-
Else constructions), loops, arrays, and subroutines, topics that are common to all
programming languages. In contrast, Chapters 6 and 8 explain how to work with
some of the most common Excel objects (ranges, workbooks, worksheets, and
charts) in VBA. In addition, several chapters discuss aspects of VBA that can be
used with Excel and any other applications (Access, Word, PowerPoint, and so
on) that use VBA as their programming language. Specifically, Chapter 3 explains
the Visual Basic Editor (VBE), Chapter 4 illustrates how to record macros,
Chapter 11 explains how to build user forms (dialog boxes), and Chapter 12
discusses the important topic of error handling.

The material in Part I is reasonably complete, but it is available, in greater
detail and with a somewhat different emphasis, in several other books. The
unique aspect of this book is Part II, Chapters 19–35. (Due to length, the
last two chapters, Chapter 34, An AHP Application for Choosing a Job, and
Chapter 35, A Poker Simulation Application, are available online only. You can
find them at www.CengageBrain.com.) Each chapter in this part discusses a specific
application. Most of these are optimization and simulation applications, and many
are quite general. For example, Chapter 21 discusses a general product mix applica-
tion, Chapter 23 discusses a general production scheduling application, Chapter 24
discusses a general transportation application, Chapter 25 discusses a stock-trading
simulation, Chapter 29 discusses a multiple-server queue simulation, Chapter 30
discusses a general application for pricing European and American options, and
Chapter 32 discusses a general portfolio optimization application. (Many of the
underlying models for these applications are discussed in Practical Management
Science, but I have attempted to make these applications stand-alone here.)

The applications can be used as they stand to solve real problems, or they
can be used as examples of VBA application development. All of the steps in
the development of these applications are explained, and all of the VBA source
code is included. Using an analogy to a car, you can simply get in and drive, or
you can open the hood and see how everything works.

xviii Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 19 gets the process started in a “gentle” way. It provides a general
introduction to application development, with an important list of guidelines. It
then illustrates these guidelines in a car loan application. This application should
be within the grasp of most readers, even if they are not yet great programmers.
By tackling this application first, readers get to develop a simple model, with
dialog boxes, reports, and charts, and then tie everything together. This car loan
application illustrates an important concept that I stress throughout the book.
Specifically, applications that really do something are often long and have a lot of
details. But this does not mean that they are difficult. With perseverance—a word
I use frequently—readers can fill in the details one step at a time and ultimately
experience the thrill of getting a program to work correctly.

Virtually all management science applications require input data. A very
important issue for VBA application development is how to get the required
input data into the spreadsheet model. I illustrate a number of possibilities in
Part II. If only a small amount of data is required, dialog boxes work well. These
are used for data input in many of the applications. However, there are many
times when the data requirements are much too large for dialog boxes. In these
cases, the data are usually stored in some type of database. I illustrate some com-
mon possibilities. In Chapter 21, the input data for a product mix model are
stored in a separate worksheet. In Chapter 31, the stock price data for finding
the betas of stocks are stored in a separate Excel workbook. In Chapter 33, the
data for a DEA model are stored in a text (.txt) file. In Chapter 24, the data for a
transportation model are stored in an Access database (.mdb) file. Finally, in Chap-
ter 32, the stock price data required for a portfolio optimization model are located
on a Web site and are imported into Excel, at runtime. In each case, I explain the
VBA code that is necessary to import the data into the Excel application.

New to the Fifth Edition

The impetus for writing the fifth edition was the release of Excel 2013. In terms
of VBA, there aren’t many changes from Excel 2010 to Excel 2013 (or even from
Excel 2007 to Excel 2013), but I used the opportunity to incorporate changes
that were made in Excel 2013, as well as to modify a lot of the material
throughout the book.

● Programmers can never let well enough alone. We are forever tinkering with
our code, not just to make it work better, but often to make it more elegant
and easier to understand. So users of previous editions will see minor changes
to much of the code throughout the book.

● The biggest change, which has nothing to do with the version of Excel, is the
way information is passed between modules and user forms. In previous edi-
tions, I did this with global variables, a practice frowned upon by many pro-
fessional programmers. In this edition, I pass the required information
through arguments to “ShowDialog” functions in the user forms. This new
method is explained in detail in Chapter 11 and is then used in later chapters
where user forms appear.

Preface xix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Chapter 15 contains a brief discussion of the new PowerPivot tool introduced
in Excel 2013. This tool can actually be automated with VBA, but because of
its advanced nature, I don’t discuss the details. Maybe this will appear in the
next edition of the book, by which time Excel’s online help will hopefully be
improved.

How to Use the Book

I have already discussed several approaches to using this book, depending on how
much you want to learn and how much time you have. For readers with very little
or no computer programming background who want to learn the fundamentals
of VBA, Chapters 1–12 should be covered first, in approximately that order.
(I should point out that it is practically impossible to avoid “later” programming
concepts while covering “early” ones. For example, I admit to using a few If state-
ments and loops in early chapters, before discussing them formally in Chapter 7.
I don’t believe this should cause problems. I use plenty of comments, and you
can always look ahead if you need to.) After covering VBA fundamentals in the
first 12 chapters, the next six optional chapters can be covered in practically any
order.

Chapter 19 should be covered next. Beyond that, the applications in the
remaining chapters can be covered in practically any order, depending on your
interests. However, some of the details in certain applications will not make much
sense without the appropriate training in the management science models. For
example, Chapter 34 discusses an AHP (Analytical Hierarchy Process) application
for choosing a job. The VBA code is fairly straightforward, but it will not make
much sense unless you have some knowledge of AHP. I assume that the knowl-
edge of the models comes from a separate source, such as Practical Management
Science; I cover it only briefly here.

Finally, readers can simply use the Excel application files to solve problems.
Indeed, the applications have been written specifically for nontechnical end users,
so that readers at all levels should have no difficulty opening the application files
in Part II of the book and using them appropriately. In short, readers can decide
how much of the material “under the hood” is worth their time.

Premium Web Site Content

The companion Web site for this book can be accessed at www.cengagebrain
.com. There you will have access to all of the Excel (.xlsx and .xlsm) and other
files mentioned in the chapters, including those in the exercises. The Excel files
require Excel 97 or a more recent version, but they are realistically geared to
Excel 2007 and later versions. Many of the files from Chapter 17 and later chapters
“reference” Excel’s Solver. They will not work unless the Solver add-in is installed
and loaded. Chapters 14 and 24 uses Microsoft’s ActiveX Data Object (ADO)

xx Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

model to import the data from an Access database into Excel. This will work only
in Excel 2000 or a more recent version. Finally, Chapter 13 uses the Office File-
Dialog object. This works only in Excel XP (2002) or a more recent version.

The book is also supported by a Web site at www.kelley.iu.edu/albrightbooks.
The Web site contains errata and other useful information, including information
about my other books.

Acknowledgments

I would like to thank all of my colleagues at Cengage Learning. Foremost among
them are my current editor, Aaron Arnsbarger, and my former editors, Curt
Hinrichs and Charles McCormick. The original idea was to develop a short VBA
manual to accompany our Practical Management Science book, but Curt
persuaded me to write an entire book. Given the success of the first four
editions, I appreciate Curt’s insistence. I am also grateful to many of the profes-
sionals who worked behind the scenes to make this book a success:

● Brad Sullender, Content Developer; Heather Mooney, Marketing Manager;
Kristina Mose-Libon, Art Director; and Sharib Asrar as the Project Manager
at Lumina Datamatics.

Next, I would like to thank the reviewers of past editions of the book.
Thanks go to

● Gerald Aase, Northern Illinois University; Ravi Ahuja, University of Florida;
Grant Costner, University of Oregon; R. Kim Craft, Rollins College; Lynette
Molstad Gorder, Dakota State University; and Jim Hightower, California State
University-Fullerton; Don Byrkett, Miami University; Kostis Christodoulou,
London School of Economics; Charles Franz, University of Missouri; Larry
LeBlanc, Vanderbilt University; Jerry May, University of Pittsburgh; Jim Morris,
University of Wisconsin; and Tom Schriber, University of Michigan.

Finally, I want to thank my wife, Mary. She continues to support my book-
writing activities, even when it requires me to work evenings and weekends
in front of a computer. I also want to thank our Welsh corgi Bryn, who faith-
fully accompanies her daddy when he goes upstairs to do his work. She doesn’t
add much technical assistance, but she definitely adds a lot of motivational
assistance.

S. Christian Albright
(e-mail at albright@indiana.edu,

Web site at www.kelley.iu.edu/albrightbooks)
Bloomington, Indiana

January 2015

Preface xxi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Part I

VBA Fundamentals
This part of the book is for readers who need an introduction to programming in
general and Visual Basic for Applications (VBA) for Excel in particular. It dis-
cusses programming topics that are common to practically all programming lan-
guages, including variable types and declarations, control logic, looping, arrays,
subroutines, and error handling. It also discusses many topics that are specific to
VBA and its use with Excel, including the Excel object model; recording macros;
working with ranges, workbooks, worksheets, charts, and other Excel objects;
developing user forms (dialog boxes); and automating other applications, includ-
ing Word, Outlook, Excel’s Solver add-in, and Palisade’s @RISK add-in, with
VBA code.

Many of the chapters in Part I present a business-related exercise immediately
after the introductory section. The objective of each such exercise is to motivate
you to work through the details of the chapter, knowing that many of these
details will be required to solve the exercise. The finished files are included in the
online materials, but I urge you to try the exercises on your own, before looking
at the solutions.

The chapters in this part should be read in approximately the order they are
presented, at least up through Chapter 12. Programming is a skill that builds
upon itself. Although it is not always possible to avoid referring to a concept
from a later chapter in an earlier chapter, I have attempted to refrain from doing
this as much as possible. The one small exception is in Chapters 6 (on ranges)
and 7 (on control logic and loops). It is almost impossible to do any interesting
programming in Excel without knowing about ranges, and it is almost impossible
to do any interesting programming in general without knowing about control
logic and loops. I compromised by putting the chapter on ranges first and using
some simple control logic and loops in it. I don’t believe this should cause any
problems.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction to VBA Development

in Excel

1.1 Introduction

My books Practical Management Science (PMS) and Business Analytics: Data
Analysis and Decision Making (DADM), both co-authored with Wayne Winston,
illustrate how to solve a wide variety of business problems by developing appro-
priate Excel models. If you are familiar with this modeling process, you probably
do not need to be convinced of the power and applicability of Excel. You realize
that Excel modeling skills will make you a valuable employee in the workplace.
This book takes the process one giant step farther. It teaches you how to develop
applications in Excel by using Excel’s programming language, Visual Basic for
Applications (VBA).

In many Excel-modeling books, you learn how to model a particular business
problem. You enter given inputs in a worksheet, you relate them with appropriate
formulas, and you eventually calculate required outputs. You might also optimize
a particular output with Solver, and you might create one or more charts to
show outputs graphically. You do all of this through the Excel interface, using its
ribbons (as of Excel 2007), menus, and toolbars, entering formulas into its cells,
using the chart tools, using the Solver dialog box, and so on. If you are conscien-
tious, you document your work so that other people in your company can under-
stand your completed model. For example, you clearly indicate the input cells so
that other users will know which cells they should use for their own inputs and
which cells they should leave alone.

Now suppose that your position in a company is to develop applications for
other less-technical people in the organization to use. Part of your job is still to
develop spreadsheet models, but the details of these models might be incom-
prehensible to many users. These users might realize that they have, say, a
product mix problem, where they will have to supply certain inputs, and then
some computer magic will eventually determine a mix of products that optimizes
company profit. However, the part in between is beyond their capabilities. Your
job, therefore, is to develop a user-friendly application with a model (possibly
hidden from the user) surrounded by a “front end” and a “back end.” The front
end will present the user with dialog boxes or some other means for enabling
them to define their problem. Here they will be asked to specify input values
and possibly other information. Your application will take this information, build
the appropriate model, optimize it if necessary, and eventually present the back
end to the user—a nontechnical report of the results, possibly with accompanying
charts.

1

3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This application development is possible with VBA, as I will demonstrate in
this book. I make no claim that it is easy or that it can be done quickly, but I do
claim that it is within the realm of possibility for people like yourself, not just for
professional programmers. It requires a logical mind, a willingness to experiment
and take full advantage of online help, plenty of practice, and, above all, persever-
ance. Even professional programmers seldom accomplish their tasks without
difficulty and plenty of errors; this is the nature of programming. However, they
learn from their errors (and their colleagues), and they refuse to quit until they
get their programs to work properly. Computer programming is essentially a
process of overcoming one small hurdle after another. This is where perseverance
is so important. But if you are not easily discouraged, and if you love the feeling
of accomplishment that comes from getting something to work, you will love the
challenge of application development described in the book.

1.2 VBA in Excel 2007 and Later Versions

As you are probably aware, Excel went through a major face lift in 2007. The
look of Excel, especially its menus and toolbars, is now much different than in
Excel 2003 and earlier. Unfortunately, some users have not converted to Excel
2007 or a later version, so book authors, including myself, are in the uncom-
fortable position of having to write simultaneously for several audiences. Fortu-
nately, not much about VBA changed in the transition from 2003 to 2007 or
from 2007 to 2010 or from 2010 to 2013. I will try to point out the differences
as necessary throughout the book, hopefully without interrupting the flow too
much.

Perhaps the main difference is in the file extensions you will see. In Excel
2003 and earlier, all Excel files (except for add-ins, not covered here) ended in
.xls. It didn’t matter whether they contained VBA code or not; they were still .xls
files. In Excel 2007 and later versions, there are two new extensions. Files without
VBA code now have .xlsx extensions, whereas files with VBA code must use .xlsm
extensions. If you try to save a file with VBA code as an .xlsx file, you won’t be
allowed to do so. There is one exception: you can save your new files in the old
Excel 2003 format, which is still an option (with Save As), in which case they will
have .xls extensions. Why would you do this? The probable reason is that you
want to share a file you created in Excel 2007 or a later version with a friend
who still uses Excel 2003. Of course, if your file includes features new to Excel
2007 or a later version, your friend won’t be able to see them.

I have been using Excel 2007, 2010, and now 2013 since their original
releases, and I personally think they are great improvements over earlier versions,
at least in most respects. So I will provide my example files in .xlsx and .xlsm for-
mats. If you are using Excel 2003, you will be able to open these if you first
install a free Office Compatibility Pack from Microsoft (just search the Web for
it). Without this compatibility pack, Excel 2003 users cannot read files in the new
.xlsx or .xlsm formats (although users of Excel 2007 and later versions can always
read files in the old .xls format).

4 Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The fortunate part is that VBA has changed very little. I will usually not
include new features of Excel 2007 or later versions in my example files that
Excel 2003 users (even those with the compatibility pack) could not see. And in
the few cases where I need to do so, I will make it clear that these examples are
for users of Excel 2007 or later versions only.

1.3 Example Applications

If you have used my PMS or DADM books, you probably understand what
a spreadsheet model is. However, you might not understand what I mean by
spreadsheet applications with front ends and back ends. In other words, you
might not understand what this book intends to teach you. The best way to find
out is to run some of the applications that will be explained in Part II of the
book. At this point, you can become the nontechnical user by opening any of the
following files that accompany this book: Product Mix.xlsm, Scheduling.xlsm,
Stock Options.xlsm, and Transportation.xlsm. Simply open any of these files and
follow instructions. It should be easy. After all, the purpose of writing these appli-
cations is to make it easy for a nontechnical user to run them and get results they
can understand. Now step back and imagine what must be happening in the back-
ground to enable these applications to do what they do. This is what you will be
learning in the book. By running a few applications, you will become anxious
to learn how to do it yourself. These sample applications illustrate just how pow-
erful a tool VBA for Excel can be.

Security Settings and Trusted Locations

You might encounter annoying messages when you try to open these applica-
tions. Microsoft realizes that viruses can be carried in VBA code, so it tries to
protect users. First, it sets a macro security level to High by default. This level dis-
allows any VBA macros to run. Obviously, this is not good when you are trying
to learn VBA programming. The fix is easy.

● For users of Excel 2010 and 2013, open Excel, click the File button, then
Options, then the Trust Center tab, then Trust Center Settings, then the
Macro Settings tab, and check the “Disable all macros with notification”
option.

● For users of Excel 2007, it is the same as for Excel 2010 and 2013 except
that you click the Office button, not the File button. (The Office button
was replaced by the File button in 2010.)

● For users of Excel 2003 or earlier, open Excel, select the Tools → Macro →
Security menu item, and select Medium.

● You should need to do this only once. However, even with this macro security
setting, you are always asked whether you want to enable macros when you open
a file that contains VBA code. Of course, you should typically enable macros.
Otherwise, you will be safe from viruses, but none of the VBA code will run!

Introduction to VBA Development in Excel 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There is another option, at least in Excel 2007 and later versions, which
avoids the security settings altogether. If you find that most of the Excel files
with VBA code are in a particular folder on your hard drive, you can add this
folder to the list of trusted locations on your computer. To do this, a one-time
task on a given computer, go to the Trust Center Settings, as explained in the
first bullet above, then Trusted Locations, then “Add new location,” and
browse for the folder you want to add. (In the resulting dialog box, you will
probably want to check the “Subfolders of this location are also trusted”
option.) From then on, any .xlsm files in this folder (or its subfolders) will
open without any warning about enabling macros.

I will make one final comment about enabling macros that pertains to
Excel 2007 or later versions only. If you open a file that contains macros, that
is, an .xlsm file, and it isn’t in a trusted location, you sometimes see the message
in Figure 1.1 and you sometimes instead see the button in Figure 1.2 (right
above the formula bar). Thanks to John Walkenbach, a fellow VBA author,
I finally learned the pattern. If the VB editor (discussed in Chapter 3) is already
open when you open the file, you will see the message in Figure 1.1. If it isn’t
open, you will see the button in Figure 1.2. Why did Microsoft do it this way?
I have no idea.

Figure 1.1 Enable Macro Message with VB Editor Open

Figure 1.2 Enable Macro Button with VB Editor Not Open

6 Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.4 Decision Support Systems

In many companies, programmers provide applications called decision support
systems (DSSs). These are applications, based on Excel or some other package,
that help managers make better decisions. They can vary from very simple to
very complex, but they usually provide some type of user-friendly interface so
that a manager can experiment with various inputs or decision variables to see
their effect on important output variables such as profit or cost. Much of what
you will be learning, especially in Part II of the book, is how to create Excel-
based DSSs. In fact, if you ran the applications in the previous section, you should
already understand what decision support means. For example, the Transporta-
tion application helps a manager plan the optimal shipping of a product in a logis-
tics network, and the Stock Options application helps a financial analyst price
various types of financial options. The value that you, the programmer, provide
by developing these applications is that other people in your company can then
run them—easily—to make better decisions.

1.5 Required Background

Readers of this book probably vary widely in their programming experience. At
one extreme, many of you have probably never programmed in VBA or any
other language. At the other extreme, a few of you have probably programmed
in Visual Basic but have never used it to automate Excel and build Excel applica-
tions. In the middle, some of you have probably had some programming experi-
ence in another language such as C or Java but have never learned VBA. This
book is intended to appeal to all such audiences. Therefore, a simplified answer
to the question, “What programming background do I need?” is “None.” You
need only a willingness to learn and experiment.

If you ran the applications discussed in Section 1.2, you are probably anxious
to get started developing similar applications. If you already know the fundamen-
tals of VBA for Excel, you can jump ahead to Part II of the book. But most of
you will have to learn how to walk before you can run. Therefore, the chapters
in Part I go through the basics of the VBA language, especially as it applies to
Excel. The coverage of this basic material will provide you with enough explana-
tions and examples of VBA’s important features to enable you to understand the
applications in Part II—and to do some Excel development on your own.

If you want more detailed guidance in VBA for Excel, you can learn from
Microsoft’s online help or the many user groups on the Web. Indeed, this is per-
haps the best way to learn, especially in the middle of a development project. If
you need to know one specific detail to overcome a hurdle in the program you
are writing, you can look it up quickly in online help or do an online search for
it. A good way to do this will be demonstrated shortly.

Part II of the book does presume some modeling ability and general business
background. For example, if you ran the Product Mix application, you
probably realize that it develops and optimizes a product mix model, a classic

Introduction to VBA Development in Excel 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

linear programming model. One (but not the only) step in developing this appli-
cation is to develop a product mix model exactly as in Chapter 3 of PMS. As
another example, if you ran the Stock Options application, you realize the need
to understand option pricing, explained briefly in the second simulation chapter
of PMS. Many of the applications in this book are based on examples (product
mix, scheduling, transportation, and so on) from PMS or DADM. You can refer
to these books as necessary.

1.6 Visual Basic Versus VBA

Before going any further, I want to clarify one common misconception. Visual
Basic (VB) is not the same as VBA. VB is a software development language
that you can buy and run separately, without the need for Excel or Office. Actu-
ally, there are several versions of VB available. The most recent is called
VB.NET, which comes with Microsoft’s Visual Studio software development
suite. (The .NET version of VB has many enhancements to the VB language.)
Before VB.NET, there was VB6, still in use in thousands of applications.
In contrast, VBA comes with Office. If you own Microsoft Office, you own
VBA. The VB language is very similar to VBA, but it is not the same. The
main difference is that VBA is the language you need to manipulate Excel, as
you will do here.

You can think of it as follows. The VBA language consists of a “backbone”
programming language with typical programming elements you find in all pro-
gramming languages: looping, logical If-Then-Else constructions, arrays, subrou-
tines, variable types, and others. In this respect, VBA and VB are essentially
identical. However, the “A” in VBA means that any application software package,
such as Excel, Access, Word, or even a non-Microsoft software package, can
“expose” its object model to VBA, so that VBA can manipulate it programmati-
cally. In short, VBA can be used to develop applications for any of these software
packages. This book teaches you how to do so for Excel.

Excel’s objects are discussed in depth in later chapters, but a few typical
Excel objects you will recognize immediately are ranges, worksheets, work-
books, and charts. VBA for Excel knows about these Excel objects, and it
enables you to manipulate them with code. For example, you can change the
font of a cell, name a range, add or delete a worksheet, open a workbook, and
change the title of a chart. Part of learning VBA for Excel is learning the VB
backbone language, the elements that have nothing to do with Excel specifi-
cally. But another part, the more challenging part, involves learning how to
manipulate Excel’s objects in code. That is, it involves learning how to write
computer programs to do what you do every day through the familiar Excel
interface. If you ever take a course in VB, you will learn the backbone elements
of VBA, but you will not learn how to manipulate objects in Excel. This
requires VBA, and you will learn it here.

By the way, there are also VBA for Access, VBA for Word, VBA for Power-
Point, VBA for Outlook, and others. The difference between them is that each

8 Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

has its own specific objects. To list just a few, Access has tables, queries, and
forms; Word has paragraphs and footnotes; PowerPoint has slides; and Outlook
has mail. Each version of VBA shares the same VB backbone language, but each
requires you to learn how to manipulate the objects in the specific application.
There is certainly a learning curve in moving, say, from VBA for Excel to VBA
for Word, but it is not nearly as difficult as if they were totally separate languages.
In fact, the power of VBA, as well as the relative ease of programming in it, has
prompted many third-party software developers to license VBA from Microsoft
so that they can use VBA as the programming language for their applications.
One example is Palisade, the developer of the @RISK and PrecisionTree add-ins
for Excel, as will be discussed briefly in Chapter 17. In short, once you know
VBA, you know a lot about what is happening in the programming world—and
you can very possibly use this knowledge to obtain a valuable job in business.

1.7 Some Basic Terminology

Before proceeding, it is useful to clarify some very basic and important terminol-
ogy that will be used throughout the book. First, whenever you program in any
language, your basic building blocks are lines of code, short for programming
code. Any line of code is intended to accomplish something, and it must obey
the rules of syntax for the programming language being used. This book is all
about coding in VBA.

Typically, a set of logically related lines of code that accomplishes a specific
task is called a subroutine, a procedure, or a macro. In fact, one of the first key-
words you will learn in VBA is Sub. This keyword begins all subroutines. The
terms subroutine, procedure, and macro are essentially equivalent, although pro-
grammers tend to use the terms subroutine and procedure, whereas spreadsheet
users tend to use the term macro. I tend to refer to any of these as a sub.

Finally, the term program is typically used to refer to all of the subs in an
application. When you explore the more complex applications in Part II of the
book, you will see that they often include many subs, where each sub is intended
to perform one specific task in the overall program. (Chapter 10 discusses why
this division of a program into multiple subs makes a lot of sense.)

1.8 Summary

VBA is the programming language of choice for an increasingly wide range of
application developers. The main reason for this is that VBA uses the familiar
Visual Basic programming language and then adapts it to many Microsoft and
even non-Microsoft application software packages, including Excel. In addition,
VBA is a relatively easy programming language to master. This makes it accessible
to a large number of nonprofessional programmers in the business world—
including you. By learning how to program in VBA, you will definitely enhance
your value in the workplace.

Introduction to VBA Development in Excel 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Excel Object Model

2.1 Introduction

This chapter introduces the Excel object model—the concept behind it and how
it is implemented. Even if you have programmed in another language, this will
probably be new material, even a new way of thinking, for you. However, with-
out understanding Excel objects, you will not be able to proceed very far with
VBA for Excel. This chapter provides just enough information to get you started.
Later chapters focus on many of the most important Excel objects and how they
can be manipulated with VBA code.

2.2 Objects, Properties, Methods, and Events

Consider the many things you see in the everyday world. To name a few, there
are cars, houses, computers, people, and so on. These are all examples of objects.
For example, let’s focus on a car. A car has attributes, and there are things you
can do to (or with) a car. Some of its attributes are its weight, its horsepower, its
color, and its number of doors. Some of the things you can do to (or with) a car
are drive it, park it, accelerate it, crash it, and sell it. In VBA, the attributes of an
object are called properties: the size property, the horsepower property, the color
property, the number of doors property, and so on. In addition, each property
has a value for any particular car. For example, a particular car might be white
and it might have four doors. In contrast, the things you can do to (or with) an
object are called methods: the drive method, the park method, the accelerate
method, the crash method, the sell method, and so on. Methods can also have
qualifiers, called arguments, that indicate how a method is performed. For exam-
ple, an argument of the crash method might be speed—how fast the car was
going when it crashed.

The following analogy to parts of speech is useful. Objects correspond to
nouns, properties correspond to adjectives, methods correspond to verbs, and
arguments of methods correspond to adverbs. You might want to keep this anal-
ogy in mind as the discussion proceeds.

Now let’s move from cars to Excel. Imagine all of the things—objects—you
work with in Excel. Some of the most common are ranges, worksheets, charts,
and workbooks. (A workbook is really just an Excel file.) Each of these is an
object in the Excel object model. For example, consider the single-cell range B5.

2

10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This cell is a Range object.1 Like a car, it has properties. It has a Value property:
the value (either text or number) displayed in the cell. It has a HorizontalAlignment
property: left-, center-, or right-aligned. It has a Formula property: the formula
(if any) in the cell. These are just a few of the many properties of a range.

A Range object also has methods. For example, you can copy a range, so
Copy is a method of a Range object. You can probably guess the argument of
the Copy method: the Destination argument (the paste range). Another range
method is the ClearContents method, which is equivalent to selecting the range
and pressing the Delete key. It deletes the contents of the range, but it does not
change the formatting. If you want to clear the formatting as well, there is also a
Clear method. Neither the ClearContents method nor the Clear method has any
arguments.

Learning the various objects in Excel, along with their properties and meth-
ods, is a lot like learning vocabulary in English—especially if English is not your
native language. You learn a little at a time and generally broaden your vocabulary
through practice and experience. Some objects, properties, and methods are natu-
rally used most often, and you will learn quickly. Others you will never need, and
you will probably remain unaware that they even exist. However, there are many
times when you will need to use a particular object or one of its properties or
methods that you have not yet learned. Fortunately, there is excellent online help
available—a type of dictionary—for learning about objects, properties, and meth-
ods. It is called the Object Browser and is discussed in the next chapter.

There is one other important feature of objects: events. Some Excel objects
have events that they can respond to. A good example is the Workbook object
and its Open event. This event happens—we say it fires—when the workbook is
opened in Excel. In fact, you might not realize it, but the Windows world is full
of events that fire constantly. Every time you click or double-click a button, press
a key, move your mouse over some region, or perform a number of other actions,
various events fire. Programmers have the option of responding to events by writ-
ing event handlers. An event handler is a section of code that runs whenever the
associated event fires. In later chapters, particularly Chapter 11, you will learn
how to write your own event handlers. For example, it is often useful to write an
event handler for the Open event of a Workbook object. Whenever the workbook
is opened in Excel, the event handler then runs automatically. It could be used,
for example, to ensure that the user sees a certain worksheet when the workbook
opens.

2.3 Collections as Objects

Continuing the car analogy, imagine that you enter a used car lot. Each car in the
lot is a particular car object, but it also makes sense to consider the collection of all

1From here on, “proper” case, such as Range or HorizontalAlignment, will be used for objects, properties,
and methods. This is the convention used in VBA. Also, they appear in this book in a different font.

The Excel Object Model 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cars in the lot as an object. This is called a Collection object. Clearly, the collection
of cars is not conceptually the same as an individual car. Rather, it is an object
that includes all of the individual car objects.

Collection objects also have properties and methods, but they are not the
same as the properties and methods of the objects they contain. Generally, there
are many fewer properties and methods for collections. The two most common
are the Count property and the Add method. The Count property indicates the
number of objects in the collection (the number of cars in the lot). The Add
method adds a new object to a collection (a new car joins the lot).

It is easy to spot collections and the objects they contain in the Excel object
model. Collection objects are plural, whereas a typical object contained in a collec-
tion is singular. A good example involves worksheets in a given workbook. The
Worksheets collection (note the plural) is the collection of all worksheets in the
workbook. Any one of these worksheets is a Worksheet object (note the singular).
Again, these must be treated differently. You can count worksheets in the Work-
sheets collection, or you can add another worksheet to the collection. In contrast,
typical properties of a Worksheet object are its Name (the name on the sheet tab)
and Visible (True or False) properties, and a typical method of a Worksheet object
is the Delete method. (Note that this Delete method reduces the Count of the
Worksheets collection by one.)

The main exception to this plural/singular characterization is the Range
object. There is no “Ranges” collection object. A Range object cannot really be
considered singular or plural; it is essentially some of each. A Range object can
be a single cell, a rectangular range, a union of several rectangular ranges, an
entire column, or an entire row. Range objects are probably the most difficult to
master in all of their varied forms. This is unfortunate because they are the most
frequently used objects in Excel. Think of your own experience in Excel, and you
will realize that you are almost always doing something with ranges. An entire
chapter, Chapter 6, is devoted to Range objects so that you can master some of
the techniques for manipulating these important objects.

2.4 The Hierarchy of Objects

Returning one last time to cars, what is the status of a car’s hood, a car’s trunk,
or a car’s set of wheels? These are also objects, with their own properties and
methods. In fact, the set of wheels is a collection object that contains individual
wheel objects. The point, however, is that there is a natural hierarchy, as illus-
trated in Figure 2.1. The Cars collection is at the top of the hierarchy. It contains
a set of individual cars. The notation Cars (Car) indicates that the collection object
is called Cars and that each member of this collection is a Car object. Each car
“contains” a number of objects: a Wheels collection of individual Wheel objects,
a Trunk object, a Hood object, and others not shown. Each of these can have its
own properties and methods. Also, some can contain objects farther down the
hierarchy. For example, the figure indicates that an object down the hierarchy
from Hood is the HoodOrnament object. Note that each of the rectangles in this

12 Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

figure represents an object. Each object has properties and methods that could be
shown emanating from its rectangle, but this would greatly complicate the figure.

The same situation occurs in Excel. The full diagram of the Excel object model
appears in Figure 2.2. (This is the Excel 2003 version; versions for Excel 2007 or
later are only slightly different.2) This figure shows how all objects, including collec-
tion objects, are arranged in a hierarchy. At the top of the hierarchy is the Application
object. This refers to Excel itself. One object (of several) one step down from Appli-
cation is the Workbooks collection, the collection of all open Workbook objects. This
diagram is admittedly quite complex. All you need to realize at this point is that
Excel has a very rich object model—a lot of objects; fortunately, you will need only
a relatively small subset of this object model for most of your applications. This rela-
tively small subset is the topic of later chapters.

2.5 Object Models in General

Although the Excel object model is used in this book, you should now have some
understanding of what it would take to use VBA for other applications such as
Word, Access, or even non-Microsoft products. In short, you would need to
learn its object model. You can think of each application “plugging in” its object
model to the underlying VB language. Indeed, third-party software developers
who want to license VBA from Microsoft need to create an object model appro-
priate for their application. Programmers can then use VBA to manipulate the
objects in this model. This is a powerful idea, and it is the reason why VBA is
the programming language of choice for so many developers—regardless of
whether they are working in Excel or any other application.

Figures 2.3 and 2.4 illustrate two other object models. (Again, these are the
Office 2003 versions.) The object model in Figure 2.3 is for Word. A few of these
objects are probably familiar, such as Sentence, Paragraph, and Footnote. If you

Figure 2.1 Object Model for Cars

2For example, if you perform a Web search for “Excel 2013 object model diagram,” you will see a
number of such diagrams.

The Excel Object Model 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 2.2 Excel Object Model

14 Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

were learning VBA for Word, you would need to learn the most common elements
of this object model. Figure 2.4 shows part (about 40%) of the object model for
Microsoft Office as a whole. You might wonder why Office has a separate object
model from Excel or Word. The reason is that Office is an integrated suite, where
all of its programs—Excel, Word, PowerPoint, Outlook, and the rest—share a
number of features. For example, they all have menus and toolbars, referred to
collectively as the CommandBars collection in the object model. Therefore, if you

Figure 2.3 Word Object Model

The Excel Object Model 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 2.4 Part of Office Object Model

16 Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

want to use VBA to manipulate toolbars or menus in Excel, as many programmers
do, you have to learn part of the Office object model. But then this same knowl-
edge would enable you to manipulate menus and toolbars in Word, PowerPoint,
and the others. (Actually, menus and toolbars were replaced for the most part by
ribbons in Excel 2007 and later versions, but the CommandBar object is
still present. This topic is discussed in Chapter 16.)

The Excel object model continues to evolve as new versions of Excel are
released. Sometimes new objects, properties, or methods are added. Other times,
some are dropped from the official object model but still continue to work, for
backward compatibility. Occasionally, some are dropped completely, so that pro-
grams written in an earlier version no longer work. Fortunately, these are the rare
exceptions. If you are working in Excel 2007 or later versions and are interested
in seeing the types of changes that have been made, open the Visual Basic Editor
(Alt+F11 from Excel), press the F1 key for help, and search for “object model
changes.” Although the list is fairly long, not much in terms of VBA code has
changed since this book was originally written for Excel 2003.

2.6 Summary

This chapter has introduced the concept of an object model, and it has briefly
introduced the Excel object model that is the focus of the rest of the book. If
you have never programmed in an object-oriented environment, you can look
forward to a whole new experience. However, the more you do it, the more nat-
ural it becomes. It is certainly the dominant theme in today’s programming
world, so if you want to be part of this world, you have to start thinking in
terms of objects. You will get plenty of chances to do so throughout the book.

The Excel Object Model 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Visual Basic Editor

3.1 Introduction

At this point, you might be asking where VBA lives. I claimed in Chapter 1 that if
you own Excel, you also own VBA, but many of you have probably never seen it.
You do your VBA work in the Visual Basic Editor (VBE), which you can access
easily from Excel by pressing the Alt+F11 key combination. The VBE provides
a very user-friendly environment for writing your VBA programs. This chapter
walks you through the VBE and shows you its most important features. It also
helps you write your first VBA program. By the way, you might also hear the
term Integrated Development Environment (IDE). This is a general term for
an environment where you do your programming, regardless of the programming
language. The VBE is the IDE for programming with VBA in Excel.

3.2 Important Features of the VBE

To understand this section most easily, you should follow along at your computer.
Open Excel and press Alt+F11 to get into the VBE.1 It should look something
like Figure 3.1, although the configuration you see might be somewhat different. By
the time this discussion is completed, you will be able to make your screen look like
that in Figure 3.1 or change it according to your own preferences. This is your pro-
gramming workspace, and you have a lot of control over how it appears. This chapter
provides some guidance, but the best way to learn is by experimenting.

The large blank pane on the right is the Code window. This is where you
write your code. (If any of the windows discussed here are not visible on your
screen, you can select the View menu from the VBE and then select the window
you want to make visible.) The rest of the VBE consists of the top menu, one or
more toolbars, and one or more optional windows. Let’s start with the windows.

3

1 In Excel 2003 and earlier, the Tools → Macro → Visual Basic Editor menu item also gets you into the
VBE, but Alt+F11 is quicker. In Excel 2007 and later versions, you should first make theDeveloper ribbon
visible. To do this in Excel 2007, click the Office button and then Excel Options. Under the Popular tab,
select the third option at the top: Show Developer tab in the Ribbon. In Excel 2010 and later versions,
right-click any ribbon and select Customize the Ribbon. Then check the Developer item in the right pane.
You need to do this only once. The Developer tab is a must for programmers. Among other things, you
can get to the VBE by clicking on its Visual Basic button, but again, Alt+F11 is quicker.

18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Project Explorer window, repeated in Figure 3.2, shows an Explorer-
type list of all open projects. (Your list will probably be different from the one
shown here. It depends on the files you have open and the add-ins that are
loaded.) For example, the active project shown here has the generic name VBA-
Project and corresponds to the workbook Book2—that is, the file Book2.xlsx.2

Below a given project, the Project Explorer window shows its “elements.” In the
Microsoft Excel Objects folder, these elements include any worksheets or chart
sheets in the Excel file and an element called ThisWorkbook, which refers to the
workbook itself. There can also be folders for modules (for VBA code), user
forms (for dialog boxes), and references (for links to other libraries of code you
need), depending on whether you have any of these in your project. Modules,
user forms, and references are discussed in detail in later chapters.

Figure 3.1 Visual Basic Editor (VBE)

2For our purposes, there is no difference between a project and a workbook. However, VBA allows
them to have separate names: VBAProject and Book2, for example. If you save Book2 as
Practice.xlsm, say, the project name will still be VBAProject. Admittedly, it is somewhat confusing,
but just think of projects as Excel files.

The Visual Basic Editor 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Properties window, shown in Figure 3.3, lists a set of properties. This list
depends on what is currently selected. For example, the property list in Figure 3.3
is relevant for the project itself. It indicates a single property only—the project’s
name. Therefore, if you want to change the name of the project from the generic
VBAProject to something more meaningful, such as MyFirstProgram, this is the
place to do it. Chapter 11 discusses the use of the Properties window in much more
detail. At this point, you don’t really need the Properties window, so you can close
it by clicking on its close button (the upper right X).

The VBE also has at least three toolbars that are very useful: Standard, Edit,
and Debug. They appear in Figures 3.4, 3.5, and 3.6, where some of the most
useful buttons are indicated. (If any of these toolbars are not visible on your

Figure 3.2 Project Explorer Window

Figure 3.3 Properties Window

20 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

computer, you can make them visible through the View menu.) From the
Standard toolbar, you can run, pause, or stop a program you have written. You can
also display the Project or Properties window (if it is hidden), and you can display
the Object Browser or the Control Toolbox (more about these later). From the
Edit toolbar, you can perform useful editing tasks, such as indenting or outdenting
(the opposite of indenting), and you can comment or uncomment blocks of code,
as is discussed later. Finally, although the Debug toolbar will probably not mean
much at this point, it is invaluable when you need to debug your programs—as
you will undoubtedly need to do. It is discussed in more detail in Chapter 5. For
future reference, here are a few menu items of particular importance.

● You usually need at least one module in a project. This is where you will typ-
ically store your code. To insert a module, use the Insert → Module menu
item. If you ever have a module you do not need, highlight the module in
the Project Explorer window and use the File → Remove Module menu
item. (Answer No to whether you want to export the module.)

Figure 3.4 Standard Toolbar

Run a program

Pause a program

Stop a program

Show Control Toolbox

Show Object Browser

Show Properties Window

Show Project Window

Figure 3.5 Edit Toolbar

Indent a block

Outdent a block

Uncomment a block

Comment a block

Set a Break

Figure 3.6 Debug Toolbar

Step into Step over
Step out

Toggle breakpoint Quick watch

The Visual Basic Editor 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Chapter 11 explains how to build your own dialog boxes. VBA calls these
user forms. To insert a new user form into a project, use the Insert → User
Form menu item. You can delete an unwanted user form in the same way
you delete a module.

● Under the Insert menu, there is also a Class Module item. You can usually
ignore this. It is more advanced, but it is discussed briefly in Chapter 18.

● The Tools → Options menu item allows you to change the look and feel of the
VBE in a variety of ways. You should probably leave the default settings alone—
with one important exception. Try it now. Select Tools → Options, and make
sure the Require Variable Declarations box under the Editor tab is checked.
The effect of this is explained in Chapter 5. You might also want to uncheck the
Auto Syntax Check box, as I always do. If it is checked, the editor beeps at you
each time you make a syntax error in a line of code and then press Enter. This can
be annoying. Even if this box is unchecked, the editor will still warn you about a
syntax error by coloring the offending line red.

● If you ever want to password-protect your project so that other people can-
not see your code, use the Tools → VBA Properties menu item and click
the Protection tab. This gives you a chance to enter a password. (Just don’t
forget it, or you will not be able to see your own code.)

● If you click the familiar Save button (or use the File → Save menu item), this
saves the project currently highlighted in the Project Explorer window. It saves
your code and anything in the underlying Excel workbook. (It is all saved in
the .xlsm file.) You can achieve the same objective by switching back to Excel
and saving in the usual way from there. (Note, however, that in Excel 2007
and later versions, if your file started as an .xlsx file without any VBA code,
you will have to save it as an .xlsm file once it contains code.)

3.3 The Object Browser

VBA’s Object Browser is a wonderful online help tool. To get to it, open the VBE
and click the Object Browser button on the Standard toolbar (see Figure 3.4). If you
prefer keyboard shortcuts, you can press the F2 key. Either way, this opens the win-
dow shown in Figure 3.7. At the top left, there is a dropdown list of libraries that
you can get help on. Our main interest is in the Excel library, the VBA library, and,
to a lesser extent, the Office library. The Excel library provides help on all of the
objects and their properties and methods in the Excel object model. The VBA library
provides help on the VBA elements that are common to all applications that can use
VBA: Excel, Access, Word, and others. The Office library provides help on objects
common to all Office programs, such as CommandBars objects (menus and toolbars).

For now, select the Excel library. In the bottom left pane, you see a list of
all objects in the Excel object model, and in the right pane, you see a list of all
properties and methods for any object selected in the left pane. A property is des-
ignated by a hand icon, and a method is designated by a green rectangular icon.
A few objects, such as the Workbook object, also have events they can respond to.
An event is designated by a lightning icon.

22 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To get help on any of these items, select it and then click the question mark
button at the top. It is too early in our VBA discussion to be asking for online
help, but you should not forget about the Object Browser. It can be invaluable
as you develop your projects. I use it constantly, and you should too. Of course,
you can get similar help by performing online searches for specific items, but the
Object Browser stores everything in one place.

3.4 The Immediate and Watch Windows

There are two other windows in the VBE that you should be aware of: the
Immediate and Watch windows. Each can be opened through the View menu
or the Debug toolbar. (The Immediate window can also be opened quickly with
the Ctrl+g key combination.) The Immediate window, shown in Figure 3.8, is use-
ful for issuing one-line VBA commands. If you type a command and press Enter,
the command takes effect immediately. For example, the first line in Figure 3.8
selects the range A1:B10 of the Data worksheet (assuming there is a Data work-
sheet in the active workbook). If you type this, press Enter, and switch back to
Excel, you will see that the range A1:B10 has been selected. If you precede the
command by a question mark, you can get an immediate answer to a question.
For example, if you type the second line in the figure, which asks for the address
of the range named MyData, and then press Enter, you immediately get the answer
on the third line.

Figure 3.7 Object Browser

The Visual Basic Editor 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Many programmers send information to the Immediate window through
their code. If you see the command Debug.Print, followed by something to be
printed, the programmer is asking for this to be printed to the Immediate win-
dow. This is not a permanent copy of the printed information. It is usually a
quick check to see whether a program is working properly.

The Watch window is used for debugging. Programs typically include several
variables that change value as the program runs. If the program does not appear
to be working as it should, you can put a watch on one or more key variables to
see how they change as the program progresses. Debugging in this way is dis-
cussed in some detail in Chapter 5.

3.5 A First Program

Although you do not yet know much about VBA programming, you know
enough to write a simple program and run it. Besides, sooner or later you will
have to stop reading and do some programming on your own. Now is a good
time to get started. Although the example in this section is very simple, there are
a few details you probably won’t understand completely, at least not yet. Don’t
worry. Later chapters will clarify the details. For now, just follow the directions
and realize the thrill of getting a program to work.

This example is based on a simple data set in the file First Program.xlsx.
It shows sales of a company by region and by month for a 3-year period. (See
Figure 3.9, where some rows have been hidden. The range B2:G37 has the
range name SalesRange.) Your boss wants you to write a program that scans the
sales of each region and, for each, displays a message that indicates the number of
months that sales in that region are above a user-selected value such as $150,000.
To do this, go through the following steps. (In case you get stuck, the finished
version is stored in the file First Program Finished.xlsm.)

1. Open the file. Get into Excel and open the First Program.xlsx file. Because
it is going to contain VBA code, save it as First Program.xlsm.

2. Get into the VBE. Press Alt+F11 to open the VBE. Make sure the Project
Explorer Window is visible. If it isn’t, open it with the View→ Project Explorer
menu item.

Figure 3.8 Immediate Window

24 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Add a module. In the Project Explorer window, make sure the First
Program.xlsm project is highlighted (select it if necessary), and use the
Insert → Module menu item to add a module to this project. This module
is automatically named Module1, and it will hold your VBA code.

4. Start a sub. Click anywhere in the Code window, type Sub CountHighSales,
and press Enter. You should immediately see the following code. You have
started a program called CountHighSales. (Any other descriptive name could
be used instead of CountHighSales, but it shouldn’t contain any spaces.)
The keyword Sub informs VBA that you want to write a subroutine (also
called a procedure or a macro), so it adds empty parentheses next to the
name CountHighSales and adds the keywords End Sub at the bottom—two
necessary elements of any subroutine. The rest of your code will be placed
between the Sub and End Sub lines. Chapters 5 and 10 discuss subroutines
in more detail, but for now, just think of a subroutine as a section of code
that performs a particular task. For this simple example, there is only one
subroutine.

Sub CountHighSales()
End Sub

5. Type the code. Type the code exactly as shown below between the Sub and
End Sub lines. It is important to indent properly for readability. To indent as
shown, press the Tab key. Also, note that there is no word wrap in the VBE.
To finish a line and go to the next line, you need to press the Enter key.
Other than this, the Code window is much like a word processor. You will
note that keywords such as Sub and End Sub are automatically colored blue
by the VBE. This is a great feature for helping you program. Also, spaces are
often inserted for you to make your code more readable. For example, if you

Figure 3.9 Sales by Region and Month

1

2

3

4

5

6

7

31

32

33

34

35

36

37

A B C D E F G

Month Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
Jan-08 144770 111200 163140 118110 105010 167350

Feb-08 155180 155100 129850 133940 140880 104110

Mar-08 86230 162310 142950 131490 150160 158720

Apr-08 148800 165160 123840 141050 175870 108100

May-08 157140 130300 114990 128220 147790 167470

Jun-08 126150 163240 149360 152240 167320 181070

Jun-10 124320 148410 162310 186440 147200 146200

Jul-10 135100 131520 151780 153920 121200 141430

Aug-10 150790 151970 168800 144170 140360 139990

Sep-10 93740 168100 142040 126440 113500 130500

Oct-10 124160 148560 120190 155600 132590 155510

Nov-10 109840 189790 127460 135160 149470 163330

Dec-10 127100 108640 145300 127920 151130 122900

The Visual Basic Editor 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

type nHigh=nHigh+1, the editor will automatically insert spaces on either side
of the equals and plus signs.

Sub CountHighSales()
Dim i As Integer
Dim j As Integer
Dim nHigh As Integer
Dim cutoff As Currency

cutoff = InputBox("What sales value do you want to check for?")
For j = 1 To 6

nHigh = 0
For i = 1 To 36

If wsData.Range("Sales").Cells(i, j) >= cutoff Then _
nHigh = nHigh + 1

Next i
MsgBox "For region " & j & ", sales were above " & Format(cutoff, "$0,000") _

& " on " & nHigh & " of the 36 months."
Next j

End Sub

6. Avoid syntax errors. Two special characters in this code are the ampersand,
&, and the underscore, _. Make sure each ampersand has a space on either
side of it, and make sure each line-ending underscore has a space before it.
(These spaces are not added automatically for you.) There are other syntax
errors you could make, but these are the most likely in this short subrou-
tine. Be sure to check your spelling carefully and fix any errors before
proceeding.

7. Run the program from the VBE. Your program is now finished. The next
step is to run it. There are several ways to do so, two of which are demon-
strated here. For the first method, make sure the cursor is anywhere within
your subroutine and select the Run → Run Sub/UserForm menu item.
(Alternatively, click the “green triangle” button on the Standard toolbar, or
press the F5 key.) If all goes well, you should see the input box in Figure
3.10, where you can enter a value such as 150000. The program will then
search for all values greater than or equal to $150,000 in the data set. Next,
you will see a series of message boxes such as the one in Figure 3.11. Each
message box tells you how many months the sales in some region are above
the sales cutoff value you entered. This is exactly what you wanted the pro-
gram to do.

8. Run the program with a button. The run method in the previous step
is fine for you, the programmer, but your users won’t want to get into the
VBE to run the program. They probably don’t even want to see the VBE.
They will instead want to run the program directly from the Excel worksheet
that contains the data. You can make this easy for them. First, switch back to
Excel (click the Excel button on the taskbar of your screen). Then click the
Insert dropdown list on the Developer ribbon (see footnote 1 of this chapter
for how to make the Developer tab visible), click the upper left “button”
control, and drag a rectangular button somewhere on your worksheet, as

26 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

shown in Figure 3.12.3 You will immediately be asked to assign a macro to this
button. This is because the only purpose of a button is to run a macro. You
should assign the CountHighSales macro you just wrote. Then you can type a
more meaningful caption on the button itself. (Again, see Figure 3.12 for a
possible caption.) At this point, the button is “selected”—there is a dotted bor-
der around it. To deselect it, just click anywhere else on the worksheet. Now
your button is ready to go. To run your program, just click the button.

9. Save the file. In case you haven’t done so already, save the file under the orig-
inal (or a new) name. This will save your code and the button you created.
Again, make sure you save it with the .xlsm extension.

A note on saving. You have undoubtedly been told to save frequently in all of your
computer-related courses. Frequent saving is at least as important in a programming
environment. After all the effort you expend to get a program working correctly, you
don’t want that sinking feeling when your unsaved work is wiped out by a sudden
power outage or some other problem. So I will say it, too—save, save, save!

3In Excel 2003 and earlier, the button control is on the Forms toolbar, which you can make visible
by right-clicking any toolbar and checking the Forms option. Although buttons are ready-made for
running macros, Excel shapes can also be used. Give it a try. From the Insert menu, select and then
drag a shape such as a rectangle. Then right-click, and you will see an Assign Macro menu item.

Figure 3.10 InputBox for Sales Cutoff Value

Figure 3.11 MessageBox for Region 2

The Visual Basic Editor 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Troubleshooting

What if you get an error message when you run your program? First, read your
program carefully and make sure the code is exactly like the code shown here.
Again, the underscores at the ends of the If and MsgBox lines must be preceded
by a space. (Their purpose is to extend long lines of code to the next line.) Also,
the ampersand (&) characters in the MsgBox line should have a space on either
side of them. If you have any lines colored red, this is a sure sign you have typed
something incorrectly. (This is another feature of the VBE that helps program-
mers. Red lines signify syntax errors.) In any case, if you get some version of the
dialog box in Figure 3.13, click the End button. This stops a program with bugs
and lets you fix any errors. Alternatively, click the Debug button, and you will
see a line of code in yellow. This line is typically the offending line, or close to it.
(Again, debugging is discussed in some detail in Chapter 5.)

If your typing is correct and you still get an error, check steps 7 and 8. If you
are using step 7 to run the program, make sure your cursor is somewhere inside
the subroutine. If you are using the button method in step 8, make sure you
have assigned the CountHighSales macro to the button. (Right-click the button

Figure 3.13 A Typical Error Dialog Box

Figure 3.12 Button on the Worksheet

1

2

3

4

5

6

7

8

9

35

36

37

A B C D E F G H I J K L
Month Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
Jan‐08 144770 111200 163140 118110 105010 167350
Feb‐08 155180 155100 129850 133940 140880 104110
Mar‐08 86230 162310 142950 131490 150160 158720
Apr‐08 148800 165160 123840 141050 175870 108100

May‐08 157140 130300 114990 128220 147790 167470
Jun‐08 126150 163240 149360 152240 167320 181070
Jul‐08 174010 183360 122120 149730 134220 135530

Aug‐08 171780 130050 124130 134510 175590 122230
Oct‐10 124160 148560 120190 155600 132590 155510
Nov‐10 109840 189790 127460 135160 149470 163330
Dec‐10 127100 108640 145300 127920 151130 122900

Count High Sales Values

28 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and select the Assign Macro menu item.) There are not too many things that can
go wrong with this small program, so you should eventually get it to work.
Remember, perseverance is the key.

Brief Analysis of the Program

I could not expect you to write this program without my help at this point. But
you can probably understand the gist of it. The four lines after the Sub line
declare variables that are used later on. The next line displays an InputBox (see
Figure 3.12) that asks for a user’s input. The section starting with For j = 1 To 6
and ending with Next j is a loop that performs a similar task for each sales region.
As you will learn in Chapter 7, loops are among the most powerful tools in a pro-
grammer’s arsenal. For example, if there were 600 regions rather than 6, the only
required change would be to change 6 to 600 in the For j = 1 To 6 line. Compu-
ters are excellent at performing repetitive tasks.

Within the loop on regions, there is another loop on months, starting with
For i = 1 To 36 and ending with Next i. Within this loop there is an If statement
that checks whether the sales value for the region in that month is at least as large
as the cutoff value. If it is, the variable nHigh is increased by 1. Once this inner loop
has been completed, the results for the region are reported in a MessageBox.

Again, the details might be unclear at this point, but you can probably under-
stand the overall logic of the program. And if you typed everything correctly and
ran the program as instructed, you now know the thrill of getting a program to
work as planned. I hope you experience this feeling frequently as you work
through this book.

3.6 Intellisense

A lot of things are advertised to be the best thing since sliced bread. Well, one of
the features of the VBE really is. It is called Intellisense. As you were writing the
program in the previous section, you undoubtedly noticed how the editor gave
you hints and tried to complete certain words for you. You see Intellisense in
the following situations:

● Every time you type the first line of a sub and then press Enter, Intellisense
adds the End Sub line automatically for you.4

● Whenever you start declaring a variable in a Dim statement, Intellisense helps
you with the variable type. For example, if you type Dim nHigh As In, it will

4There are many other VBA constructs that are bracketed with a beginning line and an ending line:
If and End If, For and Next, Do and Loop, and others. You might imagine that if VBA is smart enough
to add End Sub for you after you type the Sub line, it is smart enough to add an End If line after an If

line, a Next line after a For line, and so on. However, it isn’t that smart, at least not yet. My guess is
that Microsoft simply hasn’t gotten around to it yet. Interestingly, the Visual Studio editor for .NET
is that smart. It even indents automatically for you.

The Visual Basic Editor 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

guess that you want In to be Integer. All you have to do at this point is press
the Tab key, and Integer will appear.

● Intellisense helps you with properties and methods of objects. For example, if
you type Range("A1:C10"). (including the period), you will see all of the prop-
erties and methods of a Range object. At this point you can scroll through
the list and choose the one you want.

● Intellisense helps you with arguments of methods. For example, if you type
Range("A1:C10").Copy and then a space, you will see all of the arguments
(actually, only one) of the Copy method. (Any arguments shown in square
brackets in this list are optional. All others are required.)

● Intellisense helps you with hard-to-remember constants. For example, if you
type Range("A1").End(, you will see that there are four constants to choose
from: xlDown, xlUp, xlToRight, and xlToLeft. (This corresponds to pressing
the End key and then one of the arrow keys in Excel. You will learn more
about it in Chapter 6.)

● Sometimes you create fairly long variable names like productCost or firstCusto-
mer. Then you need to use them repeatedly in your code. If you start typing
one of them, like firs, and then press Ctrl+Space, you will get a list of all vari-
ables that start with these letters, and you can choose the one you want. In
fact, if there is only one variable that starts with these letters, it will be
inserted automatically. This can save a lot of typing—and typing errors.

In short, Intellisense is instant online help. It doesn’t necessarily help you
with the logic of your program, but it speeds up your typing, and it helps ensure
that you get the syntax and spelling correct. After you get used to Intellisense,
you will find that it is absolutely indispensable.

3.7 Color Coding and Case

Another feature of the VBE that enhances readability and helps you get your
code correct is color coding.

● All keywords, such as Sub, End, For, and many others, are automatically col-
ored blue.

● All comments (discussed in Chapter 5) are colored green.
● All of the rest of your code is colored black.
● If you make a syntax error in a line of code and then press Enter, the offend-

ing line is colored red. This is a warning that you should fix the line before
proceeding.

Besides coloring, the editor corrects case for you.

● All keywords start with a capital letter. Therefore, if you type sub and press
Enter, the editor changes it to Sub.

● If you declare a variable with the spelling unitCost and then type it as UNIT-
Cost later on in the program, the editor automatically changes it to unitCost.

30 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(Whatever spelling you use in the Dim statement is the one used subsequently,
even if it is something weird like uNitCost.) Actually, case doesn’t matter at all
to VBA—it treats unitCost the same as uNitCost or any other variation, but
the editor at least promotes consistency.

3.8 Finding Subs in the VBE

For the next few chapters, each of your programs will consist of a single sub, so
when you select the file’s module in the VBE’s Project Explorer, your sub will
appear in the Code window. However, in the programs in Part II of the book,
there are multiple subs, and not all of them are in modules. In this case, it can be
tedious to locate them in the Code window. Fortunately, the VBE provides tools
to make this easy.

To follow along, open the Car Loan.xlsm file from Chapter 19. It not only
has multiple subs in its module, but it has code in other locations, including code
behind user forms (discussed in Chapter 11). The point is that it has multiple
subs in various places. For now, double-click Module1 in the Project Explorer.
You will see the MainProgram sub in the Code window. Now click the right drop-
down arrow above the Code window. (See Figure 3.14.) You will see a list of all
subs in Module1. To go quickly to any of them, just select the one you want.

Next, right-click the first form, frmInputs, in the Project Explorer and select
View Code. This shows the code behind this form. (Again, all of this is explained
in Chapter 11.) Now click the left dropdown arrow above the Code window.
(See Figure 3.15.) You will see a list of all the controls on the form. Any of
these can have associated code that responds to its events. For example, select

Figure 3.14 List of Subs in a Module

Source: Microsoft Corporation

The Visual Basic Editor 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the button control cmdOK, and then click the right dropdown list above the
Code window. (See Figure 3.16.) You will see a list of all events that the cmdOK
control can respond to, and any that have associated code (event handlers) are
boldfaced. In this case, the Click event is the only one boldfaced, and if you select
it, you will see the corresponding code.

All you need to remember at this point is that these dropdown lists are always
available, and they make it easy to navigate around a large program.

Figure 3.15 List of Controls on a User Form

Figure 3.16 List of Events That a Control Can Respond To

32 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.9 Summary

This chapter has introduced the Visual Basic Editor (VBE)—its toolbars, some of
its menu items, and its windows. It has also briefly discussed online VBA help and
the Object Browser. You will be doing most of your development work in the
VBE, so you should become familiar with it right away. You will come to appreci-
ate what a friendly and helpful programming environment it provides.

EXERCISES

1. Open Excel and open two new workbooks, which will probably be called Book1
and Book2 (or some such generic names). Get into the VBE and make sure the
Project Explorer window is visible. Insert a module into Book1 and click the
plus sign next to Modules (for Book1) to see the module you just inserted. Now
type the following sub in the Code window for this module and then run it. It
should display the name of the workbook.

Sub ShowNameO
MsgBox "The name of this workbook is " & ThisWorkbook.Name

End Sub

Finally, go to the Project Explorer window and drag the module you inserted
down to Book2. This should create a copy of the module in Book2. Run the
sub in the copied module. It should display the name of the second workbook.
The point of this exercise is that you can copy code from one workbook to
another by copying the module containing the code. Fortunately, copying a mod-
ule is as simple as dragging in the Project Explorer window.

2. Open the First Program.xlsm file you created in Section 3.5, and get into the
VBE so that you can look at the code. Select the Debug → Add Watch menu
item, and type nHigh in the text box. You are adding a watch for the variable
nHigh, so that you can see how it changes as the program runs. Next, place the
cursor anywhere inside the code, and press the F8 key repeatedly. This steps
through the program one line at a time. Every time the program sees a sales
figure greater than the cutoff value you specify, nHigh will increase by 1, which
you should see in the Watch window. (You will probably get tired of pressing
F8. You can stop the program prematurely at any time by clicking the blue square
Reset button on the Standard toolbar. Alternatively, you can click the green trian-
gle Run button to run the rest of the program all at once.)

3. Get into the VBE and open the Immediate window. (Again, the shortcut for
doing so is Ctrl+g.) Then type the following lines, pressing the Enter key after
each line. You should now understand why it is called the Immediate window.

?Application.Name
?Application.DefaultFilePath
?Application.Path
?Application.Version

The Visual Basic Editor 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

?Application.UserName
?IsDate("February 29, 2009")
?IsDate("February 29, 2008")
?Workbooks.Count
?ActiveWorkbook.Name

4. Open a new workbook in Excel, get into the VBE, and insert a module into this
new workbook. Type the following code in the Code window. Make sure there is
no Option Explicit line at the top of the code window. (If there is one, delete it.)

Sub EnterUserNameSlowly()
Range("A1").Value = "The user of this copy is Excel is listed below."
yourName = Application.UserName
nChars = Len(yourName)
For i = 1 To nChars
Range("A3").Value = Left(yourName, i)
newHour = Hour(Now())
newMinute = Minute(Now())
newSecond = Second(Now()) + 1
waitTime = TimeSerial(newHour, newMinute, newSecond)
Application.Wait waitTime

Next
End Sub

Next, return to Sheet1 of this workbook, add a button and assign the EnterUser-
NameSlowly sub to it, and then run the program by clicking the button. Can you
now explain what the code is doing? (If you like, look up the Wait method of
the Application object in the Object Browser for online help.)

5. Open the First Programs.xlsm file you created in Section 3.5, and get into the
VBE. Use the Tools → VBAProject Properties menu item, and click the Protec-
tion tab. Check the “Lock project for viewing” option, enter a password in the
other two boxes—don’t forget it—and click OK. Go back to Excel, save the file,
and close it. Now reopen the file and try to look at the code. You have just
learned how to password-protect your code. Of course, you have to remember
the password. Otherwise, not even you, the author, can look at the code. (If you
ever want to remove the protection, just uncheck the “Lock project for viewing”
option and delete the passwords from the boxes.)

34 Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recording Macros

4.1 Introduction

This chapter illustrates a very quick way to start programming—by recording
while you perform a task in Excel. Just as you can record yourself singing or
playing the piano, you can record your actions as you work in Excel. As the
recorder records what you are doing, it generates VBA code in a module. If
this sounds too good to be true, it is—at least to an extent. There are certain
things you cannot record—loops and control logic, for example—and the
recorded code, even though correct, is usually not very “stylish.” Still, there are
two reasons why recording can be useful. First, it is helpful for beginners. A
beginning programmer can immediately generate code and then look at it and
probably learn a few things. Second, it is useful even for experienced programmers
who need to learn one particular detail of VBA code. For example, what is the
VBA code for entering a comment in a cell? You could look it up in online help,
but you could also record the process of entering a comment in a cell and then
examine the resulting code. Recording often provides the clue you need to over-
come a particular coding hurdle.

4.2 How to Record a Macro

Recording is easy. In Excel 2007 and later versions, select Record Macro from
the Developer ribbon (see Figure 4.1) to display the dialog box in Figure 4.2.
(In Excel 2003 and earlier, select the Tools ! Macro ! Record New Macro
menu item.) Alternatively, you can click the small button to the right of READY
on the status bar at the bottom left of the Excel screen to bring up the same
Record Macro dialog box (see Figure 4.3). Then you can give the macro a
descriptive name, provide an optional description of the macro, give it an
optional shortcut key, and tell Excel where to store the recorded code.1

4

1A shortcut key is useful if you want to be able to run the macro with a Ctrl+key combination. For
example, if you enter the letter k in the box, the macro will run when you press the Ctrl+k key com-
bination. Just be aware that if there is already a Ctrl+key combination, especially one that you use
frequently, your new one will override it. For example, many people like to use Ctrl+s to save a file,
so it is not wise to override this with your own use of Ctrl+s.

35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The storage location for the macro is particularly important. As Figure 4.2
indicates, you can store the macro in the current workbook, in a new workbook,
or in a special workbook called your Personal Macro Workbook. If you store
the macro in the current workbook, you can use it in that workbook but not in
others, at least not without some extra work. This is sometimes acceptable, but
suppose you want to record macros for tasks you do repeatedly. In fact, suppose
your whole purpose in recording these macros is to have them available at all
times when you are working in Excel. Then the Personal Macro Workbook should
be your choice. It is a special file that Excel stores in its XLStart folder so that it is

Figure 4.1 Record Macro Button on Developer Ribbon

Figure 4.3 Record Macro Button on Status Bar

Figure 4.2 Record Macro Dialog Box

36 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

opened every time Excel is opened.2 It is actually opened as a hidden file so that
you are not even aware of its presence—but its macros are always available.

Take a look at your Project Explorer window in the VBE to see if you have a
Personal.xlsb (or Personal.xls) item. If you do not, record a macro and select
the Personal Macro Workbook option in Figure 4.2 This will create a
Personal.xlsb (or Personal.xls) file on your hard drive, which you can then add
to as often as you like. By the way, you can either record macros to your Personal
Macro Workbook, or you can type code directly into it in the VBE. That is, once
you learn to program and not just record, you can add to your Personal Macro
Workbook anytime you like. Just select one of its modules in the VBE and start
typing your code—and save when you are finished.

After you complete the dialog box in Figure 4.2 and click OK, you should see a
StopRecording button on the Developer ribbon. (In Excel 2003 and earlier, this but-
ton is in its own toolbar.) Alternatively, you can click the Status Bar button. (Once you
start recording, this button becomes a Stop Recording button.) Just remember that
the recorder will record virtually everything you do until you click a Stop Recording
button, so be careful—and don’t forget to stop recording when you are finished.

Suppose you already have a module in your current workbook (or your Per-
sonal Macro Workbook, if that is where you are storing the recorded macro).
Then the chances are that Excel will create a new module and place the recorded
macro in it. Actually, the rules for whether it opens a new module or uses an
existing module are somewhat obscure, but the point is that you might have to
search through your modules to find the newly recorded code.

4.3 Changes from Excel 2007 to Later Versions

Some people, especially VBA programmers, have said that Excel 2007 was really
just the “beta” for Excel 2010. One reason for this claim is that recording simply
doesn’t work for certain actions in Excel 2007—Microsoft released the product
before it was completely finished. For example, if you record certain actions on
charts in Excel 2007, you get no recorded code whatsoever. This is especially frus-
trating if your whole purpose in recording is to see what the resulting code will
look like, as I often do. This seems to be fixed in later versions of Excel, but I
haven’t tested it completely. There still might be certain actions that produce no
recorded code. In such cases, you have to do some detective work, using online
help or Web searches, to find the VBA code corresponding to these actions.

4.4 Recorded Macro Examples

This chapter includes two files, Recording Macros.xlsm and Recording Macros
Finished.xlsm, to give you some practice in recording macros. The first file

2The XLStart folder is way down the directory structure on your hard drive. To see where it is in Excel
2007 or later versions, go to Excel Options, choose the Advanced group, and scroll down to the General
options. You will see an “At startup, open all files in:” item, where you can see or change the startup
folder location. Actually, if this box is blank, the XLStart folder is in its default location.

Recording Macros 37

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

includes six worksheets, each with a simple task to perform with the recorder
on. The tasks selected are those that most spreadsheet users perform frequently.
This section goes through these tasks and presents the recorded code. Although
this recorded code gets the job done, it is not very elegant code. Therefore, the
finished version of the file contains the recorded code and modifications of it.
This is a common practice when using the recorder. You often record a macro to
get one key detail. You then modify the recorded code to fit your specific purposes
and discard any excess code you do not need. In short, you clean it up.

For the rest of this section, it is best to open the Recording Macros.xlsm file
and work through each example with the recorder on. Your recorded code might
be slightly different from the code in the finished version of the file because you
might do the exercises slightly differently. Don’t worry about the details of the
recorded code or the modified code at this point. Just recognize that recorded
code often benefits from some modification, either to make it more general,
improve its readability, or delete unnecessary lines.

Exercise 4.1 Entering a Formula

This exercise, shown in Figure 4.4, asks you to name a range and enter a formula
to sum the values in this range.

The recorded code and modifications of it appear below in the SumFormula
and SumFormula1 subs. If you think about range operations in Excel, you will
realize that you usually select a range—that is, highlight it—and then do some-
thing to it. Therefore, when you record a macro involving a range, you typically
see the Select method in the recorded code. This is actually not necessary. When
you want to do something to a range with VBA, you do not need to select it first.
As you can see in the modified version, the Select method is never used. How-
ever, there is a reference to the Exercise1 worksheet, just to clarify that the ranges
referred to are in this worksheet and not one of the others.

Note how the recorded macro names a range. It uses the Add method of the
Names collection of the ActiveWorkbook. This Add method requires two argu-
ments: the name to be given and the range being named. The latter is done in

Figure 4.4 Exercise 1 Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H

Naming a range and entering a formula

Month Cost
Jan-00 $10,897
Feb-00 $11,164
Mar-00 $10,062
Apr-00 $12,039

May-00 $11,111
Jun-00 $10,223
Jul-00 $11,558

Aug-00 $12,553
Total cost

Turn the recorder on, name the range with
the numbers MonthlyCosts, then enter the
formula =SUM(MonthlyCosts) at the
bo�om of the column, then turn the
recorder off.

38 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

R1C1 notation. For example, R7C2 refers to row 7, column 2—that is, cell B7.
This is a typical example of recorded code being difficult to read. The modified
code shown below uses a much easier way of naming a range (by setting the
Name property of the Range object). It also uses the code name I gave to the
worksheet, wsExercise1. Code names are explained in the next chapter.

Recorded Code

Sub SumFormula()
'
' SumFormula Macro
'

Range("B4:B11").Select
ActiveWorkbook.Names.Add Name:="MonthlyCosts", RefersToR1C1:= _

"=Exercise1!R4C2:R11C2"
Range("B12").Select
ActiveCell.FormulaR1C1 = "=SUM(MonthlyCosts)"
Range("B13").Select

End Sub

Modified Code

Sub SumFormula1()
With wsExercise1

.Range("B4:B11").Name = "MonthlyCosts"

.Range("B12").Formula = "=SUM(MonthlyCosts)"
End With

End Sub

Exercise 4.2 Copying and Pasting

This exercise, shown in Figure 4.5, asks you to copy a formula down a column.
The recorded code and modifications of it are shown below in the CopyPaste

and CopyPaste1 subs. Here again, you see Select and Selection several times in the

Figure 4.5 Exercise 2 Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I J

Copying and pas�ng a formula

Month Region 1 sales Region 2 sales Total sales
Jan-00 $14,583 $10,531 $25,114
Feb-00 $10,030 $12,861
Mar-00 $14,369 $11,172
Apr-00 $13,108 $14,957

May-00 $14,410 $13,395
Jun-00 $11,439 $12,306
Jul-00 $12,753 $12,593

Aug-00 $13,074 $11,631
Sep-00 $10,957 $11,651

Column D is the sum of columns B and C. The
typical formula is shown in cell D7. Turn on
the recorder, copy this formula down column
D, and turn the recorder off.

Source: Microsoft Corporation

Recording Macros 39

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

recorded code. The recorded code also contains the strange line ActiveSheet.Paste.
Why does it paste to the active sheet and not to a particular range? I still find this
hard to understand. The modified version is much simpler and easier to read.

Recorded Code

Sub CopyPaste()
'
' CopyPaste Macro
'

Range("D4").Select
Selection.Copy
Range("D5:D12").Select
ActiveSheet.Paste
Application.CutCopyMode = False

End Sub

Modified Code

Sub CopyPaste1()
With wsExercise2

.Range("D4").Copy Destination:=.Range("D4:D12")
End With
' The next line is equivalent to pressing the Esc key to get
' rid of the dotted line around the copy range.
Application.CutCopyMode = False

End Sub

This exercise indicates how you can learn something fairly obscure by recording.
Remember that when you copy and then paste in Excel, the copy range retains a
dotted border around it? You can get rid of this dotted border in Excel by press-
ing the Esc key. How do you get rid of it in VBA? The answer appears in the
recorded code—you finish with the line

Application.CutCopyMode = False

Exercise 4.3 Copying and Pasting Special as Values

This exercise, shown in Figure 4.6, asks you to copy a range of formulas and then
use the Paste Values option to paste it onto itself.

The recorded code and its modifications are listed below in the PasteValues
and PasteValues1 subs. This time the recorded code is used as a guide to make a
slightly more general version of the macro. Instead of copying a specific range
(D4:D12), the modification copies the current selection, whatever it might be.
Also, note that when recorded code contains a method, such as the PasteSpecial
method of a Range object, it includes all of the arguments of that method. Typi-
cally, many of these use the default values of the arguments, so they do not really

40 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

need to be included in the code. The modified code has dropped the Operation, Skip-
Blanks, and Transpose arguments because the actions performed in Excel did not
change any of these. My point here is that recorded code is often bloated code.

Recorded Code

Sub PasteValues()
'
' PasteValues Macro
'

Range("D4:D12").Select
Selection.Copy
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks:=False, Transpose:=False
Application.CutCopyMode = False

End Sub

Modified Code

Sub PasteValues1()

' Note: This macro is somewhat more general. It copies and pastes to the current selection, whatever
' range it happens to be.

With Selection
.Copy
.PasteSpecial Paste:=xlPasteValues

End With
Application.CutCopyMode = False

End Sub

Exercise 4.4 Formatting Cells

This exercise, shown in Figure 4.7, asks you to format a range of labels in several
ways. The recorded code and its modifications appear below in the Formatting and

Figure 4.6 Exercise 3 Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

A B C D E F G H I J

Copying a range of formulas and pas�ng onto itself with the PasteSpecial Values op�on

Month Region 1 sales Region 2 sales Total sales
Jan-00 $14,583 $10,531 $25,114
Feb-00 $10,030 $12,861 $22,891
Mar-00 $14,369 $11,172 $25,541
Apr-00 $13,108 $14,957 $28,065

May-00 $14,410 $13,395 $27,805
Jun-00 $11,439 $12,306 $23,745
Jul-00 $12,753 $12,593 $25,346

Aug-00 $13,074 $11,631 $24,705
Sep-00 $10,957 $11,651 $22,608

Column D is the sum of columns B and C.
Replace the formulas in column D with
values. Specifically, turn on the recorder,
Copy column D, Paste Special (with the
Values op�on), then turn off the recorder.

Recording Macros 41

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Formatting1 subs. This is a typical example of bloated code generated by
the recorder. The exercise changes a few properties of the Font object, but the
recorded code shows all of the Font properties, whether changed or not. The
modified code lists only the properties that are changed.

Recorded Code

Sub Formatting()
'
' Formatting Macro
'

With Selection.Font
.Name = "Times New Roman"
.Size = 11
.Strikethrough = False
.Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.ColorIndex = 3
.TintAndShade = 0
.ThemeFont = xlThemeFontNone

End With
With Selection.Font

.Name = "Times New Roman"

.Size = 12

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ColorIndex = 3

.TintAndShade = 0

.ThemeFont = xlThemeFontNone
End With
Selection.Font.Bold = True
With Selection.Font

.Color = −16776961

.TintAndShade = 0
End With

End Sub

Figure 4.7 Exercise 4 Worksheet

1

2

3

4

5

6

7

8

A B C D E F G H I J K L

Forma�ng the cells in a range

Jan Feb Mar Apr May Jun
Format the cells to the le� so that the font
is Times New Roman, size 12, bold, and red.
Select the range before turning on the
recorder.

42 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Modified Code

Sub Formatting1()
With Selection.Font

.Name = "Times New Roman"

.Size = 12

.Bold = True

.ColorIndex = 3
End With

End Sub

Exercise 4.5 Creating a Chart

This exercise, shown in Figure 4.8, asks you to create a chart (as shown in
Figure 4.9) on the same sheet as the data for the chart.

The recorded code and its modifications are listed in the CreateChart and
CreatChart1 subs. It is helpful to use the recorder when you want to use VBA to
create or modify a chart. There are too many objects, properties, and methods

Figure 4.8 Exercise 5 Worksheet

1

2

3

4

5

6

7

8

A B C D E F G

Crea�ng a chart

Grade Number
A 25
B 57
C 43
D 10
F 4

Create a bar chart on this sheet for the
grade distribu�on to the le�.

Figure 4.9 Chart on Exercise 5 Worksheet

0

A B C D F

10

20

30

40

50

60

Grade Distribution

Recording Macros 43

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

associated with charts to remember, so you can let the recorder help you. Note
that the modified version leaves most of the recorded code alone. It simply inserts
some With constructions to avoid repetitive references to the same object. (The
With construction is explained in the next chapter.)

If you are using Excel 2007 or 2010, your recorded code will differ from
what is shown here, which was recorded in Excel 2013. This is an example of
the problem mentioned earlier, where the Excel 2007 recorder does not supply
recorded code for all of your actions. Thankfully, this was fixed in Excel
2010, but even so the recorded code is slightly different in Excel 2013 than in
Excel 2010.

Recorded Code

Sub CreateChart()
'
' CreateChart Macro
'

Range("A3:B8").Select
ActiveSheet.Shapes.AddChart2(201, xlColumnClustered).Select
ActiveChart.SetSourceData Source:=Range("Exercise5!A3:B8")
ActiveChart.ChartTitle.Select
Selection.Caption = "Grade Distribution"
Range("A1").Select

End Sub

Modified Code

Sub CreateChart1()
With wsExercise5

.Range("A3:B8").Select

.Shapes.AddChart2(201, xlColumnClustered).Select
With ActiveChart

.SetSourceData Source:=Range("Exercise5!A3:B8")

.ChartTitle.Caption = "Grade Distribution"
End With
.Range("A1").Select

End With
End Sub

Exercise 4.6 Sorting

This final exercise, in Figure 4.10, asks you to sort a range in descending order
based on the Total column.

The recorded code and its modifications are listed in the Sorting and Sorting1
subs. This again illustrates how you do not need to select a range before doing
something to it. It also shows how the recorded code lists all arguments of the
Sort method. The ones that have not been changed from their default values are
omitted in the modified code.

44 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recorded Code

Sub Sorting()
'
' Sorting Macro
'

Range("D3").Select
ActiveWorkbook.Worksheets("Exercise6").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Exercise6").Sort.SortFields.Add Key:=Range("D3"), _

SortOn:=xlSortOnValues, Order:=xlDescending, DataOption:=xlSortNormal
With ActiveWorkbook.Worksheets("Exercise6").Sort

.SetRange Range("A4:D11")

.Header = xlNo

.MatchCase = False

.Orientation = xlTopToBottom

.SortMethod = xlPinYin

.Apply
End With

End Sub

Modified Code

Sub Sorting1()
With wsExercise6

.Range("D3").Sort Key1:=.Range("D3"), Order1:=xlDescending, Header:=xlYes
End With

End Sub

As these exercises illustrate, you can learn a lot by recording Excel tasks and then
examining the recorded code. However, you often need to modify the code to
make it more readable and fit your specific needs. Also, be aware that there are
many things you cannot record. Specifically, there is no way to record control
logic and loops, two of the most important programming constructs available to
a programmer. You have to program these manually—the recorder cannot do it

Figure 4.10 Exercise 6 Worksheet

1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H

Sor�ng a range

Sales rep January sales February sales Total
Adams $3,843 $3,848 $7,691
Jones $2,895 $3,223 $6,118
Miller $3,707 $2,788 $6,495
Nixon $3,544 $2,745 $6,289
Roberts $3,672 $2,360 $6,032
Smith $2,825 $2,369 $5,194
Thomas $2,270 $2,035 $4,305
Wilson $2,740 $2,625 $5,365

Sort on the Total column,
from highest to lowest.

Recording Macros 45

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for you. Finally, I repeat my frustration that recording doesn’t always work as
expected. For example, recording chart manipulations in Excel 2007 often yields
no code at al. So don’t be surprised if you experience similar recording “errors”
from time to time.

The following exercise allows you to try some recording on your own and
then create a handy button on your Quick Access Toolbar (QAT) for the
recorded macro.

Exercise 4.7 Recording Print Settings and Modifying Your QAT

We all have our favorite print settings, and I can’t count the number of times I have
gone through the print settings dialog box to change the settings. This process always
includes exactly the same steps, and it takes a number of mouse clicks. In short, it is a
bother. This is a perfect situation for a recorded macro that does it once and saves it
in the Personal Macro Workbook for easy future use. Here are the steps.

1. Turn the recorder on, give the macro a name such as PrintSettings, and indi-
cate that you want to store it in the Personal Macro Workbook.

2. Open the print settings dialog box, change the settings to the way you want
them, and turn the recorder off.

3. Check the code. You will see that every possible print setting has been
recorded, not just those you changed. You can leave this as is, or you can
streamline the code to change only settings of interest.

4. In Excel 2003 and earlier, you could now create a new toolbar with a new
toolbar button to run your PrintSettings macro. (This process was explained
in the second edition of the book.) This is no longer possible in Excel 2007
or later versions,3 but there is an alternative. At the top of the Excel screen,
you see the Quick Access Toolbar (QAT). This is where you can create a but-
ton to run your favorite macros. The following steps explain the process.

5. Click the dropdown next to the QAT and select More Commands.
6. In the top left dropdown, select Macros. You should see your PrintSettings

macro in the list. Select it, and click the Add>> button to add it to your
QAT. By default, it will have a generic button icon. To change the icon,
click the Modify button and choose from the available icons. Then back
your way out. (By the way, it would be nice to change the available icons or
add to them. This isn’t necessarily easy, but it can be done. See Section 16.4
for details.)

This process of recording a macro, saving it to your Personal Macro Work-
book, and creating a button on the QAT to run the macro makes you an instant
programmer. You will be amazed at how useful simple little macros can be if you
design them to automate tasks you perform frequently.

3Well, this isn’t really true in Excel 2010 and later versions, which allow you to create your own cus-
tomized ribbon with buttons that run your macros. Still, for quick tasks like print settings, the QAT is
arguably the preferable way to go.

46 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Summary

The macro recorder serves two basic purposes: (1) It allows beginning program-
mers to learn how common Excel operations translate into VBA code; and (2) it
allows more advanced programmers to discover the one detail they need to get
a program working. However, there are also two drawbacks to the recorder:
(1) The recorded code is often far from elegant and is often bloated with unneces-
sary lines; and (2) it is incapable of capturing logic or loops, two of the most pow-
erful aspects of VBA. In short, the recorder can be very useful, but it has its limits.

EXERCISES

1. VBA can be used to format worksheet ranges in a variety of ways—the font, the
interior (background of the cells), the alignment, and others. The recorder can
be useful for learning the appropriate properties and syntax. Try the following.
Open a new workbook and type some labels or numbers into various cells. Then
turn on the recorder and format the cells in any of your favorite ways. Examine
the recorded code. You will probably find that it sets many properties that you
never intended to set. Delete the code that appears to be unnecessary and run
your modified macro.

2. The ThemeColor and TintAndShade properties of the Font object (or the Interior
object) determine the color of the font (or the background of a cell). Unfortu-
nately, it is virtually impossible to remember which property values go with which
color. Try the following. Open a new workbook and type a label in some cell.
Select this cell, turn the recorder on, and change the color of the font (or the
cell’s background) repeatedly, choosing any colors you like from the color palettes.
As you do so, keep track of the colors you have selected and then examine the
recorded code. You should be able to match colors with property values. (Actually,
this changed in Excel 2007, where “themes” were introduced. When you record these
types of actions in Excel 2003 or earlier, you get values of the ColorIndex property. Still,
recording is helpful in either case.)

3. Using the recorder can be particularly useful for learning how to use VBA to
modify charts. The file Chart Practice.xlsx contains a small data set and a chart
that is based on it. Open this file, turn the recorder on, and change any of the ele-
ments of the chart—the type of chart, the chart title, the axis labels, and so on.
(You might be surprised at how many things you can change in a chart.) As you
do this, write down the list of changes you make. Then examine the recorded
code and try to match the sections of code with the changes you made. (If you
want more information on any particular chart property you see in the code,
select it and press the F1 key. This provides immediate online help for the ele-
ment you selected. Alternatively, look it up in the Object Browser.)

4. The previous exercise shows how to use the recorder to learn about properties of
an existing chart. You can also use the recorder to learn how VBA can create a
chart from scratch. Try the following. Open the Chart Practice.xlsx file, delete
the chart, and then recreate it with the recorder on. Examine the recorded code

Recording Macros 47

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to learn even more about how VBA deals with charts. (As with many recording
sessions, you might want to practice building a chart before turning the recorder
on. You don’t want the recorder to record your mistakes.)

5. An operation I often perform is to select a range of cells that contain numbers
and format them as integers, that is, as numbers with no decimals. This is easy to
do with Excel’s Format Cells menu item, but it takes a few steps. Record a gen-
eral macro for performing this operation, store it in your Personal Macro Work-
book, and create a button on the QAT to run this macro (if you are running
Excel 2007 or a later version). Once you are finished, you will always be a click
away from formatting a range as integer. (Hint: Select a range of numbers before
turning the recorder on. Your macro will then always work on the currently
selected range, whatever it happens to be.)

6. (Note: This exercise and the next one are adapted from those in the second edition,
which asked you to autoformat a range. Starting with 2007, Excel no longer sup-
ports autoformats, at least not officially, but similar functionality is still possible, as
indicated here.) Many spreadsheets in the business world contain tables of various
types. To dress them up, people often format them in various ways. To do this,
select a table of data, including headers, and select an option of your choice from
the Format as Table dropdown on the Home ribbon. Try it now with the
recorder on, using the table in the Table Data.xlsx file. Then examine the code.
You will see that it first creates a new ListObject object—that is, a table, as discussed
in Chapter 15—and it then sets the TableStyle property of the table to one of sev-
eral built-in Excel styles, such as "TableStyleMedium2". (If you ever need to learn
the name of one of these style names, just repeat this exercise. It is a perfect exam-
ple of how the recorder can be used to learn one critical detail of a program.)

7. Continuing the previous exercise, record a macro that formats a table with your
favorite table style option, and store the macro in your Personal Macro Work-
book. Then create a button on your QAT that runs this macro. When you are fin-
ished, you will be a click away from formatting any table with your favorite style.

8. I like to color-code certain cells in my spreadsheets. For example, I like to make
the background of input cells blue, and I like to color cells with decision variables
red. This is easy enough with the Fill Color (paint can) dropdown list on the
Home ribbon, but it is even easier if I create “color” buttons on my QAT. Try
doing this with the recorder. Open a blank file, select any range, turn on the
recorder, and color the background a color of your choice. Make sure you store
the macro in your Personal Macro Workbook. Then create a button with an
appropriate icon on your QAT to run this macro. (Note: By selecting the range
before you turn the recorder on, your macro will be more general. It will color
whatever range happens to be selected when you run it.)

48 Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Getting Started with VBA

5.1 Introduction

Now it is time to start doing some real programming in VBA—not just copying
code in the book or recording, but writing your own code. This chapter gets you
started with the most basic elements—how to create a sub, how to declare variables
with a Dim statement, how to get information from a user with an InputBox, how to
display information in a MsgBox, and how to document your work with comments.
It also briefly discusses strings, it explains how to specify objects, properties, and
methods in VBA code, and it discusses VBA’s extremely useful With construction
and several other VBA tips. Finally, it discusses techniques for debugging, because
programmers virtually never get their programs to work the first time through.

5.2 Subroutines

The logical section of code that performs a particular task is called a subroutine,
or simply a sub. Subroutines are also called macros, and they are also called
procedures. There is also a particular type of subroutine called a function subrou-
tine that is discussed in Chapter 10. Subroutines, macros, and procedures are all
essentially the same thing. I will call them all subs. A sub is any set of code that per-
forms a particular task. It can contain one line of code or it can contain hundreds of
lines. However, it is not good programming practice to let subs get too long. If the
purpose of your application is to perform several related tasks, it is a good idea to
break it up into several relatively short subs, each of which performs a specific task.
In this case there is often a “main” sub that acts as the control center—it “calls” the
other subs one at a time. The collection of subs that fit together is called a program.
In other words, a program is a collection of subs that achieves an overall objective.

There are several places you can store your subs, but for now, you should
store all of your subs in a module. When you look at a new project in the VBE,
it will have no modules by default. However, you can add a module through the
Insert menu, and then you can start adding subs to it. It is also possible to
double-click a sheet or ThisWorkbook in the VBE Project Explorer to bring up a
code window, but you should not enter your subs there, at least not yet. They
are reserved for event handlers, which are discussed in Chapter 11. So again, for
now, you should place all of your subs in modules.

Each sub has a name, which must be a single word. This word, which can be
a concatenation of several words such as GetUserInputs, should indicate the

5

49

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

purpose of the sub. You can use generic names such as Sub1 or MySub, but this is
a bad practice. You will have no idea in a week what Sub1 or MySub is intended
to do, whereas GetUserInputs clearly indicates the sub’s purpose.

All subs must begin with the keyword Sub and then the name of the sub fol-
lowed by parentheses, as in:

Sub GetUserInputs()

You can type this line directly into a module in the VBE, or you can use the
Insert ! Procedure menu item, which will prompt you for a name. (Again, if
there is no module for the current project, you must insert one.) The editor will
immediately insert the following line for you:

End Sub

Every sub must start with the Sub line, and it must end with the End Sub
line. You will notice that the editor also colors the reserved words Sub and End
Sub blue. In fact, it colors all reserved words blue as an aid to the programmer.
Now that your sub is bracketed by the Sub and End Sub statements, you can
start typing code in between.

Why are there parentheses next to the sub’s name? As you will see in Chapter 10,
a sub can take arguments, and these arguments must be placed inside the parenthe-
ses. If there are no arguments, which is often the case, then there is nothing inside
the parentheses; but the parentheses still must be included. (This is similar to a few
Excel worksheet functions that take no arguments, such as ¼RAND(), where the
parentheses are also required.)

If a program contains several logically related subs, it is common to place all
of them in a single module, although some programmers put some subs in one
module and some in another, primarily for organizational purposes. The subs in
a particular module can be arranged in any order. If there is a “main” sub that
calls other subs to perform certain tasks, it is customary to place the main sub at
the top of the module and then place the other subs below it, in the order they
are called. But even this is not necessary; any order is accepted by VBA.

Later sections ask you to run a sub. There are several ways to do this, as
explained in Chapter 3. For now, the easiest way is to place the cursor anywhere
within the sub and click the Run button (the green triangle) on the VBE
Standard toolbar. Alternatively, you can press the F5 key, or you can use the
Run ! Run Sub/UserForm menu item.

5.3 Declaring Variables and Constants

Virtually all programs use variables. Variables contain values, much like the
variables x and y you use in algebra. For example, the next three lines illustrate a
simple use of variables. The first line sets the unitCost variable equal to 1.20, the

50 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

second line sets the unitsSold variable to 20, and the third line calculates the
variable totalCost as the product of unitCost and unitsSold. Of course, the value of
totalCost here will be 24.0.

unitCost = 1.20
unitsSold = 20
totalCost = unitCost * unitsSold

Unlike algebra, you can also have a line such as the following:

totalCost = totalCost + 20

To understand this, you must understand that each variable has a location in
memory, where its value is stored. If a variable appears to the left of an equals
sign, then its new value in memory becomes whatever is on the right side of the
equals sign. For example, if the previous value of totalCost was 260, the new value
will be 280, and it will replace the old value in memory.

Although it is not absolutely required (unless the line Option Explicit is at the
top of the module), you should always declare all of your variables at the begin-
ning of each sub with the keyword Dim.1 (Dim is an abbreviation of dimension, a
holdover from the old BASIC language. It would make more sense to use the
word Declare, but we are stuck with Dim.) Declaring variables has two advantages.
First, it helps catch spelling mistakes. Suppose you use the variable unitCost several
times in a sub, but in one case you misspell it as unitsCost. If you have already
declared unitCost in a Dim statement, VBA will catch your spelling error, reason-
ing that unitsCost is not on the list of declared variables.

The second reason for declaring variables is that you can then specify the types
of variables you have. Each type requires a certain amount of computer memory,
and each is handled in a certain way by VBA. It is much better for you, the pro-
grammer, to tell VBA what types of variables you have than to let it try to deter-
mine them from context. The variable types used most often are the following.

● String (for text like “Bob” or “The program ran without errors.”)
● Integer (for integer values in the range −32,768 to 32,767)
● Long (for really large integers beyond the Integer range)
● Boolean (for variables that can be True or False)
● Single (for numbers with decimals)
● Double (for numbers with decimals where you require more accuracy than

with Single)
● Currency (for monetary values)
● Variant (a catch-all, where you let VBA decide how to deal with the variable)

1If you declare a variable inside a sub, it is called a local variable. It is also possible to declare a variable
outside of subs, in which case it is a module-level variable. This issue is discussed in Chapter 10.

Getting Started with VBA 51

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Variable declarations can be placed anywhere within a sub, but it is customary
to include them right after the Sub line, as in the following:

Sub Test()
Dim i As Integer, unitCost As Currency, isFound As Boolean
Other statements

End Sub

Some programmers prefer a separate Dim line for each variable. (I tend to
favor this, but I’m not always consistent.) This can lead to a long list of Dim state-
ments if there are a lot of variables. Others tend to prefer a single Dim, followed
by a list of declarations separated by commas. You can use either convention or
even mix them. However, you must follow each variable with the keyword As
and then the variable type. Otherwise, the variable is declared as the default
Variant type, which is considered poor programming practice. For example, vari-
ables i and j in the following line are (implicitly) declared as Variant, not as Integer.
Only k is declared as Integer.

Dim i, j, k As Integer

If you want all of them to be Integer, the following declaration is necessary:

Dim i As Integer, j As Integer, k As Integer

Symbols for Data Types

It is also possible to declare (some) data types by the symbols in Table 5.1. For
example, you could use Dim unitCost@ or Dim nUnits%, where the symbol follows
the variable name. This practice is essentially a holdover from older versions of the
BASIC language, and you might see it in legacy code (as I recently did). How-
ever, I don’t recommend using this rather obscure shorthand way of declaring
variables. After all, would you remember them?

Table 5.1 Symbols for Data Types

Integer %
Long &
Single !
Double #
Currency @
String $

52 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Option Explicit

You should force yourself to adopt the good habit of declaring all variables. You can
do this by using the tip mentioned in Chapter 3. Specifically, you should select the
Tools ! Options menu item in the VBE and check the Require Variable
Declarations box under the Editor tab. (By default, it is not checked. I still have no
idea why Microsoft makes this the default setting.) From that point on, every time
you open a new module, the line Option Explicit will be at the top. This simply means
that VBA will force you to declare your variables. If you forget to declare a variable, it
will remind you with an error message when you run the program and it sees an unde-
clared variable. If you ever see the message in Figure 5.1—and you almost certainly
will—you will know that you forgot to declare a variable (or misspelled one).

Object Variables

There is one other type of variable. This is an Object variable, which “points” to
an object. For example, suppose you have a Range object, specified by the range
name Scores on a worksheet named Data, that you intend to reference several
times in your program. To save yourself a lot of typing, you can Set a range
object variable named scoreRange to this range with the lines

Dim scoreRange As Range
Set scoreRange = ActiveWorkbook.Worksheets("Data").Range("Scores")

From then on, you can simply refer to scoreRange. For example, you could
change its font size with the line

scoreRange.Font.Size = 12

This is a lot easier than typing

ActiveWorkbook.Worksheets("Data").Range("Scores").Font.Size = 12

Figure 5.1 Error Message for Undeclared Variable

Getting Started with VBA 53

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There are two fundamental things to remember about Object variables.

● They must be declared just like any other variables in a Dim statement. The
type can be the generic Object type, as in

Dim scoreRange as Object

or it can be more specific, as in

Dim scoreRange as Range

The latter is much preferred because VBA does not then have to figure out
what type of object you want scoreRange to be. (It is not enough to include
Range in the name of the variable.)

● When you define an Object variable—that is, put it on the left of an equals
sign—you must use the keyword Set. In fact, this is the only time you use
the keyword Set. The following line will produce an error message because
the keyword Set is missing:

scoreRange = ActiveWorkbook.Worksheets("Data").Range("Scores")

In contrast, assuming that totalCost is a variable of type Currency (or any non-
object variable type), the following line will produce an error message because the
keyword Set should not be included:

Set totalCost = 24.0

The moral is that you should always use the keyword Set when defining
object variables, but you should never use it when defining other variables (num-
bers, dates, and strings).

Built-In Objects and Code Names

In previous editions of the book, I often referred to a particular worksheet in
code with lines like the following:

Dim wsData as Worksheet
Set wsData = Worksheets("Data")

That is, I declared a Worksheet variable wsData and then Set it to refer to the
worksheet named Data. (I use prefix ws to remind me that this is a Worksheet
variable.) This practice is fine, but I now believe there is a better way, and I have

54 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

used it in virtually all of the examples in the rest of the book. This method relies on the
code names of built-in worksheet (and chart sheet) objects in any Excel file.

Every worksheet in an Excel file is a Worksheet object with two properties
(among others): Name and CodeName. The Name property is the name you see
on the worksheet’s tab. If you manually change the name of the tab, the Name
property changes automatically. Alternatively, if you wanted to change the name
with VBA from Sheet1 to Data, say, you could use a line like the following:

Worksheets("Sheet1").Name = "Data"

Now, imagine that you write code that includes the following reference:
Worksheets("Data"). This is fine, but what happens if the user manually changes
the name on the worksheet’s tab to something else, like Data1? This will create
an error in your code, because the Data reference no longer works.

Fortunately, the CodeName property provides a safer method. If you look at
the Project Explorer in the VBE (see Figure 5.2), you will see the built-in

Figure 5.2 Names and Code Names

Getting Started with VBA 55

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

worksheet, chart sheet, and workbook objects. In the figure, for example, there is
one worksheet listed as Sheet1 (Data). This indicates that the worksheet’s name
(the one that appears on its tab) is Data, but that its code name is currently
Sheet1. Below, in the Properties window, you see two properties on the left:
(Name) and Name. The (Name) property is really the CodeName property, and it
can be changed as indicated. In this case, it is being changed to wsData. So why
would you bother to do this? There are two very good reasons.

First, you can refer to the code name directly in code. For example, you can
refer to its cell A1 as wsData.Range("A1"). There is no need to declare a Worksheet
variable and then use a Set statement, so this saves two lines of code. In fact, as
soon as you type a worksheet’s code name and then a period, you immediately
get Intellisense. The second reason is that if a user changes the worksheet’s tab
name, your code will still work. You might argue that they could break the code
by changing the worksheet’s code name, and this is true, but they would have to
visit the VBE to do so, and this is much less likely to happen.

Therefore, the practice you will see in almost all examples from here on is to
change the default code names from their default generic names like Sheet1 to
more meaningful names like wsData. (Again, I always use the ws prefix to remind
me that this is a worksheet.) When I created the examples, I had to make the
changes as shown in Figure 5.2, which required a little extra work up front, but
then I was able to refer to the code names in my code from then on—without
worrying that a user might change the worksheet tab names.

Interestingly, the CodeName property is a read but not a write property. This
means that you can find the code name of a worksheet with a line like

If ActiveSheet.CodeName = "wsData" Then

However, the following line produces an error. If you want to change a
worksheet’s code name, you have to do so through the Properties window, as in
Figure 5.2.

ActiveSheet.CodeName = "wsData" ' Produces an error

The same comments apply to chart sheets. As you can see in Figure 5.2, there is a
chart sheet with the generic code name Chart2 but with tab name GradeChart. If I
wanted to refer to this chart in code, I would probably change its code name to some-
thing like chtGrades, using the prefix cht to remindme of the sheet’s type.

Finally, you see one other built-in object in Figure 5.2, ThisWorkbook. This is
the code name for the file itself. You could again change it in the Properties win-
dow, but there is no good reason to do so. In later examples where an application
involves several Excel files (for example, files with data that you want your appli-
cation to import), you always know that ThisWorkbook refers to the workbook
that contains your code. As an example, ThisWorkbook.Path returns the path to
the folder containing the file with your code.

56 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Intellisense with Variable Names: Ctrl+Space

I discussed this in Chapter 3, but it is so handy that I will briefly mention it again.
After you have declared your variables in Dim statements, you will then refer to
them in lines of code. To save yourself typing and avoid spelling mistakes, start
typing your variable name and then press Ctrl+Space. If there is only one variable
that starts with the letters you typed, it will be inserted automatically. If there are
several candidates, you can choose the one you want. If you tend to use long var-
iable names, you will love this feature.

Variable Naming Conventions

Programmers have surprisingly strong feelings about variable naming conventions.
The one thing they all agree on is that variable names should indicate what the
variables represent. So it is much better to use a name such as taxRate than to
use a generic name like x. Your code becomes much easier to read, both for
others and for yourself, if you use descriptive names.

Beyond this basic suggestion, however, there are at least three naming con-
ventions used in the programming world, and each has its proponents. The
Pascal convention uses names like TaxRate, where the first letter in each “word”
in the name is upper case. The camel convention is similar, but it does not capi-
talize the first word. Therefore, it would use the name taxRate. (The term
camel indicates that the hump is in the middle, just like a camel.) Finally, the
Hungarian convention, named after a Hungarian programmer, prefixes variables
with up to three characters to indicate their variables types. For example, it might
use the name sngTaxRate to indicate that this variable is of type Single. Other
commonly used prefixes are int (for Integer), bln (for Boolean), str (for String),
and so on. The proponents of the Hungarian convention like it because it is self-
documenting. If you see the variable sngTaxRate in the middle of a program, you
immediately know that it is of type Single, without having to go back to the Dim
statement that declares the variable.

Which convention should you use? This seems to depend on which conven-
tion is currently in style, and this changes over time. For a while, it seemed that
the Hungarian convention was the “in thing,” but it results in some rather long
and ugly variable names. At present, the camel convention appears to be the
most popular, so I have adopted it throughout this book. But if you end up pro-
gramming for your company, there will probably be a corporate style that you will
be required to follow.

Constants

The term variable means that it can change. Specifically, the variables discussed
earlier can change values as a program runs—and they often do. There are times,
however, when you want to define a constant that never changes during the pro-
gram. The reason is usually the following. Suppose you have a parameter such as
a tax rate that plays a role in your program. You know that its value is 28% and
that it will never change (at least, not within your program). You could type the

Getting Started with VBA 57

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

value 0.28 every place in your program where you need to use the tax rate.
However, suppose the tax rate changes to 29% next year. To use your old pro-
gram, you would need to search through all of the lines of code and change
0.28 to 0.29 whenever it appears. This is not only time-consuming, but it is
prone to errors. (Maybe one of the 0.28 values you find is not a tax rate but is
something else. You don’t want to change it!)

A better approach is to define a constant with a line such as the following.

Const taxRate = 0.28

This line is typically placed toward the beginning of your sub, right below the
variable declarations (the Dim statements). Then every place in your sub where
you need a tax rate, you type taxRate rather than 0.28. If the tax rate does happen
to change to 29% next year, all you have to change is the value in the Const line.2

Another advantage to using constants is that your programs don’t have
“magic numbers.” A magic number is a number found in the body of a program
that seems to appear out of nowhere. A person reading your program probably
has no idea what a number such as 0.28 represents (unless you explain it with a
comment or two). In contrast, if the person sees taxRate, there is no question
what it means. So try your best to use constants and avoid magic numbers.3

5.4 Built-in Constants

There are many built-in constants that you will see in VBA. They are either built
into the VBA language, in which case they have the prefix vb, they are built into
the Excel library, in which case they have the prefix xl, or they are built into the
Microsoft Office library, in which case they have the prefix mso. Actually, these
constants all have integer values, and they are all members of enumerations. A
simple example illustrates the concept of an enumeration. Consider the Color
property of a Font object. It can be one of eight possible integer values, and no
one on earth would possibly memorize these eight values. (They are not 1
through 8.) Instead, you remember them by their constant names: vbBlack,
vbBlue, vbCyan, vbGreen, vbMagenta, vbRed, vbWhite, and vbYellow. Using these
constants, you can change the color of a font in a line such as

Range("A1").Font.Color = vbBlue

2Some programmers like to spell their constants with all uppercase letters, such as TAXRATE, to
emphasize that they are constants. However, I have not adopted this convention.
3The same idea applies to formulas in Excel. You should avoid embedding numbers in formulas.
Instead, you should list these numbers in input cells and cell reference the input cells in your
formulas.

58 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Similarly, Excel has a number of enumerations. One that is useful when deal-
ing with ranges is the set of possible directions, corresponding to the four arrow
keys: xlDown, xlUp, xlToRight, and xlToLeft. Again, these constants are really inte-
ger values that no one in the world remembers. You remember them instead by
their more suggestive names.

To view the many enumerations for VBA, Excel, and Office, open the Object
Browser, select the VBA, Excel, or Office library, and search the class list for items
starting with Vb, Xl, or Mso. Each of them is an enumeration that holds a number
of built-in constants. For example, the XlDirection enumeration holds the con-
stants xlDown, xlUp, xlToRight, and xlToLeft, and the VbMsgBoxStyle enumeration
holds all the constants that correspond to message box icons and buttons. You
will see a few of these in the next section.

5.5 Input Boxes and Message Boxes

Two of the most common tasks in VBA programs are to get inputs from users
and to display messages or results in some way. There are many ways to perform
both tasks, and many of them are illustrated in later chapters. This section illus-
trates a very simple way to perform these tasks. It takes advantage of two built-in
VBA functions: the InputBox and MsgBox functions. They are not complex or
fancy, but they are very useful.

The InputBox function takes at least one argument: a prompt to the user.4 A
second argument that is often used is the title that appears at the top of the dialog
box. An example is the following:

price = InputBox("Enter the product's unit price.", "Selling price")

If you type this line in a sub and run the sub, the dialog box in Figure 5.3
will appear.

4 If you look up InputBox in the VBA online help, you will see two items: the InputBox method and
the InputBox function. The discussion here is really about the function, the one most commonly used.
The InputBox method differs from the InputBox function in that it allows selective validation of the
user’s input, and it can be used with Microsoft Excel objects, error values, and formulas. Notice that
Application.InputBox calls the InputBox method; InputBox with no object qualifier calls the InputBox
function.

Figure 5.3 Typical InputBox

Getting Started with VBA 59

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This generic dialog box has OK and Cancel buttons, a title (which would be
Microsoft Excel if you didn’t supply one), a prompt, and a textbox for the user’s
input. When the user enters a value and clicks the OK button, the user’s input is
assigned to the variable price.

The MsgBox function takes at least one argument: a message that you want to
display. Two other optional arguments often used are a button indication and a
title. A typical example is the following:

MsgBox "The product's unit price is $2.40.", vbInformation, "Selling price"

The first argument is the text "The product’s unit price is $2.40." The second
argument is vbInformation, a built-in VBA constant that inserts an “i” icon in the
message box. The third argument is the title, "Selling price". If you type this line in
a sub and run the sub, the message box in Figure 5.4 will appear.

I will finish this section with some rather advanced code involving InputBox.
You can ignore it at this point if you like, but my own students always ask about
it. Suppose you prompt a user for a value with an InputBox, and the user either
clicks the OK button without entering anything in the text box or clicks the
Cancel button (or the upper right X). Try it out, and you will find that Excel
produces an obscure error message. As a good programmer, you should antici-
pate this and handle it nicely.

It turns out that InputBox returns an empty string, "" , if the user does any of
the preceding actions. So you can check (by using an If construction) whether the
response is an empty string. Furthermore, by using an undocumented VBA func-
tion, StrPtr, it is possible to check whether the user clicked the OK button or the
Cancel (or the X) button. Finally (and this is optional), you can embed the check
in a loop so that you allow the user to “quit the game” by clicking the Cancel (or
the X) button, but you keep asking for an input if the user clicks the OK button
with no input in the text box. The code in the file OK vs Cancel in
InputBox.xlsm contains the required code. Open it, and try all the possibilities
you can think of. I call this bulletproof code. It forces the user to do something
correctly—and there are no obscure error messages. I will return to bulletproof-
ing in Chapter 11.

Figure 5.4 Typical Message Box

60 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.6 Message Boxes with Yes and No Buttons

The previous section illustrates the most common use of MsgBox: to display a
message. However, MsgBox can be used for simple logic by including the appro-
priate buttons. For example, the following line not only displays the message with
Yes and No buttons (see Figure 5.5), but it also captures the button pressed in
the result variable. In this case, the second argument, vbYesNo, indicates that Yes
and No buttons will be included. The value of result will be vbYes or vbNo, two
built-in VBA constants. You could then use a logical If statement to proceed
appropriately, depending on whether the result is vbYes or vbNo.

result = MsgBox("Do you want to continue?", vbYesNo, "Chance to quit")

You can even use the InputBox and MsgBox functions in the same line, as in

MsgBox InputBox("Type your name.", "User's name"), vbInformation, "User's Name"

The first argument of the MsgBox function is now the result of the InputBox func-
tion. When I ran this, I first saw the input box and typed my name, as in Figure 5.6.
I then saw the message box in Figure 5.7, the message being my name.

Here are a couple of other points that apply to InputBox and MsgBox, as well
as to other VBA statements.

Figure 5.5 Message Box with Yes and No Buttons

Figure 5.6 InputBox

Getting Started with VBA 61

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Continuing statements on more than one line. Lines of code can often get
long and run past the right side of the screen, particularly with messages. You
can continue them on another line by using the underscore character, _, pre-
ceded by a space. (Don’t forget the space.) For example, you can write

MsgBox InputBox("Type your full address: city, state, zip code.", "User's address"), _
vbInformation, "User's Address"

This is treated as a single line of code. Actually, a line can be broken as many
times as you like with the underscore character. When I do this, I typically
indent the continuation lines for readability.

● Whether to use parentheses. If you have been paying close attention, you
have noticed that the arguments of InputBox and MsgBox are sometimes
included in parentheses, but sometimes they are not. For example, compare
the line

MsgBox "Thank you for supplying your name.", vbExclamation, "Name accepted"

to the line

result = MsgBox("Do you want to continue?", vbYesNo, "Chance to quit")

The first simply displays a message. The second captures the result of MsgBox
(vbYes or vbNo) in the result variable. The rule for parentheses, for the Input-
Box function, the MsgBox function, and other VBA functions, is that paren-
theses are required when the result is captured in a variable or used in some
way. In contrast, parentheses are optional (and are usually omitted) when no
result is being captured or used in some way. This parentheses rule is rather
difficult to understand until you become more proficient in VBA. However,
if your program fails to work and you cannot find anything else wrong,
check whether you have violated this rule. Then remove the parentheses or
add them, and hopefully the bug will disappear.

Figure 5.7 Message Box

62 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 5.1 Displaying a Message

Before proceeding, try the following exercise. Open a new workbook and save it
as Input Output 1.xlsm. Then create a sub called RevenueCalc that does the fol-
lowing: (1) It asks the user for the unit price of some product and stores it in the
variable unitPrice, defined as Currency type; (2) it asks the user for the number of
items sold and stores it in the variable quantitySold, defined as Integer type; (3) it
calculates the revenue from this product and stores it in the variable revenue,
defined as Currency type; and (4) it displays a message such as “The revenue
from this product was $380.”

Try to do as much of this as you can without help. Then consult the file Input
Output 1.xlsm for a solution. You will probably have trouble with the MsgBox line.
The message consists of two parts: a literal part ("The revenue from this product
was ") and a variable part (the calculated revenue).5 These two parts need to be
concatenated with the ampersand symbol, &, a very common operation that is
explained later in the chapter. The solution also contains a Format function to display
the revenue as, say, $380 rather than 380. This is also explained in a later section.

5.7 Using Excel Functions in VBA

Excel has hundreds of functions you commonly use in Excel formulas: SUM, MIN,
MAX, SQRT, VLOOKUP, SUMIF, and so on.6 It would be a shame if program-
mers had to reinvent this rich set of functions with their own VBA code. Fortunately,
you do not have to. You can “borrow” Excel functions with a line such as

WorksheetFunction.SUM(Range("A1:A10"))

When you type WorksheetFunction and then a period, a list of most Excel
functions appears. For example, if you choose SUM, as above, you have to supply
the same type of argument (a range or ranges) that you would in an Excel for-
mula. (Note: In early editions, I said to use Application.WorksheetFunction instead
of simply WorksheetFunction, where Application refers to Excel itself. Either version
works fine, but Application is not necessary.)

There is one peculiar “gotcha” with borrowing Excel functions.7 It turns out
that the VBA language has a few functions of its own. For example, open the
Object Browser, choose the VBA library, and look at the Math class. Three

5It also has a third part if you want to end the sentence with a period.
6When I refer to Excel functions in this book, I capitalize them, as in SUM. This is primarily to dis-
tinguish them from VBA functions. Of course, you don’t need to capitalize them when you enter
them into Excel formulas.
7 I almost deleted this part. I tried the line ?WorksheetFunction.Ln(1) in the Immediate Window, and it
worked fine, returning the correct value 0. Therefore, I guessed that the problem discussed here had
been fixed. However, I then realized that WorksheetFunction.Ln(1) in a sub still does produce an error.
Very strange!

Getting Started with VBA 63

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

notable VBA math functions you will see are log (natural logarithm), sqr (square
root), and rnd (random number). You probably know that Excel also has these
functions, except that they are spelled LN, SQRT, and RAND. The “gotcha” is
that if VBA has a function, you are not allowed to borrow Excel’s version of that
function. Therefore, the statement WorksheetFunction.SQRT(4) produces an error.
If you want the square root of 4 in VBA, you must get it with sqr(4).

Fortunately, there are not many of these duplicated functions. You just have
to be aware that a few, such as LN, SQRT, and RAND, will not work in VBA.

5.8 Comments

You might think that once you get your program to run correctly, your job is fin-
ished. This is not the case. Sometime in the future, you or someone else might
have to modify your program as new situations arise. Therefore, it is extremely
important that you document your work. There are several ways to document a
program, including the use of meaningful names for subs and variables. However,
the best means of documentation is the liberal use of comments. A comment is
text that you type anywhere in your program to indicate to yourself or someone
else what your code means or how it works. It is very easy to insert a comment
anywhere in the program, inside a sub or outside a sub. You start the line with a
single quote. That line is then colored green and is ignored by VBA. However,
comments are not ignored by those who read your program. For them, the com-
ments are often the most interesting part.

The following line is a typical comment:

' The purpose of the following section is to calculate revenue.

It is also possible to include a comment in the same line as a line of code. To
do so, type the code, follow it with one or more spaces, then a single quote, and
then the comment, as in

Range("A1").Value = "March Sales" ' This is the title cell for the worksheet.

There is a tendency on the part of programmers (myself included) to wait
until the last minute, after the code has been written, to insert comments—if
they insert them at all. Try instead to get into the good habit of inserting com-
ments as you write your code. Admittedly, it takes time, but it also aids your log-
ical thought process if you force yourself to explain what you are doing as you are
doing it. Of course, comments can also be overdone. There is usually no point in
documenting every single line of code. Use your discretion on what really needs
to be documented. My best advice is that if you believe you or someone else
might have trouble understanding what a block of code is supposed to do or
how it works, add a comment. When you revisit your code in a few weeks or a
few years, you will really appreciate the comments.

64 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.9 Indenting

Besides comments, the best thing you can do to make your programs more read-
able is to indent religiously. You will see numerous examples to emulate in the
rest of the book, but for now, take a look at the two following subs. They are
completely equivalent, and VBA treats each of them in an identical way. But
which of the two would you rather read?

This version indents properly:

Sub CountHighSales()
Dim i As Integer
Dim j As Integer
Dim nHigh As Integer
Dim cutoff As Currency
cutoff = InputBox("What sales value do you want to check for?")
For j = 1 To 6

nHigh = 0
For i = 1 To 36

If wsData.Range("Sales").Cells(i, j) >= cutoff Then _
nHigh = nHigh + 1

Next i
MsgBox "For region " & j & ", sales were above " & Format(cutoff, "$0,000") _

& " on " & nHigh & " of the 36 months."
Next j

End Sub

This version doesn’t indent at all.

Sub CountHighSales()
Dim i As Integer
Dim j As Integer
Dim nHigh As Integer
Dim cutoff As Currency
cutoff = InputBox("What sales value do you want to check for?")
For j = 1 To 6
nHigh = 0
For i = 1 To 36
If wsData.Range("Sales").Cells(i, j) > = cutoff Then _
nHigh = nHigh + 1
Next i
MsgBox "For region " & j & ", sales were above " & Format(cutoff, "$0,000") _
& " on " & nHigh & " of the 36 months."
Next j
End Sub

It is easy to indent, so you should start doing it right away in all of your
programs.8 To indent a single line, use the Tab key; don’t simply insert spaces.

8Microsoft’s Visual Studio .NET, its integrated development environment, automatically indents for
you. Unfortunately, the VBE for Excel is not quite up to this level yet, so you have to indent
manually.

Getting Started with VBA 65

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To outdent (the opposite of indent) a single line, use the ShiftþTab key combi-
nation. To indent or outdent entire blocks of code, highlight the block and then
use the indent and outdent buttons on the VBE’s Edit toolbar.

5.10 Strings

The InputBox function takes at least one argument, a prompt such as "Enter your
name." Similarly, the MsgBox function takes at least one argument, a message
such as "Thank you for the name." Technically, each of these is called a string. A
string is simply text, surrounded by double quotes. Strings are nearly always argu-
ments to InputBox, MsgBox, and other functions, and they are also used in many
other ways in VBA. For example, because a string essentially corresponds to a
label in Excel, if you want to use VBA to enter a label in a cell, you set the
Value property of the Range object representing the cell to a string. You will see
many examples of this throughout the book. The point now is that strings are
used in practically all VBA programs.

Often a string is a literal piece of text, such as "The user’s name is Chris Albright."
(Again, remember that the double quotes are part of the string and cannot be
omitted.) Many times, however, a string cannot be written literally and must be
pieced together in sections. This is called string concatenation. As an example, sup-
pose the following InputBox statement is used to get a product name:

product = InputBox("Enter the product's name.")

The user types the product’s name into the text box, and it is stored as a
string, "LaserJet 1100" for example, in the product variable. Now suppose you
what to display a message in a message box such as "The product’s name is LaserJet
1100." What should the first argument of the MsgBox be? It cannot be the literal
"The product’s name is LaserJet 1100." This is because you, the programmer, do
not know what product name will be entered in the InputBox. Therefore, you
must “build” the message string by concatenating three strings: the literal "The
product’s name is ", the variable string product, and the literal period ".". To con-
catenate these, you use the ampersand concatenation character, &, surrounded
on either side by a space (and the spaces are necessary). The resulting MsgBox
statement is

MsgBox "The product's name is " & product & "."

Note how the ampersand is used twice to separate the variable information
from the literal parts of the string. String concatenation—the alternation of literal
and variable parts of a string—is extremely important and is used in practically all
programs.

A completed sub that gets a product’s name and then displays it in a message
box appears below, along with the results from running it, in Figures 5.8 and 5.9.

66 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub GetProductName()
Dim product As String
product = InputBox("Enter the product's name.")
MsgBox "The product's name is " & product & ".", vbInformation

End Sub

One tricky aspect of string concatenation occurs when you use the under-
score character to break a long string, even a totally literal one, into two lines.
You might think that the following would work:

MsgBox "This is a long string, long enough to extend _
beyond the screen, so it is broken up into two lines." ' This produces an error.

However, this produces an error message. If you break a string across two
lines, you must concatenate it:

MsgBox "This is a long string, long enough to extend " & _
"beyond the screen, so it is broken up into two lines."

(Note that there is a space after the word extend, so that extend and beyond
will not run together in the message. There is also a space on each side of the

Figure 5.8 InputBox

Figure 5.9 MessageBox

Getting Started with VBA 67

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ampersand, as required by VBA.) Alternatively, you could place the ampersand on
the second line:

MsgBox "This is a long string, long enough to extend " _
& "beyond the screen, so it is broken up into two lines."

Whether you put the ampersand at the end of the first line or the beginning
of the second line is a matter of taste.

Exercise 5.2 Displaying a Message

Return to Exercise 5.1 from Section 5.4. There you obtained a unit price and
a quantity sold from input boxes, calculated the revenue, and then displayed a
message such as "The revenue from this product was $380." You should now under-
stand that the last part of this message, the actual revenue, requires string concat-
enation. (See my Input Output 1.xlsm file.) Now try expanding your program
slightly (and save your results in the file Input Output 2.xlsm). Start by using
an input box to get the product’s name. Then use input boxes to get the pro-
duct’s unit price and the quantity sold, and include the product’s name in the
prompts for these inputs. For example, a prompt might be "Enter the unit price for
LaserJet 1100." Next, calculate the revenue. Finally, display a message that con-
tains all of the information, something like "For the LaserJet 1100, the unit price is
$500, the quantity sold is 25, and the revenue is $12,500." Do as much as you can on
your own. If you need help, look at the file Input Output 2.xlsm.

Formatting Strings

If the revenue is 12500, how do you get it to appear as $12,500 in a message? This can
be done with VBA’s Format function. This function takes two arguments: the number
to be formatted and a format code string that indicates how to format the number.
To format 12500 in the usual currency format (with a dollar sign and comma separa-
tors), you can use Format(12500,"$#,##0"). If the variable revenue holds the actual
revenue, then you would use Format(revenue,"$#,##0"). Using the Format function is
tricky. Rather than memorizing formatting codes, it is best to select the Format option
in Excel (right-click any cell and choose Format Cells, or press Ctrlþ1) and choose the
Custom option. It will list a number of formatting codes you can use in VBA.

Useful String Functions

String concatenation is useful when you need to piece together several small
strings to create one long string. You might also need to get part of a string.
There are three useful VBA string functions for doing this: Right, Left, and Mid.
They are illustrated in the following lines.

shortString1 = Right("S. Christian Albright", 8)
shortString2 = Left("S. Christian Albright", 12)
shortString3 = Mid("S. Christian Albright", 4, 5)

68 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first line returns "Albright". In general, the Right function takes two arguments,
a string and an integer n, and it returns the rightmost n characters of the string. The
Left function is similar. It returns the leftmost n characters. In the second line, it returns
"S. Christian". (The space after "S." is considered a character.) Finally, the Mid function
takes a string and two integer arguments. The first integer specifies the starting charac-
ter and the second specifies the number of characters to return. Therefore, the third
line returns "Chris". Starting at the fourth character, "C", it returns the next five charac-
ters. Note that the third argument of Mid can be omitted, in which case Mid returns all
characters until the end of the string. For example, Mid("Albright",3) returns "bright".

Another useful string function is the Len function. It takes a single argument, a
string, and returns the number of characters in the string. For example, the following line

nCharacters = Len("S. Christian Albright")

returns 21. Again, remember that spaces count.
One other string function that can come in handy is the Instr function. It

checks whether a substring is anywhere inside a given string, and if it is, where it
begins within the string. For example, the following line returns 9 because the
comma is the ninth character. (The first argument indicates where to start the
search. It is optional and is assumed to be 1 if omitted.)

Instr(1,"Albright, Chris",",")

If the substring isn’t found, Instr returns 0. For example, this would occur
with the line

Instr(1,"Albright, Chris",".")

These string functions can be used in many combinations. Suppose you want
all but the last two characters of some string called thisString, but you don’t know
the number of characters in thisString. Then the following combination of Len
and Left will do the job.

allBut2 = Left(thisString, Len(thisString) - 2)

For example, if thisString turns out to have 25 characters, allBut2 will contain
the leftmost 23 characters.

The VBA string functions discussed here are only several of those available.
To see others, open the Object Browser in the VBE, select the VBA library, and
click the Strings category on the left. On the right, you can scan for functions,
such as Join, Replace, and Trim, that might look useful. By the way, you can
ignore those that end with a dollar sign, such as Mid$. They are essentially the
same as the corresponding functions without the dollar sign.

Getting Started with VBA 69

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.11 Specifying Objects, Properties, and Methods

Objects, properties, and methods were introduced in Chapter 2. Now it is time to
see how they are implemented in VBA code. This is important material. Virtually
nothing can be done in VBA for Excel without knowing how to manipulate its
objects in code. The basic rules are as follows.

Specifying a Member of a Collection

To specify a particular member of a collection, you use the plural name of the collec-
tion, with the particular member specified in parentheses and enclosed inside quotes,
as in Worksheets("Data"). (Remember from Section 5.3 that you could also refer to a
worksheet by its code name.) In the special case of the Range object, where there is
no plural, you just write Range, followed by a specification of the range inside paren-
theses. (The next chapter is devoted entirely to Range objects because they are so
important—and tricky.) You can generally specify any particular member of a collec-
tion in one of two ways: by index (a number) or by name (a string). For example,
you can specify Worksheets(2) or Worksheets("Data").9 The name method is much pre-
ferred. After all, if someone inserts a new worksheet or moves an existing worksheet,
the worksheet in question might no longer be the second one. It is much easier to
understand the reference to the worksheet’s name. Note that the argument 2 actually
refers to the second sheet from the left, not necessarily the second sheet created.

Specifying Objects down a Hierarchy

To specify objects down a hierarchy, you separate them with a period, with
objects farther down the hierarchy to the right, as in

Workbooks("Sales").Worksheets("March").Range("A1")

You essentially read this line backward. It specifies cell A1 from the March
worksheet of the Sales workbook. We say that an object is qualified by any
objects listed to its left. It is possible that you have several worksheets and even
workbooks open. The above line specifies the cell you want: cell A1 in the
March worksheet of the Sales workbook.

This rule has a number of variations. For example, if you refer simply to
Range("A1"), do you need to qualify it with a particular workbook and work-
sheet? Let’s just say that you are safer to specify at least the worksheet. The
rule is very simple. If you refer simply to Range("A1"), you are referring to the
active sheet of the active workbook, whatever they happen to be at the time.
Actually, there are built-in VBA objects called ActiveWorkbook and ActiveSheet
(but no ActiveWorksheet). They refer to the workbook and sheet currently
selected. If you refer simply to Range("A1"), this is equivalent to

9For a worksheet, you can again refer to it by its code name. I usually prefer this to either of the
other two methods.

70 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ActiveWorkbook.ActiveSheet.Range("A1")

If this is what you want, the shorter Range("A1") is perfectly acceptable.
However, if you do it this way, make sure that the active worksheet of the
active workbook contains the cell A1 you are interested in. In other words,
if you do not qualify Range("A1"), VBA will guess which cell A1 you mean,
and it might not guess correctly. It is safer to qualify it, as in
Worksheets("Data").Range("A1"), for example. Alternatively, you can qualify it
by the worksheet’s code name, as in wsData.Range("A1"). This is how I will
do it in most examples.

Specifying a Property

To specify a property of an object, you list the property name to the right of the
object, separated by a period, as in

Range("A1").Value

This refers to the Value property of the range A1—that is, the contents of
cell A1. A property can be set or returned. For example, the following line enters
the string "Sales for March" in cell A1:

Range("A1").Value = "Sales for March"

In contrast, the following line gets the label in range A1 and stores it as a
string in the variable title:

title = Range("A1").Value

Specifying a Method
To specify a method for an object, you list the method name to the right of the
object, separated by a period:

Range("A1:D500").ClearContents

Specifying Arguments of a Method

If a method has arguments, you list them, separated by commas, next to the
method’s name. Each argument should have the name of the argument (which

Getting Started with VBA 71

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

can be found from online help), followed by :=, followed by the value of the
argument. For example, the following copies the range A1:B10 to the range D1:
E10. Here, Destination is the name of the argument of the Copy method.

Range("A1:B10").Copy Destination:=Range("D1:E10")

It is possible to omit the argument name and the := and to write

Range("A1:B10").Copy Range("D1:E10")

However, this can be dangerous and can lead to errors unless you know
the rules well. It is better to supply the argument name and :=. Even if you are an
experienced programmer, this practice makes your code more readable for others.10

By the way, when methods have arguments, Intellisense helps a great deal. In
the above line, as soon as you type .Copy and then a space, Intellisense shows you
a list of the arguments, both required and optional, of the Copy method. In this
case, there is only one argument, Destination, and Intellisense shows it in square
brackets, indicating that is optional.

These are the rules, and you can return to this section as often as you like
to refresh your memory. They are reinforced with many examples in later
chapters.

Exercise 5.3 Calculating Ordering Costs

The file Input Output 3_1.xlsx is a template for calculating the total order cost
for ordering a product with quantity discounts. The table, range-named LTable,
in the range A4:C8 contains unit costs for various order quantity intervals. The
range B11:B13 contains a typical order cost calculation, where the input is the
order quantity in cell B11 and the ultimate output is the total cost in cell B13.
Take a look at this file to see how a VLOOKUP function is used to calculate the
appropriate unit cost in cell B12.

The file Input Output 3_2.xlsm indicates what the exercise is supposed to
accomplish. Open it now and click the “Create table” button. It asks for three
possible order quantities, and then it fills in the table in the range D12:E14 with
these order quantities and the corresponding total costs. Basically, it plugs each
potential order quantity into cell B11 and transfers the corresponding total cost
from cell B13 to column E of the table. If you then click the “Clear table” but-
ton, the information in this table is deleted.

10Methods often have multiple arguments, listed in a certain order. If you omit the argument names,
you must supply the arguments in that order. However, if you use argument names and :=, you are
allowed to list the arguments in any order.

72 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now that you see what the finished application should do, go back to the
Input Output 3_l.xlsx file, save it as an .xlsm file, and attempt to write two
subs, CreateTable and ClearTable, which will eventually be attached to buttons.
Go as far as you can on your own. If you need help, look at the code in my
Input Output 3_2.xlsm file.

This exercise will undoubtedly leave you wishing for more. First, even with
only three order quantities, there is a lot of repetitive code. By copying and pasting
your code (and then making suitable modifications), you can minimize the amount
of typing required. Second, the program ought to allow any number of entries in
the table, not just three. To see how these issues can be addressed, open the file
Input Output 3_3.xlsm, click its buttons, and look at its code. There are proba-
bly a few lines you will not understand yet, but at least this gives you something to
strive for. You will eventually understand all of the code in this file. In fact, you will
eventually appreciate that it is quite straightforward.

5.12 With Construction

There is an extremely useful shortcut you can use when working with objects and
their properties and methods. This is the With construction. Unless you have pro-
grammed in VBA, you have probably never seen it. The easiest way to explain the
With construction is by using an example. Suppose you want to set a number of
properties for the range A1 in the March worksheet of the Sales workbook. You
could use the following code.

Workbooks("Sales").Worksheets("March").Range("A1").Value = "Sales for March"
Workbooks("Sales").Worksheets("March").Range("A1").HorizontalAlignment = xlLeft
Workbooks("Sales").Worksheets("March").Range("A1").Font.Name = "Times New Roman"
Workbooks("Sales").Worksheets("March").Range("A1").Font.Bold = True
Workbooks("Sales").Worksheets("March").Range("A1").Font.Size = 14

As you can see, there is a lot of repetition in these five lines, which means a
lot of typing (or copying and pasting). The With construction enables you to do
it much more easily:

With Workbooks("Sales").Worksheets("March").Range("A1")
.Value = "Sales for March"
.HorizontalAlignment = xlLeft
With .Font

.Name = "Times New Roman"

.Bold = True

.Size = 14
End With

End With

The first line has the keyword With, followed by an object reference. The last
line brackets it with the keywords End With. In between, any object, property, or
method that starts with a period “tacks on” the object following With. For exam-
ple, .Value in the second line is equivalent to

Getting Started with VBA 73

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Workbooks("Sales").Worksheets("March").Range("A1").Value

This example also illustrates how With constructions can be nested. The line
With .Font is equivalent to

With Workbooks("Sales").Worksheets("March").Range("A1").Font

Then, for example, the .Name reference inside this second With is equivalent to

Workbooks("Sales").Worksheets("March").Range("A1").Font.Name

With (and nested With) constructions can save a lot of typing, and they
improve readability. They also speed up the execution of your programs slightly.
However, there are two things to remember. First, remember that the End With
line must accompany each With line. A good habit is to type the End With line
immediately after typing the With line. That way, you don’t forget. Second, you
should indent appropriately. As mentioned earlier, indenting is not required—
your programs will run perfectly well without it—but errors are much easier to
catch (and avoid) if you indent, and your programs are much easier to read. Com-
pare the above code to the following version:

With Workbooks("Sales").Worksheets("March").Range("A1")
.Value = "Sales for March"
.HorizontalAlignment = xlLeft
With .Font
.Name = "Times New Roman"
.Bold = True
.Size = 14
End With
End With

Although it is correct, this version without indenting is certainly harder to
read, and if you forgot the next-to-last line, it could be difficult to find the error.

Exercise 5.4 Using With Constructions

Open the file Input Output 3_2.xlsm (or your own finished version in Input
Output 3_1.xlsm) from the previous exercise and save it as Input Output 3_4.
xlsm. Then use the With construction wherever possible. For one possible solu-
tion, see the file Input Output 3_4.xlsm.

5.13 Other Useful VBA Tips

This section illustrates a few miscellaneous features of VBA that are frequently
useful.

74 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Screen Updating

A VBA program for Excel sometimes makes many changes in one or more work-
sheets before eventually showing results. During this time the screen can flicker,
which wastes time and is certainly annoying. The following line turns off screen
updating. It essentially says, “Do the work and just show me the results at the end.”

Application.ScreenUpdating = False

To appreciate how this works, open the file Screen Updating.xlsm. It has
two buttons, each attached to a sub. Each sub performs the same operations,
but one turns off screen updating and the other leaves it on. Unless you have a
really fast machine, you will notice the difference.

If you do decide to turn off screen updating (typically at the beginning of a
sub), it is good programming practice to turn it back on just before the end of
the sub. You do this with the line

Application.ScreenUpdating = True

Display Alerts

If you use the Excel interface to delete a worksheet, you get a warning, as shown
in Figure 5.10. In some applications you don’t want this warning; you just want
the worksheet to be deleted. In this case (and other cases where you don’t want
an Excel warning), you can use the following line:

Application.DisplayAlerts = False

This can actually be a bit dangerous—you might want a warning later on—so
it is a good idea to turn display alerts back on immediately, as in the following lines:

Application.DisplayAlerts = False
wsReport.Delete
Application.DisplayAlerts = True

Figure 5.10 Excel Warning Message

Getting Started with VBA 75

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Timer Function

Programmers often like to see how long their programs (or parts of their pro-
grams) take to run. This is easy to do with VBA’s Timer function. It returns the
current clock time. If it is used twice, once at the beginning of some code and
once later on, then the difference in the two times is the elapsed run time. The
following lines illustrate how it can be used. The start time is captured in the var-
iable startTime. This is followed by any number of programming lines. Finally, the
variable elapsedTime captures the current time (from Timer) minus the start time.
Note that these times are measured in seconds.

startTime = Timer
' Enter any code in here.
elapsedTime = Timer - startTime
MsgBox "This section took " & elapsedTime & " seconds to run."

5.14 Good Programming Practices

As a programmer, your primary goal is to write code that works correctly to
accomplish a specified task. However, good programmers are not satisfied with
accuracy. They want their programs to be readable and easy to maintain, so that
if changes are necessary sometime in the future, they won’t be too difficult to
make. (Keep in mind that the person responsible for making these changes is
often not the original programmer.) Therefore, good programmers consistently
follow a set of good habits. Even if you are a beginning programmer, you should
follow these good habits right from the start. Admittedly, you can practice poor
habits and still write programs that work, but your programs will probably not
be very readable or easy to maintain. Besides, poor habits typically lead to more
programming errors.

Not all programmers agree completely on a programming style that should
be followed, but they would almost certainly agree on the following list.

● Provide sufficient comments. As discussed earlier in this chapter, providing
a liberal number of comments is the best way to make your programs under-
standable, both to others and to yourself (at a later date). It is always better
to include too many comments than too few.

● Indent consistently. This was also mentioned earlier, but it bears repeating.
Some programmers write code with no indenting—all lines are left-aligned
on the page. Unless the program is short and simple, this type of code
is practically impossible to read, and the potential for errors increases
dramatically. Indenting provides a logical structure to your program, and it
indicates that you are aware of this logical structure. You will have plenty of

76 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

chances to see the proper use of indenting as you read through the examples
in the book.

● Use white space liberally. Don’t be afraid to insert blank lines in your
subs, which are ignored by VBA. Like indenting, this tends to provide a
more logical structure to your code, and it is greatly appreciated by
those who try to read your code. Generally, lines of code fall into logical
blocks. Therefore, it is a good idea to separate these blocks by white
space.

● Break long lines into multiple lines. It is no fun to read a line of code that
scrolls off to the right of the screen. Therefore, keep your lines short enough
that they fit inside the Code window. When necessary, use the underscore
character, _, to break long lines.

● Name your variables appropriately. I already discussed this earlier in the
chapter, but it also bears repeating. Thankfully, the days when programmers
could get away with meaningless variable names like KK, X, and PR, are gone.
(Don’t laugh. Programs in the old days were filled with variables like this.) Var-
iable names like fixedCost and lastName produce much more readable code.

● Declare all of your variables, usually at the beginnings of subs. I already
stated that Option Explicit should be at the top of each of your modules.
This forces you to declare your variables with Dim statements.
Actually, these Dim statements can be placed just about anywhere within
a sub (before the variable is used), but it is a good programming
practice to place them right after the Sub line. This makes it easy to
find a list of all your variables. (This doesn’t count module-level vari-
ables, which must be declared before any subs. They are discussed in
Chapter 10.)

● Use the Variant type as little as possible. Remember that a Variant type is a
catch-all; it can hold any type of variable. The way a Variant variable is stored
and manipulated depends on the context of the program. Essentially, you are
making the computer determine the type of variable you have, and this is not
efficient. If you know that your variable is really an integer, for example, then
declare it as Integer, not as Variant. The use of Variant types is usually a sign of
sloppy programming. And remember that not specifying a type at all is the
same as specifying a Variant type.

● Break a complex program into small subs. This is the topic of Chapter 10,
but even at this point it should make sense. It is much more difficult to read
and debug a long complex sub than to work with a series of shorter subs,
each devoted to performing a single task. Think of this as the “divide and
conquer” rule.

As you start writing your own programs, refer back to this list from time
to time. If you find that you are consistently violating one or more of these
rules, you know that you have room to improve—and you should strive to
do so.

Getting Started with VBA 77

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.15 Debugging

Some programmers are more skillful and careful than others, but the sad fact is
that we all make errors, known in the programming world as bugs. The art of
finding and getting rid of bugs, debugging, is almost as important as program-
ming itself. Debugging is basically detective work, and, like programming, it
takes practice. This section gets you started.

There are really three types of errors: syntax errors, runtime errors, and
logic errors.

Syntax Errors

Syntax errors are usually the easiest to spot and fix. They occur when you spell
something wrong, omit a keyword, or commit various other “grammatical”
errors. They are easy to spot because the VBE typically detects them immediately,
colors the offending line red, and displays a warning in a message box.11 You have
probably experienced this behavior several times already, but in case you haven’t,
type the following line of code and press the Enter key:

If FirstNumber > SecondNumber

You will be reminded immediately that this line contains a syntax error—the key-
word Then is missing. Sometimes the resulting error message tells you in clear terms
what the error is, and other times it is misleading. But at least you know that there is
something wrong with your syntax, you know approximately where the error is, and
you have a chance to fix it right away. There is no excuse for not doing so. If you are
not sure of the correct syntax, you can search online help.

Runtime Errors

Runtime errors are more difficult to spot and fix. They occur when there is some-
thing wrong with your code, but the error is not discovered until you run your
program. The following is a typical example.

Option Explicit
Option Base 1

Sub Test()
Dim myArray(10) As Integer, i As Integer, nReps As Integer
nReps = InputBox("Enter the number of replications.")
For i = 1 To nReps

myArray(i) = 20 * i
Next

End Sub

11This is the default behavior of the VBE, and you can leave it as is. However, if you get tired of the
warnings, you can select VBE’s Tools!Options menu item and uncheck Auto Syntax Check under
the Editor tab.

78 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This code has no syntax errors, but it is likely to produce a runtime error.
The user is asked to enter a number of replications, which is stored in the variable
nReps. If the user enters a value less than or equal to 10, the program will run
fine. However, if the user enters a number greater than 10, the program will try
to fill an array with more values than it is dimensioned for. (Arrays are covered in
Chapter 9.) If you run this program and enter 15 in the input box, you will get
the error message shown in Figure 5.11. It is one of Microsoft’s cryptic error
messages that you will come to despise, both because it means that you made an
error and because you can’t understand the message.

At this point, you have the three options indicated by the enabled buttons:
(1) You can ask for help, which is almost never helpful; (2) you can end the
program, which doesn’t do anything to help you locate the bug; or (3) you can
click the Debug button. This latter option displays the offending line of code
and colors it yellow. If you then move the cursor over variables, you can see
their current values, which often provides the clue you need. Figure 5.12 shows
what happens if you click the Debug button and then place the cursor over the

Figure 5.11 Error Dialog Box

Figure 5.12 Code After Clicking Debug

Getting Started with VBA 79

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

variable i in the offending line. Its current value is 11, and the array is dimen-
sioned for only 10 elements.

This is the clue you need to fix the program, as shown below. The trick is to
redimension the array after discovering the value of nReps. The details of the fix
are not important at this point. The important thing is that you found the loca-
tion of the bug, and that is often all you need to fix the problem.

Option Explicit
Option Base 1

Sub Test()
Dim myArray() As Integer, i As Integer, nReps As Integer
nReps = InputBox("Enter the number of replications.")
ReDim myArray(nReps)
For i = 1 To nReps

myArray(i) = 20 * i
Next

End Sub

The problem with runtime errors is that there is an infinite variety of them,
and the error messages provided by Microsoft can sometimes be misleading. Con-
sider the following sub, which purposely violates the cardinal rule of indenting to
mask the bug in the program. Can you spot it?

Sub Test()
Dim cell As Range
For Each cell In Range("A1:D10")
If cell.Value > 10 Then
With cell.Font
.Bold = True
.Italic = True
End If
Next
End Sub

The properly indented version listed below clearly indicates the problem—the
With construction is missing an End With line.

Sub Test()
Dim cell As Range
For Each cell In Range("A1:D10")

If cell.Value > 10 Then
With cell.Font

.Bold = True

.Italic = True
End If

Next
End Sub

However, if you run this program (either version), you will get the error mes-
sage in Figure 5.13, and the End If line of the sub will be highlighted in yellow.
As you can imagine, this type of misleading information can drive a programmer

80 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

crazy. Of course, some snooping around indicates that the problem is not with
End If but is instead with End With. However, an unsuspecting programmer could
be led down a time-consuming blind alley searching for the bug. Therefore, it is
best to interpret runtime error messages with caution. They typically point you in
the general neighborhood of the offending code, but they do not always pinpoint
the problem. And, as you can probably guess, the Help button in this case is not
of any help at all.

When you get any of these runtime error messages, your program goes into
break mode, which essentially means that it is on hold. You always know a program
is in break mode when a line of code is highlighted in yellow. Sometimes you can fix
a line of code while in break mode and then click the Run Sub/UserForm button
on the VBE Standard toolbar to let the program finish. (See Figure 5.14.) Other
times, it is impossible to continue. You need to click the Reset button, fix the bug,
and then rerun the program. It is usually best to do the latter. If you ever get a
message to the effect that something can’t be done because the program is in break
mode, get back into the VBE and click the Reset button. In this case, the reason
you can’t run your program is that it is already running.

Logic Errors

The third general type of error, a logic error, is the most insidious of the three
because you frequently don’t even know that you made an error. You run the
program, it produces some results, and you congratulate yourself on work well
done. However, if your program contains any logic errors, even a single tiny
error, the results can be totally wrong. You might or might not get an error mes-
sage to alert you to the problem.

Here is a typical example. (This file is not included with the book, but you
might want to create it for practice.) You want to average the numbers in column

Figure 5.13 Misleading Error Message

Figure 5.14 VBE Standard Toolbar

Run Sub/UserForm Reset

Getting Started with VBA 81

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A (through row 10) in Figure 5.15 and display the average in a message box. The
correct average, calculated with Excel’s AVERAGE function, appears in cell A12.

The AverageScores sub listed below contains no syntax errors and no runtime
errors.12 If you run it, it will display the message in Figure 5.16—with the wrong
average! Unless you have read ahead to the next chapter, you probably don’t
know enough about Range objects to spot the problem, but there is a bug, and
it is quite subtle.

Sub AverageScores()
Dim scoreRange As Range, cell As Range, sum As Single

With Range("A1")
Set scoreRange = Range(.Offset(0, 0), .End(xlDown))

End With

For Each cell In scoreRange
If IsNumeric(cell.Value) Then sum = sum + cell.Value

Next

MsgBox "The average of the scores is " & sum / scoreRange.Cells.Count
End Sub

Figure 5.15 Scores to Average

1

2

3

4

5

6

7

8

9

10

11

12

A B

Scores

87

78

98

82

77

99

80

85

76

84.67

12Of course, you would never write such complex code to perform such a simple task. It is done here
only to illustrate a point.

Figure 5.16 Display of Incorrect Average

82 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There are actually two problems. The first problem, and probably the more
important one, is that if the correct average had not been calculated separately in cell
A12, you would probably have accepted the answer in the message as being correct.
(How many programs in the real world contain errors that no one is even aware of? I
suspect the number is huge. Is it possible, for example, that there are errors in the
gigantic programs used by the IRS to check your tax returns? It’s a scary thought!)

However, assuming that you are suspicious of the answer in the message box, the
second problem is that you have to find the error and fix it. Fortunately, the VBE has
some powerful tools for debugging your programs. One of the most useful methods is
to step through a program one line at a time, possibly keeping awatch on one or more
key variables. VBE’s Debug toolbar is very handy for doing this. (See Figure 5.17.)
Equivalently, you can use menu items and shortcut keys to perform the same tasks.

Let’s use this method to find the faulty logic in the average example. To do
this—and you should follow along at your own computer—get into the VBE and
put a watch on the key variable sum. The easiest way to do this is to put the cur-
sor anywhere on the sum variable (anywhere it appears in the code) and click the
Quick watch button. The Watch window then opens, as shown in Figure 5.18.
It allows you to watch the contents of sum as the program executes. In general,
you can put watches on as many variables as you like.

At this point, sum has not yet been defined, so its value is listed as “out of
context.” But it changes as you step through the program. To do this, put the cur-
sor anywhere inside the sub and repeatedly click the Step into button. (Alternatively,
press the F8 key repeatedly.) This executes a line of code at a time. If the line
changes the value of sum, the updated value will appear in the Watch window. By
the time the For Each loop is finished, the Watch window appears as in Figure 5.19.

If you sum the numbers in the range A2:A10 of Figure 5.15, you will find
that the sum is indeed 762. This means that the problem is not with the logic
for calculating sum. The only other possible problem is with the number that
sum is divided by to obtain the average. (Now do you see the error?) A careful

Figure 5.17 VBE Debug Toolbar

Step into Step over Step outToggle breakpoint Quick watch

Figure 5.18 Watch Window

Getting Started with VBA 83

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

look at the code shows that scoreRange includes the label in cell A1. Therefore,
scoreRange.Cells.Count returns 10, not 9. The correct average is 762/9, not
762/10. (You might recall that Excel’s COUNT worksheet function counts only
cells with numbers. In contrast, VBA’s Count property, as used here, counts all
cells, even empty cells or cells with labels.)

The general point made by this example is that stepping through a program,
together with a careful use of the Watch window, can localize a problem and enable
you to fix it. You can also employ some other debugging tools to fine-tune your search
for bugs. This is particularly important if you have a large programwith several subs and
you are confident that most of them are bug-free. You then can use the following tools.

● Set breakpoints. Place the cursor on any line of code and click the Toggle
breakpoint button. This puts a red dot in the left-hand margin of the Code
window (or it removes the red dot if one was already there). If you now run
the program, it will execute until it encounters this line of code, at which time
it goes into break mode. Then you can examine values of variables or step
through the program from this point on. In general, whenever you click the
Run Sub/Userform button, the program advances to the next breakpoint.
(If there isn’t another breakpoint, the program runs to completion.)

● Step over subs. As you are stepping through a program, you might get to a
line that calls another sub. (Calling other subs is discussed in Chapter 10.) If
you do not want to step through that sub line by line (because you are confi-
dent it is bug-free), click the Step over button. This executes the sub all at
once, without stepping through it line by line.

● Step out of subs. Similarly, if you are stepping through a sub and decide
there is no point in stepping through the rest of it, click the Step out button.
The rest of the sub is executed all at once and control passes back to the call-
ing sub, which you can then continue to step through.

These tools are great for debugging, but they are not magic bullets. Incorrect
logic creeps into almost all programs of any reasonable size, and it is the
programmer’s task to find them. This requires a thorough knowledge of the
program, a lot of detective work, and perseverance. The easy way out is to
seek immediate help from someone else (your instructor?) as soon as some-
thing goes wrong. However, you should try to find the bugs yourself, using
the tools described here. It is probably the most effective way to become a
good programmer. You will learn at least as much from your errors as from
any programming manuals.

Figure 5.19 Watch Window After For Each Loop

84 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.16 Summary

This chapter has covered a lot of VBA programming fundamentals, including sub-
routines (subs); variables; the InputBox and MsgBox functions; comments; strings
and string operations; specification of objects, properties, and methods; With con-
structions; a few other VBA elements; and debugging. All of these fundamentals
are used repeatedly in later chapters. Don’t worry if they are not yet completely
clear. It takes plenty of practice to master these VBA fundamentals.

EXERCISES

1. Open a new workbook, get into the VBE, insert a module, and enter the follow-
ing code:

Sub Variables()
Dim nPounds As Integer, dayOfWeek As Integer
nPounds = 17.5
dayOfWeek = "Monday"
MsgBox nPounds & " pounds were ordered on " & dayOfWeek

End Sub

There are two problems here. One causes the program to fail, and the other
causes an incorrect result. Explain what they are and then fix them.

2. Open a new workbook, get into the VBE, insert a module, and enter the follow-
ing code:

Sub CalculateExpenses()
customerName = InputBox("Enter the name of a customer.")
nPurchases = InputBox("Enter the number of purchases made by " _

& customerName & " during the month.")
totalSpent = 0
For counter = 1 To nPurchases

amountSpent = InputBox("Enter the amount spent by " & customerName _
& " on purchase " & counter)

totalSpent = totalSpent + amountSpent
Next
MsgBox customerName & " spent a total of " & Format(totalSpent, _

"$#,##0.00") & " during the month.", vbInformation
End Sub

a. Make sure there is no Option Explicit line at the top of the module. (If there
is, delete it.) Then run the program. It should work fine. (If it doesn’t, check
your spelling.)

b. Enter an Option Explicit line at the top of the module. Now run the program.
It should produce an error message. The problem is that the Option Explicit
statement forces you to declare variables, and none of the variables in this
sub have been declared. Declare them appropriately with a Dim statement
(or several Dim statements) and rerun the program. Now it should work.

Getting Started with VBA 85

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Write a program, and store it in a file called Travel Expenses.xlsm, that does the
following: (a) It asks for a person’s first name and stores it in firstName; (b) it asks
for a person’s last name and stores it in lastName; (c) it asks for the number of
miles the person traveled on a recent trip and stores it in nMiles; (d) it asks for
the average miles per gallon the person got on the trip and stores it in milesPer-
Gallon; (e) it asks for the average price per gallon paid for gas on the trip and
stores it in avgPrice; (f) it calculates the cost of the trip and stores it in tripCost;
and (g) it displays a message such as "Bob Jones traveled 800 miles, got 31.3 miles
per gallon on average, paid $3.49 per gallon on average, and paid a total of $89.20 for
gas." Make sure there is an Option Explicit line at the top of the module and that
you declare all of your variables appropriately.

4. Write a program, and store it in a file called String Funtions.xlsm, that does the fol-
lowing: (a) It asks the user for a word with at least 10 characters and stores it in
myWord; (b) it displays a message indicating the number of characters in the word; (c)
it displays a message showing the first four characters of the word; (d) it displays a mes-
sage showing the last six characters of the word; (e) it displays a message showing the
fifth character in the word; (f) it displays a message showing all but the first two and
last two characters in the word; and (g) it displays the word in reversed order. (Hint:
For the last part, look up Strings in the VBA library of the Object Browser.)

5. The file Formatting 1.xlsm contains the following code for formatting some
data. It is all correct. Rewrite the code so that there are no With constructions,
and then run the modified program to make sure it still works. Can you see how
With constructions reduce repetitive code?

Sub Formatting()
With ActiveWorkbook.Worksheets("Sheet1")

With .Range("A1")
.Value = "Expenses for March"
With .Font

.Name = "Arial"

.Bold = True

.ColorIndex = 5

.Size = 14
End With
.HorizontalAlignment = xlLeft

End With
With Range("A3:A6")

.InsertIndent 1
With .Font

.Italic = True

.Bold = True
End With

End With
With .Range("B3:B6")

.Interior.Color = vbBlue

.NumberFormat = "$#,##0"
End With

End With
End Sub

86 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. The file Formatting 2.xlsm contains the following code for formatting some
data. This code works perfectly well, but it is quite repetitive. Rewrite it by using
as many With constructions as make sense, using appropriate indentation, and
then run your modified code to make sure it still works.

Sub Formatting()
ActiveWorkbook.Worksheets("Sheet1").Range("A1").Font.Bold = True
ActiveWorkbook.Worksheets("Sheet1").Range("A1").Font.Size = 14
ActiveWorkbook.Worksheets("Sheet1").Range("A1").HorizontalAlignment = xlLeft
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Font.Bold = True
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Font.Italic = True
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").Font.Color = vbGreen
ActiveWorkbook.Worksheets("Sheet1").Range("A3:A6").InsertIndent 1
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").Font.Bold = True
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").Font.Italic = True
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").Font.Color = vbBlue
ActiveWorkbook.Worksheets("Sheet1").Range("B2:D2").HorizontalAlignment = xlRight
ActiveWorkbook.Worksheets("Sheet1").Range("B3:D6").Font.Color = vbRed
ActiveWorkbook.Worksheets("Sheet1").Range("B3:D6").NumberFormat = "$#,##0"

End Sub

7. The file Formatting 3.xlsm contains code that is very difficult to read. Besides
that, it contains an error. Reformat it with indenting, white space, and comments,
and fix the error so that it runs correctly.

8. The file Count Large.xlsm has quantities sold for 1000 products for each of
60 months, for a total of 60,000 values. The following code counts the number
of these that are greater than 100. Check how long it takes to do this by inserting
Timer functions appropriately in the code and displaying the elapsed time in a
message box.

Sub CountLarge()
Dim cell As Range, nLarge As Long
For Each cell In Range("Sales")

If cell.Value > 100 Then nLarge = nLarge + 1
Next
MsgBox nLarge & " cells in the Sales range have a quantity larger than 100.", _

vbInformation
End Sub

9. Write single lines of code for each of the following.
a. Set the value of cell A17 in the Sales sheet of the active workbook to 1325.
b. Capture the value of cell B25 in the Quantities sheet of the workbook

Sales.xlsx in the variable marchSales.
c. Clear the contents of the range named Sales.
d. Copy the range A1:A10 on the Sheet1 worksheet of the active workbook to

the range A1:A10 of the MarchSales sheet in the Sales.xlsx workbook.
Assume that Sales.xlsx is not the active workbook.

Getting Started with VBA 87

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. The file Exam Scores.xlsx has scores for an exam in the range A1:A100. Write a
sub that reports the average, standard deviation, minimum, and maximum of the
scores in a message box. Use Excel’s functions (with WorksheetFunction) to do the
arithmetic.

11. Open a new workbook, name it Random Number.xlsm, and delete all but the
first sheet if necessary. Write a sub that enters a random number in cell A1. Try
this two ways. First, use Excel’s RAND function (with WorksheetFunction) to set
the Value property of this cell. Does this work? It shouldn’t. Second, set the
Value property of the cell to VBA’s rnd function. Does this work? It should. The
moral is that if VBA has a function that does something, you have to use it; you
can’t borrow Excel’s function that does the same thing.

88 Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working with Ranges

6.1 Introduction

This chapter focuses on ways to work with ranges in VBA. This is a particularly
important topic because the majority of operations in Excel are range operations.
You select ranges, you enter values and formulas in ranges, you format ranges in
various ways, you copy ranges, and so on. Therefore, it is important to be able to
automate these common tasks with VBA. Unfortunately, it can be difficult to do
even the simplest tasks unless you know the correct techniques, and online help is
sometimes more confusing than helpful. This chapter presents sample VBA code
that accomplishes many common tasks. You can then adapt this code to your own
programs.

6.2 Exercise

The following exercise illustrates the type of problem you will be able to solve
once you master the techniques in this chapter. You should probably not try this
exercise yet, but you should keep it in mind as you read through the rest of the
chapter. By the end, you should have more than enough tools to solve it—one
way or another.

Exercise 6.1

The file Calculate NPV.xlsx contains a model for calculating the net present value
(NPV) from an investment. (See Figure 6.1.) Five inputs are listed in the range
B4:B8. These are used to implement the calculations for cash inflows in row 12,
and the NPV is then calculated with the formula =NPV(B8,B12:K12)-B4 in
cell B14. All of the logic to this point is incorporated in the worksheet and does
not need to be changed at all. When you enter different inputs in the B4:B8
range, the NPV in cell B14 automatically recalculates.

Rows 18–22 contain possible values of the inputs, where each row is sorted
in increasing order. The values shown are for illustration only—you can change
them if you like. The goal of the exercise is to ask the user for any two of
the five inputs. Then the application should find the minimum and maximum
values for these two inputs from the corresponding 18–22 rows, substitute
each combination (minimum of first and minimum of second, minimum of
first and maximum of second, maximum of first and minimum of second, and

6

89

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

maximum of first and maximum of second) in the appropriate cells in the B4:B8
range, and finally report the input values and corresponding NPVs in a table,
starting in row 25. As an example, if the user selects inputs 3 and 5, the final
result should appear as in Figure 6.2. Note that the values for the third input

Figure 6.1 Setup for Exercise

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

LKJIHGFEDCBA

Calcula�ng the net present value of a stream of cash flows

Inputs
1. Cash ou�low, beginning of year 1 $40,000
2. Cash inflow, end of year 1 $12,000
3. Pct increase in cash inflow per year 12%
4. Number of years of cash inflows 10
5. Discount %61etar

Model of cash inflows (all occur at the ends of years)
01987654321raeY

Cash 772,33$217,92$825,62$686,32$841,12$288,81$958,61$350,51$044,31$000,21$wolfni

Net present value (NPV) $48,787

Possible values of the inputs to test

1. Cash ou�low, beginning of year 1 $10,000 $15,000 $20,000 $25,000 $30,000 $35,000 $40,000
2. Cash inflow, end of year 1 $4,000 $5,000 $6,000 $7,000 $8,000 $9,000 $10,000 $11,000 $12,000
3. Pct increase in cash inflow per year 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
4. Number of years of cash inflows 5 6 7 8 9 10
5. Discount %61%51%41%31%21%11%01%9%8etar

Sensi�vity table (NPV for combina�ons of min and max of two selected inputs)
NPV

Note that the values in each of rows 18-22 are in increasing order, so that the
minimum value is at the le� and the maximum value is at the right. Even if more
values are added, you can assume that they will always be placed in increasing order.

Figure 6.2 Completed Solution

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

LKJIHGFEDCBA
Calcula�ng the net present value of a stream of cash flows

Inputs
1. Cash ou�low, beginning of year 1 $40,000
2. Cash inflow, end of year 1 $12,000
3. Pct increase in cash inflow per year 12%
4. Number of years of cash inflows 10
5. Discount %61etar

Model of cash inflows (all occur at the ends of years)
01987654321raeY

Cash 772,33$217,92$825,62$686,32$841,12$288,81$958,61$350,51$044,31$000,21$wolfni

Net present value (NPV) $48,787

Possible values of the inputs to test

1. Cash ou�low, beginning of year 1 $10,000 $15,000 $20,000 $25,000 $30,000 $35,000 $40,000
2. Cash inflow, end of year 1 $4,000 $5,000 $6,000 $7,000 $8,000 $9,000 $10,000 $11,000 $12,000
3. Pct increase in cash inflow per year 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
4. Number of years of cash inflows 5 6 7 8 9 10
5. Discount %61%51%41%31%21%11%01%9%8etar

Sensi�vity table (NPV for combina�ons of min and max of two selected inputs)
Input 3 Input 5 NPV

0.02 0.08 $47,074
0.02 0.16 $22,029
0.12 0.08 $91,583
0.12 0.16 $48,787

Note that the values in each of rows 18-22 are in increasing order, so that the minimum
value is at the le� and the maximum value is at the right. Even if more values are added,
you can assume that they will always be placed in increasing order.

90 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

go from 2% to 12%, whereas the values for the fifth input go from 8% to 16%. Of
course, these limits could change if the values in rows 18–22 are changed. The
VBA should be written to respond correctly, regardless of the values in rows
18–22, assuming they are always listed in increasing order from left to right.

Figure 6.2 is taken from the file Calculate NPV Finished.xlsm. You can
open this file and click the Run Sensitivity Analysis button to see in more detail
how the application should work. (Don’t forget to enable the macros when you
open the file.) However, try not to look at the code in this file until you have
tried to develop the application on your own, starting with the file Calculate
NPV.xlsx. (This example is obviously limited. Why only two of the five inputs?
Why not three or more? For a more ambitious version, take a look at the file Cal-
culate NPV Finished with Loops.xlsm.)

6.3 Important Properties and Methods of Ranges

This section lists several of the more important and frequently used properties and
methods ofRange objects. You can skim over it on a first reading, because it is primarily
for reference. However, you should find this section useful as you work through the
exercises and examples in this chapter and later chapters. Of course, you can find all of
this information (and much more) online or in the Object Browser.

Properties

The following properties of a Range object are listed alphabetically, not necessar-
ily in order of their importance or usefulness (and there are many other properties
not listed here).

● Address. This returns the address of a range as a string, such as “B2:C6”.
● Cells. This returns a reference to a Range object and is often used to refer to a

particular cell. For example, Range("D1:D10").Cells(3) refers to the third cell in
the range, D3, whereas Range("E10:G15").Cells(3,2) refers to the cell in the
third row and second column of the range, cell F12. If the range has multiple
rows and columns, then it is customary to use two arguments in Cells, where
the first is the row and the second is the column. However, if the range is only
part of a single column or a single row, a single argument of Cells suffices.

Before proceeding, you might have noticed a subtle point in the definition of
the Cells property. Many objects, including the Range object, have properties that
are in fact references to objects down the hierarchy. The Cells property is an exam-
ple. If you look up the Range object in the Object Browser, you will see that Cells is
classified as a property. However, the purpose of this property is to return an object.
For example, consider the code Range("A1:G10").Cells(3,5).Value. Here, Cells(3,5) is
a property of the Range("A1:G10") object, but it returns an object, Range("E3"), a
reference to cell E3. The Value property then returns the contents of cell
E3. Another example is the Font property of a Range object. The code
Range("A1").Font.Bold=True uses the Font property to reference a Font object, and
then its Bold property is set to True. Again, this distinction between objects and

Working with Ranges 91

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

properties is subtle, especially for beginners. Fortunately, it has little impact on you
as you do your actual programming.

● Column. This returns the index of the first column in the range, where col-
umn A has index 1, column B has index 2, and so on.

● CurrentRegion. This returns a reference to a range bounded by any combina-
tion of blank rows and blank columns. For example, the current region of cell
A3 in Figure 6.2 is the range A3:B8. As another example, if the range con-
sists of A1:B10 and C5:D8, the current region is the smallest rectangular
region enclosing all of this, A1:D10.1

● EntireColumn. This returns a reference to the range consisting of the entire
column(s) in the range. For example, Range("A1").EntireColumn returns the
entire column A.

● Font. This returns a reference to the font of the range, and then the proper-
ties (such as Size, Name, Bold, Italic, and so on) of this font can be changed,
as in Range("A1:D1").Font.Bold=True.

● Formula. This returns or sets the formula in the range as a string, such as
"=SUM(A1:A10)". Note that this string includes the equals sign. Surprisingly,
the Formula property can be used even if a cell doesn’t contain a formula.
For example, if cell A1 contains the value 10, Range("A1").Formula returns
10. However, you are most likely to use the Formula property for ranges that
do indeed contain formulas.

● FormulaR1C1. This returns the formula in a range as a string in R1C1 (row-
column) notation. This is particularly useful for formulas that are copied down or
across. As an example, suppose each cell in the range C3:C10 is the sum of the
corresponding cells in columns A and B. For example, cell C3 is the sum of cells
A3 and B3. Then the FormulaR1C1 property of the range C3:C10 is
"=RC[–2]+RC[–1]". The R by itself means to stay in the same row. The [–2] and
[–1] next to C reference two cells to the left and one cell to the left, respectively.
To gain some experience with R1C1 notation, try the following. Enter some num-
bers in the range A1:D10 and calculate row sums and column sums with the SUM
function in column E and row 11, respectively. Now go to Excel Options, and
under the Formulas group, check the R1C1 reference style option. (To get there
in Excel 2003, use the Tools → Options menu item, and click the General tab.)
You might be surprised at how your formulas now appear. (You can then uncheck
the R1C1 reference style option to get back to the usual “A1” notation.)

● HorizontalAlignment. This returns the horizontal alignment of the cells in the
range. The three possible values are xlRight, xlLeft, and xlCenter.

● Interior. This returns a reference to the interior of the cells in a range. It is
often used to color the background of the cells, as in Range("A1").Interior.
Color= vbRed. (This colors cell A1 red, because vbRed is a built-in constant
that corresponds to red.)

1If you have ever used Excel’s pivot tables, the current region is how Excel guesses where your data
set lives, assuming the cursor is somewhere within the data set. It returns the current region of the
cursor location. The same goes for Excel tables in Excel 2007 and later versions.

92 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Name. This returns the name of the range (if any has been specified). If it is
used in a line such as Range("B3:E20").Name = "Sales", it creates a range
name for the specified range.

● NumberFormat. This returns the format code (as a string) for the range. This
is usually used to specify the number format for a range, as in Range
("C3:C10").NumberFormat= "#,##0.00". However, it is difficult to remember these
format codes, so you might try the following. Format a cell such as A1 manually in
some way and then use the line Debug.Print Range("A1").NumberFormat. (Alterna-
tively, type the line ?Range("A1").NumberFormat in the Immediate Window of the
VBE.) This will print the number format of cell A1 to the Immediate Window.
You can then see the appropriate format code.

● Offset. This returns a reference relative to a range, where the range is usually a
single cell. This property is very useful and is used constantly in the applica-
tions in later chapters. It is explained in more detail in the next section.

● Row, EntireRow. These are similar to the Column and EntireColumn properties.
● Value. This is usually used for a single-cell range, in which case it returns the value

in the cell, which could be a label, a number, or the result of a formula. Note that
the syntax Range("A1").Value can be shortened to Range("A1"). That is, if .Value is
omitted, it is taken for granted. This is because the Value property is the default
property of a Range object. When I was first learning VBA programming, I used
this shortcut a lot. Now I try to remember to include .Value, even though it isn’t
necessary, because it makes my code more readable.

Methods

The following list, again shown in alphabetical order, indicates some of the more
useful methods of a Range object.

● Clear. This deletes everything from the range—the values and the formatting.
● ClearContents. This can be used instead of Clear to delete only the values (and

formulas) and leave the formatting in place.
● Copy. This copies a range. It has a single (optional) argument called Destina-

tion, which is the paste range. For example, the line Range("A1:B10").Copy
Destination:=Range("E1:F10") copies the range A1:B10 to the range E1:F10.
Note that if the Destination argument is omitted, the range is copied to the
clipboard.

● PasteSpecial. This pastes the contents of the clipboard to the range according
to various specifications spelled out by its arguments. A frequently used option
is the following. Suppose you want to copy the range C3:D10, which contains
formulas, to the range F3:G10 as values. The required code is as follows.

Range("C3:D10").Copy
Range("F3:G10").PasteSpecial Paste:=xlPasteValues

The Paste argument, which can be one of several built-in Excel constants,
indicates how you want to paste the copy. (To appreciate how many ways

Working with Ranges 93

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

you can “paste special,” copy a range in Excel and then click the Paste drop-
down on the Home ribbon. You will see quite a few possibilities.)

● Resize. This takes two integer arguments, RowSize and ColumnSize. Start
from the upper left cell in the range; this returns a range with RowSize rows
and ColumnSize columns.

● Select. This selects the range, which is equivalent to highlighting the range in
Excel.

● Sort. This sorts the range. The specific way it sorts depends on the argu-
ments used. For a typical example, suppose you want to sort the data set in
Figure 6.3 (see section 6.5) in ascending order on Score 2 (column C). The
following line does the job. The Key1 argument specifies which column to
sort on, the Order1 argument indicates whether to sort in ascending or des-
cending order (with the built-in constants xlAscending and xlDescending),
and the Header argument specifies that there are column headings at the
top of the range that should not be part of the sort.

Range("A1:F19").Sort Key1:=Range("C2"), Order1:=xlAscending, Header:=xlYes

The lists shown here indicate only a fraction of the properties and methods
of the Range object, but they should suffice for many of your programming
needs. If you want to learn more, or if you want to look up any specific property
or method, the best way is to open the Object Browser in the VBE, select the
Excel library, select the Range object in the left pane, select any property or
method in the right pane, and click the question mark button for help.

6.4 Referencing Ranges with VBA

Once a range is referenced properly in VBA code, it is relatively easy to set (or
return) properties of the range or use methods of the range. In my experience, the
hard part is usually referencing the range in the first place. Part of the reason is that
there are so many ways to do it. This section describes the basic syntax for several of
these methods, and the next section presents a number of small subs that imple-
ment the methods. Like the previous section, the material here is mostly for refer-
ence. However, keep the exercise in section 6.2 in mind as you read this section
and the next. You will need to implement some of these ideas to do the exercise.

The most common ways to reference a range are as follows:

● Use an address. Follow Range with an address in double quotes, such as
Range("A1") or Range("A1:B10").

● Use a range name. Follow Range with the name of a range in double
quotes, such as Range("Sales"). This assumes there is a range with the name
Sales in the active workbook.

● Use a variable for a range name. Declare a string variable, such as salesName,
and set it equal to the name of the range. This would be done with a line such as

94 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

salesName = Range("Sales").Name

Then follow Range with this variable, as in Range(salesName). Note that
there are now no double quotes. They are already included in the variable
salesName (because it is a String variable).

● Use a Range object variable. Declare a variable, such as rngSales, as a Range
object and define it with the keyword Set. This can be done with the follow-
ing two lines:

Dim rngSales as Range
Set rngSales = Range("Sales")

Then simply refer to rngSales from then on. For example, to change the font
size of the range, you could write rngSales.Font= 12. The advantage of doing
it this way is that as soon as you type rngSales and then a period, you get
Intellisense. Once you get used to Intellisense, you will really miss it when it
doesn’t appear—which does happen in some cases.

● Use the Cells property. Follow Range with the Cells property, which takes
one or two arguments. For example,

Range("B5:B14").Cells(3)

refers to the third cell in the range B5:B14—that is, cell B7. In contrast,

Range("C5:E15").Cells(4,2)

refers to the cell in the fourth row and second column of the range C5:E15—
that is, cell D8. In the first case, B5:B14 is a single-column range, so it suffices
to use a single argument for the Cells property. (The same is true for a single-
row range.) However, in the second case, where C5:E15 spans multiple rows
and columns, it is more natural to use two arguments for the Cells property.
The first argument refers to the row, the second to the column. Actually, the
Cells property (a property of the Application object) can be used all by itself, as
in Cells(3,2). This refers to cell B3.

● Use the Offset property. Follow Range with the Offset property, which
takes two arguments. For example, the reference

Range("A5").Offset(2,3)

says to start in cell A5, then go 2 rows down and 3 columns to the right. This
takes you to cell D7. The first argument of Offset indicates the row offset. Use
a positive offset to go down and a negative offset to go up. The second

Working with Ranges 95

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

argument indicates the column offset. Use a positive offset to go to the right
and a negative offset to go to the left. Either argument can be 0, as in

Range("A5").Offset(0,3)

This refers to cell D5. As you will see in later chapters, the Offset property is
one of my favorites. I use it all the time.

● Use top left and bottom right arguments. Follow Range with two argu-
ments, a top left cell and a bottom right cell, separated by commas. This
corresponds to the way you often select a range in Excel. You select the top
left cell, hold down the Shift key, and select the bottom right cell. For
example,

Range(Range("C1"),Range("D10"))

returns the range C1:D10. Another example, which uses a With construction
to save typing, is as follows:

With Range("A1")
Range(.Offset(1, 1), .Offset(3, 3)).Select

End With

This code selects the range B2:D4. The top left cell is the cell offset by 1 row
and 1 column from A1, namely, B2. Similarly, the bottom right cell is the cell
offset by 3 rows and 3 columns from A1, namely, D4. Note, for example,
that .Offset(1,1) is equivalent to Range("A1").Offset(1,1) because it is inside the
With construction.

● Use the End property. You have probably used the End-Arrow key combi-
nations to select ranges in Excel, particularly if they are large ranges. For
example, if the range A1:M100 is filled with values and you want to select
it, you can select cell A1, hold down the Shift key, then press the End and
down arrow keys in succession (not at the same time), and finally press the
End and right arrow keys in succession. (You might prefer the Ctrl+Arrow
or Shift+Ctrl+Arrow key combinations to do the same thing. But in either
case, this is much better than scrolling, especially with large data ranges.)
The question is how to do this in VBA. It is easy once you know the End
property. This takes one argument to determine the direction. It can be any
of the built-in constants xlDown, xlUp, xlToRight, or xlToLeft. The following
example is typical, where the goal is to select a data set that starts in cell A1.

With Range("A1")
Range(.Offset(0,0), .End(xlDown).End(xlToRight)).Select

End With

96 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The middle line selects a range that is specified by a top left cell and
a bottom right cell. The first argument, .Offset(0,0), which is equivalent to
Range("A1").Offset(0,0) because it is inside a With, is simply cell A1. The
second argument, .End(xlDown).End(xlToRight), which is equivalent to Range
("A1").End(xlDown).End(xlToRight) again because it is inside a With, is at the
bottom right of the rectangular range that begins in cell A1. The advantage
of using the End property is that you do not need to know the size of the
range. The above code specifies the correct range regardless of whether the
data set range is A1:B10 or A1:M500.

To use the End property correctly in VBA, you have to understand exactly
how the End-Arrow key combinations work in Excel. Depending on the posi-
tion of blank cells in your worksheet, it is easy to make mistakes. See the file
Using End-Down Correctly.xlsm for an illustration of the pitfalls you might
experience. They are fairly easy to avoid if you know how to recognize them.

● Use the Resize property. Starting with a given range and RowSize and
ColumnSize arguments for Resize, this returns the range with the upper left
cell of the given range, but with RowSize rows and ColumnSize columns. For
example, the following line refers to the range C1:D10.

Range("A1").Offset(0,2).Resize(10,2)

● Use square brackets. Surprisingly, the code ["A1:B10"].Select has the same
effect as Range("A1:B10").Select. (Actually, the square bracket code is equiva-
lent to Application.Evaluate("A1:B10").Select.) I mention this option only
because you might see it in someone else’s code. I don’t recommend it
because it’s less efficient in terms of computing time, and it’s not recognized
by most users.

6.5 Examples of Ranges with VBA

It is one thing to know the information in the previous two sections in an abstract
sense. It is another to use this information correctly to perform useful tasks. This
section presents a number of small subs for illustration. (All of these subs are listed
in Module1 of the file Ranges.xlsm.) When presenting example subs that actually
do something, it is difficult to avoid aspects of VBA that have not yet been cov-
ered. Whenever this occurs, I include a brief explanation of anything new.

Watching Your Subs Run

It is very informative to run these subs and watch what they do. Here is a useful
strategy. First, make sure that only Excel and the VBE are open. (You might want
to close any programs other than Excel.) Then position the Excel and VBE win-
dows so that they are side by side. (It helps if you have a large monitor or two

Working with Ranges 97

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

monitors.) Next, place the cursor anywhere within a sub you want to run, and
press the F8 key repeatedly. This steps through your sub one line at a time. By
having the Excel window visible, you can immediately see the effect of each line
of code.

The Data Set

Most of the examples in this section are based on a small database of perfor-
mance scores on various activities and Social Security Numbers for a com-
pany’s employees. These data are in the Ranges.xlsm file and are listed in
Figure 6.3. The subs in this section all do something with this data—perhaps
nothing earthshaking, but illustrative of the methods you can use to work
with ranges. (The label in cell H1 is used to indicate that the performance
scores are separated by a blank column from other data that might be on the
worksheet.)

Note that there is only one worksheet in this file, the Data sheet. Therefore,
there is no real need to qualify ranges such as Range("A1") with a worksheet name;
there is only one cell A1 in the file. However, to set the stage for more complex
examples, I gave the code name wsData to the Data sheet (remember from the
last chapter that you do this in the VBE Properties window), and I qualified all
ranges by wsData, as in wsData.Range("A1"). Again, this isn’t really necessary, but
I think it is a good habit to get into. I could even qualify the ranges by ThisWork-
book, as in ThisWorkbook.wsData.Range("A1"), but I think this is excessive.
Remember that qualifying ranges is only really necessary when there a chance for
ambiguity, where there are multiple A1 cells in open workbooks.

Figure 6.3 Employee Data

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G H
Employee Score1 Score2 Score3 Score4 Score5 Extra junk

1 90 87 76 95 86
2 78 90 99 84 84
3 72 60 84 58 69
4 82 66 81 69 72
5 95 85 82 77 93
6 90 93 66 88 93
7 90 100 57 70 89
8 90 98 61 56 83

Employee SSN
1 677-56-3523
2 368-18-8238
3 767-97-6963
4 597-60-9462
5 469-96-1823
6 577-68-8445
7 755-43-1476
8 161-82-2041

98 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 6.1 Using Addresses

The Range1 sub refers to ranges by their literal addresses. This is the easiest
method if you know that the location and size of a data range are not going to
change. For several ranges, this sub displays the address of the range in a message
box by using the Address property of a Range object. For example, the line

MsgBox Range("A2:A19").Address

displays the address of the range “A2:F19” in a message box.

Sub Range1()
' This sub refers to ranges literally. It would be used if you
' know the size of a data range is not going to change.
With wsData

MsgBox .Range("A1").Address
MsgBox .Range("B1:F1").Address
MsgBox .Range("A2:A19").Address
MsgBox .Range("B2:F19").Address

' The following two lines are equivalent because the Value
' property is the default property of a Range object. Note
' how string concatenation is used in the message.
MsgBox "The first employee's first score is " & .Range("B2").Value
MsgBox "The first employee's first score is " & .Range("B2")

End With
End Sub

Toward the end of this sub, note how .Value can be used but is not neces-
sary. Many programmers tend to take advantage of this shortcut. I try to avoid it
for two reasons. First, your code is more straightforward if you include all proper-
ties explicitly, including default properties. Second, if you move from VBA to
Microsoft’s newer programming language, VB.NET, you will find that there are
no default properties; you are required to include all properties explicitly.

EXAMPLE 6.2 Creating and Deleting Range Names

The Range2 sub first uses the Name property of a Range object to create several
range names. Then to restore the workbook to its original condition, which is
done for illustration purposes only, these range names are deleted. To delete a
range name, you first set a reference to a particular name in the Names collection
of the ActiveWorkbook. Then you use the Delete method.

Sub Range2()
' This sub creates range names for various ranges, again
' assuming the data range is not going to change.
With wsData

.Names.Add Name:="ScoreNames", RefersTo:=.Range("B1:F1")

Working with Ranges 99

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Names.Add Name:="EmployeeNumbers", RefersTo:=.Range("A2:A19")

.Names.Add Name:="ScoreData", RefersTo:=.Range("B2:F19")
End With
MsgBox "Sheet names have been created.", vbInformation

' Delete these range names if you don't really want them.
With wsData

.Names("ScoreNames").Delete

.Names("EmployeeNumbers").Delete

.Names("ScoreData").Delete
End With
MsgBox "Names have been deleted.", vbInformation

' Alternatively, delete them all with the following lines.
Dim nm As Name
For Each nm In wsData.Names

nm.Delete
Next

End Sub

If there were, say, 50 names in the Names collection, it would be tedious to write
50 similar lines of code to delete each one. The For Each construction at the bottom of
the sub illustrates a much quicker way. For Each loops are not discussed formally until
the next chapter, but you can probably see what this one is doing. It goes through each
member of the Names collection, using a generic variable name nm for a typical mem-
ber. Then nm.Delete deletes this range name from the collection.

There is a subtle issue with range names in the Range2 sub. (See Section 6.6 for
more details.) The beginning section uses wsData.Names.Add to add three range
names. Because this starts with the worksheet reference wsData, these range names
have worksheet-level scope. (You can see this in Excel’s Name Manager dialog box.)
Therefore, these range names can be deleted later on by again referencing the work-
sheet, as in wsData.Names("ScoreNames").Delete, and the program works correctly.

However, if I used the more common way of adding range names, as in wsData.
Range("B1:F1").Name = "ScoreNames", the range names would have workbook-level
scope, and lines such as wsData.Names("ScoreNames").Delete would fail, essentially
because this range name belongs to the workbook, not to the worksheet. Such lines
would need to be replaced by Activeworkbook.Names("ScoreNames").Delete.

Admittedly, this is pretty obscure, but it is exactly the type of thing that can
drive you crazy when you keep getting an error message you can’t understand. Of
course, once you figure it out, you have really learned something and you are
unlikely to make the same error again.

EXAMPLE 6.3 Formatting Ranges

The Range3 sub first names a range, then it uses the range name to turn the Bold
property of the font of this range to True. For illustration (and to restore the
sheet to its original condition), it then sets the Bold property to False. Note that
the Bold property of a Font object is one of many Boolean properties in Excel. A
Boolean property has only two possible values, True and False.

100 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Range3()
' If a range has a range name, you can refer to it by its name.
With wsData

.Names.Add Name:="ScoreData", RefersTo:=.Range("B2:F19")

.Range("ScoreData").Font.Bold = True
End With
MsgBox "The ScoreData range has been boldfaced."

' Now turn bold off, and delete the range name.
With wsData

.Range("ScoreData").Font.Bold = False

.Names("ScoreData").Delete
End With
MsgBox "The ScoreData range is no longer boldfaced."

End Sub

Note the object hierarchy in the line

Range("ScoreData").Font.Bold = True

Each Range object has a Font object down the hierarchy from it, and the Font
object then has a Bold property. This line shows the proper syntax for referring
to this property.

EXAMPLE 6.4 Using a String Variable for a Range Name

The Range4 sub is almost identical to the Range3 sub, except that it uses the
string variable rngName to capture and then use the name of a range.

Sub Range4()
' This is the same as the previous sub except that the range name
' has been stored in the string variable rngName. Note the lack of
' double quotes except in the line defining rngName. Being a string
' variable, rngName already includes the double quotes, so they
' aren't needed later on.
Dim rngName As String
rngName = "ScoreData"
With wsData

.Names.Add Name:=rngName, RefersTo:=.Range("B2:F19")

.Range(rngName).Font.Bold = True
End With
MsgBox "The ScoreData range has been boldfaced."

' Now turn bold off, and delete the range name.
With wsData

.Range(rngName).Font.Bold = False

.Names(rngName).Delete
End With
MsgBox "The ScoreData range is no longer boldfaced."

End Sub

Working with Ranges 101

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note the lack of double quotes around rngName in the line

Range(rngName).Font.Bold = True

Because rngName is a string variable, it already includes the double quotes, so
they shouldn’t be entered in the code.

EXAMPLE 6.5 Using the Cells Property and the Top Left, Bottom Right
Combination

The Range5 sub refers to ranges with the Cells property. Remember that if the
Cells property uses two arguments, the first refers to the row and the second to
the column. This sub also shows how to refer to a range by its top left and
bottom right cells. As explained in the comments, it is a good idea to use a With
construction to save typing.

Sub Range5()
' This sub illustrates how to refer to a range with the Cells property.
With wsData

.Names.Add Name:="ScoreData", RefersTo:=Range("B2:F19")

' The following displays the address of the 2nd row,
' 3rd column cell of the ScoreData range. (This is cell D3.)
With .Range("ScoreData").Cells(2, 3)

.Select
MsgBox "The address of the selected cell is " & .Address

End With

' The following shows how to specify a range in the format
' Range(TopLeft,BottomRight)
' where TopLeft refers to the top left cell in the range,
' BottomRight refers to the bottom right cell in the range. The top
' left in the following is cell C3, the bottom right is cell E4.
With Range(.Range("ScoreData").Cells(2, 2), _

.Range("ScoreData").Cells(3, 4))
.Select
MsgBox "The address of the selected range is " & .Address

End With

' A better method is to Set a range object variable first
' and then refer to it as follows.
Dim scoreRange As Range
Set scoreRange = .Range("ScoreData")
With Range(scoreRange.Cells(2, 2), scoreRange.Cells(3, 4))

.Select
MsgBox "The address of the selected range is " & .Address

End With

.Names("ScoreData").Delete

.Range("A1").Select
End With

End Sub

102 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 6.6 Using the End Property and the Offset Property

The Range6 sub uses the End property to specify the bottom right cell of a range
that might expand or contract as data are added to, or deleted from, a worksheet.
It also uses the Offset property as a convenient way to specify other ranges relative
to some “anchor” cell. In the middle of the sub, the Count property of the Columns
collection is used to count the columns in a range. Similarly, .Rows.Count counts
the rows. Finally, note how string concatenation is used in the MsgBox statements.

Sub Range6()
' Up to now, there has been an implicit assumption that the range
' of the data will not change, so that it can be referred to literally
' (e.g., B2:F19). But a more general approach is to assume the number
' of rows and/or columns could change. This sub shows how to find the range.
' Think of cell A1 as an anchor that everything else is offset relative to.
Dim a1 As Range

Set a1 = wsData.Range("A1")
With wsData

.Names.Add Name:="ScoreNames", RefersTo:=Range(a1.Offset(0, 1), _
a1.End(xlToRight))

.Names.Add Name:="EmployeeNumbers", RefersTo:=Range(a1.Offset(1, 0), _
a1.End(xlDown))

.Names.Add Name:="ScoreData", RefersTo:=Range(a1.Offset(1, 1), _
a1.End(xlDown).End(xlToRight))

End With

' Alternatively, we could first find the number of columns and the number
' of rows in the data set, and then use these.
Dim nScores As Integer, nEmployees As Integer
With a1

nScores = Range(.Offset(0, 1), .End(xlToRight)).Columns.Count
MsgBox "There are " & nScores & " scores for each employee.", _

vbInformation, "Number of scores"
nEmployees = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
MsgBox "There are " & nEmployees & " employees in the data set.", _

vbInformation, "Number of employees"

' Now (just for variety) include row 1, column A in the range.
wsData.Names.Add Name:="EntireDataSet", _

RefersTo:=Range(.Offset(0, 0), .Offset(nEmployees, nScores))
MsgBox "The entire data set is in the range " & _

Range("EntireDataSet").Address, vbInformation, "Address"
End With

' Delete all range names.
Dim nm As Name
For Each nm In wsData.Names

nm.Delete
Next

End Sub

EXAMPLE 6.7 Other Ways to Refer to Ranges

The Range7 sub illustrates some other methods to refer to ranges. Note that the
range of SSNs in Figure 6.3 is separated by a blank row from the range of

Working with Ranges 103

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

performance scores. Therefore, the easiest way to refer to the SSN range is to
start at the bottom of the worksheet, not the top. Here, Cells(Rows.Count, 1) refers
to the last cell in column A (cell A1048576 in Excel 2013), .End(xlUp) zooms up
to the last SSN row, and the Row property returns the row number, 19.
Next, .End(xlUp) is used again to find the row number of the first SSN, 12. After
nEmployees is found by simple arithmetic, the Resize property is used to find the
address, B12:B19, of the range containing the SSNs. Keep in mind that the vari-
ables in this sub could be found in many different ways, but the method used
here results in very compact code.

Sub Range7()
' This sub shows an easy way to find the range that holds the
' SSNs. Because it is separated from the top score data set by
' a blank row, End(xlDown), starting at cell A1, would have to
' be used multiple times to get to the SSN data set. It is easier
' to use End(xlUp), starting at the bottom of the worksheet.
Dim firstRow As Integer, lastRow As Integer
Dim nEmployees As Integer
Dim SSNAddress As String

lastRow = Cells(Rows.Count, 1).End(xlUp).Row
firstRow = Cells(lastRow, 1).End(xlUp).Row + 1
nEmployees = lastRow - firstRow + 1

' For variety, use the Resize property.
SSNAddress = Cells(firstRow, 2).Resize(nEmployees, 1).Address

MsgBox "There are " & nEmployees & " with SSNs, and the range " _
& "that contains these SSNs is " & SSNAddress & ".", vbInformation

End Sub

EXAMPLE 6.8 Referring to Rows and Columns

It is often necessary to refer to a row or column of a range. It might also be neces-
sary to refer to an entire row or column, as you do when you select a row number
of a column label in the margin of a worksheet. The Range8 sub shows how to do
either. For example, .Rows(12) refers to the 12th row of a range, whereas
.Columns(4).EntireColumn refers to the entire column corresponding to the 4th col-
umn in the range (in this case, column D). The end of this sub indicates that you
cannot refer to multiple columns with numbers, such as .Columns("4:5"). However,
it is possible to refer to a single column with a number, such as .Columns(4).

Sub Range8()
' This sub shows how to select rows or columns.
With wsData

With .Range("A1:F19")
.Rows(12).Select
MsgBox "12th row of data range has been selected."
.Rows(12).EntireRow.Select
MsgBox "Entire 12th row has been selected."
.Columns(4).Select
MsgBox "4th column of data range has been selected."
.Columns(4).EntireColumn.Select

104 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MsgBox "Entire 4th column has been selected."
End With
.Rows("4:5").Select
MsgBox "Another way to select rows."
.Columns("D:E").Select
MsgBox "Another way to select columns."

' The following line does NOT work; it produces an error.
' .Columns("4:5").Select
.Range("A1").Select

End With
End Sub

EXAMPLE 6.9 Formatting Cells in a Range

One of the most useful things you can do with VBA is format cells in a range.
The Range9 sub illustrates how to apply various formats to a range. Note in par-
ticular the Color property of the Font or Interior of a range. This property can be
specified as one of the eight VBA constants (vbBlack, vbBlue, vbCyan, vbGreen,
vbMagenta, vbRed, vbWhite, and vbYellow), or as any of more than 16 million
combinations of red-green-blue (RGB) values. For example, red is equivalent to
RGB(255,0,0), so instead of the line .Color= vbRed, you could use the line
.Color=RGB(255,0,0). Each RGB argument is an integer from 0 to 255 and indi-
cates the amount of red, blue, and green in the color.

You can also specify “theme” colors by their ThemeColor and TintAndShade prop-
erties, as has been done toward the bottom of the sub. In fact, these two properties are
set if you color a font or interior with the recorder on. (Themes were introduced in
Excel 2007.) To understand these better, look at a color palette in Excel 2007 or a
later version. In the Theme Colors section, each column corresponds to a ThemeColor
value, such as xlThemeColorAccent2, and each TintAndShade value is a percentage for
the lightness or darkness of this color. If you specify theme colors and then change the
theme (from Excel’s Page Layout ribbon), the colors in the worksheet will change
automatically to those in the new theme. I found the ThemeColor and TintAndShade
values from recording. This is the best way to find them.

This whole topic of colors in Excel and VBA is rather complex, so I created
the file Colors in Excel.xlsm to help you out. Note that Microsoft changed the
theme colors in Excel 2013 for reasons we can only surmise. If you prefer those
in Excel 2007 and 2010, you can specify the “Excel 2007–2010” theme in the
Colors dropdown of the Page Layout ribbon.

Sub Range9()
' Here are some common ways to format data in ranges.
Dim a1 As Range

Set a1 = wsData.Range("A1")
With wsData

.Names.Add Name:="ScoreNames", RefersTo:=Range(a1.Offset(0, 1), _
a1.End(xlToRight))

.Names.Add Name:="EmployeeNumbers", RefersTo:=Range(a1.Offset(1, 0), _
a1.End(xlDown))

Working with Ranges 105

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Names.Add Name:="ScoreData", RefersTo:=Range(a1.Offset(1, 1), _
a1.End(xlDown).End(xlToRight))

' Do some formatting.
With .Range("ScoreNames")

.HorizontalAlignment = xlRight
With .Font

.Bold = True

.Color = vbRed

.Size = 16
End With
.EntireColumn.AutoFit

End With
With .Range("EmployeeNumbers").Font

.Italic = True

.Color = vbBlue

.Size = 12
End With
With .Range("ScoreData")

.Interior.Color = vbYellow

.Font.Name = "Times Roman"

.NumberFormat = "0.0"
End With
MsgBox "Formatting has been applied"

' Restore the original style (called "Normal"
.Range("ScoreNames").Style = "Normal"
.Range("EmployeeNumbers").Style = "Normal"
.Range("ScoreData").Style = "Normal"
MsgBox "Original formatting restored"

' Apply theme colors (there are many to choose from).
With .Range("B2")

With Range(.Offset(0, 0), .End(xlDown).End(xlToRight)).Interior
.ThemeColor = xlThemeColorDark1
.TintAndShade = -0.149998474074526

End With
With Range(.Offset(0, 0), .End(xlDown).End(xlToRight)).Font

.ThemeColor = xlThemeColorAccent2

.TintAndShade = -0.249977111117893
End With

End With
MsgBox "Theme colors have been applied."

' Restore the original style.
.Range("A1").Style = "Normal"
.Range("ScoreNames").Style = "Normal"
.Range("EmployeeNumbers").Style = "Normal"
.Range("ScoreData").Style = "Normal"
MsgBox "Original formatting restored"

End With

' Delete all range names.
Dim nm As Name
For Each nm In wsData.Names

nm.Delete
Next

End Sub

This is a particularly good example for tiling the Excel and VBE windows verti-
cally and then stepping through the code one line at a time with the F8 key. You can
then see the code in one window and the effect of the formatting in the other window.

106 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 6.10 Entering Formulas

The Range10 sub illustrates how to enter formulas in cells with VBA. There are
two properties you can use, the Formula property and the FormulaR1C1 prop-
erty. The Formula property requires a string that matches what you would
type if you were entering the formula directly into Excel. For example, to enter
the formula =AVERAGE(Score1), you set the Formula property equal to the
string "=Average(Score1)".

The FormulaR1C1 property is less obvious, but it is sometimes more natural
because of the way relative addresses work in Excel. For example, suppose you have
two columns of numbers and you want to form a third column to their right where
each cell in this third column is the sum of the two numbers to its left. You would
then set the FormulaR1C1 property of this range equal to "=Sum(RC[–2]:RC[–1])".
The R with no brackets next to it means to stay in the same row. The C with brackets
next to it means, in this case, to go from 2 columns to the left to 1 column to the left.
That is, using square brackets is equivalent to relative addressing in Excel. Remember
that for rows, plus means down, minus means up. For columns, plus means to the
right, minus means to the left. If you want an absolute address in R1C1 notation, you
omit the square brackets and use numbers to refer to rows and columns. For example,
R2C4 is equivalent to D2.

Note that this sub uses a couple of For loops in the middle. For loops are discussed
in detail in the next chapter. All you need to know here is that the variable i goes from
1 to the number of scores. First it is 1, then 2, then 3, and so on. You should study this
sub carefully. It is probably the most difficult example so far. Also, it is another excel-
lent candidate for placing the Excel and VBE windows next to one another and then
using the F8 key to step through the code one line at a time.

Sub Range10()
' This sub shows how to enter formulas in cells. You do this with
' the Formula property or the FormulaR1C1 property of a range.
' Either property takes a string value that must start with an equals
' sign, just as you enter a formula in Excel. First, I name a range
' for each column of scores, and then I use the Formula property to
' get the average of each column below the scores in that column.
Dim nScores As Integer, nEmployees As Integer, i As Integer
Dim a1 As Range

Set a1 = wsData.Range("A1")
' Determine the number of score columns and the number of employees.
' Then name the score ranges Score1, Score2, and so on.
With a1

nScores = Range(.Offset(0, 1), .End(xlToRight)).Columns.Count
nEmployees = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
For i = 1 To nScores

wsData.Names.Add Name:="Score" & i, _
RefersTo:=Range(.Offset(1, i), .Offset(1, i).End(xlDown))

Next
End With

' For each score column, enter the average formula below the last score.
' Note how string concatenation is used. For i = 1, for example, the

Working with Ranges 107

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' string on the right will be "=Average(Score1)".
For i = 1 To nScores

a1.Offset(nEmployees + 1, i).Formula = "=Average(Score" & i & ")"
Next

' Now use the FormulaR1C1 property to find the average score for each
' employee. Note how each cell in the column of averages has the SAME
' formula in R1C1 notation. It is the average of the range from nScores
' cells to the left to 1 cell to the left. For example, if nScores is 4,
' this is RC[-4]:RC[-1]. The lack of brackets next to R mean that these
' scores all come from the same row as the cell where the formula is
' being placed.
With a1.Offset(0, nScores + 1)

Range(.Offset(1, 0), .Offset(nEmployees, 0)).FormulaR1C1 = _
"=Average(RC[-" & nScores & "]:RC[-1])"

End With

MsgBox "All row and column averages have been entered as formulas."

' Delete averages.
With a1

For i = 1 To nScores
.Offset(nEmployees + 1, i).Clear

Next
For i = 1 To nEmployees

.Offset(i, nScores + 1).Clear
Next

End With

MsgBox "All row and column averages have been deleted."

' Delete all range names.
Dim nm As Name
For Each nm In wsData.Names

nm.Delete
Next

End Sub

If you want to enter a formula in a cell through VBA, it seems natural to use
the Formula (or FormulaR1C1) property. However, the following two lines have
exactly the same effect—they both enter a formula into a cell:

Range("C1").Formula = "=SUM(A1:B1)"
Range("C2").Value = "=SUM(A1:B1)"

Given that this is true—and you can check it yourself—why should you
bother with the Formula property at all? The only time it makes a difference
is if you read the property in VBA. In the above lines, I have written the
Formula and Value properties, that is, I have specified the values for these
properties. But suppose I enter the following two lines after the above two
lines:

MsgBox Range("C1").Formula
MsgBox Range("C2").Value

108 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first will return "=SUM(A1:B1)", and the second will return 10 (assuming
that cells A1 and B1 each contain 5). Here, I am reading the properties, and here
it makes a difference.

Another related property of a range is the Text property. It is very similar to the
Value property. Let’s say that cell Dl is the average of several values, and this aver-
age turns out to be 38.33333... However, you format cell Dl to have only two dec-
imals. Then the following two lines will return 38.33333... and 38.33, respectively.
In words, the Text property returns what you see in the cell after formatting.

MsgBox Range("D1").Value
MsgBox Range("D2").Text

The Text property is a read only property. If you try to use it to write a value
to a range, you will get an error. For example, the following line will not work.
You would have to use the Value property instead.

Range("A1").Text = "Sales"

EXAMPLE 6.11 Referring to Other Range Objects

The Range11 sub introduces the CurrentRegion and UsedRange properties, as
explained in the comments. It also demonstrates the Union property for referring
to possibly noncontiguous ranges. Finally, it illustrates the Areas property of a
range. Of all these properties, CurrentRegion is probably the one you will use
most frequently in your own programs.

Sub Range11()
' Here are some other useful range properties. The CurrentRegion
' and UsedRange properties are rectangular ranges. The former is
' the range "surrounding" a given range. The latter is a property
' of a worksheet. It indicates the smallest rectangular range
' containing all nonempty cells.
Dim a1 As Range, a21 As Range, h1 As Range

Set a1 = wsData.Range("A1")
Set a21= wsData.Range("A21")
Set h1 = wsData.Range("H1")

MsgBox "The range holding the dataset is " & a1.CurrentRegion.Address, _
vbInformation, "Current region"

MsgBox "The range holding everything is " & wsData.UsedRange.Address, _
vbInformation, "Used range"

' It is sometimes useful to take the union of ranges that are not
' necessarily contiguous.
Dim unionRange As Range
Set unionRange = Union(a1.CurrentRegion, a21, h1)
With unionRange

Working with Ranges 109

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MsgBox "The address of the union is " & .Address, vbInformation, _
"Address of union"

' The Areas property returns the "pieces" in the union.
MsgBox "The union is composed of " & .Areas.Count & " distinct areas.", _

vbInformation, "Number of areas"
End With

End Sub

EXAMPLE 6.12 Adding or Deleting Comments

The Range12 sub shows how to add a comment to a cell or delete a comment from
a cell. You do this with the AddComment method of a range and the Delete method
of a Comment object. A Comment object, like all other objects, has a rather bewilder-
ing number of properties and values, and I have illustrated some of them. As usual,
you can learn more about comments from the Object Browser or by recording.

I have introduced error checking in this example, which is discussed in more
detail in Chapter 12. Specifically, the line On Error Resume Next can be used to
anticipate errors. Without it, the line b1.Comment.Delete would produce an error
(assuming that cell B1 has no comment). However, On Error Resume Next says to
turn on error checking and ignore any errors that might be encountered. Once
you are past the code where you anticipate errors, you can turn off error checking
with the really strange line On Error GoTo 0.

Sub Range12()
' This sub shows how you can enter a comment in a cell or delete
' a comment in a cell. Inserting is easy, but deleting is trickier.
' Before you delete a comment, you should handle the situation where
' there is no comment to delete. If you try to delete a cell comment
' that doesn't exist, you will get an error (unless you perform the
' appropriate error checking).
Dim a1 As Range, b1 As Range
Dim cmt As Comment

Set a1 = wsData.Range("A1")
Set b1 = wsData.Range("B1")

' Insert a comment.
a1.AddComment "This is a data set of employee scores on 5 aptitude tests."
Set cmt = a1.Comment
With cmt.Shape

.Left = wsData.Range("B1").Left

.Top = wsData.Range("B2").Top
End With
MsgBox "A comment has been added to cell A1."

' Delete a comment, but error check in case there is none to delete.
On Error Resume Next
a1.Comment.Delete
b1.Comment.Delete
On Error GoTo 0
MsgBox "The comments in cells A1 and B1, if any, have been deleted."

End Sub

110 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.6 Range Names and Their Scope

The easiest way to name a range through the Excel interface is to select a range,
type a name in the Name box (to the left of the formula bar), and press Enter.
However, the topic of range names is considerably more complex than this, espe-
cially in VBA. The range names you create by typing a name in the Name box are
called workbook-level range names. There are also worksheet-level range
names. To create one of these in the Name box, you type the name of the work-
sheet, then an exclamation point, and then the name, as in Sheet2!UnitCost.
You can also create range names in Excel’s Name Manager, available from the
Defined Names dropdown arrow on the Formulas ribbon. After clicking the
New button in the Name Manager, you get the dialog box in Figure 6.4. You
type a name, select the scope to be the workbook or any of the worksheets, and
point to a range. The scope determines whether the name is workbook-level or
worksheet-level.

Why does Microsoft allow this level of complexity? The main reason is that it
allows you to use the same name in multiple worksheets. For example, suppose
you have multiple worksheets set up approximately the same way, with a unit
cost cell in each. You would like each of these cells to be range-named UnitCost.
Worksheet-level names allow you to do this by setting the scope of each to the
corresponding worksheet. Then your Name Manager might look something like
Figure 6.5.2 If you want a formula in Sheet1 to refer to its UnitCost cell, you
can write =UnitCost. But if you want the formula on Sheet1 to refer to the Unit-
Cost on Sheet2, you must write =Sheet2!UnitCost.

Figure 6.4 Adding a Range Name in the Name Manager

2You could have a Sheet2-level range name that refers to a range in Sheet1, but you would be going
out of your way to confuse yourself and your users!

Working with Ranges 111

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you don’t need multiple versions of the same name, you can use all
workbook-level range names, as most of us do. If TotalRevenue is a workbook-
level range name, the formula =TotalRevenue can be used unambiguously in
any of the worksheets, even though TotalRevenue refers to a range in a particular
worksheet.

In terms of Excel’s object model, each workbook-level range name is
a member of the Names collection of the Workbook object, and each
worksheet-level range name is a member of the Names collection of the cor-
responding Worksheet object. In other words, there are separate Names
collections for the workbook and for each worksheet in the workbook. This
has a big impact on how you refer to, add, or delete to range names in VBA
code.

To provide a prototype of what you can and can’t do, I developed the file
Range Names.xlsm. There are three worksheets named Sheet1, Sheet2, and
Sheet3. Sheet1 and Sheet2 have exactly the same data (see Figure 6.6), and
Sheet3 is blank. Cell E1 of Sheet1 has the workbook-level name Total_spent,
and Sheet2 has Sheet2-level name Total_spent.

The following RangeName1 sub indicates how you can refer to existing range
names of either scope. You might be surprised (like I was) that some of these
lines work the way they do.

Figure 6.5 Multiple Worksheet-Level Range Names Using the Same Name

112 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub RangeName1()
' This sub shows how to reference named ranges. These range
' names were created through the Excel interface. One is a
' workbook-level name for a cell in Sheet1, and the other is
' a Sheet2-level name for a cell in Sheet2. Both names are Total_spent.
' No ranges in Sheet3 are named.

' Note that ws1 and ws2 are the code names for Sheet1 and Sheet2.
' The following gives the total in the active sheet unless the
' active sheet is Sheet3. Then it gives the total in Sheet1, which
' has the workbook-level name.
MsgBox "Total spent: " & Range("Total_spent").Value

' The following both give the total in Sheet1, regardless
' of which sheet is active. Surprisingly, the second works even
' though there is no Sheet1-level name Total_spent.
MsgBox "Total spent: " & ws1.Range("Total_spent").Value
MsgBox "Total spent: " & Range("Sheet1!Total_spent").Value

' The following both give the total in Sheet2, regardless
' of which sheet is active.
MsgBox "Total spent: " & ws2.Range("Total_spent").Value
MsgBox "Total spent: " & Range("Sheet2!Total_spent").Value

End Sub

The RangeName2 sub indicates how you can add and then delete new range
names of either scope. It indicates one thing that will not work and will produce
an error—namely, if you try to delete something from the Names collection of a
worksheet when that collection is empty.

Sub RangeName2()
' This sub shows how to create and then delete workbook-level
' and worksheet-level range names.

' Note that ws1 and ws2 are the code names for Sheet1 and Sheet2.

Figure 6.6 Data in Sheet1 and Sheet2

1
2
3
4
5
6
7
8
9

10

A B C D E
Person Spent Total spent 6827

1 402
2 751
3 541
4 941
5 783
6 857
7 897
8 707
9 948

Working with Ranges 113

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Const name1 = "Indexes"
Const name2 = "Expenses"
Const addr1 = "A2:A10"
Const addr2 = "B2:B10"

' Here are two ways to add workbook-level names.
ws1.Range(addr1).Name = name1
ActiveWorkbook.Names.Add Name:=name2, RefersTo:="Sheet1!" & addr2
' Here are two ways to add worksheet-level names.
ws2.Range(addr1).Name = "Sheet2!" & name1
ws2.Names.Add Name:=name2, RefersTo:="Sheet2!" & addr2

MsgBox "Range names have been added."

' The following two lines delete the two workbook-level names.
' However, they can't be replaced by the two commented-out
' lines because there are no Sheet1-level names, i.e.,
' the Names collection belonging to Sheet1 is empty.
ActiveWorkbook.Names(name1).Delete
ActiveWorkbook.Names(name2).Delete

' ws1.Names(name1).Delete ' produces an error
' ws1.Names(name2).Delete ' produces an error

' The following two lines delete the two worksheet-level names.
' They could be replaced by the two commented-out lines.
ws2.Names(name1).Delete
ws2.Names(name2).Delete

' ActiveWorkbook.Names("Sheet2!" & name1).Delete
' ActiveWorkbook.Names("Sheet2!" & name2).Delete
End Sub

If you plan to use range names extensively in multiple-worksheet applications,
you should keep these subs handy for reference. Or you can do what I did—
experiment with trial and error.

6.7 Summary

The examples in this chapter present a lot of material, more than you can prob-
ably digest on first reading. However, they give you the clues you need to com-
plete Exercise 6.1 and to understand the applications in later chapters. Indeed,
you can borrow any parts of these examples for your own work, either for exer-
cises or for later development projects. As stated in the introduction, most of
the operations you perform in Excel are done with ranges, and one of my pri-
mary objectives in the book is to show you how to perform these operations
with VBA. Therefore, I expect that you will frequently revisit the examples in
this chapter as you attempt to manipulate ranges in your own VBA programs.

EXERCISES

1. The file Employee Scores.xlsx contains the same data set as in the Ranges.xlsm
file (the file that was used for the examples in Section 6.5). However, the VBA
code has been deleted. Also, there is now a heading in cell A1, and the data set

114 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

begins in row 3. Save a copy of this file as Employee Scores 1.xlsx and work with
the copy to do the following with VBA. (Place the code for all of the parts in a
single sub.)
a. Boldface the font of the label in cell A1, and change its font size to 14.
b. Boldface and italicize the headings in row 3, and change their horizontal

alignment to the right.
c. Change the color of the font for the employee numbers in column A to blue

(any shade you like).
d. Change the background (the Interior property) of the range with scores to

gray (any shade you like).
e. Enter the label Averages in cell A22 and boldface it.
f. Enter a formula in cell B22 that averages the scores above it. Copy this

formula to the range C22:F22.
2. Repeat the previous exercise, starting with a fresh copy, Employee Scores 2.xlsx,

of the original Employee Scores.xlsx file. Now, however, begin by using VBA to
name the following ranges with the range names specified: cell A1 as Title, the
headings in row 3 as Headings, the employee numbers in column A as EmpNum-
bers, and the range of scores as Scores. Refer to these range names as you do
parts a-f of the previous exercise.

3. Repeat Exercise 1 once more, starting with a fresh copy, Employee Scores 3.xlsx, of
the original Employee Scores.xlsx file. Instead of naming ranges as in Exercise 2,
declare Range object variables called titleCell, headingRange, empNumbersRange,
and scoresRange, and Set them to the ranges described in Exercise 2. Refer to
these object variables as you do parts a–f.

4. Repeat the previous three exercises. However, write your code so that it will work
even if more data are added to the data set—new scores, new employees, or both.
Try your programs on the original data. Add an extra column of scores and some
extra employees, and see if it still works properly.

5. Write a reference (in VBA code) to each of the following ranges. You can assume
that each of these ranges is in the active worksheet of the active workbook, so
that you don’t have to qualify the references by worksheet or workbook.
a. The third cell of the range A1:A10.
b. The cell at the intersection of the 24th row and 10th column of the range

A1:Z500.
c. The cell at the intersection of the 24th row and 10th column of a range that

has the range name Sales.
d. The cell at the intersection of the 24th row and 10th column of a range that

has been Set to the Range object variable salesRange.
e. The entire column corresponding to cell D7.
f. The set of entire columns from column D through column K.
g. A range of employee names, assuming the first is in cell A3 and they extend

down column A (although you don’t know how many there are).
h. A range of sales figures in a rectangular block, assuming that region labels are to

their left in column A (starting in cell A4) and month labels are above them in
row 3 (starting in cell B3). You don’t know how many regions or months there
are, and you want the range to include only the sales figures, not the labels.

Working with Ranges 115

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

i. The cell that is 2 rows down from and 5 columns to the right of the active
cell. (The active cell is the cell currently selected. If a rectangular range is
selected, the active cell is the first cell that was selected when the range was
selected. It can always be referred to in VBA as ActiveCell.)

6. The file Product Sales.xlsx has sales totals for 12 months and 10 different pro-
ducts in the range B4:M13. Write a VBA sub to enter formulas for the totals in
column N and row 14. Use the FormulaR1C1 property to do so. (You should set
this property for two ranges: the one in column N and the one in row 14.)

7. Repeat the previous exercise, but now assume the data set could change, either by
adding more months, more products, or both. Using the FormulaR1C1 property,
fill the row below the data and the column to the right of the data with formulas
for totals. (Hint: First find the number of months and the number of products,
and store these numbers in variables. Then use string concatenation to build a
string for each FormulaR1C1 property. Refer to the Range10 sub in the
Ranges.xlsm file for a similar formula.)

8. Do the previous two exercises by using the Formula property rather than the
FormulaR1C1 property. (Hint: Enter a formula in cell N4 and then use the Copy
method to copy down. Proceed similarly in row 14. Do not use any loops.)

9. The file Exam Scores.xlsx has four exam scores, in columns B through E, for
each of the students listed in column A.
a. Write a VBA sub that sorts the scores in increasing order on exam 3.
b. (More difficult, requires an If statement and can be postponed until after

reading Chapter 7.) Repeat part a, but now give the user some choices. Spe-
cifically, write a VBA sub that (1) uses an InputBox to ask for an exam from
1 to 4, (2) uses an InputBox to ask whether the user wants to sort scores in
ascending or descending order (you can ask the user to enter A or D), and
(3) sorts the data on the exam requested and the order requested. Make
sure the headings in row 3 are not part of the sort.

116 Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Control Logic and Loops

7.1 Introduction

All programming languages contain logical constructions for controlling the
sequence of statements through a program, and VBA is no exception. This
chapter describes the two constructions used most often: the If and Case con-
structions. The If construction has already been used informally in previous
chapters—it is practically impossible to avoid in any but the most trivial pro-
grams—but this chapter discusses it in more detail. The Case construction is an
attractive alternative to a complex If construction when each of several cases
requires its own code.

This chapter also discusses the extremely important concept of loops. Have
you ever had to stuff hundreds of envelopes? If you have ever had to perform
this or any similar mind-numbing task over and over, you will appreciate loops.
Perhaps the single most useful feature of computer programs is their ability to
loop, that is, to repeat the same type of task any number of times—10 times,
100 times, even 10,000 or more times. All programming languages have this
looping ability, the only difference being their syntax. VBA does it with For
loops, For Each loops, and Do loops, as this chapter illustrates. Fortunately, it is
quite easy. It is amazing how much work you can make the computer perform
by writing just a few lines of code.

The material in this chapter represents essential elements of almost all pro-
gramming languages, including VBA. Without control logic and loops, computer
programs would lose much of their power. Therefore, it is extremely important
that you master the material in this chapter. You will get a chance to do this
with the exercise in the next section and the exercises at the end of the chapter.
Beyond this, you will continue to see control logic and loops throughout the
rest of the book.

7.2 Exercise

The following exercise is typical in its need for control logic and loops. You can
keep it in mind as you read through this chapter. It is not too difficult, but it
will keep you busy for a while. Even more important, it will give you that won-
derful feeling of accomplishment once you solve it. It is a great example of the
power of the tools in this chapter.

7

117

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 7.1 Finding Record Highs and Lows for Stock Prices

The file Records.xlsx contains two worksheets. The Prices worksheet con-
tains monthly closing prices (adjusted for dividends and stock splits) for sev-
eral large companies from January 2002 to August 2014. The Records
worksheet is a template for calculating the record highs and lows for any
one of these companies. It is shown in Figure 7.1 (with a number of hidden
rows). The Walmart prices in column B have been copied from the WMT
column of the Prices worksheet.

You can first choose a month in cell F1 from a dropdown list. Then the pur-
pose of the exercise is to scan column B from top to bottom. If you see a price
that is higher than any price so far, it is called a “record high.” Similarly, if a price
is lower than any price so far, it is called a “record low.” The objective is to find
each record high and record low that occurs from the selected month on and
record these record highs and lows in columns D, E, and F. Column D records
the date, column E records the price, and column F records whether it is a record
high or a record low. Note that the records are based on all of the data, but
records are listed only from the selected date on.

The file Records Finished 1.xlsm contains the finished application. You can
open it, copy (manually) any stock’s price data from the Prices worksheet to the
Records worksheet, and then click the button. Figures 7.2 and 7.3 indicate
the results you should obtain for Walmart. The message box in Figure 7.2 sum-
marizes the results, whereas columns D, E, and F show the details of the record
prices. Feel free to run the program on other stocks’ prices, but do not look at
the VBA code in the file until you have given it your best effort.

If you like, you can extend this exercise in a natural direction. Modify your code
so that there is now a loop over all stocks in the Prices worksheet. For each stock,
your modified program should copy the prices from the Prices worksheet to the
Records worksheet and then continue as in the first part of the exercise. Essentially,

Figure 7.1 Template for Record Highs and Lows for Walmart

118 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the code from the first part of the exercise should be placed inside a loop on the
stocks. The finished version of this part of the exercise is in the file Records Fin-
ished 2.xlsm. Again, feel free to open the file and click the button to see the results
you should obtain, but do not look at the code until you have attempted it yourself.

Figure 7.3 Detailed Record Results

Figure 7.2 Summary of Record Results

Control Logic and Loops 119

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 If Constructions

An If construction is useful when there are one or more possible conditions, each
of which requires its own code. Here, a condition is any expression that evaluates
to either True or False. Typical conditions are Total <= 200, SheetName = "Data",
and isFound (where isFound is a Boolean variable that evaluates to True or False).
You often need to check whether a condition is true or false and then proceed
accordingly. This is the typical situation where an If construction is useful.

There are several versions of the If construction, in increasing order of
complexity.

● Single-line If. The simplest version can be written on a single line. It has the
form

If condition Then statement1 [Else statement2]

Here, condition is any condition and statement1 and statement2 are any
statements. (The convention in writing generic code like this is that any parts
in square brackets are optional. In other words, the Else part of this statement
is optional. Note that you do not actually type the square brackets.) This
simple form requires only a single line of code (and there is no End If). An
example is

If numberOrdered <= 200 Then unitCost = 1.30

Another example is

If numberOrdered <= 200 Then unitCost = 1.30 Else unitCost = 1.20

● If-Then-Else-End If. A more common version of the If construction requires
several lines and has the form:

If condition Then
statements1

[Else
statements2]

End If

(Again, the square brackets denote that the lines within them are optional.)
In this form, condition is first tested. If it is true, the statements denoted by state-
ments1 are executed. You might also want to execute another set of statements,
denoted by statements2, in case the condition does not hold. If so, you must
insert these after the keyword Else. In fact, there are four keywords in this form:
If, Then, Else, and End If. (Note the required space between End and If. However,

120 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the editor will enter the space for you if you omit it.) An example of this con-
struction is the following:

If numberOrdered <= 200 Then
unitCost = 1.3
MsgBox "The unit cost is " & unitCost

Else
unitCost = 1.25
MsgBox "The unit cost is " & unitCost

End If

● If-Then-ElseIf-Else-End If. The most general version of the If construction
allows more than a single condition to be tested by using one or more ElseIf
keywords. (Note that there is no space between Else and If. It is all one word.)
The general form is

If condition1 Then
statements1

[ElseIf condition2 Then
statements2

ElseIf condition3 Then
statements3

…

Else
other statements]

End If

This construction performs exactly as it reads. There can be as many ElseIf
lines as needed (denoted by the…), and the Else part is not required. It is used
only if you want to execute some statements in case all of the above conditions
are false. An example of this version is the following:

If numberOrdered <= 200 Then
unitCost = 1.3

ElseIf numberOrdered <= 300 Then
unitCost = 1.25

ElseIf numberOrdered <= 400 Then
unitCost = 1.2

Else
unitCost = 1.15

End If

In this version, the program goes through the conditions until it finds one
that is true. Then it executes the corresponding statement(s) and jumps down
to the End If line. If none of the conditions hold and there is an Else line, the
statement(s) following it are executed.

Control Logic and Loops 121

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Nested If statements. It is also possible to nest If constructions, in which
case proper indentation is crucial for readability. Here is an example:

If Product = "Widgets" Then
If numberOrdered <= 200 Then

unitCost = 1.3
Else

unitCost = 1.2
End If

ElseIf product = "Gadgets" Then
If numberOrdered <= 500 Then

unitCost = 2.7
ElseIf numberOrdered <= 600 Then

unitCost = 2.6
Else

unitCost = 2.5
End If

Else
unitCost = 2

End If

The meaning of this code should be self-evident, but only because the lines
are indented properly. Try to imagine these lines without any indentation, and
you will understand why the indentation is crucial. Besides indentation, make
sure you follow every If with an eventual End If (unless the If construction is of
the simple one-line version). In fact, it is a good practice to type the End If line
right after you type the If line, just so you don’t forget. Also, every condition
must be followed by the keyword Then. If you mistakenly type something like If
numberOrdered <= 200 and press Enter, you will immediately see your mistake—
the offending line will be colored red. You can fix it by adding Then.

● Immediate If function. There is one other function you might occasionally
find useful: the “immediate” If function. It has the syntax IIf(condition,state-
ment1,statement2), where the arguments are the same as in Excel’s IF func-
tion. Its advantage is that it can be used to evaluate an expression in the
midst of any line of code, such as the following:

MsgBox "The unit price is " & IIf(unitsSold > 100, 20, 25) & " dollars."

The file If Examples.xlsm contains several examples to illustrate If construc-
tions. They are all based on the small data set shown in Figure 7.4. Each example
changes the formatting of the data in some way. The Restore button is attached
to a sub that restores the data to its original plain vanilla formatting. In each
example there is a For Each loop that goes through all of the cells in some range.
(For Each loops are discussed in detail in Section 7.6.) There is then at least one If
construction that decides how to format cells in the range. (Note: In all of these
If subs, I use the variable cell. This is not a keyword in VBA. I could just as well
have used cel or cl or cll, or any other spelling.)

122 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 7.1 Single-Line If Construction

The If1 sub illustrates a one-line If construction. If an employee’s first score
(in column B) is greater than 80, the corresponding employee number is bold-
faced. Note that the range A4:A21 has been range-named Employee.

Sub IfStatement1()
' Example of a one-line If (note there is no End If).
Dim cell As Range
Const cutoff = 80

' Go down the Employee column. If the Employee’s first score is
' greater than the cutoff, boldface the font of the Employee number.
For Each cell In wsData.Range("Employee")

If cell.Offset(0, 1).Value > cutoff Then cell.Font.Bold = True
Next

End Sub

EXAMPLE 7.2 If-ElseIf-End If Construction

The If2 sub illustrates an Ifwith a single ElseIf (and no Else). If an employee’s first score
is less than 70, the sub colors the corresponding employee number red. Otherwise, if
it is greater than 85, the sub colors the employee number blue. If the score is from
70 to 85, no action is taken. Hence there is no need for an Else.

Figure 7.4 Data Set for If Examples

Control Logic and Loops 123

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub IfStatement2()
' Example of a typical If-ElseIf-End If construction. Note that
' ElseIf is one word, but End If is two words.
Dim cell As Range
Const cutoff1 = 70, cutoff2 = 85

' Go down the Employee column. If the Employee’s first score is
' less than cutoff1, color the Employee number red; if greater
' than cutoff2, color it blue. Because there is no Else condition,
' nothing happens for scores between cutoff1 and cutoff2.
For Each cell In wsData.Range("Employee")

If cell.Offset(0, 1).Value < cutoff1 Then
cell.Font.Color = vbRed

ElseIf cell.Offset(0, 1).Value > cutoff2 Then
cell.Font.Color = vbBlue

End If
Next

End Sub

EXAMPLE 7.3 If-ElseIf-Else-End If Construction

The If3 sub extends the If2 sub. Now there is an Else part to handle scores from
70 to 85. All such scores are colored green.

Sub IfStatement3()
' Example of a typical If-ElseIf-Else-End If construction.
Dim cell As Range
Const cutoff1 = 70, cutoff2 = 85

' Go down the Employee column. If the Employee's first score is
' less than cutoff1, color the Employee number red; if greater than
' cutoff2, color it blue. Otherwise, color it green.
For Each cell In wsData.Range("Employee")

If cell.Offset(0, 1).Value < cutoff1 Then
cell.Font.Color = vbRed

ElseIf cell.Offset(0, 1).Value > cutoff2 Then
cell.Font.Color = vbBlue

Else
cell.Font.Color = vbGreen

End If
Next

End Sub

EXAMPLE 7.4 Nested If Constructions

The If4 sub illustrates how a nested If construction allows you to test whether all
three of an employee’s scores are greater than 80 (in which case the employee’s
number is boldfaced). Note that the statement setting Bold to True is executed
only if each of the three conditions is true.

124 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub IfStatement4()
' Example of nested If’s.
Dim cell As Range
Const cutoff = 80

' Go down Employee column. If all scores for a Employee are greater
' than cutoff, boldface the Employee number. Note the indenting.
' It is crucial for readability!
For Each cell In wsData.Range("Employee")

If cell.Offset(0, 1).Value > cutoff Then
If cell.Offset(0, 2).Value > cutoff Then

If cell.Offset(0, 3).Value > cutoff Then
cell.Font.Bold = True

End If
End If

End If
Next

End Sub

EXAMPLE 7.5 Compound (And, Or) Conditions

Conditions can be of the compound variety, using the keywords And and Or. It is
often useful to group the conditions in parentheses to eliminate any ambiguity.
For example, the compound condition in the line

If condition1 And (condition2 Or condition3) Then

is true if condition1 is true and at least one of condition2 and condition3 is true.
Note that the individual conditions must be spelled out completely. For example,
it is tempting to write

If Range("A1").Font.Color = vbRed Or vbBlue Then

However, this will generate an error message. The corrected line is

If Range("A1").Font.Color = vbRed Or Range("A1").Font.Color = vbBlue Then

The If5 sub illustrates a typical compound condition. It first checks whether
an employee’s first score is greater than 80 and at least one of the employee’s
last two scores is greater than 85. If this compound condition is true, it boldfaces
the employee’s number, it colors the first score red, and it colors blue any second
or third score that is greater than 85.

Sub IfStatement5()
' Example of compound conditions (with And/Or).

Control Logic and Loops 125

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim cell As Range
Const cutoff1 = 80, cutoff2 = 85

' Boldface Employee numbers who did well on the first score and even
' better on at least one of the last two scores. Note the indenting
' for clear readability.
For Each cell In wsData.Range("Employee")

If cell.Offset(0, 1).Value > cutoff1 And _
(cell.Offset(0, 2).Value > cutoff2 _
Or cell.Offset(0, 3).Value > cutoff2) Then

cell.Font.Bold = True
cell.Offset(0, 1).Font.Color = vbRed
If cell.Offset(0, 2).Value > cutoff2 Then _

cell.Offset(0, 2).Font.Color = vbBlue
If cell.Offset(0, 3).Value > cutoff2 Then _

cell.Offset(0, 3).Font.Color = vbBlue
End If

Next
End Sub

7.4 Case Constructions

If constructions can become fairly complex, especially when there are multiple
ElseIf parts. The Case construction discussed here is often used as a less complex
alternative. Suppose the action you take depends on the value of some variable.
For example, you might have a product index that can have values from 1 to 10,
and for each product index you need to take a different action. This could
be accomplished with an If construction with multiple ElseIf lines. However, the
Case construction provides an alternative. The general form of this construction is

Select Case variable
Case value1

statements1
Case value2

statements2
…

[Case Else
statementsElse]

End Select

(As usual, the square brackets are not typed. They indicate only that the Else
part is optional.) Here, the keywords are Select Case, Case, and End Select, and
variable is any variable on which the various cases are based. Then value1, value2,
etc., are mutually exclusive values of variable that require different actions, as speci-
fied by statements1, statements2, and so on. Actually, these values can be single
values or ranges of values. For example, if variable is named productIndex, you
might need to do one thing if productIndex is from 1 to 5, another thing
if productIndex is 6, and still another if productIndex is from 7 to 10. You can also
include a Case Else, although it is not required. It specifies the action(s) to take if
none of the other cases hold.

126 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following is a typical example of how the cases can be specified.

Select Case productIndex
Case Is <= 3

unitPrice = 1.2 * unitCost
Case 4 To 6

unitPrice = 1.3 * unitCost
Case 7

unitPrice = 1.4 * unitCost
Case Else

unitPrice = 1.1 * unitCost
End Select

Note the three ways the values are specified after the keyword Case: Is <= 3,
4 To 6, and 7 (where Is and To are keywords). You can find the precise rules in
VBA help, or you can mimic the examples shown here. Alternatively, there is
nothing you can accomplish with Case constructions that you cannot also accom-
plish with (somewhat complex) If constructions. The construction chosen is often
a matter of programming taste.

The file Case Examples.xlsm illustrates Case constructions. It is based on
the small data set in Figure 7.5. As with the If examples, the examples here
change the formatting of the data, so the Restore button is attached to a macro
that restores the formatting to its original form. Note that the range A4:A21 has
been named Family.

Figure 7.5 Data Set for Case examples

Control Logic and Loops 127

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 7.6 Single Statement After Each Case

The Case1 sub uses a For Each loop to go through each cell in the Family range.
The Case construction is then based on the family’s income, that is, the value in
cell.Offset(0,1). Depending on which of four income ranges the family’s income
is in, the income is colored red, green, blue, or magenta. (I assume that all
values are listed to the nearest dollar; there are no values such as $50,000.50.)
The data are then sorted according to Income, so that all of the incomes of a
particular color are adjacent to one another.

Sub Case1()
Dim cell As Range
Const cutoff1 = 35000, cutoff2 = 50000, cutoff3 = 65000

' Go through families, color the income a different color
' for different income ranges, then sort on income.
For Each cell In wsData.Range("Family")

With cell
Select Case .Offset(0, 1).Value

Case Is <= cutoff1
.Offset(0, 1).Font.Color = vbRed

Case cutoff1+1 To cutoff2
.Offset(0, 1).Font.Color = vbGreen

Case cutoff2+1 To cutoff3
.Offset(0, 1).Font.Color = vbRed

Case Else ' above cutoff3
.Offset(0, 1).Font.Color = vbMagenta

End Select
End With

Next

With wsData
.Range("B3").Sort Key1:=.Range("B4"), Order1:=xlAscending, _

Header:=xlYes
End With

End Sub

EXAMPLE 7.7 Multiple Statements After Cases

The Case2 sub is very similar to the Case1 sub. The main difference is that it
shows that multiple statements can follow any particular case. Here, the incomes
less than or equal to 35,000 are colored red. In addition, if they are less than
30,000, they are also italicized. Similarly, incomes greater than 65,000 are colored
magenta, and if they are greater than 70,000, they are boldfaced.

Sub Case2()
' This is the same as Case1, but if shows how multiple statements
' can be used in any particular case.
Dim cell As Range
Const cutoff1 = 35000, cutoff2 = 50000, cutoff3 = 65000

128 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Const cutoff0 = 30000, cutoff4 = 70000

For Each cell In wsData.Range("Family")
With cell

Select Case .Offset(0, 1).Value
Case Is <= cutoff1

.Offset(0, 1).Font.Color = vbRed
If .Offset(0, 1) < cutoff0 Then _

.Offset(0, 1).Font.Italic = True
Case cutoff1+1 To cutoff2

.Offset(0, 1).Font.Color = vbGreen
Case cutoff2+1 To cutoff3

.Offset(0, 1).Font.Color = vbBlue
Case Else ' above cutoff3

.Offset(0, 1).Font.Color = vbMagenta
If .Offset(0, 1) > cutoff4 Then _

.Offset(0, 1).Font.Bold = True
End Select

End With
Next
With wsData

.Range("B3").Sort Key1:=.Range("B4"), Order1:=xlAscending, _
Header:=xlYes

End With
End Sub

If you find that you favor Case constructions to If constructions in situations like
these, just remember the following: The construction must begin with Select Case, it
must end with End Select, and every case line in between must start with Case.

Using a Colon to Separate Two VBA Lines

When you see Case constructions, they often include two lines of VBA code on a
single physical line. This is allowable if you separate the two lines with a colon. This
is usually done when the lines are very short. The following is a typical example.

With Range("A1")
Select Case .Value

Case 1: .Font.Color = vbRed
Case 2: .Font.Color = vbBlue
Case 3: .Font.Color = vbGreen

End Select
End With

Actually, a colon can be used to separate any two short VBA lines on a single
physical line. However, I have seen it most often in Case constructions.

7.5 For Loops

Loops allow computers to do what they do best—repetitive tasks. There are
actually two basic types of loops in VBA: For loops and Do loops. Of these two
types, For loops are usually the easier to write, so I will discuss them first.

Control Logic and Loops 129

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For loops take the following general form, where the keywords are For, To,
Step, and Next.

For counter = first To last [Step increment]
statements

Next [counter]

(As usual, square brackets indicate optional elements. You should not type
the brackets.) There is always a counter variable. Many programmers, including
myself, name their counters i, j, k, m, or n, although any variable names can be
used. The first line states that the counter goes from first to last in steps of incre-
ment. For each of these values, the statements in the body of the loop are executed.
The default value of the Step parameter is 1, in which case the Step part can be
omitted (as it usually is). The loop always ends with Next. It is possible, but not
required, to write the counter variable at the end of the Next line. This is sometimes
useful when there are multiple For loops and there could be some ambiguity about
which Next goes with which For.

The following is a simple example of a For loop that sums the first 1000 posi-
tive integers and reports their sum. This is actually a very common operation,
where you accumulate a total within a loop. It is always a good idea to initialize
the total to 0 just before starting the loop, as is done here.

sum = 0
For i = 1 To 1000

sum = sum + i
Next
MsgBox "The sum of the first 1000 positive integers is " & sum

Virtually any types of statements can be used in the body of the loop. The
following example illustrates how If logic can be used inside a loop. Here, you
can assume that the worksheet with code name wsSalaries has 500 employee
names in column A (starting in row 2) and that their corresponding salaries are
in column B. This code counts the number of employees with salaries greater
than $50,000. The loop finds this number, nHigh, by adding 1 to the current
value of nHigh each time it finds a salary greater than $50,000. Note how the
counter variable i is used in .Offset(i, 1) to find the salary for employee i.

nHigh = 0
With wsSalaries.Range("A1")

For i = 1 To 500
If .Offset(i, 1) > 50000 Then nHigh = nHigh + 1

Next
End With
MsgBox "The number of employees with salaries greater than $50,000 is " & nHigh

Exiting a For Loop Prematurely

Sometimes you need to exit a For loop prematurely. This is possible with the Exit
For statement. It immediately takes you out of the loop. For example, suppose

130 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

again that 500 employee names are in column A, starting in row 2, and you want
to know whether there is an employee named James Snyder. The following code
illustrates one way to do this. It uses a Boolean variable isFound that is initially set
to False. The program then loops through all employees. If it finds James Snyder,
it sets isFound to True, exits the loop, and reports that James Snyder has been
found. However, if it gets through the loop without finding Snyder, then isFound
is still False, and it displays a message to this effect.

Dim isFound As Boolean
isFound = False
With wsSalaries.Range("A1")

For i = 1 To 500
If .Offset(i, 0).Value = "James Snyder" Then

isFound = True
Exit For

End If
Next

End With
If isFound Then

MsgBox "James Snyder is in the employee list."
Else

MsgBox "James Snyder is not in the employee list."
End If

By the way, most beginning programmers (and even some experienced
programmers) would write the fifth from last line as

If isFound = True Then

This is technically correct, but the = True part is not necessary. Remember
that a condition in an If statement is any expression that evaluates to True or
False. Therefore, the condition isFound, all by itself, works just fine. It is Boolean,
so its value is True or False. Similarly, the line

If Not isFound Then

could be used for the opposite condition. The keyword Not in front of a
condition switches True to False and vice versa. Therefore, an equivalent way to
end this example is as follows:

If Not isFound Then
MsgBox "James Snyder is not in the employee list."

Else
MsgBox "James Snyder is in the employee list."

End If

Control Logic and Loops 131

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Again, the point of this discussion is that if you use a Boolean variable as the
condition in an If statement, you do not have to include = True or = False in the
condition.

Nested For Loops

It is also common to nest For loops. This is particularly useful if you want to
loop through all of the cells in a rectangular range. Then there is one counter
such as i for the rows and another counter such as j for the columns.1 The follow-
ing example illustrates nested loops.

EXAMPLE 7.8 Nested For Loops

Consider the worksheet code-named wsSales with the data in Figure 7.6. (This
data set and accompanying code are in the file For Loop Examples.xlsm.) Each
row corresponds to a sales region, and each column corresponds to a month. The
numbers in the body of the table are sales figures for various regions and months,
and the goal is to find the total sales over all regions and months. Then the nested
For loops in the following GetGrandTotal sub do the job. Note how the sales figure
for region i and month j is captured by the offset relative to cell A3. Note also how
the counter variables are included in the Next lines (Next i and Next j) for clarity.
Actually, the indentation achieves the same effect—easy readability.

Sub GetGrandTotal()
' Calculate and display the total of all sales.
Dim total As Single
Dim iRow As Integer
Dim iCol As Integer

' The following line is not absolutely necessary because numeric
' variables are initialized to 0. But it never hurts to play it safe.
total = 0

' Loop through all rows and all columns within each row.
With wsSales.Range("A3")

For iRow = 1 To 13
For iCol = 1 To 9

total = total + .Offset(iRow, iCol)
Next iCol

Next iRow
End With

MsgBox "Total sales for the 13 regions during this 9-month period is " _
& total

End Sub

1 I sometimes use more meaningful counter names, such as iRow and iCol. However, the generic
names i and j are most often used by programmers, including myself, in such situations.

132 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Continuing this example, suppose you want to append a Totals row to the
bottom, where you sum sales across regions for each month, and a Totals column
to the right, where you sum sales across months for each region. The following
GetTotals sub accomplishes this. It is actually quite general. It first finds the num-
ber of months and number of regions in the data set so that it will work for any
numbers of months and regions, not just those in Figure 7.6. For example, the
following line, inside With wsSales.Range("A3"), shows how to count the number
of month labels to the right of cell A3.

nMonths = Range(.Offset(0, 1), .Offset(0, 1).End(xlToRight)).Columns.Count

This is a very common operation for counting columns (or rows), so you should
examine it carefully.

Sub GetTotals()
Dim nMonths As Integer, nRegions As Integer
Dim iRow As Integer, iCol As Integer
Dim regionTotal As Single, monthTotal As Single

With wsSales.Range("A3")
' Capture the number of months and number of regions.
nMonths = Range(.Offset(0, 1), .Offset(0, 1).End(xlToRight)) _

.Columns.Count
nRegions = Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)) _

.Rows.Count

' Insert labels.
.Offset(0, nMonths + 1) = "Totals"

Figure 7.6 Monthly Sales by Region

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J

Sales by region and month

Jan-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08 Jul-08 Aug-08 Sep-08
Region 1 2270 1290 1600 2100 1170 1920 1110 2060 3130
Region 2 1730 3150 1180 740 1650 900 1830 1220 1620
Region 3 1840 1700 2170 3300 1390 1660 1720 2090 880
Region 4 3280 1920 2000 1270 1510 2280 2730 2160 1380
Region 5 2090 2110 2040 2270 1650 1910 2220 3380 1850
Region 6 1820 2570 2060 2190 1840 3310 1920 1080 940
Region 7 2400 1880 2980 2370 1910 2580 3470 2220 2200
Region 8 1680 1680 3120 1010 1550 2880 1410 2800 1520
Region 9 2230 2960 2240 2120 1870 2790 1390 2290 1620
Region 10 2040 2310 2120 2750 1220 1270 2080 2150 2650
Region 11 1430 2970 1800 2510 1660 1900 2910 770 2740
Region 12 1760 1590 1610 1550 1730 1150 3660 1670 3440
Region 13 1870 1330 1930 2080 2210 1850 3360 1930 1100

Control Logic and Loops 133

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Offset(nRegions + 1, 0) = "Totals"

' Get totals in right column.
For iRow = 1 To nRegions

regionTotal = 0 ' This is absolutely necessary!
For iCol = 1 To nMonths

regionTotal = regionTotal + .Offset(iRow, iCol)
Next iCol
' Display total.
.Offset(iRow, nMonths + 1) = regionTotal

Next iRow
' Get totals in bottom row.
For iCol = 1 To nMonths

monthTotal = 0 ' This is also absolutely necessary.
For iRow = 1 To nRegions

monthTotal = monthTotal + .Offset(iRow, iCol)
Next iRow
' Display total.
.Offset(nRegions + 1, iCol) = monthTotal

Next iCol
End With

End Sub

Pay particular attention in this sub to the initialization statements for region-
Total and monthTotal. For example, in the first pair of loops, where the totals
in the right column are calculated, the outer loop goes through all of the rows
for the regions. For a particular region, you must first reinitialize regionTotal to 0,
and then loop through all of the months, adding each month’s sales value to the
current regionTotal value. Make sure you understand why the regionTotal = 0 and
monthTotal = 0 statements are not only necessary, but why they must be placed
exactly where they have been placed for the program to work properly.

In fact, a good way to learn how this works is to purposely do it wrong and
see what happens. For example, delete (or comment out) the regionTotal = 0 and
monthTotal = 0 lines in the For Examples.xlsm file, run the program, and step
through the code, periodically checking the value of regionTotal. You really can
learn from your mistakes. (I have been programming for years, but I still have
to think through this type of initialization logic each time I do it. It is very easy
to do it wrong.)

In all of the For loop examples to this point, the counter has gone from 1 to some
fixed number in steps of 1. Other variations are possible, including the following:

● Variable upper limit. It is possible for the upper limit to be a variable that
has been defined earlier. In the following lines, the number of customers is
first captured in the variable nCustomers (as the number of rows in the Data
range). Then nCustomers is used as the upper limit of the loop.

Dim nCustomers As Integer
nCustomers = Range("Data").Rows.Count
For i = 1 To nCustomers

statements
Next

134 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Lower limit other than 1. It is possible for the lower limit to be an integer
other than 1, or even a variable that has been defined earlier, as in the follow-
ing lines. Here, the minimum and maximum scores in the Scores range are
first captured in the minScore and maxScore variables. Then a loop uses
these as the lower and upper limits for its counter.

Dim minScore As Integer, maxScore As Integer
minScore = WorksheetFunction.Min(Range("Scores"))
maxScore = WorksheetFunction.Max(Range("Scores"))
For i = minScore To maxScore

statements
Next

● Counting backward. It is possible to let the counter go backward by using a
negative value for the Step parameter, as in the following lines. Admittedly,
this is not common, but there are times when it is very useful. Here is a typi-
cal example. Suppose you have numbers in the range A2:A21. You want to
delete all rows where the number is greater than 100. The following code
will do this correctly.

Sub DeleteRowsCorrectly()
Dim i As Integer
With Range("A1")

For i = 20 To 1 Step -1
If .Offset(i, 0).Value > 100 Then

.Offset(i, 0).EntireRow.Delete
End If

Next
End With

End Sub

However, the following code will do it incorrectly. Can you see why? It is far
from obvious. If you are curious, open the file Deleting Rows.xlsm and step
through each of the subs. You will learn a lot!

Sub DeleteRowsIncorrectly()
Dim i As Integer
With Range("A1")

For i = 1 To 20
If .Offset(i, 0).Value > 100 Then

.Offset(i, 0).EntireRow.Delete
End If

Next
End With

End Sub

● Lower limit greater than upper limit. Another relatively uncommon situa-
tion, but one that can occur, is when the lower limit of the counter is

Control Logic and Loops 135

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

greater than the upper limit (and the Step parameter is positive). This
occurs in the following lines. What does the program do? It never enters
the body of the loop at all; it just skips over the loop entirely. And, unlike
what you might expect, there is no error message. It is instructive to under-
stand why this is the case. When VBA encounters a For loop, it sets the
counter equal to the lower limit. Then it checks whether the counter is less
than or equal to the upper limit. If it is, the body of the loop is executed,
the counter is incremented by the step size, and the same check is made
again. As soon as this check is not satisfied, execution passes to the line
right after the loop.

lowLimit = 10
highLimit = 5
For i = lowLimit To highLimit

statements
Next

7.6 For Each Loops

There is another type of For loop in VBA that is not present in all other program-
ming languages: the For Each loop. Actually, this type of loop has been used a few
times in this and previous chapters, so you are probably somewhat familiar with it
by now. It is used whenever you want to loop through all objects in a collection,
such as all cells in a Range object or all worksheets in a workbook’s Worksheets
collection. Unlike the For loops in the previous section, you (the programmer)
might have no idea how many objects are in the collection, so you don’t know
how many times to go through the loop. Fortunately, you don’t need to know.
The For Each loop figures it out for you. For example, if there are three work-
sheets, it goes through the loop three times. If there are 15 worksheets, it goes
through the loop 15 times. The burden is not on you, the programmer, to figure
out the number of objects in the collection.

The typical form of a For Each loop is the following.

Dim item As object
For Each item In collection

statements
Next

Here, the declaration of the object variable item is shown explicitly. Also, item,
object, and collection have been italicized to indicate that they will vary depending
on the type of collection. In any case, item is a generic name for a particular item
in the collection. Programmers generally use a short variable name, depending on
the type of item. For example, if you are looping through all worksheets, you
might use the variable name ws. Actually, any name will do. In this case, object

136 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

should be replaced by Worksheet, and collection should be replaced by Worksheets
(or ActiveWorkbook.Worksheets). The following code illustrates how you could
search through all worksheets of the active workbook for a sheet code-named
wsData. If you find one, you can exit the loop immediately. Note that you must
declare the generic ws variable as an object—specifically, a Worksheet object.

Dim ws As Worksheet
Dim isFound As Boolean

isFound = False
For Each ws In ActiveWorkbook.Worksheets

If ws.CodeName = "wsData" Then
isFound = True
Exit For

End If
Next

If isFound Then
MsgBox "There is a worksheet named Data."

Else
MsgBox "There is no worksheet named Data."

End If

The important thing to remember about For Each loops is that the generic
item, such as ws in the above code, is an object in a collection. Therefore, it has
the same properties and methods as any object in that collection, and they can
be referred to in the usual way, such as ws.CodeName. Also, there is no built-in
loop counter unless you want to create one—and there are situations where you
will want to do so. As an example, the code below generalizes the previous code
slightly. It counts the number of worksheets with a name that starts with "Sheet".
(To do this, it uses the string function Left. For example, Left("Sheet17",5) returns
the leftmost 5 characters in "Sheet17", namely, "Sheet".)

Dim ws As Worksheet
Dim counter As Integer

counter = 0
For Each ws In ActiveWorkbook.Worksheets

If Left(ws.Name, 5) = "Sheet" Then
counter = counter + 1

End If
Next
MsgBox "There are " & counter & " sheets with a name starting with Sheet."

For Each with Ranges

One special type of collection is a Range object. Remember that there is no Ranges
collection, but the singular Range acts like a collection, and you can use it in a For
Each loop. Then the individual items in the collection are the cells in the range.
The following is a typical example. It counts the number of cells in a range that

Control Logic and Loops 137

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

contain formulas. To do so, it uses the built-in HasFormula property, which returns
True or False. Note again that cell is not a keyword in VBA. It is used here to
denote a typical member of the Range collection—that is, a typical cell. Instead of
cell, any other name (such as cl) could have been used for this generic object. In
any case, this generic member must first be declared as a Range object.

Dim cell As Range
Dim counter As Integer

counter = 0
For Each cell In Range("Data")

If cell.HasFormula Then counter = counter + 1
Next
MsgBox "There are " & counter & " cells in the Data range that contain formulas."

If you have programmed in another language, but not in VBA, it might take
you a while to get comfortable with For Each loops. They simply do not exist in
programming languages that do not have objects and collections. However, they
can be extremely useful. For examples, refer back to any of Examples 7.4–7.7 in
this chapter. They all use a For Each loop to loop through all cells in a range.

To see a few more For Each examples, examine the code in the file For Each
Examples.xlsm. This code illustrates how you can loop through the Worksheets
collection, the Charts collection (that includes chart sheets), the Sheets collection
(that includes worksheets and chart sheets), and the Names collection (that
includes range names). Actually, there are many more collections in Excel that
you can loop through with For Each loops.

7.7 Do Loops

For loops (not For each loops) are perfect for looping a fixed number of times.
However, there are many times when you need to loop while some condition
holds or until some condition holds. You can then use a Do loop. Do loops are
somewhat more difficult to master than For loops, partly because you have to
think through the logic more carefully, and partly because there are four possible
variations of Do loops. Usually, any of these variations can be used, but you have
to decide which one is most natural and easiest to read.

The four variations are as follows. In each variation, the keyword Do appears
in the first line of the loop, and the keyword Loop begins the last line of the loop.
The first two variations check a condition at the top of the loop, whereas the last
two variations check a condition at the bottom of the loop.

Variation 1: Do Until … Loop

Do Until condition
statements

Loop

138 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Variation 2: Do While … Loop

Do While condition
statements

Loop

Variation 3: Do … Loop Until

Do
statements

Loop Until condition

Variation 4: Do … Loop While

Do
statements

Loop While condition

Here are some general comments that should help you understand Do loops.

● Conditions at the top. In the first two variations, the program checks the
condition just before going through the body of the loop. In an Until loop,
the statements in the body of the loop are executed only if the condition is
false; in a While loop, the statements are executed only if the condition is true.
If you stop and think about it, this is not something you need to memorize; it
makes sense, given the meaning of the words “until” and “while.”

● Conditions at the bottom. The same holds in variations 3 and 4. The difference
here is that the program decides whether to go through the loop again. The effect
is that the statements in the loop will certainly be executed at least once in the last
two variations, whereas they might never be executed in the first two variations.

● Exit Do statement. As with a For loop, you can exit a Do loop prematurely.
To do so, you use an Exit Do statement inside the loop.

● Possibility of infinite loops. A Do loop has no built-in counter as in a For
loop. Therefore, you as a programmer must change something within the
loop to give it a chance of eventually exiting. Otherwise, it is easy to be
caught in an infinite loop from which the program can never exit. The fol-
lowing is a simple example. It shows that it is easy to get into an infinite
loop. It happens to all of us. You can assume that isValid has been declared
as a Boolean variable—it is either True or False.

Sub Test()
Dim isvalid As Boolean, password As String
isvalid = False
Do Until isvalid

password = InputBox("Enter a valid password.")
Loop

End Sub

Control Logic and Loops 139

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Go through the logic in these statements to see if you can locate the prob-
lem. Here it is. The Boolean variable isValid is never changed inside the loop.
It is initialized to False, and it never changes. But the loop continues until isValid
is True, which will never occur. If you type this code into a sub and then run it,
the sub will never stop.

Breaking Out of an Infinite Loop: A Lifesaver

This might not sound too bad, but suppose you have spent the last hour writing a pro-
gram, you have not saved your work (shame on you!), and you decide to test your pro-
gram by running it. All of a sudden, you realize that you are in an infinite loop that you
cannot get out of, and panic sets in. How can you save your work? Fortunately, there is
a way to break out of an infinite loop (or terminate a program that has been running
too long)—you can use the Ctrl+Break key combination. (The Break key is at the
top right of most keyboards. However, some keyboards, including those on Macs,
don’t have a Break key. In this case, you can press the Esc key, which appears to do
the same thing.2) This allows you to exit the program and save your work. This
brush with disaster also reminds you to save more often. Try it now. Run the above
password program and see whether you can break out of the loop.

How do you avoid the infinite loop in this example? Let’s suppose that any pass-
word of the form “VBAPass” followed by an integer from 1 to 9 will be accepted. In
this case, the following code will do the job. It checks whether the user enters one of
the valid passwords, and if so, it sets isValid to True, allowing an exit from the loop.
But there is still a problem. What if the poor user just doesn’t know the password?
She might try several invalid passwords and eventually give up, either by entering
nothing in the input box or by clicking on the Cancel button (or the X button). The
program checks for this by seeing whether password, the string returned from the
InputBox statement, is an empty string, "". (Clicking the Cancel button or the X button
of an input box returns an empty string.) In this case, the program not only exits the
loop, but it ends abruptly because of the keyword Exit Sub. After all, you don’t want
the user to be able to continue if she doesn’t know the password.

Sub Test()
Dim isvalid As Boolean, password As String
isvalid = False
Do Until isvalid

password = InputBox("Enter a valid password.")
If password = "" Then

MsgBox "Sorry, but you cannot continue."
Exit Sub

Else
For i = 1 To 9

If password = "VBAPass" & i Then

2Unfortunately, as I just discovered when I lost some of my own unsaved code, this doesn’t necessar-
ily work. First, my keyboard on a Windows 8 machine doesn’t have a Break key. Second, pressing the
Esc key has no effect at all. If you search the Web for “VBA infinite loops,” you will see that other
programmers have discovered the same problem, along with some possible remedies.

140 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

isvalid = True
Exit For

End If
Next

End If
Loop

End Sub

Study this code carefully. Note that the Exit For statement provides an exit
from the For loop, because the program has found that the user entered a valid
password such as VBAPass3. In this case there is no need to check whether she
entered VBAPass4, VBAPass5, and so on. In addition, by this time, isValid has
just been set to True. Therefore, when control passes back to the top of the Do
loop, the condition will be true, and the Do loop will be exited.

There is an important lesson in this example. It is easy to get into an infinite
loop—we all do it from time to time. If you run your program and it just seems to
hang, the chances are good that you are in an infinite loop. In that case, press Ctrl
+Break (or Esc) to stop the program, save your file, and check your loops carefully.

EXAMPLE 7.9 Locating a Name in a List

The file Do Loop Examples.xlsm illustrates a typical use of Do loops. It starts with a
database of customers in a Data worksheet, as shown in Figure 7.7 (with several hidden
rows). Column A contains a company’s customers last year, and columnB contains the
customers this year. Next year has not yet occurred, so the company doesn’t know its
customers for next year—hence the empty list in column C. The user first selects a

Figure 7.7 Customer Lists

1
2
3
4
5
6
7
8

92
93
94
95
96
97
98
99

100
101
102
103

A B C
Customer last year Customer this year Customer next year
Barlog Aghimien
Barne�
Bedrick Barne�
Brulez Bedrick
Cadigan Brulez
Castleman Cadigan
Chandler Castleman
Yablonka Tracy
Zick Ubelhor
Ziegler Usman

Vicars
Villard
Wendel
Wier
Wise
Yablonka
Yeiter
Zakrzacki
Zhou

Bang

Control Logic and Loops 141

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

column from 1 to the number of columns (here 3, but the program is written more
generally for any number of columns). The goal of the program is to check
whether a customer with a user-selected name is in the selected column. (The
blank “Customer next year” column is included here for illustration. It shows
what happens if you try to locate a particular name in a blank list.)

The DoLoop1 sub shows how to perform the search with a Do Until loop. It
searches down the selected column for a user-supplied name until it finds the
name or it runs into a blank cell, the latter signifying that it has checked the entire
customer list for that column. If it finds the name along the way, it exits the loop
prematurely with an Exit Do statement. Note that the program works even if
column C is chosen. You should reason for yourself exactly what the program
does in this case—and why it works properly.

Sub DoLoop1()
Dim selectedColumn As Integer
Dim nColumns As Integer
Dim rowCount As Integer
Dim foundName As Boolean
Dim requestedName As String

' Count the columns.
With wsData.Range("A1")

nColumns = Range(.Offset(0, 0), .End(xlToRight)).Columns.Count
End With

' Ask for a name to be searched for.
requestedName = InputBox("What last name do you want to search for?")

' No error checking -- assumes user will enter an appropriate value!
selectedColumn = InputBox("Enter a column number from 1 to " & nColumns)

' Go to the top of the selected column.
With wsData.Range("A1").Offset(0, selectedColumn - 1)

rowCount = 1
foundName = False

' Keep going until a blank cell is encountered. Note that if there
' are no names at all in the selected column, the body of this loop
' will never be executed.
Do Until .Offset(rowCount, 0).Value = " "

If UCase(.Offset(rowCount, 0).Value) = UCase(requestedName) Then
foundName = True
MsgBox requestedName & " was found as name " & rowCount _

& " in column " & selectedColumn & ".", vbInformation
' Exit the loop prematurely as soon as a match is found.
Exit Do

Else
' Unlike a For loop, any counter must be updated manually
' in a Do loop.
rowCount = rowCount + 1

End If
Loop

End With

' Display appropriate message if no match is found.
If Not foundName Then

142 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MsgBox "No match for " & requestedName & " was found.", vbInformation
End If

End Sub

Probably the most important parts of this loop are the row counter variable,
rowCount, and the updating statement, rowCount = rowCount + 1. Without these,
there would be an infinite loop. But because rowCount increases by 1 every time
through the loop, the condition following Do Until is always based on a new cell.
Eventually, the program will find the requested name or it will run out of custo-
mers in the selected column. In either way, it will eventually end.

VBA’s UCase and LCase Functions

The condition that checks for the requested name uses VBA’s built-in UCase
(uppercase) function. This function transforms any string into one with all upper-
case characters. This is often useful when you are not sure whether names are cap-
italized fully, partially, or not at all. By checking for uppercase only, you take all
guesswork out of the search. Similarly, VBA has an LCase (lowercase) function
that transforms all characters to lowercase.

Changing Do Until to Do While

It is easy to change a Do Until loop to a Do While loop or vice versa. You just
change the condition to its opposite. The Do Loop Examples.xlsm file contains
a DoLoop2 sub that uses Do While instead of Do Until. The only change is that the
Do Until line becomes the following. (Note that <> means “not equal to.”)

Do While .Offset(rowCount, 0).Value <> ""

Putting Conditions at the Bottom of the Loop

It is also possible to perform the search for the requested name using variation 3
or 4 of a Do loop—that is, to put the conditions at the bottom of the loop. The
DoLoop3 and DoLoop4 subs of the Do Loop Examples.xlsm file illustrate these
possibilities. However, for this particular task (of finding a particular name), it is
probably more natural to place the condition at the top of the loop. This way,
if the first element of the selected column’s list is blank, as for the next year
column, the body of the loop is never executed at all.

7.8 Summary

The programming tools discussed in this chapter are arguably the most important
tools in VBA or any other programming language. It is hard to imagine many
interesting, large-scale applications that do not require some control logic and

Control Logic and Loops 143

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

loops. They appear everywhere. Fortunately, they are not difficult to master, and
you will see them in numerous examples in later chapters.

EXERCISES

1. Write a sub that requests a positive integer with an InputBox. Then it uses a For
loop to sum all of the odd integers up to the input number, and it displays the
result in a MsgBox.

2. Change your sub from the previous exercise so that it enters all of the odd inte-
gers in consecutive cells in column A, starting with cell A1, and it shows the sum
in the cell just below the last odd integer.

3. The file Sales Data.xlsx contains monthly sales amounts for 40 sales regions.
Write a sub that uses a For loop to color the interior of every other row (rows 3,
5, etc.) gray. Color only the data area, columns A to M. (Check the file Colors in
Excel.xlsm to find a nice color of gray.)

4. Starting with the original Sales Data.xlsx file from the previous exercise, write a
sub that italicizes each monthly sales amount that is greater than $12,000 and
changes the font color to red for each label in column A where the yearly sales
total for the region is greater than $130,000.

5. Starting with the original Sales Data.xlsx file from the previous exercise, write a
sub that examines each row for upward or downward movements in quarterly
totals. Specifically, for each row, check whether the quarterly totals increase each
quarter and whether they decrease each quarter. If the former, color the region’s
label in column A red; if the latter, color it blue.

6. An InputBox statement returns a string—whatever the user enters in the box.
However, it returns a blank string if the user enters nothing and clicks the OK
or Cancel button (or the X button). Write a sub that uses an InputBox to ask the
user for a product code. Embed this in a Do loop so that the user has to keep try-
ing until the result is not a blank string.

7. Continuing the previous exercise, suppose all valid product codes start with the
letter P and are followed by four digits. Expand the sub from the previous exercise
so that the user has to keep trying until a valid code has been entered.

8. In Exercise 6, you chose one of the four possible versions of Do loops in your
code: using a While or Until condition, and placing the condition at the top of
the loop or the bottom of the loop. Regardless of how you did it, rewrite your
sub in each of the three other possible ways.

9. Write a sub that displays a MsgBox. The message should ask whether the total
receipt for a sale is greater than $100, and it should display Yes and No buttons.
If the result of the MsgBox is vbYes (the built-in VBA constant that results from
clicking the Yes button), a second message box should inform the user that she
gets a 10% discount.

10. Write a sub that asks for the unit cost of a product with an InputBox. Embed this
within a Do loop so that the user keeps being asked until she enters a positive
numeric value. (Hint: Use VBA’s IsNumeric function. Also, remember that if the
user clicks the Cancel button or the X button, an empty string is returned.)

144 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Write a sub that asks for a product index from 1 to 100. Embed this within a
Do loop so that the user keeps being asked until he enters an integer from 1 to
100. (Hint: Use a For loop for checking.)

12. All passwords in your company’s system must be eight characters long, start with
an uppercase letter, and consist of uppercase letters and digits—no spaces.
Employees are issued a password, but then they are allowed to change it to one
of their own choice.
a. Write a sub to get a user’s new password. It should use an InputBox, embed-

ded within a Do loop, to get the password. The purpose of the loop is to
check that they indeed enter a valid password.

b. Expand your sub in part a to include a second InputBox that asks the user
to verify the password in the first input box (which by then is known to be
valid). Embed the whole procedure within an outer Do loop. This outer loop
keeps repeating until the user provides a valid password in the first InputBox
and enters the same password in the second InputBox.

13. Repeat the previous exercise, but now assume that, in addition to the other restric-
tions on valid passwords, passwords can have at most two digits—the rest must be
uppercase letters.

14. Repeat Exercise 12, but now perform a second check. Use the file Passwords.xlsx,
which has a single worksheet called Passwords. This sheet has a list of all pass-
words currently being used by employees in column A, starting in cell A1.
If the new employee selects one of these passwords, an appropriate warning
message is displayed, and the user has to choose another password. When the
user finally chooses a valid password that is not being used, a “Congratulations”
message should be displayed, and the new password should be added to the list
at the bottom of column A.

15. Write a sub that asks the user for three things in three InputBox lines: (1) a last
name, (2) a “first” name (which can actually be their middle name if they go by
their middle name), and (3) an initial. Use Do loops to ensure that the first name
and last name are all letters—no digits, spaces, or other characters. Also, check
that the initial is a single letter or is blank (because some people don’t like to use
an initial). If an initial is given, ask the user in a MsgBox with Yes and No buttons
whether the initial is a middle initial. (The alternative is that it is a first initial.)
Then display a MsgBox listing the user’s full name, such as “Your full name
is F. Robert Jacobs”, “Your name is Wayne L. Winston”, or “Your name is Seb
Heese”.

16. Assume you have a mailing list file. This file is currently the active workbook, and
the active sheet of this workbook has full names in column A, starting in cell A1,
with last name last and everything in uppercase letters (such as STEPHEN E.
LEE). Write a sub that counts the number of names in the list with last name
LEE and then displays this count in a MsgBox. Note that there might be last
names such as KLEE, which should not be counted.

17. The file Price Data.xlsx has a single sheet that lists your products by product
code. For each product, it lists the unit price and a discount percentage that
customers get if they purchase at least a minimum quantity of the product. For
example, the discount for the first product is 7%, and it is obtained if the customer

Control Logic and Loops 145

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

purchases at least 20 units of the product. Write a sub that asks for a product code
with an input box. This should be placed inside a Do loop that checks whether the
code is one in the list. It should then ask for the number of units purchased, which
must be a positive number. (You don’t have to check that the input is an integer.
You can assume that the user doesn’t enter something like 2.73.) Finally, it
should display a message something like the following: “You purchased _ units
of product _. The total cost is _. Because you purchased at least _ units, you
got a discount of _ on each unit.” Of course, your code will fill in the under-
scores in this message. Also, the last sentence should not be displayed if the
user didn’t purchase enough units to get a discount. (Note: You should write
this sub, and the subs in the next two exercises, so that they are valid even if
the list of products expands in the future.)

18. Continuing the previous exercise, write a sub that first asks the user for the num-
ber of different products purchased. Then use a For loop that goes from 1 to this
number, and place the code from the previous exercise, modified if necessary,
inside this loop. That is, each time through the loop you should get and display
information about a particular product purchased. At the end of the sub, a message
should be displayed that shows the total amount spent on all purchases.

19. Again, use the Price Data.xlsx file described in Exercise 17. Write a sub that
asks the user for a purchase quantity that can be any multiple of 5 units, up to
50 units. Then enter a label in cell E3 something like “Cost of _ units”, where the
underscore in the message is filled in by the user’s input. Below this, enter the total
cost of this many units for each product. For example, cell E4 will contain the pur-
chase cost of this many units of the first product in the list. Enter these as values,
not formulas.

20. The file Customer Accounts.xlsx contains account information on a company’s
customers. For each customer listed by customer ID, the Data worksheet has the
amount the customer has purchased during the current year and the amount the
customer has paid on these purchases so far. For example, the first customer pur-
chased an amount worth $2466 and has paid up in full. In contrast, the second
customer purchased an amount worth $1494 and has paid only $598 of this.
Write a sub to create a list on the Results worksheet of all customers who still
owe more than $1000. (It should first clear the contents of any previous list on
this worksheet.) The list should show customer IDs and the amounts owed. This
sub should work even if the data change, including the possibility of more or
fewer customer accounts.

21. (More difficult) The file Customer Orders.xlsx shows orders by date for a com-
pany’s customers on the Data worksheet. Many customers have ordered more
than once, so they have multiple entries in the list. Write a sub that finds the
total amount spent by each customer on the list and reports those whose total is
more than $2000 on the Report worksheet. As part of your sub, sort the list on
the Report worksheet in descending order by total amount spent. (Hint: The
orders in the Data worksheet are currently sorted by date. It might be helpful to
use VBA to sort them by Customer ID. Then at the end of the sub, restore the
list to its original condition by sorting on date.)

146 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22. You are a rather paranoid business executive, always afraid that a competitor
might be snooping on your sensitive e-mail messages. Therefore, you decide to
use a very simple form of encryption. The table in the file Scramble.xlsx shows
your scheme. For example, all instances of the letter “a” are changed to the letter
“e”, all instances of “b” are changed to “v”, and so on. Note at the bottom of the
table that uppercase letters are scrambled differently than lowercase letters. For
example, all instances of “A” are changed to “D”. (Spaces, periods, and other
nonalphabetic characters are not changed.) Write two subs, Scramble and
Unscramble. In each, ask the user for a message in an InputBox. In the Scramble
sub, this will be an original message; in the Unscramble sub, it will be a scrambled
message. Then in the Scramble sub, scramble the message and display it. Similarly,
in the Unscramble sub, unscramble the message and display it. (Of course, in
a real situation, you and the person you are e-mailing would each have the
Scramble.xlsm file. You would use the Scramble sub, and the person you are
e-mailing would use the Unscramble sub.)

23. (More difficult) A prime number is one that is divisible only by itself and 1. The
first few prime numbers are 2, 3, 5, 7, 11, and 13. Note that 2 is the only even
prime number.
a. Write a sub that finds the first n prime numbers, where you can choose n,

and lists them in column B of the First_n worksheet of the Primes.xlsx file.
The first few are already listed for illustration. (Hint: You should use VBA’s
Mod function. It returns the remainder when one number is divided by
another. For example, 45 Mod 7 returns 3. A number n is not prime if
n Mod k = 0 for some integer k between 1 and n. For example, 39 is not
prime because 39 Mod 3 = 0.)

b. Change the sub in part a slightly so that it now finds all prime numbers less
than or equal to some number m, where you can choose m, and lists them in
the UpTo_m worksheet of the Primes.xlsx file.

24. (More difficult) The cipher in Exercise 22 is a really simple one that hackers
would break in no time. The file Cipher.xlsx explains a much more sophisticated
cipher. (It has been around for centuries, and it too can be broken fairly easily by
experts, but it is safe from most onlookers.) Write a sub that first asks the user for
a key, a word with all uppercase letters. Then it asks the user for a message that
contains only lowercase words and spaces. The sub should delete all of the spaces
from this message and then encode what remains, using the explanation in the file
and the given key. It should report the encoded message, without any spaces, in
a MsgBox. (You can test it on the following. If the key is VBAMODELERS and
the message is “the treasure is buried in the garden”, the encoded message, with
spaces reinserted, is “OIE FFHEDYTW DT BGFLIO ME LCF GMFGIY”. In
the same sub, and using the same encoded message and key, decode the message
and report it in a message box. Of course, it should be the same as the original
message.

25. (More difficult) Consider the following model of product preferences. Assume
that a retailer can stock any of products 1 through n. Each customer is one of sev-
eral customer segments. The customers in a given segment all rank the products
in the same way. For example, if n = 5 and a segment has ranked preferences

Control Logic and Loops 147

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

{2, 1, 4}, any customer in this segment would purchase any of products 1, 2, and
4, but not products 3 or 5. Furthermore, any such customer prefers product 2 to
product 1 and product 1 to product 4. So if the retailer stocks products 1, 3, 4,
and 5, this customer will purchase her highest ranked stocked product, product
1. (She would prefer product 2, but it isn’t stocked.) But if the retailer stocks
only products 3 and 5, this customer won’t purchase anything. The file
Preferences.xlsx has instructions, where your task is to write a sub that takes
(1) a customer population size, (2) any given set of customer segments, (3) the
proportions of all customers in the customer segments, (4) the profit margin for
each product, and (5) the products offered by the retailer. It should then find
(1) which product each customer segment purchases, if any; (2) the number of
customers who purchase each offered product; and (3) the retailer’s total profit.
(Note: You might think that with all profit margins being positive, it would cer-
tainly make sense for the retailer to offer all n products. However, this is not nec-
essarily true. For example, imagine that product 1 has a relatively small profit
margin, product 2 has a relatively large profit margin, and a lot of the customers’
first and second preferences, in that order, are products 1 and 2. Then by not
offering product 1, a lot of customers would go to their second preference, prod-
uct 2, and the retailer would probably earn a larger profit.)

148 Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working with Other Excel Objects

8.1 Introduction

This chapter extends the information given in Chapters 6 and 7. Chapter 6 focused
on ranges. This chapter illustrates how to work with three other common objects in
Excel: workbooks, worksheets, and charts. In doing so, it naturally illustrates further
uses of control logic and loops, which were discussed in Chapter 7. Workbooks,
worksheets, and charts are certainly not the only objects you will encounter in Excel,
but if you know how to work with these objects, along with ranges, you will be well
along the way. (Although they aren’t discussed here, the files Comments.xlsm,
Hyperlinks.xlsm, and Web Queries.xlsm illustrate how VBA can be used to manipulate
other fairly common Excel objects.) All of the objects in this chapter have many prop-
erties and methods, and only a small fraction of them are illustrated. As usual, you can
learn much more from online help, particularly the Object Browser.

8.2 Exercise

The exercise in this section illustrates the manipulation of multiple workbooks,
worksheets, and ranges. It is fairly straightforward, although you have to be careful
to keep your bearings as you move from one workbook or worksheet to another.
You should work on this exercise, or at least keep it in mind, as you read through
the rest of this chapter. All of the tools required to solve it are explained in this
chapter or were already explained in a previous chapter. When you finally get it
working, you can consider yourself a legitimate Excel programmer.

Exercise 8.1 Consolidating Data from Multiple Sheets

Consider a company that sells several of its products to five large customers. The
company currently has a file with two worksheets, Revenues and Costs, for each
customer. These files are named Customer1.xlsx through Customer5.xlsx.
Each worksheet shows the revenues or costs by day for all products sold to that
customer. For example, a sample of the revenue data for customer 1 appears in
Figure 8.1. Each of the customer files has data for the same dates (currently,
from January 2015 through June 2015, although new data could be added in
the future). In contrast, different customers have data for different numbers of
products. For example, customer 1 purchases products 1 to 4, customer 2 pur-
chases products 1 to 6, and so on.

8

149

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The purpose of the exercise is to consolidate the data from these five
workbooks into a single Summary worksheet in a workbook named
Consolidating.xlsm. This file already exists, but it includes only headings, as
shown in Figure 8.2. When finished, the dates will go down column A, the revenues
and costs for customer 1 will go down columns B and C, those for customer 2 will
go down columns D and E, and so on. The revenues and costs for all customers
combined will go down columns L and M. Note that the revenues and costs in col-
umns B and C, for example, are totals over all products purchased by customer 1.

Figure 8.3 shows part of the results for the finished application. There is a button
to the right that runs the program. The program should have a loop over the custo-
mers that successively opens each customer’s file, sums the revenues and costs for that
customer, places the totals in the consolidated file, and then closes that customer’s
file. Finally, after entering all of the information in Figure 8.3 through column K,
the program should enter formulas in columns L and M to obtain the totals.

Figure 8.1 Sample Revenue Data for Customer 1

Figure 8.2 Template for Consolidated File

1
2
3

A B C D E F G H I J K L M

Date Revenues Costs Revenues Costs Revenues Costs Revenues Costs Revenues Costs Revenues Costs
Customer 5 Total all customersCustomer 1 Customer 2 Customer 3 Customer 4

Figure 8.3 Results from Finished Application

150 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To see how this application works, make sure none of the individual custo-
mer’s files is open, open the Consolidating Finished.xlsm file, and click the but-
ton. Although you will have to watch closely to notice that anything is happening,
each of the customer’s files will be opened for a fraction of a second before being
closed, and the results in Figure 8.3 will appear. As usual, you can look at the
VBA code in the finished file, but you should resist doing so until you have
given it your best effort.

8.3 Collections and Members of Collections

Collections and members of collections (remember, plural and singular?) were
already discussed in Chapter 5, but these ideas bear repeating here as I discuss
workbooks, worksheets, and charts. There are actually two ideas you need to mas-
ter: (1) specifying a member of a collection, and (2) specifying a hierarchy in the
object model.

The three collections required for this chapter are the Workbooks, Worksheets,
and Charts collections.1 The Workbooks collection is the collection of all open
workbooks. (It does not include Excel files on your hard drive that are not cur-
rently open.) Any member of this collection—a particular workbook—can be
specified with its name, such as Workbooks("Customers.xlsx"). This refers to the
Customers.xlsx file (assumed to be open in Excel). Similarly, a particular work-
sheet such as the Data worksheet can be referenced as Worksheets("Data"), and a
particular chart sheet such as the Sales chart sheet can be referenced as Charts
("Sales"). The point is that if you want to reference any particular member of a
collection, you must spell out the plural collection name and then follow it in
parentheses with the name of the member in double quotes.

It is possible to refer to a member with a numeric index, such as Worksheets(3),
but this method is typically not used. It is difficult to remember what the third
worksheet is, for example. By the way, third refers to the third sheet from the left.

As discussed in Chapter 5, you can also refer to worksheets and chart sheets by
their code names, and I will do this frequently in this chapter. Remember that there
are two primary advantages of doing it this way. First, if a user changes the tab name
of a worksheet from Data to Data1, the code name stays fixed, so programs are less
likely to be broken by such changes. Second, you can refer directly to a code name
such as wsData, with a line like wsData.Range("A1"). You don’t need to declare a
Worksheet object and then Set it, as in the following two lines:

Dim ws as Worksheet
Set ws = Worksheets("Data")

As for hierarchy, it works as follows. The Workbooks collection consists of
individual Workbook objects. Any particular Workbook object contains a Worksheets

1The ChartObjects collection is also mentioned in Section 8.6.

Working with Other Excel Objects 151

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

collection and a Charts collection. If a particular worksheet, such as the Data
worksheet, belongs to the active workbook, you can refer to it simply as
Worksheets("Data"). You can also refer to it as ActiveWorkbook.Worksheets("Data").
However, there are times when you need to spell out the workbook, as in
Workbooks("Customers.xlsx").Worksheets("Data"). This indicates explicitly that you
want the Data worksheet from the Customers workbook.

In a similar way, you can specify the Sales chart sheet as Charts("Sales") or,
if the Sales sheet is in the active workbook, as ActiveWorkbook.Charts("Sales").
Alternatively, to designate the Sales chart sheet in the Customers workbook, you
can write Workbooks("Customers.xlsx").Charts("Sales"). Finally, you can refer to the
code names of chart sheets exactly like you do with worksheets. I like to prefix
these code names with cht, as in chtSales.

The Worksheets collection is one step down the hierarchy from the Work-
books collection. Range objects are one step farther down the hierarchy. Suppose
you want to refer to the range A3:C10. If this is in the active worksheet, you can
refer to it as Range("A3:C10") or as ActiveSheet.Range("A3:C10"). If you want to
indicate explicitly that this range is in the Data sheet, you should write
Worksheets("Data").Range("A3:C10") or wsData.Range("A3:C10") if wsData is the
code name of the worksheet. But even this assumes that the Data sheet is in the
active workbook. If you want to indicate explicitly that this sheet is in the Custo-
mers file, then you should write Workbooks("Customers.xlsx").Worksheets("Data").
Range("A3:C10"). You always read this type of reference from right to left—the
range A3:C10 of the Data sheet in the Customers file.

Once you know how to refer to these objects, you can easily refer to their
properties by adding a dot and then a property or method after the reference.
Some examples are:

ActiveWorkbook.Worksheets("Data").Range("C4").Value = "Sales for 2009"

and

Charts("Sales").Delete

Many other examples appear throughout this chapter.
One final concept mentioned briefly in Chapter 2 is that the Workbooks,

Worksheets, and Charts collections are also objects and therefore have properties
and methods. Probably the most commonly used property of each of these col-
lections is the Count property. For example, ActiveWorkbook.Worksheets.Count
returns the number of worksheets in the active workbook. Probably the most
commonly used method of each of these collections is the Add method. This adds
a new member to the collection, which then becomes the active member. For
example, consider the following lines:

ActiveWorkbook.Worksheets.Add
ActiveSheet.Name = "NewData"

152 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first line adds a new worksheet to the active workbook, and the second line
names this new sheet NewData. (This new worksheet also has a generic code
name such as Sheet2, but you cannot change it with VBA code because it is a
read only property; you can change it only in the Properties window of the
VBE.)

Before proceeding to examples, I want to make some comments about refer-
ence to objects and Intellisense. Once you type an object and then a period, if
VBA recognizes the type of object (range, worksheet, or whatever), Intellisense
should provide a list of its properties and methods. It is very disconcerting when
this list doesn’t appear. In fact, I usually assume I have made an error when Intel-
lisense doesn’t appear. But VBA doesn’t seem to be totally consistent about pro-
viding Intellisense for objects. For example, I opened a new workbook and
entered the code Worksheets ("Sheet1"). (including the period), but no Intellisense
appeared. Why not? I have no idea. There shouldn’t be any doubt that this refers
to a Worksheet object, but Intellisense acts as if it isn’t sure.

There are two remedies for this. The first is to Set object variables and then
refer to them. If you declare ws as a Worksheet object, then type the line Set
ws = Worksheets("Sheet1"), and finally type ws. (including the period), you will
get Intellisense. Maybe this is why experienced programmers declare and use so
many object variables. The second remedy is to use code names for worksheets
and chart sheets. (Other objects don’t have code names.) In fact, this has led me
to use code names much more than in earlier editions.

8.4 Examples of Workbooks in VBA

The file Workbooks.xlsm illustrates how to open and close workbooks, how to
save them, how to specify the paths where they are stored, and how to display sev-
eral of their properties, all with VBA. It is the basis for the following examples.

EXAMPLE 8.1 Working with Workbooks

The Workbooks1 sub shows how to open and close a workbook. It also uses the
Count property of the Worksheets collection to return the number of worksheets
in a workbook, and it uses the Name property of a Workbook to return the name
of the workbook. As illustrated in the sub, the opening and closing operations are
done slightly differently. To open a workbook, you use the Open method of the
Workbooks collection, followed by the Filename argument. This argument speci-
fies the name (including the path) of the workbook file. To close a workbook,
you use the Close method of that Workbook object without any arguments.2

2This is not precisely true. The Open and Close methods both have optional arguments I have not
mentioned here. You can find details in online help.

Working with Other Excel Objects 153

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that the file you are trying to open must exist in the location you specify.
Otherwise, you will obtain an error message. Similarly, the file you are trying to
close must currently be open.

Sub Workbooks1()
' This sub shows how to open or close a workbook. They are done
' differently. To open a workbook, use the Open method of the
' Workbooks collection, followed by the name of the workbook file.
' To close a workbook, use the Close method of that workbook.

' The following line assumes there is a file called Text.xlsx in the
' C:\Temp folder. If you want to run this (without an error message),
' make sure there is such a file.
Workbooks.Open Filename:="C:\Temp\Test.xlsx"

' Count the worksheets in this file and display this in a message box.
MsgBox "There are " & ActiveWorkbook.Worksheets.Count _

& " worksheets in the " & ActiveWorkbook.Name & " file."

' Close the workbook.
Workbooks("Test.xlsx").Close

End Sub

If you run this sub, then assuming the Test.xlsx file exists in the C:\Temp folder
and has three worksheets, the message in Figure 8.4 will be displayed.

As I mentioned earlier, you will get an error if you try to open a workbook
that doesn’t exist (at least not in the path specified), and you will also get an
error if you try to close a workbook that isn’t currently open. The following sub
shows how to avoid the latter error. It uses the On Error Resume Next statement
to turn on error checking but to ignore any errors encountered. (This statement
is covered in more detail in Chapter 12.) However, if an error is encountered, the
built-in Err object captures details about the error, including the Number property.
This property is nonzero if there is an error, and it is zero if there is no error. So if
the workbook to be closed isn’t open, this code provides a nice message to this
effect—not a nasty error message.

Figure 8.4 Information About Opened File

154 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Workbooks1a()
' This sub illustrates a way you can avoid an error when you
' try to close a workbook that might not be open.

On Error Resume Next
Workbooks("Test.xlsx").Close
If Err.Number <> 0 Then _

MsgBox "The Test.xlsx workbook can’t be closed. It isn’t open."
End Sub

It is slightly more difficult to provide an error check for opening a workbook
that might not exist. A method for doing this is presented in Chapter 13.

EXAMPLE 8.2 Saving a Workbook

The Workbooks2 sub illustrates how to save an open workbook. This requires
either the Save method or the SaveAs method, both of which mimic the similar
operations in Excel. The Save method requires no arguments—it simply saves the
file under its current name—whereas the SaveAs method typically has arguments
that specify how to perform the save. There are quite a few optional arguments
for the SaveAs method. The code below illustrates two of the more common
arguments: Filename (the name and path of the file) and FileFormat (the type of
format, such as the .xls or .xlsx format, to save the file as). The type for .xls for-
mat is xlWorkbookNormal; for .xlsx format, it is xlOpenXMLWorkbook; and for
.xlsm, it is xlOpenXMLWorkbookMacroEnabled. You can look up other arguments
in online help.

Sub Workbooks2()
' This sub shows how to save an open workbook. It mimics the familiar
' Save and SaveAs menu items.
With ActiveWorkbook

' This saves the active workbook under the same name, no questions asked.
.Save

' The SaveAs method requires as arguments information you would
' normally fill out in the SaveAs dialog box.
.SaveAs Filename:="C:\Temp\Test", _

FileFormat:=xlOpenXMLWorkbookMacroEnabled

' Check the name of the active workbook now.
MsgBox "The name of the active workbook is " & .Name

End With
End Sub

If you run this sub from the Workbooks.xlsm file, the SaveAs method will
save a copy of this file in the C:\Temp folder as Test.xlsm and the message in
Figure 8.5 will be displayed.

Working with Other Excel Objects 155

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 8.3 Locating the Path of a Workbook

When you open a workbook in Excel through the usual interface, you often
need to search through folders to find the file you want to open. This example
illustrates how the path to a file can be specified in VBA. Suppose, as in
Exercise 8.1, that you are writing a sub in one workbook that opens another
workbook. Also, suppose that both of these workbooks are in the same folder
on your hard drive. Then you can use ThisWorkbook.Path to specify the path of
the workbook to be opened. Remember that ThisWorkbook always refers to the
workbook containing the VBA code. It then uses the Path property to specify
the path to this workbook. For example, if the workbook containing the code
is in the folder C:\VBA Examples\Chapter 8, then ThisWorkbook.Path returns
the string "C:\VBA Examples\Chapter 8". If another file in this same folder has
file name Test.xlsx, then you can refer to it with the concatenated string

ThisWorkbook.Path & "\Test.xlsx"

Note that the second part of this string starts with a backslash. The Path
property does not end with a backslash, so the backslash required for separating
the folder from the filename must begin the literal part of the string.

The Workbooks3 sub illustrates the entire procedure. It assumes that another
file named Customer1.xlsx exists in the same folder as the one in which the
workbook containing the VBA resides.

Sub Workbooks3()
' This sub assumes a file named Customer1.xlsx exists in the
' same folder as the file containing this code. Otherwise,
' an error message will be displayed.
Workbooks.Open ThisWorkbook.Path & "\Customer1.xlsx"
MsgBox "The Customer1.xlsx file is now open.", vbInformation

Workbooks("Customer1.xlsx").Close
MsgBox "The Customer1.xlsx file is now closed.", vbInformation

End Sub

Figure 8.5 Confirmation of Saved Name

156 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 8.4 Checking Properties of a Workbook

The Workbooks4 sub illustrates a few properties you can check for an open work-
book. These include its name, its file format, whether it is password-protected,
whether it is an add-in, its path, whether it is read only, and whether it has been
changed since the last time it was saved. Most of these properties will find limited
use, but it nice to know that they are available.

Sub Workbooks4()
' This sub shows some properties you can obtain from an open workbook.
With ActiveWorkbook

' Display the file’s name.
MsgBox "The active workbook is named " & .Name

' Check the file format (.xlsx, .xlsm, .csv, .xla, and many others).
' Actually, this will display an obscure number, such as 52 for .xlsm.
' You have to search online help to decipher the number.
MsgBox "The file format is " & .FileFormat

' Check whether the file is password protected.
MsgBox "Is the file password protected? " & .HasPassword

' Check whether the file is an add-in, with an .xla extension.
MsgBox "Is the file an add-in? " & .IsAddin

' Check the file’s path.
MsgBox "The path to the file is " & .Path

' Check whether the file is ReadOnly.
MsgBox "Is the file read only? " & .ReadOnly

' Check whether the file has been saved since the last change.
MsgBox "Has the file been changed since the last save? " & .Saved

End With
End Sub

8.5 Examples of Worksheets in VBA

This section presents several examples to illustrate typical operations with work-
sheets. Each example is included in the file Worksheets.xlsm. It contains an
AllStates worksheet (with code name wsAllStates) that lists states in column A
where a company has offices, as shown in Figure 8.6. Then for each state in
the list, there is a sheet for that state that shows where the company’s headquar-
ters are located, how many branch offices it has, and what its sales in the current
year were. For example, there is a sheet named Texas, and it contains the infor-
mation in Figure 8.7. (Actually, the year listed in Figure 8.7 is dynamic; it is the
year when you open the file. See the formula in cell A3.)

Working with Other Excel Objects 157

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 8.5 Displaying Information on All States

The Worksheets1 sub loops through all sheets other than the AllStates sheet and
displays information about each state in a separate message box. A typical state’s
worksheet is referred to as ws, although any other generic variable name could
be used. The loop excludes the AllStates worksheet by using an If statement to
check whether the worksheet’s code name is not wsAllStates. If this condition is
true—the worksheet’s code name is not wsAllStates—the message is displayed.
(Again, remember that <> means “not equal to.”)

Sub Worksheets1()
Dim ws As Worksheet

' Go through each state and display info for that state.
For Each ws In ActiveWorkbook.Worksheets

With ws
If .CodeName <> "wsAllStates" Then

MsgBox "The headquarters of " & .Name & " is " _
& .Range("B1").Value & ", there are " _
& .Range("B2").Value & " branch " _
& "offices, and sales in " & Year(Date) & " were " _
& Format(.Range("B3").Value, "$#,##0") & ".", _
vbInformation, .Name & " info"

End If
End With

Next
End Sub

Figure 8.6 State List

1
2
3
4
5
6
7
8
9

10
11

A B C
States where the company has offices

Michigan
Illinois
Ohio
Massachuse�s
California
Minnesota
New York
Indiana
Pennsylvania
Texas

Figure 8.7 Information for a Typical State

1
2
3

A B
Headquarters Dallas
Branch offices 4
Sales in 2014 $17,500

158 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you run this sub, you will see a message such as the one in Figure 8.8 for
each state.

EXAMPLE 8.6 Displaying States and Headquarters

The Worksheets2 sub is similar to the Worksheets1 sub. It lists all states in the
workbook and their headquarters in a single message box, with each state on a
different line. The new line is accomplished with the built-in constant vbCrLf
(short for carriage return and line feed, from ancient typewriters). Another built-
in constant vbTab is used to indent. Note how string concatenation is used to
build the long message variable.

Sub Worksheets2()
' This sub just lists all of the states and their headquarters.

Dim ws As Worksheet
Dim message As String

message = "The states and their headquarters in this workbook are:"

' Note the built-in vbCrLf constant. It codes in a line break.
For Each ws In ActiveWorkbook.Worksheets

With ws
If .CodeName <> "wsAllStates" Then _

message = message & vbCrLf & .Name & ": " & .Range("B1")
End With

Next

MsgBox message, vbInformation, "State info"
End Sub

When you run this sub, the message in Figure 8.9 is displayed.

Figure 8.8 Information About a Typical State

Working with Other Excel Objects 159

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 8.7 Adding a New State

The Worksheets3 sub allows a new state to be added. It first asks the user to spec-
ify a new state not already in the list and then asks the user for information about
this new state. The sub then copies an existing state’s sheet to create a new sheet
(essentially a template), it names the new sheet appropriately, and puts its infor-
mation in cells B2, B3, and B4. Note how the Do loop is used to keep asking
the user for a new state until one not already on the current list is provided.

Sub Worksheets3()
' This sub asks the user for a new state and its information,
' then creates a new sheet for the new state.

Dim isNew As Boolean
Dim newState As String
Dim headquarters As String
Dim nBranches As Integer
Dim sales As Currency
Dim ws As Worksheet
Dim wsNew As Worksheet

' Keep asking for a new state until the user provides one that is new.
Do

newState = InputBox("Enter a new state.", "New state")
isNew = True
For Each ws In ActiveWorkbook.Worksheets

If newState = ws.Name Then
MsgBox "This state already has a worksheet. " _

& "Enter another state.", vbExclamation
isNew = False
Exit For

Figure 8.9 State and Headquarters Information

160 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End If
Next

Loop Until isNew

' Get the required information for the new state. There is
' no error checking here. It probably should be added to
' check for improper inputs.
headquarters = InputBox("Enter the headquarters of " & newState)
nBranches = InputBox("Enter the number branch offices in " & newState, _

"Branch offices")
sales = InputBox("Enter sales in " & Year(Date) & " in " & newState)

' Add the name of the new state to the list in the AllStates sheet.
wsAllStates.Range("A1").End(xlDown).Offset(1, 0).Value = newState

' Copy the second sheet (or any other state’s sheet) to obtain a new
' sheet, which becomes the active sheet. Then change its name and info.
Worksheets(2).Copy after:=Worksheets(Worksheets.Count)
With ActiveSheet

.Name = newState

.Range("B1").Value = headquarters

.Range("B2").Value = nBranches

.Range("B3").Value = sales
End With

End Sub

Examine the line

wsAllStates.Range("A1").End(xlDown).Offset(1, 0).Value = newState

Starting in cell A1, this line uses .End(xlDown) to go to the bottom of the current
list. Then it uses .Offset(1,0) to go one more row down. This is the first blank cell,
where the name of the new state is placed.

Note also the line

Worksheets(2).Copy after:=Worksheets(Worksheets.Count)

This line makes a copy of the second sheet, the one used as a template, and it
places the copy after the worksheet referred to as Worksheets(Worksheets.Count).
To see the effect of this, assume there are currently eight worksheets. Then
Worksheets.Count is 8, so the copy is placed after Worksheets(8). This means it is
placed just after (to right of) all existing worksheets. This provides the rare exam-
ple where it is useful to refer to a worksheet by number rather than by name.

EXAMPLE 8.8 Sorting Worksheets

The Worksheets4 sub illustrates how to sort the worksheets for the individual
states in alphabetical order. The trick is to use VBA’s Sort method to sort the

Working with Other Excel Objects 161

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

states in column A of the AllStates sheet. It then uses the Move method of a
worksheet, with the After argument, to move the sheets around according to the
sorted list in the AllStates sheet.

Sub Worksheets4()
' This sub puts the state sheets (not including the AllStates sheet)
' in alphabetical order. It first sorts the states in the AllStates
' sheet, then uses this order.

Dim shtName1 As String
Dim shtName2 As String
Dim cell As Range

' Sort the states in the AllStates sheet.
With wsAllStates

.Range("A1").Sort Key1:=.Range("A1"), Order1:=xlAscending, _
Header:=xlYes

With .Range("A1")
Range(.Offset(1, 0), .End(xlDown)).Name = "States"

End With
End With

' Rearrange the order of the other sheets according to the sorted
' list in the AllStates sheet. shtName1 is always the name of the
' "current" sheet, whereas shtName2 is always the name of the next
' sheet in alphabetical order.
shtName1 = "AllStates"
For Each cell In Range("States")

shtName2 = cell.Value
Worksheets(shtName2).Move after:=Worksheets(shtName1)
shtName1 = shtName2

Next

With wsAllStates
.Activate
.Range("A1").Select

End With
MsgBox "State sheets are now in alphabetical order."

End Sub

Pay very close attention to how the For Each loop works because it is typical
of the way programmers learn to think. The worksheet that shtName1 refers to is
initially the AllStates worksheet. After that, shtName1 always refers to the current
worksheet in alphabetical order, and shtName2 refers to the next worksheet in
alphabetical order, which is moved to the right of shtName1. After the move, the
value of the variable shtName1 is replaced by the value of shtName2 to get ready
for the next move. This logic is a bit tricky, especially if you are new to program-
ming. To understand it better, try the following. Open the Worksheets.xlsm file,
get into the VBE, and create watches for the shtName1 and shtName2 variables.
(You do this with the Debug → Add Watch menu item.) Then put your cursor
anywhere inside the Worksheets4 sub and step through the program one line at a
time by repeatedly pressing the F8 key. Once you get toward the bottom of the
sub, you can see in the Watch window how the values of shtName1 and shtName2
keep changing.

162 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.6 Examples of Charts in VBA

The Chart object is one of the trickiest Excel objects to manipulate with VBA. The rea-
son is that a chart has somany objects associated with it, and each has a large number of
properties and methods. If you need to create charts in VBA, it is probably best to
record most of the code and then modify the recorded code as necessary, making fre-
quent visits to online help. Alternatively, you can use the Excel’s chart tools to create
the chart, and then use VBA only to modify the existing chart in some way.

Another reason for the difficulty is that Microsoft keeps changing the rules. As
you are almost certainly aware, both the Excel tools for manipulating charts and the
look of the charts themselves have changed in each new version of Excel: from
2003 to 2007, from 2007 to 2010, and from 2010 to 2013. The VBA code,
including recorded code, hasn’t changed as much, but it has changed. Specifically,
if you are using the recorder to learn VBA code for creating or manipulating charts
in one version of Excel, you might generate some code that will not work in previ-
ous versions.3 For example, if you insert a line chart with the recorder on in Excel
2013, you will generate a line something like the following:

ActiveSheet.Shapes.AddChart2(332, xlLineMarkers).Select

When I did this, I was surprised at the AddChart2 method, which I’d never seen
before. I looked it up in online help, and I learned that it was added to the object
model in Excel 2013. So not only do you need to learn something new, but if you use
this method to create a chart, your code won’t work in previous versions of Excel!

This state of affairs presents obvious difficulties for programmers, but there is
no option except to learn as much as possible through recording and online help,
and to be careful that you program for your intended users. For example, if your
intended users are still using Excel 2007 or 2010, you should avoid using code,
like the AddChart2 method, that won’t work in those versions.

The following four examples indicate some of the possibilities. They are based
on the file Modifying Charts.xlsm. This file has monthly sales for several products;
a portion is shown in Figure 8.10. I first used Excel 2013’s chart tools manually (no
VBA) to create a line chart on the same sheet as the data. This chart shows the
monthly time series movement of two of the products, as illustrated in Figure 8.11.
VBA could be used to create this chart from scratch, as I will illustrate shortly, but it
is easier to use VBA to modify an existing chart.

Location of a Chart

The first issue is the location of the chart. As you probably know, a chart can be
placed on a separate chart sheet (a special type of sheet reserved only for charts,
with no rows and columns), or it can be embedded in a worksheet. The choice is

3Actually, as mentioned in Chapter 4, if you are recording in Excel 2007, you might not get any
recorded code at all.

Working with Other Excel Objects 163

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

usually a matter of taste. (If you are using Excel’s tools, you make this choice in
the Design ribbon under the Chart Tools group.) In the first case, assuming the
name of the chart sheet is SalesChart, you would refer to it in VBA as Charts
("SalesChart"). Here, Charts is the collection of all chart sheets, and it is followed
by the name of the particular chart sheet. Alternatively, if you give it a code name
such as chtSales, you can refer directly to the code name.

In the second case, assuming this chart has been named Sales and the code
name of the worksheet is wsSales, you must first refer to the object “containing”
the chart.4 This container is called a ChartObject object. The Chart object itself is

Figure 8.10 Monthly Product Sales Data

Figure 8.11 Sales Chart of Two Selected Products

900

800

700

600

500

400

300

200

100

0

Ja
n-

13

M
ar

-1
3

M
ay

-1
3

Ju
l-1

3

Sep
-1

3

N
ov

-1
3

Ja
n-

14

M
ar

-1
4

M
ay

-1
4

Ju
l-1

4

Sep
-1

4

N
ov

-1
4

Ja
n-

15

M
ar

-1
5

Sales of Selected Products

Month

U
n

it
s

so
ld

Product1

Product2

4You can change the name of the chart by selecting the chart and entering a name in the Name box
to the left of the Formula bar.

164 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

then one step down the hierarchy from the ChartObject object, and you can refer to
it in code as wsSales.ChartObjects("Sales").Chart. Admittedly, it is confusing and
probably sounds like double-talk, but just think of a ChartObject object as floating
above a worksheet’s cells. This object’s only purpose is to hold a Chart object. You
can resize and move the ChartObject containers, and then you can manipulate the
properties of the underlying chart, such as its axes and its legend. Finally, just to
make sure the point is clear, remember that the ChartObject object is relevant only
for charts placed on a worksheet. It is not relevant for chart sheets.

EXAMPLE 8.9 Displaying Properties of a Chart

The Charts1 sub works with the Sales chart in the Sales worksheet of the
Modifying Charts.xlsm file. Remember that the chart itself was not created
with VBA. The VBA below simply displays properties of the chart that already
exists. It first refers to the ChartObject container and displays its Left, Top, Height,
and Width properties. These are properties of many objects in Excel that can be
moved and resized, and they are always measured in points, where a point is
1/72 of an inch. Top is the distance from the top of the container to the top of
row 1, Left is the distance from the left of the container to the left of column A,
and Height and Width are the height and width of the container.

The Charts1 code indicates the hierarchy in charts. At the top is the Chart-
Object object. Below it is the Chart object. Below it are a number of objects: the
two Axis objects (xlCategory for the horizontal axis, xlValue for the vertical axis), a
Series object for each series plotted, a SeriesCollection object for the collection of
all series plotted, a Legend object, and others. Of course, all of these have plenty
of properties and a few methods. The Charts1 sub indicates only a few of them.

When working with charts in VBA, I find it very useful to Set object variables
for the various objects down the hierarchy, in this case chtObj, cht, ser, axH and
axV. As I have learned from many frustrating sessions, this has two benefits.
First, it makes the code more readable. Second and perhaps more important, it
guarantees Intellisense. In this example, if you type cht.Axes(xlValue) and then a
period, you won’t get any Intellisense to help with Axis objects. However, if you
Set an Axis object, such as axH, you will get Intellisense when you type axH fol-
lowed by a period. With so many confusing properties for objects in charts, this
Intellisense help is invaluable.

When you run this sub, you will get some strange results, due to built-in
Excel constants. For example, the ChartType property in this example returns 65,
the index for a line chart of the type shown. Fortunately, you never have to learn
these numbers. When you want to set the chart type, you can type cht.ChartType
and then a period, and Intellisense will give you a list of all the built-in constant
names. In this case, 65 is equivalent to xlLineMarkers. (In more technical terms,
when you read a property, as has been done here, you will see a number
that makes no sense. But when you write a property, you can refer to it by its
meaningful name.)

Working with Other Excel Objects 165

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Charts1()
' This sub illustrates some of the properties of a chart. The chart already
' exists (was built with Excel’s chart tools) on the Sales sheet.
Dim message As String
Dim chtObj As ChartObject
Dim cht As Chart
Dim ser As Series, serCount As Integer
Dim axH As Axis, axV As Axis

Set chtObj ¼ wsSales.ChartObjects("Sales")
Set cht ¼ chtObj.Chart
Set axH ¼ cht.Axes(xlCategory)
Set axV ¼ cht.Axes(xlValue)

message ¼ "Here are some properties of the chartobject." & vbCrLf
With chtObj

message ¼ message & vbCrLf & "Left: " & .Left
message ¼ message & vbCrLf & "Top: " & .Top
message ¼ message & vbCrLf & "Height: " & .Height
message ¼ message & vbCrLf & "Width property: " & .Width
message ¼ message & vbCrLf & "Name: " & .Name

End With
MsgBox message, vbInformation

message ¼ "Here are some properties of the chart." & vbCrLf
With cht

message ¼ message & vbCrLf & "ChartType: " & .ChartType
message ¼ message & vbCrLf & "HasLegend: " & .HasLegend
message ¼ message & vbCrLf & "HasTitle: " & .HasTitle
If .HasTitle Then _

message ¼ message & vbCrLf & "Title: " & .ChartTitle.Text
message ¼ message & vbCrLf & "Number of series plotted: " _

& .SeriesCollection.Count
End With
MsgBox message, vbInformation

message ¼ "Here are some properties of the series in the chart." & vbCrLf
For Each ser In cht.SeriesCollection

serCount ¼ serCount + 1
With ser

message ¼ message & vbCrLf & "Name of series " _
& serCount & ": " & .Name

message ¼ message & vbCrLf & "MarkerSize for series " _
& serCount & ": " & .MarkerSize

message ¼ message & vbCrLf & "MarkerBackgroundColor for series " _
& serCount & ": " & .MarkerBackgroundColor

message ¼ message & vbCrLf & "MarkerForegroundColor for series " _
& serCount & ": " & .MarkerForegroundColor

message ¼ message & vbCrLf & "MarkerStyle for series " _
& serCount & ": " & .MarkerStyle

message ¼ message & vbCrLf
End With

Next
MsgBox message

message ¼ "Some properties of the horizontal axis:" & vbCrLf
With axH

message ¼ message & vbCrLf & "Format of tick labels: " _

166 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

& .TickLabels.NumberFormat
If .HasTitle Then

message ¼ message & vbCrLf & "Title: " & .AxisTitle.Text
message ¼ message & vbCrLf & "Font size of title: " _

& .AxisTitle.Font.Size
Else

message ¼ message & vbCrLf & "Horizontal axis has no title."
End If

End With
MsgBox message

message ¼ "Some properties of the vertical axis:" & vbCrLf
With axV

If .HasTitle Then
message ¼ message & vbCrLf & "Title: " & .AxisTitle.Text
message ¼ message & vbCrLf & "Font size of title: " _

& .AxisTitle.Font.Size
Else

message ¼ message & vbCrLf & "Vertical axis has no title."
End If
message ¼ message & vbCrLf & "Minimum scale: " & .MinimumScale
message ¼ message & vbCrLf & "Maximum scale: " & .MaximumScale

End With
MsgBox message

End Sub

EXAMPLE 8.10 Changing Properties of a Chart

The previous sub simply displays the current values of various chart properties.
The Charts2 sub modifies the chart. Specifically, it allows the user to choose
which two products (out of the seven available) to plot. It uses the SeriesCollec-
tion object, which is one step down the hierarchy from the Chart object. In gen-
eral, a chart plots a number of Series objects, labeled SeriesCollection(1),
SeriesCollection(2), and so on. The properties of each series can be changed, as
described in the comments in the sub, to plot different data. Specifically, the
Values property designates the data range for the series (a Range object), the
XValues property designates the range for the values on the horizontal axis
(another Range object), and the Name property is a descriptive name for the
series that is used in the legend. Note that the data ranges in the Sales sheet
have already been range-named Product1 through Product7. These range names
are used in the sub. Also, note how the line

.Name ¼ Range("Product" & productIndex1).Cells(1).Offset(-1, 0).Value

uses .Cells(1) to go to the first sales figure in a product range and then uses .Offset
(−1,0) to go one row above to find the product’s name, such as Product1.

Sub Charts2()
' This sub allows you to change the product columns (two of them)
' charted. It assumes the chart currently has two series plotted.

Working with Other Excel Objects 167

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim productIndex1 As Integer
Dim productIndex2 As Integer
Dim chtObj As ChartObject
Dim cht As Chart
Dim ser As Series

MsgBox "You can choose any two of the products to plot versus time."
productIndex1 = InputBox("Enter the index of the first " _

& "product to plot (1 to 7)")
productIndex2 = InputBox("Enter the index of the second product " _

& "to plot (1 to 7, not " & productIndex1 & ")")

' Note that the columns of data already have range names
' Product1, Product2, etc.
Set chtObj = wsSales.ChartObjects("Sales")
Set cht = chtObj.Chart

With cht
Set ser = .SeriesCollection(1)
With ser

' The Values property indicates the range of the data
' being plotted. The XValues property indicates the values
' on the X-axis (in this case, the months). The Name property
' is the name of the series (which is shown in the legend).
' This name is found in row 1, right above the first cell in
' the corresponding Product range.
.Values = Range("Product" & productIndex1)
.XValues = Range("Month")
.Name = Range("Product" & productIndex1) _

.Cells(1).Offset(-1, 0).Value
End With

' The XValues property doesn’t have to be set again, since
' both series use the same values on the horizontal axis.
Set ser = .SeriesCollection(2)
With .SeriesCollection(2)

.Values = Range("Product" & productIndex2)

.Name = Range("Product" & productIndex2) _
.Cells(1).Offset(-1, 0).Value

End With
End With

End Sub

EXAMPLE 8.11 More Properties and Methods of Charts

The Charts3 sub indicates some further possibilities when working with charts.
Try running it to see the effects on the chart. I got the part about the plot area
and grid lines from recording. However, something strange occurs. If you run
this sub by clicking the Run Charts3 button on the worksheet, the plot area and
grid lines do not change as they should. However, if you step through the code in
the VBE, they do change. This same behavior occurred in Excel 2010 (as men-
tioned in the previous edition of the book), and it still occurs in Excel 2013. I
still don’t know why, or how to fix it.

168 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Charts3()
' This sub shows some other things you can do to
' fine tune charts. In general, you learn some of the
' coding from recording, some from the Object Browser.

Dim red1 As Integer, green1 As Integer, blue1 As Integer
Dim red2 As Integer, green2 As Integer, blue2 As Integer
Dim chtObj As ChartObject
Dim cht As Chart
Dim ser As Series
Dim ax As Axis

' Use this next statement so that the random colors chosen
' later on will be different from run to run.
Randomize

Set chtObj ¼ wsSales.ChartObjects("Sales")
Set cht ¼ chtObj.Chart

With cht
' Change properties of plot area.
With .PlotArea.Format.Fill

MsgBox "The plot area will be changed from blank to gray."
.ForeColor.ObjectThemeColor ¼ msoThemeColorBackground1
.ForeColor.Brightness ¼ -0.150000006
.Visible ¼ msoTrue

End With

MsgBox "It will now be restored to blank."
.PlotArea.Format.Fill.Visible ¼ msoFalse

' Remove and restore grid lines.
Set ax ¼ .Axes(xlValue)
With ax.MajorGridlines.Format.Line

MsgBox "The horizontal grid lines will be deleted."
.Visible ¼ msoFalse

MsgBox "They will now be restored."
.Visible ¼ msoTrue

End With

' Generate two random colors (with no green in the first,
' no red in the second).
MsgBox "The two series will now change to some random colors."
red1 ¼ Int(Rnd * 255)
green1 ¼ 0
blue1 ¼ Int(Rnd * 255)
red2 ¼ 0
green2 ¼ Int(Rnd * 255)
blue2 ¼ Int(Rnd * 255)

' Change some colors in the chart.
Set ser ¼ .SeriesCollection(1)
With ser

.Border.Color ¼ RGB(red1, green1, blue1)

.MarkerBackgroundColor ¼ RGB(red1, green1, blue1)

.MarkerForegroundColor ¼ RGB(red1, green1, blue1)
End With
Set ser ¼ .SeriesCollection(2)

Working with Other Excel Objects 169

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With ser
.Border.Color = RGB(red2, green2, blue2)
.MarkerBackgroundColor = RGB(red2, green2, blue2)
.MarkerForegroundColor = RGB(red2, green2, blue2)

End With
End With

End Sub

EXAMPLE 8.12 Adding Multiple Series to the Chart

The Charts4 sub generalizes the Charts2 sub. It allows the user to choose which
of the seven products to chart. It begins by clearing all series from the chart.
Then for the first series chosen, it inserts the horizontal axis month labels. (This
needs to be done only for the first series; the other series share the same
months.) Then the user gets to choose which series to chart. Note that the Do
loop forces the user to select at least one series to chart.

Sub Charts4()
' This sub generalizes Charts2 to allow any number of
' products to be charted.
Dim i As Integer, nChosen As Integer
Dim nProducts As Integer
Dim chtObj As ChartObject
Dim cht As Chart
Dim ser As Series
Dim serColl As SeriesCollection
Dim isFirst As Boolean
Dim dataRange As Range
Dim monthRange As Range

Set chtObj = wsSales.ChartObjects("Sales")
Set cht = chtObj.Chart

' Count number of products.
With wsSales.Range("A1")

nProducts = Range(.Offset(0, 1), .End(xlToRight)).Columns.Count
End With

' Clear all series from chart.
For Each ser In cht.SeriesCollection

ser.Delete
Next

' Only need to set the date range for X axis for the first series.
isFirst = True
With wsSales.Range("A1")

Set monthRange = Range(.Offset(1, 0), .End(xlDown))
End With

Do
nChosen = 0
For i = 1 To nProducts

If MsgBox("Do you want to plot product " & i & "?", vbYesNo) = vbYes Then
nChosen = nChosen + 1
With wsSales.Range("A1")

170 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Set dataRange = Range(.Offset(1, i), .Offset(1, i).End(xlDown))
End With
Set serColl = cht.SeriesCollection
Set ser = serColl.NewSeries
With ser

.Name = "Product" & i

.Values = dataRange
If isFirst Then

.XValues = monthRange
isFirst = False

End If
End With

End If
Next
If nChosen = 0 Then _

MsgBox "Try again. You must choose at least one product.", vbExclamation
Loop Until nChosen >= 1

End Sub

EXAMPLE 8.13 Creating a Chart

This example is based on the file Creating Charts.xlsm. It starts with the data in
Figure 8.12 and nothing else—no existing charts. It illustrates how you can create
a chart from scratch with VBA, and it illustrates two other useful features of charts.
First, different series can have different chart types. Second, if two series of very dif-
ferent magnitudes are charted, they can have different vertical axes, one on the left
and one on the right. The axis on the right is then called a secondary axis. After
running the code in this file, the chart in Figure 8.13 is created.

There are two keys to the code for this example. The first is the line

Set chtObj = wsSales.ChartObjects.Add(l, t, w, h)

Figure 8.12 Data for Chart

Working with Other Excel Objects 171

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This line creates a new ChartObject object and stores it in the object variable chtObj.5

This requires the left, top, width, and height arguments for positioning and
sizing the chart. After this line executes, you will see an empty rectangle on the
worksheet, but no chart. The rest of the code fills in the chart.

The second key is the following code:

Set serColl = .SeriesCollection
Set ser = serColl.NewSeries

The first line defines the object variable serColl, which ensures that you get Intel-
lisense in the second line. The second line creates a new series and stores it in the
object variable ser. From then on, when you type ser followed by a period, you
get Intellisense on Series objects.

Here is the entire CreateChart sub:

Sub CreateChart()
' This sub creates a chart from scratch.
Dim topCell As Range
Dim chtObj As ChartObject
Dim cht As Chart

Figure 8.13 Chart Created with VBA

0

100000

200000

300000

400000

500000

600000

700000

800000

0

100

200

300

400

500

600

700

800

900

Product2 Product1

Ja
n-

13

M
ar

-1
3

M
ay

-1
3

Ju
l-1

3

Sep
-1

3

N
ov

-1
3

Ja
n-

14

M
ar

-1
4

M
ay

-1
4

Ju
l-1

4

Sep
-1

4

N
ov

-1
4

Ja
n-

15

M
ar

-1
5

5Remember from earlier in this section that you can use the AddChart2 method in Excel 2013, but
then your code wouldn’t work in previous versions of Excel.

172 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim serColl As SeriesCollection
Dim ser As Series

' Delete the old chart (if there is one).
On Error Resume Next
wsSales.ChartObjects("Sales").Delete

' The following (left, top, width, height) are for positioning and
' sizing a chart. They are used (always in this order) for positioning
' and sizing a lot of objects that "float above" the worksheet.
Dim l As Single, t As Single, w As Single, h As Single

Set topCell = wsSales.Range("A1")

' Start one column to the right of the data and in row 3.
l = topCell.End(xlToRight).Offset(0, 2).Left
t = Rows(3).Top
w = 500
h = 250

Set chtObj = wsSales.ChartObjects.Add(l, t, w, h)
With chtObj

.Name = "Sales"
Set cht = .Chart

End With

With cht
.HasLegend = True
Set serColl = .SeriesCollection
Set ser = serColl.NewSeries
With ser

.Name = topCell.Offset(0, 1).Value

.XValues = Range(topCell.Offset(1, 0), topCell.End(xlDown))

.Values = Range(topCell.Offset(0, 1), topCell.Offset(0, 1).End(xlDown))
' Each series can have its own chart type.
.ChartType = xlLineMarkers

End With
Set ser = serColl.NewSeries
With ser

.Name = topCell.Offset(0, 2).Value

.Values = Range(topCell.Offset(0, 2), topCell.Offset(0, 2).End(xlDown))

.ChartType = xlColumnClustered
' Use a secondary axis on the right for this series.
.AxisGroup = xlSecondary

End With
End With

End Sub

Speaking from extensive experience in getting chart code wrong in every con-
ceivable way, I urge you to mimic the code in the above examples. By using
object variables for chartobjects, charts, series, and so on, you avoid the frustra-
tion of typing a perfectly good reference, like cht.SeriesCollection(1) and then a
period, and not getting Intellisense. I hope this will improve in future versions of
Excel, but for now, object variables are definitely the way to go.

Working with Other Excel Objects 173

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.7 Summary

This chapter has built upon your knowledge of Range objects from Chapter 6. It is
necessary to be able to manipulate workbooks, worksheets, and charts with VBA
code in many applications, and this chapter has illustrated some of the most useful
techniques for doing so. At this point, it is not important that you memorize all the
properties and methods of these objects. It is more important that you have some
feeling for what is possible and that you know how to find help when you need it.
You can always revisit the examples in this chapter to search for key details, and you
can always try the recorder or visit the Object Browser for online help.

EXERCISES

1. Suppose you have a lot of Excel files currently open. You would like to count the
number of these files that contain a worksheet with the name Revenues. Write a
sub that reports the result in a MsgBox.

2. Repeat the previous exercise, but now count the number of files that contain a
worksheet with Revenue somewhere in the name. For example, this would
include sheets with names “2005 Revenues” and “Revenues for Quarter 1”.

3. Write a general purpose sub that opens a particular workbook, such as
C:\MyFiles\Company Data.xlsx, adds a new worksheet named Formula List
after the original worksheets, and then goes through all of the original worksheets
hunting for cells with formulas. Each time it finds a formula, it enters information
about it in a new row of the Formula List worksheet. Specifically, it records the
worksheet’s name in column A, it enters the formula as a string in column B,
and it enters the formula’s value in column C. (Hint: To check whether a cell
contains a formula, use VBA’s HasFormula property of a range.)

4. Write a sub that counts the number of worksheets in a particular (open) work-
book and also counts the number of sheets. Note that the Worksheets collection
includes only worksheets (those with rows and columns), whereas the Sheets col-
lection contains worksheets and chart sheets. Then test your sub by creating a
workbook with some worksheets and at least one chart sheet and running your
sub on it.

5. The file Chart Example.xlsx contains two sheets. The first sheet is a worksheet
that contains some data and four column charts based on the data. The second
sheet is a chart sheet that is also based on the data. Write a sub that counts the
number of ChartObject objects in the workbook and also counts the number of
Chart objects in the workbook. The counts should be 4 and 5, respectively.

6. Open a new workbook and insert a module in this workbook. Then write a sub
that does the following: (1) It opens some workbook that you know exists on
your hard drive—you can choose which one; (2) it displays a message indicating
the number of worksheets in this workbook; (3) it closes the workbook; and
(4) it tries to open a workbook that you know does not exist on your hard drive.
What happens when it tries to open this latter workbook?

174 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Open a new workbook and save it under any name you like. Then write a sub
that displays a message like: “The name of this workbook is _, and it was created
by _.” The underscores in this message should be filled in by appropriate proper-
ties of the ActiveWorkbook (or the Application) object. (Hint: Look up the
BuiltinDocumentProperties property of a workbook. This provides one way to get
the author’s name, but this isn’t the only way.)

8. Suppose you have a folder on your hard drive that contains a number of Excel
files with the names Customer1.xlsx, Customer2.xlsx, and so on. You are not
sure how many such files there are, but you know they are named this way, with
consecutive integers. Write a sub to open each file, one at a time, save it under a
new name, and then close it. The new names should be CustomerOrders1.xlsx,
CustomerOrders2.xlsx, and so on.

9. Continuing the previous exercise, suppose you want to check whether the Cus-
tomer files are “read only.” Write a sub that counts the number of Customer
files in the folder and the number of them that are read only and then displays
this information in a message.

10. The file Cities.xlsx contains an AllCities sheet that lists all cities where a company
has offices. Write a sub that does the following: (1) For each city in the list, it
checks whether there is a worksheet with the name of that city in the workbook,
and if there isn’t one, it adds one; and (2) it deletes any city worksheet if the
worksheet’s name is not in the current AllCities list. The sub should be written
so that it can be run at any time and will always respond with the current list of
cities in the AllCities sheet. (Note: Your sub should also work if the AllCities list
contains exactly one city or no cities.)

11. The Data worksheet in the file Product Info.xlsx lists information on various
software packages a company sells. Each product has an associated category listed
in column B. Write a sub that creates a worksheet for each category represented
in the list, with the name of the worksheet being the category, such as Business.
For each category worksheet, it should enter the product names and their prices
in columns A and B, starting in row 4. Each category worksheet should have an
appropriate label, such as “Products in the Business category”, in cell A1; it
should have labels “Product” and “Price” in cells A3 and B3; and the column
width for its column A should be the same as the column width of column A in
the Data worksheet. (Note that there are only three categories represented in the
current data. However, the program should be written so that it works for any
number of categories—and any number of products—that might be present.)

12. The Data worksheet in the file Product Purchases.xlsx has unit prices for all
software packages a mail-order company sells. It also has an Invoice worksheet.
Whenever the company takes an order from a customer, the order taker gets the
customer’s name, the date, and the quantity of each product the customer wants
to purchase. These quantities are written in column C of the Data worksheet. The
information in this worksheet is then used to create an invoice for the customer in
the Invoice worksheet. The current Invoice worksheet is a “template” for a gen-
eral invoice. You should write two subs, ClearOld and CreateInvoice, and attach
them to the buttons at the top of the Data worksheet. They should do the
following.

Working with Other Excel Objects 175

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a. The ClearOld sub should clear any quantities from a previous order from col-
umn C of the Data worksheet. It should also clear any old data from the
Invoice worksheet from row 5 down.

b. The CreateInvoice sub should be run right after the order taker has gotten
the information from the customer and has entered quantities in column C
of the Data worksheet. (When you test your macro, you should first enter
some quantities in column C.) The sub should use input boxes to ask for
the customer’s name and the date, and it should use these to complete the
labels in cells Al and A2 of the Invoice worksheet. It should then transfer
the relevant data about products (only those ordered) to the Invoice work-
sheet, it should calculate the prices for each product ordered (unit price
times quantity ordered), and it should calculate the tax on the order (5%
sales tax) and the total cost of the order, including tax, in column D, right
below the prices of individual products, with appropriate labels in column C
(such as “5% sales tax” and “Total Cost”).

c. As a finishing touch, add some code to the CreateInvoice sub to print the fin-
ished invoice. (Although the chapter didn’t discuss printing, you should be
able to discover how to do it, either by using the recorder or by looking it
up in online help.)

13. The file Sales Chart Finished.xlsm has monthly data on two products, a corre-
sponding chart and four buttons. The ranges of the product data in columns B
and C are range-named Product1 and Product2. To understand what you are
supposed to do, open this file and click the buttons. It should be clear what’s
going on. However, the code behind the buttons is password-protected. Your
job is to create similar code yourself in the file Sales Chart.xlsx. This file has the
same chart and same buttons, but there is no code yet (which means that the but-
tons aren’t attached to any macros). This code is tricky, and you will probably
have to look through the code in the examples a few times, as well as online
help, to get everything working correctly. (I did!)

176 Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Arrays

9.1 Introduction

Chapter 7 emphasized the benefits of loops for performing repeated tasks. Loops
are often accompanied by the topic of this chapter, arrays. Arrays are lists, where
each element in the list is an indexed element of the array. For example, suppose
you need to capture the names and salaries of your employees, which are
currently listed in columns A and B of a worksheet. Later on in the program,
you plan to analyze them in some way. You might use a loop to go through
each employee in the worksheet, but how do you can store the employee infor-
mation in memory for later processing? The answer is that you can store it in
employee and salary arrays. The name and salary of employee 1 are stored in
employee(1) and salary(1), those for employee 2 are stored in employee(2) and
salary(2), and so on.

A useful analogy is to the small mailboxes you see at a post office. An array
is analogous to a group of mailboxes, numbered 1, 2, and so on. You can put
something into a particular mailbox—that is, into an array element—in a statement
such as

employee(5) = "Bob Jones"

Similarly, you can read the contents of a particular mailbox with a statement
such as

MsgBox "The fifth employee is " & employee(5)

In other words, array elements work just like normal variables, except that
they are indexed. This indexing makes them particularly suitable for looping, as
this chapter illustrates.

9.2 Exercise

The following exercise is typical in its use of arrays. Although there are certainly
ways to do the exercise without arrays, they make the job much easier. Actually,
this exercise is simpler than the examples discussed later in this chapter, but you
should still study the examples before attempting it.

9

177

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 9.1 Aggregating Sales Data

Consider a large appliance/electronics store with a number of salespeople. The
company keeps a spreadsheet listing the names of the salespeople and the dollar
amounts of individual sales transactions. This information is in the file
Transactions.xlsx, as illustrated in Figure 9.1 (with many hidden rows). Periodi-
cally, salespeople are hired and fired. The list in column A is always the most cur-
rent list, and it is always shown in alphabetical order. Column B lists
the corresponding Social Security numbers. The sales data in columns D to F are
sorted by date. Also, some of these sales are for salespeople who are no longer
with the company. That is, some of the Social Security numbers in column D
have no corresponding values in column B.

The purpose of the exercise is to write a program to fill columns H and I
with aggregate dollar amounts for each salesperson currently employed. You can
open the file Transactions Finished.xlsm and click its button to see the results,
which should appear as in Figure 9.2. However, do not look at the VBA code
until you have tried writing the program yourself. Make sure you think through
a solution method before you begin programming. Most important, think about
what arrays you will need and how they will be used.

Figure 9.1 Salespeople and Transaction Data

178 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.3 The Need for Arrays

Many beginning programmers think that arrays are difficult to master, and they react
by arguing that arrays are not worth the trouble. They are wrong on both counts.
First, arrays are not that difficult. If you keep the mailbox analogy in mind, you
should catch on to arrays quite easily. Second, arrays are definitely not just a luxury
for computer programmers; they are absolutely necessary for dealing with lists.
Consider a slightly different version of the employee salary example from the intro-
duction. Now suppose you would like to go through the list of employees in columns
A and B (again inside a loop) and keep track of the names and salaries of all employees
who make a salary greater than $50,000. Later on, you might want to analyze these
employees in some way, such as finding their average salary.

The easiest way to proceed is to go through the employee list with a
counter initially equal to 0. Each time you encounter a salary greater than
$50,000, you add 1 to the counter and store the employee’s name and salary
in hiPaidEmp and hiSalary arrays. Here is how the code might look (assuming
the employees start in row 2 and the number of employees in the data set is
known to be nEmployees).

Figure 9.2 Results

Arrays 179

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

counter = 0
With Range("A1")

For i = 1 To nEmployees
If .Offset(i, 1).Value > 50000 Then

counter = counter + 1
hiPaidEmp(counter) = .Offset(i, 0).Value
hiSalary(counter) = .Offset(i, 1).Value

End If
Next

End With

After this loop is completed, you will know the number of highly paid
employees—it is the final value of counter. More important, you will know the
identities and salaries of these employees. The information for the first highly
paid employee is stored in hiPaidEmp(1) and hiSalary(1), the information for the
second is stored in hiPaidEmp(2) and hiSalary(2), and so on. You are now free to
analyze the data in these newly created lists in any way you like.

Admittedly, there is a nonarray solution to this example. Each time you find a
highly paid employee, you could immediately transfer the information on this
employee to another section of the worksheet (columns D and E, say) rather
than storing it in arrays.1 Then you could analyze the data in columns D and E
later. In other words, there is usually a way around using arrays—especially if
you are working in Excel, where you can store information in cells of a work-
sheet. However, most programmers agree that arrays represent the best method
for working with lists, not only in VBA but in all other programming languages.
They offer power and flexibility that simply cannot be achieved without them.

9.4 Rules for Working with Arrays

When you declare a variable with a Dim statement, VBA knows from the variable’s
type how much memory to set aside for it. The situation is slightly different for
arrays. Now, VBA must know how many elements are in the array, as well as
their variable type, so that it can set aside the right amount of memory for the
entire array. Therefore, when you declare an array, you must indicate to VBA
that you are declaring an array of a certain type, not just a single variable. You
must also tell VBA how many elements are in the array. You can do this in the
declaration line or later in the program. Finally, you must indicate what index
you want the array to begin with. Unlike what you might expect, the default
first index is not 1; it is 0. However, you can override this if you like.

Here is a typical declaration of two arrays named employee and salary:

Dim employee(100) As String, salary(100) As Currency

1This same type of comment is true for the other examples in this chapter. However, if the lists are really
long, the array solutions will be considerably faster. Besides, in situations where the lists are extremely
long, the contents might not even fit in a worksheet.

180 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This line indicates that (1) each element of the employee array is a string variable,
(2) each element of the salary array is a currency variable, and (3) each array has
100 elements. (This assumes an Option Base of 1. See below.)

The Option Base Statement

Surprisingly, unless you add a certain line to your code, the first employee will not
be employee(1) and the last employee will not be employee(100); they will be
employee(0) and employee(99). This is because the default in VBA is called
0-based indexing.

This means that the indexes of an array are 0, 1, 2, and so on. There is a tech-
nical reason for having 0-based indexing as the default; however, most of us do not
think this way. Most of us prefer 1-based indexing, where the indexes are 1, 2, 3,
and so on. The simple reason is that when we count, we typically begin with 1. If
you want your arrays to be 1-based, you can use the following Option Base line:

Option Base 1

This line should be placed at the top of each of your modules, right below the
Option Explicit line (which, if you remember, forces you to declare your
variables).

Alternatively, if 0-based indexing is in effect, you can override it by indicating
explicitly how you want a particular array to be indexed. The following line shows
how you can do this for the employee and salary arrays.

Dim employee(1 To 100) As String, salary(1 To 100) As Currency

Now the first employee will be employee(1) and the last will be employee(100),
regardless of any Option Base line at the top of the module.2 By the way, if you do
not use an Option Base 1 line and declare an array, say, as salary(100), the array will
have 101 elements, indexed 0 to 100. In other words, if you include only one
number inside parentheses, it specifies the largest index, not necessarily the
number of elements in the array.

Dynamic Indexing and Redim

There are many times where you know you need an array, but when you are writ-
ing the code, you have no way of knowing how many elements it will contain. For
example, you might have an InputBox statement near the top of your sub asking the
user for the number of employees at her company. Once she tells you that there are

2Interestingly, Microsoft’s .NET technology requires programmers to use 0-based indexing—it cannot
be overridden. I doubt that this will happen to VBA in the future because it would break too many
existing VBA programs.

Arrays 181

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

150 employees, then, but not until then, you will know you need an array of size
150. So how should you declare the array in this case? You can do it in two steps.
First, you declare that you need an array, as opposed to a single variable, in the Dim
statement by putting empty parentheses next to the variable name, as in

Dim employee() as String

Then in the body of the sub, once you learn how many elements the array should
have, you use the Redim statement to set aside the appropriate amount of mem-
ory for the array. The following two lines illustrate a typical example.

nEmployees = InputBox("How many employees are in your company?")
Redim employee(1 to nEmployees)

If the user enters 10, the employee array will be of size 10. If she enters 1000, it
will be of size 1000. The Redim statement enables the array to adjust to the pre-
cise size required.

You can actually use the Redim statement as many times as you like in a sub
to readjust the size of the array. (The examples later in the chapter illustrate why
you might want to do this. It is actually quite common.) The only problem is
that when you use the Redim statement to change the size of an array, all of
the previous contents of the array are deleted. This is usually not what you want.
Fortunately, you can override this default behavior with the keyword Preserve, as
in the following lines.

nEmployees = nEmployees + 1
Redim Preserve employee(1 to nEmployees)

These lines would be appropriate if you just discovered that you have one extra
employee, so that you need one extra element in the employee array. To keep from
deleting the names of the previous employees when you redimension the array, you
insert the keyword Preserve in the Redim line. This gives you an extra array element,
but the previous elements retain their current values. If you ever use Redim some-
where in your program and nothing seems to work properly, the chances are that
you forgot a Preserve and your data were deleted. (It has happened to me often.)

Multiple Dimensions

Arrays can have more than one dimension. (The arrays so far have been
one-dimensional.) For example, a two-dimensional array has two indexes, as in
employee(2,18). This might be appropriate if you want to index your employees
by location and by number, so that this refers to the 18th employee at location
2. The main difference in working with multidimensional arrays is that you must
indicate the number of elements for each dimension. As an example, the following

182 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

line indicates that the employee array requires 10 elements for the first dimension
and 100 for the second dimension:

Dim employee(1 to 10, 1 to 100) As String

Therefore, VBA will set aside 10*100 = 1000 locations in memory for this array.
Note that this could be quite wasteful. If the first dimension is the employee

location and the second is the employee number at a location, suppose there are
100 employees at location 1 but only 5 at location 2. Then the array elements
employee(2,6) through employee(2,100) are essentially wasted. Even though
today’s computer memory is cheap and abundant, computer programmers worry
about this sort of thing. Therefore, they warn against using multidimensional
arrays unless it is really necessary. You will sometimes see code with two-
dimensional arrays, but you will rarely see arrays with three or more dimensions.

9.5 Examples of Arrays in VBA

The best way to understand arrays—and to appreciate the need for them—is to
look at some examples. The first example is a fairly simple one. The next three
are more challenging and interesting. They are typical of the examples that really
benefit from arrays.

EXAMPLE 9.1 Looking Up a Price

The VLOOKUP and HLOOKUP functions in Excel are very useful for looking
up information in a table. This example illustrates how you can accomplish the
same thing with VBA and arrays. The file Unit Prices.xlsm contains a table of
product codes and unit prices, as shown in Figure 9.3 (with many hidden rows).
We want to write a program that asks the user for a product code. It then
searches the list of product codes for a matching product code. If it finds one, it
displays an appropriate message, such as in Figure 9.4. If it does not find a match,
it displays a message to this effect.

Although there are many ways to write the required program, the LookupPrice
sub listed below illustrates how it can be done with arrays. The number of products
is found first, then the productCode and unitPrice arrays are redimensioned appropri-
ately and a For loop is used to populate these arrays with the data in columns A and
B of the worksheet. Next, after a user specifies a product code, another For loop
searches the productCode array for a match to the requested code. If one is found,
the corresponding element of the unitPrice array is stored in the requestedPrice
variable. In either case an appropriate message is displayed at the end. Note that
the line Option Base 1 is not used at the top of the module, although it could be.
Instead, the two ReDim statements specify the indexing explicitly.

Arrays 183

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Option Explicit

Sub LookupPrice()
Dim productCode() As String
Dim unitPrice() As Currency
Dim i As Integer
Dim found As Boolean
Dim requestedCode As String
Dim requestedPrice As Currency
Dim nProducts As Integer

' Find the number of products, redimension the arrays, and fill them
' with the data in the lists.
With wsData.Range("A3")

nProducts = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
ReDim productCode(1 To nProducts)
ReDim unitPrice(1 To nProducts)
For i = 1 To nProducts

productCode(i) = .Offset(i, 0).Value
unitPrice(i) = .Offset(i, 1).Value

Next
End With

Figure 9.3 Table of Product Information

1

2

3

4

5

6

7

8

1212

1213

1214

1215

A B C

Table of unit prices for products

Product code Unit price
L2201 50.99
N1351 34.99
N7622 10.95
B7118 99.95
R1314 105.99
D8665 51.95
R7932 93.95
R8509 14.95
L4701 3.95

Figure 9.4 Unit Price of Requested Product

184 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Get a product code from the user (no error checking).
requestedCode = InputBox("Enter a product code (an uppercase letter " _

& "followed by four digits).")

' Look for the code in the list. Record its unit price if it is found.
found = False
For i = 1 To nProducts

If productCode(i) = requestedCode Then
found = True
requestedPrice = unitPrice(i)
Exit For

End If
Next

' Display an appropriate message.
If found Then

MsgBox "The unit price of product code " & requestedCode & " is " & _
Format(requestedPrice, "$0.00"), vbInformation, "Product found"

Else
MsgBox "The product code " & requestedCode & " is not on the list.", _

vbInformation, "Product not found"
End If

End Sub

EXAMPLE 9.2 Keeping Track of Products Sold

A company keeps a spreadsheet of each sales transaction it makes. These transac-
tion data, sorted by date, are listed in columns A to C of the Product Sales.xlsm
file. (See Figure 9.5, which has many hidden rows.) Each row shows the
four-digit code of the product sold, plus the date and dollar amount of the
transaction. Periodically, the company wants to know how many separate
products have been sold, and it wants a list of all products sold, the number of
transactions for each product sold, and the total dollar amount for each product
sold. It wants this list to be placed in columns E, F, and G, and it wants the list
to be sorted in descending order by dollar amount.

Figure 9.5 Transaction Data

Arrays 185

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The ProductSales sub listed below does the job. When a button is clicked
to run this sub, the message in Figure 9.6 appears, and the list in Figure 9.7 is
created. (This figure does not show all 49 products sold. Some rows have been
hidden.)

The idea behind the program is to loop through the product codes in column
A, which are stored in an array called productCodesData, one at a time. These
are used to build an array called productCodesFound. It eventually contains the
distinct product codes in column A. At each step of the loop, a product code in
column A is compared with all product codes already found. If this product code
has already been found, 1 is added to its number of transactions, and the dollar
amount of the current transaction is added to the total dollar amount for this
product. Otherwise, if the product code has not already been found, an item is
added to the productCodesFound array, the number of transactions for this new
product is set to 1, and its total dollar amount is set to the dollar amount of the
current transaction. Three other arrays facilitate the bookkeeping. The dollarsData
array stores the data in column C, and the transactionsCount and dollarsTotal
arrays store the numbers of transactions and total dollar amounts for all product
codes found.

Figure 9.6 Number of Products Sold

Figure 9.7 Results

1
2
3
4
5
6
7

45
46
47
48
49
50
51

E F G
Summary data
Product Code Quan�ty Amount ($)

1118 7 3818
1106 8 3764
2520 7 3696
1120 6 3415
2505 6 3306
2517 2 861
1113 1 735
2518 1 637
1102 1 581
2510 1 512
1109 1 451
2514 1 342

186 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Once all product codes in column A have been examined, the data from
the productCodesFound, transactionsCount, and dollarsTotal arrays are stored in
columns E, F, and G, and they are sorted on column G in descending order.

Again, no Option Base 1 statement is used. Instead, the arrays are dimen-
sioned explicitly (as 1 to nSales, for example).

Option Explicit

Sub ProductSales()
' These are inputs: the number of transactions, the product code for each
' sale, and the dollar amount of each sale.
Dim nSales As Integer
Dim productCodesData() As Integer
Dim dollarsData() As Single

' The following are outputs: the product codes found, the number of transactions
' for each product code found, and total dollar amount for each of them.
Dim productCodesFound() As Integer
Dim transactionsCount() As Integer
Dim dollarsTotal() As Single
' Variables used in finding unique product codes.
Dim isNewProduct As Boolean
Dim nFound As Integer

' Counters.
Dim i As Integer
Dim j As Integer

' Clear any old results in columns E to G.
With wsData.Range("E2")

Range(.Offset(1, 0), .Offset(0, 2).End(xlDown)).ClearContents
End With

' Find number of sales in the data set, redimension the productCodesData and
' dollarsData arrays, and fill them with the data in columns A and C.
With wsData.Range("A2")

nSales = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
ReDim productCodesData(1 To nSales)
ReDim dollarsData(1 To nSales)
For i = 1 To nSales

productCodesData(i) = .Offset(i, 0).Value
dollarsData(i) = .Offset(i, 2).Value

Next
End With

' Initialize the number of product codes found to 0.
nFound = 0

' Loop through all transactions.
For i = 1 To nSales

' Set the Boolean isNewProduct to True, and change it to False only
' if the current product code is one already found.
isNewProduct = True
If nFound > 0 Then

' Loop through all product codes already found and compare them
' to the current product code.

Arrays 187

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For j = 1 To nFound
If productCodesData(i) = productCodesFound(j) Then

' The current product code is not a new one, so update
' its transactionsCount and dollarsTotal values appropriately,
' and exit this inner loop.
isNewProduct = False
transactionsCount(j) = transactionsCount(j) + 1
dollarsTotal(j) = dollarsTotal(j) + dollarsData(i)
Exit For

End If
Next

End If

If isNewProduct Then
' The current product code is a new one, so update the list of
' codes found so far, and initialize the transactionsCount and
' dollarsTotal values for this new product.
nFound = nFound + 1
ReDim Preserve productCodesFound(1 To nFound)
ReDim Preserve transactionsCount(1 To nFound)
ReDim Preserve dollarsTotal(1 To nFound)
productCodesFound(nFound) = productCodesData(i)
transactionsCount(nFound) = 1
dollarsTotal(nFound) = dollarsData(i)

End If
Next

' Place the results in columns E to G.
For j = 1 To nFound

With wsData.Range("E2")
.Offset(j, 0).Value = productCodesFound(j)
.Offset(j, 1).Value = transactionsCount(j)
.Offset(j, 2).Value = dollarsTotal(j)

End With
Next

' Sort on column G in descending order, and display an appropriate message.
wsData.Range("E3").Sort Key1:=wsData.Range("G3"), _

Order1:=xlDescending, Header:=xlYes
MsgBox "There are " & nFound & " different products that have been sold."

End Sub

Although there are numerous comments in the code, some further explana-
tion might be useful.

● The productCodesData and dollarsData arrays are redimensioned without
the keyword Preserve, whereas the CodesFound, transactionsCount, and
dollarsTotal arrays are redimensioned with it. The reason is that the former
two arrays are redimensioned only once, so there is no need to worry about
deleting previous contents—there aren’t any. However, the latter three
arrays are redimensioned every time a new product code is found, and when
this happens, the previous contents should not be deleted.

● When a new product code is found, nFound is increased by 1, and the
productCodesFound, transactionsCount, and dollarsTotal arrays are redimen-
sioned by adding an extra element to each. After doing this, the appropriate

188 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

values are placed in the newly created elements of these arrays. For example, if
nFound increases from 34 to 35, element number 35 of each array is specified.

● To specify a range to be sorted, it suffices to specify any cell within this
range. Similarly, to specify the column to sort on (in the Key1 argument), it
suffices to specify any cell within this column.

EXAMPLE 9.3 Traveling Salesperson Heuristic

This example deals with a famous problem in management science, the traveling
salesperson problem. A salesperson starts in a certain city, visits a number of
other cities exactly once, and returns to the original city. The problem is to find
the route with the minimum total distance. Although this problem is easy to
state, it is extremely difficult to solve optimally, even for a moderately small num-
ber of cities such as 50. Therefore, management scientists have developed heuris-
tics that usually give good, but not necessarily optimal, solutions. The advantage
of heuristics is that they are quick and easy to implement. This example illustrates
the “nearest-neighbor” heuristic. It is very easy to state: The salesperson always
goes next to the closest city not yet visited. Finally, he must return to the original
city (labeled here as city 1) at the end.

The Traveling Salesperson.xlsm file implements this heuristic for any num-
ber of cities. There are actually two subs in this file. The first, GenerateDistances,
generates random distances between the cities. It doesn’t use any arrays, but it
provides a good illustration of For loops. By running this sub repeatedly, you can
generate many problems, each with a different set of distances. Figure 9.8 shows
a matrix of distances generated by the GenerateDistances sub. Note that the
distances are symmetric. For example, the distance from city 5 to city 10 is
the same as the distance from city 10 to city 5. This is guaranteed by the way
the GenerateDistances sub is written.

Figure 9.8 Distances for Traveling Salesperson Problem

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B C D E F G H I J K L M N O P
Distance matrix (symmetric, so values above the diagonal are the same as values below)

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9 City 10 City 11 City 12 City 13 City 14 City 15
City 831145954957455379253843661
City 2 66 29 42 19 26 50 25 76 1 40 33 97 56 95
City 3 3 29 31 4 10 7 80 24 44 61 66 60 89 73
City 4 48 42 31 68 49 25 43 1 68 96 96 58 26 80
City 5 35 19 4 68 32 82 32 77 1 50 81 57 63 95
City 6 29 26 10 49 32 62 1 75 71 41 99 8 6 74
City 7 73 50 7 25 82 62 14 21 45 12 87 76 91 92
City 8 55 25 80 43 32 1 14 7 68 64 59 76 85 94
City 9 47 76 24 1 77 75 21 7 25 29 43 60 30 23
City 10 59 1 44 68 1 71 45 68 25 39 35 34 25 96
City 11 45 40 61 96 50 41 12 64 29 39 99 37 32 66
City 12 95 33 66 96 81 99 87 59 43 35 99 62 53 99
City 13 41 97 60 58 57 8 76 76 60 34 37 62 54 64
City 14 13 56 89 26 63 6 91 85 30 25 32 53 54 66
City 15 8 95 73 80 95 74 92 94 23 96 66 99 64 66

Arrays 189

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub GenerateDistances()
' This sub enters random integers from 1 to 100 above the diagonal and
' then enters values below the diagonal to make the matrix symmetric.

Dim i As Integer ' row counter
Dim j As Integer ' column counter
Dim nCities As Integer
Dim response As String
Dim isValid As Boolean

' Clear everything from previous run (if any).
ActiveSheet.UsedRange.ClearContents

' Turn off screen updating.
Application.ScreenUpdating = False

' Restore labels.
wsModel.Range("A1").Value = "Traveling salesperson model"
wsModel.Range("A11").Value = "Distance matrix (symmetric, so values above " _

& "the diagonal are the same as values below)"

' Find size of problem. Keep asking until an integer >= 2 is entered.

Do
isValid = True
response = InputBox("Enter the number of cities, an integer >= 2.")
If Not IsNumeric(response) Then

isValid = False
Else

If Int(response) <> response Or response < 2 Then
isValid = False

End If
End If

Loop Until isValid
nCities = response

' Fill up the distance matrix with random numbers.
With wsModel.Range("A12")

' Enter labels.
For i = 1 To nCities

.Offset(i, 0).Value = "City " & i

.Offset(i, 0).HorizontalAlignment = xlLeft

.Offset(0, i).Value = "City " & i
Next

' First fill up above the diagonal.
For i = 1 To nCities - 1

' Generate random distances from 1 to 100. (Note: This uses Excel's
' RandBetween function, which is new to Excel 2007.)
For j = i + 1 To nCities

.Offset(i, j).Value = WorksheetFunction.RandBetween(1, 100)
Next

Next

' Now fill up below the diagonal to make the matrix symmetric.
For i = 2 To nCities

For j = 1 To i - 1
.Offset(i, j).Value = .Offset(j, i).Value

Next
Next

End With

Application.ScreenUpdating = True
End Sub

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here are a couple of notes about the GenerateDistances sub.

● In early editions of the book, I used the VBA function Rnd to generate
random distances. Now I have used Excel’s RANDBETWEEN function,
introduced in Excel 2007. Either works fine.

● The first set of nested For loops fills up the matrix above the diagonal, and the
second set creates a mirror image below the diagonal.

The second sub, NearestNeighbor, uses arrays to implement the nearest-
neighbor heuristic. Once the distances are known, the NearestNeighbor sub can be
run (by clicking the second button in the file) to generate the nearest-neighbor
route. When it is run (for the distances in Figure 9.8), the route and total distance
are specified in the worksheet, as shown in Figure 9.9. For this solution, the trav-
eler first goes from city 1 to city 3, then to city 5, and so on, until he eventually
returns to city 1. The total distance of this route is 307. (For this rather small prob-
lem, you can check manually, using Figure 9.8 as a guide, that this is indeed the
solution to the nearest-neighbor heuristic.)

The NearestNeighbor code is listed below. Although there are numerous
comments, a few explanations should be helpful.

● This is the probably the most complex program so far, so I have added
comments at the top of the sub to explain the variables. This is always a
good idea, especially when the variable names might not be totally self-
explanatory.

● The Option Base 1 statement is not used, but 1-based indexing is used by
specifying the dimensions explicitly.

Figure 9.9 Route from Nearest-Neighbor Algorithm

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

A B C
Nearest neighbor route

Stop # City
1 1
2 3
3 5
4 10
5 2
6 8
7 6
8 14
9 4

10 9
11 7
12 11
13 13
14 12
15 15
16 1

Total distance is 307

Arrays 191

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● There are two arrays, the Boolean array wasVisited and the integer array
route. If wasVisited(6) is True, for example, this means that city 6 has been
visited, so it cannot be visited again. Otherwise, if wasVisited(6) is False,
then city 6 is a candidate for the next visit. The route array identifies the cities
on the different stops of the route. For example, if route(8) equals 3, this
means that city 3 is the 8th city to be visited.

● The arrays wasVisited and route are dimensioned initially with empty parentheses,
just to make the sub more general. Once the number of cities is known, these
arrays are redimensioned appropriately. The Preserve keyword is not necessary
because the arrays are empty at the time they are redimensioned.

● Several variables need to be initialized appropriately before the real work can
be done. They include route(1), route(nCities+1), nowAt, totalDistance, and
the wasVisited array.

● The heuristic is performed with two nested For loops. The outer loop goes
over the “steps” of the route. Its purpose is to discover which city will be
the second visited, which will be third, and so on. The inner loop finds the
nearest neighbor city for that step. It does this with a “running minimum,”
where it finds the smallest distance to all cities from the current city (nowAt)
among all those not yet visited. The best of these is stored in the variable
nextAt. After this inner loop is completed, nowAt becomes nextAt in prepara-
tion for the next pass through the outer loop.

● After the loops are completed, the distance back to city 1 is added to the
totalDistance variable, and the contents of the route array and the total
distance are entered in the worksheet.

Sub NearestNeighbor()
' This sub runs the nearest neighbor heuristic.

' Definition of variables:
' nCities - number of cities in the problem
' distance - array of distances between pairs of cities
' wasVisited - a Boolean array: True only if a city has been visited so far
' step - a counter for the number of cities visited so far
' route - an array where element i is the i-th city visited
' Note that Route(1) and Route(NCities+1) must both be 1.
' nowAt - city currently at
' nextAt - city to visit next
' totalDistance - total distance traveled
' minDistanceance - the minimum distance to the nearest (yet unvisited) neighbor
' i, j - counters

Dim nCities As Integer
Dim distance() As Integer
Dim wasVisited() As Boolean
Dim step As Integer
Dim route() As Integer
Dim nowAt As Integer
Dim nextAt As Integer
Dim totalDistance As Integer
Dim minDistance As Integer
Dim i As Integer
Dim j As Integer

192 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Get the size of the problem (number of nodes) and redimension the various
' arrays appropriately.
With wsModel.Range("A12")

nCities = Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)).Rows.Count
End With

ReDim distance(1 To nCities, 1 To nCities)
ReDim wasVisited(1 To nCities)
ReDim route(1 To nCities + 1)

' Enter the distances into the Distance matrix.
With wsModel.Range("A12")

For i = 1 To nCities
For j = 1 To nCities

If i <> j Then distance(i, j) = .Offset(i, j).Value
Next

Next
End With

' Start and end at city 1.
route(1) = 1
route(nCities + 1) = 1

' Only city 1 has been visited so far.
wasVisited(1) = True
For i = 2 To nCities

wasVisited(i) = False
Next

' Initialize other variables.
nowAt = 1
totalDistance = 0

' Go through the steps on the route, one at a time, to see which cities
' should be visited in which order.
For step = 2 To nCities

' Find which city should be visited next by finding a 'running minimum'
' of distances from the current city to all other cities. The next
' city is a candidate only if it is not the current city and it has
' not yet been visited. Start the running minimum (minDistance) at a
' LARGE value, so that anything will beat its initial value.
minDistance = 10000
For j = 2 To nCities

If j <> nowAt And Not wasVisited(j) Then
If distance(nowAt, j) < minDistance Then

' Capture the best candidate so far and its associated
' distance from the current city.
nextAt = j
minDistance = distance(nowAt, nextAt)

End If
End If

Next

' Store the city to go to next in Route, record that this city has
' been visited, and update the total distance.
route(step) = nextAt
wasVisited(nextAt) = True
totalDistance = totalDistance + minDistance

Arrays 193

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Get ready for the next time through the loop.
nowAt = nextAt

Next step

' Update the total distance to include the return to city 1
totalDistance = totalDistance + distance(nowAt, 1)

' Start entering output two rows down from distance matrix.
With wsModel.Range("B12").Offset(nCities + 2, 0)

' Enter labels.
.Offset(0, -1).Value = "Nearest neighbor route"
.Offset(1, 0).Value = "Stop #"
.Offset(1, 1).Value = "City"

' Record the route from city 1 back to city 1 in the spreadsheet.
For step = 1 To nCities + 1

.Offset(step + 1, 0).Value = step

.Offset(step + 1, 1).Value = route(step)
Next step

' Record the total distance.
.Offset(nCities + 4, -1).Value = "Total distance is " & totalDistance

End With
End Sub

You should go through this code line by line until you understand how it
works. It is structured to do exactly what you would do if you had to perform the
nearest-neighbor heuristic manually. Of course, its advantage is that it is
extremely fast—and it doesn’t make mistakes.

EXAMPLE 9.4 Merging Lists

Like the previous example, this example is easy to describe but no less challeng-
ing to develop. It is an example of merging two lists and is contained in the file
Merging Lists.xlsm. As in all applications in Part II of the book, there is an
Explanation sheet (see Figure 9.10) that users see when they open the file. It
explains the purpose of the application, and it has a button that runs a macro
to take them to the Data worksheet. The code attached to this button is very
simple:

Sub ViewData()
With wsData

.Activate

.Range("A2").Select
End With

End Sub

The lists (with some hidden rows) in the Data worksheet are already sorted
in alphabetical order and appear in Figure 9.11. Note that some customers are in

194 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

last year’s list only, some are in this year’s list only, and some are in both. The
merged list in column D should include each customer in either list exactly once.

A Conceptual Method

Before discussing any VBA code, you need to have a mental picture of how
you would do the merging manually. It is pointless to try to write code for a

Figure 9.10 Explanation of Merging Example

Figure 9.11 Lists To Be Merged

1

2

3

4

5

6

7

8

9

93

94

95

96

97

98

99

100

101

102

103

104

105

A B C D

Exis�ng degreMstsil list

Customers last year Customers this year Customers
Barlog Aghimien
Barne� Bang
Bedrick Barne�
Brulez Bedrick
Cadigan Brulez
Castleman Cadigan
Wya� Theodas
Yablonka Tracy
Zick Ubelhor
Ziegler Usman

Vicars
Villard
Wendel
Wier
Wise
Yablonka
Yeiter
Zakrzacki
Zhou

Merge Lists

Arrays 195

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

procedure unless you thoroughly understand the steps you would take to perform
it manually. Here is one reasonable approach.

1. Start at the top of each of the existing lists and compare the names.
● If they are the same, transfer this common name to column D and move

down one row in both column A and column B for the next comparison.
● If the name in column A comes before the name in column B in alpha-

betical order, transfer the name in column A to column D and move
down one row in column A (but not in column B) for the next compari-
son. Proceed similarly if the name in column B comes before the name in
column A in alphabetical order. For example, the second comparison in
the given lists will be between Barlog and Bang.

2. Continue as in step 1, always making a comparison between a name in col-
umn A and a name in column B, until you have transferred all of the names
from at least one of the column A and column B lists. Then if there are
names left in one of the lists, transfer all of them to column D.

Try this procedure on the lists in Figure 9.11, and you will see that it works
perfectly. Even though the list in column B is longer, you will finish transferring
the names from column B first, with Zick and Ziegler left in the column A list.
The last step of the procedure is to move these two names to the bottom of the
merged list in column D.

Coding the Method

Now it is time to code this procedure. The MergeLists sub listed below contains
the relevant code. It is written to work for any two lists in columns A and B, not
just the ones shown in Figure 9.11. (The only assumptions are that the names are
unique, in the sense that there is only one Smith, say, in either list, and if Smith
appears in both lists, it is the same Smith. Duplicated names raise other issues that
are not addressed here.) Again, there are plenty of comments, but a few explana-
tions should help.

● There are three arrays, list1, list2, and list3, with sizes listSize1, listSize2, and
listSize3. The first two are filled with the two known customer lists. The
third is filled by the merging procedure.

● The array sizes listSize1 and listSize2 can be obtained immediately by looking
at the existing customer lists. The array size listSize3 will be known only
at the end of the procedure. We could redimension list3 right away with size
listSize1+listSize2 (this will certainly be large enough—do you see why?), but
instead we redimension list3 with one extra element every time a new
customer is added to the merged list. This means that the final list3 will
be dimensioned exactly as large as it needs to be. To keep from deleting
previous customers from the merged list, the Preserve keyword is necessary.

● The sub first deletes any previous merged list from column D with the ClearCon-
tents method. Next, the list sizes of the existing lists are found, and the list1 and
list2 arrays are filled with existing customer names. Finally, the merging proce-
dure is used to fill the list3 array, which is eventually written to column D.

196 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Note how the conceptual method described earlier is implemented in VBA.
The sub uses the index1 and index2 integer variables to indicate how far
down the existing customer lists the procedure is. The corresponding cus-
tomer names are name1 and name2. A comparison between them indicates
which to add to the merged list, as well as which of index1 and index2 to
increment by 1. A Do While loop is arguably the most natural approach here.
It says to keep going through the lists while there is at least one name
remaining in each list.

● After the Do loop is completed, the contents of the list not yet completed
(if either) are transferred to the merged list. Then the contents of list3 are
written to column D of the worksheet.

Sub MergeLists()
' The listSizex variables are list sizes for the various lists (x from 1 to 3).
' The listx arrays contains the members of the lists (again, x from 1 to 3).
' The lists are indexed from 1 to 3 as follows:
' list1 - customers from last year (given data)
' list2 - customers from this year (given data)
' list3 - customers who bought in either or both years (to be found)

Dim i1 As Integer, i2 As Integer, i3 As Integer ' counters
Dim listSize1 As Integer, listSize2 As Integer, listSize3 As Integer
Dim list1() As String, list2() As String, list3() As String
Dim index1 As Integer, index2 As Integer
Dim name1 As String, name2 As String

' Delete the old merged list (if any) in column D.
With wsData.Range("D3")

Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)).ClearContents
End With

' Get the list sizes and the names for the given data in columns A, B.
With wsData.Range("A3")

listSize1 = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
ReDim list1(1 To listSize1)
For i1 = 1 To listSize1

list1(i1) = .Offset(i1, 0).Value
Next
listSize2 = Range(.Offset(1, 1), .Offset(0, 1).End(xlDown)).Rows.Count
ReDim list2(1 To listSize2)
For i2 = 1 To listSize2

list2(i2) = .Offset(i2, 1).Value
Next

End With

' Create the merged list. First, initialize new list size to be 0.
listSize3 = 0

' Go through list1 and list2 simultaneously. The counters index1 and index2
' indicate how far down each list we currently are, and name1 and name2 are
' the corresponding customer names. First, initialize index1 and index2.
index1 = 1
index2 = 1

' Keep going until we get past at least one of the lists.
Do While index1 <= listSize1 And index2 <= listSize2

Arrays 197

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

name1 = list1(index1)
name2 = list2(index2)

' Each step through the loop, add one customer name to the merged list, so
' update the list size and redim list3 right now.
listSize3 = listSize3 + 1
ReDim Preserve list3(1 To listSize3)

' See which of the two names being compared is first in alphabetical order.
' It becomes the new member of the merged list. Once it's added, go to the
' next name (by updating the index) in the appropriate list. In case of a tie,
' update both indexes.
If name1 < name2 Then

list3(listSize3) = name1
index1 = index1 + 1

ElseIf name1 > name2 Then
list3(listSize3) = name2
index2 = index2 + 1

ElseIf name1 = name2 Then
list3(listSize3) = name2
index1 = index1 + 1
index2 = index2 + 1

End If
Loop

' By this time, we're through at least one of the lists (list1 or list2).
' Therefore, add all leftover names from the OTHER list to the merged list.
If index1 > listSize1 And index2 <= listSize2 Then

' Some names remain in list2.
For i2 = index2 To listSize2

listSize3 = listSize3 + 1
ReDim Preserve list3(1 To listSize3)
list3(listSize3) = list2(i2)

Next
ElseIf index1 <= listSize1 And index2 > listSize2 Then

' Some names remain in list1.
For i1 = index1 To listSize1

listSize3 = listSize3 + 1
ReDim Preserve list3(1 To listSize3)
list3(listSize3) = list1(i1)

Next
End If

' Record the merged list in column D of the worksheet.
With wsData.Range("D3")

For i3 = 1 To listSize3
.Offset(i3, 0).Value = list3(i3)

Next
End With

' End with the cursor in cell A2.
wsData.Range("A2").Select

End Sub

The introduction to this chapter claimed that arrays are useful for working
with lists. This merging example is a perfect example of this claim. The merging
could certainly be done without arrays, but arrays provide the perfect means for
accomplishing the job.

198 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.6 Array Functions

This chapter concludes with a brief description of a rather curious construct in VBA:
the Array function. The following code illustrates how the Array function works.

Option Base 1

Sub ArrayFunctionExample()
Dim days As Variant
days = Array("Mon", "Tues", "Wed", "Thurs", "Fri", "Sat", "Sun")
MsgBox "The first day in the array is " & days(1)

End Sub

The keyword Array, followed by a list inside parentheses, is used to populate
the variable days. Then days acts like a typical array. For example, days(1) in the
message box statement will be "Mon". (It would be "Tues" if the Option Base 1
statement were not included. Remember, the default is 0-based indexing.)
However, days is not declared like a typical array. It must be declared as Variant,
with no empty parentheses in the Dim statement. VBA figures out that you want
days to be an array only after you set days equal to the Array function in the third
line of the sub.

You might not use the Array function very often, but as this example code
shows, it provides a quick and convenient way to populate an array.

9.7 Summary

You already know from previous chapters how powerful looping can be in com-
puter programs. Arrays increase this power tremendously, especially when proces-
sing lists in some way. This power has been illustrated by a variety of examples,
and I will continue to illustrate the power of arrays in later chapters. Arrays are
well worth the effort required to master them.

EXERCISES

1. Write a sub that creates an array day of size 7 and then populates it with the days
of the week: Monday, Tuesday, and so on. It should then loop through this array
and write its elements to the range A1:G1 of the first worksheet.

2. Write a sub that creates two arrays month and dayslnMonth, each of size 12. It
should then populate the first array with the months January, February, and so
on, and it should populate the second with the number of days in these months:
31, 28 (assume it is not a leap year), and so on. Then it should loop through
these arrays and write their elements to the range A1:L2. For example, cells A1
and A2 will have January and 31.

3. Do the previous exercise in a slightly different way. Instead of two one-
dimensional arrays, create one two-dimensional array monthInfo of size 12 by 2.

Arrays 199

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first dimension should contain the month and the second should contain the
number of days in the month. For example, monthInfo(6,1) should be June and
monthInfo(6,2) should be 30. Use nested loops to fill the range A1:L2 as in the
previous exercise. (Note: You will need to declare this array as Variant because it
contains two different types of data, strings and integers.)

4. Write a sub that asks the user for an integer such as 100 and stores it in the
variable upperLimit. It then asks the user for another integer such as 3 and stores
it in the variable factor. It then creates an array called multiple, of the appropriate
size, that contains all the multiples of factor no greater than upperLimit. Finally, it
uses a loop to sum all of the elements in the array and reports this sum with an
appropriate message in a MsgBox. For example, if the two inputs are 100 and 3,
it should report “The sum of all multiples of 3 no greater than 100 is 1683.”

5. Write a sub that creates an array card of size 52. Its first 4 elements should be 1, its
next 4 elements should be 2, its next 4 elements should be 3, and so on. You should
be able to do this with a pair of nested For loops. You should not do it by brute force
with 52 statements or 13 For loops. (This type of array is used in a later online chapter
to simulate poker hands. You are essentially setting up the deck here.)

6. The file Random Numbers.xlsx contains 50,000 random numbers in column A.
(To generate these, I used Excel’s RAND function and then froze them by copying
values over the formulas.) Write a sub that creates an array called frequency of size
10. It should then populate the array by looping over the random numbers and
putting them into “bins.” Specifically, frequency(1) should contain the count of
all random numbers from 0 to 0.1, frequency(2) should contain the count of all ran-
dom numbers from 0.1 to 0.2, and so on. Because every random number has to be
in one of these bins, the counts should sum to 50,000, which you should check.
Report the final contents of the array in a MsgBox. (How should you deal with the
breakpoints such as 0.1? It doesn’t really matter because there is virtually no chance
that a random number will fall exactly on one of the breakpoints.)

7. Write a sub that does the following: (1) It declares an array called practiceArray of
size 100; (2) it stores the value i in element i (for i from 1 to 100); and (3) it uses
a For loop to switch the contents of the elements i and i+1 for each i from 1 to
99. At the end, transfer the contents of practiceArray to column A of a worksheet.
The effect of all the switching should be to push the 1 down to the bottom of the
list. Is that what you got? (Hint: When you switch two array elements, you need a
third “temporary” variable. I usually call it temp.)

8. The file High Spenders.xlsx contains a list of customers and the amounts they
spent during the past month. Write a sub that captures the existing lists in two
arrays and then creates two new arrays of customer names and amounts spent for
customers who spent at least $500. After these new arrays have been filled, write
their contents to columns D and E of the worksheet.

9. The file Customer Lists.xlsx contains two lists of customers: those who purchased
from our company last year and those who purchased this year. Write a sub
that captures: the existing lists in two arrays and then creates three new arrays of
customers those who purchased only last year; those who purchased only this year;
and those who purchased in both years. After these new arrays have been filled, the
sub should write their contents to columns D, E, and F of the worksheet.

200 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. The file Flights.xlsx contains a list of flights in columns A, B, and C flown by
EastWest Airlines. The list includes the flight number, the origin, and the destina-
tion of each flight. You are interested in flights that leave from any city in column
E and end up at any city in column F. You need to list such flights in columns H,
I, and J. Write a VBA program to do so, using arrays. Your program should work
even if the lists in columns A to C and in E to F change. To see how it should
work, look at the Flights Finished.xlsm file. Its code is password-protected.

11. Suppose you have a list of customers, labeled from 1 to n, and you want to
choose a random subset of them of size m (where m < n). Write a sub to do
this. It should first ask the user for n and m, using two input boxes. It should
then fill an array of size m called chosen, where chosen(1) is the index of the first
person chosen, chosen(2) is the index of the second person chosen, and so on.
No person can be chosen more than once, so no two elements of the chosen
array should have the same value. Finally, the sub should list the values of the
chosen array in column A of a worksheet. Note that you can borrow Excel’s
RANDBETWEEN function to generate a random integer from 1 to n.

12. The file Incomes.xlsx contains annual incomes for many households in a particu-
lar town. As in the previous exercise, choose a random subset of m households.
Then report the average of all incomes in the file and the average of the incomes
in the subset in a message box. Unlike the previous exercise, the user cannot
select n; it is the number of households listed in the file. However, the user
should be allowed to choose the sample size m.

13. Consider the following state lottery. Five random digits are selected. This is the
winning number. You can buy as many lottery cards as you like at $1 per card.
Each card contains five random digits. If you get a card that matches the winning
number, you win $100,000. (Assume that order matters. For example, if the
winning number is 21345, then 12345 doesn’t win.) Write a sub that does the
following. It first generates a random winning number and stores it in a string
variable (so that you can use string concatenation), and it asks the user how
many cards he wants to buy. It then uses a For loop to generate this many cards
and store their numbers in a card array (which should be a string array). Next, it
uses a Do loop to keep checking cards until a winner has been found or no more
cards remain. Finally, it displays a message stating whether you are a winner and
your net gain or loss. Note that you can generate a single random digit from
0 to 9 with Excel’s RANDBETWEEN function.

14. The previous exercise is realistic because a lottery player must commit to the
number of cards purchased before learning the winning number. However, sup-
pose you want to see how many cards you would have to buy, on average, before
getting a card with the winning number. Write a sub that does the following. It
has an outer For loop that goes from 1 to 100, so that you can repeat the whole
process 100 times, each with a different winning number. Each time you go
through this loop, you generate a winning card, you use a Do loop to keep gener-
ating cards until you get a winner, and you keep track of the number of cards
required in an element of the requiredCards array (of size 100). At the end of the
program, you should display summary measures of requiredCards in a message
box: the average of its elements, the smallest of its elements, and the largest of

Arrays 201

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

its elements. For example, the latter is the most cards you ever had to buy in any of
the 100 lotteries. (Note: Although you will be working with integers, they will likely
be very large integers. Therefore, declare them as Long, not Integer, types. Also, don’t
be surprised if this program takes a while to run. It took mine about a minute.)

15. If you have ever studied relational databases, you have heard of joins. This
exercise illustrates what a join is. The file Music CDs 1.xlsx contains data on a
person’s classical music CD collection. There are three worksheets. The Labels
worksheet lists all music labels (such as Philips), where they are indexed with
consecutive integers. The CDs worksheet lists the person’s CDs. Specifically, it
shows for each CD the index of the music label, the composer, and the piece(s)
on the CD. We say that the tables on these two worksheets are related through
the label indexes. Write a sub, using arrays, to join the information on these two
worksheets. The joined information should be placed on the Join worksheet. As
the headings indicate, for each CD, it should show the music label (its name, not
its index), the composer, and the piece(s).

16. The previous exercise demonstrated a one-to-many relationship. This means
that each CD has only one music label, but many CDs can have the same label.
Relationships can also be many-to-many, as this exercise illustrates. The file
Music CDs 2.xlsx contains four worksheets. The Works worksheet lists works of
music, along with the composers, and they are indexed by consecutive integers.
The Conductors worksheet lists conductors, which are also indexed by consecu-
tive integers. The CDs worksheet has an entry for each CD owned. For each
entry, it shows the index of the work and the index of the conductor. The
relationship is now many-to-many because it is possible to have more than one
CD of a given work, each conducted by a different conductor, and it is possible
to have more than one CD with a given conductor, each conducting a different
work. Write a sub, using arrays, to fill the Join worksheet, which currently has
only headings. As these headings indicate, each row should list the composer, the
work, and the conductor for a particular CD. (This worksheet should end up with
as many rows as the CDs worksheet.) Finally, the sub should keep track of any
works on the Works worksheet that you do not own, and it should display these
in some way—you can decide how.

17. (More difficult) Your company makes steel rods of a fixed diameter and length
50 inches. Your customers request rods of the following lengths (all in inches):
5, 8, 12, 15, 20, and 25. Write a sub to find all ways to cut the rods so that any
leftovers are unusable. For example, one way to do it is with one 5-inch rod, one
8-inch rod, and three 12-inch rods. This uses 49 inches of the rod, and the other
inch is unusable. As you find usable patterns, list them in the Patterns.xlsx file.
(One possible pattern is already shown in row 5 for illustration.)

18. Practically all computer science majors are required at some time in their college
careers to write a sort routine. You start with an array of numbers (or even
strings), and you need to write a sub that ends with this same array but in increas-
ing order. For example, if the array elements are A(1)=17, A(2)=12, A(3)=19, and
A(4)=7, the end result will have A(1)=7, A(2)=12, A(3)=17, and A(4)=19.
a. Given access to Excel, there is a very easy way to do this. Write a sub that

does the following. It first populates an array of any size with any set of

202 Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

numbers. (You can choose these.) It then stores the first number in cell A1
of a worksheet, the second in cell A2, and so on. Next, it uses the Sort
method of a Range object to sort this range. Finally, it uses a loop to store
the contents of the range into the array, overwriting the previous contents.
In essence, you get Excel to do the hard part of sorting.

b. (More difficult) Repeat part a, but do it without the help of Excel’s Sort
method. To do this, you need a strategy. Here is a fairly simple one,
although it is quite inefficient for large arrays. Loop through the array to
find the smallest number. Let’s say A(15) is the smallest. Then exchange the
contents of A(1) and A(15). This exchange requires a variable I will call temp.
Put A(15) into temp, put A(1) into A(15), and put temp into A(1). Next, find
the smallest of the elements from A(2) on. Let’s say this is A(7). Then
exchange elements A(2) and A(7). Do you see the pattern? It is called a
bubble sort because the small numbers bubble up to the top of the array.
You should code this algorithm, using a set of nested loops.

19. (More difficult) The Data worksheet in the Variable Number of Lists.xlsx file
contains three lists of varying lengths. The Combinations worksheet shows all
combinations of these lists. Write a sub, using arrays, to generate the data on the
Combinations worksheet. It should work for any number of lists of any lengths.

20. (Very useful for dumping data to a worksheet). Suppose your program fills a large
two-dimensional array called results with values, and you would like it to dump
these values into an Excel range. For example, if results is m by n, you would
like the program to dump the values into a range with m rows and n columns.
One way is to use two nested loops to dump the data one element at a time into
the appropriate cell. This approach turns out to be extremely slow. A much better
approach is to set the Value property of an m-row, n-column range to results, that
is, one statement with no loops. To compare these two methods, initialize the i, j
element of an m by n array to i+j. (Any values would do.) Now use both meth-
ods just described to dump the results to an m-row, n-column Excel range. You
should find a huge difference. (On my computer, with m=2500, n=500, the
looping method took several minutes, whereas the single-statement method took
less than a second. Note that the “trick” illustrated in this problem works only for
two-dimensional arrays. However, if you want to dump a one-dimensional array
into a column, you can first store it in a two-dimensional array with constant sec-
ond dimension equal to 1 and then use the trick.)

Arrays 203

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

More on Variables and Subroutines

10.1 Introduction

To this point, all programs have been single, self-contained subs. This chapter
illustrates how individual subs can be part of an overall program, which is very
important for the applications discussed in Part II of the book. A typical program
can have many subs in one or more modules, and they can be related. First,
they can share the same variables. For example, one sub might use an input box
to capture an employee’s salary in the variable salary. Then another sub might use
this same variable in some way. Both subs need to know the value of this salary
variable. In technical terms, the salary variable must have the appropriate scope.

Subs can also call one another, and they can pass arguments (share informa-
tion) when they make the call. As programs become longer and more complex,
it is common to break them down into smaller subs, where each sub performs a
specific task. There is often a “main” sub that calls the other subs. In effect, the
main sub acts as a control center. Making programs modular in this way makes
them easier to read. Perhaps even more important, it makes them easier to
debug. In addition, there is a better chance that the smaller subs can be reusable
in other programs. In fact, one of the most important ideas in computer
programming is the idea of reusable code. Professional programmers attempt to
make their subs as general and self-contained as possible so that they or other
programmers can use existing code rather than having to reinvent the wheel
every time they write a program.

Finally, this chapter introduces a particular type of subroutine called a
function subroutine. Unlike the subroutines discussed so far, the purpose of
a function subroutine is to return a value. Actually, all of the Excel functions you
use in formulas, such as SUM and MAX, are really function subroutines. This
chapter illustrates how you can develop your own custom functions and then use
them in VBA programs or even in Excel worksheets.

10.2 Exercise

The emphasis in this chapter is on dividing an overall program into several subrou-
tines, each of which performs a particular task. The following exercise is typical. It
could be written in one fairly long sub, but a much better way is to modularize it.
By the time you have finished reading this chapter, you should be able to solve this
exercise according to the specific instructions without much difficulty.

10

204

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 10.1 Updating Customer Accounts

Consider a company that services air conditioners and heaters. It currently has
30 residential customers in a certain region, and it keeps track of service charges
for these customers in the file Customer Accounts.xlsx. This file contains a
worksheet called New Charges. Each month the company deletes the charges
from the previous month and adds charges for the current month to this
worksheet. Figure 10.1 shows the charges for the most recent month.

The file also contains a separate worksheet for each customer, where the
worksheet name is the customer’s account number. For example, the worksheet
for customer Stevens (account number S3211) appears in Figure 10.2 (with

Figure 10.1 New Charges

Figure 10.2 Typical Customer Account Sheet

More on Variables and Subroutines 205

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

several rows hidden). Columns A and B list all of Stevens’s charges since the
account was opened, and columns D to G summarize the yearly totals. The totals
in column E are sums of charges for the various years. The discounts in column
F are based on the company’s discount policy: no discount on the first $100
(for any year), 5% discount on the next $100, and 7.5% discount on all charges
over $200. The net in column G is the total minus the discount.

The purpose of the exercise is to update the customer account worksheets
with the charges on the New Charges worksheet. This includes new entries in
columns A and B, plus updates of the total and discount for the current year
(2015) in columns E and F. As an example, after running the program, the
Stevens account worksheet should appear as in Figure 10.3. Of course, if a
customer has no charge in the New Charges worksheet, this customer’s account
worksheet does not need to be updated.

This exercise can be done in many ways, but to get the most benefit from it,
it should be done as follows. There should be a Main sub that loops through all
of the charges in the New Charges worksheet. For each charge, an Update sub
should be called that takes three arguments: the customer’s account number,
the date of the charge, and the amount of the charge. This Update sub should
add the new charge to the end of the customer’s charges (as in cells A38 and
B38 in Figure 10.3 for Stevens), and it should update the Total and Discount
cells for the current year. To find the discount, it should call a function subrou-
tine called Discount that calculates the discount for any yearly total passed to it.
(When writing this program, you can assume that all new charges are indeed for
the year 2015.)

Figure 10.3 Updated Account Sheet

206 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As usual, you can try running the program in the completed file Customer
Accounts Finished.xlsm, but you should not look at the code until you
have tried writing the VBA code yourself. Also, if you are interested in a more
challenging version of this problem, see the code in the file Customer Accounts
Extra.xlsm, which allows the new charges to go into the next year.

10.3 Scope of Variables and Subroutines

This section discusses the important concept of scope, or “Which parts of a
program have access to which other parts?” Variables and subroutines both have
scope. I will discuss each.

Scope of Variables

You already know how to declare a variable with a Dim statement. Here is a
typical example:

Sub Test1()
Dim salary As Currency
salary = 50000
' Other lines of code would go here.

End Sub

When a variable such as salary is declared inside a sub in this way, it is called a
procedure-level variable, or a local variable. The only sub that recognizes this vari-
able is the sub that contains it. Suppose there is another sub with the following lines:

Sub Test2()
MsgBox "The value of salary is " & salary
' Other lines of code would go here.

End Sub

If you run Test1 and then Test2, the message box in Test2 will not display “The
value of salary is 50000”. This is because Test2 does not know the value of the salary
variable; only Test1 knows it. In fact, Test2 can have its own salary variable, as in

Sub Test2()
Dim salary As Currency
salary = 40000
MsgBox "The value of salary is " & salary
' Other lines of code would go here.

End Sub

If you run Test1 and then Test2, Test2 will have no memory that salary
was 50000 in Test1. It knows only about its version of salary, defined as
40000. In other words, local variables in different subs can have the same

More on Variables and Subroutines 207

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

names, but they lead independent existences. Technically, they have different
memory locations.

What if you want different subs to have access to common variables? Then
you can declare these variables at the top of a module, before any subs. Actually,
you have two options. First, you can declare a variable at the top of a module
with the usual Dim keyword, as in

Dim salary As Currency

This variable is then a module-level variable, which means that every sub in
the module has access to it. (An alternative to the keyword Dim is the keyword
Private. A private variable also has module-level scope.) The second possibility is
to declare a variable at the top of a module with the keyword Public, as in

Public salary As Currency

Then salary is a public variable with project-level scope, which means that
all modules in the entire project have access to it.1 This is often useful when you
have two or more modules in your project. (It is also useful when you have event
handlers for user forms, as explained in Chapter 11. Then public variables are also
recognized by the event handlers. However, as you will read in Chapter 11, I try
to avoid the use of such public variables.)

If you declare a variable to have module-level or project-level scope, you
almost surely do not want to declare the same variable inside a sub with a Dim
statement. For example, consider the following code:

Public salary As Currency

Sub Test1()
salary = 50000

End Sub

Sub Test2()
Dim salary As Currency
MsgBox "Salary is " & salary

End Sub

If you run Test1 and then Test2, the message box in Test2 will not display
“Salary is 50000” as you might expect—it will display “salary is 0”. The reason is
that the Dim statement in Test2 creates a local version of salary that overrides the
public version. This local version is initialized to 0 by default. Hence the message

1Some programmers use the term global variable rather than public (or project-level) variable. This
is the term used in some other programming languages.

208 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

says that salary is 0, which is probably not what you want. Actually, if you know
what you’re doing, you can have public and local variables with the same name,
but it is still likely to cause confusion.

Scope of Subroutines

Subroutines also have scope. As discussed in the next section, one sub can call
another inside a program. Scope then determines which subs can call which
others. The default is that all subs have public scope unless specified otherwise.
This means that when you define a sub as in

Sub Test()

any other sub in the entire project can call this Test sub. To make this more
explicit, you can precede Sub with the keyword Public, as in

Public Sub Test()

However, this is not really necessary because a sub’s scope is public by default.
Now suppose that you want Test to be callable only by subs within its mod-

ule. Then you must precede Sub with the keyword Private, as in

Private Sub Test()

Then any sub in the same module as Test can call Test, but subs outside of the
module containing Test have no access to Test. By the way, the scoping rules for
subs are exactly the same for function subroutines, the topic of section 10.6.

10.4 Modularizing Programs

There is a tendency for beginning programmers to write one long sub in a
program—a sub that does it all. This is a bad habit for at least three reasons:

● Long subs are hard to read. Would you like to read a book with a single long
chapter or a chapter with a single long paragraph?

● Long subs are hard to debug. There are too many lines with possible bugs.
● It is difficult to reuse the code from long subs in other programs.

A preferred approach is to modularize programs so that they become a
sequence of relatively short subs, each with a specific task to perform. These
short subs then overcome the three criticisms above: (1) Their brevity and focus
make them easier to read; (2) they can be tested independently, or at least in
sequence, so that bugs are easier to detect and fix; and (3) there is a much greater
chance that they can be reused in other programs.

More on Variables and Subroutines 209

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The question, then, is how to tie the subs together into an overall program.
Fortunately, this is quite easy. You have one sub call another sub. Here is a typi-
cal setup:

Sub Main()
Call Task1
Call Task2

End Sub

Sub Task1()
Call Task3
' Other lines of code would go here.

End Sub

Sub Task2()
' Lines of code would go here.

End Sub

Sub Task3()
' Lines of code would go here.

End Sub

The Main sub does nothing but call the Task1 sub and then the Task2 sub. The
Task1 sub in turn calls the Task3 sub, and it then executes some other statements.
We say that Main passes control to Task1, which then passes control to Task3.
When Task3 is completed, it passes control back to Task1. When Task1 is com-
pleted, it passes control back to Main, which immediately passes control to Task2.
Finally, when Task2 is completed, it passes control back to Main. At this point, the
program ends. This code also indicates how easy it is to call another sub. You sim-
ply type the keyword Call, followed by the name of the sub being called.

It is also possible to omit the keyword Call, and many programmers do so.
Instead of writing, say, Call Test1, they simply write Test1. I realize that I might
be in the minority, but I prefer to use the keyword Call, mostly to remind myself
that a sub is being called. Here is my reasoning. Suppose you see the following
line in the middle of a sub:

TaxCalc

You might think that this is some variable name you had forgotten about, rather
than a call to a sub called TaxCalc. But if the line includes Call, as in

Call TaxCalc

there is no doubt that a subroutine named TaxCalc is being called. Still, you can
choose: include Call or omit it.

There is a trade-off when modularizing a program. At one extreme, you can
have a single long sub. At the other extreme, you can create a separate sub for
every small task your program performs. You typically need to find a middle

210 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ground that breaks an overall program into reasonable chunks. Different program-
mers argue about the term “reasonable.” For example, I have heard one program-
mer say he doesn’t like subs with more than 10 lines, which I believe is overly
restrictive. However, all programmers agree that some modularizing is appropriate
in long programs.

EXAMPLE 10.1 Traveling Salesperson Model Revisited

To see how modularizing works, I rewrote the code for the traveling salesperson
nearest-neighbor heuristic from the previous chapter. The modified code is the
file Traveling Salesperson Modified.xlsm. Now instead of one long Nearest-
Neighbor sub, there is a short NearestNeighbor “main” sub that calls four other
subs, GetProblemData, Initialize, PerformHeuristic, and DisplayResults, to do the
work. The code appears below. (The comments have been omitted to emphasize
the overall structure.) Note how the names of the subs indicate the basic tasks to
be performed. This is always good programming practice.

Compare the code below with the one-sub code in the original Traveling
Salesperson.xlsm file. You will probably agree that the divide-and-conquer strategy
used here makes the program easier to understand. It not only helps you see the
big picture, but it also helps you to understand the details by presenting them in
bite-sized chunks.

Option Explicit

Dim nCities As Integer
Dim distance() As Integer
Dim wasVisited() As Boolean
Dim route() As Integer
Dim totalDistance As Integer

Sub NearestNeighbor()
Call GetProblemData
Call Initialize
Call PerformHeuristic
Call DisplayResults

End Sub

Sub GetProblemData()
Dim i As Integer, j As Integer
With wsModel.Range("A12")

nCities = Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)).Rows.Count
ReDim distance(1 To nCities, 1 To nCities)
For i = 1 To nCities

For j = 1 To nCities
If i <> j Then distance(i, j) = .Offset(i, j).Value

Next
Next

End With

ReDim wasVisited(1 To nCities)
ReDim route(1 To nCities + 1)

End Sub

More on Variables and Subroutines 211

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Initialize()
Dim i As Integer
route(1) = 1
route(nCities + 1) = 1
wasVisited(1) = True
For i = 2 To nCities

wasVisited(i) = False
Next
totalDistance = 0

End Sub

Sub PerformHeuristic()
Dim step As Integer
Dim i As Integer
Dim nowAt As Integer
Dim nextAt As Integer
Dim minDistance As Integer

nowAt = 1
For step = 2 To nCities

minDistance = 10000
For i = 2 To nCities

If i <> nowAt And Not wasVisited(i) Then
If distance(nowAt, i) < minDistance Then

nextAt = i
minDistance = distance(nowAt, nextAt)

End If
End If

Next i
route(step) = nextAt
wasVisited(nextAt) = True
totalDistance = totalDistance + minDistance
nowAt = nextAt

Next step

totalDistance = totalDistance + distance(nowAt, 1)
End Sub

Sub DisplayResults()
Dim step As Integer
With wsModel.Range("B12").Offset(nCities + 2, 0)

.Offset(0, -1).Value = "Nearest neighbor route"

.Offset(1, 0).Value = "Stop #"

.Offset(1, 1).Value = "City"

For step = 1 To nCities + 1
.Offset(step + 1, 0).Value = step
.Offset(step + 1, 1).Value = route(step)

Next step

.Offset(nCities + 4, -1).Value = "Total distance is " & totalDistance
End With

End Sub

When you divide a program into multiple subs, you have to be careful with
variable declarations. If a particular variable is required by more than one of the
subs, it should be declared at the top of the module. The module-level variables
above are nCities, totalDistance, and the distance, wasVisited, and route arrays.

212 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Other variables that are needed only in a specific sub, such as the step variable in
the DisplayResults sub, should be declared locally. In general, this forces you to
examine your variables (and the logical structure of your program) carefully to
see what belongs where. You could take the easy way out by declaring all variables
at the top as module-level variables, but this is considered very poor programming
practice. It signals that you haven’t thought very carefully about the overall
structure of your program.

10.5 Passing Arguments

In a typical modular program, a particular sub can be called several times. Each
time it is called, the sub performs the same basic task, but possibly with different
inputs (and different outputs). As a very simple example, suppose a main sub calls
a display sub to display a customer’s name in a message box. You want the display
sub to be very general so that it will display any name given to it. The question is
how you get the customer’s name from the main sub to the display sub. There
are two ways: (1) by using module-level variables and (2) by passing arguments.
These two methods are compared next.

Module-Level Variables Method

The following program illustrates the use of module-level variables. It assumes
there is a range called Names that contains the last names and first names of
10 customers. I want to display each customer’s full name in a message box. To
do so, I declare module-level variables lastName and firstName in the first line.
Then the Main sub loops through the rows of the Names range, stores the last
and first names of the current customer in the lastName and firstName variables,
and calls the DisplayName sub to display the customer’s full name. The Display-
Name sub knows the current values of lastName and firstName because they are
module-level variables.

Dim lastName As String, firstName As String

Sub Main()
Dim i As Integer
For i = 1 To 10

lastName = Range("Names").Cells(i, 1)
firstName = Range("Names").Cells(i, 2)
Call DisplayName

Next
End Sub

Sub DisplayName()
Dim customerName As String
customerName = firstName & " " & lastName
MsgBox "The customer’s full name is " & customerName

End Sub

More on Variables and Subroutines 213

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Passing Arguments Method

Alternatively, you can pass arguments (in this case, names) from the Main sub to
the DisplayNames sub. In this context, you refer to the Main sub as the calling sub
and the DisplayNames sub as the called sub. To implement this method, the
variables lastName and firstName are no longer declared as module-level variables.
They are now declared locally in the Main sub, and they are passed to the Display-
Name sub as arguments in the second-to-last line of Main. Specifically, to pass
arguments, you type the name of the called sub (DisplayName) and then list the
variables being passed, separated by commas and included within parentheses.
The first line of the called sub then indicates the arguments it expects to receive.

Sub Main()
Dim i As Integer, firstName As String, lastName As String
For i = 1 To 10

lastName = Range("Names").Cells(i, 1)
firstName = Range("Names").Cells(i, 2)
Call DisplayName(lastName, firstName)

Next
End Sub

Sub DisplayName(lName As String, fName As String)
Dim customerName As String
customerName = fName & " " & lName
MsgBox "The customer’s full name is " & customerName

End Sub

Note that the arguments in the first line of the DisplayName sub are lName
and fName. They are not the same as the names passed to it, lastName and
firstName. This is perfectly legal. The variables being passed from the calling sub
and the arguments in the called sub do not need to have the same names,
although they often do. The only requirements are that they must match in
number, type, and order. If Main passes two string variables to DisplayName, then
DisplayName must have two arguments declared as string type. Otherwise, VBA
will display an error message. Also, if the last name is the first variable in the
passing statement, it must be the first argument in the argument list of the
called sub.2

Summarizing, here are the rules for passing arguments:

● To call a sub with arguments, type its name and follow it with arguments
separated by commas and included within parentheses. The arguments should
be declared locally within the calling sub, as in:

Dim lastName as String, firstName as String
Call DisplayName(lastName, firstName)

2Actually, this is not quite true. It is possible to include the names of the arguments when calling the
sub, in which case the arguments can come in a different order, but I will not use this variation here.

214 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● The called sub should declare its arguments inside parentheses next to the
name of the sub, as in:

Sub DisplayName(lName As String, fName As String)

● The names of the variables in the calling sub do not need to be the same
as the names of the arguments in the called sub, but they must match in
number, type, and order.

Now you have two ways to deal with shared variables. You can declare them as
module-level (or project-level with the keyword Public) variables at the top of a mod-
ule, or you can pass them as arguments from one sub to another. Which method is
better? Most professional programmers favor passing arguments whenever possible.
The reason is that this makes a sub such as DisplayName totally self-contained. It
can be reused exactly as it stands in a different program, because it is not dependent
on a list of module-level variables that might or might not exist. However, passing
variables is a somewhat more difficult concept, and it is sometimes more awkward
to implement than the “global variable” approach. Therefore, both methods can be
used, and you will see both in the applications in Part II of the book.

EXAMPLE 10.2 Formatting Extremes

The file Format Extremes.xlsm contains monthly sales values for a com-
pany’s sales regions. (See Figure 10.4.) The company wants to highlight the
extreme sales in each month. Specifically, it wants to color the minimum sale
in each month red and italicize it, and it wants to color the maximum sale in
each month blue and boldface it.

Figure 10.4 Sales Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K L M

Sales by region and month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Region 1 25630 19660 15270 33810 19360 15770 22490 8350 18310 18160 14040 10680
Region 2 18490 10060 13150 17350 12120 16940 24120 4550 13920 11020 10370 8590
Region 3 13360 12630 20350 10850 17650 20570 18500 36460 7530 11880 18110 18760
Region 4 17280 22930 19310 12230 16490 6760 12850 18930 16640 13590 8180 10830
Region 5 10970 10550 11780 7210 23280 7320 15840 19690 19280 8690 9810 10540
Region 6 7990 14690 20680 17130 12620 7400 8420 13810 7090 8990 12570 15260
Region 7 40310 10820 18310 13900 6390 13290 12980 28440 15530 25940 16600 18160
Region 8 10770 18250 29580 21020 10200 9380 15210 5750 13710 11770 10820 23160
Region 9 10530 14170 24630 16910 21670 11750 10470 19150 20170 13370 20600 26180
Region 10 8600 22950 14080 16760 17270 16670 18650 10370 12040 13810 8000 11690
Region 11 11510 15660 16870 17930 15110 7760 12090 10260 23240 14760 15430 16540
Region 12 10360 11490 15000 14060 9770 13110 24320 24500 13300 15610 21040 12620
Region 13 18670 12350 20450 9860 16730 10100 12870 11390 16220 11760 18480 13330
Region 14 16360 18640 17050 25080 10760 14420 16730 17260 22470 11980 10710 19640
Region 15 20760 13610 6340 12510 14570 11930 26490 21130 21530 20390 24960 16100
Region 16 18690 23710 10530 18050 17730 7230 20750 23370 18070 10490 18980 12390

More on Variables and Subroutines 215

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This task is accomplished with the Main and ChangeFont subs listed below.
The Main sub is attached to the button on the worksheet. It loops through all
of the cells in the sales range with a pair of nested For loops. For each cell, it
calls the ChangeFont sub to change the font of the cell appropriately if the sales
value in this cell is an extreme for the month. Four arguments are passed to
ChangeFont sub: the cell (a range object), the sales value in the cell, the minimum
sales value for the month, and the maximum sales value for the month. All of
these arguments have the same names in the called sub as in the calling sub, but
they could have different names and the program would still work correctly.

Sub Main()
Dim nMonths As Integer, nRegions As Integer
Dim i As Integer, j As Integer
Dim minVal As Single, maxVal As Single, salesVal As Single
Dim cell As Range

With wsData.Range("A3")
nMonths = Range(.Offset(0, 1), .Offset(0, 1).End(xlToRight)).Columns.Count
nRegions = Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)).Rows.Count
' Restore to normal.
With Range(.Offset(1, 1), .Offset(nRegions, nMonths)).Font

.Color = vbBlack

.Bold = False

.Italic = False
End With
' Look for extremes (those that match the min or max in any column).
For j = 1 To nMonths

minVal = WorksheetFunction.Min(Range(.Offset(1, j), .Offset(nRegions, j)))
maxVal = WorksheetFunction.Max(Range(.Offset(1, j), .Offset(nRegions, j)))
For i = 1 To nRegions

Set cell = .Offset(i, j)
salesVal = cell.Value
Call ChangeFont(cell, salesVal, minVal, maxVal)

Next
Next

End With
End Sub

Sub ChangeFont(cell As Range, salesVal As Single, minVal As Single, maxVal As Single)
With cell

If salesVal = minVal Then
.Font.Color = vbRed
.Font.Italic = True

ElseIf salesVal = maxVal Then
.Font.Color = vbBlue
.Font.Bold = True

End If
End With

End Sub

Note how general the ChangeFont sub is. You could easily use it in any other
program that needs to change the font of particular cells. All you need to pass to
it are the cell (again, as a Range object), a sales value, and minimum and maxi-
mum sales values to compare to.

216 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Passing by Reference and by Value

When you pass a variable such as lastName from one sub to another, the default
method is by reference. This means that the variables in the calling and the
called subs share the same memory location so that any changes to lastName in
the called sub will be reflected in the calling sub. For example, suppose lastName
has value “Jones” when it is passed, and then the called sub changes it in a line
such as

lastName = "Smith"

Then the value of lastName will be “Smith” when control passes back to the call-
ing sub.

If this is not the behavior you want, you can pass the variable by value. This
sends a copy of lastName to the called sub, so that any changes made there to last-
Name are not reflected in the calling sub. In the above example, lastName would
remain “Jones” in the calling sub. If you want to pass by value, the called sub
must have the keyword ByVal (all one word) next to the argument, as in

Sub DisplayName(ByVal lastName As String, ByVal firstName As String)

On the other hand, if you want to emphasize that you are passing by refer-
ence, you can write

Sub DisplayName(ByRef lastName As String, ByRef firstName As String)

However, the keyword ByRef is never really necessary because passing by refer-
ence is the default method. It is the method I use in all later examples, so you
will never see either keyword, ByRef or ByVal.3

Passing Arrays

Consider the following scenario. You have written a general-purpose sub
called SortNames that takes any array of last names and sorts them in alphabet-
ical order. (The details of how it does this are irrelevant for now.) You would
like to be able to call SortNames from any sub by passing any array of last
names to it. In particular, you want this to work regardless of the size of
the array being passed. That is, it should work for a 10-element array, a

3Interestingly, in its .NET technology, Microsoft passes by value by default. This means you have to
specify ByRef explicitly if you want to pass by reference.

More on Variables and Subroutines 217

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1000-element array, or an array of any other size. What is the appropriate way
to proceed?4

The following code does the job. (The next-to-last line indicates the detailed
code for sorting. It is irrelevant for this discussion.)

Sub CallingSub()
Dim names(100) As String
For i = 1 To 100

names(i) = Range("Names").Cells(i).Value
Next
Call SortNames(names)

End Sub

Sub SortNames(names() As String)
Dim nNames As Integer
nNames = UBound(names)
' Other lines of code would go here.

End Sub

The calling sub stores 100 names in an array of size 100. (It populates this array
by pulling the names from a worksheet range, which is assumed to be filled with 100
last names.) It then passes the names array to the SortNames sub with the line

Call SortNames(names)

Note that there are no parentheses next to the names argument in this line. VBA
knows that names is an array because it was declared earlier to be an array. On the
other end, the first line of the SortNames sub uses empty parentheses next to the
names argument to indicate that it is expecting an array. It will know how large an
array to work with only when an array of a specific size is passed to it.

Note that you can determine the size of the array that has been passed to
SortNames with the line

nNames = UBound(names)

somewhere inside the SortNames sub, as was done here. The VBA UBound func-
tion returns the largest index in the array. Therefore, when an array of size 100 is
passed to SortNames, nNames becomes 100. If an array of size 1000 were passed
instead, nNames would be 1000. The point is that this procedure works regard-
less of the size of the array that is passed.5

4I have included this section because passing arrays is a common operation and not all VBA books
tell you how to do it.
5 If the default 0-based indexing is in effect, UBound returns 1 less than the number of array elements.
That is, UBound returns the largest index of the array.

218 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.6 Function Subroutines

The subroutines to this point—the subs—can perform virtually any task. They can
sort numbers in a worksheet, they can create and manipulate charts, they can add
or delete worksheets, and so on. This section discusses a special type of subrou-
tine called a function subroutine that has a more specific objective: It returns a
value.6 The following simple example illustrates one possibility. It returns the
larger of two numbers passed to it (number1 and number2) in the variable Larger.

Function Larger(number1 As Single, number2 As Single) As Single
If number1 >= number2 Then

Larger = number1
Else

Larger = number2
End If

End Function

This function subroutine looks a lot like a typical sub. For example, it can
take arguments, in this case number1 and number2, both of Single type. However,
it has some important differences:

● Instead of beginning with Sub and ending with End Sub, it begins with
Function and ends with End Function.

● It returns a certain type of variable, in this case Single. This type is specified in
the first line, after the argument list.

● It returns the value assigned to its name. In the example, the return value will
come from one of the two lines that begin Larger =. For example, if the num-
bers 3 and 5 are passed to this function, it will return 5. (The common practice
is to capitalize the first letter of a function name, such as Larger.)

A function subroutine can be used in one of two ways. It can be called by
another sub (or even another function subroutine), or it can be used as a new
function in an Excel formula. Here is an example of the first method, where the
calling sub calls Larger in the next-to-last line.

Sub CallingSub()
Dim firstNumber As Single, secondNumber As Single
firstNumber = 3
secondNumber = 5
MsgBox "The larger of the two numbers is " & _

Larger(firstNumber, secondNumber)
End Sub

The message box will report that the larger number is 5. Note once again
that the variables being passed can have different names from the arguments of

6Actually, a function subroutine can return a “value” of any type: Integer, Single, String, Boolean,
and so on. It can even return an object, such as a Range object.

More on Variables and Subroutines 219

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the function, but they should agree in number, type, and order. In this case,
Larger is expecting two arguments of type Single.

To illustrate the second method, open a new workbook in Excel, get into the
VBE, insert a new module, and type the code for the Larger function exactly as
above. Now enter the formula =Larger(5,3) in any cell. It will recognize your
new function, and it will correctly enter 5 in the cell. In fact, as you start typing
the formula in Excel, you will even get some help from Intellisense. However, it
doesn’t list the arguments it expects, as it does with built-in Excel functions.

This creates a whole new realm of possibilities for you as a programmer. You
can define your own functions and then use them in Excel formulas. You might
not need to do this very often because Excel already includes a rich list of its
own functions. However, there might be a few times when you want to create
your own functions. Here are some things you should know.

● If you write the code for a function in workbook1 and then try to use this
function in a formula in workbook2, it won’t be recognized. The problem is
that workbook2 recognizes only the functions written in its modules. There
are at least two solutions to this problem. First, you can set a reference to
workbook1 in workbook2. To do so, make sure workbook1 is open. Then
activate workbook2, get into the VBE, select the Tools → References menu
item, and check the workbook1 box.7 The problem with this method is that
workbook1 must be open. A better method is to put all of your favorite func-
tions in your Personal Macro Workbook (recall Chapter 4), and then set a
reference to it, again through Tools → References, in any workbook where
you want to use these functions. The advantage of this method is that your
Personal Macro Workbook is always open (unless you deliberately close it).

● Suppose you want to write a function that accepts one or more lists as argu-
ments. In particular, these lists might come from worksheet ranges. For exam-
ple, suppose you want to emulate Excel’s SUM function. Then the following
code will work. (You can find it in the Functions.xlsm file.)

Public Function MySum(values As Variant) As Single
Dim v As Variant, total As Single
For Each v In values

total = total + v
Next
MySum = total

End Function

The point here is that the values argument, which contains the list of values to
be summed, must be declared as Variant, even though it acts like a collection. This
enables you to use the For Each loop inside the function. Importantly, this list could
come from a worksheet range, as illustrated in Figure 10.5. The gray cells contain

7Actually, you will see the Project Name of workbook1 in the list, which still might be the generic
name VBAProject. This provides a good reason to change this generic name, which you can do
through the Properties Window.

220 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

row and column sums, indicated by the typical formula in the text box. It is even
possible to copy this formula across and down, just like any other Excel formula.

EXAMPLE 10.3 Concatenating Names

This example illustrates a useful string function I developed called FullName. It is
not a built-in Excel function. It is defined by the code listed below. (You can find
this code in the Functions.xlsm file.) The function takes four arguments: a
person’s first name, last name, initial (if any), and a Boolean variable. The
Boolean variable is True if the initial is the person’s middle initial, and it is False
if the initial is the initial of the person’s first name (in which case, the “first
name” argument is really the person’s middle name). The initial argument can
have a period after it, or it can have no period. (The code uses VBA’s Left func-
tion, with last argument 1, to delete the period in case there is one. Then it adds
a period, just to ensure that there is one after the initial.) Also, the initial argument
can be an empty string (no initial in the name), in which case the Boolean value is
irrelevant. (Those of us who go by our middle names wish everyone would use
this type of function to ensure that they get our names correct.)

Public Function FullName(firstName As String, lastName As String, _
initial As String, Optional isMiddleInitial As Boolean = True) As String

If initial = "" Then
FullName = firstName & " " & lastName

ElseIf isMiddleInitial Then
FullName = firstName & " " & Left(initial, 1) & ". " & lastName

Else ' must be first initial
FullName = Left(initial, 1) & ". " & firstName & " " & lastName

End If
End Function

Figure 10.5 Using the MySum Function in a Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D
Illustra�on of MySum func�on

98 35 68 201
12 87 77 176
59 23 39 121
40 37 46 123
19 98 20 137
73 95 94 262
31 38 43 112

332 413 387

Formula in cell B10 is:
=MySum(B3:B9)

More on Variables and Subroutines 221

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10.6 illustrates the use of this function. The inputs to the function are
in rows 3-5. The formulas in cells A7 to C7 are

= FullName(A4,A5,A3,FALSE)

= FullName(B3,B5,B4,TRUE)

and

= FullName(C3,C5,C4,TRUE)

Note that the arguments after FullName must be in the correct order: first name,
last name, initial, and Boolean; however, they could come from any cells in the
spreadsheet. Also, note that Abraham Lincoln has no middle initial. Therefore, the
Boolean value in the cell C7 formula is irrelevant—it could be TRUE or FALSE.

The Boolean argument could even be omitted because it is declared as
optional. When you see an argument such as

Optional isMiddleInitial As Boolean = True

this indicates that argument does not need to be included, in which case its default
value is the value provided, in this case, True. You can have number of optional argu-
ments. The only restriction is that all optional arguments have to come after required
arguments, that is, they must be at the end of the argument list.

EXAMPLE 10.4 Generating Random Numbers

If you have done any spreadsheet simulation, you know the need for random
numbers from various probability distributions. Some simulation add-ins such as
@RISK have their own collections of random number functions. This example
illustrates a simple function you can use in your own simulations, without the
need for an add-in such as @RISK. It generates random values from any discrete

Figure 10.6 FullName Examples

1

2

3

4

5

6

7

A B C

Concatena�ng names

S. Wayne Abraham
Chris�an L
Albright Winston Lincoln

S. Chris�an Albright Wayne L. Winston Abraham Lincoln

222 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

distribution, where you supply the possible values and their corresponding proba-
bilities. Its code is listed below. (It is stored in the file Functions.xlsm.)

Public Function Discrete(value As Variant, prob As Variant)
' We assume that the value array contains integers in ascending order.
Dim i As Integer
Dim cumProb As Single
Dim uniform As Single

' The following line ensures that we’ll get different random numbers
' each time we run this procedure.
Randomize

' The following line ensures that the function recalcs (with new random
' numbers) if it’s entered as a formula in a worksheet.
Application.Volatile

' Generate a uniform random number.
uniform = Rnd

' Find the first cumulative probability that’s greater than uniform,
' and return the corresponding value.
cumProb = prob(1)
i = 1
Do Until cumProb > uniform

i = i + 1
cumProb = cumProb + prob(i)

Loop
Discrete = value(i)

End Function

Several points might require some explanation.

● The Application.Volatile line ensures that if this function is entered in a
worksheet, it will recalculate (and thereby generate a different random
number) each time the worksheet recalculates.

● The Randomize line ensures that you won’t get the same random number
each time this function is called. (This would certainly destroy the function’s
usefulness in simulation.)

● The Rnd function is a built-in VBA function similar to Excel’s RAND
function. It generates random numbers uniformly distributed between
0 and 1.

● The loop finds the place where the uniform random number “fits” in the
probability distribution. For example, with the probabilities given in Figure
10.7, the cumulative probabilities are 0.1, 0.4, 0.9, and 1.0, so if the
uniform random number is 0.532, then the function returns the third
value (3) because 0.532 is between 0.4 and 0.9.

● The value and prob arrays must be declared as Variant types with no paren-
theses. This is a rather obscure rule, but it is the only way that allows you to
use such a function in an Excel formula.

More on Variables and Subroutines 223

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following code indicates how you could call such a function in a VBA
module (as opposed to using it in an Excel formula):

Sub TestDiscrete()
' This sub tests the Discrete random number generator above.
Dim value As Variant, prob As Variant, i As Integer
value = Array(1, 2, 3, 4)
prob = Array(0.1, 0.3, 0.5, 0.1)
For i = 1 To 30

MsgBox Discrete(value, prob)
Next

End Sub

This function is illustrated in Figure 10.7, where several random numbers are
generated. (See the Discrete worksheet in the Functions.xlsm file.) The formula
in cell B10, which is then copied down, is

=Discrete(A4:A7,B4:B7)

If you open this file and recalculate (by pressing the F9 key, for example),
you will see that all of the random numbers change.

If you want to use this function or develop your own random number func-
tions, you will probably want it to be available regardless of which files are
open. As discussed earlier, a good option is to place the code in your Personal
Macro Workbook, and then set a reference to this workbook in any file where
you want to use the function. (Remember, you set a reference in the VBE from
the Tools → References menu item.)

Figure 10.7 Random Numbers from a Discrete Distribution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F

Genera�ng random numbers from a discrete distribu�on

Value Probability
1 0.1
2 0.3
3 0.5
4 0.1

Random numbers
2
3
3
2
1
3
3
3
1
3

224 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The file Functions.xlsm contains the function subroutines discussed above,
plus others. It also asks you to develop a couple of your own.

10.7 The Workbook_Open Event Handler

In Chapter 2, I briefly discussed events and event handlers. An event handler is a sub
that runs whenever a certain event occurs, that is, when it fires. Event handlers are dis-
cussed in muchmore detail in the next chapter when you learn about user forms. How-
ever, there is one simple event handler that you can use right away. It responds to the
event where a workbook is opened. In short, if you want anything to occur when you
open an Excel workbook, you can write the appropriate code in this event handler.

Event handlers have built-in names—you have no control over the names
given to these subroutines. The particular event handler discussed here has the
name Workbook_Open. Also, it is a Private sub by default. Therefore, its first line
is always the following:

Private Sub Workbook_Open()

Another distinguishing feature of this subroutine is that you do not place it in a
module. Instead, you store it in the ThisWorkbook code window. To get to
this window, double-click the ThisWorkbook item in the VBE Project Explorer (see
Figure 10.8). This opens a code window that looks just like a module code window,
except that it is reserved for event handlers having to do with workbook events.

The code in a Workbook_Open sub is usually not very elaborate. A typical use
of this sub is to ensure that a worksheet code-named wsExplanation is activated
when a user opens the workbook. (I use it for this purpose in all of the applica-
tions in Part II of the book.) The following sub is all that is required:

Private Sub Workbook_Open()
wsExplanation.Activate

End Sub

Figure 10.8 ThisWorkbook Item in Project Explorer

More on Variables and Subroutines 225

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Of course, you could place other statements in this sub—to hide certain
worksheets, for example. Again, if there are any actions you want to occur when
a workbook opens, the Workbook_Open sub is the place to put them.

As you might guess, there is also an event handler for the event where a
workbook is closed. It is named Workbook_BeforeClose. Because this subroutine is
somewhat more complex—it takes a rather obscure argument, for example—and
is not used in later applications, I will not discuss it here. However, if you are
interested, you can find online help for it in the Object Browser.

10.8 Summary

Long programs should not be written in a single long sub; this is considered poor
style. In this chapter I illustrated how to organize long programs into a sequence
of shorter subs, each of which performs a specific task. The resulting code is
easier to read and debug, and pieces of it are more likely to be reusable in other
programs. I discussed how it is a good programming practice to pass arguments
from one sub to another whenever possible. When this is done, the called subs
can often be written in a totally self-contained manner, which allows them to be
reused in other programs. I also introduced function subroutines. Their purpose
is to return a value, and they can be called by other subs (even other function
subroutines), or they can be used as new spreadsheet functions. Finally, I briefly
discussed event handlers. Specifically, I illustrated how the Workbook_Open sub
can be used to perform any desired actions when a workbook is opened.

EXERCISES

1. Write a sub called GetName that asks the user to type a first name and last name
in an input box, which is captured in a string variable fullName. It should then call
a sub called ProperCase that takes a single argument, a string, and converts this
argument to proper case. For example, if the user enters the name gEORge
buSH, the sub should return George Bush. The GetName sub should then display
the result, such as George Bush, in a message box.

2. Repeat the previous exercise, but now ask for two separate names, firstName
and lastName, in two separate input boxes, and pass these two arguments to the
ProperCase sub (which will need to be modified).

3. Write a Function subroutine called Tax that takes a single argument grossIncome
of type Currency. It should calculate the tax on any income using the following
tax schedule: (1) if income is less than or equal to $15,000, there is no tax; (2) if
income is greater than $15,000 and less than or equal to $75,000, the tax is 15%
of all income greater than $15,000; and (3) if income is greater than $75,000,
the tax is 15% of all income between $15,000 and $75,000 plus 20% of all
income greater than $75,000. Then write a CalcTax sub that asks a user for his
income, gets the function subroutine to calculate the tax on this income, and
reports the tax in a message box.

226 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Expanding on the previous exercise, the file Tax Schedule.xlsx has a tax schedule.
Write a CalcTax sub, just as in the previous exercise, that asks for an income and
passes it to a Tax function. However, the Tax function now finds the tax by using
the tax schedule in the worksheet. (This tax schedule is similar to the one in the
previous exercise and is illustrated with the sample tax calculation on the
worksheet.) The Tax function should be flexible enough to work even if more rows
(breakpoints) or different breakpoints or percentages are added to the tax schedule.

5. Write a function subroutine called Add that mimics Excel’s SUM function. It
should accept an array of type Single, and it should return the sum of the
elements of the array. Then write a short Test sub that sets up an array, passes it
to the function, and reports the result.

6. Write a function subroutine called AddProduct that mimics Excel’s SUMPRODUCT
function. It should accept two arrays of type Single, both of the same size, and it
should return the sum of the products of the two arrays. For example, if you pass
it the arrays (3,5,1) and (4,3,6), it should return 3*4 + 5*3 + 1*6 = 33.

7. Write a function subroutine called NextCell that takes a string argument Address,
which should look like the address of a cell, such as C43. The function should return
True or False depending on whether the cell to the right of this one contains a formula.
For example, if you pass it C43, it checks whether cell D43 contains a formula.

8. Write a function subroutine called NameExists of type Boolean that takes two
arguments of type Range and String, respectively. It should search all of the cells
in the given range and check whether any of them have their Value property
equal to the given string. For example, if the string is “Davis”, it should check
whether “Davis” is in any of the cells. (A cell containing “Sam Davis” wouldn’t
count. The contents have to be “Davis” exactly, including case.) If so, it should
return True. Otherwise, it should return False.

9. Open a new workbook and add several worksheets. Each worksheet should be named
as some state, such as Pennsylvania. Write a States sub that creates an array called cap-
ital. It should have as many elements as the number of worksheets, and it should be
populated with the capitals of the states. For example, if Pennsylvania is the third
worksheet, you should set capital(3) equal to Harrisburg. Now write a sub called
EnterLabel that takes two string arguments, a state and a capital, and enters a label,
such as “The capital of Pennsylvania is Harrisburg”, in that state’s cell A1. Finally,
use a loop in the States sub to go through the worksheets and send the worksheet
name and the appropriate element of the array to the EnterLabel sub. After the States
sub runs, there should be an appropriate label in cell A1 of each worksheet.

10. Open a new workbook with a single worksheet, and enter some integers in the
range A1:B10. (Any integers will do.) Write a ColorMax sub that has a For loop
from i=1 to i=10. Each time through this loop, a sub Process should be called
with three arguments: i and the two numbers in columns A and B of row i. The
Process sub should enter the larger of the two numbers in column C of row i, and
it should color its font red if the number in row A is the larger. Otherwise, it
should color the font blue.

11. The file Customer Lists.xlsx contains lists of customers from last year and
this year in columns A and B. Write a sub called FindMatch that takes a single
argument customerName (a string variable). It should check whether this

More on Variables and Subroutines 227

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

customer is in both lists. If so, it should display a message to this effect, and it
should boldface both instances of the customer’s name. Otherwise, it should dis-
play a message that the customer’s name is not on both lists. Next, write a Test
sub that uses an input box to ask for a customer name and then calls FindMatch
with this customer’s name as the argument.

12. The file Stock Prices.xlsx contains monthly adjusted closing prices, adjusted
for dividends and stock splits, for WalTech’s stock from 2007 to early 2015.
(WalTech is a fictitious company.)
a. Write a sub called RecordHigh1 that takes a single argument called searchPrice.

This sub searches down the list of prices for the first price that exceeds the search-
Price argument. If it finds one, it displays the corresponding date in a message,
something similar to, “The first date WalTech stock price exceeded _ was _.” If
the price never exceeded the argument searchPrice, it displays a message to this
effect. Next, write a Records sub that uses an input box to ask the user for a
price and then calls RecordHigh1 with this price as the argument.

b. Write another sub called RecordHigh2 that takes a single argument called
specifiedMonth. This sub searches down the list of prices for the last time up
until (and including) the specified month where the stock reached a record
high (that is, it was larger than all prices before it, going back to the begin-
ning of 2007). It then displays a message such as, “The most recent record,
up until _, was in _, when the price reached _.” (Note that Jan-2007 is a
record high by default, so at least one record high will always be found.)
Change the Records sub from part a so that the input box now asks for a
month and then calls RecordHigh2 with this month as an argument.

13. The file Boy Girl Finished.xlsm contains a worksheet with scores for boys and
girls. Open the file and click the button. You will see that it asks the user for
1 (boys) or 2 (girls). It then names the range of the scores for the chosen gender
as DataRange, it enters a label and the average score for the chosen gender (as a
formula) in cells D9 and E9, and it formats the D9:E9 range appropriately
(blue font for boys, red font for girls). The code in this file is password-protected.
Now open the Boy Girl.xlsx file, which contains only the data, and write your own
code to perform the same tasks. It should contain a Main sub that calls the follow-
ing subs: (1) GetResponse (to show the input box and get the user’s response), (2)
NameGenderRange (to name the appropriate range as DataRange), (3) FormatOut-
putRange (to format the output range D9:E9 appropriately), and (4) EnterOutput
(to enter a label in D9 and a formula in E9). Write your subs so that there are no
module-level variables. Instead, a string variable gender should be an argument of
each called sub, where gender can be "boys" or "girls". Also, write the program so
that it will work even if more data are added to the data set.

14. Open a new workbook and write a sub called GetWorkbookInfo that takes an
argument called fileName (a string). This sub should attempt to open the file called
fileName. Assuming that it is successful (the file exists), a message box should dis-
play the creator of the file and the number of worksheets in the file. It should
then close the file. Next, write an OpenFile sub that uses an input box to ask for
the name of a file, including its path, and then calls GetWorkbookInfo with this file
name as the argument. (Your GetWorkbookInfo will have one serious deficiency—it

228 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

will bomb if the requested file doesn’t exist, at least not in the specified path. Don’t
worry about this for now. You will see how to check for it in Chapter 12.)

15. The program in the Merging Lists.xlsm file from the previous chapter (see
Example 9.4) is written as a single sub.
a. Break it into several shorter subs, all called from a Main sub. The called

subs should be (1) ClearOld (to clear the old merged list in column D,
if any), (2) GetData (to put the data in the current lists in arrays), and
(3) CreateMergedList (to create the merged list in column D). Don’t pass
any variables; use all module-level variables for any shared variables.

b. Repeat part a, but pass variables. In particular, the listSize1 and listSize2 vari-
ables and the list1 and list2 arrays should be arguments of both GetData and
CreateMergedList. (Hint: Refer to the section in this chapter dealing with
passing arrays as arguments.)

16. The program in the Product Sales.xlsm file from the previous chapter (see
Example 9.2) is written as a single sub. Break it into at least three shorter subs,
all called from a Main sub. You can decide how to break it up and whether you
want to use module-level variables or pass arguments.

17. The file Recent Sales Finished.xlsm contains a list of a company’s sales reps in the
Sales Reps worksheet. For each of several Midwest states, there is a worksheet
showing recent sales by the sales reps in that state. Open this file and click the but-
ton on the Sales Reps worksheet. You will see that it asks for a sales rep and then a
state, and it summarizes sales by that rep in that state in a message box. Run this
several times (including queries for reps and states not in the company’s list) to see
all the functionality built into it. The code in this file is password-protected. Now
open the file Recent Sales.xlsm, which contains only the data and a Main sub that
calls some yet-to-be-written subs. Your job is to write the subs, using the argu-
ments indicated in the Main sub, to achieve the same functionality. (Note: Make
sure that when you do a search for, say, Arnett, you don’t also find information
for Barnett. Check out the various arguments for the Find function in VBA.)

18. The file Transactions Finished.xlsm contains two worksheets. The Customers_
Products worksheet lists a company’s customers and its products. The Transactions
worksheet lists information about recent transactions involving these customers
and products. Open this file and click the button on the Customers_Products
worksheet. You will be asked for a last name and a first name of a customer. If this
customer is found on the list, you will be asked for the name of a product. If
this product is found in the list, a message will be displayed summarizing the sales of
this product to this customer. Try it a few times (including queries for customers or
products not in the lists) to see how it works. The code in this file is password-
protected. Now open the file Transactions.xlsm, which contains only the data and
a Main sub that calls some yet-to-be-written subs. Your job is to write the subs,
using the arguments indicated in the Main sub, to achieve the same functionality.

19. The file Errors 1.xlsx contains a list of forecasting errors in column A made by
some forecasting method. Write a function subroutine called MAE that finds
the mean absolute error, that is, the average of the absolute values of the errors.
It should be written to work on any range of errors such as the one in column
A. Then try it out by entering the appropriate formula in cell E1.

More on Variables and Subroutines 229

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20. The file Errors 2.xlsx contains a time series of monthly sales in column A and a
series of forecasts of these sales in column B. Write a function subroutine called
MAPE that finds the mean absolute percentage error of the forecasts, that is, the
average of the absolute percentage errors. For example, the absolute percentage
error in row 2 is |713 − 738|/713 = 0.035, or 3.5%. Write this function so that
it will work with any two ranges of observations and corresponding forecasts.
Then try it out by entering the appropriate formula in cell E1.

21. The triangular distribution is a probability distribution commonly used in business
spreadsheet simulations. It is literally triangularly shaped. There are three param-
eters of this distribution, labeled a, b, and c. The parameters a and c are the mini-
mum and maximum possible values, and the parameter b is the most likely value
(where you see the high point of the triangle). This is a simple distribution for
people to understand, but it is not straightforward to generate random numbers
from this distribution. The method is as follows:

● Calculate d = (b − d)/(c − a)
● Generate a uniformly distributed random number U between 0 and 1 (with

VBA’s Rnd function).
● If U < d, return a+ðc � aÞ ffiffiffiffiffiffiffiffi

dU
p

as the random number.
● If U > d, return a+ðc � aÞ½1� ffið1� dÞð1�U Þ�p

as the random number.

(Note that VBA has a built-in sqr function for calculating square roots.) Write
a function subroutine called Triangular that takes three arguments corresponding
to a, b, and c and returns a triangularly distributed random number. (Use the
Application.Volatile and Randomize statements that were used in Example 10.4.)
Then try out your random number generator in a worksheet by entering
the formula and copying it down to generate a large number of these random
numbers. You might also want to create a histogram of these random numbers,
just to verify that it has an approximate triangular shape.

230 Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

User Forms

11.1 Introduction

This chapter introduces user forms, or what you know as dialog boxes. Everyone
who has ever used a Windows program is familiar with dialog boxes. They are the
primary means for getting users’ inputs. In fact, they are so familiar that you proba-
bly take them for granted, never stopping to think how they actually work. This
chapter explains how to create user forms for your own applications.1 This entails
two distinct operations. First, you have to design the user form to have the required
functionality and look attractive. Second, you have to write event handlers that sit
behind the user form waiting to respond appropriately to whatever the user does.
For example, many user forms have OK and Cancel buttons. During the design
stage, you have to place and resize these buttons on the form. You then have to
write VBA code to respond appropriately when a user clicks one of these buttons.
Specifically, when the user clicks the Cancel button, you typically want the dialog
box to disappear. When the user clicks the OK button, you typically want to
capture the user’s inputs and then have the dialog box disappear.

Working with user forms is arguably the most fun part of VBA application
development. You can use your creative and artistic talents to design the dialog
boxes that users will interact with. You can then use your logical skills to ensure
that everything works properly when users click buttons, select items from a list
box, check “radio” buttons, fill in text boxes, and so on. In short, you get to
create what you have been using for years—dialog boxes—and you start to see
why there is a “V” in VBA.

11.2 Exercise

Working with user forms is not difficult, but there are many small steps to master,
and practice is the key to mastering these. The following exercise is typical. It
requires very little in the way of calculation, but you must put all of the pieces of

11

1Throughout this chapter, I use the terms “dialog box” and “user form” interchangeably. The former
term is used by most users, whereas the latter term is used by programmers. In fact, some programmers
spell “user form” as UserForm, all one word with two capital letters. I will use the less formal spelling
here. Finally, I will usually simply reference a “form.” This reference is equivalent to “user form.”

231

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the application together in just the right way. By the time you have read through
the rest of this chapter and have studied its examples, this exercise will be fairly
straightforward—but it is exactly the type your boss will appreciate.

Exercise 11.1 Summarizing Monthly Sales

Consider a company that has regional stores in Atlanta, Charlotte, and Memphis.
Each region sells a variety of products, although the products vary from region to
region. The file Sales Summary.xlsm contains a separate worksheet for each
region that shows monthly sales for a three-year period for each product
the region sells. Part of the Atlanta worksheet appears in Figure 11.1. Note that
the product codes sold in any region always appear in row 4.

The file also contains an Explanation worksheet, as shown in Figure 11.2. This
summarizes what the exercise is supposed to accomplish. (Similar Explanation

Figure 11.1 Sample Data for Atlanta

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H
Sales for Atlanta

Product code

Jan-
Month U394K71 B350B99 Y342H72 Q253I61 W311E65 F822G38 M228M28

13 105 477 492 873 424 97 582
Feb-
Mar-
Apr-

13 102 433 528 904 445 111 1149
13 99 591 612 835 553 87 917

13 116 538 546 1143 571 84 898
May-13 52 670 573 987 536 97 994
Jun-13 97 671 520 720 507 82 1069
Jul-13 82 398 501 701 402 95 1170
Aug-13 92 559 523 966 388 142 396
Sep-13 107 402 432 1161 506 116 881
Oct-13 98 419 448 1232 454 116 1138

Figure 11.2 Explanation Sheet

232 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

worksheets appear in all of the applications in Part II of the book. It is always good
to tell users right away what an application is all about.) The button on this work-
sheet should eventually be attached to a macro that runs the application.

It is easier to show what this application is supposed to do than to
explain it in detail. In fact, you can try it out yourself by opening the
Sales Summary Finished.xlsm file and clicking the button. The form in Fig-
ure 11.3 is first displayed, where the user must select a region and a set of
summary measures. By default, the Atlanta button and the Median and Aver-
age boxes are selected when the user sees this form. The user can then make
any desired selections.

Next, the user sees the form in Figure 11.4. It contains a message specific to
the region chosen and a list of all products sold in that region. (When you
write the program, you find this list of product codes by scanning across row 4 of
the region’s sales worksheet.) By default, the first product code is selected. The user
can then select any product code by scrolling through the list.

When the user clicks the OK button, the application summarizes the sales of
the product and region chosen and displays the results in a message box. For
example, if the user chooses Atlanta, product W620X96, and the average and
median summary measures, the message in Figure 11.5 appears.

To develop this application, you need to create the forms in Figures 11.3
and 11.4, place the appropriate controls on them, give these controls
appropriate properties, and write appropriate event handlers. You also have to
insert a module that contains the non-event code. Specifically, this code must
“show” the forms, perform any necessary calculations, and display the final mes-
sage. One hint that will come in handy is the following. To calculate the
required summary measures, you can borrow any of Excel’s worksheet func-
tions: COUNT, AVERAGE, MEDIAN, STDEV, MIN, or MAX. For example,

Figure 11.3 First User Form

User Forms 233

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to calculate the average for some range, you can use WorksheetFunction.Average
(range), where range is a reference to the range you want to average. (WorksheetFunction
was explained in Chapter 5.)

11.3 Designing User Forms

The first step in developing applications with user forms is designing the forms.
This section explains how to do it, but the explanations are purposely kept fairly
brief. The more you read about designing forms, the harder you will think it is.
It is actually very easy. With a half hour of practice, you can learn how to design
user forms. (It will take longer to make them look really professional, but that too
is mostly a matter of practice.) So let’s get started. As you read this section, you
should follow along on your own computer.

Figure 11.4 Second User Form

Figure 11.5 Results

234 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

First, open a new workbook in Excel, get into the VBE, and make sure the
Project Explorer and Properties windows are visible. (If they aren’t visible, click
the appropriate buttons on the Standard toolbar or use the appropriate menu
items from the View menu.) To add a user form, use the Insert → UserForm
menu item. A blank form will appear, and your screen will appear as in Figure
11.6. If it doesn’t look exactly like this, you can resize windows and dock the
Project Explorer and Properties windows at the left side of the screen. In fact,
you can move and resize windows any way you like. Also, when you insert the
form, the Toolbox at the bottom right should appear. If it ever disappears, you
can always redisplay it by selecting the View → Toolbox menu item or clicking
the “hammer and wrench” button on the Standard toolbar.

To design user forms, you need to know three things:

● Which controls are available
● How to place, resize, and line up controls on a form
● How to changes properties of controls in the Properties window

Available Controls

The available controls are those in the Toolbox in Figure 11.7. The arrow at the
top left is used only for pointing. The rest, starting with the A and going from left
to right, have the following generic names:2

● First row—Label, TextBox, ComboBox, ListBox
● Second row—CheckBox, OptionButton, ToggleButton, Frame, CommandButton

Figure 11.6 New User Form

2This list uses the technical single-word names for the controls, such as TextBox (all one word).
Throughout the discussions, I usually revert to less formal names, such as text box.

User Forms 235

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Third row—TabStrip, MultiPage, ScrollBar, SpinButton, Image
● Fourth row—RefEdit

Each of these controls has a certain behavior built into it. Without going into
details, I will simply state that this standard behavior is the behavior you are famil-
iar with from working with dialog boxes in Windows applications. For example, if
there are several option (radio) buttons on a form and you select one of them, the
others are automatically unselected. The following list describes the functionality
of the most frequently used controls.

● CommandButton—used to run subs (the user clicks a button and a sub runs)
● Label—used mainly for explanations and prompts
● TextBox—used to obtain any type of user input (the user types something in

the text box)
● ListBox—lets the user choose one or more items from a list
● ComboBox—similar to a list box, except that the user can type an item that

isn’t on the list in a box
● CheckBox—lets the user check whether an option is desired or not (any or all

of a set of check boxes can be checked)
● OptionButton—often called a radio button, lets the user check which of several

options is desired (only one of a set of option buttons can be checked)
● Frame—usually used to group a related set of options buttons, but can be

used to organize any set of controls into logical groups
● RefEdit—similar to a TextBox control, but used specifically to let the user

select a worksheet cell or range

The controls in Figure 11.7 are the “standard” controls that are available to
everyone who uses Excel. However, there are actually many more controls you
might want to experiment with. To do so, right-click anywhere in the middle of
the Toolbox in Figure 11.7 and select Additional Controls. You will see a fairly
long list. Just check any that look interesting, and they will be added to your
Toolbox. However, don’t expect much help on what these additional controls
do or how they work. You are essentially on your own.

A particularly useful control is the Calendar control. It not only allows you to
put a calendar on a form, but this calendar is smart, so it needs virtually no pro-
gramming on your part. If you add a calendar control to a form, you can find

Figure 11.7 Toolbox

236 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

information about its properties and methods by going to the Object Browser
and viewing the MSACAL library. Check it out. Students love it.

Note about the Calendar control in Excel 2010 and later versions. I was quite
upset to learn, upon trying some of my Excel 2007 applications in Excel 2010, that
the Calendar control was no longer there. In fact, applications I developed in Excel
2007 that contained Calendar controls no longer worked! Fortunately, as I discov-
ered from Web searches (and from similar unhappy programmers), the Calendar
control is still available; it is just not available by default in Excel 2010 and later ver-
sions. You need to install and register it on your computer. Then you can use it, and
any of my applications that contain this control will work in Excel 2010 and later
versions. You can find the necessary files, along with installation instructions, in the
Calendar Control folder of the book files.

However, there is still another “gotcha” with this Calendar control (MSCAL),
at least as of the time of this writing: It doesn’t work with 64-bit versions of Office.
This is stated clearly in a number of Web sites. If you have a 64-bit version of Office
2010 or later, you might try exploring the Web for a 64-bit compatible Calendar
control. The only possibility I found was at http://www.x64bitdownload.com
/downloads/t-64-bit-calendar-activex-control-download-gteojqqn.html, but even it
didn’t show up in the additional controls list in my 64-bit version of Excel 2013.
Maybe we should all follow the advice of a number of Web bloggers: Don’t install
64-bit Office yet, even if you are running 64-bit Windows, because too many things
are still incompatible with it.

Adding Controls to a User Form

To add any control to a form, click the control in the Toolbox and then drag a
shape on the form. That’s all there is to it. Try the following step-by-step exer-
cise, and don’t be afraid to experiment. When you are finished, your form should
appear approximately like the one in Figure 11.8.

Figure 11.8 Controls on Practice User Form

User Forms 237

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Resize the user form (make it wider and taller).
2. Add a command button at the top right. While it is still selected, press the

Ctrl key and drag the button down to make a copy. You will know you are
copying, not moving, when you see a plus sign as you drag. This is the gen-
eral way to copy controls—select them and then drag them with your finger
on the Ctrl key. (If you take your finger off the Ctrl key too early, you will
move, not copy. I make this mistake all the time.)

3. Add a wide label to the left of the command buttons. This is a good place for
explaining what your dialog box does.

4. Add a label (shown as Label2) and a corresponding text box to its right.
A text box typically has a corresponding label that serves as a prompt for
what the user is supposed to enter in the text box.

5. Add a fairly large frame below the text box. Next, add an option button
inside the frame, and make a copy of this option button. Make sure that
both option buttons fit entirely within the frame boundary. You want both
of them to belong to the frame.

6. Drag over the frame to select it, put your finger on the Ctrl key, and drag the
whole thing to the right to make a copy. Note that you get not only a new
frame, but also a new set of option buttons. The option buttons in a frame
are essentially part of the frame, so when you copy the frame, you also copy
the option buttons. In addition, the option buttons in any frame are a logical
set in the sense that only one button in each frame can be checked. For
example, the top button in the left frame could be checked, and the bottom
button in the right frame could be checked. If option buttons are not inside
frames, then only one option button on the whole form can be checked.

7. Add a check box at the lower left and make a copy of it to its right. Any
number of these can be checked, including none of them.

8. Add a list box at the bottom right. No list appears yet; you will add one later.
9. Resize and align the controls to make the form visually appealing. This is quite

easy, if a bit tedious. Just experiment with the menu items under the Format
menu, such as Format → Align and Format → Make Same Size. The key is
that you can drag over several controls to select them. The selected controls
are then treated as a group for the purpose of aligning and resizing. The first
one selected is the one that the others are aligned or resized to. (It is the one
with the white handles; the others have black handles.)

When you design a form in an application that others will use, keep in mind
that users tend to be very critical of design flaws. If your application is complex
and does a lot great things, users still might complain that a set of radio buttons
aren’t quite aligned with one another. In fact, they might not trust your entire
application if they aren’t impressed with the design. So spend some time making
your forms look professional. Probably the best advice is to mimic dialog boxes
you see in various Microsoft applications.

11.4 Setting Properties of Controls

The user form in Figure 11.8 doesn’t do anything yet. In fact, it isn’t even clear
what it is supposed to do. You can fix the latter problem by setting some properties

238 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of the controls. You do this in the Properties window. (If the Property window
isn’t visible, usually right below the Project Explorer window, you can make it visi-
ble from the View menu in the VBE or by clicking on the “hand” button on the
Standard toolbar.) Like Excel ranges, worksheets, and workbooks, controls are
objects with properties, and these are listed in the Properties window. The items
in the Properties window change depending on which control is selected, because
different types of controls have different sets of properties. Figure 11.9 shows the
Properties window for the user form itself. (To select the user form, click anywhere
on its gray area where there are no controls.) The names of the properties are listed
on the left, and their values are listed on the right.

Microsoft provides a bewildering number of properties for user forms and
controls. Fortunately, you can ignore most properties and concentrate on the
few you need to change. For example, you will typically want to change the
Name and Caption properties of a user form. The Name property is used in general
for referring to the user form (or any control) in VBA code. The default names
are generic, such as UserForm1, CommandButton1, and so on. It is typically a
good idea to change the Name property only if you plan to refer to the object in
VBA code; otherwise, you can keep the default name. The Caption property
is what you see on the screen. The caption of the form itself appears in the title
bar. For now, go through the following steps to change certain properties. (See
Figure 11.10 for the finished user form.) For each step, select the control first
(click it), so that the Properties window shows the properties for that control.

Before going through these steps, I want to make a point about naming
user forms and controls. In Chapter 5, I mentioned several conventions for
naming variables, and I said I favored the camel convention, with names like
unitCost. I have been using this convention consistently ever since, and I use it in
the rest of the book. However, for user forms and controls, I favor the Hungarian
convention, which uses short prefixes in the name to indicate what type of control
it is. I adopt this convention because it is used by most programmers. Here are
some common prefixes: frm for user form, lbl for label, cmd for command button
(some people prefer btn), txt for text box, lb for list box, cbo for combo box, opt
for option button, chk for check box, and rfe for ref edit. These prefixes make

Figure 11.9 Properties Window for User Form

User Forms 239

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

your code much more readable. They not only distinguish one type of control
from another, but perhaps more important, they distinguish controls from vari-
ables like unitCost.

1. User form. Change its Name property to frmInputs and its Caption property
to Product Inputs.

2. Top command button. Change its Name property to cmdOK, change its Cap-
tion property to OK, and change its Default property (yes, it is listed as Default in
the left pane of the Properties window) to True. This Default setting gives the
OK button the functionality you expect once the form is operational—you can
click it or press the Enter key to accomplish the same thing.

3. Bottom command button. Change its Name property to cmdCancel, change
its Caption property to Cancel, and change its Cancel property to True. The
effect of this latter property is to allow the user to press the Esc key instead
of clicking on the Cancel button. Again, this is standard behavior in Windows
dialog boxes.

4. Top label. Usually, the only property you will change for a label is its Caption
property—the text that appears in the label. You can do this through the
Properties window, or you can click the label once to select it and then
again to put a dark border around it.3 This allows you to type the label
directly on the form. For this label, enter the caption This is for practice only,
to see how controls on user forms work.

5. Label to the left of the text box. Change its Caption property to Product.

Figure 11.10 User Form with Changed Properties

3 If you accidentally double-click the label or any other controls during the design stage, you will
open the event code window, which is discussed later in the chapter. To get back to the user form
design, select the View → Object menu item.

240 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Text box. Change the Name property to txtProduct.
7. Frames. Change their Caption properties to Region of Origin and Shipping

Method, respectively. These captions appear at the top borders of the frames.
8. Option buttons. Change the Name properties of the option buttons in

the left frame to optEast and optWest, and change their Caption properties
to East and West. These captions are the text you see next to the buttons.
Similarly, change the Name properties of the other two option buttons to
optTrain and optTruck, and change their Caption properties to Train and Truck.

9. Check boxes. These are similar to option buttons. Change their Name
properties to chkPerish and chkFragile, and change their Caption properties to
Perishable and Fragile.

10. List box. Change its Name property to lbCustomer. A list box does not have
a Caption property, so add a label control above it with the caption Customers.
Otherwise, the user will not know what the list is for. There is another property
you should be aware of for list boxes: the MultiSelect property. Its default value is
0-fmMultiSelectSingle. This indicates that the user is allowed to select only one
item from the list. Sometimes you will want the user to be able to select more
than one item from a list. If so, you should select option 2-fmMultiSelectExtended.
(See Figure 11.11.) For now, accept the first (default) option. (The middle
option is virtually never used. I have no idea why they even include it.)

Tab Order

There is one final touch you can add to make your user form more professional—
the tab order. You are probably aware that most dialog boxes allow you to move
from one control to another by pressing the Tab key. To give your form this
functionality, all you need to do is change the Tab Index property of each control,
using any ordering you like and starting with index 0. There are two things you
should know about tabbing.

Figure 11.11 MultiSelect Property for List Boxes

User Forms 241

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Any control with the TabStop property set to False cannot be tabbed to. This
is typically the case for labels.

● When there is a frame with embedded controls such as option buttons, you
set the TabIndex for the frame relative to the order of the other controls on
the form, but the tab order for the controls within the frame is set separately.
For example, a frame might have index 6 in the tab order of all controls, but
its two option buttons would have indexes 0 and 1. Essentially, the user first
tabs to the frame and then tabs through the controls inside the frame.

The easiest way to set the tab order is to select the View → Tab Order menu
item. This allows you to move any of the controls up or down in the tab order.
Just remember that if you select View → Tab Order when a frame is selected,
you will see the tab order only for the controls inside that frame.

Testing the Form

Now that you have designed the form, you can see how it will look to the user. To
do this, make sure the user form, not some control on the form, is selected, and
click the Run Sub/UserForm button (the blue triangle button) or press the
F5 key. This displays the user form. It doesn’t do anything yet, but it should at
least look nice. Note that the focus (the cursor location) is set to the control at the
top of the tab order (tab index 0). For example, if you set the tab index of the text
box to 0, the cursor will be in the text box, waiting for the user to type something.
You can see how the tab order works by pressing the Tab key repeatedly. To get
back to design view, click the Close button of the form (the X button at the top
right). Note that you cannot yet close the form by clicking the Cancel button,
because the Cancel button is not yet “wired.” You will remedy this shortly.

11.5 Creating a User Form Template

If you design a lot of forms, you will quickly get tired of always having to design
the same OK and Cancel buttons that appear on most forms. This section illus-
trates a handy shortcut. Open a new workbook and go through the procedure in
the previous two sections to design a user form with an OK and a Cancel button
and having the properties listed earlier in steps 2 and 3. It should look something
like Figure 11.12. Now select the File → Export File menu item, and save the
form under a name such as OK_Cancel.frm in some convenient folder.4 Later
on, whenever you want a user form with ready-made OK and Cancel buttons,
select the File → Import File menu item and open the OK_Cancel.frm file.
This can save you about a minute each time you design a form.

4You will note that this also saves a file called OK_Cancel.frx in your folder. You don’t need to be
concerned about this file, except that if you ever move the .frm file to a different folder, you should
also move the .frx file to the same folder.

242 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.6 Writing Event Handlers

Much of Windows programming is built around events, where an event occurs
whenever the user does something. This could mean clicking a button, entering
text in a text box, checking an option button, selecting a worksheet, right-
clicking a cell, mousing over a cell—in short, doing just about anything. Each of
these events has a built-in event handler. This is a sub where you can add code
so that appropriate actions are taken when the event occurs. These subs are
always available—if you want the program to respond to certain events. Of
course, there are many events that you don’t want to bother responding to. For
example, you could respond to the event where the mouse is dragged over a com-
mand button, but you probably have no reason to do so. In this case, you simply
ignore the event. On the other hand, there are certain events you do want to
respond to. For these, you have to write the appropriate event handler. This sec-
tion illustrates how to do this in the context of user forms.

First, you have to understand where the event handler is placed. Also, you
have to understand naming conventions. All of the VBA code to this point
has been placed in modules, which are inserted into a project with the Insert →

Module menu item.5 Event handlers are not placed in these modules. Instead,
they are placed in a user form’s code window. To get to a user form’s code
window, make sure you are viewing the form’s design window, and select the
View → Code menu item. In general, the View → Code and View → Object
menu items toggle between the form’s design and its code window. There are
also two handy buttons at the top left of the Project Explorer for toggling
between code and design (see Figure 11.13), and if you prefer keystrokes, the
F7 and Shift-F7 keys do the same thing.

Another way to get from the design window to the code window is to
double-click a control. (You might already have experienced this by accident.)
This not only opens the code window, but it inserts a “stub” for the event han-
dler. For example, by double-clicking the OK button in design view, the code
window opens and the following stub is inserted:

Figure 11.12 User Form Template

5There was one exception, where you learned to create an event handler, the Workbook_Open sub,
behind the ThisWorkbook object.

User Forms 243

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub cmdOK_Click()
End Sub

Each control has many such subs available. The sub names all start with the
name of the control, followed by an underscore and an event type. The one you
get by double-clicking the control depends on which event is the default event
for that control. To understand this better, get into the code window for the
form you created in Section 11.3. You will see two dropdown lists at the top of
the window. The one on the left lists all controls on the form, including the
form itself, as shown in Figure 11.14. Select any of these and then look at the
dropdown list on the right. It lists all events the selected control can respond to.
Figure 11.15 illustrates this list for a command button.

If you double-click any of the items in the list in Figure 11.15, you get a sub
into which you can write code. For example, if you double-click the MouseUp
item, you get the following sub:

Private Sub cmdOK_MouseUp(ByVal Button As Integer, ByVal Shift As Integer, _
ByVal X As Single, ByVal Y As Single)

End Sub

Figure 11.13 Buttons for Toggling Between Code and Design

Figure 11.14 List of Controls

244 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You have no choice over the format of the Sub line. The sub must be named
as shown (control name, underscore, event type), and it must contain any argu-
ments that are given. But how would you ever know what this sub responds to
(what is a MouseUp event, anyway?), and how would you know what the
arguments are all about? The best way is to consult the Object Browser. Try
it out. Open the Object Browser and select the MSForms library. This library
provides help for all objects in user forms. (It appears in the list of libraries only
if you have inserted a user form.) Specifically, it provides a list of controls on
the left and their properties, methods, and events on the right, as shown in
Figure 11.16. The events are designated by lightning icons. By selecting any
of these and clicking the question mark button, you can get plenty of help.

This information about getting help works for most controls, but not for the
RefEdit control, the one that allows a user to select a cell or a range. For some
reason, there is no information about the RefEdit control in the MSForms library,
evidently because it is not part of that library. Instead, it is in its own RefEdit
library, with itself as the only member and with virtually no online help. If
you want to use RefEdit controls, your best bet is to perform a Web search for
information about them—or experiment with them.6

In general, you need to decide which events you want to respond to
with code. This chapter illustrates the ones that are used most often for the
applications in later chapters, but you should realize that the floodgates are
wide open—you can respond to just about any action the user takes. This can be
bewildering at first, but it is the reason Windows programming is so powerful.
The following example illustrates some possibilities.

Figure 11.15 List of Events for a Command Button

6The RefEdit control is indeed strange—and not totally trustworthy—although I still use it a lot. To
see its library, you need to check Ref Edit Control under Tools → References. Then you can see a
list of its properties and methods in the Object Browser, but without any online help. Strangely, you
do not need to set this reference to actually use a RefEdit control on your form. It suffices to have the
default reference to the MSForms library, even though the RefEdit control doesn’t show up in its list.
A programming colleague at Palisade told me that they distrust the RefEdit control so much that they
discontinued using it and developed their own version instead.

User Forms 245

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXAMPLE 11.1

Consider the dialog box in Figure 11.17. (See the file StatPro Location
Form.xlsm.) It gives the user three choices of where to place results from some
analysis—to the right of a data set, on a new worksheet, or in a selected cell.7

The three option buttons are named optToRight, optNewSheet, and optCell. If the
user chooses the second option, the text box txtNewSheet next to this option is
enabled so that the user can enter the name of the new worksheet. Otherwise,
this text box is disabled. Similarly, if the user chooses the third option, the refedit
control rfeCell next to this option is enabled so that the user can select the desired
cell. Otherwise, this control is disabled.

Figure 11.16 Object Browser

7It is taken from my old StatPro add-in, available free from http://www.kelley.iu.edu/albrightbooks.
However, I no longer support this add-in.

Figure 11.17 Location Dialog Box

246 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following three event handlers implement the desired logic. Each
responds to the Click event of an option button. They set the Enabled property
of the txtNewSheet and rfeCell controls to True or False, and they use the
SetFocus method to select the appropriate control. For example, if the user clicks
the optNewSheet button, the txtNewSheet text box is enabled and selected, and
the rfeCell box is disabled. These subs should give you a taste of the power you
have over your applications.

Private Sub optToRight_Click()
’ Explain this option, and disable the newsheet and cell boxes.
lblExplain.Caption = "The results will " _

& "be placed in newly inserted columns just to the right of " _
& "the data range. Any data already to the right of the " _
& "data range will be moved over."

txtNewSheet.Enabled = False
refCell.Enabled = False

End Sub

Private Sub optNewSheet_Click()
’ Explain this option, enable the newsheet option, set
’ the focus to it, and disable the cell box.
lblExplain.Caption = "BE CAREFUL!!! The output will " _

& "be placed on a new sheet with the name you enter. " _
& "If a sheet with this name exists, " _
& "it will be replaced (and any charts based on it will " _
& "be lost)."

With txtNewSheet
.Enabled = True
.SetFocus

End With
refCell.Enabled = False

End Sub

Private Sub optCell_Click()
’ Explain this option, enable the cell option, set
’ the focus to it, and disable the newsheet box.
lblExplain.Caption = "BE CAREFUL!!! The output will be placed " _

& "in a range starting in the cell you specify. " _
& "The output will overwrite anything already in this range."

txtNewSheet.Enabled = False
With refCell

.Enabled = True

.SetFocus
End With

End Sub

EXAMPLE 11.2

This example illustrates event handlers for the user form you created in sections 11.3
and 11.4. (The completed version is in the file Practice Form.xlsm.) It is
typical of the forms you will see in later chapters. There are two event handlers:
cmdOK_Click and cmdCancel_Click. These two determine what occurs when the
user clicks the OK and Cancel buttons.

User Forms 247

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Overview of the Procedure

If you are used to the event handlers in previous editions of the book, you will
see significant changes in this edition. The changes were made to avoid the
global variables that were used to share information between the main sub and
the event handlers. The code in previous editions still works fine, but the code
used in this edition is more professional. It passes variables as arguments rather
than using global variables. This new procedure is briefly explained here.8 (The
previous files are still available. Their file names all end with “_old”.)

The typical code behind a form begins with a Public function with a name
such as ShowInputsDialog (or any name you prefer). This function takes arguments
that need to be shared by the main sub and the form’s code, usually the user’s
choices from the form, and it returns a Boolean value: False if the user clicks the
Cancel button (or the upper right X button) and True otherwise. A module-level
Boolean variable named cancel keeps track of whether the user cancels or not,
and the ShowInputsDialog function gets its value from this cancel variable.

Besides the usual cmdOK_Click and cmdCancel_Click event handlers, plus any
other event handlers such as you saw in the StatPro Location code, there are typ-
ically three other subs in the form’s code:

● The UserForm_QueryClose event handler, which is used to capture the event
where the user cancels by clicking the upper right X button

● An Initialize sub, which is used to initialize the form for when the user first
sees it

● Optionally, a Boolean Valid function, which checks whether the user’s inputs
are valid and makes the user try again if they aren’t

Finally, everything is started in motion from the main sub with a line such as

If frmInputs.ShowInputsDialog(arguments) Then

This line transfers control to the form’s code, passing the necessary argu-
ments to the form and showing the form to the user. Then if the user doesn’t can-
cel, ShowInputsDialog returns True, and lines after the above If statement process
the user’s inputs in some way. However, if the user does cancel, ShowInputsDialog
returns False, and the program typically ends quietly.

Now this procedure will be illustrated for the Practice Form example.

Main Sub Code

The sub in the module declares the variables that will capture the user’s inputs as
procedure-level variables, not as global variables. Then with the If line, it passes
these to the form’s code. Finally, assuming the user doesn’t cancel, it displays the
user’s choices.

8 I thank my colleague Erik Westwig at Palisade Corp for showing me this better way of passing vari-
ables. As always, the best way to learn programming is from other programmers!

248 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Main()
Dim productIndex As Integer, region As String, shipping As String, _

isPerishable As Boolean, isFragile As Boolean, customer As String
' Display the inputs form to get the user’s inputs,
' but quit if the user clicks the Cancel (or X) button.
If frmInputs.ShowInputsDialog(productIndex, region, _

shipping, isPerishable, isFragile, customer) Then
MsgBox ''The user chose the following:'' &vbCrLf _

& ''Product index: ''&productIndex&vbCrLf _
& ''Region of origin: ''& region &vbCrLf _
& ''Shipping method: ''& shipping &vbCrLf _
& ''Perishable? ''&isPerishable&vbCrLf _
& ''Fragile? ''&isFragile&vbCrLf _
& ''Customer: ''& customer, vbInformation, ''User inputs''

' The rest of the program would then act on the user’s inputs.
End If

End Sub

ShowInputsDialog Function Code

First, note that this function is declared as Public. This is necessary so that it can
be called from the main sub in the module. However, everything else in the form
code, including the module-level cancel variable, is declared as Private. The func-
tion’s arguments match those passed from the main sub. The Initialize sub is called
to fill the form with initial values, and the form is then made visible to the user
with the Me.Show line. (The keyword Me anywhere inside the form code refers
to the form itself.) If the user doesn’t cancel, the user’s inputs are captured from
the values of the form’s controls. Finally, the value of the function is the opposite
of cancel, and the form is unloaded from memory with the line Unload Me.

Private cancel As Boolean

Public Function ShowInputsDialog(productIndex As Integer, region As String, _
shipping As String, isPerishable As Boolean, _
isFragile As Boolean, customer As String) As Boolean

Call Initialize
Me.Show
If Not cancel Then

' Capture the user’s inputs.
productIndex = txtProduct.Text
If optEast.Value Then region=''East'' Else region=''West''
If optTruck.Value Then shipping=''Truck'' Else shipping=''Train''
isPerishable = chkPerish.Value
isFragile = chkFragile
customer = lbCustomer.Value

End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Although more will be said about list boxes later in the chapter, note for now
that the Value property of a list box indicates the item selected—in this case, the
name of the customer. In contrast, the ListIndex property indicates the position in

User Forms 249

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the list of the selected item, starting with 0. For example, it returns 3 if the fourth
item is chosen. If no item is selected, ListIndex is 1.

Hide Versus Unload. There is a subtle difference between hiding and unloading a
form.Whenyouhide a form,using the lineMe.Hide, the formdisappears from the screen,
but it is still in memory. In contrast, when you unload a form, using the line Unload Me,
the formdisappears from the screen and it is deleted frommemory. It is a commonprac-
tice among programmers to hide a form and then unload it, as I will do from nowon.

Initialize Code

For this application, I want the following behavior when the form initially appears:
the East and Truck buttons should be checked, the Perishable box should be
unchecked, the Fragile box should be checked, and the customer list box should
be filled with a list of customers, with the first customer selected. (Of course, the
programmer gets to make these decisions, which the user can then override when
the form appears.) Except for the last requirement, this is easy. Each control has
properties that can be set with VBA code. Also, each type of control has a default
property.9 If you want to set the default property, you don’t even have to list the
property’s name. For example, the Value property is the default property of an
option button and a check box. It is True or False, depending on whether the con-
trol is checked or not. To set this property, you can write

optEast.Value = True

or you can use the shortened version

optEast = True

Similarly, the Value property is the default property of a text box control. It
indicates the value, treated as a string, in the box.10 For example, to make a text
box blank, you can write

txtProduct.Value = ""

or

txtProduct = ""

9The default property for a control has a small blue dot above it in the Object Browser. For example,
if you select OptionButton in the Object Browser and scan its list of properties, you will see a blue dot
above the Value property.
10A text box also has a Text property. From what I can uncover in online help, the Text and Value

properties are virtually identical for a text box. You can use either.

250 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I strongly prefer the first version in each case. Even though the default
property can be omitted, I believe the code is much more readable if the default
property is shown explicitly.

List boxes are trickier. You can populate them in several ways. Two methods are
illustrated here. For both, I assume that there is a worksheet with a list of customers
in a range named Customers. This list might appear as in Figure 11.18, where the
Customers range is A2:A28.

Then the AddItem method of the list box can be used inside a For loop to add
the customers to the list box, one at a time. The only required argument of the
AddItem method is the name of the item to be added.

The completed Initialize code appears below.

Private Sub Initialize()
Dim cell As Range

txtProduct.Text = ""
optEast.Value = True
optTruck.Value = True
chkPerish.Value = False
chkFragile.Value = True

With lbCustomer
For Each cell In Range("Customers")

.AddItem cell.Value
Next
' Select first customer (0-based indexing).
.ListIndex = 0

End With
End Sub

Alternatively, the RowSource property of the list box can be set to Customers
at design time (in the Properties window). This tells VBA to populate the list box

Figure 11.18 Customer List on a Worksheet

1
2
3
4
5
6
7
25
26
27
28

A
Customer list
Adobe
Altaire
Canon
Compaq
Diamond
Epson
Symantec
Toshiba
Visioneer
Xerox

User Forms 251

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

with the list in the named Customers range. As a result, the For Each loop in the
above code would not be necessary.

When the form is shown initially, it will appear as in Figure 11.19. Of course,
the user is then free to make any desired selections.

Valid Function Code

The Valid function checks whether the user’s inputs are valid. In this case, it
checks whether the product index in the text box is a number from 1 to 1000.
Note that by selecting the first customer in the Initialize sub, there is no way for
the user to not select a customer in the list box, so there is no need to include a
check for this in the Valid code.

cmdOK_Click Code

Because the user’s choices are captured in the ShowInputsDialog function, the
only purpose of this event handler is to hide the form and set cancel to
False. However, the Valid function is called first. If it is False, so that the
user’s inputs aren’t valid, the form is not hidden, and the user has to try
again.

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Figure 11.19 Initialized User Form

252 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cmdCancel_Click Code

There is usually not much you want to happen when the user clicks the Cancel
button. This is the user’s way of saying she doesn’t want to continue, so the typi-
cal cmdCancel_Click code is the following.

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

UserForm_QueryClose Code

This code handles the situation where the user cancels by clicking the upper right
X button on the form. (The condition CloseMode ¼ vbFormControlMenu means
that the X is clicked.) It can be used, as is, for virtually all of your forms. It
assumes that there is a Cancel button on your form and that you want the same
behavior for clicking the X as for clicking Cancel.

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

When you run this program and don’t cancel, the result should be a message
something like the one in Figure 11.20.

Figure 11.20 Display of User’s Inputs

User Forms 253

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Note on Extraneous Event Handler Stubs

Don’t be surprised if you find a couple of lines like the following in your event code:

Private Sub txtProduct_Change()
End Sub

I got these by inadvertently double-clicking on the txtProduct text box while in
design mode. This happens frequently. Whenever you do it, you get the beginnings
of an event handler for the control’s default event, in this case the Change event.
This “stub” causes no harm if you leave it in your program, but if you don’t really
need it, you should get rid of it. I wouldn’t be surprised if I have one or two of
these stubs in the files included in this book. If so, I simply forgot to delete them.

11.7 Looping Through the Controls on a User Form

There are many times when you would like to loop through controls of a certain
type to perform some action. For example, you might want to loop through a
group of check boxes, one for each region of the country, to see which of them are
checked. The easiest way to do this would be to form an array of controls and then
go through the array elements with a For loop. Unfortunately, however, VBA does
not allow you to form arrays of controls. An alternative method that is possible is to
use a For Each loop to loop through the Controls collection on the user form. This
loops through all controls—text boxes, labels, command buttons, and so on. If you
want to perform some action on only a particular type of control, such as the text
boxes, you can use the TypeName function, as illustrated in the following code.

Dim ctl As Control
Valid = True
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If ctl.Value = "" Or Not IsDate(ctl) Then

Valid = False
MsgBox "Enter valid dates in the text boxes.", _

vblnformation, "Invalid entry"
ctl.SetFocus
Exit For

End If
End If

Next

Note that ctl is declared as a generic control. The For Each loop goes through
all controls in the collection Me.Controls (where Me is again a reference to the
form itself). The If TypeName(ctl) = "TextBox" statement then checks whether the
control is a text box. (Note that it requires the formal name, TextBox, spelled
exactly as shown.) If it is, certain actions are taken. If it is not, no actions are
taken. This looping method is not as convenient as being able to loop through

254 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

an array of controls, but it is the best method available. (By the way, you will not
get Intellisense when you type ctl and then a period. This is because the different
types of controls have different properties and methods, and with ctl being a generic
control, VBA doesn’t know which list of properties and methods to list.)

11.8 Working with List Boxes

List boxes are among the most useful controls for forms, but they are also tricky
to work with. This section explains methods for populating list boxes and captur-
ing users’ choices.

First, list boxes come in two basic types: single andmulti. The type is determined
by the MultiSelect property. A single-type list box allows the user to select only one
item from the list, whereas a multi-type list box allows the user to select any number
of items (including no items) from the list. Of course, the context of the application
determines which type to use, but you should know how to work with both.

Single List Boxes

If you want a list box to be of the single type, you do not have to change its MultiSelect
property. By default, a list box is of the single type—the MultiSelect setting is
0-fmMultiSelectSingle in the Properties window. For this single type, there are two
properties you are likely to use: the Value property and the ListIndex property. These
properties were illustrated in Example 11.2. For example, if the user selects Compaq
from the list in Figure 11.19, which is the fourth customer in the list, the Value prop-
erty is the string “Compaq” and the ListIndex property is 3. (It is 3, not 4, because
indexing always starts with 0.) If no item is selected, then ListIndex is −1, which can be
used for error checking. (You typically want the user to select some item.)

Multi List Boxes

Multi-type list boxes are slightly more complex. First, you have to set the
MultiSelect property appropriately (the correct setting is 2-fmMultiSelectExtended in
the Properties window) at design time. Second, it no longer makes much sense to
use Value and ListIndex properties. Instead, you need to know which items the user
has selected. You do this with the Selected property of the list box, which acts as a
0-based Boolean array, as illustrated below. You can also take advantage of the
ListCount property, which returns the number of items in the list. The following
sample code is typical. It uses a public Boolean array variable isChosen (passed
from a module) to capture the user’s choices for later use. Because I prefer 1-
based arrays, isChosen starts with index 1. Unfortunately, it is not possible to
make the built-in Selected array 1-based; it is always 0-based. This accounts for
the difference between the indexes of Selected and isChosen in the code.

For i = 1 To lbProducts.ListCount
isChosen(i) = lbProducts.Selected(i - 1)

Next

User Forms 255

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, if there are five items in the list and the user selects the first,
second, and fifth, then isChosen(1), isChosen(2), and isChosen(5) will be True,
and isChosen(3) and isChosen(4) will be False. This information can then be used
in the rest of the program.

There is more to say about list boxes. For example, they can have multi-
column lists. However, this is enough information for now. Other list box
features will be explained as needed in later chapters.

11.9 Modal and Modeless Forms

All of the forms (dialog boxes) you have seen so far, including InputBox and
MsgBox, have been modal. This means that you have to dismiss them (make
them disappear) before you can do any other work in Excel. For example, if a
MsgBox is visible, you can’t select a cell or a chart on a worksheet. Starting with
Excel 2000, it is also possible to create modeless forms, at least for the ones you
create (as opposed to ones built-in like MsgBox and InputBox). You can do this
with the Show method, as in

frmTest.Show vbModeless

Because the built-in constant vbModeless equals 0, the following line also works:

frmTest.Show 0

Although it is possible to show a form as modeless, I can’t think of many
reasons why you would want to do so. I certainly don’t see any reason to do
so for the applications in Part II of the book or any of the smaller applica-
tions in this chapter. However, one possible situation where a modeless
form makes sense is when you want to show a “progress indicator” form.
This can be done with the following steps. (See the file Modeless
Form.xlsm.)

1. Create a form called frmProgress, and change its Caption property to Progress
Indicator. (See Figure 11.21.)

2. Create a label control called lblFixedLength. Change its Caption property
to a blank string—no caption—and change its BackColor property to
white.

3. Create a second label control called lblVariableLength. Change its Caption
property to a blank string and change its BackColor property to blue. Make
sure that the two labels lie on top of one another. You can force this by mak-
ing their Top, Left, Height, and Width properties the same.

4. Type the following code behind the form. This isn’t an event handler, but it
should be placed in the same code window where you would put an event
handler for the form. Essentially, this sub becomes a method of the form, so

256 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that the line Call frmProgress.ChangeWidth(i / 1000000) in the module is
possible.

Public Sub ChangeWidth(pct As Single)
’ Change the width to be a percentage of the fixed width.
lblVariableWidth.Width = pct * lblFixedWidth.Width

’ The following is necessary to allow the operating
’ system to refresh the screen.
DoEvents

End Sub

5. In a module, enter the following code (or something similar depending on
your application):

Sub TestWithProgress()
Dim i As Long, val As Single

frmProgress.Show vbModeless

’ Perform some task that takes awhile.
For i = 1 To 1000000

’ Every so often, change the width of the variable
’ width bar to show the progress
If i Mod 100 = 0 Then

Call frmProgress.ChangeWidth(i / 1000000)
End If

’ Do something that takes at least a little time.
val = Application.NormInv(Rnd, 1000, 100)

Next

’ Now that the task is complete, unload the form.
Unload frmProgress

End Sub

When you run the TestWithProgress sub, the progress indicator will go from
all white to all blue, and then the form will disappear. The DoEvents line in the
ChangeWidth sub is technical, but it is necessary. If you omit it, the dialog
box will appear, but nothing inside it will be visible. The DoEvents line allows
Windows to refresh the screen.

Figure 11.21 Modeless Form with Two Labels

User Forms 257

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11.10 Working with Excel Controls

By now, you are probably used to placing buttons on your worksheets. As described in
Chapter 3, you typically click the upper-left button icon in Figure 11.22, drag
a button on your worksheet, and then assign a macro to the button. The
controls shown in Figure 11.22 are accessed from the Insert dropdown list on the
Developer ribbon in Excel 2007 and later versions. (They were in two separate
toolbars in Excel 2003 and earlier.) These controls have the same purposes and
functionality as those in the VBE, but they are placed directly in Excel worksheets.

The Forms controls at the top of Figure 11.22 are a leftover from older
versions of Excel (version 95 and before). These controls, often referred to
as lightweight controls, are simple and easy to use. Microsoft changed its
Excel programming environment rather dramatically in version 97, but it
decided to keep the Forms controls for backward compatibility—and because
users like them. Fortunately (in my opinion), these Forms controls are still
available.

You don’t need to know any VBA programming to use the Forms controls.
All you need to do is click one of them, drag it on a worksheet, and then right-
click it to change a few properties. The following example is typical of the useful
applications you can create with Forms controls.

EXAMPLE 11.3

The file Home Loan.xlsx is a template for the monthly mortgage payment for a
home loan. (Note that it is an .xlsx file, not an .xlsm file. It contains no
VBA code.) As shown in Figure 11.23, the user enters inputs in cells B3, B4,
and B5, and the monthly payment is calculated in cell B7 with the PMT function.
With the Forms controls in Figure 11.22 visible, drag a spinner control (fourth
from the left in the top row) approximately as in the figure. Then right-click it,
select Format Control, select the Control tab, and set its properties as shown
in Figure 11.24. This says that the spinner’s possible values are integers from
5 to 30, in increments of 1, and that the spinner’s value is stored in cell B5,

Figure 11.22 Excel Controls

258 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the term of the loan. Now click anywhere else on the worksheet to deselect
the spinner. Finally, click the up or down arrows of the spinner and watch what
happens. The term increases or decreases, and the monthly payment changes
accordingly—all with no programming.

Now you should appreciate why Microsoft kept the Forms controls. They are
extremely easy to use, and users like to employ them to automate their work-
sheets, as in this home loan example. However, these controls are not “modern”
controls because they do not respond to events as discussed earlier in this chapter.
Therefore, beginning in version 97 of Excel, Microsoft introduced the ActiveX
controls listed at the bottom of Figure 11.22. They have the same basic function-
ality as the Forms controls, but you implement them differently.

Figure 11.24 Spinner Properties

Figure 11.23 Home Loan Calculation

User Forms 259

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To see how the ActiveX controls work, click the ActiveX spinner control and
drag it to a worksheet. You will get a spinner in design mode. There will be
“handles” around the spinner, and the Design Mode button on the Developer
ribbon will be highlighted, as shown in Figure 11.25 This button toggles a given
control, such as the spinner, in or out of design mode. You need to be in design
mode to “wire up” the control. You need to be out of design mode to make it
work—to make it spin, for example.

In design mode, right-click the control and select Properties from the result-
ing menu to see the Properties window in the VBE, as in Figure 11.26. This
is exactly like the Properties window discussed earlier in this chapter. It is
available for ActiveX controls, but not for Forms controls. You can experiment
with the various properties. For example, you can change the Orientation
property to make the spinner point north-south versus east-west (change it to
0-frmOrientationVertical), or you can change the Min, Max, SmallChange, and Value
properties to mimic the behavior of the spinner used in the home loan example.

Figure 11.25 Design Mode Button Highlighted

Figure 11.26 Spinner Control and Associated Properties Window

260 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Next, close the Properties window and double-click the spinner. You get an
event handler for the Change event of the spinner. (See Figure 11.27.) In general,
you get the event handler for the default event of the control you double-click.
The Change event is the natural default event for a spinner, because you want to
react in some way when the user clicks the up or down arrow of the spinner. You
can also write event handlers for other events associated with the spinner. Just
select any of the other events from the list in Figure 11.27. The chances are that
you won’t have any reason to do so, but you can if you like. The point is that you
have as much control over these ActiveX controls as you have in the controls you
place in user forms in the VBE. The difference is that the controls discussed ear-
lier in this chapter are placed on a user form. The ones from the Developer rib-
bon (Figure 11.22) are placed directly on a worksheet.

To use an ActiveX spinner in the home loan example, proceed as follows.

1. Drag a spinner to the worksheet, exactly as in Figure 11.23.
2. Right-click the spinner, choose Properties from the resulting menu,

and change the Min, Max, SmallChange, and Value properties to 5, 30, 1,
and 15, respectively. If you like, change the Orientation property to
0-frmOrientationVertical. Close the Properties window.

3. Double-click the spinner to get into the code window. Add the following
line to the sub in Figure 11.27. As before, this links the value in cell B5 to
the spinner value.

Range("B5").Value = SpinButton1.Value

4. Get back into Excel, and click the Design Mode button on the controls
toolbar to get out of design mode.

5. Click the spinner to make the term, and hence the monthly payment, change.
6. The spinner is now fully operational. If you want to make any further

changes, click the Design Mode button to get back into design mode.

You might ask where the event handler lives. Go into the VBE and double-
click the worksheet name in Project Explorer where the spinner resides, for exam-
ple, Sheet1. You will see your event handler. In general, the event handlers for
ActiveX controls reside “behind” the sheets they are on—not in modules.

Figure 11.27 Event Handler for Change Event

User Forms 261

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can decide whether you want to use Forms controls or ActiveX
controls—or both. Forms controls are definitely easier to work with, but ActiveX
controls give you a much greater degree of control over their look and behavior.
Besides, once you get used to working with controls in user forms, you should
have no problems with ActiveX controls.11

11.11 Summary

With the material in this chapter, you have taken the first steps to becoming a
real Windows programmer. I have discussed how to design user forms by placing
various types of controls on them, and I have illustrated how to write event
handlers that respond to events triggered by a user’s actions. Once you have
designed a user form and have made any necessary changes in the Properties win-
dow, you need to write the appropriate event handlers in the form’s code window.
Typically, this means capturing user selections that can be analyzed later with the
code in a module. You will see many examples of how this is done in Part II of the
book, most of which employ forms. Finally, I compared the Forms and ActiveX con-
trols you can place directly on your worksheets.

EXERCISES

1. Suppose you have a form with quite a few text boxes and possibly some other
controls. Write an Initialize sub that loops through all controls and, if they are
text boxes, sets their Value property to a blank string.

2. Create a form that contains the usual OK and Cancel buttons. It also should con-
tain two sets of option buttons, each set placed inside a frame. The captions on
the first set should be Baseball, Basketball, and Football. The captions on
the second set should be Watch on TV and Go to games. Then write appropriate
code so that when the program runs, the user sees the form. If the user makes a
couple of choices and clicks OK, he should see a message like, “Your favorite sport
is basketball, and you usually watch on TV.” If the user clicks Cancel or the X but-
ton, the message “Sorry you don’t want to play.” should appear.

3. Repeat the previous exercise, but now make the controls checkboxes, not option
buttons. Change the message in case the user clicks OK to something appropri-
ate, such as, “You like baseball and basketball, and you like to watch on TV
and go to games.” The message should be appropriate, regardless of which check-
boxes are checked (including none being checked).

4. Create a form that contains the usual OK and Cancel buttons. It should also con-
tain a list box of the type where the user is allowed to select only one item from
the list. Write an Initialize sub that populates the list with the states Illinois,
Indiana, Iowa, Maryland, Michigan, Minnesota, Nebraska, New Jersey, Ohio,

11With that said, I must admit that I rarely use ActiveX controls on worksheets. Forms controls are
much easier and usually get the job done.

262 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pennsylvania, and Wisconsin (in this order), and selects Indiana by default. Then
write appropriate code so that when the program runs, the user sees the form. If
she chooses an item from the list and then clicks OK, she should see a message
such as, “You live in Ohio.” If she clicks Cancel or the X button, she should see
the message, “You must not live in a Big Ten state.”

5. Repeat the previous exercise, but now start with the file Big Ten States.xlsx,
which contains a list of the states in a range named States. When you create the
list box, set its RowSource property to States. This will populate the list box auto-
matically, so that you don’t need to do it in an Initialize sub.

6. Repeat Exercise 4, but now change the listbox to the type where the user can
select multiple items from the list. The resulting message for OK should now be
something like, “You have lived in Indiana, Illinois, and Ohio.” For Cancel, it
should be “You have never lived in a Big Ten state.”

7. The file Big Ten Teams.xlsx contains the school and mascot names for the Big
Ten teams in a range named Teams. Create a form that contains the usual OK
and Cancel buttons. It should also contain a list box of the type where the user
is allowed to select only one item from the list. Set its RowSource property to
Teams, so that the list box is automatically populated from the list in the Teams
range. Also, set its ColumnCount property to 2, so that schools and mascots both
appear in the list box, and set its ColumnHeads property to True, so that each col-
umn has an appropriate heading. Write an Initialize sub that selects Indiana by
default. Then write the appropriate code so that when the program runs, the
user sees the form. If he chooses an item from the list and then clicks OK, he
should see a message such as, “You must root for the Indiana Hoosiers.” If he
clicks Cancel or the X button, he should see the message, “You must not be a
Big Ten fan.” (Hint: In online help, look up the BoundColumn property of a list
box and how it controls the Value property.)

8. The file Receivables.xlsx contains data on a company’s receivables from its custo-
mers. Each row corresponds to a particular customer. It indicates the size of
the customer (1 for small, 2 for medium, 3 for large), the number of days the
payment has been outstanding, and the amount of the payment due. Develop
a form that has the usual OK and Cancel buttons, plus two sets of option but-
tons. The first set allows the user to choose the size of the customer (using cap-
tions Small, Medium, and Large), and the second set allows the user to choose the
Days or the Amount column to summarize. Then write appropriate code that
captures these choices and displays a message listing the appropriate average. For
example, if the user chooses Small and Amount, the message box should display
the average amount owed by all small customers.

9. Repeat the preceding exercise, but now use check boxes instead of option buttons.
Now a separate message should be displayed for each combination the user checks.
For example, if the user checks the Small check box and the Days and Amount
check boxes, one message should display the average of Days for the small custo-
mers and another should display the average of Amount for the small customers.

10. The file Stock Returns.xlsx contains stock returns for many large companies.
Each worksheet contains the returns over a five-year period for a certain stock,
with the ticker symbol of the stock used as the worksheet name. Write a sub that

User Forms 263

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

presents the user with a form. This form should have the usual OK and Cancel
buttons, and it should have a list box with a list of all the stock ticker symbols.
The user should be allowed to choose only one stock in the list. The sub should
then display a message box that reports the average monthly return for the
selected stock.

11. Repeat the previous exercise, but now allow the user to select multiple stocks from
the list. Use a For loop to display a separate message box for each selected stock.

12. The file Exceptions Finished.xlsm contains monthly sales totals for a number
of sales regions. Open the file and click the button. It allows you to choose
two colors and two cutoff values. When you click OK, all sales totals below the
minimum cutoff are colored the first color, and all totals above the maximum
cutoff are colored the other color. The VBA in this file has been password-
protected. Your job is to create this same application, starting with the file
Exceptions.xlsx. This file contains only the data. Make sure you do some error
checking on the inputs in the form. Specifically, the text boxes must have numeric
values, the minimum cutoff should not exceed the maximum cutoff, and the two
chosen colors should not be the same. (Note: If you assign a built-in constant like
vbGreen to an Integer variable, you will get an error because the integer value of
vbGreen is outside the Integer range. Assign it instead to a Long variable.)

13. The file Scores Finished.xlsm contains scores for various assignments in three
courses taught by an instructor. Open the file. You will see an Explanation work-
sheet and a button. Click the button to run the program. It shows one form
where you can choose a course and any of six summary measures. When you
click OK, you see a second form where you can choose an assignment for that
course. (Note the list of assignments varies from course to course. Also, the label
at the top includes the course number chosen in the first form.) When you click
OK, a message box is displayed summarizing the scores on that assignment. The
VBA in this file has been password-protected. Your job is to create this same
application, starting with the file Scores.xlsx. This file contains only the data.

14. The file Book Reps Finished.xlsm contains data on a number of sales representa-
tives for a publishing company. The data on each rep include last name, first
name, gender, region of country, age, years of experience, and performance rat-
ing. Open the file and click the button. It presents two forms. The first asks for
the last name and first name of a rep. After the user enters these, the program
searches for a rep with this name. If none is found, a message to this effect is
displayed and the program ends. If the rep is found, a second form is displayed
with the rep’s current characteristics. The user can then change any of these and
click OK. The changes are then reflected in the data range. The VBA in this file
has been password-protected. Your job is to create this same application, starting
with the file Book Reps.xlsx. This file contains only the data.

15. The file Country Form Finished.xlsm contains a form. The user can select any
of three option buttons, named optUSA, optCanada, and optEurope. When any of
these is selected, the labels and text boxes should change appropriately. Specifi-
cally, if the USA button is clicked, the caption of the top label, named lblLoca-
tion, should change to State, and the bottom text box, named txtLanguage,
should be disabled, with English entered in the text box. (Presumably, English

264 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is the common language in the USA.) If the user chooses the Canada option,
txtLanguage should be enabled, with the text box cleared, and the caption of
lblLocation should change to Province. Similarly, if the user chooses the Europe
option, txtLanguage should be enabled, with the text box cleared, and the cap-
tion of lblLocation should change to Country. The code in this file has been
password-protected. Starting with the codeless form in the file Country
Form.xlsm, write event handlers for the Click event of the option buttons to
guarantee this behavior.

16. Open a new workbook and develop a form that asks for a beginning date and an
ending date in text boxes. It should instruct the user (with an appropriate label)
to enter dates from January 1, 1990, to the current date. Create a Valid function
to perform the following error checks: (1) the date boxes should not be blank; (2)
they should contain valid dates (use the IsDate function for this); (3) the first date
shouldn’t be before January 1, 1990; (4) the last date shouldn’t be after the cur-
rent date (use the Date function for this—it returns the current date); and (5) the
first date should be before the last date. If any one of these error checks is not
passed, the form should not be hidden, and the focus should be set to the offend-
ing text box so that the user can try again. If all error checks are passed, the dates
should be displayed in an appropriate message box, such as “You chose the dates
1/1/2000 and 2/2/2002.”

17. Continuing the previous exercise, it might take you several tries to get everything,
especially the error checking, working properly. Dates are tricky! Once you go to
all of this work, you shouldn’t have to do it again. The purpose of this exercise,
therefore, is to write a Public Boolean function called ValidDate that does the
error checking for this type of situation automatically. You could then use this
general sub any time you need it in the future. Structure it as follows. It should
take four arguments: txtDate1 (a text box for the first date), txtDate2 (a text box
for the second date), earliestDate (a Date variable, corresponding to the January
1, 1990 date in the previous exercise), latestDate (a Date variable corresponding
to the current date in the previous exercise). This sub should check for all errors.
If it finds any, it should set the focus to the offending text box and set ValidDate
to False. Otherwise, it should set ValidDate to True. Write this ValidDate function,
which should be placed in a module, and then use it to solve the previous exercise.
(Hint: The code in this exercise will be very similar to the code in the previous
exercise. However, the ValidDate function is now in a module, and there is no
Valid function in the form code. This presents some interesting problems on how
to pass variables, and you can decide the best way to do it—preferably without
global variables. Also, if you try to make a TextBox control the argument of a
function in a module, you can’t just type something like txtDate1 As TextBox.
You must also include a reference to the library that has information about text
boxes. Therefore you must type txtDate1 As MSForms.TextBox. You learn such
details through extensive trial and error.)

18. This chapter has explained only the most frequently used controls: command buttons,
labels, text boxes, option buttons, check boxes, and so on. However, there are a few
others you might want to use. This exercise and the next one let you explore two of
these controls. In this exercise, you can explore the SpinButton control. Open a new

User Forms 265

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workbook, get into the VBE, add a user form, and place a spin button on the form.
You can probably guess the functionality this button should have. If the user clicks the
up arrow, a counter should increase. If the user clicks the down arrow, the counter
should decrease. To operationalize the button, set its Min, Max, SmallChange, and
Value properties to 1, 10, 1, and 5 in the Properties window. This will allow the user to
change the counter from 1 to 10 in increments of 1, with an initial value of 5. But how
would a user know the value of the counter? The trick is to put a text box right below
the spin button andmake the text box’s Value property equal to the spin button’s Value
property (which is the counter). To keep them in sync, write a line of code in the spin
button’s Change event handler that sets the text box’s value equal to the spin button’s
value. Similarly, write an event handler for the text box’s Change event, so that if the
user changes the value in the text box, the spinner’s counter stays in sync with it. Try
it out by running the form (by clicking the blue triangle run button in the VBE).
How can you make sure that the two controls start in sync when the form is first
displayed?

19. Continuing the previous exercise, put a spin button to work on the Car
Loan.xlsx file. This file contains a template for calculating the monthly payment
on a car loan, given the amount financed, the annual interest rate, and the term
of the loan (the number of months to pay). Develop an application around this
template that does the following: (1) It has a button on the worksheet to run a
VaryTerm sub in a module; (2) the VaryTerm sub “shows” a form with the usual
OK and Cancel buttons, a spin button and corresponding text box, and appropri-
ate label(s) that allow(s) the user to choose a term for the loan (allow only multi-
ples of 12, up to 60); and (3) the VaryTerm sub then places the user’s choice of
term in cell B5, which automatically updates the monthly payment.

20. This exercise continues the previous two exercises, but it now asks you to explore
the ScrollBar control. Open a new workbook, get into the VBE, add a user form,
and place a scrollbar on the form. (You can make it vertical or horizontal. Take
your pick.) As you can probably guess, the scrollbar’s Value property indicates
the position of the slider. It can go from the Min value to the Max value. The
SmallChange property indicates the change in the slider when the user clicks one
of the arrows. The LargeChange property indicates the change when the user
clicks somewhere inside the scrollbar. You could proceed as with spin buttons to
place a text box next to the scrollbar that shows the current value of the scrollbar.
However, try another possibility this time. Place labels at the ends of the scrollbar
and around the middle, as illustrated in Figure 11.28. These labels provide guid-
ance for the user and will never change. Now try all of this out on a variation of
the previous exercise, using the same Car Loan.xlsx file. Write a VaryAmount sub
that shows a user form with a scrollbar. The Min, Max, SmallChange, LargeChange,
and Value properties of the scrollbar should be 10000, 50000, 500, 2000, and
30000 (set in the Properties window at design time). The goal is the same as in
the previous exercise, except that now the sensitivity analysis is on the amount
financed. When the form first shows, make the value of the scrollbar whatever
value is in cell B3 of the spreadsheet.

21. The previous two exercises employed a user form with either a spinner or a
scrollbar. In this exercise, don’t use a user form. Instead, obtain the same

266 Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

functionality with controls from the Forms controls on the Developer ribbon.
Then repeat, using ActiveX controls.

22. When you use text boxes, you often do some error checking in the Valid function
to ensure that the user enters valid values. For example, if you ask for a date, then
12/46/1996 is clearly not appropriate. In this case, you typically have code
something like the following:

Valid = False
MsgBox “Please enter a valid date.”,vbExclamation
txtDate.SetFocus

This indicates what was wrong, sets the focus back in the date box, and makes the
user try again. For example, if the user enters 12/46/1996, the cursor will be right
after 1996. You can add an even more professional touch by having your code
highlight the whole 12/46/1996. Then the user can simply start typing to enter a
new date. Create a small application that does this. (Hint: Get into the Object
Browser and check the properties of a TextBox object that start with Sel. Note that
online help in Object Browser is available for controls from the MSForms library,
and this library is in the list only when your project contains a user form.)

23. Open the file Baseball Favorites Finished.xlsm and click the button. The form
should be self-explanatory, but notice what is enabled and what is disabled, and
how this changes as you make selections. For example, you can’t type in the
“Other” text boxes until you choose an “Other below” option. Eventually, make
a choice and click OK to see a resulting message. The code in this finished version
is password-protected. Now open the file Baseball Favorites.xlsm. The form has
already been designed. Your job is to write the code, including the event handlers
for the form—and quite a few are necessary to make sure everything is enabled or
disabled at the appropriate times.

24. You see many Windows and Web applications where a combo box is used with a
prompt. Open the file Combo Box with Prompt Finished.xlsm to see how this
should work. Note that you can highlight the prompt and type over it. However,
this user behavior is unlikely, so the code doesn’t check for it (although you can if
you like). The code in this finished version is password-protected. Try creating it
yourself.

Figure 11.28 Scrollbar with Informational Labels

User Forms 267

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Error Handling

12.1 Introduction

The important topic of debugging was discussed in Chapter 5. You debug to find and
fix the errors in your code. Unfortunately, you have to be concerned about more than
your own errors. The applications you will be developing are typically interactive. An
application displays one or more dialog boxes for the user to fill in, and it then
responds to the user’s inputs with appropriate actions. But what if the user is asked
to enter a percentage as a decimal between 0 and 1, and he enters 25? Or what if a
user is asked for a date and she enters 13/35/2011? Your code should check for
these types of errors that a user might make. VBA will not do it automatically for
you. It is up to you to include the appropriate error-trapping logic.

In addition to watching for inappropriate user inputs, you must be on
the watch for situations where your code performs an action that cannot be
performed in the current context. For example, you might have a line that deletes
a worksheet named Results. But suppose that when this line executes, there is no
worksheet named Results. If you, the programmer, do not include error-trapping
logic, this line will cause your program to crash.

12.2 Error Handling with On Error Statement

This section discusses methods for trapping the types of errors discussed in the pre-
vious paragraph. The most common way to do this is with the On Error statement.
There are several forms of this statement. They all essentially watch for errors and
then respond in some way. The following code is typical.

On Error Resume Next
Application.DisplayAlerts = False
Worksheets("Results").Delete
MsgBox "Now the program can continue."

The objective here is to delete the Results sheet. However, there might not
be a Results sheet, in which case the Delete line will cause a run-time error. The
On Error Resume Next statement says, “If an error is encountered, ignore it and
go on to the next statement.” In this case, if there is no Results sheet, no error
message is displayed, and the MsgBox statement is executed. More specifically,
when you include an On Error Resume Next statement, the program goes into

12

268

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

error-checking mode from that point on. If it comes to a statement that would
lead to an error, it ignores that statement—it doesn’t try to execute it—and goes
on to the next statement.

A variation of this is listed below. If an error is encountered, control still
passes to the next statement, but the default Number property of the built-in Err
object has a nonzero value that an If statement can check for. Actually, each
specific type of error has a particular error code that is stored in the Err object.
For example, this particular error (trying to delete a worksheet that doesn’t exist)
returns error code 9. You can discover this by running the following code to
obtain the message in Figure 12.1. However, unless you plan to do a lot of
programming, you don’t need to learn these error codes. Just remember that
Err.Number is nonzero if an error occurs, and it is 0 if there is no error. (Because
Number is the default property of the Err object, you could write If Err <> 0 rather
than If Err.Number <> 0. The shortened version is often used.)

On Error Resume Next
Application.DisplayAlerts = False
Worksheets("Results").Delete
If Err.Number <> 0 Then MsgBox "The Results worksheet couldn’t be deleted " _

& "because it doesn’t exist. This is error code " & Err.Number

The On Error Resume Next statement is useful when you want to ignore an
“unimportant” error. However, there are some errors that you definitely do not
want to ignore. The following code illustrates a typical method that programmers
use to handle errors.

Sub TryToOpen()
On Error GoTo ErrorHandling
Workbooks.Open "C:\VBABook\Ranges.xlsm"
On Error GoTo 0

' Other statements would go here.
Exit Sub

ErrorHandling:
MsgBox "The Ranges.xlsm file could not be found."

End Sub

Figure 12.1 Error Code Message

Error Handling 269

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The purpose of this sub is to open the Ranges.xlsm file, located in the
VBABook folder on the C drive, and then perform some actions on this file
(designated by the commented line). However, there is always the possibility
that this file does not exist, at least not in the specified location. The On Error
GoTo ErrorHandling line handles this possibility. It says, “Watch for an error. If
an error is encountered, go to the ErrorHandling label farther down in the sub.
Otherwise, continue with the normal sequence of statements.” You can have
any number of labels in a sub, each followed by a colon, and you can give
them any names you like. Each label acts like a bookmark that you can
“GoTo.”1

The Exit Sub statement is necessary in case there is no error. Without it, the
Ranges.xlsm file would be opened and the statements indicated by the commented
line would be executed—so far, so good. But then the MsgBox statement would be
executed, saying that the file couldn’t be found—not exactly what the programmer
has in mind.

If you have an On Error GoTo statement somewhere in a sub, it is active
throughout the entire sub, always monitoring for errors. If you want to turn off
this monitoring, you can use the On Error GoTo 0 statement, as shown in the
above code. This disables any error checking. Admittedly, this line doesn’t make
much sense, and it is undoubtedly left over from the “bad old days” of program-
ming, but it hasn’t been changed yet.

12.3 Handling Inappropriate User Inputs

In addition to On Error statements, you should check explicitly for invalid user
inputs. This is done in most of the cmdOK_Click event handlers in later chapters
to check that the user has entered appropriate values in a user form. A typical
example of this is the following. The dialog box in Figure 12.2 contains two text
boxes that the user must fill in. They are named txtDate1 and txtDate2. There
are several inappropriate inputs that could be given: the boxes could be left
blank, the entries could be invalid dates such as 6/31/2010 (or not dates at all),
or the beginning date could be after the ending date. You hope the user will not
provide any such invalid inputs, but you as a programmer should not leave it to
chance.

The following code uses no error checking. It simply captures the user’s
inputs in the variables begDate and endDate and hopes for the best. If invalid
dates are supplied, there is no telling what might go wrong in the rest of the
program.

1Many programs from a few decades ago contained multiple GoTo statements, resulting in code that
was practically impossible to decipher. GoTo statements are now frowned upon, except in these
special error handling situations. Even here, many programmers try to avoid GoTo statements. For
example, in Microsoft .NET, there is a better error handling structure called Try/Catch that avoids
GoTo statements altogether.

270 Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub cmdOK_Click()
begDate = txtDate1.Value
endDate = txtDate2.Value
Unload Me

End Sub

A much better way is to check for possible invalid dates, as illustrated in the
code below. It goes through all of the controls on the user form and checks
whether they are text boxes. For the text boxes, it checks whether they are blank
or contain invalid dates (with VBA’s very handy IsDate function). In either case, an
error message is displayed, the focus is set to the offending text box, and Valid is set
to False. If these error checks are passed, a later error check is performed to see if
the beginning date is after the ending date. If it is, another error message is dis-
played, the focus is set to the first date box, and Valid is again set to False. As
usual in form code, when Valid is False, the form is not unloaded and the user has
to try again. By the time this form is eventually unloaded, the programmer can be
sure that begDate and endDate contain valid dates.

Private Function Valid() As Boolean
Dim ctl As Control
Dim begDate As Date, endDate As Date

Valid = True
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If ctl.Value = "" Or Not IsDate(ctl.Value) Then

MsgBox "Enter a valid date.", vblnformation, "Invalid entry"
ctl.SetFocus
Valid = False
Exit Function

End If
End If

Next

Figure 12.2 Dialog Box for Dates

Error Handling 271

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

begDate = txtDate1.Value
endDate = txtDate2.Value
If begDate >= endDate Then

MsgBox "The beginning date should be before the ending date.", _
vblnformation, " Invalid dates"

txtDatel .SetFocus
Valid = False

End If
End Function

Writing this error-checking code is not a lot of fun, but it is necessary for any
professional program. It not only prevents the program from accepting invalid
inputs and then proceeding blindly, but it also provides users with helpful error
messages so that they can change their responses appropriately. You might not
be able to check for all conceivable errors, but you should attempt to anticipate
the most likely ones.

Actually, if you want a user to specify dates, there is a simpler and more
foolproof approach. Rather than having the user type dates in a text box, you
can use controls where the user can’t do it wrong. The Calendar control used
in some later chapters is a perfect example. The user sees a calendar and
simply selects a date, so that no error checking is necessary. (Well, you still
might need to check that a “beginning” date is before an “ending” date.) You
also see a lot of applications, especially on the Web, where you choose a
month, day, and year from spinners or lists. Any of these approaches is much
better than having a user type a date in a text box—and very possibly having
them type it wrong.

This idea can be generalized. When you are developing a form to get
user inputs, you should always try to choose the controls that give the user the
smallest chance of making a mistake. This certainly applies to dates, but it
applies in other situations as well. For example, if you want the user to input
the term of a loan, you could use a text box for the term. But a better approach
is to use option (radio) buttons for the distinct possibilities, such as 12, 24,
36, 48, and 60, and select one of these by default (in the Initialize code). Then
there is no possibility that the user can choose an invalid term (or none at all).

12.4 Summary

Error handling is probably no one’s favorite programming topic, but it is nec-
essary if you want to consider yourself a professional programmer. You need
to include code that anticipates things that could go wrong, anything from
an attempt to open a file that doesn’t exist to a user providing an input of
“abc” when asked for a birth date. To write bulletproof code—code that
(almost) never crashes—you have to take an active role in defeating Murphy’s
law: If it can go wrong, it will go wrong. Otherwise, Murphy’s law will
bite you!

272 Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXERCISES

1. Open a new workbook and make sure it has two worksheets in it named Sheet1
and Sheet2. Write a sub that has three lines. The first should be
Application.DisplayAlerts = False. (See section 5.13 to recall what this does.) The
second line should delete Sheet2, and the third should delete Sheet3. What
happens when you run the program? Change your code so that if it tries to delete
a worksheet that doesn’t exist, nothing happens—and no error message appears.

2. Open a new workbook and make sure it has two worksheets named Sheet1
and Sheet2. Write a sub that has three lines. The first should be
Application.DisplayAlerts = False. (See section 5.13 to recall what this does.) The
second line should delete Sheet2, and the third should delete Sheet1. What
happens? The problem is that Excel won’t allow you to delete a worksheet if it is
the only worksheet left. Restore Sheet2. Then add an appropriate On Error GoTo
line and an associated label in your sub to trap for the error. Take an appropriate
action when it occurs. Use a message box to learn the code for this error (from
the Number property of the built-in Err object).

3. Open a new workbook, insert a module, and write a sub that does the following:
(1) it uses an input box to ask the user for the path and name of an Excel file
to open, and (2) it then tries to open the file. Run this sub and enter the name
of a file that you know exists. It should open the file with no problem. Then run
it again and enter a file that you know does not exist. What happens? Rewrite the
sub with the appropriate error-handling capability to take care of this possibility—
and present a “nice” message to the user in either case.

4. The file Shaq.xlsm contains hypothetical data on Shaquille O’Neal’s success from the
free throw line. (In case you are not a basketball fan, Shaq was a notoriously poor
free throw shooter.) For each of several games, it lists the number of free throws
attempted and the number made. It then divides the number made by the number
attempted to calculate his free throw percentage for that game. Unfortunately, this
results in a #DIV/0! error in games where he didn’t take any free throws. The ques-
tion explored here is how you can recognize and react to this cell error in VBA code.
There is already a DisplayPcts sub in this file that goes through each cell in the
“Pct made” column and displays the cell’s value in a message box. Run the sub and
watch how it bombs. Now rewrite the code so that if this error ever occurs, a
message is displayed to the effect that no percentage can be reported because no
free throws were attempted—and no nasty error messages are displayed. Do this by
checking only the cells in column D; don’t check the cells in column B. (Hint: Use
VBA’s IsError function. You can learn how it works in the Object Browser.)

5. Open a new workbook, get into the VBE, insert a user form, add a text box
named txtLastName, and add a Last Name label to its left. This text box is
supposed to capture a person’s last name. Therefore, it should contain alphabeti-
cal characters only. You could perform an error check in a Valid function subrou-
tine, but you might want to check for nonalphabetical characters at the same time
the user is typing the name. You can do this with the Change event for a text box.
In this case, the event handler’s name is txtLastName_Change. This event fires

Error Handling 273

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

each time any change occurs to the contents of the text box, including the inser-
tion of a new character. Write the appropriate code for this event handler. It
should check whether the last character (the one most recently typed) is alphabet-
ical. If not, it should display an appropriate message box telling the user to type
alphabetical characters only, set the focus to the text box, and exit the sub. For
example, if the user types Smi7, it should recognize that the fourth character is
nonalphabetical and respond accordingly.

The following five exercises deal with debugging. Although this is not exactly the
topic of the current chapter, it is still in the spirit of error checking.

6. The file State Sales.xlsm lists sales by some company in a number of states. Each
state has its own worksheet, with the name of the state used as the worksheet
name. There is a module that contains the sub ListStates. The purpose of this
sub is to display a message that lists all of the states. Unfortunately, it has a few
bugs. Find them and correct them.

7. Continuing the previous exercise, the module in State Sales.xlsm contains the
subs StateSearch and FindState. The StateSearch sub should get the name of a
state from the user, call the FindState sub, and then display a message saying
whether that state is one of the worksheets in the workbook. The FindState sub
searches for the state passed to it and returns the Boolean variable isFound,
which should be True if the state is found and False otherwise. Again, these subs
have bugs. Find them and correct them.

8. Continuing Exercise 6 once more, the module in State Sales.xlsm contains the
sub CountSales. The purpose of this sub is to ask the user for a state and a sales
rep. It should then count the number of sales by this sales rep in this state and
report the result in a message box. An On Error statement is supposed to trap for
the error that the given state is not one of the states in the workbook. As you can
see, this sub is in bad shape. The red lines indicate syntax errors. Find and fix all
of the errors, syntax and otherwise.

9. Continuing Exercise 6 again, the module in State Sales.xlsm contains the sub
TotalSales1. The purpose of the sub is to ask the user for a date. Then the total of
all sales in all states up to (and including) this date should be found and displayed in
a message box, with the date and the total suitably formatted. Again, this sub is full
of bugs, including syntax errors. Find and fix all of the errors, syntax and otherwise.

10. Continuing Exercise 6 one last time, the module in State Sales.xlsm contains a
sub TotalSales2. There is also a user form called frmInputs. The purpose of these
is to let the user choose a state and a sales rep from list boxes on the user form.
The TotalSales2 sub should then calculate the total of all sales made by this sales
rep in the selected state and display it in a message box. Before showing the user
form, the TotalSales2 sub creates an array of all states and an array of all sales
reps (in all worksheets). It uses these to populate the list boxes. The logic in the
TotalSales2 sub and the event handlers for the user form is basically correct, but
there are numerous small errors that keep the program from running correctly.
Find all of them and fix them. When you think you have everything fixed and
running correctly, check your total sales (for some state and some rep) manually,
just to make sure you have it correct.

274 Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working with Files and Folders

13.1 Introduction

The focus of this chapter is on working with files and folders, not on manipulating
Excel objects. There are many times when you need to find a file or folder and,
perhaps, manipulate it. For example, you might want to check whether a particular
file exists, or you might want to rename a file in a particular folder. Of course, you
can open Windows Explorer and perform the required file or folder operations
there. However, you can also perform these operations with VBA, as discussed in
this chapter. You might also want to work with text files. For example, you might
want to import the contents of a text file into Excel, or you might want to write
the contents of an Excel worksheet into a text file for use by some other program.
These text file operations can also be performed with VBA and are discussed here.

13.2 Exercise

The following exercise requires the types of file operations that you will learn in
this chapter.

Exercise 13.1 Retrieving SoftBed Sales Data

The SoftBed Company has historical sales data for several of its customers for the years
2014 and 2015. They are stored in tab-delimited text files in various folders. Each file
has a name such as Clark Sales Q1 2014.txt, which identifies the customer name, the
quarter, and the year. Each file is structured as shown in Figure 13.1. The first row
identifies product numbers, such as P3254, and the other rows list the date and sales
figures. Your boss would like you to write a program that asks for a customer name, a
product code, a quarter, and a year; imports the appropriate data from the text file into
an Excel workbook; and saves it under a name such as Clark Sales P3254 Q3
2014.xlsx. The resulting file should be structured as shown in Figure 13.2. You can
assume that all text files for a given customer are in the same folder, but you don’t
know which folders contain which files. Therefore, you should present your boss with
a dialog box for finding the appropriate folder for any selected customer.

This exercise illustrates the type of operations discussed in this chapter. First,
it requires you to obtain a dialog box for finding the appropriate folder. Next, it
requires you to find the appropriate files in the selected folder. Finally, it requires
you to import the appropriate data into Excel format. By the time you have read

13

275

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

this chapter, you will be able to perform all of these operations in VBA. Eventu-
ally, you should try doing this application on your own, but if you want to see the
finished application, it is in the file Sales Import Finished.xlsm.1

Figure 13.1 Text File Data

Figure 13.2 Imported Data in Excel File

1 If you used the second edition of this book, you will see significant differences in the code for this
example. In the second edition, I used the very handy FileSearch object to find a file with a given
name and given content. For reasons that are not clear, Microsoft not only discontinued FileSearch
in Office 2007, but it broke all existing applications like mine that used FileSearch. The current appli-
cation is forced to use a workaround: the VB Script FileSystemObject object. I will explain it in
Section 13.4.

276 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.3 Dialog Boxes for File Operations

Creating dialog boxes can be fun and rewarding, but it definitely takes time. Fortu-
nately, VBA includes a few built-in dialog boxes that you can use directly. You are
already well aware of two of these: InputBox and MsgBox. Neither is a very fancy way
of getting a user input or displaying output, but they are certainly easy to use. This sec-
tion briefly describes several additional built-in dialog boxes you can use for perform-
ing common file or folder operations. The first of these, FileDialog, is the most
powerful. It is actually part of the Office object model, so that it can be used in any
Office VBA application. However, it was introduced only in Excel XP (version 2002).
Therefore, for backward compatibility, I also discuss two methods of the Application
object that were available before Excel XP and are still available: GetOpenFileName
and GetSaveAsFileName. (You can find help for them in the Object Browser by
going to the Excel library and searching for methods of the Application object.)

FileDialog

The FileDialog object provides file functionality similar to that of the standard
Open and Save As dialog boxes in all Microsoft Office applications. With these
dialog boxes, users can easily specify the files and folders they wish to use. There
are actually four versions of FileDialog specified by the following constants (where
mso stands for Microsoft Office):

● msoFileDialogOpen—lets the user select one or more files that can then be
opened in Excel with the Execute method

● msoFileDialogSaveAs—lets the user select a pathname that the current file can
be saved as using the Execute method

● msoFileDialogFilePicker—lets the user select one or more files that are stored
in the SelectedItems collection

● msoFileDialogFolderPicker—lets the user select a folder that is stored in the
Selectedltems collection (as item 1)

The following OpenFiles sub is typical. (This sub and the others in this section
are in the FileDialog Examples.xlsm file.) It allows a user to select one or more
files and then open each file selected. Note that fd is first declared as an
Office.FileDialog object. It is then Set to an Application.FileDialog of type msoFile-
DialogOpen. The Show method opens the familiar File Open dialog box in
Figure 13.3, at which time the user can select one or more files in the usual way.
The Show method returns True or False depending on whether the user clicks Open
or Cancel in the dialog box. If the user clicks Open, the Execute method opens each
of the selected files in Excel. (If the user selects a file type such as a .docx file that
Excel doesn’t recognize, an error occurs.) If the user clicks Cancel, the sub is exited
quietly. Note that the files the user selects are in the SelectedItems collection, and a
typical file in this collectionmust be declared as Variant, not as String.

Sub OpenFiles()
Dim fd As Office.FileDialog
Dim file As Variant
Dim notCancel As Boolean

Working with Files and Folders 277

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' This lets you select one or more files, and it
' tries to open them in Excel. Strange things can happen
' if the selected files aren’t files that Excel can read.
Set fd = Application.FileDialog(msoFileDialogOpen)
With fd

notCancel = .Show
If notCancel Then

For Each file In .SelectedItems
.Execute

Next
End If

End With
End Sub

The following SaveFileAs sub allows the user to save the file that contains the
code in a selected folder with a specified name. It opens the usual File Save As
dialog box seen in Figure 13.4, and, unless the user clicks Cancel, it saves the
file with the Execute method.

Sub SaveFileAs()
Dim fd As Office.FileDialog
Dim notCancel As Boolean

' This lets you save the current file under
' a different name and/or location.
Set fd = Application.FileDialog(msoFileDialogSaveAs)
With fd

notCancel = .Show
If notCancel Then

.Execute
End If

End With
End Sub

Figure 13.3 File Open Dialog Box

278 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The msoFileDialogFolderPicker version of FileDialog is especially useful. The
following FolderPicker sub allows the user to select a folder from the dialog box
in Figure 13.5, and, unless the user clicks Cancel, stores it as Selectedltems(1).
Based on the folder chosen in the figure, the message in Figure 13.6 is shown.

Sub FolderPicker()
Dim fd As Office.FileDialog
Dim path As String
Dim notCancel As Boolean

' This lets you select a folder. It gives you access to
' the path name of the selected folder.
Set fd = Application.FileDialog(msoFileDialogFolderPicker)
With fd

notCancel = .Show
If notCancel Then

path = .SelectedItems(1)
MsgBox "The selected folder is " & path, vbInformation

End If
End With

End Sub

The msoFilePicker option is similar to the msoFolderPicker option, except that
the user can select multiple files, not just a single folder. All selected files are stored
in the SelectedItems collection and can be looped through with a For Each construc-
tion, exactly as in the earlier FileOpen sub.

Figure 13.4 File Save Dialog Box

Working with Files and Folders 279

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GetOpenFileName Method2

The GetOpenFileName method displays the usual Open dialog box you see when
you click the Open button in Excel. Although there are a number of optional
arguments for this method (see online help), you can call it without any argu-
ments, as in the following line:

2 If you are running Excel XP (version 2002) or a more recent version, you can skip the rest of this
section, because FileDialog is superior to the GetOpenFileName and GetSaveAsFileName methods. How-
ever, you can still use these “old” methods if you like.

Figure 13.5 Folder Picker Dialog Box

Figure 13.6 Selected Folder

280 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Application.GetOpenFileName

The user then sees the typical Open dialog box, such as in Figure 13.7, and he
can maneuver around in it in the usual way to find the file he wants to open.

However, the behavior is not quite what you might expect. If the user
selects a file and then clicks Open, the selected file is not opened. Instead, the
GetOpenFileName method returns the file name of the selected file as a string.
Therefore, the typical way you would use this method is illustrated in the fol-
lowing code lines.

Dim fileToOpen As String
fileToOpen = Application.GetOpenFilename
Workbooks.Open fileToOpen

In this case, fileToOpen holds the name of the selected file (actually, the full path
name of this file). The last line actually opens this file in Excel.

GetSaveAsFileName

Similarly, the GetSaveAsFileName method mimics Save As in Excel. It opens the
usual Save As dialog box, as shown in Figure 13.8. Now the user maneuvers to
where she wants to save the file and enters a file name in the File name box.
When she clicks Save, the file is not actually saved. Instead, the full path name of

Figure 13.7 Open Dialog Box

Working with Files and Folders 281

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

her selection is stored as a string. Then an extra line of code is required to actually
save the file. The typical use of this method is illustrated in the following code
lines:

Dim nameToSaveAs As String
nameToSaveAs = Application.GetSaveAsFilename
ActiveWorkbook.SaveAs Filename:=nameToSaveAs

The next-to-last line opens the Save As dialog box and captures the name of the
file to be saved. The last line actually saves the file with this name.

Other Built-in Dialog Boxes

There are many dialog boxes you see when you select various Excel menu items. You
can get to these dialog boxes in VBA with the Dialogs property of the Application
object. The code in Figure 13.9 indicates how to do it. When you type
Application.Dialogs followed by a left paren, you see a list of all available dialog boxes
from Excel—and there are a lot of them. Once you select an available dialog box,
you can then use the Show method to display it. For example, the following line
shows the Page Setup dialog box, at which time the user can make the usual choices
for printing. Eventually, the user will click OK or Cancel. The variable result will be
True (for OK) or False (for Cancel).

Figure 13.8 Save As Dialog Box

282 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

result = Application.Dialogs(xlDialogPageSetup).Show

You might not use these built-in dialog boxes very often in your VBA code.
After all, once the Page Setup (or whatever) dialog box appears, the user is free to
make any choices she likes, and you (the programmer) have no control over her
choices. Nevertheless, you might want to experiment with these built-in dialog
boxes.

13.4 The FileSystemObject Object

There are many times when you might like to write code to check whether a file
exists, rename a file, or other common file operations. In Excel 2003, there was a
very handy object, FileSearch, part of the Office library, that could be used to per-
form file operations easily. I discussed the FileSearch capabilities in the second
edition of this book. Unfortunately, Microsoft discontinued the FileSearch object
in Excel 2007. It is simply gone, and any applications that used it, such as a few
files in the second edition, are now broken—they give an error message when
you try to run them. If you do a Web search for “FileSearch Office 2007,”
you will see that a number of programmers were not very happy about this unfor-
tunate state of affairs. I have no idea why Microsoft did it, but I will offer an
alternative in this section.

This alternative uses a library that has been around for a long time and comes
with Windows, so that you already own it. It is called the Scripting library. In
particular, it contains a FileSystemObject object that has much of the functionality

Figure 13.9 Dialogs Property

Working with Files and Folders 283

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of FileSearch. To use the Scripting library in a VBA project, you must first set a
reference to it. To do so, you select the Tools → References menu item in the
VBE, scroll down the list for Microsoft Scripting Runtime, and check it (see
Figure 13.10). As you can see, its functionality is stored in a file called scrrun.
dll, located somewhere in your Windows folder. Once you set this reference, you
can visit the Object Browser to learn more about the Scripting library. Figure 13.11
shows the objects available, including FileSystemObject, the one used here. As
usual, you can select a property or method of this object and then click the
question mark to get help. Actually, if you click the question mark, you are
taken to a generic help screen, but if you then search for FileSystemObject,
you will get real help.

I will not try to explain all of the functionality of the FileSystemObject object,
but I will show how I used it in the opening example of this chapter. The relevant
part of the code is listed below. (There is other code in the file, but this is the part
relevant for the current discussion.) The declarations section illustrates two ways to
declare the FileSystemObject (or, to be more precise, as explained in Chapter 17,
to create an instance of the FileSystemObject class). You can do it all in one line,
using the New keyword, or you can do it in two lines, where you first declare the
fso variable and then Set it with the CreateObject function. The only use I make of
the fso variable is when I use the FileExists method later on to check whether a file
of a given name exists in a specified folder. The FileExists method returns True or

Figure 13.10 Setting Reference to Scripting Library

284 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

False. If it returns False, I provide a message to this effect and then quit. If it
returns True, I then open the text file and search for the given product code.
With the (now discontinued) FileSearch object, it was possible to perform this lat-
ter search inside the file with a line or two of code. However, the FileSystemObject
object doesn’t have this capability, so the only alternative is to open the text file
and parse through it with the last few lines of code. I will discuss parsing in more
detail in Section 13.6.

Dim fd As Office.FileDialog
Dim fso As New Scripting.FileSystemObject

' The following two lines are an alternative to the
' preceding line for declaring the FileSystemObject.
' You tend to see the following version in online help.
'Dim fso as Scripting.FileSystemObject
'Set fso = CreateObject("Scripting.FileSystemObject")

Figure 13.11 Scripting Library Objects

Working with Files and Folders 285

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Get the user inputs (customer, product, quarter, year).
If frmInputs.ShowInputsDialog(customer, product, year, quarter) Then

' Get the folder where the files are stored.
MsgBox "In the following dialog box, browse for the " _

& "folder where the " & customer & " sales files are stored."
Set fd = Application.FileDialog(msoFileDialogFolderPicker)
With fd

If .Show Then
path = .SelectedItems(1)

Else
Exit Sub

End If
End With

Application.ScreenUpdating = False
With fso

' First check whether there is a customer file in the selected location
' for this quarter and year.
textFile = path & "\" & customer & " Sales Q" & quarter & " " & year & ".txt"
isFound = .FileExists(textFile)
If Not isFound Then

MsgBox "There is no sales file for customer " & customer & _
" in Q" & quarter & " " & year & ".", vbInformation, "No file"

Exit Sub
Else

' File is found, so now open it and search for selected product code.
Open textFile For Input As #1
Line Input #1, dataLine
Call GetProductIndex(dataLine, index, product)

End If
End With

End If

We programmers hate to see our applications broken because functionality
that used to be there is no longer available, but this is exactly what happened
with the FileSearch object. Microsoft must have had a reason for discontinuing
it, but that reason is difficult to locate. Fortunately, most of the same function-
ality is available with the Scripting library’s FileSystemObject.

13.5 A File Renaming Example3

There are probably times when you have many similarly named files in a particular
folder and you would like to rename all of them in some way. For example, if
they have underscores in their names, such as Product_B3211.xlsx, you might
want to replace all underscores by spaces to obtain Product B3211.xlsx. The
file Rename Files.xlsm gives you several options for such renaming. If you want

3In this section of a previous edition, I discussed a considerably more complex file renumbering appli-
cation. That application is still available in the book files with this edition, but a simpler file renaming
application is discussed here. Actually, the example files folder includes a simpler renaming application,
Rename Files Simple Version.xlsm, that you can check out as well.

286 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to rename in other ways, it shouldn’t be difficult to modify the code in this file to
do it the way you want.

When you click the Rename files button in this file, you eventually see the
dialog box in Figure 13.12, where you can choose from one of five renaming
options. Your choice is stored in a variable renameOption, which has possible
values 1 to 5. The RenameFile sub shown below uses this option to rename all
files in a specified folder.

Sub RenameFiles()
Dim renameOption As Integer ' 1 to 5
Dim fd As FileDialog
Dim searchFolder As String
Dim oldName As String, newName As String
Dim nChanges As Integer
Dim period As Integer, i As Integer
Dim char As String, newChar As String

Dim fso As New Scripting.FileSystemObject
Dim srchFolder As Scripting.folder
Dim file As Scripting.file

' Open a dialog box to let user select a folder,
MsgBox "In the next dialog box, select the folder where files to be " _

& "renamed are stored.", vbInformation
Set fd = Application.FileDialog(msoFileDialogFolderPicker)
If fd.Show Then

' Capture the selected folder (as a string).
searchFolder = fd.SelectedItems(1)

Else

Figure 13.12 File Renaming Dialog Box

Working with Files and Folders 287

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' User clicked on Cancel, so end.
Exit Sub

End If

' Get user option on how to rename.
If frmOptions.ShowOptionsDialog(renameOption) Then

' Search for all files of desired type from selected folder.
Set srchFolder = fso.GetFolder(searchFolder)
For Each file In srchFolder.files

oldName = file.Name
Select Case renameOption

Case 1: newName = Replace(oldName, "_", " ")
Case 2: newName = Replace(oldName, " ", "_")
Case 3

newName = Replace(oldName, " ", "")
newName = Replace(newName, "_", "")

Case 4 To 5
If renameOption = 4 Then newChar = " " Else newChar = "_"
' Get position of period before extension.
period = Len(oldName) - InStr(1, StrReverse(oldName), ".") + 1
For i = period − 1 To 2 Step −1

' Check only uppercase characters that don’t already
' have a space or underscore to their left.
char = Mid(oldName, i, 1)
If char >= "A" And char <= "Z" _

And Mid(oldName, i − 1, 1) <> " " _
And Mid(oldName, i − 1, 1) <> "_" Then

oldName = Left(oldName, i − 1) & newChar _
& Right(oldName, Len(oldName) − i + 1)

End If
Next
newName = oldName

End Select
If oldName <> newName Then

file.Name = newName
nChanges = nChanges + 1

End If
Next

Select Case nChanges
Case 0

MsgBox "No files were renamed.", vbInformation
Case 1

MsgBox "one file was renamed successfully.", vbInformation
Case Else

MsgBox nChanges & " files were renamed successfully.", vbInformation
End Select

End If
End Sub

Here are some comments about the code.

● The FileDialog variable fd of the type msoFileDialogFolderPicker is used to ask
the user for the folder to search in.

● The FileSystemObject variable fso is used to get the folder Object variable.
Then a For Each loop goes through each file in this folder. Note how the
generic Object variable file is used in this loop.

288 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● The file object has the Name property, which returns the name of the file (but
not the path to it).

● The strings oldName and newName are then manipulated depending on the
user’s option. Then the line before Next sets the file name to newName.

13.6 Working with Text Files

The last type of file operation discussed in this chapter concerns importing text
from a text file into Excel or exporting Excel data to a text file. It is not uncom-
mon to find data in a text file because this format represents a lowest common
denominator—all you need is NotePad or any other text editor to read a text
file. Usually the extension for a text file is .txt, although .csv (comma-delimited),
.dat, and .prn are also used. When data are stored in a text file, each line typically
includes information about a particular record. This could be information about a
particular order, a particular customer, a particular product, and so on. The indi-
vidual pieces of data in a line, such as first name, last name, address, and so on,
are typically separated with a delimiter character. The most common delimiters
are tabs and commas, although others are sometimes used.

If you look at a line in a tab-delimited text file, it might look like

01-Feb-02 3430 2360 3040

This is a bit misleading. There are four pieces of data in this line, but there is only
a single character between each piece of data—a tab character, or vbTab in VBA. If
you want to import this line into the first four cells of a row in Excel, you must
parse the line into its individual pieces of data. Essentially, you must go through the
line, character by character, searching for vbTab characters. This parsing operation is
at the heart of working with text files. (It is also at the heart of all word processors.)

Importing a Text File into Excel

To import a text file into Excel, perform the following steps.

1. Open the text file for input with the line

Open file For Input As #1

Here, file is declared as String, which by this time has a value such as "C:\My
Files\Sales.txt". You can have several text files open at the same time, in
which case you number them consecutively as #1, #2, and so on.

2. Loop over the lines with the statements

Do Until EOF(1)
Line Input #1, dataLine
' Code for parsing the line

Loop

Working with Files and Folders 289

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This loops until it reaches the end of file (EOF) for input file #1. The first line
inside the loop reads a new line of data and stores it in the string variable
dataLine. Then this line must be parsed appropriately.

3. Close the text file with the line

Close #1

Parsing the line is where most of the work is involved. The following sub is
fairly general.4 (It is stored in the file Parse.xlsm.) It accepts two arguments,
a dataLine to be read and a delimiter character, and it returns two results, the
number of pieces of data and an array of these pieces of data. The comments
spell out the individual steps. Whether you use this sub as is or you write
your own parser, the logic is always the same. You have to go through the
line character by character, searching for the delimiters and the text between
them. (This sub has been written for 1-based indexing.)

Option Explicit

' Note that the indexing for the returnArray array is set up
' for 1-based indexing.

Sub ParseLine(dataLine As String, delimiter As String, _
nValues As Integer, returnArray() As String)

' This sub parses a line of data from the text file into individual pieces of data.
' It returns an array of the pieces of data and number of pieces (in nValues).

Dim i As Integer
Dim char As String
Dim counter As Integer ' counts the pieces of data in the line
Dim currentText As String ' text since last comma

' Counter counts the number of pieces of data in the line.
counter = 1
ReDim returnArray(counter)

' currentText is any piece of data in the line, where the pieces
' are separated by commas.
currentText = ""

' Go through the string a character at a time.
For i = 1 To Len(dataLine)

' Get the character in position i.
char = Mid(dataLine, i, 1)

' Check if the character is a comma or the last character in the string.
If char = delimiter Then

returnArray(counter) = currentText

' Get ready for the next piece of data.
currentText = ""

4See the last exercise in this chapter for a much easier alternative to this parsing sub.

290 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

counter = counter + 1
ReDim Preserve returnArray(counter)

ElseIf i = Len(dataLine) Then
' Capture this last piece of data and return the number of pieces.
currentText = currentText & Mid(dataLine, i, 1)
returnArray(counter) = currentText
nValues = counter

Else
' Add this character to the currentText string.
currentText = currentText & Mid(dataLine, i, 1)

End If
Next i

End Sub

Exporting Excel Data to a Text File

Writing Excel data to a text file is not as common as reading from a text tile, but
it is sometimes useful. The steps required are as follows.

1. Open the text file for output with the line

Open txtFile For Output As #1

Here, txtFile is declared as String, which by this time has a value such as
"C:\Temp\Sales.txt". As with importing, you can have several text files open
at the same time, in which case you number them consecutively as #1, #2, and
so on.

2. Loop over the lines you will be storing. Inside the loop create a line (in the
dataLine variable), and store it with the code

Write #1, dataLine

3. Close the text file with the line

Close #1

In this case there is no parsing. Each dataLine is typically created by reading
cells from an Excel worksheet and separating them with a delimiter. For
example, suppose the Excel file is structured as in Figure 13.13. Then the

Figure 13.13 Excel Data to be Exported

Working with Files and Folders 291

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

following WriteSalesToText sub could be used to store the data in the file
C:\Temp\Sales.txt. (This sub is stored in the file Write Sales.xlsm.)

Sub WriteSalesToText()
Dim txtFile As String
Dim row As Integer, column As Integer
Dim nRows As Integer, nColumns As Integer
Dim dataLine As String

' Substitute the appropriate path and filename in the next line.
txtFile = "C:\Temp\Sales.txt"
Open txtFile For Output As #1

With wsSales.Range("A1")
nRows = Range(.Offset(0, 0), .End(xlDown)).Rows.Count
nColumns = Range(.Offset(0, 0), .End(xlToRight)).Columns.Count
For row = 1 To nRows

' Build data line from data in this row, separated by tabs.
dataLine = ""
For column = 1 To nColumns

dataLine = dataLine & .Cells(row, column).Value
' Don’t add a tab after the last piece of data in the row.
If column < nColumns Then _

dataLine = dataLine & vbTab
Next
' Write this line to the text file.
Write #1, dataLine

Next
End With
Close #1

End Sub

The resulting text file is shown in Figure 13.14. Note that double-quotes are
automatically inserted around each line of text (because each line is considered a
string by VBA). These double-quotes could be a potential nuisance for a pro-
grammer who later intends to import this text data into Excel. The moral is that
you should always check text files before you try to import the data. Text files are
notorious for containing messy data.

Figure 13.14 Resulting Text File

292 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13.7 Summary

Although this chapter is not geared as specifically to Excel operations as the other
chapters, it provides a lot of useful information for dealing with files and folders.
For example, by using the FileDialog object, you can easily let a user specify a
folder. Or by using the FileSystemObject object, you can easily test whether a file
exists in a specific folder. In addition to the file/folder operations you typically
perform in Windows Explorer, this chapter has briefly illustrated how to work
with text files, either for importing or exporting. An example of importing text
data for use in an optimization model appears in Chapter 33.

EXERCISES

1. Write an application that uses a FileDialog object of the msoFileDialogFilePicker
type. It should allow the user to select one or more files, and then it should list
the chosen files in column A of a worksheet. (The worksheet should be in the
same workbook as your code. A typical file name will include the path, such as
C:\My Files\Sales.xlsx.)

2. Write an application that uses a FileDialog object of the msoFileDialogOpen type. It
should allow the user to select a single Excel (.xlsx) file, which should then be
opened in Excel. (Hint: Look up the AllowMultiSelect and Filters properties of the
FileDialog object in the Object Browser.)

3. Write an application that uses a FileDialog object of the msoFileDialogSaveAs type.
After it saves the file in a name chosen by the user, it should display the new file
name in a message box.

4. Write an application that uses a FileDialog object of the msoFileDialogFolderPicker
type. After the user selects a folder, the application should then use a FileSystem-
Object object to find all of the files in that folder (and its subfolders) with exten-
sion .xlsx or .docx, and these files should all be listed in column A of a worksheet.
(The worksheet should be in the same workbook as your code. A typical file
name will include the path, such as C:\My Files\Sales.xlsx.)

5. (Note: I left this exercise from the second edition here to illustrate how much we
are missing by not having FileSearch. There is no easy way to do it! My solution
uses the AltFileSearch object from Codematics, which you have to purchase.
Even with it, there is no easy way to answer the second part of the exercise.)
Write an application that asks the user for an extension, such as .xlsx, and then
uses a FileSearch object to count the number of files on the C drive with this
extension. The count should be displayed in a message box. Try it out on your
own computer, say, with the extension .docx. Then modify the application so
that only files that have been modified during the current month are listed.

6. Write an application that asks the user to pick a folder. The application should
then open all Excel files (.xls or .xlsx) in that folder, if any, with Forecast in the
file name. For example, these would include Forecasting the Weather.xls and
Company Forecasts for March.xlsx.

Working with Files and Folders 293

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Suppose a company has a lot of Excel files for its customers. You can assume that
all files for a given customer are in the same folder, and all of these customer files
begin the customer’s name, such as Davidson_Sales_2010.xlsx. You don’t know
the exact naming convention; you only know that the file begins with the custo-
mer’s name. Write an application that asks for a customer’s name and the folder
where this customer’s files are stored and then lists all of the file names for this
customer in column A of a worksheet. (The worksheet should be in the same
workbook as your code. A typical file name will include the path, such as C:\My
Files\Davidson_Sales_2010.xlsx.)

8. Starting with the same setup as in the previous exercise, suppose that a customer’s
name changes. Create an application that asks for the customer’s old name, new
name, and the folder where this customer’s files are stored, and then renames all
of the files appropriately.

9. Sometimes I renumber entire chapters. For example, Chapter 14 might become
Chapter 17. Then various files for the chapter need to be renumbered. If there
are a lot of files of the form Figure 14_xx.gif, say, they would all need to renum-
bered as Figure 17_xx.gif. Write an application to do this.

10. Use NotePad to create a text (.txt) file that contains one long list of words, where
the individual words are separated by the space character. (In NotePad, use the
Format menu to turn word wrap off, so your text will physically appear in one
long line.) Write a sub that opens this text file, parses the single line with the
space character as the delimiter, returns the number of words in a message box,
returns the number of words with more than five characters in a second message
box, and finally closes the file.

11. The file Revenue Data.xlsx has a single worksheet. This worksheet has headings
in row 1 and revenues for various products on various dates in the remaining
rows. Write a sub that exports these data in tab-delimited format to a text file
that should be named Revenue Data.txt and stored in the same folder as the
Excel file. Once you get the data exported, write another sub that imports
the tab-delimited data back into an Excel file, just like the original Excel file, but
with name Revenue Data l.xlsx. You can create this new file manually, name it,
and make sure it contains only a single worksheet named Revenues, but your
code should open it before doing the importing.

12. The ParseLine sub in section 13.6 is a great exercise in computing logic (which is
why I included it), but it is actually not necessary. The VBA library has a powerful
string function called Split that does the parsing logic for you. Look it up in the
Object Browser and then use it instead of the GetData sub in the Sales Import
Finished.xlsm file to parse the data.

294 Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Importing Data into Excel

from a Database

14.1 Introduction

An important theme throughout this book is that Excel applications often need
to access data. Sometimes the data are obtained from one or more user forms,
and sometimes the data reside in an Excel worksheet, either in the applica-
tion’s workbook or in another Excel file. However, in the corporate world,
the chances are that the data are stored in a relational database, possibly on a
database server. Therefore, applications typically need to import data into
Excel for analysis. This chapter illustrates how to do this with VBA code. For-
tunately, because this is such a common need, Microsoft has developed several
technologies for importing data from relational databases. In fact, an “alphabet
soup” of technologies for importing data has emerged over the past 20 years:
ODBC, DAO, RDO, OLE DB, ADO, ADO.NET, and possibly others that
are currently emerging. This chapter discusses a fairly recent technology that
is available with Excel VBA: ActiveX Data Objects (ADO).1

14.2 Exercise

The Sales Orders.mdb file is an Access database included in the book files.
(Access files created in Access 2007 or later versions have a new .accdb extension.
However, I will continue to use files with the old .mdb extensions here.) As dis-
cussed in the next section, this database includes a number of related tables that
store information about a company’s orders for its products. The structure of
this database appears in Figure 14.1. Specifically, there is a row in the Orders
table for each order taken by the company, there is a row in the Products table
for each product the company sells, and there is a row in the LineItems table for
each line item in each order. For example, if a customer places an order for three
units of product 7 and two units of product 13, there will be a single row in the
Orders table for this order, and there will be two rows in the LineItems table, one
for each of the two products ordered.

14

1A more recent technology is ADO.NET, part of Microsoft’s .NET initiative. Although ADO.NET
can be used to develop VBA applications for Excel, it requires more software than simply Microsoft
Office, so it is not covered here. The “old” ADO works just fine.

295

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The purpose of this exercise is to develop an application where a user can
select a product from a list box in a user form (see Figure 14.2) and then see
details about all orders that include this product (see Figure 14.3, which
shows the first few rows). This exercise requires two uses of the material in
this chapter. It must first query the Products table to populate the list box in
Figure 14.2. Then, once the user selects a product from the list, it must query
the Orders and LineItems tables to obtain the order information for this prod-
uct in Figure 14.3.

As you read through this chapter, you can try to develop this application on
your own. The details will eventually be discussed in Section 14.5. Once you
understand the material in the next two sections—relational databases, Structured
Query Language (SQL), and ADO—you will see that applications such as this
one are not as difficult to develop as you might expect.

Figure 14.1 Structure of Sales Orders Database

Figure 14.2 Dialog Box with List of Products

296 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.3 A Brief Introduction to Relational Databases

The two main purposes of databases are to (1) store data efficiently, and (2)
allow users to request the data they want, in a suitable form. Various forms of
databases have existed, including those that predate computers. Several decades
ago, researchers formalized the relational form of databases that is still the pre-
dominant method of storing data electronically. Many packages have been
developed by various companies to implement relational databases, and many
are in daily use in organizations. Some packages, such as the well-known Micro-
soft Access package, are desktop systems. If you own Microsoft Office (for Win-
dows), then you own Access. It resides on your desktop (or laptop) machine,
and you can create databases as files that reside on your hard drive. Other more
heavy-duty software packages, referred to as relational database management
systems (RDBMS), are server-based. The software and the associated data-
bases are not likely to reside on an individual’s computer, except possibly as a
scaled-down version for testing purposes. Instead, they reside on a server,
where users can access the data through network connections. Three well-
known server-based packages are Microsoft’s SQL Server, Oracle, and IBM’s
DB2—and there are others.

The purpose of this section is to describe the essential ideas behind relational
databases. These ideas are relevant regardless of the software package that imple-
ments them, although I will illustrate the concepts with Microsoft Access so that
you can follow along on your computer.

Tables, Fields, and Records

The essential element of any relational database is a table. A table stores data in a
rectangular array of rows and columns—yes, much like a spreadsheet. In database
terminology, however, the rows are usually called records, and the columns are

Figure 14.3 Information on Orders for Selected Product

Importing Data into Excel from a Database 297

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

usually called fields. If you were storing information about customers in a
table, each field would include some characteristic of a customer, so you
might have fields such as FirstName, LastName, BirthDate, Address, City,
State, Phone, EMailAddress, and possibly others. Any row (record) contains
all of this information for a particular customer. In other words, each row has
to do with a single customer, whereas each field lists a particular characteristic
of the customer. Part of the Customers table from the Sales Orders database is
shown in Figure 14.4.

Many databases consist of a single table. These types of databases are often
called flat files. Suppose you want to store information about all of the books
you read. You might store the title, the author (or authors, one per field), the
year you read it, and whether it is fiction or nonfiction. A single-table database
for such a simple collection of data would probably suffice. (For example, I have a
flat-file database for all the books I have read.)

However, most real-world databases contain multiple tables, sometimes
many tables. These tables are typically related in some way, which leads to the
concept of relational database. In a well-designed relational database, each table
should contain information about a particular entity. For example, in the Sales
Orders database discussed in the previous section, the data center around a com-
pany’s orders for its products. Several tables include: (1) the Customers table,
with information about the customers who place the orders, (2) the Employees
table, with information about the employees who take the orders, (3) the Orders
table, with information about the orders taken, (4) the Products table, with
information about the products the company sells, and (5) the Vendors table,
with information about the company’s suppliers.

Why aren’t all of these data stored in a single table? This is the crucial ques-
tion. Presumably, if a single table were used, each record would have data about a
single order: which customer placed the order, which employee took the order,
when the order was placed, and so on. Now imagine that customer Jim Smith
has placed 100 orders. If the database includes personal information about the
customers, then that information for Jim Smith will be repeated in 100 records
of the single table. This introduces an immense amount of redundancy. Not only
will the size of the database be much larger than necessary, but there will be many
possibilities for errors. First, if you are a data entry person, you will need to enter

Figure 14.4 Customers Table

298 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Jim Smith’s personal data many times, and you are likely to make errors. Second,
what if Jim Smith’s phone number changes? You will then have to search through
all of the records for Jim Smith and change the phone number in each. This
means a lot of work and many chances for errors.

You probably do not need to be convinced that this level of redundancy—
storing a customer’s personal information in multiple places—is a bad idea, but
what is the alternative? The answer is to have a Customers table that stores only
information about customers, with one record per customer. Then if Jim Smith’s
phone number changes, you need to change it in exactly one place—in the single
record for Jim Smith. This sounds like a great idea for avoiding redundancy and
errors, and it is, but it introduces a potential problem. In the Orders table,
where information about orders is stored, how do you know which customers
placed which orders? This question is answered next. It is the key to relational
databases.

Many-to-One Relationships, and Primary and Foreign Keys

Consider the Categories and Products tables in the Sales Orders database. The
Categories table lists all product categories, and the Products table lists informa-
tion about each product, including its category. The relationship between these
tables is called a many-to-one relationship, because each product is in exactly
one category, but each category can contain many products.

The two tables are related by fields called keys. Let’s start with the Categories
table, the “one” side of the many-to-one relationship. It contains a field called a
primary key. A primary key is a unique identifier of the records in the table. In
other words, no two records are allowed to have the same value in the primary
key field. For some entities, there are “natural” primary keys. For example, a
unique identifier for US citizens is their Social Security Number (SSN). For
books, a unique identifier is their ISBN. But even if there is no ready-made
unique identifier, it is always possible to generate one as an autonumber field.
This is a field that numbers the records consecutively—1, 2, 3, and so on—as
the data are entered into the table. If the most recently entered record has auto-
number 347, the next one will have autonumber 348. This guarantees uniqueness
and provides an easy way to create a primary key. The primary key for the Cate-
gories table is an example of an autonumber field named CategoryID.

To relate the Categories and Products table, a foreign key field, also called
CategoryID, is placed in the Products table.2 For example, it turns out that the
category Clothing has CategoryID 3. Therefore, for every product in the Cloth-
ing category, the foreign key value is 3. This clearly indicates that foreign key
fields are not unique. If there are, say, 250 products in the Clothing category,
there will be 250 rows in the Products table with CategoryID equal to 3.

2The field names of the primary key and associated foreign key are often the same, simply to avoid
confusion. However, there is no requirement that they be the same. For example, the primary key
could be named CategoryID and the foreign key could be named CatID.

Importing Data into Excel from a Database 299

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The actual data for these two tables appear in Figures 14.5 and 14.6 (with
the first few rows showing for the Products table). Note how the CategoryID
field in Figure 14.6 allows you to perform a table lookup in Figure 14.5 to find
the category for any given product. Alternatively, you could use the primary key
values in Figure 14.5 to find all products, say, in the Clothing category.

Referential Integrity

An extremely important idea in relational databases is that of keeping the links
between primary and foreign keys valid. The technical term for this is referential
integrity. Again, consider the Clothing category with primary key 3. Referential
integrity could be violated in the following ways:

● The Clothing row in the Categories table could be deleted. Then there
would be a lot of “dangling” products, with links to a category that is no lon-
ger in the database.

● The primary key value for Clothing in the Categories table could be changed
to, say, 9. Then all of the clothing products with foreign keys equal to 3
would be wrong; they should now be 9.

Figure 14.5 Categories Table

Figure 14.6 Products Table

300 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Some product’s foreign key could be changed from 3 to a new value. This
might or might not violate referential integrity. If you realize that this pro-
duct’s category is not Clothing but is instead Accessories, with primary
key 1, then you should change the foreign key to 1. However, if you change
the foreign key to a value such as 15, which is not the primary key for any
category, you will violate referential integrity.

Fortunately, database packages such as Access allow you to check an option
that enforces referential integrity. (See Figure 14.7, the dialog box in Access.)
With this option checked, you are not allowed to inadvertently make a change
that would violate referential integrity. There are usually additional options, such
as cascading deletions. With this option checked, if you delete the Clothing
record in the Categories table, then all of the associated clothing products in the
Products table will also be deleted automatically. For obvious reasons, you want
to be sure you know what you are doing before you check this option.

Many-to-Many Relationships

Not all entities are related in a many-to-one manner. There are also many-to-many
relationships. (In addition, there are one-to-one relationships, but they are less
common, and I will not discuss them here.) A perfect example of a many-to-many
relationship is the relationship between orders and products. Any order can include
several products, and any product can be included in multiple orders.

The way to deal with such relationships again uses primary and foreign keys,
but now an extra table is required. This table is often called a linking table. The
Orders table has primary key OrderID, and the Products table has primary key
ProductID. Then the linking table, which has been named LineItems, has two
foreign keys, OrderID and ProductID. The linking table for this database has
a couple of extra fields, QuotedPrice and QuantityOrdered, but it is often just

Figure 14.7 Dialog Box with Referential Integrity Option

Importing Data into Excel from a Database 301

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a set of foreign keys. There is a row in this linking table for each combination of
order and product. So, for example, if an order is for four products, there will be
four associated rows in the linking table. Or if a product is a part of 25 orders,
there will be 25 associated rows in the linking table. Because of this, linking tables
tend to be tall and narrow.

The linking table allows you to look up information on orders or products.
For example, if you want to know when the product King Cobra Helmet has
been ordered, you look up its ProductID in the Products table, which happens
to be 25. Then you search the ProductID column of the LineItems table for
values of 25 and keep track of the corresponding OrderID values. Then you
look up these latter values in the Orders table to find the order dates.

Many database experts insist that all tables have a primary key. What is the pri-
mary key for the LineItems table? It cannot be OrderID because of duplicates in
this field. For the same reason, it cannot be ProductID. In this case, a combination
of fields, OrderID and ProductID, is used as the primary key. This works fine,
because no two records in the LineItems table have the same combination of
these two fields. The point is that if there is no single field with unique values, it is
usually possible to find a combination of fields that can serve as the primary key.

14.4 A Brief Introduction to SQL

As relational databases became the standard several decades ago, a language called
Structured Query Language, or SQL, was developed to retrieve data from rela-
tional databases. In database terminology, SQL statements are used to query a data-
base. The SQL language, known as “the language of databases,” applies in some
form to all database systems, whether they be Access, SQL Server, Oracle, or others.
If you have worked with Access, you are probably not familiar with SQL because
Access provides a user-friendly graphical interface for developing queries. However,
when you use this interface, an SQL statement is created in the background, and
this SQL statement is used by Access to retrieve the data you want.

Whole books (thick ones at that) have been written on SQL, but you can learn
the essentials of SQL fairly quickly. First, there are several types of SQL statements.
The most common type is called a SELECT query. A SELECT query asks for cer-
tain data from the database. For example, a SELECT statement could be used to
find information on all orders placed after the year 2013. A SELECT statement
allows you to view data; it doesn’t change the data. Other SQL statements allow
you to change the data. These include INSERT, UPDATE, and DELETE
queries. However, this section discusses SELECT queries only.

A SELECT query is analogous to a single sentence with several clauses. There
are only a few possible types of clauses:

● The SELECT clause lists the fields you want data on.
● The FROM clause specifies the table or tables that hold the data you want.
● The WHERE clause lists criteria that you specify. Only the data that meet

these criteria are returned.

302 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● The GROUP BY clause allows you to get subtotals, such as the total revenue
from each order. In this case, you “group by” the orders.3

● The ORDER BY clause allows you to specify sort orders for the data
returned.

Only the SELECT and FROM clauses are necessary. If any of the others are
used, they must be listed in the order just shown.

Single-Table Queries

The simplest SELECT statements are queries from a single table, such as the
information on all customers who live in California. Because all of this informa-
tion resides in the Customers table, the query is called a single-table query.
(See the relationships diagram in Figure 14.8, a copy of Figure 14.1 repeated
here for convenience.) The corresponding SQL statement might look something
like the following:4

SELECT CustFirstName, CustLastName, CustPhoneNumber
FROM Customers
WHERE CustState = ’CA’
ORDER BY CustLastName, CustFirstName

Although this is a single SELECT statement, it is customary to put each clause on
one or more separate lines to improve readability. The SELECT clause lists the
fields you are interested in retrieving. The FROM clause lists the single table that
contains the customer data. The WHERE clause includes a criterion: the custo-
mer’s state should be ‘CA’. Finally, the ORDER BY clause states that data should

3There is also a HAVING clause that can follow a GROUP BY clause, but I won’t discuss it here.
4Case is not important in SQL statements, but it is common, especially when learning the language,
to capitalize keywords such as SELECT. I will do so in this section.

Figure 14.8 Relationships Diagram for Sales Orders Database

Importing Data into Excel from a Database 303

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

be returned alphabetically on last name, and in case of ties, on first name. Note
the single quotes around CA in the WHERE clause. The rules in SQL for Access
are that: (1) single quotes should be placed around literal text, such as CA;
(2) pound signs (#) should be placed around literal dates, such as WHERE
OrderDate > #12/31/2013#; and (3) nothing should placed around numbers,
as in WHERE QuantityOrdered >= 5.

There are many variations of single-table SQL statements. Rather than pres-
ent a long list here, I refer you to the file Sales Order Queries.docx available
with the book. This file presents a number of examples, along with some explana-
tion. I will just mention two variations here. First, you can include calculated
fields in the SELECT clause. Here are two examples:

SELECT QuotedPrice * QuantityOrdered AS ExtendedPrice

and

SELECT CustFirstName & ’ ’ & CustLastName AS CustName

The first example calculates the product of QuotedPrice and Quantity-
Ordered and calls the result ExtendedPrice. Then ExtendedPrice acts just like
any other field. The second example concatenates CustFirstName and CustLast-
Name, with a literal space in between, and calls the result CustName.

The second variation is to use aggregate functions in the SELECT clause.
The aggregate functions available are COUNT, SUM, AVERAGE, MIN, MAX,
and a few others. For example, suppose you want to show the number of line
items and the total amount spent in the order corresponding to OrderID 17.
Then the following SQL statement does the job:

SELECT COUNT(ProductID) AS NumberItems, SUM(QuotedPrice * QuantityOrdered) AS TotalSpent
FROM LineItems
WHERE OrderID = 17

The COUNT function counts the rows in the LineItems table where
OrderID equals 17, and the SUM function sums the products of QuotedPrice
and QuantityOrdered for these line items. For the Sales Orders database, this
query returns a single row with two numbers: 6 and 4834.98.

Often a SELECT statement with aggregate functions is accompanied by a
GROUP BY clause. For example, suppose you want to know how many of the com-
pany’s customers are in each state. Then the following SQL statement is appropriate:

SELECT CustState, COUNT(CustomerID) AS CustomerCount
FROM Customers
GROUP BY CustState

304 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that the SELECT clause includes a mix. There is an individual field
name (CustState) and an aggregate (the COUNT function). In this case, the
rule is that you must GROUP BY each individual field in the list. The result of
this query for the Sales Orders database is shown in Figure 14.9. It shows a
count of customers in each of the four states represented in the database.

Multitable Queries and Joins

One principal goal of relational databases is to separate data into individual, but
related, tables so that data redundancy can be avoided. However, queries often
need to access data from two or more tables. In database terminology, the related
tables must be joined. For example, if you want information on all orders that
include the King Cobra Helmet product, a quick look at the relationships dia-
gram in Figure 14.8 shows that you need data from three tables: Orders, Line-
Items, and Products. The resulting SQL statement might look as follows:

SELECT Orders.OrderDate, LineItems.QuotedPrice, LineItems.QuantityOrdered
FROM (Orders INNER JOIN LineItems ON Orders.OrderID = Lineltems.OrderID)
INNER JOIN Products ON LineItems.ProductID = Products.ProductID
WHERE Products.ProductName = ’King Cobra Helmet’

The middle two lines make up the FROM clause. The basic syntax for joining
two tables is:

Table1 INNER JOIN Table2 ON Table1.KeyField1 = Table2.KeyField2

The two key fields are typically the primary key from one table and the corre-
sponding foreign key from the other table. Note that each field in the above
SQL statement is preceded by a table name and a period, as in
Orders.OrderDate. This avoids ambiguity, in case the same field name is used in
more than one table, and it is a good practice in all multitable queries.

Because this SQL requires a lot of typing, it is common to use aliases (short
nicknames) for tables, as in the following version of the preceding query.

Figure 14.9 Results of GROUP BY Query

Importing Data into Excel from a Database 305

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SELECT O.OrderDate, L.QuotedPrice, L.QuantityOrdered
FROM (Orders O INNER JOIN LineItems L ON O.OrderID = L.OrderID)
INNER JOIN Products P ON L.ProductID = P.ProductID
WHERE P.ProductName = ’King Cobra Helmet’

Here, the aliases O, L, and P are defined in the FROM clause. The rule is that if
table aliases are defined in a FROM clause, they must be used throughout the
entire SQL statement.

One final note about multitable queries is that Access requires parentheses in
the FROM clause, as shown in the preceding query, if more than two tables are
being joined. Essentially, these parentheses indicate that two tables are joined at a
time. If you wanted information on customers in addition to information on
orders and products, the following FROM clause, including the parentheses,
would be relevant.

FROM ((Customers C INNER JOIN Orders O ON C.CustomerID = O.CustomerID)
INNER JOIN LineItems L ON O.OrderID = L.OrderID)
INNER JOIN Products P ON L.ProductID = P.ProductID

Admittedly, the syntax is tricky at first, but the idea is fairly simple. You check
which tables contain the data you need, you consult the relationships diagram,
and you follow the links.

It takes some time to master SQL, but it is time well spent. If you study the
sample queries in the Sales Orders Queries.docx file, you will see that SQL is a
relatively simple language, at least for the majority of common queries.

14.5 ActiveX Data Objects (ADO)

To understand the code in this chapter, you must understand relational databases
and SQL, but you must also understand the way Microsoft enables VBA pro-
grammers to retrieve data from an external database. Its current standard is called
OLE DB. This is a library of code written in another language (C++) that
retrieves data from practically any type of database and transforms the results
into a common row-column format. Because OLE DB is too complex for most
programmers to work with, several technologies, including Data Access Objects
(DAO) and ActiveX Data Objects (ADO), have been developed as a go-
between. Each of these exposes an object model to VBA programmers. DAO
came first, and there are still many corporate applications that use it. Later, Micro-
soft developed ADO. Its object model is “flatter” than DAO’s, meaning that there
are fewer objects to learn. Both of these technologies allow a programmer to write
relatively simple code in VBA to retrieve data from an external database. Because
ADO is both simpler and more “modern,” this chapter focuses entirely on it.

It is important to realize that neither DAO nor ADO is part of the Excel (or Office
or VBA) object model. Therefore, the first step in using either DAO or ADO in your

306 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

VBA code is to set a reference in the VBE. Try it now. Open a blank workbook, get into
the VBE, and select the Tools → References menu item. You will see a long list of
libraries, with a few items at the top checked by default. Now scroll down to theMicro-
soft ActiveX Data Objects x.x Library items. As the technology evolves, newer versions
are added to this list. My computer lists versions 2.0, 2.1, 2.5, 2.6, 2.7, 2.8, and 6.1;
yours might list others. (See Figure 14.10.)5 You can check any of these and click on
OK. Now you have access to the ADO object model. However, to avoid confusion
with other possible libraries, you should refer to ADO objects with the prefix
ADODB, such as ADODB.Connection. (Why ADODB and not simply ADO? I have no
idea.) In fact, once you set a reference to the library and then type ADODB and a period
in your code, you will get help about this library from Intellisense. (Also, once you set
the reference, the Object Browser provides help about the ADODB library.)

Once a reference to ADO is set, you need to create a connection to the data-
base. This requires, at the very least, a reference to the name and location of the
database file and information above the data provider. Each type of database has a
data provider. A data provider is code stored somewhere on your computer that
knows how to deal with a particular type of database. It is analogous to the dri-
vers that are provided for various types of printers. There is a provider for Access,

5New versions of ADO appear with new versions of Windows. The latest version in my list, 6.1, came
with Windows 8. However, older versions work just fine.

Figure 14.10 Setting Reference to ADODB Library

Importing Data into Excel from a Database 307

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Oracle, SQL Server, and other database systems. An older provider for Access is
called Microsoft Jet 4.0 OLE DB Provider. A more recent one is Microsoft.
ACE.OLEDB.12.0, which I will use here. (If this doesn’t work for you, try the
earlier provider.)

Once a connection is formed, the next step is usually to open a recordset
based on an SQL statement. A recordset is a temporary database table (tempo-
rary in the sense that it resides only in memory, not as a file on a hard drive). It
can be an entire table from the database, or it can be the result of a query.

After the recordset is opened, it is easy to go through its records with a Do
loop and retrieve information from any of its fields. A common practice is to use
code such as the following:

With rs
Do Until .EOF

statements
.MoveNext

Loop
End With

Here, rs is a Recordset object variable. One of its properties is EOF (end of file),
and one of its methods is MoveNext. Very simply, these lines tell the program to go
through the rows of the recordset, one at a time, taking some actions in the part called
statements, and quitting when the end of the file is reached. The MoveNext method
moves to the next row of the table. To capture the data in a field named ProductName,
say, a reference to .Fields("ProductName") can be made inside this loop.

If you use a Do loop in this manner, the .MoveNext line is crucial—and easy to
forget. If you forget to include it, as I have done many times, the loop will stay
forever in the first row of the table, and you will be in an infinite loop. Remember
to press Ctrl+Break or Esc to exit the infinite loop if this happens to you.

How to Open a Connection

To open a connection to a database, you first declare a Connection object, as in
the following line:

Dim cn as ADODB.Connection

Here, cn is the name of the Connection object variable—any generic name
could be used—and ADODB indicates that this Connection object comes from the
ADODB library. Second, the line

Set cn = New ADODB.Connection

creates a new instance of a Connection object. Alternatively, these two lines can be
combined into the single line.

308 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim cn as New ADODB.Connection

This single line performs two actions: (1) it declares cn as an
ADODB.Connection object; and (2) it creates a new instance of a Connection
object. We say that it instantiates a Connection object. Whether you use two sep-
arate lines or a single line, the keyword New is required. This is an object-oriented
programming concept (discussed in more detail in Chapter 17). Before you can
work with an object from the ADODB library, you must first create an instance
of one.

Next, the ConnectionString and Provider properties are used to specify information
about the connection (what type of database it is and where it lives), and the Open
method of the Connection object is used to actually open the connection. The next
few lines illustrate how to open the connection to the Sales Orders.mdb file. (Note
that this code resides in an Excel file, so ThisWorkbook.Path refers to the folder where
the Excel file lives. For the connection to succeed, the Access file must be in the same
folder as the Excel file. Alternatively, you could replace ThisWorkbook.Path with the
actual path to the .mdb file, assuming that you know what it is.)

With cn
.ConnectionString = "Data Source=" & ThisWorkbook.Path & "\SalesOrders.mdb"
.Provider = "Microsoft.ACE.OLEDB.12.0"
.Open

End With

The ConnectionString property in the second line must begin with "Data
Source=" and be followed by the path and name of the Access database file. The
Provider property is the name of the data provider for Access. The Open method
opens the connection. Once the data have been obtained, the following line
should eventually be used to close the connection.

cn.Close

How to Open a Recordset

Similarly, a new Recordset object with a generic name such as rs must be declared
and instantiated with the lines

Dim rs As ADODB.Recordset
Set rs = New ADODB.Recordset

or the single line

Dim rs as New ADODB.Recordset

Importing Data into Excel from a Database 309

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It can then be opened with the line

rs.Open SQL, cn

Here, SQL is a string variable that contains an SQL statement. In general, the first
two arguments of a recordset’s Open method are an SQL string (or a table name)
and the Connection object that has already been opened. (There are other
optional arguments, but they are not discussed here.) As with a Connection object,
a Recordset object should eventually be closed with the line

rs.Close

Then the Close method of the Connection object should be called.
Note that Access does not need to be open to do any of this. In fact, Access

doesn’t even need to be installed on your computer. All you require is the Access
database file (the .mdb file) and the knowledge of its location on your hard drive
and its structure (table names and field names). Of course, if you want to create
your own Access database, you do need Access.

On a first reading, this discussion of connections, recordsets, data providers,
and so on can be intimidating. However, the code varies very little from one
application to the next, so there is not as much to learn as you might expect.
Besides, the effort required to learn ADO is well worth it due to the power it pro-
vides for retrieving external data for your Excel applications.

Importing from Other Database Packages

The examples in this book retrieve data only from Access databases. However,
you should be aware that most corporate databases are not stored in Access files
that reside on an employee’s computer. They are typically stored on a database
server—not on a desktop—using either SQL Server, Oracle, or some other server-
based database system.6 Fortunately, ADO can be used with these server-based
database systems as well as with Access. The only differences are in the Connection-
String and Provider properties of the Connection object. For the ConnectionString,
you must specify the server name, the database name, credentials (username and
password), and possibly other information. For the Provider, you must specify the
type of database system—SQL Server, Oracle, or whatever. (Actually, the provider
information can be included as part of the ConnectionString property, as it often is.
Then no Provider property is necessary.)

The credentials in the ConnectionString are particularly important. A company
doesn’t want unauthorized people accessing its corporate data, so it is the job of

6SQL Server is Microsoft’s server-based database system, whereas Oracle is the flagship product of
Oracle Corporation.

310 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the database administrator (DBA) to set up various permissions for company
employees. Then, once you enter your username and password in the Connection-
String, the settings in the database system check whether you have permission to
do what you are trying to do. For example, you might have permission to run
SQL queries that retrieve data from tables in a database, but not to run queries
that change data in tables.

The main point, however, is that once you set the ConnectionString and
Provider properties for a particular database, whatever type of database it might
be, the rest of the ADO code is exactly the same as illustrated in this chapter for
Access databases.7 This is why ADO is so powerful—it applies with very few
changes to all relational database systems.

14.6 Discussion of the Sales Orders Exercise

Now that you know the steps required to use ADO in an Excel VBA application, this
section explains how to create the Sales Orders application described in Section 14.2.
If you want to follow along on your computer, open the file Sales Orders.xlsx, which
contains a template for getting started. Otherwise, you can open the Sales Orders
Finished.xlsm file, which contains the completed application.

The first step is to design and write event handlers for the user form, called
frmProducts, so that it appears as in Figure 14.11 (a copy of Figure 14.2 repeated here
for convenience). This form includes the usual OK and Cancel buttons, as well as a list
box named lbProducts. You should set the list box’s ColumnCount to 2 so that the user
sees both the product ID and the product name. This is not just for cosmetic purposes.
The rest of the application uses both the ProductID and ProductName fields from the
Products table of the database, so they need to be shown in the list box.

7This isn’t quite true. SQL statement syntax varies slightly from one database system to another. A
few of these variations are illustrated in the Sales Orders Queries.docx file.

Figure 14.11 Product Selection Dialog Box

Importing Data into Excel from a Database 311

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The event handlers for this form are listed below. By the time the dialog box
appears, code in the Main and GetOrderInfo subs (shown later) will have filled the
recordset object variable rs with product IDs and product names from the Products
table. The Initialize sub populates the list box with the contents of rs. This is a bit tricky.
According to online help, a multicolumn list box should be populated by setting its List
property to a Variant array. Therefore, a 100 × 2 array, productArray, is first filled by
looping through the rows of the recordset. The first column of the array is filled with
the ProductID field, and the second column is filled with the ProductName field.
(Note that the indexes of rows and columns in a list box necessarily start at 0, not 1.)

The last line of this sub selects the first product in the list by default. Then the
ShowProductsDialog function stores the contents of the selected row of the list box in
the variables productID and productName for use in the Main sub. Recall from Chapter
11 that the selected row of the list box is provided by the ListIndex property.

Private cancel As Boolean

Public Function ShowProductsDialog(cn As ADODB.Connection, _
productID As Integer, productName As String) As Boolean

Call Initialize(cn)
Me.Show
If Not cancel Then

productID = lbProducts.List(lbProducts.ListIndex, 0)
productName = lbProducts.List(lbProducts.ListIndex, 1)

End If
ShowProductsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize(cn As ADODB.Connection)
Dim rs As New ADODB.Recordset
Dim rowCount As Integer, SQL As String
Dim productArray(100, 2) As Variant ' Assume no more than 100 products.

' Populate the two-column list box with items from the recordset.
SQL = "SELECT ProductID, ProductName FROM Products"
rs.Open SQL, cn
rowCount = 0
With rs

Do Until .EOF
productArray(rowCount, 0) = .Fields("ProductID")
productArray(rowCount, 1) = .Fields("ProductName")
rowCount = rowCount + 1
.MoveNext

Loop
End With
lbProducts.List = productArray
lbProducts.ListIndex = 0
rs.Close
Set rs = Nothing

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide

312 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cancel = True
End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

The application’s single module begins by declaring several public variables,
including the Connection object cn and the Recordset object rs. Note that these
objects are both declared and instantiated in single lines of code.

Public cn As New ADODB.Connection
Public rs As New ADODB.Recordset
Public productID As Integer
Public productName As String
Public topCell As Range

The Main sub in the module clears any possible previous results (refer back to
Figure 14.3), opens the connection to the database, shows the form, calls the
GetOrderInfo sub to do the work, and finally closes the connection.

Sub Main()
Dim cn As New ADODB.Connection
Dim productID As Integer
Dim productName As String

' Delete any previous results.
wsOrders.Range("B1") = ""
With wsOrders.Range("A3")
Range(.Offset(1, 0), .Offset(1, 4).End(xlDown)).ClearContents

End With

' Open connection to database.
With cn
.ConnectionString = "Data Source=" & ThisWorkbook.Path & "\Sales Orders.mdb”
.Provider = "Microsoft.ACE.OLEDB.12.0"
.Open

End With

' This is set up so that GetOrderInfo is called only if the user
' doesn’t cancel from the Products form.
If frmProducts.ShowProductsDialog(cn, productID, productName) Then
Call GetOrderInfo(cn, productID, productName)

End If

' Close the connection.
cn.Close
Set cn = Nothing

wsOrders.Range("A2").Select
End Sub

Finally, the GetOrderInfo sub queries the database for information on all
orders that include the selected product. It then uses this data to fill the Orders
worksheet. It begins by putting the selected product’s name in cell Bl. Then it

Importing Data into Excel from a Database 313

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

defines an SQL statement. Note that the required data are stored in two related
tables, Orders and LineItems. (Refer back to Figure 14.8 for table names and
field names.) Therefore, an inner join of these tables is required. (Because the
product ID is known, there is no need to include the Products table in the join.)
To save typing, I use the aliases O and L for the two tables. The SELECT clause
lists the desired fields, including the calculated ExtendedPrice field (price times
quantity). The WHERE clause indicates that results should be returned only for
the selected product. Pay particular attention to the WHERE clause condition.
The variable productID contains the ProductID field’s value for the selected prod-
uct, and this field is a foreign key in the LineItems table. Therefore, the condition
is on this foreign key field. Finally, the ORDER BY clause sorts the returned rows
by OrderDate and then OrderID.

Sub GetOrderInfo(cn As ADODB.Connection, productID As Integer, productName As String)
Dim rs As New ADODB.Recordset
Dim SQL As String
Dim rowCount As Integer
Dim topCell As Range

Range("B1").Value = productName
Set topCell = wsOrders.Range("A3")

' Define SQL statement to get order info for selected product.
SQL = "SELECT O.OrderID, O.OrderDate, L.QuantityOrdered, " _

& "L.QuotedPrice, L.QuantityOrdered * L.QuotedPrice AS ExtendedPrice " _
& "FROM Orders O INNER JOIN LineItems L ON O.OrderID = L.OrderID " _
& "WHERE L.ProductID =" & productID & " " _
& "ORDER BY O.OrderDate, O.OrderID"

' Run the query and use results to fill Orders sheet.
With rs

.Open SQL, cn
rowCount = 0
Do While Not .EOF

rowCount = rowCount + 1
topCell.Offset(rowCount, 0).Value = .Fields("OrderID")
topCell.Offset(rowCount, 1).Value = .Fields("OrderDate")
topCell.Offset(rowCount, 2).Value = .Fields("QuotedPrice")
topCell.Offset(rowCount, 3).Value = .Fields("QuantityOrdered")
topCell.Offset(rowCount, 4).Value = .Fields("ExtendedPrice")
.MoveNext

Loop
.Close

End With
Set rs = Nothing

End Sub

The last half of this sub opens the recordset rs, based on the SQL statement
and the still-open connection, and then loops through its rows to enter the data
from the five fields into the Orders worksheet. All cell references are relative to
cell A3, indicated by the range variable topCell. Once the results have been trans-
ferred to the worksheet, the recordset is closed. Then, in the Main sub, the con-
nection to the database is closed.

314 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When building a fairly long SQL string by string concatenation across several
lines, a common error is to run clauses together. In the above SQL statement,
note the empty set of double quotes at the end of the next-to-last line. I initially
forgot to include this literal space, so the last part of the SQL statement became
something like WHERE L.ProductID=6ORDER BY O.OrderDate, O.OrderID.
This created a syntax error—there must be spaces between the clauses—and it
caused the program to bomb. Unfortunately, this common error can be hard to
locate. The best way is to run the program to this point with a watch on the
SQL variable and then look at the syntax of this variable closely.

Although there are a number of details that you have to get just right to make
this type of application work properly (such as populating the two-column list box
correctly), it is amazing that so much can be accomplished with so little code. As
you see, ADO is not only powerful, but it results in very compact VBA code.

14.7 Summary

As demonstrated throughout this book, the ability to automate Excel with VBA
programs makes you a very valuable employee. Given the importance of corporate
databases in today’s business environment, your value elevates to a whole new
level when you can write programs to import external data into your Excel appli-
cations. Fortunately, a little knowledge of relational databases, SQL, and ADO
goes a long way toward getting you to this level.

EXERCISES

1. Based on the Sales Orders database, write SQL statements to implement the
following queries. Run them in Access to ensure that they work properly.
a. Find the OrderDate for all orders placed by the customer with CustomerID 13.
b. Find the OrderDate for all orders placed by the customer with first name

Mark and last name Rosales.
c. Find the number of orders placed by the customer in part b.
d. Find the ProductName for all products supplied by the vendor with

VendorID 3.
e. Find the ProductName for all products supplied by the vendor Armadillo

Brand.
f. Find the number of products in each product category.
g. Find the total dollar value of all products in each product category. (Dollar

value is RetailPrice times QuantityOnHand.) The results should be grouped
by category. That is, there should be a row in the result for each category.

2. The trickiest part of the Sales Orders application (at least for me) was filling the
two-column list box correctly in the Initialize sub. Here is an alternative. In the
Properties window for the list box, set the RowSource property to ProductList.
Then write code in the Initialize sub to fill a range starting in cell AA1 of the
Orders sheet with the product numbers (column AA) and product names

Importing Data into Excel from a Database 315

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(column AB) from the Products table. Then name the resulting two-column
range ProductList. Now much of the code in the Initialize sub can be omitted
except the last line that sets the ListIndex property to 0.

3. Change the Sales Orders application so that it asks the user for the location and
name of the database file. After all, there is no reason to believe that it resides in
the same folder as the application itself. You could do this with an input box (and
risk having the user spell something wrong), but Excel provides an easier way
with the FileDialog object, as illustrated in Chapter 13 (or the GetOpenFilename
method of the Application object if you prefer). Use either of these to change the
application so that it prompts the user for the name and location of the database
file. Actually, you should probably precede the above line with a MsgBox state-
ment so that the user knows she is being asked to select the file with the data.
Then try the modified application with a renamed version of the .mbd file, stored
in a folder different from the folder containing the Excel application.

4. Develop an application similar to the Sales Orders application that again uses data
from the Sales Orders database. This application should show a user form that
lists the CategoryID and CategoryDescription fields from the Categories table in
a two-column list box. Once the user selects a category, the application should
display all information about the products (all fields in the Products table) for
the selected product category. This information should be placed in a worksheet
called Products.

5. Develop an application similar to the Sales Orders application that again uses data
from the Sales Orders database. This application should show a user form that
lists the CustomerID field and a CustomerName calculated field from the Custo-
mers table in a two-column list box. (The calculated field should be a concatena-
tion of the CustFirstName and CustLastName fields. It should be defined in an
SQL statement.) Once the user selects a customer, the application should display
all information about the orders placed by the selected customer. Specifically, it
should show the OrderDate and TotalCost for each order, sorted by OrderDate.
TotalCost should be a calculated field, the sum over all items in the LineItems
table of QuantityOrdered times QuotedPrice. In other words, for each order,
TotalCost is the total amount the customer spent for the order. This information
should be placed in a worksheet called CustomerOrders.

6. Develop an application that is a combination of the application in the chapter and
the previous problem. Specifically, a userform should show two two-column list
boxes, one for customers (as in the previous problem) and one for products.
When the user selects a customer and a product, the application should display
OrderDate, QuotedPrice, QuantityOrdered, and ExtendedPrice for each order
for the selected product placed by the selected customer.

316 Chapter 14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working with Pivot Tables

and Tables

15.1 Introduction

Excel’s pivot tables and associated pivot charts are among its best features. They
let you view data sets in all sorts of ways. For example, if a data set shows a daily
company’s sales in each state where it has stores, you can easily view sales totals
by month, by state, or by both. Pivot tables are not only useful, but they are
extremely powerful, and they are quite easy to use. All you need to do is drag
and drop to obtain summary results in a matter of seconds. With such a simple
user interface, it might appear that there is no need to manipulate pivot tables
with VBA code, and this is often the case. However, everything you can do man-
ually with pivot tables, you can also do with VBA. This could be particularly use-
ful if your job is to develop an executive information system for your boss, who
wants to obtain results quickly and easily with the click of a button or two. In this
chapter I briefly discuss the manual way of creating and manipulating pivot tables,
just in case you have never been introduced to them, and then I illustrate the pivot
table object model that allows you to create and manipulate pivot tables with VBA.
I also briefly discuss the extension to pivot tables, PowerPivot, introduced in
Excel 2013.

In addition to pivot tables, Microsoft introduced tables in Excel 2007. These
are especially useful for sorting and filtering a data set. Much of the functionality
of tables has been in Excel for years, but it is now more powerful and easier to
use. Interestingly, no new Table object was introduced to the Excel 2007 object
model, but there is a ListObject object for working with tables, and this List-
Object object is not new to Excel 2007. Tables were called lists in previous
versions of Excel, and it was possible to manipulate them with VBA. Now there
are more possibilities, as I discuss briefly in this chapter.

15.2 Working with Pivot Tables Manually

To create a pivot table, you must start with a data set. This data set can reside in an
Excel worksheet or in an external database, such as Access, SQL Server, or Oracle.
For simplicity, I assume in this chapter that the data set resides in an Excel work-
sheet. In that case, it should be in the form shown in Figure 15.1 (with many rows
hidden). This data set contains sales transactions, one per row, for a direct market-
ing company over some period of time. (It is in the Sales Data.xlsx file.) There is

15

317

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

one row for each transaction, and each column contains some attribute of the
transaction. In database terminology, the columns are often called fields.

This is the typical type of data set where pivot tables are useful. There are
some numeric fields, such as NumberOrders and AmountSpent, that you would
like to summarize, and there are categorical fields, such as Age and Gender, that
you would like to break the summary measures down by.

To create a pivot table, select any part of the data range and click the Pivot-
Table button on the Insert ribbon.1 You will see the dialog box in Figure 15.2,

Figure 15.1 Sales Data Set

1

2

3

4

5

6

7

8

999

1000

1001

A B C D E F G H

Age Gender OwnHome Married Salary Catalogs NumberOrders AmountSpent
Young Female No No Low 12 4 $1,508
Middle-aged Female Yes Yes High 18 3 $651
Middle-aged Male Yes Yes High 12 4 $1,045
Senior Male Yes Yes Low 12 1 $175
Young Male No No Low 6 2 $432
Middle-aged Female No No Medium 12 1 $62
Middle-aged Female No No Medium 18 3 $890
Middle-aged Male Yes Yes High 18 5 $1,505
Middle-aged Female No Yes High 24 6 $824
Middle-aged Male Yes Yes High 24 1 $258

1The user interface for creating and working with pivot tables changed significantly in Excel 2007 and
slightly in later versions. All screen shots and explanations in this chapter are geared to Excel 2013.

Figure 15.2 Pivot Table Dialog Box

318 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and you should fill it out as shown. The data set in this example lives in an Excel
worksheet (you can override Excel’s guess for the data range, but it is usually cor-
rect), and you want the results to be placed on a new worksheet. Note the bot-
tom checkbox for adding to the data model. This is new to Excel 2013.

When you click the OK button, you get a new worksheet with a blank pivot
table, shown on the left of Figure 15.3. (This worksheet has a generic sheet
name, which you might want to change.) This blank pivot table sheet is accompa-
nied by the PivotTable Fields pane on the right of Figure 15.3 and two Pivot-
Table Tools ribbons, Analyze (called Options in previous versions) and Design,
in Figures 15.4 and 15.5. (If you ever lose either of these, just select a cell inside
the pivot table, and they will reappear.) The pivot table has four “areas”: Rows,
Columns, Filters, and Values. The first three are typically for categorical fields

Figure 15.3 Blank Pivot Table and PivotTable Fields Pane

Working with Pivot Tables and Tables 319

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

you want to summarize by. The Values area is typically for numeric fields you
want to summarize. You can move any of the fields to any of the areas by drag-
ging from the field list to the appropriate pivot table area.

The pivot table in Figure 15.6 is typical. I dragged Age to the Rows area,
Gender to the Columns area, Married to the Filters area, and AmountSpent to
the Values area. (See Figure 15.7.) The results show the sum of AmountSpent
for each combination of Age and Gender. For example, the total of all orders
from middle-aged females is $178,087, whereas the total of all orders from
young people of both genders is $258,892.

If you want this breakdown for married people only, click the dropdown
arrow in cell B1 and select Yes. The results for this subset of married people
appear in Figure 15.8, which illustrates the role of the Filters area. However, the
Filters field is optional; you don’t have to have a field in this area.

If you don’t care about Gender, drag Gender from the pivot table field list to
get the results in Figure 15.9. This illustrates that you don’t need both a Rows
field and a Columns field; you can have only one or the other. Actually, you can
have more than one Rows or Columns field, but the pivot table becomes more
difficult to read when you have multiple fields in either area.

If you would rather have Gender in the Rows area and Age in the Columns
area, this is easy. Just drag Gender to the Rows area and then drag Age to the

Figure 15.5 PivotTable Tools Design Ribbon

Figure 15.6 Typical Pivot Table

Figure 15.4 PivotTable Tools Analyze Ribbon

320 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15.7 Corresponding Fields Pane

Figure 15.8 Results for Married People Only

Working with Pivot Tables and Tables 321

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Columns area. Now you should be starting to see why pivot tables are so powerful
and easy to use.

Recall that AmountSpent was dragged to the Values area. When you do this
with a numeric variable such as AmountSpent, it is automatically summarized by
the Sum operator. There are several other possible summary operators. Right-
click on any number in the pivot table to get the menu in Figure 15.10. From
the Summarize Values By item, you can choose any of the summary operators,
such as Average. Also, if you want to change the number formatting in the pivot
table, here is the place to do so. You can select the Number Format item and
change the formatting, say, to currency with two decimals. The results appear in
Figure 15.11. Now each dollar figure is an average of the corresponding category.
For example, the young married people spent an average of $948.78 per

Figure 15.10 Menu for Changing Various PivotTable Items

Figure 15.9 Results After Dragging Gender Off Column Area

322 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

transaction. (The Value Field Settings item in Figure 15.10 opens a dialog box
where you can change all of these settings. You might prefer to use it.)

Working with Counts

Note that one of the summary operators is Count. This operator requires some
explanation. If you summarize by Count, it doesn’t matter at all which variable
is in the Values area. For example, Figure 15.12 shows the same pivot table as in
Figure 15.6, but summarized by Count, not Sum. Each number in the pivot table
is now a count of the transactions for each category combination. For example,
116 of the 1,000 transactions were made by young males, and 205 of the transac-
tions were made by seniors. The variable in the Values area is still AmountSpent,
but this is completely irrelevant; any other variable in the Values area would pro-
duce exactly the same counts. For this reason, I changed the label in cell A3 from
“Count of AmountSpent” to “Count”.

Suppose you want to know the percentage of transactions made by females
versus males for each age group. Starting from the pivot table in Figure 15.12,
right-click any of the counts and select Show Values As. You see the options in
Figure 15.13. For now, select the % of Row Total option. (You can experiment
with the other options.) This produces the results in Figure 15.14. For example,
almost 63% of all transactions made by seniors were made by females.

Figure 15.11 Average of AmountSpent Formatted as Currency

Figure 15.12 Pivot Table with Counts

Working with Pivot Tables and Tables 323

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As mentioned earlier, it is common to put categorical variables in the Rows and
Columns areas and numeric variables in the Values area. But this is not required. Try
the following. Drag everything off the current pivot table, and then drag Amount-
Spent to the Rows area and any categorical variable such as Salary to the Values area.
Note that when you drag a categorical (nonnumeric) variable to the Values area, it is
automatically summarized by Count, which is what you want here, but the resulting
pivot table isn’t very informative. Every distinct value of AmountSpent is listed
in column A, so you get a very “tall” pivot table. Fortunately, this can be fixed.

Figure 15.14 Counts Shown as Percentages of Row Total

Figure 15.13 Show Data As Options

324 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Right-click any value in column A, and select Group to bring up the dialog box in
Figure 15.15. You can change the default settings if you like. For example, I changed
the bottom entry to 200 and obtained the pivot table shown in Figure 15.16.

Remember that when the data area is summarized by Count, the variable in
the values area is irrelevant. So although the label in cell A3 is “Count of Salary”,
the numbers in column B are really just counts of the various AmountSpent
groupings. For example, 116 of the transactions had an amount spent from
$1,024 to $1,223 (inclusive). For this reason, you might want to change the
label in cell A3 from “Count of Salary” to “Count”, as discussed earlier.

Pivot Charts

Once you have a pivot table, you can easily create a corresponding pivot chart. To
do so, select any cell inside the pivot table, and click the PivotChart button on the
PivotTable Tools/Analyze ribbon. (See Figure 15.4.) From there, you can choose

Figure 15.15 Group Dialog Box

Figure 15.16 Pivot Table Grouped by AmountSpent

Working with Pivot Tables and Tables 325

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the type of chart you want. When you make changes to the pivot table, the pivot
chart updates accordingly—and automatically. For example, the pivot chart corre-
sponding to the pivot table in Figure 15.16 is shown in Figure 15.17. This pivot
chart is as “interactive” as the pivot table. You can drag fields to or from its areas,
and you can select items from its dropdown lists. Whatever changes you make to
the pivot chart are made to the pivot table as well, and vice versa. In addition, the
chart is just like any other Excel chart, so, for example, you can change the type of
chart from a column chart to a line chart, you can change the chart title, and so on.

Formulas Based on Pivot Table Data

Once you have formed a pivot table, you might want to enter formulas in other
cells that refer to the pivot table data. This can lead to some very strange-
looking formulas. For example, starting with the pivot table in Figure 15.6,
I entered a formula in cell F3 by typing = and then pointing to cell B5. I got
the following formula:

=GETPIVOTDATA("AmountSpent",A3,"Age","Middle-aged","Gender","Female")

Excel does this to remind you exactly what information is being referenced.
However, if you would prefer the more familiar formula, =B5, go to Excel
options, select the Formulas group, and uncheck the “Use GetPivotData functions
for PivotTable references” option. From then on, you won’t see any more ugly
GETPIVOTDATA formulas.

This discussion has barely scratched the surface of what you can do with pivot
tables. However, it has already given you a glimpse of how powerful they are and
how easy they are to manipulate. In the next section, I illustrate how these same
operations can be performed with VBA.

Figure 15.17 Pivot Chart

Total

80

100

120

140

160

0

24–223

224–423

424–623

624–823

824–1023

1024–1223

1224–1423

1424–1623

1624–1823

1824–2023

2024–2223

2224–2423

2424–2623

20

40

60 Total

326 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15.3 Working with Pivot Tables Using VBA

You might remember the discussion of charts and VBA in Chapter 8. I mention
this discussion because you can manipulate so many parts of charts in so many
ways. The part of Excel’s object model that deals with charts is quite complex.
There are numerous objects, they belong to a hierarchy, and each has many prop-
erties and methods. The same applies to pivot tables and pivot charts. If you want
to learn the part of VBA that deals with pivot tables, you could spend a lot of
time exploring the various objects and their properties and methods. I will try to
keep it simple here, exploring only the parts you are most likely to use in
applications.

First, just as with charts, you can use VBA to build a pivot table from scratch
and then manipulate it. Alternatively, and more easily, you can form a blank pivot
table (as in Figure 15.3) manually and then use VBA to populate it. I will briefly
illustrate pivot table creation with VBA, and then I will discuss pivot table manip-
ulation with VBA in more depth.

Creating a Pivot Table with VBA

When you create a pivot table manually, Excel actually stores the data that
the pivot table is based on in a cache (short-term memory). The notion of a
cache for your pivot table data is important in understanding the VBA required
to create a pivot table. There are two key objects: the PivotCache object and the
PivotTable object. To create a pivot table in VBA, you first create a PivotCache
object, and then you create a PivotTable object based on the PivotCache object.
Actually, you can create multiple pivot tables from the same cache.

The code below is a slightly modified version I obtained by turning the
recorder on and creating a pivot table. This pivot table is based on a data set
with range name Data. There were no pivot tables yet in this workbook, so a
PivotCache had to be created first. Then the pivot table was created from the
cache. Although I named both the new worksheet and the new pivot table as
PT1, they could have different names. (Note that version 14 refers to Excel
2010. The Version and DefaultVersion arguments are optional.)

Sub CreatePivotTable()
Sheets.Add
ActiveSheet.Name = "PT1"
ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, _

SourceData:="Data", Version:=xlPivotTableVersion15) _
.CreatePivotTable TableDestination:=Range("A3"), _
TableName:="PT1", DefaultVersion:=xlPivotTableVersion15

Range("A3").Select
End Sub

I then wrote the following code to create another pivot table. It uses the pivot
cache associated with PivotTable1 to create the second pivot table. I could have
based it on a new cache, but this would have been a waste of memory.

Working with Pivot Tables and Tables 327

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub CreateAnotherPivotTable()
Sheets.Add
ActiveSheet.Name = "PT2"
ActiveWorkbook.Worksheets("PT1").PivotTables("PivotTable1").PivotCache _

.CreatePivotTable TableDestination:=Range("A3"), _
TableName:="PivotTable2", DefaultVersion:=xlPivotTableVersion15

Range("A3").Select
End Sub

The resulting pivot tables from these two subs have nothing in them. Each is
just a “shell” of a pivot table. However, it is now possible to use the properties and
methods of PivotTable objects to populate a blank pivot table. This is discussed next.

Manipulating Pivot Tables

To manipulate an existing pivot table, you rely heavily on the PivotFields collection.
This is a list of all fields from the data set. There is also an AddFields method of a
PivotTable object. This generally gives you two ways to add a field to an area of a
pivot table. Specifically, suppose pivTab has been Set equal to an existing pivot
table. Then either of the following two lines adds Gender to the Rows area:

pivTab.AddFields RowFields:="Gender"

or

pivTab.PivotFields("Gender").Orientation = xIRowField

The first statement uses the AddFields method, which takes arguments such
as RowFields to specify where the added fields are placed. The second statement
sets the Orientation property of a PivotField object to one of several possibilities:
xlRowField, xlColumnField, xlPageField, xlDataField, and xlHidden.

The first statement can be generalized to add several fields at once, as in

pivTab.AddFields RowFields:="Gender", ColumnFields:="Age", PageFields:="Married"

In fact, you can even use it to add multiple fields to a given area by specifying
an array, as in

pivTab.AddFields RowFields:=Array("Gender","Age"), ColumnFields:="Married"

However, the AddFields method cannot be used to place fields in the Values
area. To do this, you must use the Orientation property, as in

pivTab.PivotFields("AmountSpent").Orientation = xlDataField

328 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As long as you are at it, you might also want to set other properties of a
Values field. These include the Function property, which specifies how the vari-
able is summarized (Sum, Count, and so on), and the NumberFormat property,
which uses the same format codes as regular number formatting. Here is one
possibility:

With pivTab.PivotFields("AmountSpent")
.Orientation = xlDataField
.Function = xlSum
.NumberFormat = "$#,##0.0"

End With

If you want to get rid of a field in some area on the pivot table, you can set its
orientation to xlHidden, as in

pivTab.PivotFields("Gender").Orientation = xlHidden

If you have several fields in the Values area, you can get rid of all of them
with the following line. (You might need to replace “Values” by “Data” in previ-
ous versions of Excel.) More generally, if you want to get rid of all pivot table
fields, you can use the ClearTable method of a PivotTable object.

pivTab.PivotFields("Values").Orientation = xlHidden

15.4 An Example

Using the same sales data as in Section 15.2, I now illustrate a simple but
useful application. (It is stored in the file Sales Data with VBA.xlsm.) It
first uses the code illustrated in the previous section to create a pivot table
named PivotTable1 on a sheet with name PT1. Alternatively, this step could
be done manually. At this point there is a blank pivot table. The user then
clicks a button on the Data sheet that runs a Report sub (listed later). This
sub first shows two user forms, frmVariables and then frmltems. The first
form, shown in Figure 15.18, allows the user to select a categorical variable
for the Rows area, a numeric variable for the Values area, and a function to
summarize by.

The second form, shown in Figure 15.19, lets the user select any of the items
(categories) for the selected categorical variable. Note that the categories and the
prompt are both based on the variable selected in the first form.

The program then fills a pivot table (behind the scenes), and for each
item checked in the second form, it displays a message like the one shown
in Figure 15.20. The pivot table itself is shown in Figure 15.21.

Working with Pivot Tables and Tables 329

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 15.18 Variable Selection Dialog Box

Figure 15.20 Typical Result

Figure 15.19 Item Selection Dialog Box

330 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first form, frmVariables, is straightforward. Its event handlers are listed below. The
ShowVariablesDialog function captures three variables, rowVariable, dataVariable, and
summaryFunction, for later use.

Private cancel As Boolean

Public Function ShowVariablesDialog(rowVariable As String, _
dataVariable As String, summaryFunction As String) As Boolean

Call Initialize
Me.Show
If Not cancel Then

Select Case True
Case optAge.Value

rowVariable = "Age"
Case optGender.Value

rowVariable = "Gender"
Case optMarried.Value

rowVariable = "Married"
Case optOwnHome.Value

rowVariable = "OwnHome"
Case optSalary.Value

rowVariable = "Salary"
Case optCatalogs.Value

rowVariable = "Catalogs"
End Select
Select Case True

Case optNOrders.Value
dataVariable = "NumberOrders"

Case optAmtSpent.Value
dataVariable = "AmountSpent"

End Select
Select Case True

Case optSum.Value
summaryFunction = "Sum"

Case optAvg.Value
summaryFunction = "Average"

Case optMin.Value
summaryFunction = "Min"

Case optMax.Value
summaryFunction = "Max"

End Select
End If
ShowVariablesDialog = Not cancel
Unload Me

End Function

Figure 15.21 Pivot Table That Results Are Based On

Working with Pivot Tables and Tables 331

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub Initialize()
optGender.Value = True
optAmtSpent.Value = True
optAvg.Value = True

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

The second form, frmltems, is listed below. The Initialize sub sets up the
checkboxes depending on the value of rowVariable. Note that the most categories
in any categorical variable is 4, so the form has four checkboxes. However, some
of these are hidden in case rowVariable has fewer than four categories. Then the
ShowItemsDialog function captures the items checked and the number checked in
the array rowItem and the variable nChecked. The Valid function ensures that the
user selects at least one item.

Private cancel As Boolean

Public Function ShowItemsDialog(rowVariable As String, _
rowItem() As String, nChecked As Integer) As Boolean

Dim ctl As Control
Call Initialize(rowVariable)
Me.Show
If Not cancel Then

nChecked = 0
For Each ctl In Me.Controls

If TypeName(ctl) = "CheckBox" Then
If ctl.Value Then

nChecked = nChecked + 1
ReDim Preserve rowItem(1 To nChecked)
rowItem(nChecked) = ctl.Caption

End If
End If

Next
End If
ShowItemsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize(rowVariable As String)
Me.Caption = "Selected items for " & rowVariable
lblPrompt.Caption = "Select the values of " & rowVariable _

& " you are interested in. (Check at least one.)"

332 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

chk1.Value = True
chk2.Value = False
chk3.Value = False
chk4.Value = False
Select Case rowVariable

Case "Age"
chk1.Caption = "Young"
chk2.Caption = "Middle-aged"
chk3.Caption = "Senior"
chk3.Visible = True
chk4.Visible = False

Case "Gender"
chk1.Caption = "Male"
chk2.Caption = "Female"
chk3.Visible = False
chk4.Visible = False

Case "Married"
chk1.Caption = "Yes"
chk2.Caption = "No"
chk3.Visible = False
chk4.Visible = False

Case "OwnHome"
chk1.Caption = "Yes"
chk2.Caption = "No"
chk3.Visible = False
chk4.Visible = False

Case "Salary"
chk1.Caption = "Low"
chk2.Caption = "Medium"
chk3.Caption = "High"
chk3.Visible = True
chk4.Visible = False

Case "Catalogs"
chk1.Caption = "6"
chk2.Caption = "12"
chk3.Caption = "18"
chk4.Caption = "24"
chk3.Visible = True
chk4.Visible = True

End Select
End Sub

Private Function Valid() As Boolean
Dim ctl As Control
Dim nChecked As Integer

Valid = True
For Each ctl In Me.Controls

If TypeName(ctl) = "CheckBox" Then
If ctl.Value Then

nChecked = nChecked + 1
End If

End If
Next

If nChecked = 0 Then
Valid = False
MsgBox "You must check at least one item.", vbInformation

Working with Pivot Tables and Tables 333

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End If
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

The Report sub, listed below, shows the two forms and then fills the already
existing pivot table. It first clears all fields in the data area by setting the Orientation
property to xlHidden. It then adds the rowVariable field to the Rows area, and it
adds the dataVariable field to the Values area, formatting it appropriately and set-
ting its summarizing function to summaryFunction. For each item selected in the
second form, it then uses the GetPivotData method of a PivotTable object. This
method allows you to set a reference to a particular cell in the pivot table. You
must supply enough information to specify the cell: the Values variable, the Rows
variable, and the particular item for the Rows variable. (If there were also a Col-
umns variable, you would have to specify information about it as well.) Finally, a
message is displayed for each item the user specified in the second form.

Sub Report()
Dim rowVariable As String, dataVariable As String, summaryFunction As String
Dim rowItem() As String, nChecked As Integer

Dim PT As PivotTable
Dim tableItemCell() As Range
Dim i As Integer

' Get user’s choices.
If frmVariables.ShowVariablesDialog(rowVariable, dataVariable, summaryFunction) Then

If frmItems.ShowItemsDialog(rowVariable, rowItem, nChecked) Then

ReDim tableItemCell(1 To nChecked)

' A pivot table with name PivotTable1 already exists in the PT1 sheet.
Set PT = Worksheets("PT1").PivotTables("PivotTable1")
With PT

' Clear all items from the pivot table.
.ClearTable

' Add the selected row (categorical) field
.AddFields RowFields:=rowVariable

' Add the selected numeric field, formatted and summarized appropriately.
With .PivotFields(dataVariable)

334 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Orientation = xlDataField
If dataVariable = "NumberOrders" Then

.NumberFormat = "0.0"
Else

.NumberFormat = "$#,##0.00"
End If
Select Case summaryFunction

Case "Sum"
.Function = xlSum

Case "Average"
.Function = xlAverage

Case "Min"
.Function = xlMin

Case "Max"
.Function = xlMax

End Select
End With

' Get the single summary data item from the pivot table.
For i = 1 To nChecked

Set tableItemCell(i) = _
.GetPivotData(dataVariable, rowVariable, rowItem(i))

Next
End With

' Display the results.
For i = 1 To nChecked

MsgBox "The " & summaryFunction & " of " _
& dataVariable & " for the " & rowItem(i) _
& " category of the variable " & rowVariable & " is " _
& IIf(dataVariable = "NumberOrders", _
Format(tableItemCell(i), "0.0"), _
Format(tableItemCell(i).Value, "$#,##0")) & ".", vbInformation

Next
End If

End If
End Sub

Note the IIf (Immediate If) function in the MsgBox statement. As mentioned
briefly in Chapter 7, this is a very handy VBA function that works just like Excel’s
IF function. You supply a condition and then two arguments—one for when the
condition is true and one for when it is false. This immediate If is used to format
as decimal or currency depending on whether the dataVariable is NumberOrders
or AmountSpent.

Clearly, if you know how to work with pivot tables manually, you could get
these types of results much more easily than by writing a lot of VBA code. How-
ever, if your boss wants the results and doesn’t know a thing about pivot tables,
then he will really appreciate this type of application. In fact, you could hide the
pivot table sheet, and your boss would never even know that it exists.

15.5 PowerPivot and the Data Model

Pivot tables are already powerful, but Microsoft added even more functionality in
Excel 2013 with the introduction of PowerPivot. Actually, PowerPivot was

Working with Pivot Tables and Tables 335

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

available as a free add-in for Excel 2010, but two things changed in the Excel
2013 version. First, you no longer need to download a separate PowerPivot add-
in. In Excel 2013, you can simply add it in by checking it in the add-ins list. Sec-
ond, the details of PowerPivot have changed. Therefore, if you find a tutorial for
the older PowerPivot add-in on the Web and try to follow it in Excel 2013, you
will see that the new version doesn’t work the same as before. So be aware that
this section is relevant only for PowerPivot for Excel 2013 and not for the older
version. (If you don’t have Excel 2013 yet, and you want to try PowerPivot for
Excel 2010, you can search the Web for “PowerPivot 2010 Excel.” There is
plenty of information out there.)

How is PowerPivot different from existing pivot table tools, and why is it
necessary at all? The basic idea is that PowerPivot allows you to create a data
model and then base pivot tables on it. The term data model is new in Excel
2013, but it is not at all a new concept. It is essentially a set of related tables,
exactly like the relational databases discussed in Chapter 14 that have been
around for decades. The new aspect is that PowerPivot provides you with the
tools to create a data model entirely within Excel, with no need for Access or
any other relational database system. Importantly, the tables for this model can
come from a variety of sources. For example, one table could be a table from a
worksheet within the workbook, another table could be an imported table from
another workbook, another table could be imported data from a text file, and
another table could be imported from an Access database. The only requirement
is that these tables must have fields that can be used as primary and foreign keys,
so that the usual relationships can be defined. Once this data model has been
defined—the tables have been imported and the relationships have been created—
pivot tables can be created in the usual way, with access to all of the fields in all of
the tables.

There is not enough room here to explain the details of using PowerPivot,
but if you perform a Web search for “PowerPivot 2013 tutorial,” you should
find plenty of useful information. (I learned it from the tutorial at http://office.
microsoft.com/en-us/excel-help/tutorial-pivottable-data-analysis-using-a-data-model-
in-excel-2013-HA102922619.aspx?CTT=3, which is hopefully still there. This site
even includes a data set for practice.)

If you want to go a step farther with PowerPivot—that is, beyond learning
how to implement it through the Excel interface—you can automate it with
VBA. To see the possibilities, open the Object Browser, and in the Excel library,
scroll down to the objects that begin with Model. These are all new to Excel
2013, and they can all be used to manipulate a data model. Unfortunately, these
were evidently added fairly late to Excel 2013, as you can see if you request
online help for any of them—help is virtually nonexistent. However, the object
names, such as ModelTable, ModelTableColumn, and ModelRelationship, are fairly
self-explanatory, so once you learn how to use PowerPivot through the Excel inter-
face, you shouldn’t have much trouble learning how to perform basic automations
with VBA.

336 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15.6 Working with Excel Tables Manually

As I stated in the introduction to this chapter, a table was a new feature of Excel
2007, and it exists in essentially the same form in later versions. Tables have
always been around, and they were referred to as lists, data sets, or even tables in
previous versions of Excel, but they now have “official” status with plenty of use-
ful functionality. Tables are used primarily to sort, filter, and summarize data.
They don’t replicate the functionality of pivot tables—not by a long shot—but
they enable you to perform relatively simple data analysis very easily. In this sec-
tion, I illustrate some of the main features of Excel tables and how you can work
with them manually. Then in the next section, I illustrate how you can automate
these tasks with VBA. As with pivot tables, you might never need to use VBA to
manipulate tables, given the ease of working with them through Excel’s user
interface, but it is good to know that everything you can do manually, you can
also do with VBA.

The file I will use for illustration is MBA Students.xlsx. It contains
information on a sample of 1,000 (fictional) MBA students, a small subset
of which is shown in Figure 15.22. This is a typical table: a rectangular array
of data, where each row has information about a student, each column is an
attribute of the student, and the columns have names at the top. However,
before you can use the new functionality of tables, you must designate the
data set as a table. To do so, select any cell within the table and click
the Table button on the Insert ribbon.2 This does four things: (1) it colors the
range nicely, (2) it inserts dropdown arrows next to each column name (see
Figure 15.23), (3) it gives the resulting table a generic name such as Table1
(which you can change to something more descriptive), and (4) it gives you a
new Table Tools Design ribbon that is visible when your cursor is inside the
table (see Figure 15.24).

Although there are many things you can now do with the table, I will illus-
trate only the most common, and these are so easy that you can learn them with
just a few minutes of practice. In the rest of this section, I will lead you through
some operations. After you try these, you should be comfortable experimenting
on your own.

Sorting

Suppose you want to sort first on Nationality, then (in case of ties) on Gender,
with Males at the top, and finally (again in case of ties) on Age. To do this, you
should proceed in backwards order. First, click the Age dropdown arrow and
select the A-Z option. Next, click the Gender dropdown arrow and select the
Z-A option (because you want Males at the top). Finally, click the Nationality
dropdown arrow and select the A-Z option. If you would rather get back to the

2You can also click the Format as Table dropdown arrow on the Home ribbon and select a style to
accomplish the same thing. An even quicker way is to press Ctrl+t.

Working with Pivot Tables and Tables 337

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

original sort order, you can sort on the Student index in column A. (An index for
the records, as this data set has in column A, is useful for exactly this purpose—to
get data back to the original sort order.)

Note that you can even sort by color. I guess this could come in handy, and
it certainly sounds cool, but I haven’t yet found an example where I have really
needed it.

Filtering

You might have used Excel’s Autofilter in pre-2007 versions of Excel. This is basi-
cally what you get “for free” with Excel tables. Try the following.

● Filter out all but the US students. To do so, click the Nationality dropdown
arrow and uncheck all nationalities but US. (A quicker way is to uncheck the
Select All item and then check US.) You will see blue row numbers, meaning
that some rows have been hidden—that is, filtered out. You will also see a
filter icon in the Nationality dropdown arrow, indicating that a filter is in place.
You could clear this filter by clicking the Nationality dropdown arrow and
selecting the Clear Filter option, but don’t do so yet.

Figure 15.22 MBA Student Data

1
2
3
4
5
6
7
8
9

10
11

A B C D E F G H I J K L
Student Age Gender Na�onality Married Children Year in program Undergrad major GMAT score Previous salary Monthly expenses School debt

1 28 Female South 00223012100055ecnaniF20oNaciremA
2 27 Male US No 0 2 Other business 663 44600 570 20000

00535058100534gnireenignE20oNSUelameF823
4 26 Male China Yes 1 2 Other business 37000 1300 91300
5 36 Male US No 0 1 Marke�ng 666 88600 1420 11100
6 29 Female Europe No 0 2 Marke�ng 658 41900 1310 49000

00403059100095gnitekraM11seYSUelameF337
8 37 Male US Yes 0 2 Other non-business 750 60400 870 19000
9 31 Male Japan No 0 2 Other business 49500 1090 32900

10 29 Female US Yes 1 1 Finance 669 65700 1570 18700

Figure 15.23 Table with Dropdown Arrows

Figure 15.24 Table Tools Design Ribbon

338 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● Filter out all students with “business” in the name of their undergraduate
major. To do this, you could click the Undergrad Major dropdown arrow
and uncheck the Other business and Other nonbusiness items, but a possibly
better way is to select Text Filters. This provides a number of possibilities for
filtering text. For now, select “Does not contain”, and enter business.

● Filter out all students who are age 30 or older. To do this, click the Age drop-
down arrow, and under the Number Filters, select “Less than” and enter 30.

Note that you now see only US students with undergraduate majors in
Finance, Marketing, or Engineering who are not yet 30 years old. As you see,
the filters build upon themselves.

These few examples indicate just a few of the possibilities for filtering. Excel
provides most of the options you will ever need, and they are very easy to imple-
ment. If you have a number of filters in place and you want to clear all of them,
you can click the Clear button in the Sort & Filter group on the Data ribbon.
(This is also available on the Home ribbon.)

Summarizing

Once you have filtered data, you might want to create summary measures
for one or more columns based on the filtered data only. This was rather difficult
in pre-2007 versions of Excel, but now it is really easy. First, it is useful to split
the screen horizontally so that you can see the top and bottom of the table on
the screen. Then in the Table Tools Design ribbon, check the Total Row
option. You will see a new blue row at the bottom of the table. By default,
it summarizes the last variable with the Sum function, but you can summarize
any variable with any of several functions. As an example, select the total row
cell for the Previous Salary variable and select the Average function from the
resulting dropdown list. As another example, select the Count Numbers
option for the GMAT column to see the number of nonmissing values. (If
you look at the formulas entered in these cells, you will see that they use the
SUBTOTAL function, along with a numeric code for the operation. For
example, 101 corresponds to Average, 102 corresponds to Count Numbers,
and so on.)

Again, these summary values are for the filtered data only, so if you change the
filter, the summary measures will change. And if you don’t want the total row, you
can uncheck the Total Row option in the Table Tools Design ribbon.

Expandability

One final feature of tables is an extremely useful one. As you add data to a table,
either to the right or to the bottom, the table automatically expands. In the MBA
students data, try the following. Enter Marketing major in cell M1. It automati-
cally gets its own dropdown arrow, meaning that it is automatically part of the
table. Next, in the cell below, enter an IF formula to record a 1 if the student’s
undergraduate major is Marketing and a 0 otherwise. When you enter this

Working with Pivot Tables and Tables 339

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

formula, don’t type the cell reference (H6, because rows 2–5 have been filtered
out), but instead point to it. You will see the following formula: =IF(Table1
[[#This Row], [Undergrad major]] = “Marketing”, 1, 0). Although the
usual =IF(H6 = “Marketing”, 1,0) would still work fine, this new syntax indi-
cates exactly what the formula means.3 Also, notice that as soon as you enter this
formula, it automatically copies down. This is another advantage of a table.
Finally, if you enter data for a new student at the bottom of the table, it will auto-
matically be added to the table. (You might want to clear filters and remove the
table row before doing this.)

This automatic expandability has a very important implication. Suppose you
build a pivot table from a table. When you insert the pivot table, don’t enter a
range such as A1:L1001 for the pivot table range; enter the name of the table
(Table1 in this case) instead. Now if you add more data, either to the right or to
the bottom of the table, you can refresh the pivot table simply by clicking the pivot
table Refresh button; you do not need to rebuild the pivot table. The same is true of
a chart based on a table. It refreshes automatically as the table expands. People in
the business world will love this new feature, at least once they learn that it exists!

15.7 Working with Excel Tables with VBA

When I say that tables were given “official” status in Excel 2007, this isn’t entirely
true. The Excel object model in previous versions of Excel had a ListObject object
for working with lists—that is, tables. I didn’t explore this object then, so I am
not familiar with its original properties and methods, but there must have been a
number of additions in Excel 2007 to deal with the new functionality available
with tables. In any case, the ListObject object is the key to creating or manipulat-
ing tables with VBA.

To keep this section reasonably short, I will simply show the VBA code
I obtained when I went through the exercises in the previous section with the
VBA recorder on. Then I will show equivalent code I obtained by cleaning up
the recorded code. Here is the recorded code. (You can find all of the code in
the file MBA Students.xlsm.).

Sub RecordedCode()
ActiveSheet.ListObjects.Add(xlSrcRange, Range("A1:L1001"), , xlYes).Name = _

"Table1"
Range("Table1[#All]").Select
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Add _

Key:=Range("Table1[[#All],[Age]]"), SortOn:=xlSortOnValues, Order:= _
xlAscending, DataOption:=xlSortNormal

With ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort
.Header = xlYes

3 If you don’t like this new syntax, go to Excel Options, select the Formulas group, and uncheck the
“Use table names in formulas” option.

340 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.MatchCase = False

.Orientation = xlTopToBottom

.SortMethod = xlPinYin

.Apply
End With
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Add _

Key:=Range("Table1[[#All],[Gender]]"), SortOn:=xlSortOnValues, Order:= _
xlDescending, DataOption:=xlSortNormal

With ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort
.Header = xlYes
.MatchCase = False
.Orientation = xlTopToBottom
.SortMethod = xlPinYin
.Apply

End With
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Add _

Key:=Range("Table1[[#All],[Nationality]]"), SortOn:=xlSortOnValues, Order _
:=xlAscending, DataOption:=xlSortNormal

With ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort
.Header = xlYes
.MatchCase = False
.Orientation = xlTopToBottom
.SortMethod = xlPinYin
.Apply

End With
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Clear
ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Add _

Key:=Range("Table1[[#All],[Student]]"), SortOn:=xlSortOnValues, Order:= _
xlAscending, DataOption:=xlSortNormal

With ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort
.Header = xlYes
.MatchCase = False
.Orientation = xlTopToBottom
.SortMethod = xlPinYin
.Apply

End With
ActiveSheet.ListObjects("Table1").Range.AutoFilter Field:=4, Criteria1:= _

"US"
ActiveSheet.ListObjects("Table1").Range.AutoFilter Field:=8, Criteria1:= _

"<>*business*", Operator:=xlAnd
ActiveSheet.ListObjects("Table1").Range.AutoFilter Field:=2, Criteria1:= _

"<30", Operator:=xlAnd
ActiveSheet.ListObjects("Table1").ShowTotals = True
ActiveWindow.Panes(3).Activate
Range("Table1[[#Totals],[Previous salary]]").Select
ActiveSheet.ListObjects("Table1").ListColumns("Previous salary"). _

TotalsCalculation = xlTotalsCalculationAverage
Range("Table1[[#Totals],[GMAT score]]").Select
ActiveSheet.ListObjects("Table1").ListColumns("GMAT score").TotalsCalculation _

= xlTotalsCalculationCountNums
ActiveWindow.Panes(1).Activate
Range("M1").Select
ActiveCell.FormulaR1C1 = "Marketing major"
Range("M4").Select
ActiveCell.FormulaR1C1 = _

"=IF(Table1[[#This Row],[Undergrad major]]=""Marketing"",1,0)"
Range("A11").Select
ActiveSheet.ListObjects("Table1").ShowTotals = False

Working with Pivot Tables and Tables 341

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ActiveWorkbook.Worksheets("Data").ListObjects("Table1").Sort.SortFields.Clear
ActiveSheet.ShowAllData
ActiveWindow.Panes(3).Activate
Range("A1002").Select
ActiveCell.FormulaR1C1 = "1001"
Range("B1002").Select
ActiveCell.FormulaR1C1 = "30"
Range("C1002").Select
ActiveCell.FormulaR1C1 = "Female"
Range("D1002").Select
ActiveCell.FormulaR1C1 = "US"
Range("E1002").Select
ActiveCell.FormulaR1C1 = "No"
Range("F1002").Select
ActiveCell.FormulaR1C1 = "0"
Range("G1002").Select
ActiveCell.FormulaR1C1 = "2"
Range("H1002").Select
ActiveCell.FormulaR1C1 = "Marketing"
Range("J1002").Select
ActiveCell.FormulaR1C1 = "51000"
Range("K1002").Select
ActiveCell.FormulaR1C1 = "850"
Range("L1002").Select
ActiveCell.FormulaR1C1 = "23000"
Range("M1002").Select

End Sub

As usual, this recorded code is ugly, and it is filled with unnecessary Select
lines, but you can probably learn what you need from it for working with tables
in your own code. Here is my cleaned up version.

Sub CleanedUpCode()
Dim tbl As ListObject

' Create the table and give it a name.
Set tbl = wsData.ListObjects.Add(Source:=wsData.Range("A1:L1001"), _

XlListObjectHasHeaders:=xlYes)
tbl.Name = "MBA_Table"

With tbl
With .Sort

' For each sort, first clear the SortFields list, then Add one,
' and then Apply it.
.SortFields.Clear
.SortFields.Add Key:=Range("MBA_Table[[#All],[Age]]"), _

Order:=xlAscending
.Apply
.SortFields.Clear
.SortFields.Add Key:=Range("MBA_Table[[#All],[Gender]]"), _

Order:=xlDescending
.Apply
.SortFields.Clear
.SortFields.Add Key:=Range("MBA_Table[[#All],[Nationality]]"), _

Order:=xlAscending
.Apply
.SortFields.Clear

342 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Restore original sort order.
.SortFields.Add Key:=wsData.Range("MBA_Table[[#All],[Student]]"), _

Order:=xlAscending
.Apply
.SortFields.Clear

End With

' Apply filters.
With .Range

.AutoFilter Field:=4, Criteria1:="US"

.AutoFilter Field:=8, Criteria1:="<>*business*"

.AutoFilter Field:=2, Criteria1:="<30"
End With

' Show Total Row and create a couple totals.
.ShowTotals = True
.ListColumns("Previous salary") _

.TotalsCalculation = xlTotalsCalculationAverage
.ListColumns("GMAT score") _

.TotalsCalculation = xlTotalsCalculationCountNums

' Remove Total Row.
.ShowTotals = False

End With

' Clear filters.
wsData.ShowAllData
' Create a new variable in column M.
wsData.Range("M1").Value = "Marketing major"
wsData.Range("M2").Formula = _

"=IF(MBA_Table[[#This Row],[Undergrad major]]=""Marketing"",1,0)"

' Enter a new student at the bottom of the table.
With wsData.Range("A1").End(xlDown).Offset(1, 0)

.Value = .Offset(-1, 0).Value + 1

.Offset(0, 1).Value = 30

.Offset(0, 2).Value = "Female"

.Offset(0, 3).Value = "US"

.Offset(0, 4).Value = "No"

.Offset(0, 5).Value = 0

.Offset(0, 6).Value = 2

.Offset(0, 7).Value = "Marketing"

.Offset(0, 8).Value = ""

.Offset(0, 9).Value = 51000

.Offset(0, 10).Value = 850

.Offset(0, 11).Value = 23000
End With

wsData.Range("A1").Select
End Sub

This is actually a great way to learn about a complex object such as the
ListObject object. Turn on the recorder and record some typical operations. Then
try to clean up the recorded code by eliminating everything but the essentials.
(This will take some trial and error; at least it did for me.) You will not only real-
ize how much unnecessary code the recorder adds, but you will learn a lot about

Working with Pivot Tables and Tables 343

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the properties and methods of the object. For example, I learned that a ListObject
object has a Sort property. From this, you move down the hierarchy to the Sort-
Fields collection to add a field to sort on. But you must Clear the SortFields col-
lection from one sort to the next, and you must use the Apply method to
actually implement the sort. As another example, I tried to enter the typical IF
formula in cell M2 before removing the filter. This produced an error because at
that time, row 2 was filtered out. So evidently, you can’t use VBA to enter a for-
mula in a hidden cell. Live and learn.

15.8 Summary

If you have never explored pivot tables, you should take some time to do so. They
provide one of the most powerful but yet simplest methods for analyzing data, and
the PowerPivot tools introduced in Excel 2013 provide even more power. Although
you might never feel the need to create or manipulate pivot tables with VBA—
because Excel’s tools for doing it manually are so simple—just remember that every-
thing you can do manually, you can also do with VBA. It just takes some practice,
experimentation, and a few trips to the Object Browser for help on the details. The
same comments apply verbatim to tables in Excel 2007 and later versions.

EXERCISES

1. A human resources manager at Beta Technologies has collected current annual
salary figures and related data for 52 of the company’s full-time employees. The
data are listed in the file Beta.xlsx. They include the employee’s gender, age,
number of years of relevant work experience prior to employment at Beta, num-
ber of years employed at Beta, number of years of postsecondary education, and
annual salary. Use pivot tables and pivot charts to answer the following questions.
a. What proportion of these employees are female?
b. Is there evidence of salary discrimination against women at Beta?
c. Is additional postsecondary education positively associated with higher aver-

age salaries at Beta?
d. Is there evidence of salary discrimination against older employees at Beta?

2. The file BusinessSchools.xlsx contains enrollment data on the top-rated graduate
business programs in the United States, as reported by Business Week’s Guide to
the Best Business Schools. Specifically, it reports the percentages of women, minor-
ity, and international students enrolled in each program, as well as the number of
full-time students enrolled in each. Use pivot tables and pivot charts to answer the
following questions.
a. Do graduate business programs with higher proportions of female student

enrollments tend to have higher proportions of minority student enrollments?
b. Do graduate business programs with higher proportions of female student

enrollments tend to have higher proportions of international student
enrollments?

344 Chapter 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. The file HyTex.xlsx contains data on the HyTex Company, a direct marketer of
stereo equipment, personal computers, and other electronic products. HyTex adver-
tises entirely by mailing catalogs to its customers, and all of its orders are taken over
the telephone or through the Web. The company spends a great deal of money on
its catalog mailings, and it wants to be sure that this is paying off in sales. Therefore,
it has collected data on 1,000 customers at the end of the current year. Use pivot
tables and pivot charts to find the following information about these customers.
a. Find the percentage of homeowners, broken down by age, marital status,

and gender.
b. Find the percentage married, broken down by age, homeowner status, and

gender.
c. Find the average salary broken down by age, gender, marital status, and

homeowner status.
d. Find the percentages in the History categories, broken down by number of

children and whether they live close to retail stores.
e. Find the percentage receiving the various numbers of catalogs for each value

of the History variable.
f. Analyze the average amount spent in the current year, broken down by

History, number of catalogs, and the various demographic variables.
4. Change the application in the file Sales Data with VBA.xlsm so that the user has

no choice of summarizing function—it is always by Average—but the user gets to
choose a Columns field as well as a Rows field, each from the same list. There
should be another user form, just like frmItems, for the Columns variable, and
there should be error checking to prevent the user from choosing the same
variable for both the Rows and Columns areas.

5. Change the application in the file Sales Data with VBA.xlsm so that the user
sees only a single form, frmVariables. It is an expanded version of the current
frmVariables, where the user can also choose a Columns field and a Filters field.
There should be error checking that prevents the user from choosing the same
variable for the Rows, Columns, and Filters areas—they should all be different.
Then, instead of reporting the results in one or more message boxes, the code
should simply allow the user to see the resulting pivot table.

Working with Pivot Tables and Tables 345

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working with Ribbons,

Toolbars, and Menus

16.1 Introduction

Of all the chapters in this book, this is the one most affected by changes in post-
2003 versions of Excel. Therefore, it is a good idea to start with a brief history of
Excel’s user interface. In version 2003 and earlier, the user interface included a
variety of menus and toolbars, and virtually everything was customizable, either
through the interface itself or with VBA. You could modify any of the menus
or add your own custom menus. Similarly, you could modify any of the toolbars
or create your own. There was even a built-in paint utility for designing your own
toolbar icons. Many users loved this customizability, but it had its drawbacks.
Specifically, users could change their userface so much that it barely looked
like Excel. Worse yet, programmers who weren’t careful could develop custom
applications for others that changed the familiar Excel user interface beyond all
recognition—and then forget to restore it after the application stopped running.
You can imagine how upset users were when their familiar user interface disap-
peared and didn’t return. In short, chaos was possible, and it often occurred.

In version 2007, Microsoft changed all of this. Many of the menus and
toolbars were not only replaced by tabs and ribbons, but these tabs and ribbons
were fixed. Users couldn’t change them or develop their own. Actually, this isn’t
quite true. Custom developers are able to use a technology called RibbonX to
modify, add, or hide ribbons. This requires them to write XML (extensible
markup language) code, which is probably beyond the ability of typical Excel
users. Even so, such changes are embedded in the custom files themselves. When
these files run, the user interface changes according to the XML code, but when
the file is closed, these changes disappear and the user interface reverts back to its
original form. RibbonX and XML are discussed in this chapter. They can be used
in either Excel 2007 or later versions.

Evidently, Microsoft got a lot of complaints about the lack of customizability
in Excel 2007, so they restored some of it in Excel 2010. Now you can customize
the ribbon structure without any RibbonX or XML. You can simply right-click a
ribbon, select “Customize the Ribbon,” and drag and drop to make changes. Any
changes you make will remain intact—they are not a part of a particular file
like RibbonX changes. I briefly discuss the changes you are allowed to make in
this way.

On top of all this, much can still be done with VBA. Surprisingly, the
MSOffice object model for modifying the user interface has not changed very

16

346

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

much through the various versions of Office. The key objects continue to be the
CommandBar object and the CommandBars collection. Roughly speaking, these
contain menus and toolbars. In Excel 2003 and earlier, a programmer could
manipulate these objects in VBA code to modify menus and toolbars. Such code
still works in Excel 2007 and 2010. However, any customized menus and tool-
bars it creates are added to the Add-Ins ribbon. This is primarily for backward
compatibility. I discuss this topic only briefly. If you are a serious developer for
post-2003 versions of Excel, you are much more likely to use RibbonX and
XML than VBA to customize the user interface.

16.2 Customizing Ribbons

Customizing ribbons in Excel 2010 and later versions through the user interface—
that is, without any XML or VBA—is easy. Just right-click any ribbon and select
“Customize the Ribbon” to open the dialog box in Figure 16.1. On the left you
see a list of all controls, including your own macros in the Macros group, that can
be added to ribbons. On the right you see the existing tabs and their hierarchy of
groups and controls. Depending on what you select, the Add and Remove buttons
in the middle are either enabled or disabled. These allow you to change the ribbon
structure as you like.

However, when Microsoft decided to let users customize the ribbons in Excel
2010, they didn’t open the floodgates completely. There are certain things you
can and can’t do. Here are the rules, but you don’t really need to memorize

Figure 16.1 Customizing the Ribbon

Working with Ribbons, Toolbars, and Menus 347

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

them. If some action is allowed, the corresponding Add and Remove buttons will
be enabled; if it isn’t allowed, they will be disabled.

● You are not allowed to delete or rename any built-in ribbons, and you are not
allowed to delete or rename any groups or controls on these ribbons.

● You are allowed to add built-in Excel controls (the ones in the All Commands
group) to existing ribbons. For example, there is a Zoom button on the View
ribbon. You can drag this button to the Home ribbon, so that you can zoom
from either the Home or View ribbon. However, you are not allowed to add
buttons for your own macros (from the Macros group) to any of the built-in
ribbons.

● You are allowed to create one or more “custom” tabs and then rename them.
However, the term “(Custom)” will be tacked on to the names of all such
tabs (and any groups on them). You have almost complete control of these
custom tabs. You can create and name groups on them, and you can add
built-in Excel buttons or buttons for your own macros to them.

● If you add one of your macros to a new custom tab, you can then click the
Rename button to rename it (which becomes the tool tip you get when you
hover the mouse over the button) and change the icon on the control. I will
say more about the available icons in the next section. The default list
contains only a limited number of icons.

Any changes you make to the ribbon structure in this way are completely
independent of any files you have open. If you make any such changes, close
Excel and reopen it, the ribbon changes will still be in effect.

16.3 Using RibbonX and XML to Customize Ribbons1

Recall that the extension for Excel files changed from .xls to .xlsx in Excel 2007.
The extra “x” at the end stands for XML. Before Excel 2007, Excel files were in
binary format, meaning that they could be read only by a special program—

Excel. That changed dramatically in Excel 2007. Excel files (with either the
.xlsx or .xlsm extensions) are now XML files, which means that they can be
read in any text editor. The contents are pretty ugly, but they make sense. In
fact, .xlsx and .xlsm are really zipped files. To prove this to yourself, try the
following:

1. Locate an .xlsx or .xlsm file in Windows Explorer and rename it, adding .zip
to the end. For example, if the file name is Test.xlsx, change it to
Test.xlsx.zip. (You can ignore any warnings.)

2. Right-click the zip file and select Extract All. You will see something similar
to Figure 16.2. This shows all of the files zipped into the Test.xlsx file, and
you can open any of the files in any of these folders to see the corresponding

1This section applies to both Excel 2007 and later versions, but not to previous versions.

348 Chapter 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

XML contents. They will open in a text editor, not in Excel. Unless you
know XML, the contents won’t be very meaningful, but they won’t be the
gibberish you would see if you opened an .xls file in a text editor.

CustomUI Editor

This introduction sets the stage for customizing ribbons with XML. The technol-
ogy for doing so is called RibbonX (again, “X” for XML), but it is all about
writing XML code. This technology isn’t for everyone, but after some practice, it
really isn’t very difficult. The best way to get started—by far—is to download a
free utility called Custom UI Editor for Microsoft Office. (You can find it by
searching the Web for the utility’s name.) The RibbonX technology involves writ-
ing and modifying XML code in the files you see in Figure 16.2. The Custom UI
Editor helps immeasurably to make sure it is all done correctly. When you open
the Custom UI editor, all you see is what appears in Figure 16.3. However,
once you open an Excel file in it, you can start typing XML code. Note the five
buttons in the editor.

● The first two are the usual Open and Save buttons.
● The third button is for inserting an image (for icons) and will be discussed

later.
● The fourth button is for checking the syntax of your XML. If you click this

button and your XML has any errors, you will see what they are.
● The last button is for inserting “callbacks.” I won’t discuss this button

because there is another way to do the same thing.

Figure 16.2 Contents of Zip File

Working with Ribbons, Toolbars, and Menus 349

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following example leads you through the steps for creating a custom
ribbon to run an application.

EXAMPLE 16.1 Creating an Application with Its Own Ribbon

The file Car Loan with Ribbon.xlsm is similar to the car loan application in
Chapter 19. You might want to run that one first, just to see how it is structured.
It contains a button on the Explanation worksheet. When you click it, you get a
dialog box showing the various options. If you check the sensitivity option, you
see another dialog box. In contrast, the version described here has no buttons
on worksheets, and it has only a single user form, for getting inputs on the loan.
You will run this application through its own ribbon. In fact, when you open the
file, the only ribbon you will see is the one for this application (see Figure 16.4);
you won’t see any of the usual Excel tabs. Note that three of the sensitivity analy-
sis “buttons” have been disabled. So as it stands, there are three enabled buttons:

Figure 16.3 CustomUI Editor

Figure 16.4 Car Loan Ribbon

350 Chapter 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for calculating the monthly payment, for performing sensitivity on the price of the
car, and for creating an amortization table and chart.

I created this application with the following steps.

1. I created an application very similar to the car loan application discussed in
detail in Chapter 19. You can look at the VBA for the current version to see
the logic, but the VBA code isn’t the focus of the current example.

2. I closed the file in Excel and opened it in the Custom UI Editor. At that
point, the editor appeared as in Figure 16.3—blank. Then I typed the XML
code shown in Figure 16.5. I will say more about this code shortly.

3. I clicked the Save button and closed the Custom UI Editor.
4. I opened the file in Excel, got into the VBE, and added the argument control

As IRibbonControl to all subs identified by the onAction attribute in the XML
code. For example, the Sub line for the PaymentOnly sub is changed to

Sub PaymentOnly(control As IRibbonControl)

5. I saved the file, closed it, and reopened it in Excel. Now the custom ribbon is
visible, and the various subs can be run by clicking the ribbon controls.

Here are a few comments about the XML code that will help you understand
it and modify it for your own applications.

● As with any markup language (like HTML for Web pages), XML consists of
tags for different elements, and tags come in pairs. If the beginning tag in a
pair is <tabs>, the ending tag is the same except with the / character, as in
</tab>. Also, there is a hierarchy of tags in RibbonX. You can see this hierar-
chy through the indentation: customUI, then ribbon, then tabs, then tab, then
group, and finally button. Indenting isn’t necessary, but as in VBA, it is

Figure 16.5 XML Code for Car Loan Application

Working with Ribbons, Toolbars, and Menus 351

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

strongly recommended for readability. Note that the button lines don’t have
any lines between them. In this case, you are allowed to include the begin-
ning tag, <button, and the ending tag, />, in the same line.

● XML doesn’t have a line continuation character for long lines. If your line is
long, the Custom UI Editor will “word wrap” it to a second line, but this line is
really a single line of XML. Don’t press the Enter key unless you want a new line.

● XML is much fussier about case for its keywords (those in shades of red in the
Custom UI Editor) than VBA. For example, startFromScratch in the second
line must be spelled exactly this way. Either StartFromScratch or startfromscratch
will produce an error.

● In XML terminology, each tag corresponds to an element (such as tab, group,
and button), and each element has a number of attributes, such as id, label, and
onAction. In the Custom UI Editor, the names of the attributes appear in red,
and their values appear in blue. There are many possible attributes, but you
need only a few for customizing ribbons. There is typically an id attribute, a
unique identifier for each element; a label attribute that includes the text
shown on the ribbon; an onAction attribute, the name of the macro attached
to the button; and others. For example, you can see the enabled attribute set
to “false” for three of the buttons. You can also see the startFromScratch set to
“true” for the ribbon itself. If you wanted to see the standard Excel ribbons in
addition to your ribbon, you would set the startFromScratch attribute to “false”.

● After you type the XML in the code window, you should click the fourth button
(Validate) in the Custom UI Editor. This will indicate whether you have valid
(syntactically correct) XML code. If you don’t, you can go back and fix
your mistakes. For example, all id attributes must be unique, even if they are for
different elements. This is a common error, and the editor will inform you of it.

Inserting Images for Icons

The ribbon in Figure 16.4 is not very fancy. Its buttons contain only text, and
they don’t look much like “buttons.” If you want them to contain icons, you
can set one of two attributes: imageMso or image (again, spelled exactly this
way). The imageMso attribute identifies a built-in Office icon, whereas the image
attribute identifies your own image from a picture file.

Where do you get the names of imageMso icons? I will show two possibilities.
First, get into Excel, right-click a ribbon, select “Customize the Ribbon,” and
hover your mouse over one of the controls on the left. As shown in Figure 16.6,
you see the name of the icon in parentheses, in this case ConditionalFormatting-
Menu. Therefore, to use this control for your own custom button, you would
specify the attribute imageMso="ConditonalFormattingMenu".

An even handier way is to borrow icons from the file Office2007IconsGallery.
xlsm.2 When you open this file in Excel, it installs nine dropdown lists on the

2I found this free file on the Web. I couldn’t find a similar file for later versions of Office, but this
one has plenty of icons.

352 Chapter 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Developer ribbon, Gallery 1 to Gallery 9 (see Figure 16.7), and each has about
250 icons. If you hover your mouse over any of them, you will see its name. These
too can be used as imageMso attributes.

You can also use your own images from picture files.3 In this case, the Custom
UI Editor really helps. (I read a description of how to do this without the editor,
and it is quite complicated.) Here are the steps when using the Custom UI Editor
(see Figure 16.8):

1. Open an Excel file in the Custom UI Editor.
2. Click the plus sign next to the file name to see an .xml file underneath.
3. Select this .xml file and click the Insert Icons button (the middle button).
4. Select a picture file from your hard drive. Its name will appear below the .xml

file. In my example, the name is Bryn11.
5. Add an attribute to the button, in this case image="Bryn11".

Figure 16.7 Galleries of Microsoft Office Icons

3I am not sure which formats qualify and which don’t, but standard formats such as .jpg certainly
work.

Figure 16.6 Finding Icon Names in Excel

Working with Ribbons, Toolbars, and Menus 353

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16.4 Using RibbonX to Customize the QAT

I like to add buttons to my Quick Access Toolbar (QAT) that are attached to my
favorite macros in my Personal Macro Workbook. This process is exactly the same
as customizing ribbons, as explained in section 16.2. However, the default choice
of icons for the QAT buttons is rather limited (see Figure 16.9), and I had little
success with Web searches in finding ways to expand the list of icons. However,
I will now share a fairly simple method that does the job. Basically, I create an

Figure 16.8 Adding Your Own Image

Figure 16.9 Icon List for QAT Buttons

354 Chapter 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

add-in (.xlam) file with my favorite macros, store it in my XLStart folder, create a
new ribbon for them with XML code, add imageMso or image attributes for their
buttons, and make this ribbon invisible. The effect is that the macros will always
be available, and they and their icons will show up in the All Commands group
when I customize my QAT. Here are the step-by-step directions.

1. Open a new Excel file, get into the VBE, insert a module in the new file,
and copy your favorite macros (probably from your Personal Macro
Workbook) into this module. For any macro you intend to associate
with a ribbon button, add the argument control As IRibbonControl to the
Sub line.

2. Save this file as an add-in (extension .xlam) in your XLStart folder. I call mine
Personal.xlam. It is easy to do this wrong. As soon as you select “Excel
Add-In (*.xlam)” as the type to save as, Excel tries to save the file in its
Add-Ins folder. You have to override this by then selecting the XLStart
folder.4 You might wonder why I create this Personal.xlam file and don’t
just use the already existing Personal.xlsb file—the Personal Macro Work-
book. The reason is that the .xlsb file is a binary file, not an XML file, so it
can’t hold the XML code necessary to make this procedure work. Also,
I make it an .xlam file, not an .xlsm file, because .xlam files are essentially
invisible when they are open in Excel. I want this Personal.xlam file to be as
unobtrusive as possible.

3. Close Excel and open your new .xlam file in the Custom UI Editor. Proceed
as described earlier in section 16.3 to add XML code. The beginnings of this
code for my own .xlam file appear in Figure 16.10. Note the visible="false"
attribute for the ribbon element itself. Not only will the .xlam file be invisible,
but the ribbon for it will be invisible as well. Also, note the imageMso attri-
butes for the buttons. I found the names of appropriate icons from the
Office2007IconsGallery.xlsm I mentioned earlier. Alternatively, you could
use the image attribute to use your own pictures for icons.

4. Open Excel. There will be no trace of the Personal.xlam add-in—no new
worksheets and no new ribbons. However, assuming it really is in the
XLStart folder, it is open and ready to use. (You should be able to see an
entry for it in the VBE’s Project Explorer.) To use it for the QAT, click the
dropdown arrow to the right of the QAT and select More Commands. In
the left side, select the All Commands group, not the Macros group, and
scroll down for any of the label attributes in the XML code. For example,
Figure 16.11 shows the “Move Text” command from the first button in
Figure 16.10. Now click the Add button to move this command to your
QAT. No other changes are necessary. You get the macro you want,
together with a nice icon.

4To find the XLStart folder on your computer, get into the VBE, open the Immediate window, and
type the command ?Application.StartupPath.

Working with Ribbons, Toolbars, and Menus 355

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16.5 CommandBar and Related Office Objects5

All Office products have menus and toolbars, so the object model you need to
learn here is the Office object model, not the Excel object model. A portion of
this object model appears in Figure 16.12, taken from the Object Browser. As

5This material is basically a holdover from pre-2007 versions of Office, and you probably won’t need
it in Excel 2007 or later versions. It was kept for backward compatibility, so it still works. Just
remember that if you use the type of code in this section to develop custom menus and/or toolbars
in Excel 2007 or later versions, they will be placed in the Add-Ins ribbon.

Figure 16.10 XML Code

Figure 16.11 Adding a Custom Command to the QAT

356 Chapter 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

this figure indicates, the important objects for manipulating menus and toolbars
with VBA are the CommandBar object and its related objects. Now that ribbons
can be manipulated with XML, you are not likely to use CommandBar and related
objects in VBA code, so I won’t discuss them here. However, they are still avail-
able, and you can learn about them in the Object Browser if you ever need to.

16.6 A Grading Program Example

For my own use as an instructor, I developed a grading program. There are two
versions of this with the book files. The first, written for Excel 2003, is called
Grading.xls. The second, rewritten for Excel 2007 and later versions, is called
Grading.xlsm. (When I wrote the latter, I added some extra functionality, but
this is irrelevant for the current discussion.) I won’t discuss the 2003 version,
which uses CommandBar and related objects, but it is included with the files for
this book if you would like to take a look.

The Grading.xlsm file, written especially for Excel 2007 and later versions,
has the same basic functionality as the earlier version. However, it takes advantage
of the RibbonX technology to provide a more modern look. When you open this
file, you see the custom ribbon shown in Figure 16.13. As you can guess by
now, this is accomplished with straightforward XML code that I entered in the
Custom UI Editor. I won’t show this code here, but you can open it yourself in
the Custom UI Editor.

Fortunately, there is no worry of leaving this custom ribbon in the Excel
user interface once the Grading.xlsm file closes. The XML code is part of the
application, so when the application closes, the ribbon no longer exists in Excel.

Figure 16.12 Office Objects for Menus and Toolbars

Working with Ribbons, Toolbars, and Menus 357

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Also, if you wanted this application to “take over” Excel by making all other rib-
bons invisible, only one change would be required—you would set the startFrom-
Scratch attribute of the ribbon to "true" in the XML code.

16.7 Summary

In this chapter, I have tried to walk the tightrope between the old and the new
ways of modifying the user interface in Excel. In Excel 2003 and previous versions,
working with menus and toolbars via VBA was a tricky undertaking. It is easy to
get lost in the CommandBar labyrinth of objects. In Excel 2007 and later versions,
VBA is not really necessary for modifying the ribbon interface. The RibbonX tech-
nology provides a better way to do it. Although this requires some knowledge of
XML and some experimenting, it is fairly straightforward once you get used to it.

EXERCISES

Note: Exercises 1–7 are geared to pre-2007 versions of Excel. Skip these if you are
using a later version.

1. Are there buttons on your Standard and Formatting toolbars that you absolutely
never use? If so, get into Customize mode and drag them off, freeing up space for
some you might find more useful. Then, still in Customize mode, explore the vari-
ous categories of toolbar buttons in the Commands tab. You are bound to find a
few that you could be useful to you. Drag them up to one of the visible toolbars.
Now close Excel and reopen it. The work you just performed should be preserved.

2. Create (or record) one or more macros that do something you do often, such as
formatting a cell as a number with 0 decimals or using the File → Page Setup to
specify print settings. Store the macros in your Personal Macro Workbook file so
that they are always available. Then get into Customize mode, create a new tool-
bar with name My Favorites, and populate it with buttons that run your new
macros. Change the happy faces on your buttons to something more meaningful,
and give your buttons tool tips (change their Name property).

3. In spreadsheet optimization models, it is helpful to designate input cells, changing
cells, and the target cell in some way. I like to put blue borders around input cells,
red borders around changing cells, and a black border around the target cell, but
there is nothing special about my system. Devise your own color-coding scheme or
borrow mine. Then proceed as in the previous exercise to create macros that color

Figure 16.13 Custom Grading Ribbon

358 Chapter 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

code any selected range in the way you want (recording is a good option here),
create a new toolbar named My Formatting, and add buttons to it with appropri-
ate images and tool tips that run your macros. Finally, record one last button, and
create an extra toolbar button for it that removes the formatting from any selected
range. That way, you can remove any formatting you don’t want. (Hint: Select a
range before recording any macro. Then your formatting macros will work on any
selected range.)

4. For either of the two preceding exercises, get into Customize mode and add a
new menu called My Menu to the left of the Window menu. Then add menu
items to this menu that correspond to the buttons on your toolbar. This will
allow you to access the functionality of your macros from either a toolbar or a
menu. (Hint: Examine the Macros and New Menu categories of the Commands
tab in the Customize dialog box.)

5. Starting with a blank workbook, add code to the Workbook_Open and Workbook_
BeforeClose event handlers in the ThisWorkbook object. The code in the Workbook_
Open sub should hide the Standard and Formatting toolbars that are usually visible.
The code in the Workbook_BeforeClose sub should make these toolbars visible. Save
this workbook, close it, and then reopen it. The toolbars should be missing. Then
close it and open another workbook. This time the two toolbars should be visible.
(If your code messes everything up and you can’t get the toolbars back, you can
always do so manually through the View → Toolbars menu item.)

6. Starting with the macros from either Exercise 2 or 3, write a VBA sub that creates
the toolbar in the earlier exercise and populates it with buttons that run the
macros. (If you like, use the Face IDs.xlsm file to borrow appropriate icons for
your buttons.)

7. Do the same as in the previous exercise, but this time use VBA code to create the
menu requested in Exercise 4.

Note: The rest of the exercises are geared to Excel 2007 or later versions.

8. Example 16.1 illustrated a possible ribbon for the car loan application in
Chapter 19. Choose any of the other applications in Part II of the book (Chapters
20–35) and create an appropriate ribbon for it. It can be all text or it can include
images. Don’t forget to include the control as IRibbonControl argument to any sub
that is attached to a button on your ribbon.

9. Create a ribbon that looks like the one in Figure 16.14. All of its images are of
the imageMso variety.

Figure 16.14 Custom Ribbon with Mso Images

Working with Ribbons, Toolbars, and Menus 359

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Automating Solver and Other

Applications

17.1 Introduction

There are many add-ins for Excel that have been developed by third-party soft-
ware companies. Many of these companies have exposed object models or func-
tions that programmers can use to manipulate the add-ins. Specifically, this is
true of the Solver optimization add-in that is part of Microsoft Office. Solver can
be manipulated not only through the familiar Excel user interface, but it can also
be manipulated with VBA code. This chapter explains how to do it. In fact, the
biggest part of this chapter deals with Solver. This is because I use Solver in
many of the applications in Part II of the book.

Besides the Solver add-in, there are other Excel add-ins that can be
manipulated with VBA. One example is the Analysis ToolPak that is part of
Microsoft Office.1 Another example is the @RISK simulation add-in from
Palisade Corporation. In each case, programmers must search for built-in or
online help that specifies the VBA functions available with the add-in. These
functions are not part of Excel VBA, and they are not always well documen-
ted by the companies that have developed them. However, I will illustrate
some of the possibilities for @RISK.

Finally, it is possible to automate other applications in Microsoft Office
from Excel. This means that you can write VBA code in an Excel module to
make the another application perform its functions. I will explain briefly how to
do this for Word and Outlook. It is also possible to reverse the roles of the
applications. For example, it is possible to write VBA code in a Word or Out-
look module to automate Excel, and I will illustrate one possibility. To do any
of this, you must have some familiarity with the object model for the application
you are trying to automate. Unfortunately, knowledge of Excel’s object model
won’t help you much in automating Word or Outlook; you need to understand
their object models.

17

1 If you have ever loaded the Analysis ToolPak and have then looked at the add-ins list, you have
probably noticed that there is an Analysis ToolPak - VBA box you can check. This gives you access
to the VBA functions that accompany the Analysis ToolPak.

360

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17.2 Exercise

This exercise requires you to run Solver on an existing model with VBA code.
Because the size of the problem can change based on the value of a user input,
the VBA code must re-specify the Solver settings before running Solver.

Exercise 17.1 Scheduling Production

Consider a company that must plan its monthly production of footballs. It begins
month 1 with a given number of footballs on hand, and at the beginning of each
month it must decide how many footballs to produce. There are three constraints:
(1) The quantity on hand after production must be at least as large as that month’s
(known) demand, (2) production in a month can never exceed production capacity,
and (3) the ending inventory in any month can never exceed the storage capacity.
You can assume that production and storage capacity remain constant through the
planning period. There are two costs: (1) the unit production cost, which increases
gradually through the planning period, and (2) the unit holding cost, which is a per-
centage of the unit production cost and is charged on each month’s ending inventory.

The file Production Scheduling.xlsx contains a model for finding the com-
pany’s minimum-cost production schedule for any planning period up to 12 months.
(See Figure 17.1.) The inputs are in blue cells, the decision variables are in row 12,
and cell B29 contains the total cost. The current model uses a planning period of 12
months, and the solution shown in Figure 17.1 is optimal for this planning period.
The Solver settings appear in Figure 17.2. (This is from Solver for Excel
2010 or later.) Note that rows 12, 14, 16, 18, 20, 22, 26, and 27, columns B to M,
have been range-named Produced, ProdCap, Onhand, Demand, Endlnv, StorCap,

Figure 17.1 Production Planning Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

MLKJIHGFEDCBA

Mul�period produc�on model

Input data
Ini�al 0005yrotnevni
Holding cost as % of produc�on cost 5%

Month 1 2 3 4 5 6 7 8 9 10 11 12
Unit produc�on 02.31$01.31$01.31$00.31$00.31$59.21$59.21$58.21$08.21$07.21$55.21$05.21$tsoc

Produc�on schedule
Month 1 2 3 4 5 6
Units 00052000030000300003000030005100001000520000300003000020005decudorp

<= <= <= <= <= <= <= <= <= <= <= <=
Produc�on 000030000300003000030000300003000030000300003000030000300003yticapac

On hand a�er produc�on 10000 20000 35000 35000 25000 10000 15000 33000 32000 37000 31000 25000
>= >= >= >= >= >= >= >= >= >= >= >=

000520001300063000520001300021000010005200053000030005100001dnameD

Ending 000001000700020003000000500050yrotnevni
<= <= <= <= <= <= <= <= <= <= <= <=

Storage 000010000100001000010000100001000010000100001000010000100001yticapac

Summary of costs
Month 1 2 3 4 5 6 7 8 9 10 11 12
Produc�on 000,033$000,393$000,393$000,093$000,093$052,491$005,921$052,123$000,483$000,183$000,152$005,26$tsoc
Holding 0$0$556$055,4$003,1$349,1$0$0$0$571,3$831,3$0$tsoc

Total 062,436,3$tsoc

Automating Solver and Other Applications 361

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ProdCosts, and HoldCosts, respectively. Also, cell B28 has the range name TotalCost.
These range names are provided to make the Solver setup in Figure 17.2 and the
formula for total cost easier to read.

The goal of the exercise is to develop a program that asks the user for a plan-
ning period from 4 to 12 months. (You could also have it ask for other inputs, such
as the initial inventory and the holding cost percentage.) Based on the length of the
planning period, the program should then rename the ranges in rows 14 to 27
appropriately, using only the months in the planning period, and reset Solver (the
VBA equivalent of clicking the Reset All button in Figure 17.2). It should then
re-specify the Solver settings in Figure 17.2, and finally it should run Solver. Note
that if you rename the ranges appropriately, the Solver window will always end up
looking like the one in Figure 17.2, but it is necessary to reset and then re-specify
the settings when the physical ranges change. As an added touch, you might try

Figure 17.2 Solver Settings for Model

362 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hiding the columns that are not used—for example, columns L and M for a 10-
month model.

The file Production Scheduling Finished.xlsm contains one possible solu-
tion. Feel free to open it and click its button to run it. However, do not look at
the VBA code until you have tried writing it yourself.

17.3 Automating Solver with VBA

Many of the applications in Part II of the book are optimization models, where
Excel’s Solver is used to find an optimal solution. This section explains briefly how
to do this. It makes two important assumptions. First, it assumes that you have
some familiarity with Solver and know how to use it in the usual way through the
Excel interface. Second, it assumes that an optimization model already exists. That
is, the inputs and the formulas relating all quantities must already have been
entered in a worksheet. This section deals only with specifying the Solver settings
and running Solver; it does not deal with the optimization model itself.

Solver is an add-in written by Frontline Systems, not by Microsoft.2 It has a
user-friendly Excel interface, shown by the dialog box in Figure 17.2, where you
describe the model, set options, and eventually click the Solve button. If all goes
well, you obtain the dialog box in Figure 17.3, indicating that an optimal solution
has been found.

Fortunately, Frontline Systems has written several VBA functions that allow
programmers to automate Solver with code. These functions enable you to spec-
ify the model (objective cell, decision variable cells, and constraints), set options,
optimize, and even capture the message in Figure 17.3 (which might say that
there is no feasible solution, for example).

Setting a Reference

To use these Solver functions in a VBA application, the first step is to set a reference
to the Solver add-in in the VBE. Otherwise, VBA will not recognize the Solver
functions and you will get a “Sub or function not defined” error message. You set
the reference with the Tools → References menu item in the VBE. This brings up
a long list of possible libraries of code to choose from. One of these should be Solver,
as shown in Figure 17.4. (Your list might differ from the one shown here, depending
on the software versions on your computer.) To add the reference, check its box and
click the OK button. The reference will then appear in the Project Explorer window,
as shown in Figure 17.5. Again, if you forget to set this reference and then try to use
Solver functions in your code, you will get an error message.

2Starting with Excel 2010, Solver is significantly different from earlier versions, not only in the user
interface you see in Figures 17.2 and 17.3, but also in the way its algorithms work. It is essentially
the old “Premium” Solver. Also, starting in Excel 2010, Solver refers to decision variable cells rather
than changing cells. However, these changes have virtually no effect on the VBA code required to
run Solver. This part has hardly changed at all.

Automating Solver and Other Applications 363

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 17.4 List of Potential References

Figure 17.3 Solver Results Dialog Box

364 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Solver Functions

All of the Solver functions begin with the word Solver. The ones used most often are
SolverReset, SolverOk, SolverAdd, SolverOptions, and SolverSolve. This section explains
each of these briefly. For more information, go to the Object Browser (after you set a
reference to Solver), select the Solver library and then the VBA_Functions group. (See
Figure 17.6.) This shows the names of the functions and the arguments each expects,
but not much else. (If you click the question mark, nothing will happen.) If you need
more help, you can go to the Frontline Systems Web site and search there.

Figure 17.5 Reference to Solver in Project Explorer

Figure 17.6 Solver Help in Object Browser

Automating Solver and Other Applications 365

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SolverReset Function

To reset Solver (which is equivalent to clicking the Reset All button in Figure 17.2),
use the line

SolverReset

This clears all previous settings and lets you start with a clean slate.

SolverOk Function

This function does three things: (1) it identifies the objective cell; (2) it specifies
whether the problem is a maximization or minimization problem; and (3) it iden-
tifies the decision variable cells. The following line is typical:

SolverOk SetCell:=Range("Profit"), MaxMinVal:=1, ByChange:=Range("Quantities")

Note that the MaxMinVal argument is 1 for a maximization problem and 2 for a
minimization problem. Also, note that if there are several decision variable cell
ranges (so that you would enter them, separated by commas, in the usual Solver
dialog box), you can use Union in the ByChange argument. For example, you
could write the following to indicate that there are two ranges of decision variable
cells: the Quantities range and the Prices range.

SolverOk SetCell:=Range("Profit"), MaxMinVal:=1, _
ByChange:=Union(Range("Quantities"), Range("Prices"))

The SolverOk function has two other optional arguments, Engine and EngineDesc.
Either of these can be used to specify the solving method you want Solver to use. The
Engine argument has possible values 1, 2, and 3. These correspond, respectively, to
Simplex LP, GRG Nonlinear, and Evolutionary. The EngineDesc (Desc for descriptive) is
similar, but instead of supplying integer values, you spell out the method: “Simplex LP”,
“GRG Nonlinear”, or “Evolutionary” (including the quotes). If you use either of these argu-
ments, you can omit the “AssumeLinear” argument of the SolverOptions function (see
below) that was used in earlier versions of Excel Solver code. For example, the following
code indicates that the LP Simplex method should be used.

SolverOk SetCell:=Range(“Profit”), MaxMinVal:=1, ByChange:=Range(“Quantities”), Engine:=1

SolverAdd Function

This function adds a new constraint each time it is called. It takes three argu-
ments: a left side, a relation index, and a right side. The relation index is 1 for

366 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

“<¼ ”, 2 for “¼ ”, 3 for “>¼ ”, 4 for “integer”, 5 for “binary”, and 6 for “dif”
(all different). (This is the same order in which they appear in the Solver Add Con-
straint dialog box. Also, note that there is no right-side argument for the latter
three options.) The first and third arguments are specified differently. The left side
must be specified as a range, whereas the right side must be specified as a string or
a number. Here are several possibilities:

SolverAdd CellRef:=Range("Used"), Relation:=1, FormulaText:="Available"
SolverAdd CellRef:=Range("EndInventory"), Relation:=3, FormulaText:=0
SolverAdd CellRef:=Range("Investments"), Relation:=5

The first states that the Used range must be less than or equal to the Available
range. The second states that the EndInventory range must be greater than or
equal to 0. The third states that the Investments range must be binary.

SolverOptions Function

This function allows you to set various Solver options. The following line is
typical:

SolverOptions AssumeNonNeg:=True

This indicates that the decision variable cells must be nonnegative. In general, any
number of options can follow the SolverOptions function, all separated by com-
mas. Most of these options correspond to those you see if you click the Options
button in the main Solver dialog box. When you type SolverOptions and then a
space, Intellisense indicates the names of the various arguments. Because they are
all optional, you can list only the ones you want, and you can list them in any
order. But to do so, you must specify the name and then :=, as in AssumeNon-
Neg:=True.

SolverSolve Function

This function is equivalent to clicking the Solve button in the Solver dialog
box—it performs the optimization. There are two things you should
know about SolverSolve. First, if it is used with the argument UserFinish:=
True, the dialog box in Figure 17.3 will not appear. This dialog box could be
a nuisance to a user, so it is often convenient to keep it from appearing with
the line

SolverSolve UserFinish:=True

If you want the dialog box in Figure 17.3 to appear, just delete the UserFinish:=
True part (or use UserFinish:=False, the default value).

Automating Solver and Other Applications 367

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Second, the SolverSolve function returns an integer value that indicates Solver’s
outcome. If this integer is 0, it means that Solver was successful, with the message in
Figure 17.4. Actually, the integers 1 and 2 also indicate success, with slightly different
messages. In contrast, the integer 4 means that Solver did not converge, and the inte-
ger 5 means that there are no feasible solutions. (More details can be found at Front-
line Systems’s Web site.) You can check for any of these and proceed accordingly. For
example, the following lines are common. They run Solver, check for feasibility, and
display an appropriate message if there are no feasible solutions.

Dim result As Integer
result = SolverSolve(UserFinish:=True)
If result = 5 Then

MsgBox "There are no feasible solutions."
Exit Sub

Else
Worksheets("Report").Activate

End If

Note that when the result is captured in a variable, the UserFinish:=True
argument must be inside parentheses. Actually, the result variable is not really
necessary in this code; an alternative is the following:

If SolverSolve(UserFinish:=True) = 5 Then
MsgBox "There are no feasible solutions."
Exit Sub

Else
Worksheets("Report").Activate

End If

Some applications require only the SolverSolve function. Their Solver set-
tings can be set up manually with the Solver dialog box, not with VBA, at
design time. Then all that is required at run time is to optimize with Solver-
Solve. Other applications, such as Exercise 17.1, require a SolverReset line, and
then SolverOk, SolverAdd, and SolverOptions lines, before SolverSolve can be
called. That is, they must set up the model completely—at run time—before
they can optimize. This is usually the case when the size of the model changes
from run to run.

EXAMPLE 17.1 Optimal Product Mix

The file Product Mix.xlsm contains a typical product mix linear programming
model. A company must decide how many frames of four different types to pro-
duce to maximize profit. There are two types of constraints: (1) resources used
(labor hours, glass, and metal) must not exceed resources available, and (2) pro-
duction must not exceed maximum quantities that can be sold. The model
appears in Figure 17.7 with an optimal solution. (You can open the file and

368 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

examine the various formulas. They are all quite straightforward.) The Solver dia-
log box, filled in manually, appears in Figure 17.8.

The goal of the example is to generate a sensitivity table in the range G4:
L12, as indicated in Figure 17.7. Specifically, for each multiple in column G,
the program should replace the original maximum sales values in row 18 by the
multiple of these values, run Solver, and report the numbers of frames produced
and the corresponding profit in the sensitivity table. Note that when the multi-
ple is “unlimited,” there is no maximum sales constraint at all. In this case, there
should be only one constraint in the Solver dialog box. The results will appear as
in Figure 17.9.

To develop this application, the first step is to open the VBE and add a ref-
erence to Solver. Then the following VBA code does the job. The MainProgram
sub is attached to the button in Figure 17.8. Its basic function is to call a num-
ber of other subs to perform the various tasks. Note that three of these subs,
ChangeModel, RunSolver, and StoreResults, are called within a For Each loop
that loops over all cells in the Multiples range. Also, note how an argument is
passed to each of these subs. More explanation on the various subs is provided
below.

Figure 17.7 Product Mix Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

A B C D E F G H I J K L

Product mix model

Input ytivitisneSatad to mul�ples of maximum sales
Hourly wage tiforP4emarF3emarF2emarF1emarFelpitluM00.8$etar
Cost per oz of 05.005.0$latem
Cost per oz of 57.057.0$ssalg

1.00
Frame type 1 2 3 4 1.25
Labor hours per frame 2 1 3 2 1.50
Metal (oz.) per frame 4 2 1 2 1.75
Glass (oz.) per frame 6 2 1 2 2.00
Unit selling price $28.50 $12.50 $29.25 $21.50 Unlimited

Produc�on egnaRnalp names uses:
Frame type 1 2 3 4 Available =Model!D21:D23
Frames produced 1000 800 400 0 MaxSales =Model!B18:E18

<= <= <= <= Mul�ples =Model!G5:G12
Maximum sales 1000 2000 500 1000 Produced =Model!B16:E16

Profit =Model!F32
Resource constraints 32B:12B!ledoM=desUelbaliavAdesU
Labor hours 4000 <= 4000
Metal (oz.) 6000 <= 6000
Glass 00001=<0008).zo(

Revenue, cost summary
Frame type 1 2 3 4 Totals
Revenue $28,500 $10,000 $11,700 $0 $50,200
Costs of inputs

000,23$0$006,9$004,6$000,61$robaL
000,3$0$002$008$000,2$lateM
000,6$0$003$002,1$005,4$ssalG
002,9$0$006,1$006,1$000,6$tiforP

Run sensi�vity analysis

Automating Solver and Other Applications 369

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 17.8 Solver Settings for Product Mix Model

Figure 17.9 Completed Sensitivity Table

3
4
5
6
7
8
9
10
11
12

G H I J K L
Sensi�vity to mul�ples of maximum sales

Mul�ple Frame1 Frame2 Frame3 Frame4 Profit
0.50 500 1000 250 500 $7,500
0.75 750 1250 375 62 $8,688
1.00 1000 800 400 0 $9,200
1.25 1250 300 400 0 $9,700
1.50 1400 0 400 0 $10,000
1.75 1400 0 400 0 $10,000
2.00 1400 0 400 0 $10,000

Unlimited 1400 0 400 0 $10,000

370 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim maxSales(1 To 4) As Single

Sub MainProgram()
Dim cell As Range
Dim multiple As Variant
Dim iModel As Integer
Dim includeConstraint As Boolean

Application.ScreenUpdating = False
Call SaveOriginalValues
iModel = 0
For Each cell In wsModel.Range("Multiples")

iModel = iModel + 1
multiple = cell.Value
If IsNumeric(multiple) Then

includeConstraint = True
Else

includeConstraint = False
End If
Call ChangeModel(multiple)
Call RunSolver(includeConstraint)
Call StoreResults(iModel)

Next
Call RestoreOriginalValues

End Sub

The first sub called, SaveOriginalValues, stores the original maximum sales
values in the maxSales array for later use.

Sub SaveOriginalValues()
Dim i As Integer
For i = 1 To 4

maxSales(i) = wsModel.Range("MaxSales").Cells(i)
Next

End Sub

The ChangeModel sub takes the multiple argument and checks whether it is
numeric with VBA’s handy IsNumeric function. If it is, the sub multiplies the orig-
inal maximum sales values by multiple and places these multiples in the MaxSales
range.

Sub ChangeModel(multiple As Variant)
Dim i As Integer
If IsNumeric(multiple) Then

For i = 1 To 4
wsModel.Range("MaxSales").Cells(i) = multiple * maxSales(i)

Next
End If

End Sub

The RunSolver sub first resets Solver and then sets it up from scratch. It
takes a Boolean argument, includeConstraint. If this value is True (because

Automating Solver and Other Applications 371

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

multiple is numeric), the maximum sales constraint is included; otherwise, it
is not included. Note that if all values of multiple in column G were
numeric, only the SolverSolve line of this sub would be required. This is
because the Solver setup, developed manually as in Figure 17.9, would
never change. You might argue that with only one possible change (the
inclusion or exclusion of the maximum sales constraint), it should not be
necessary to reset and then re-specify the entire Solver setup. This argument
is correct. It is indeed possible to delete or add a single constraint to an
existing Solver setup, but I have taken the “reset” route here, primarily to
illustrate the various Solver functions.

Sub RunSolver(includeConstraint As Boolean)
With wsModel

SolverReset
SolverOk SetCell:=.Range("Profit"), MaxMinVal:=1, _

ByChange:=.Range("Produced"), Engine:=1
SolverAdd CellRef:=.Range("Used"), Relation:=1, _

FormulaText:="Available"
If includeConstraint Then

SolverAdd CellRef:=.Range("Produced"), Relation:=1, _
FormulaText:="MaxSales"

End If
SolverOptions AssumeNonNeg:=True
SolverSolve UserFinish:=True

End With
End Sub

The StoreResults sub takes the Solver results in the Produced and Profit
ranges and transfers them to the sensitivity table. It takes a single argument,
iModel, that specifies how far down the table to place the results. Note that
iModel is increased by 1 each time through the For Each loop in the MainPro-
gram sub.

Sub StoreResults(iModel As Integer)
Dim i As Integer
With wsModel.Range("G4")

For i = 1 To 4
.Offset(iModel, i) = wsModel.Range("Produced").Cells(i)

Next
.Offset(iModel, 5) = wsModel.Range("Profit")

End With
End Sub

Finally, the RestoreOriginalResults sub places the original maximum sales values
back in the MaxSales range and runs Solver one last time. This is not absolutely
necessary—by the time this sub is called, the sensitivity table is complete—but it is a
nice touch. This way, the final thing the user sees is the solution to the original
problem.

372 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub RestoreOriginalValues()
Dim i As Integer
For i = 1 To 4

wsModel.Range("MaxSales").Cells(i) = maxSales(i)
Next
Call RunSolver(True)

End Sub

17.4 Possible Solver Problems

There are a couple of peculiarities you should be aware of when you automate
Solver with VBA.

Using a Main Sub

The problem described in this section was evidently fixed in Excel 2007’s Solver.
But I will retain this section for pre-Excel 2007 users.

It is common to name your “control center” sub Main. This can cause a
strange problem in a program that has a reference to Solver. Try the following.
In a pre-2007 version of Excel, open a new workbook, get into the VBE, add a
module, and add a reference to Solver. Then add a sub in the module called
Main. It doesn’t have to do anything interesting, but it should be called Main.
Now get back into Excel and open Solver. You will not see the Solver dialog
box. To go one step farther, add a user form to your program (you can keep the
generic name UserForm1), and add the following line to your Main sub:

UserForm1.Show

Again, get back into Excel and open Solver. Your new user form will appear!
What is happening? The problem is that Solver has its own Main sub. So

when you open Solver in Excel, it gets confused and invokes your Main sub
instead of its Main sub. The fix is easy. If your program sets a reference to
Solver, don’t use the name Main for any of your subs. If you still like Main,
use a name like MainProgram or something similar. This is my convention in all
applications in the second part of the book that invoke Solver—just to be safe.

Missing Solver Reference

Let’s say that someone (like me) writes a program that sets a reference to Solver.
They give you that program, and you try running it—and you get an error. The
chances are that you have a “missing Solver reference” problem. This is a com-
mon problem, one that I have gotten numerous e-mails about over the years.
I finally went to the source—technical support at Frontline Systems—and got
what I believe is a simple and reliable fix.3

3Thankfully, this problem seems to have disappeared, starting in Excel 2010.

Automating Solver and Other Applications 373

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

According to my source at Frontline Systems, this problem happens because
Solver is a “smart” add-in, which does not get loaded into memory until you
use it. (This stems back to the days where start-up time and memory usage
were bigger issues). When Solver has not been used in an Excel session, and the
Solver.xla file has therefore not been opened yet, the following can happen.4

You can open a workbook with a reference to Solver (because Solver functions
are used in the workbook’s code). Excel tries to restore the reference by open-
ing the Solver.xla file, and it does this by following the path to this file stored
in the workbook. If your Solver.xla file is located in a different place, Excel will
fail and produce a “Missing: Solver.xla” in the references list, and the program
won’t run.

If you experience this problem, the simplest solution is to start Excel with a
blank workbook and open the Solver dialog box once. This loads Solver into
memory, and when your workbook now opens, the reference to Solver will be
updated appropriately. If you then save the workbook, the reference is updated
permanently, and you will not have any problems in the future.

The point is that the critical file Solver.xla is not stored in the same location
on all computers. This is the source of the “missing Solver reference” problem.
(Actually, this missing reference can occur for other reasons that I won’t go into
here.) However, to avoid this problem, all you have to do is open Solver and then
close it. Then all of the VBA applications in this book should work fine. I call this
“waking up Solver.”

To help you remember this fix if you are using a pre-2010 version of Excel
(where the problem tends to occur), all later applications in this book that
require a reference to Solver show a message similar to that in Figure 17.10
when the application opens. This message is actually a user form, and I always
call it frmSolver. If you are using Excel 2010 or a later version, you won’t see
this message.

Figure 17.10 Warning in Solver Applications

4Replace Solver.xla by Solver.xlam in this discussion if you are using Excel 2007 or a later version.

374 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17.5 Programming with Risk Solver Platform

Writing programs to automate Solver should be straightforward, and it often is. But as I
have found from experience with my SolverTable add-in (see http://www.kelley.iu.
edu/albrightbooks/Free_downloads.htm), it can also be a never-ending source of
headaches. The problem is that a programmer has to go by the rules Microsoft has set
up for add-ins like Solver. But as Microsoft develops new versions of Excel, these rules
change. Besides that, the rules have never been obvious, and it is difficult to find them
written down anywhere. This is the reason for the fixes described on my Web site.

There is an alternative that I will briefly describe in this section. Frontline Systems
has many products besides the “standard” Solver that ships with Excel. In particular,
it has a Risk Solver Platform (RSP) that is much more powerful than Excel’s built-in
Solver.5 Better yet, RSP has an improved API (application programming interface)
for VBA programmers. This new API has an object model for controlling Solver
models that is much more like other object models such as Excel’s, complete with
Intellisense. It takes some practice to get your code to work, but the structure is
more logical than the Solver functions discussed in previous sections. And best of all,
the code is much more stable than the original Solver code. For example, you don’t
have to “wake up” Solver or worry about where the user’s Solver folder is located.

To take advantage of this new API, you must first purchase and install RSP.
Next, you must set a reference to Risk Solver Platform x.x Type Library (where x.x
is replaced by the version you are using) from the Tools References menu item in
the VBE. (See Figure 17.11.)

Once you do this, you can get help from the Object Browser by selecting the
RSP library. Some of this is shown in Figure 17.12. As usual, you can select an
object or enumeration on the left and see more information on the right. Unfor-
tunately, no extra help appears if you click the question mark, but I will try to
supply the information you need here.6

The “top-level” object for RSP models is the Problem object. It essentially
refers to an optimization model on a worksheet. Other key objects are the
Solver, Function, and Variable objects. The Solver object contains all of the infor-
mation about the optimizer used to optimize the model. A Function object refers
to either the objective function or a group of constraint function cells. A Vari-
able object refers to a range of decision variable cells. There is also a Variables
collection object, the set of all decision variable cell ranges, and a Functions col-
lection object, the set of all objective and constraint functions.

5We were allowed to include an academic version of RSP in the third edition of this book, but for
contractual reasons, we are no longer allowed to do so. This decreases the importance of this section,
but I have kept it mostly to illustrate another object model. The code in this section was written sev-
eral years ago, so I won’t guarantee that it still works exactly as is, but any necessary changes should
be minor. For all applications in Part II of the book that use Solver, the original RSP versions (written
at the time of the third edition) are included with the example files for this chapter.
6The online help was limited when I originally wrote this section a few years ago. The situation may
have changed by now.

Automating Solver and Other Applications 375

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 17.11 Setting a Reference to RSP

Figure 17.12 Object Browser for RSP Library

376 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following code illustrates how it works. This code can be used instead of the
RunSolver code from Section 17.3 for the product mix application. (Again, this
assumes that you have RSP on your computer.)

Sub RunSolver(includeConstraint As Boolean)
Dim prob As New RSP.Problem
Dim obj As New RSP.Function
Dim dvCells As New RSP.Variable
Dim constr1 As New RSP.Function
Dim constr2 As New RSP.Function

With prob
.Variables.Clear
.Functions.Clear

' Objective
obj.Init Range("Profit")
obj.FunctionType = Function_Type_Objective
.Functions.Add obj

' MaxMin value
.Solver.SolverType = Solver_Type_Maximize

' Decision variable cells
dvCells.Init Range("Produced")
dvCells.NonNegative
.Variables.Add dvCells

' Constraints
constr1.Init Range("Used")
constr1.FunctionType = Function_Type_Constraint
constr1.UpperBound.Array = "Available"
.Functions.Add constrl

If includeConstraint Then
constr2.Init Range("Produced")
constr2.FunctionType = Function_Type_Constraint
constr2.UpperBound.Array = "MaxSales"
.Functions.Add constr2

End If

' Solve
.Solver.Optimize

End With
End Sub

Although this code is quite readable, here are a few comments.

● Each Problem, Function, and Variable object must be instantiated, which is
done with the keyword New. The prefix RSP is used to indicate that these
objects are part of the RSP library.

● The Functions and Variables collections should first be cleared.
● Note how the objective is set up. First, a new Function object is instantiated.

Then the Init method is used to specify its range. Next, the FunctionType prop-
erty is set. In this case, it is the Objective type, but later on in the code, it is the
Constraint type. Finally, this function is added to the Functions collection of the
Problem object.

Automating Solver and Other Applications 377

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● There is only one decision variable cell range in this model, so only one Variable
object is required. If there were more decision variable cell ranges, extra Variable
objects would be required. The Nonnegative property is used to ensure that the
decision variable cells are nonnegative. After the properties of the Variable object
are set, it is added to the Variables collection of the Problem object.

● The Problem object has a Solver property that returns the Solver that does the opti-
mization. It has a SolverType property to specify whether the problem is a minimi-
zation or maximization, and it has an Optimize method to run the optimization.

● As in Section 17.3, the left and right sides of the constraints are treated
differently. The Init method of a constraint function specifies the left side of
the constraint as a range. The right side is specified by the UpperBound.Array
(or LowerBound.Array) property, which is set to a string (either a range name
or an address). Of course, UpperBound indicates a “<¼ ” constraint, whereas
LowerBound indicates a “>¼ ” constraint. And if you want an equality con-
straint, you can set the LowerBound and UpperBound to the same value.

The above code is required if you need to reset the Solver settings several
times through a loop, as in the product mix application. However, if the Solver
settings never change during the execution of the program, you can set them up
at design time interactively through the user interface. Then the only code you
need is the following:

Dim prob As New RSP.Problem
prob.Solver.Optimize

17.6 Automating @RISK with VBA

The advantage of working with Solver is that it ships with Excel. When you purchase
Microsoft Office, you get Solver as part of the package. However, there are many
other Excel add-ins that can be purchased separately. Some of these add-ins (but cer-
tainly not all) expose VBA programming capabilities, just as I discussed with Solver.
One set of add-ins I am particularly familiar with is the DecisionTools Suite from Pali-
sade Corporation.7 This suite includes, among others, @RISK for simulation modeling.
In the same way that you can automate Solver with VBA, you can automate @RISK.

How can you learn how to automate add-ins in general? This depends entirely
on the reference materials that accompany the add-in. For example, when you install
the Palisade suite (version 6.0 or later) and open @RISK, you can find extensive
help from its XDK (Excel Developer Kit) (see Figure 17.13). This includes not
only reference materials but also a number of Excel example files with VBA code
and videos explaining the code.8

7The academic version of this suite is available with my Practical Management Science and Data
Analysis and Decision Making books.
8For the past several years, I have been working as a training consultant for Palisade, and in this role
I have developed the example files and videos referenced in Figure 17.13.

378 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To use @RISK functionality in a VBA program, you must first use the Tools →
References menu item to set the two references shown in Figure 17.14: one to
RiskXLA and the other to Palisade @RISK x.x for Excel Object Library. This allows
you to take advantage of everything that is explained in the help materials. It is then
“just” a matter of learning the functionality that @RISK provides. The rest of this
section illustrates some possibilities. (And remember that the examples indicated in
Figure 17.13 illustrate many other possibilities.)

If you have used any recent version of @RISK, you are aware that it has a
number of ways to produce results from a simulation. In fact, the variety of
possibilities can be bewildering. Therefore, I wrote a template to automate
one variation of the process. You can find this in the file Simulation
Template.xlsm. There is only one worksheet in this file, the Model worksheet
shown in Figure 17.15. (This sheet contains other text boxes to explain the
details.) It is quite generic and is set up so that you can enter any number of
inputs in the Inputs section, any number of outputs in the Outputs section,
and any simulation model in the Simulation section. I assume that you would
like to run a number of simulations, one for each combination of input values
to be tested, as listed in the Inputs section. In the case shown, there are 1 × 2
× 3 ¼ 6 input combinations, so 6 different simulations will be run. The pro-
gram does this in a clever way with @RISK’s RiskSimtable function. In the
Outputs section, you can designate any statistical outputs desired, including
percentiles and targets. (@RISK uses the term target to mean a probability of
the “less than or equal to” type. So, for example, row 15 is requesting the
probability that the Output3 is less than or equal to 4.) The program runs the
required number of simulations, each for the requested number of iterations,
and creates separate worksheets for means, standard deviations, minimums,
maximums, percentiles, and targets.

Figure 17.13 @RISK XDK Help

Automating Solver and Other Applications 379

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A lot of the code for this template contains nothing new, so I won’t show it
here. But the following is part of the code, where I have boldfaced the lines that
rely on the @RISK object model. (There aren’t many.) Note that I first had to set
the @RISK references, as explained earlier. Otherwise, the boldfaced lines in the
code wouldn’t be recognized by VBA.

The first section of code illustrates how to change some @RISK simulation
settings and how to designate cells as @RISK output cells. (There is no automatic
way to perform this latter task. You have to manipulate the formula for the out-
put to include RISKOUT(outputname)+).

' Change some @RISK settings.
With Risk.Simulation.Settings

.AutomaticResultsDisplay = RiskNoAutomaticResults

.Numlterations = Range("Number_of_iterations").Value

.NumSimulations = nSimulations
End With

' Designate output cells as @RISK output cells if they’re not already designated.
For i = 1 To nOutputs

If InStr(1, outputCell(i).Formula, "RiskOutput") = 0 Then
outputCell(i).Formula = "=RiskOutput(" & outputName(i) & ")+" _

& Right(outputCell(i).Formula, Len(outputCell(i).Formula) - 1)
End If

Next

Figure 17.14 @RISK References

380 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To run the simulation once it has been set up, only one line of code is necessary:

Risk.Simulation.Start

Finally, to get the requested statistical results in various worksheets, the fol-
lowing code is used. The key is Risk.Simulation.Results.GetSimulatedOuput(output).
This returns a particular set of results, those for the designated output, from the
Results collection of the Simulation object. From there, you can ask for the
mean, the standard deviation, and other statistical summary measures.

Select Case statType
Case "Mean", "Stdev", "Min", "Max"

For i = 1 To nOutputs
If Range("Tables_Requested") _

.Offset(i þ 1, index - 1).Value = "Yes" Then
nRequested = nRequested þ 1
With Range("A1").Offset(0, j)

.Value = outputName(i)
For k = 1 To nSimulations

If statType = "Mean" Then
.Offset(k, 0).Value = Risk.Simulation.Results _

.GetSimulatedOutput(outputName(i), k).Mean
ElseIf statType = "Stdev" Then

Figure 17.15 Simulation Template

Automating Solver and Other Applications 381

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Offset(k, 0).Value = Risk.Simulation.Results. _
GetSimulatedOutput(outputName(i), k).StdDeviation

ElseIf statType = "Min" Then
.Offset(k, 0).Value = Risk.Simulation.Results. _

GetSimulatedOutput(outputName(i), k).Minimum
ElseIf statType = "Max" Then

.Offset(k, 0).Value = Risk.Simulation.Results. _
GetSimulatedOutput(outputName(i), k).Maximum

End If
Next

End With
j = j þ 1

End If
Next

Case "Percentiles", "Targets"
For i = 1 To nOutputs

statString=Range("Tables_Requested") _
.Offset(i þ 1, index - 1).Value

If statString < > "No" Then
nRequested = nRequested þ 1
' Parse the string of comma-delimited values.
Call GetArrays(statString, arrayString, arrayNumber)
For l = 1 To UBound(arrayString)

With Range("A1").Offset(0, j)
If statType = "Percentiles" Then

.Value = "Pctile " & arrayString(l) _
& " " & outputName(i)

ElseIf statType = "Targets" Then
.Value = "P(" & outputName(i) & " < = " _

& arrayString(l) & ")"
End If

For k = 1 To nSimulations
If statType = "Percentiles" Then

.Offset(k, 0).Value = Risk.Simulation.Results. _
GetSimulatedOutput(outputName(i), k) _

.PToX(arrayNumber(l))
ElseIf statType = "Targets" Then

.Offset(k, 0).Value = Risk.Simulation.Results. _
GetSimulatedOutput(outputName(i), k) _

.XToP(arrayNumber(l))
End If

Next
End With
j = j þ 1

Next
End If

Next
End Select

The code in this template can be used, exactly as is, on any simulation model
that is set up as instructed in the template file. I have included two examples with
the book files: World Series Simulation.xlsm and Newsvendor Simulation.xlsm.
Open them and try them out. Just remember that @RISK must be loaded for them
to work properly.

382 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17.7 Automating Other Office Applications with VBA

It is also possible to automate one Office application from another. In this section
I illustrate some possibilities, including the automation of Word and Outlook
from Excel and the automation of Excel from Outlook. There are two basic
steps required:

1. You first set a reference to the application you want to automate. As usual,
you do this through the Tools → References menu item in the VBE. For
example, if you are automating Word from Excel, you set a reference to the
Microsoft Word x.x Object Library. As another example, if you are auto-
mating Excel from Outlook, you set a reference to the Microsoft Excel x.x
Object Library. Note that Word and Outlook each have a VBE, and you
get to them with Alt+F11, just as in Excel. Also, note that the references
are “hard-coded” to the version of Office you are running. I wrote the
examples for this chapter in Office 2013, so my references are to the ver-
sion 15.0 object libraries. If you run them in Office 2007 or 2010, you
will get an error about a missing reference. To fix it, select the Tools →
References menu item, uncheck the Missing item, and check the similar item
for your version of Office.

2. Create an instance of the application you want to automate. You can do this
in one or two lines of code. To do it in a single line of code, the following is
typical:

Dim olApp As New Outlook.Application

This does two things at once. It says that the variable olApp is of type
Outlook.Application. It also creates an instance of Outlook with the keyword New.
Alternatively, you can use two lines of code, one to indicate the type of variable
and the other to create a new instance whenever you need it:

Dim olApp As Outlook.Application
' Other lines can go here.
Set olApp = New Outlook.Application

The method described here for automating another application is called early
binding. By setting a reference to the other application’s library, you get Intelli-
sense on that application’s objects, as well as access to its built-in constants such
as wdColumnWidthNarrow in Word or olFormatHTML in Outlook.

A somewhat different method is to use late binding. In this case, you don’t
set a reference. Instead, you use lines such as the following to create an instance
of the other application.

Dim WordApp As Object
Set WordApp = CreateObject(“Word.Application”)

Automating Solver and Other Applications 383

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

One advantage of late binding is that the above code will work on a user’s
computer regardless of the version of Word the user has installed. However, late
binding doesn’t provide Intellisense or built-in constants. The examples in this
section all use early binding.

EXAMPLE 17.2 Sending Grades in E-mails

As an instructor, I developed a handy application that automatically sends an
email to each student in my class with their grade for an assignment or exam. I
assume the students’ usernames and grades are stored in an Excel file, set up as
in Figure 17.16. (See the file Sending Emails with Grades.xlsm.) I first created
a reference to the Microsoft Outlook 15.0 Object Library. Then the following
code sends an email to each student with a message such as “You got grade B+
for the exam.” It also sends an attachment that indicates what the student missed
points for. You can adapt this code for your own needs.

Sub SendEMails()
Dim topCell As Range
Dim nStudents As Integer
Dim i As Integer
Dim userName As String
Dim grade As String
Dim pathStudents As String
Dim fileName As String

' Create a new instance of Outlook.
Dim olApp As New Outlook.Application
Dim olMail As Outlook.MailItem

' Change this, depending on where your individual student
' folders are.
pathStudents =ThisWorkbook.Path & "\Students\"

Set topCell = wsGrades.Range("A1")
With topCell

nStudents = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
End With

For i = 1 To nStudents
userName = topCell.Offset(i, 0).Value
grade = topCell.Offset(i, 1).Value
' Create a mail item for this student.
Set olMail = olApp.CreateItem(olMailItem)
With olMail

.To = userName & "@stateuniversity.edu"

.Subject = "Final exam"

.Body = "Your grade for the exam is " & grade _
& ". You can see what you missed in the attached file."

' The following assumes that each student has his own folder under
' the Students folder, with folder name equal to the student’s
' username and including a file like Gradesheet_jbjones.xlsx.
fileName = pathStudents & userName _

& "\Gradesheet_" & userName & ".xlsx"
.Attachments.Add fileName
.Send

384 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End With
Next

' Clean up.
Set olMail = Nothing
Set olApp = Nothing

End Sub

The key to the code is the olMail object. This is an Outlook MailItem object,
declared with the line

Dim olMail As Outlook.MailItem

This object has all the properties and methods required to create and send
an email from Outlook. However, you must first create an instance with
the line

Set olMail = olApp.CreateItem(olMailItem)

Then you can use its To, Subject, and Body properties to create the email, and you
can use its Send method to send the message.

Note the two lines at the bottom:

Set olMail = Nothing
Set olApp = Nothing

These are not necessary, but they illustrate good programming practice. The
olMail and olApp take up some room in computer memory. These two lines, used
after the objects have filled their purpose, free up the memory.

An alternative is to write essentially the same code in Outlook and use it to
automate Excel. The following code shows how to do it. Just remember that
this code lives in Outlook’s VBE code window, and the reference is now to the
Excel library.

Figure 17.16 Student Exam Scores

1
2
3
4
5
6

A B
Username Exam
jbjones B+
crsmith A–
tlwilson C
fdblack B
rsimmons A

Automating Solver and Other Applications 385

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub SendEMails()
Dim topCell As Range
Dim nStudents As Integer
Dim i As Integer
Dim username As String
Dim grade As String
Dim pathGradebook As String
Dim pathStudents As String
Dim fileName As String
Dim olMail As MailItem
' Create an instance of Excel.
Dim xlApp As New Excel.Application

pathGradebook = "C:\My Course\"
pathStudents = "C:\My Course\Students\"
' Note that Excel is used to qualify what a Workbook or Worksheet is.
' This isn't necessary (because a reference is set to Excel), but it
' is a good reminder that Excel is the automated application.
Dim wb As Excel.Workbook
Dim ws As Excel.Worksheet

Set wb = xlApp.Workbooks.Open(pathGradebook & "Gradebook.xlsx")
Set ws = wb.Worksheets("Grades")
Set topCell = ws.Range("A1")
nStudents = ws.Range("Usernames").Rows.Count

For i = 1 To nStudents
username = topCell.Offset(i, 0).Value
grade = topCell.Offset(i, 1).Value
' Create a mail item for this student.
Set olMail = CreateItem(olMailItem)
With olMail

.To = username & "@indiana.edu"

.Subject = "Final exam"

.body = "Your grade for the exam is " & grade _
& ". You can see what you missed in the attached file."

On Error Resume Next
fileName = pathStudents & username _

& "\Gradesheet_" & username & ".xlsx"
.Attachments.Add fileName
.Send

End With
Next

' Close and clean up.
wb.Close
Set olMail = Nothing
Set xlApp = Nothing

End Sub

The following example shows that you can automate both Word and Out-
look in the same Excel VBA program.

EXAMPLE 17.3 Sending Emails with Word Attachments

This example assumes there is an Excel file with a database of customers. (See
Figure 17.17 and the file Sending Overdue Notices.xlsm.) The goal is to

386 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

compose a Word document for each customer and then send it as an attach-
ment in an email to the customer. If the customer has paid (column L is not
blank), the Word document will contain a nice “appreciate your business”
note. Otherwise, it will contain a past due warning. If you are interested in
what the automatically generated Word documents contain, take a look at the
files Janice_Smith_01-31-15.docx and Robert_Owens_01-31-15.docx,
which I generated on January 31, 2015.

The code for this example is in Excel, so it is first necessary to set references
to the Word and Outlook libraries. Then an instance of each must be created.
The following code does it all. I admit to being a novice on this one because I
don’t know the Word object model very well. There may well be a more elegant
way to compose the Word document instead of my repetitive wdSel lines.
However, the bottom line is that this program works.

Sub GenerateAndSendNotices()
Dim nCustomers As Integer
Dim i As Integer
Dim message As String
Dim docName As String

Dim wdDoc As Word.Document
Dim wdSel As Word.Selection

' The next lines creates a new instance of Word and of Outlook.
Dim wdApp As New Word.Application
Dim olApp As New Outlook.Application

Dim olMail As Outlook.MailItem

With wsData.Range("A3")
nCustomers = Range(.Offset(1, 0), .End(xlDown)).Rows.Count

End With

' Uncomment the following line if you want to see Word doing its thing.
'wdApp.Visible = True

For i = 1 To nCustomers
With wsData.Range("A3").Offset(i, 0)

' Compose the body of the letter depending on whether the
' customer has paid or not paid.

If .Cells(1, 12).Value = "" Then ' hasn't paid yet

Figure 17.17 Customer Database

Automating Solver and Other Applications 387

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

message = "Your purchase on " & Format(.Cells(1, 10), "mmm-dd-yyyy") _
& " for an amount " & FormatCurrency(.Cells(1, 9).Value, 2) _
& " was due on " & Format(.Cells(1, 11), "mmm-dd-yyyy") _
& " and is now " & Date - .Cells(1, 11) & " days late. " _
& "We expect your payment within the next week."

Else
message = "Regarding your purchase on " & Format(.Cells(1, 10), _

"mmm-dd-yyyy") & " for an amount " _
& FormatCurrency(.Cells(1, 9).Value, 2) & "," _
& " we received your payment on " _
& Format(.Cells(1, 12), "mmm-dd-yyyy") & "." _
& " Your account is now paid in full. We appreciate your business."

End If

' Add a new document. The Selection is where you start typing.
Set wdDoc = wdApp.Documents.Add
wdDoc.Range.Select
Set wdSel = wdDoc.ActiveWindow.Selection

' The following line sets spacing after paragraphs. I vary
' this through the sub.
wdSel.ParagraphFormat.SpaceAfter = 0

' The next type of line adds text.
wdSel.TypeText Text:=.Cells(1, 1).Value & " " & .Cells(1, 2).Value

' The next line is equivalent to pressing Enter.
wdSel.TypeParagraph
wdSel.TypeText Text:=.Cells(1, 4).Value
wdSel.TypeParagraph
wdSel.TypeText Text:=.Cells(1, 5).Value & ", " _

& .Cells(i, 6).Value & " " & .Cells(i, 7).Value
wdSel.ParagraphFormat.SpaceAfter = 10
wdSel.TypeParagraph

wdSel.TypeText Text:=Format(Date, "mmm-dd-yyyy")
wdSel.TypeParagraph
wdSel.TypeText Text:="Dear " & .Cells(1, 3).Value _

& " " & .Cells(1, 2).Value & ":"
wdSel.TypeParagraph

wdSel.TypeText Text:=message
wdSel.TypeParagraph
wdSel.TypeText Text:="Sincerely,"
wdSel.TypeParagraph
wdSel.ParagraphFormat.SpaceAfter = 0
wdSel.TypeText Text:="Chris Albright, Manager"
wdSel.TypeParagraph
wdSel.TypeText Text:="Albright Collection Agency"

' Save the document and close it.
docName = ThisWorkbook.Path & "\" _

& .Cells(1, 1).Value & "_" & .Cells(1, 2).Value _
& "_" & Format(Date, "mm-dd-yy") & ".docx"
wdDoc.SaveAs docName
wdDoc.Close

' Email the document to this customer.
Set olMail = olApp.CreateItem(olMailItem)

388 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

olMail.To = .Cells(1, 8).Value
olMail.Subject = "Purchase on " & Format(.Cells(1, 10).Value, "mmm-dd-yyyy")
olMail.Body = .Cells(1, 3).Value & " " & .Cells(1, 2).Value _

& ", please check the attached document. Thank you." _
& vbCrLf & vbCrLf & "Albright Collection Agency"

olMail.Attachments.Add docName
olMail.Send

End With
Next

' Clean up.
Set olMail = Nothing
Set olApp = Nothing
Set wdApp = Nothing

End Sub

17.8 Summary

This chapter has illustrated how you can take advantage of VBA functions written
by third-party developers to run their add-ins. Specifically, I have discussed Solver
functions that can be used to perform optimization for an existing optimization
model. These functions allow you to set up and run Solver completely
with VBA. I have also illustrated how to automate the Palisade @RISK add-in
with VBA. I will take advantage of this ability in several of the applications in the
second half of the book. Finally, I have illustrated how you can automate one or
more Office applications from Excel or another Office application.

EXERCISES

1. The file Product Mix.xlsx contains a typical product mix model. A company
needs to decide how many of each type of picture frame to produce, subject to
constraints on resource availabilities and upper bounds on production quantities.
The objective is to maximize profit. The model is set up appropriately, although
the current solution is not optimal. The cells in blue are inputs, and the cells in
red are decision variable cells. The range names being used are listed. Write a
sub that sets up Solver and then runs it.

2. The file Production Scheduling.xlsx contains a multiperiod production schedul-
ing model. A company has to schedule its production over the next several
months to meet known demands on time. There are also production capacity
and storage capacity constraints, and the objective is to minimize the total cost.
The model is currently set up (correctly) for a 12-month planning horizon. The
cells in blue are inputs, and the cells in red are decision variable cells. The range
names currently being used are listed. This model can easily be changed, by delet-
ing columns or copying across to the right, to make the planning horizon longer
or shorter. You can assume that someone else does this. Your job is to write a sub
that renames ranges appropriately, sets up Solver correctly, and then runs it. That

Automating Solver and Other Applications 389

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is, your sub should optimize the model in the worksheet, regardless of how many
months are in its planning horizon.

3. The file Facility Location.xlsx contains a model for locating a central warehouse.
There are four customers that send shipments to this warehouse. Their coordi-
nates are given, as well as their numbers of annual shipments. The objective is to
minimize the annual distance traveled, and there are no constraints. The cells in
blue are inputs, and the cells in red are decision variable cells. The range names
being used are listed. This is a nonlinear model, so it is conceivable that there is
a local minimum in addition to the global minimum. If there is, then it is possible
that the Solver solution could depend on the initial solution used (in the red
cells). To test this, write two short subs and attach them to the two buttons.
The first should generate “reasonable” random initial solutions. (Use VBA’s Rnd
function, which generates a uniformly distributed random number from 0 to 1,
in an appropriate way. Make sure to put a Randomize statement at the top of the
sub so that you get different random numbers each time you run the sub.) The
second sub should then run Solver. (It doesn’t need to set up Solver. You can
do that manually, once and for all.) Then repeatedly click the first button and
then the second button. Do you always get the same Solver solution?

4. The file Transport.xlsx contains a transportation model where a product must be
shipped from three plants to four cities at minimal shipping cost. The constraints
are that no plant can ship more than its capacity, and each city must receive at
least what it demands. The model has been developed (correctly) on the Model
worksheet. The company involved wants to run this model on five scenarios. Each
of these scenarios, shown on the Scenarios worksheet, has a particular set of capaci-
ties and demands. Write a sub that uses a For loop over the scenarios to do the fol-
lowing: (1) it copies the data for a particular scenario to the relevant parts of the
Model worksheet; (2) it runs Solver; and (3) it copies selected results to the Results
worksheet. To get you started, the Results worksheet currently shows the results for
scenario 1. This is the format you should use for all scenarios.

5. The file Pricing.xlsx contains a model for finding the optimal price of a product.
The product is made in America and sold in Europe. The company wants to
set the price, in Euros, so that its profit, in dollars, is maximized. The demand
for the product is a function of price, and it is assumed that the elasticity of
demand is constant. This leads to the formula for demand in cell B14, which
depends on the parameters in row 10. (These parameters are assumed to be
known.) The revenue, in dollars, equals price multiplied by demand. Of course,
this depends on the exchange rate in cell B4. The company wants to perform a
sensitivity analysis on the exchange rate. The results will be placed in the Sensitiv-
ity worksheet, which already lists the exchange rates the company wants to test.
Do the following: (1) Enter any data in columns B, C, and D of the Sensitivity
worksheet and use them to create three line charts (to the right of the data) that
show price, demand, and profit versus the exchange rate; and (2) write a sub that
substitutes each exchange rate into the model, runs Solver, and transfers the
results to the Sensitivity worksheet. When you run your sub, the charts should
update automatically with the new data. (That is why you manually set up the chart
and link it to data columns—so that you don’t have to do with it VBA code.)

390 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. The file Stocks.xlsx contains stock price returns for many large companies for a
5-year period. (Feel free to download more recent stock price data if you prefer.)
Each company has its own worksheet, with the stock’s ticker symbol as the name
of the worksheet. There is also an S&P500 worksheet with the market returns.
The Model worksheet uses the market returns and the returns from a given
stock to estimate the equation Market¼AlphaþBeta * Stock, where Market and
Stock are the returns and Alpha and Beta are parameters to be estimated. The
estimated Beta is especially useful to financial analysts. It is a measure of the vola-
tility of the stock. The model is set up correctly (currently with data from Ameri-
can Express). The Alpha and Beta parameters are found by minimizing the sum of
squared errors in cell E4. Write a sub that does the following: (1) It uses a For
Each loop to go through all worksheets except the Results, Model, and S&P500
sheets, that is, all stock sheets; (2) it copies the stock’s returns to column C of the
Model worksheet, pasting them as values; (3) it runs Solver; and (4) it reports the
results in a new line in the Results worksheet. At the end, the Results worksheet
should have the ticker symbol and the Alpha and Beta for each stock. (Note: Your
sub doesn’t need to set up Solver. You can do that once and for all at design
time, manually.)

7. The file Planting.xlsx contains a very simple model that a farmer could use to
plant his crops optimally. The inputs are in blue, and the decision variable cells
are in red. The purpose of this exercise is to develop a VBA application that allows
the user to (1) choose any of the input cells as the cell to vary in a sensitivity anal-
ysis, (2) choose a range over which to vary this cell, (3) run Solver over this
range, and (4) report the results in the Sensitivity worksheet. Here are some
guidelines. For (1), you should develop a user form that has a list box with
descriptive names of all input cells, such as Profit per acre of wheat, Workers
used per acre of wheat, and so on. The user should be allowed to choose only
one item from this list. For (2), you should develop a second user form where
the user can enter a minimum value, a maximum value, and an increment. For
example, the user might specify that she wants to vary the profit per acre of
wheat from $150 to $350 in increments of $50. Perform error checks to ensure
that numerical values are entered, the minimum value is less than the maximum
value, and the increment is positive. For (3), store the current values of the
selected input in a variable, run the sensitivity analysis, and then restore
the current value. For (4), make sure you adjust the labels in cells Al and A3
of the Sensitivity worksheet for the particular input chosen.

8. The Solver add-in contains some hidden secrets that can come in handy if you
know them. (You might have to develop a friendship with someone in Frontline
Systems’ technical support group to learn them, as I did.) Here is one such
secret. The decision variable cells in any Solver model are given the range name
solver_adj. This name won’t appear in the list of range names when you use
Excel’s Name Manager, but it is there. You can use it as follows. Open the file
Plant Location.xlsx. This is a fairly large Solver model that can be used to find
optimal locations of plants and warehouses. It is currently set up correctly, but it
is not obvious where the decision variable cells are. (I didn’t color the decision
variable cells red as I usually do.) You could peek at the Solver dialog box to

Automating Solver and Other Applications 391

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

find the decision variable cells, but instead, write a sub that displays, in a message
box, the address of the range with name solver_adj.

9. Continuing the previous exercise, you might wonder whether there are any other
hidden Solver range names. Open the Plant Location.xlsx file again. You will
notice some headings out in columns AA and AB. Enter the following sub and
run it. It finds all range names that start with Model!solver. You will see that
Solver has stored quite a lot of information. What range name is given to the
objective cell? (The part of the code that deals with errors is necessary because
some of Solver’s defined names do not refer to ranges. The On Error Resume
Next statement says to ignore errors that would result because of these names.)

Sub ShowSolverRangeNamesO()
Dim nm As Name
Dim counter As Integer

counter = 1
With Range("AA1")

For Each nm In ActiveWorkbook.Names
On Error Resume Next
If Left(nm.Name, 12) = "Model!solver" _

And Range(nm.Name).Address < > "" Then
If Err.Number = 0 Then

.Offset(counter, 0) = nm.Name

.Offset(counter, 1) = Range(nm.Name).Address
counter = counter þ 1

End If
End If

Next
End With

End Sub

10. Create an Excel file with a list of email addresses in column A of your best friends.
Add any information you would like to send them in columns B, C, and so on (as
many columns as you need, including only one). Then write a program in this file
that automates Outlook and sends an appropriate message to each of your friends.
You can use the information to the right of column A for the body and/or the
subject line of the message.

392 Chapter 17

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

User-Defined Types, Enumerations,

Collections, and Classes

18.1 Introduction

By now, you have learned most of what you need to know to create powerful
programs to automate Excel. This chapter, added in the fourth edition, discusses
several more advanced topics that enable you to step up to the next level. You
might never need to use the methods discussed in this chapter, but you might at
least like to know what they are, and that they are available.

18.2 User-Defined Types

User-defined types are data types that you are allowed to create. They are
typically used to store related information about a given entity. For example, you
might want to store information about customers, such as first name, last name,
address, and so on. Then you could create a user-defined type called Customer
with the following code. Note that this definition of the type must be located
outside of any subs. Typically, it will be at the top of a module, along with
declarations of module-level variables. (The code for the examples in this section
is in the file User-Defined Types.xlsm.)

Type Customer
FirstName As String
LastName As String
City As String
State As String
CellPhone As String
EMail As String

End Type

Once the user-defined type is defined, it can be used as in the following code.
Note that you are allowed to have arrays of user-defined types, as is done here.
Also, when you type favoriteCustomer and then a period, you get Intellisense,
which lists the attributes of the type: FirstName, LastName, and so on.

Sub CreateCustomers()
Dim favoriteCustomer As Customer
Dim customers() As Customer

18

393

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim nCustomers As Integer
Dim i As Integer

With favoriteCustomer
.FirstName = "Tiger"
.LastName = "Woods"
MsgBox "The name of your favorite customer is " _

& .FirstName & " " & .LastName & "."
End With

' The following assumes the data about customers is in a worksheet
' with code name wsData, starting in cell A2.
With wsData.Range("A1")

nCustomers = Range(.Offset(1, 0), .End(xlDown)).Rows.Count
ReDim customers(1 To nCustomers)
For i = 1 To nCustomers

customers(i).FirstName = .Offset(i, 0).Value
customers(i).LastName = .Offset(i, 1).Value
customers(i).City = .Offset(i, 2).Value
customers(i).State = .Offset(i, 3).Value
customers(i).CellPhone = .Offset(i, 4).Value
customers(i).EMail = .Offset(i, 5).Value

Next
End With

With customers(4)
MsgBox "The cell phone and email for the 4th customer are " _

& .CellPhone & " and " & .EMail & "."
End With

End Sub

Each of the attributes of a user-defined type has its own data type. In the
example, they all happened to be String type, but this isn’t necessary. One could
be String, another Integer, another Boolean, and so on. It is even possible to have
an attribute be another user-defined type, as in the following.

Type Address
StreetAddress As String
City As String
State As String
Zip As String

End Type

Type Customer
FirstName As String
LastName As String
FullAddress As Address
CellPhone As String
EMail As String

End Type

Sub Favorite()
Dim favoriteCustomer As Customer
With favoriteCustomer

.FirstName = "Peyton"

.LastName = "Manning"
With .FullAddress

394 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.StreetAddress = "Unknown"

.City = "Indianapolis"

.State = "IN"

.Zip = "4620x"
End With

MsgBox "My favorite customer, " & .FirstName _
& " " & .LastName & ", lives in " & .FullAddress.City _
& ". His street address is " & .FullAddress.StreetAddress & "."

End With
End Type

Note how the usual “dot” notation is used to go down the hierarchy, as in

favoriteCustomer.FullAddress.City

18.3 Enumerations

You have already seen enumerations many times. They are essentially named
constants that are related. For example, go to the Object Browser and look up
XlDirection in the Excel library. This is the name of the enumeration. On the
right, you will see its four members: xlDown, xlToLeft, xlToRight, and xlUp. If
you select any of these members, you will see its value at the bottom, such as
−4162 for xlUp. Fortunately, you never need to know any of these weird values.
Instead, you can refer to their more meaningful names, such as xlUp, in your
code. You can even qualify a member’s name by the enumeration name, as in
XlDirection.xlUp, but this isn’t necessary. Its only advantage is that it gives you
Intellisense. As soon as you type XlDirection and then a period, you see a list of
the member names.

As you can see from the Object Browser, there are many enumerations in
the Excel library. All of them start with Xl and all of their members start with xl.
Similarly, there are many VBA enumerations, with prefixes Vb and vb, and there
are many Microsoft Office enumerations, with prefixes Mso and mso. These are all
built-in constants that you can use in your code.

VBA also allows you to create your own enumerations. As with user-defined
types, these must be declared outside of any sub, so you usually add them at the
top of a module, along with declarations of module-level variables. The following
is a possibility that might be used in a simulation of customer arrivals and depar-
tures at a bank.

Enum EventType
Arrival
Departure
BankCloses

End Enum

User-Defined Types, Enumerations, Collections, and Classes 395

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can supply any integer values to these event types, as in the following:

Enum EventType
Arrival = 10
Departure = 20
BankCloses = 50

End Enum

However, this is totally unnecessary because you are never going to refer to
(or remember) the integer values anyway. If you omit values, VBA supplies them
as consecutive integers, starting with 0.

The following code illustrates how you can use an enumeration in a program.
I use the MsgBox statement only to prove that the three constants Arrival, Departure,
and BankCloses are indeed equal to 0, 1, and 2. Note that nextEvent has been declared
as type EventType. This ensures that the only possible values for nextEvent will be
Arrival, Departure, and BankCloses. In fact, you even get Intellisense. As soon as you
type nextEvent and then an equals sign, you get a list of the possible named values.

Enum EventType
Arrival
Departure
BankCloses

End Enum

Sub Simulation()
Dim nextEvent As EventType

' code to generate current value of nextEvent
MsgBox EventType.Arrival & ", " & EventType.Departure _

& ", " & EventType.BankCloses

If nextEvent = Arrival Then
' code for an arrival

ElseIf nextEvent = Departure Then
' code for a departure

ElseIf nextEvent = BankCloses Then
' code for bank closure

Else
' must be an error if you get here

End If
End Sub

You might not create your own enumerations very often, but you should
remember that their main purpose is to make your code more readable. It is
much better to refer to a meaningful name such as xlUp or Arrival than to refer
to a mysterious integer value.

18.4 Collections

A Collection object in VBA is essentially anything you can use a For Each construc-
tion to loop through. As with enumerations, collections are nothing new—you
have been using them in virtually all of the preceding chapters. All of the plural

396 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

objects, such as Workbooks, Worksheets, Charts, and even Range, are collections,
and you have seen many For Each constructions to loop through them in code
such as the following:

Dim ws As Worksheet

For Each ws In ThisWorkbook.Worksheets
MsgBox ws.Name

Next

You can also create your own collections. There are two reasons for doing so.
First, you can then loop through the items in the collection with a For Each loop.
Second, all Collection objects have four built-in methods:

● Add (add a new item to the collection)
● Count (return the number of items in the collection)
● Item (refer to a particular item in the collection)
● Remove (remove an item from a collection).

Figure 18.1 illustrates these methods. After books is declared as a Collection,
as soon as you type books and then a period, you see a list of the four methods.
Note that the Item and Remove methods take one argument, the index of the
item, as in Item(5) or Remove(2), where indexing starts at 1, not 0. I have no
idea why, especially since arrays are 0-based by default.

The following self-explanatory code is typical. The main cause of error in
such code is to omit the New keyword in the declaration of books as a Collection.
In technical terms, you have to instantiate a new Collection object; otherwise,
you get the ugly message “Object variable or With block variable not set”.
Another possible error is in the declaration of the generic book object. It must
be declared as Variant. This actually makes sense, because anything can be added
to the collection. Therefore, book must be declared as the most general type
possible. Finally, because of 1-based indexing, the second MsgBox statement
returns "Catcher in the Rye".

Figure 18.1 Methods of a Collection

User-Defined Types, Enumerations, Collections, and Classes 397

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub MyBooks()
Dim books As New Collection
Dim book As Variant
Dim counter As Integer

With books
.Add "War and Peace"
.Add "Catcher in the Rye"
.Add "David Copperfield"
.Add "The World According to Garp"
MsgBox "So far, the collection has " & .Count & " books."
MsgBox "The second book is " & .Item(2) & "."
.Remove 2
MsgBox "Now the collection has " & .Count & " books, " _

& "and the second book is " & .Item(2) & "."
End With

counter = 1
For Each book In books

MsgBox "Book " & counter & " is " & book & "."
counter = counter + 1

Next
End Sub

When you call the Add or Remove methods for a collection, you usually write
lines as such as those above. However, you can also use the keyword Call as has
been done in previous chapters. Then the arguments must be placed in parenthe-
ses, as in the following two lines. You are less likely to see this version, but it is
possible.

Call .Add("War and Peace")
Call .Remove(2)

One drawback to referring to an item by its integer index is that it is hard
to remember which item has which index. Fortunately, there is another way.
The Add method of a Collection has the required Item argument, such as
"Catcher in the Rye", but it also has an optional Key argument. If you supply a
Key value, you can then refer to it in an Item or Remove line. The following
lines illustrate one possibility. The second MsgBox statement returns the mes-
sage in Figure 18.2.

Figure 18.2 Result of Using the Key Argument of Add

398 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub MyBooks()
Dim books As New Collection
Dim book As Variant
Dim counter As Integer

With books
.Add "War and Peace", "Tolstoy1"
.Add "Catcher in the Rye", "Salinger1"
.Add "David Copperfield", "Dickens1"
.Add "Anna Karenina", "Tolstoy2"
MsgBox "So far, the collection has " & .Count & " books."
.Remove "Salinger1"
MsgBox "Now the collection has " & .Count & " books, " _

& "and my favorite book is " & .Item("Tolstoy1") & "."
End With

End Sub

Another possibility is to use a loop to find the explicit item you want to
remove. The following code indicates how you can do this. Instead of using a
For Each loop, which is possible but would require an explicit counter variable,
I have used a For loop, from 1 to the count of the collection. This works nicely
because a For loop has its own built-in counter.

Sub MyBooks()
Dim books As New Collection
Dim book As Variant
Dim i As Integer

With books
.Add "War and Peace"
.Add "Catcher in the Rye"
.Add "David Copperfield"
.Add "The World According to Garp"

' Remove David Copperfield from the collection, assuming
' you don't know its index.
For i = 1 To .Count

If .Item(i) = "David Copperfield" Then
.Remove i
MsgBox "David Copperfield is item " & i _

& " and will now be removed."
Exit For

End If
Next

End With
End Sub

18.5 Classes

You may have heard the term object-oriented programming, abbreviated OOP.
I think it is fair to say that this is the future direction of computer programming.
In fact, for many programmers, this is the way they have been programming for

User-Defined Types, Enumerations, Collections, and Classes 399

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

years. This entire book talks about Excel’s objects and how to manipulate them
with VBA code, but this isn’t really OOP. Excel’s objects, such as Worksheet and
Range objects, already exist, and they have properties and methods you can use in
VBA code. However, OOP is all about creating your own objects. This section
briefly describes how you can do this with VBA.

Many programmers complain that VBA is not a true OOP language, and they
are correct. There are certain OOP operations that are possible—and useful—in
true OOP languages such as VB.NET but are impossible with VBA. In fact, if you
know one of these languages and then try to use OOP in VBA, it can be very
frustrating. (I know, because I have tried to convert some of my VB.NET pro-
grams to VBA, and a lot of details have to be changed. The rules of the game are
different and far from intuitive.) Nevertheless, warned with this disclaimer, there
are some very interesting things you can do with OOP in VBA.

First, you have to understand the very important distinction between a class
and an object. A class is basically a blueprint for the “thing” you want to create.
For example, if you want to create a Customer class, you need to describe the
properties and behaviors of customers you want them to have.1 That is, you as
the programmer need to define what you mean by a customer. In the example I
will illustrate shortly, where customers enter a service system like a bank, a
customer can arrive to the system, enter service, and leave the system. I call the
corresponding methods ArriveToSystem, EnterService, and LeaveSystem. In my
Customer class, these methods are subs (they could also be function subroutines)
which contain the logical code. In my Customer class, there also two properties,
SysClock and QueClock, which measure how long a customer stays in the system
and stays in the queue, respectively. The point to understand here is that you get
to decide which properties and methods you need to handle the logic you
require. In short, you get to build your own world.

Once you create the class—the blueprint—you can then instantiate
objects from this class. Here is an analogy that might help you with the idea.
Think of the “human” class. This is a blueprint for what we humans are and
how we behave. For example, we all have a EyeColor property and a Height
property. Of course, we can all have different values for these properties. In
addition, we all have methods such as Breathe and Eat. So each of us is cut
from the same human blueprint, but each of us—each instance of the human
class—is distinct. In the same way, you can define a class in OOP and then
instantiate objects from this class. These instances then lead independent exis-
tences in computer memory.

At this point, you probably have two questions: (1) How do you do this in
VBA?; and (2) Why would you want to do this at all? The former question is
actually easier to answer, as I will do shortly. The latter question is harder to
answer. As a non-OOP programmer myself for many years, I couldn’t really see
the advantage of creating my own classes of objects, and I resisted doing so.
However, a “lightbulb” finally went on, and I began to see the huge opportu-
nities that classes provide. In technical terms, they encapsulate the properties

1Classes can also raise events. However, I won’t discuss this feature.

400 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and behaviors of the objects—the “things”—you want your program to manipu-
late. This means that you can write the required logic you need in one place, and
one place only, and you can then use it very compactly in your program. Every
time you instantiate an object from a class, it “comes alive” knowing its properties
and what it can do. I don’t imagine that this brief explanation will sell you on
classes, but read on—maybe the rest of this section will.

First, you create a class in VBA by selecting Class Module from the
VBE’s Insert menu. Then you can name the class in the Properties Window.
Figure 18.3 shows an example where I have already created a class called
Customer, and I am about to rename a second class as Server. They are called
class modules because their code windows look just like those for modules—a big
white space for your code. However, class modules are different from regular
modules because you can instantiate from them.

The following code shows how to do so. This requires two distinct
operations. First, you must declare a variable such as cust1 to be of type Customer
(or whatever the class name is). Then you must instantiate a new object of this
class with the keyword New. The following code shows how you can do both in
a single line of code, and how you can do them in separate lines of code. You
typically do the latter if you don’t need the instance until later in the program,
but either way works fine. Just remember that when you instantiate the object in
a second line, you must use the keyword Set. Note that the code shown here is
placed in a regular module, not a class module. The code in a class module
defines the class, but the code used to manipulate instances of classes is placed in
a regular module.

Figure 18.3 Naming Class Modules

User-Defined Types, Enumerations, Collections, and Classes 401

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub CreateNewCustomers()
' You can declare and instantiate an object in one line:
Dim cust1 As New Customer

' You can also declare it and then instantiate it later on.
' Declare it.
Dim cust2 As Customer

' Any number of intervening lines, and then...

' Instantiate it.
Set cust2 = New Customer

End Sub

Figure 18.4 shows how Intellisense works with classes. Once you have a Customer
class, Customer shows up in the list of variable types. This can be very helpful.

Class Properties

There are two ways to define a properties of a class. The first is simple. You do it
with a line like the following at the top of a class module:

Public ArrivalTime As Single

If cust1 is an instance of the Customer class, you can then either write (“let”) or
read (“get”) the property value with lines like the following in a regular module:

' Write (or "let") the property value.
cust1.ArrivalTime = 7.9

' Read (or "get") the property value.
MsgBox "The customer's arrival time is " & cust1.ArrivalTime

Figure 18.4 Intellisense with Classes

402 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although this way is easy, it has two potential drawbacks. First, any value can
be given to the property, even values that make no sense like negative arrival
times. Second, you might want the property to be read-only. That is, you might
not want to allow the programmer to write his own value to the property.

To avoid these drawbacks, a more complex structure is possible. It involves
private “member” variables, and Property Get, Property Let, and Property Set
constructions. The private member variable, which by convention usually starts
with m_, stores the value of the property privately, so that the outside world—
code in any other module—can’t get to it directly. Then a Property Get con-
struction allows the outside world to read the value of the private variable, and
a Property Let construction allows the outside world to write a given value to the
private variable. (A Property Set construction is similar to a Property Let, except
that the property is itself an object, so that it must be given a value with a Set
statement. I won’t use any Property Set constructions here.) If you want a
property to be read-only, you simply omit the Property Let part. And in the
more unusual case where you want a property to be write-only, you omit the
Property Get part.

Assuming that you want the ArrivalTime property to be read-write, but you
don’t want it to have any negative values, the following code is appropriate.
Note that Property Get has no arguments. Its purpose is to read the value of
the private variable m_ArrivalTime. However, Property Let has the generic value
argument. This is the value you want to give to m_ArrivalTime.

Private m_ArrivalTime As Single

Public Property Get ArrivalTime() As Single
ArrivalTime = m_ArrivalTime

End Property

Public Property Let ArrivalTime(value As Single)
If value < 0 Then

MsgBox "You can't assign a negative arrival time value."
Else

m_ArrivalTime = value
End If

End Property

This code, written inside a class module, allows a programmer in a regular
module to write code like the following. To this programmer, ArrivalTime is the
name of the property he sees; he knows nothing about the private m_ArrivalTime
variable. However, when the line cust1.ArrivalTime=10 is executed, the value
10 is stored in m_ArrivalTime for the first customer. Similarly, when the line
cust2.ArrivalTime=15 is executed, the value 15 is stored in m_ArrivalTime for
the second customer. In this way, each new customer instance has his own
m_ArrivalTime value. This is what I mean by instances having independent
existences in memory. Finally, the third customer won’t have a new value of
m_ArrivalTime because the Property Let code doesn’t allow a negative value.

User-Defined Types, Enumerations, Collections, and Classes 403

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Test()
Dim cust1 As Customer
Dim cust2 As Customer
Dim cust3 As Customer

Set cust1 = New Customer
cust1.ArrivalTime = 10
MsgBox "The first customer arrived at time " & cust1.ArrivalTime

Set cust2 = New Customer
cust2.ArrivalTime = 15
MsgBox "The second customer arrived at time " & cust2.ArrivalTime

Set cust3 = New Customer
' The following line produces an error message.
cust3.ArrivalTime = -10

End Sub

So, when you define properties in a class module, can you do it the easy one-
line way or should you use the more complex multi-line way? My own rule of
thumb is to do it the easy way whenever I can, maybe because I am lazy. But if
I need more control, I use the more complex way.2

Class Methods

A method of a class is more straightforward. It is simply any sub or function
subroutine. Here is a method for a Customer class. For now, the details inside
the sub are not important. The point is that whenever a customer leaves the
system, the LeaveSystem method can be called to take care of the required
logic. Note the references to the keyword Me and the variable sim. You see
many cases of Me in class modules. Me always refers to current instance of the
class, in this case the customer who is about to leave. Each customer has a
SysClock property, which is an instance of a Clock class, and the Clock class
has a TurnOff method. So Me.SysClock.TurnOff turns off this customer’s system
clock.3 Similarly, sim is an instance of a Simulation class, and each time I need
to refer to one of its properties or methods, I have to use the sim prefix fol-
lowed by a period.

Public Sub LeaveSystem()
Call Me.SysClock.TurnOff
Call sim.SysList.Remove(Me)

' Update customer stats.
sim.TotalServed = sim.TotalServed + 1

2As I also found by trial and error, you cannot have a line like Public Prob(), where you want a public
property to be an array. VBA simply disallows this, and you have to resort to a Property Let/Get
workaround. By contrast, it is possible to have public array properties in VB.NET.
3Actually, the Me in Me.SysClock.TurnOff can be omitted; you can simply write SysClock.TurnOff.
However, by typing Me and then a period, you get Intellisense, a very welcome addition.

404 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

sim.TotalSysTime = sim.TotalSysTime + Me.SysClock.TimeSpent
sim.TotalQueTime = sim.TotalQueTime + Me.QueClock.TimeSpent

End Sub

The LeaveSystem method has no arguments. However, just as with subs in
general, subs in a class module can have arguments. Here is a possibility for a
Server class. (You can think of a server as a teller at a bank.) There are several
things to note about this method. First, CustomerServing is a public property of
the Server class. Then a Customer object named cust is passed as an argument
to the StartServing method, and the line Set Me.CustomerServing = cust sets this
server’s CustomerServing property to cust.

Public CustomerServing As Customer

Public Sub StartServing(cust As Customer)
' Remember customer starting service.
Set Me.CustomerServing = cust

' Schedule service completion.
Call sim.AddEvent(sim.CurrentTime + sim.ServiceTime, 2, Me)

End Sub

Constructors

A constructor is a sub inside a class module that runs automatically when a new
member of the class is instantiated. (It is similar to the Workbook_Open sub that
runs whenever the workbook is opened.) The name of this sub in VBA is always
Class_Initialize. Here is an example for the Customer class, where I want each new
customer to have her own system and queue clocks to keep track of their times.
Note that a class is not required to have a constructor, but it is often useful for
some type of initialization.

Public Sub Class_initialize()
Set Me.SysClock = New Clock
Set Me.QueClock = New Clock

End Sub

A Queueing Simulation Example

Now that you know class fundamentals, you can see how everything fits together
in a nontrivial queueing simulation application. (See the file Queueing Simulation
with Classes.xlsm.) This is actually the same application that is discussed in
Chapter 29, but the code presented there makes no use of classes. In this sense,
the Chapter 29 version is easier, but it is not as “cool” as the version here with
classes. I will not list the code for this application here—it is fairly long—but you
can learn a lot about OOP in VBA by studying it carefully.

User-Defined Types, Enumerations, Collections, and Classes 405

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Among other things, several of the classes in this application are collections.
For example, the QueueList class is a collection of all customers currently waiting
in the queue. By declaring this as a collection, I get to “borrow” the four meth-
ods (Add, Count, Item, Remove) built into all collections and then create my own
versions of these methods. For example, when customers are added to a queue,
I always want to add them to the back of the queue, and when a customer is
removed from the queue (to enter service), I always want to remove the customer
from the front of the queue.

18.6 Summary

If you are willing to take the plunge, user-defined types, enumerations, collections,
and classes can take you to a whole new level in programming. However, as the
queueing simulation application in the previous section indicates, it takes a lot of
practice, perseverance, and visits to online help (or the Web) to master these new
elements, especially classes. You have to think carefully about the “world” you want
to create, and you have to deal with all the detailed rules that the language enforces.
But the effort can result in some very compact and powerful applications—as well as
a lot of reusable code.

EXERCISES

1. The file Purchases 1.xlsx contains a small data set on customer purchases. Write a
program that creates a user-defined type called CustomerPurchase with an item (of
the appropriate type) corresponding to each data column: Customer, Email, Cell,
Date, Amount. Remember that this should be declared above any subs. Then write
a Test sub to create an array purchase where each element of the array is of type
CustomerPurchase, and fill this array with the data in the file. Finally, display the
information about Sam Lafferty in a message box.

2. The file Purchases 2.xlsx is the same as the file from the previous problem except
that it includes address data on the customers: street address, city, state, and zip.
Repeat the previous exercise, but add another item in the CustomerPurchase type:
Address. The Address item should be its own user-defined type, with items
StreetAddress, City, State, and Zip. Again, fill an array of type CustomerPurchase
with the data in the file, and display the information about Sam Lafferty in a
message box.

3. Using the same Purchases 1.xlsx file as in Exercise 1, build an enum called
SpendType that has three items: LowSpender, MediumSpender, and HighSpender.
Then write a sub that creates an array customerType of type SpendType and then
fills the array with the appropriate value from SpendType for each customer. You
can assume that a purchase less than $75 is low, from $76 to $150 is medium,
and above $150 is high.

4. Write a program that creates a collection called Cities and populates it with the
n most recent cities you have visited, including the city where you live. (You can

406 Chapter 18

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

choose n.) Then display the items in the collection in a message box. Finally,
remove the city you live in, and display the count of the remaining cities in a
message box.

5. Repeat Exercise 1, but this time create a CustomerPurchase class instead of a
user-defined type. This class should have public properties Customer, Email,
Cell, Date, and Amount. These can all be of the “easy” kind (no Property Get or
Property Let required). In addition, it should have a write-only property Pass-
word, which means you need to create a Property Let. In this Property Let, write
logic to require that each password must have at least eight characters and all
characters must be alphanumeric. Then in a standard module, write a Test sub
that creates an instance of the class for each customer in the Purchases1.xlsx
file, provides a password (of your choice) to each customer, reads the other
properties, and writes them to a message box. Then your code should read all
the dates, and for all those that occurred on 1/25/2015, it should change
them to 1/26/2015 in the spreadsheet. Here, the idea is that you can read
and write (look at or even change) the data in the file, but once you set the
passwords, you can’t even look at them.

User-Defined Types, Enumerations, Collections, and Classes 407

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Part II

VBA Management
Science Applications
This part of the book builds upon the VBA fundamentals in the first 18 chapters
by presenting a series of management science applications. I have two objectives
in this part of the book. First, I have attempted to present applications that are
interesting and useful in the business world. Most of these are derived from simi-
lar models in my Practical Management Science book. Even if you ignore the
VBA code in these applications completely, you can still benefit from the applica-
tions themselves. For example, you can use the transportation application in
Chapter 24 to solve practically any transportation model, you can use the queue-
ing simulation in Chapter 29 to simulate a wide variety of multiple-server queues,
you can use the stock option model in Chapter 30 to price European and Ameri-
can options, you can use the portfolio application in Chapter 32 to find the effi-
cient frontier for any group of stocks using live stock data from the Web, and you
can use the AHP application in the online Chapter 34 to make a job decision.

The second objective in this part of the book is to illustrate a number of ways
VBA can be used to convert a spreadsheet model into a decision support system
(DSS). This is not always easy. Businesses want powerful applications, and power
is not always easy to achieve. However, the VBA techniques illustrated in these
applications are within the grasp of anyone who has mastered the VBA funda-
mentals from Part I of the book and is willing to make the effort. This effort
should pay off handsomely in the job market.

The chapters in this part of the book can be read in practically any order,
depending on your interests. The only exception is Chapter 19, which should be
read first. It presents a number of guidelines for application development, and it
illustrates these guidelines in a fairly straightforward car loan application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Basic Ideas for Application

Development with VBA

19.1 Introduction

It is now time to start using the elements of VBA from the first part of the book
to develop modeling applications. This chapter establishes some guidelines for
application development, and it also introduces a car loan application to illustrate
some of these guidelines. The guidelines discussed here leave plenty of room for
creativity. There are many ways to develop a successful application. From the
user’s standpoint, the main criteria for a successful application are that it be
useful, clear, and, of course, correct. Beyond this, users appreciate an application
that has the familiar look and feel of a Windows application. As later chapters
illustrate, this leaves the door wide open for many possibilities, but it still provides
some useful guidance.

I tend to use the term application for the programs in Part II of the book. As
discussed briefly in Chapter 1, most of them could also be also called decision
support systems (DSSs). They provide easy access to helpful information that
could then be used by a decision maker to make well-informed decisions.

19.2 Guidelines for Application Development

The topic of software application development is a huge one, and whole courses
are devoted to discussions of it. If you are a software developer in a large or even
a small company, there are important issues you must be aware of, and there are
important procedures you must follow. You are typically not the only person who
is, or ever will be, working on any particular application. Other programmers are
often working with you, and future programmers might need to update your
programs to meet new requirements. Therefore, your programs must be readable
and understandable by other programmers. Also, whenever possible, you should
program with future extensions in mind. If new functionality is required of the
program you write, another programmer should not have to start from scratch to
incorporate this new functionality. In short, you need to write programs that are
readable and reasonably easy to maintain.

This section is certainly not a complete manual on the application develop-
ment process; this is well beyond the scope of the book. However, there are
several simple guidelines provided here—and illustrated later on—that will help
you write programs that are readable and maintainable. They are as follows.

19

411

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Decide clearly what you want the application to accomplish.

This is probably the single most important guideline. It is particularly important
if you are developing the application for a client, but it is important even if you
are working only for yourself. Application development can be a lengthy process,
and you certainly do not want to spend your time going in the wrong direction.
Decide ahead of time exactly what functionality your application should have
and how you plan to implement it. For example, where will the input data come
from—dialog boxes, worksheets, text files, or database files? What information
will be reported? Will it be reported in tables or charts, or in both? Programming
is always challenging, but if you don’t even know which direction you are head-
ing, it is impossible. And be on the watch for “feature creep.” Most software
developers, including myself, have a tendency to add more and more features to
their programs as time evolves. At some point, you have to stop and get your
software out the door to your customers.

2. Communicate clearly to users what the application
does and how it works.

You cannot assume that the eventual users will know what your application does
and how it works. After all, the users have not been working on this application
for several days (or weeks or months or years) as you have. They need a road
map. In real applications, this is often done through printed materials and/or
online help. Because the applications in this book are somewhat limited, their
explanations are provided in an explanation worksheet that the user sees first
upon opening the Excel file. If more explanations are required later on, they can
be provided, for example, in dialog boxes. Users might have no idea what is
going on behind the scenes—the technical part—but the explanations should
leave no doubt about the objectives of the application and what the users need to
do to make it work.

3. Provide plenty of comments.

The best way to document your programs is to insert plenty of comments. It is
a natural human tendency to plow through the coding process as quickly as
possible and get the program to work, omitting the comments until the last
minute—or altogether. Try to fight this impulse. Comments are useful not
only to the next programmer who will have to read and maintain your code, but
they are also useful to you as you are writing it. They remind you of the logical
thought process you should be following. In this way, comments are analogous to
an outline for an English composition—an organizational structure. Besides that,
they are invaluable when you revisit your own program in a week or a month. It
might be crystal clear to you, at the time you are writing, why you have done
something in a certain way, but it is often a complete mystery a month later. And
if it is a mystery to you, think how mysterious it will be to another programmer (or
your instructor). So when there is any possibility for confusion, add comments. Of
course, you can overdo it. As an example, the comment in the following lines is a
waste of typing.

412 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Add 1 to the counter.
counter = counter + 1

4. Use meaningful names for variables, subs, and
other programming elements.

There are unfortunately many existing programs that consistently use variable
names such as i, j, k, n, and nn. They tend to be completely unreadable.
(I confess that I still frequently use i, j, and k for loop counters, but otherwise
I try to avoid meaningless variable names.) Fortunately, programmers are
becoming increasingly careful about using meaningful names for variables and
other programming elements. Names such as unitCost and totalProfit tend to make
a program self-documenting. You can look at the names and figure out exactly
what is going on.

As with comments, you can overdo naming. For example, if you want a vari-
able name for the price paid by the first customer to enter your store, you could
use priceForFirstCustomerToEnterStore. Unless you love to type, you will probably
want to shorten this name to something like priceCust1 or price1.

5. Use a modular approach with multiple short subs instead
of one long sub.

Beginning programmers tend to write one long sub to do everything. As dis-
cussed in Chapter 10, this is a bad habit for at least two reasons. First, it is hard
to read one long sub that goes on and on, even if it is well documented with com-
ments. It is much easier to read short subs, especially when each of them has a very
specific objective. Second, programs are much easier to maintain, extend, and
debug when they are written in a modular fashion. For example, suppose you
have written a program that creates a sensitivity table of some type. Later on, you
decide to accompany this with a chart. If your program has a Main sub that calls
several other subs to do the work, all you need to do is create a CreateChart
sub that has the specific objective of creating the chart and then call CreateChart
from the Main sub. The rest of your program, if written properly, should not be
affected at all.

6. Borrow from other programs that you or others have developed.

The concept of “shared” code is very important among programmers. The idea is
that there is no need to reinvent the wheel each time you write a program. There
are almost certainly elements of any program you write that are common to other
programs you have written. Sometimes entire subs can be copied and pasted from
one program to another. If this is not possible, it is still often possible to copy and
paste specific lines of code. As for “borrowing” code written by others, this is a
gray area from a legal/ethical standpoint. You should certainly not borrow a
whole program or significant portions of a program written by someone else and
claim it as your own. However, many programmers make much of their code

Basic Ideas for Application Development with VBA 413

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

available for others to use—with no strings attached.1 If you know that this is the
case, you can borrow and adapt this code for your own purposes, possibly with a
comment or two to acknowledge the original programmer.

7. Decide how to obtain the required input data.

Almost every application you write (and almost all of the ones in this book)
require input data. For example, the car loan application illustrated later in this
chapter requires four inputs: the price of the car, the down payment, the annual
interest rate, and the term of the loan. The question is how to obtain the data in
the application. Perhaps the most natural way is to use one or more dialog boxes.
This method is especially convenient when there are just a few data inputs, such
as in the car loan application. However, there are times when it would be impracti-
cal to ask the user to type numerous inputs into a bulky dialog box. For example,
the logistics model discussed in Chapter 24 can have literally hundreds of input
values. The dialog box approach is totally impractical in this case.

When there is a lot of input data, the chances are that the data are stored
in some type of database. Several possibilities are illustrated in later chapters.
Each represents a different database format, and each must be handled in a parti-
cular way by the VBA code. The possible data locations include (1) a “data”
worksheet in the same file as the application itself or in a different Excel file,
(2) a text (.txt) file, (3) one or more tables in an Access (or other database) file,
as discussed in Chapter 14, and (4) a Web page.

Getting the required data for an application is an extremely important issue,
and several applications in later chapters have purposely been included to illustrate
some of the possibilities. Of course, you should be aware that in many real appli-
cations, you have no control over where the data are located. For example, your
company might have the data you require in a SQL Server database file. If this is
the case, you must learn how to retrieve the required SQL Server data into Excel
for your application.

8. Decide what can be done at design time rather than at run time.

This is a very important issue for you as a developer. Your skills with the Excel
interface are probably greater than your programming skills. Therefore, you
should develop as much of your application as possible with the Excel interface
at design time. You can then write VBA to take care of other necessary details
that are implemented at run time.

To illustrate, suppose you want to develop a linear programming model
and then an accompanying report sheet and chart sheet based on the results of
the model. It is certainly possible to do all of this with VBA code. Before the
user runs the application, there would be blank Model, Report, and Chart sheets,

1 If programmers really want to keep other users from borrowing their code, they will probably pass-
word protect it. This can be done easily through the Protection tab under the Tools → VBA Project
menu item in the VBE.

414 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and your VBA code would be responsible for filling them completely when the
program runs. This is a demanding task. It is much easier for you to develop
“templates” for these sheets at design time, using the Excel tools you are familiar
with. Of course, you cannot fill in these templates completely because parts of
them will depend on the inputs used in any particular run of the application.
However, using VBA to fill in the missing pieces of a partially completed template
is much easier than having to start from scratch with blank sheets.

This point is discussed for each of the applications in the following chapters.
In each case, I indicate what can be created at design time—without any VBA.

9. Decide how to report the results.

The models in this book typically follow a three-step approach: (1) inputs are
obtained; (2) a model is created to transform inputs into outputs; and (3) outputs
are reported. There are many ways to implement the third step. The two basic pos-
sibilities are to report the results in tabular and in graphical form. You must decide
which is more appropriate for your application. Often you will decide to do both.
But even then, you must decide what information to report in the table(s) and
what types of charts to create. A reasonable assumption is that many users are non-
technical, so they want the results reported in a user-friendly, nontechnical manner.
A simple table and an accompanying chart frequently do the job, but you must use
discretion in each application.

As for charts, there is a tendency among many beginning developers to create
the fanciest charts possible—wild colors, three-dimensional design, and other
“cool” features. My personal suggestion is to keep your charts as simple as possi-
ble. A three-dimensional chart might look great, but it sometimes portrays the
underlying data less clearly than a “boring” two-dimensional chart. And please,
use common sense with color combinations. Red lettering on a purple back-
ground might work in an art course, but most business users do not appreciate
garish color combinations.

A final issue concerning charts is where they should be placed—on the same
worksheet as the underlying data or on separate chart sheets. This is entirely a
matter of taste. Many developers tend to favor separate chart sheets (along with
navigational buttons, discussed in the next point) to reduce the clutter. You
might disagree. However, if you decide to place charts on the same worksheets
as the underlying data, you must decide whether to let them “cover up” the
data. In other words, you will have to decide on proper placement (and sizing)
of the charts on the worksheets. This can be tedious—and it might make you
decide to place charts on separate chart sheets after all.

10. Add appropriate finishing touches.

There are a number of finishing touches you can add to make your applications
more professional, although most of these are ultimately a matter of taste. Here
are several possibilities.

● Add navigational buttons. For example, if there is a worksheet with tabular
results and a chart sheet that contains a chart of the same results, it is useful

Basic Ideas for Application Development with VBA 415

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to put a button on each sheet that, when clicked, takes the user to the other
sheet. The code behind these buttons is simple, with lines such as:

Sub ViewReportSheet()
With wsReport

.Activate

.Range("A1").Select
End With

End Sub

● Hide sheets until the user really needs to see them. For example, there might
be a Report sheet that contains results from a previous run of the application
(if any). There is no point in letting users see this sheet until the application is
run and new results are obtained. To implement this idea, the following code
could be used to hide all sheets except for the Explanation sheet when the
application workbook is opened. Then the Visible property of the Report sheet
could be changed to True at run time, right after the new results are obtained.

Private Sub Workbook_Open()
Dim sht As Object
With wsExplanation

.Activate

.Range("F4").Select
End With
For Each sht In ActiveWorkbook.Sheets

If sht.CodeName <> "wsExplanation" Then sht.Visible = False
Next

End Sub

● Use the View tab to change some of the default settings on selected sheets.
For example, it is possible to turn off gridlines, the formula bar, and/or row
and column headers. Some programmers like to do this to make their applica-
tions look less like they actually reside in Excel. You might want to experiment
with these options.

19.3 A Car Loan Application

This section presents a rather simple application for calculating the monthly pay-
ments on a car loan. This calculation is very easy to perform in Excel with the
PMT function, but there are undoubtedly Excel users who are unaware of this
function. Besides, users might just want a point-and-click application that gets
them results with no Excel formulas required. The car loan application does this,
and it illustrates many of the guidelines discussed in the preceding section.
In addition, it has purposely been left incomplete. You will have a chance to fill
in the missing pieces and thereby practice your VBA skills in the exercises.

416 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Objectives of the Application

The car loan application has three primary functions:

1. It calculates the monthly payment and total interest paid for any car loan,
given four inputs: the price of the car, the down payment, the annual interest
rate, and the term (number of monthly payments) of the loan.

2. It performs a sensitivity analysis on any of the four inputs, showing how the monthly
payment and total interest paid vary, both in tabular and graphical form.

3. It creates an amortization table and accompanying chart showing how the
loan payment each month is broken down into principal and interest.

Basic Design of the Application

The application is stored in the file Car Loan.xlsm. (As you read the rest of this
section, you should open the file and follow along.) The file consists of four work-
sheets and two chart sheets. The worksheets are named Explanation, Model,
Sensitivity, and Amortization. The two chart sheets are named SensitivityChart
and AmortizationChart. They all have code names, such as wsExplanation and
chtSensitivity. All of these except the Explanation worksheet are hidden when
the user opens the file. The others (except the Model worksheet) are revealed
when necessary. The Explanation worksheet, shown in Figure 19.1, describes the
application, and it has a button that the user clicks to run the application. (I like
this design, so I use it in all of the applications in later chapters.)

There are three user forms that allow the user to select options or provide
inputs. The first, named frmOptions and shown in Figure 19.2, provides users with
the application’s three basic options.

If the user selects the first option, the dialog box in Figure 19.3 appears, request-
ing the inputs for the car loan. (This user form is named frmInputs.) The initial values
in this dialog box are those from the previous run, if any, and come from the hidden
Model sheet. Of course, users can modify any of these inputs. Then the message box
in Figure 19.4 displays the monthly payment and total interest paid for this loan.

If the user selects the second basic option, the sensitivity option, the dialog
box in Figure 19.5 asks the user to indicate which of the four inputs to vary for
the analysis. (This user form is named frmSensitivity.) It then displays frmInputs
shown earlier in Figure 19.3. However, frmInputs is now slightly different, as indi-
cated in Figure 19.6. Specifically, the explanation label at the top indicates that
these inputs will now be used in a sensitivity analysis. The labels in dialog boxes
should always be as clear as possible, to avoid any possible confusion.

Now that the user has asked to perform a sensitivity analysis on the price of
the car, what price range should be used? This is an application design issue. The
application could ask the user for this range, or it could choose a default range.
This application uses the latter option, primarily to make the application easier to
develop. The range chosen is displayed next in an informational message box (see
Figure 19.7). The results are displayed graphically in the SensitivityChart sheet
(see Figure 19.8) and in tabular form in the Sensitivity worksheet (see Figure 19.9).
Note how the buttons in these figures allow for easy navigation through the application.

Basic Ideas for Application Development with VBA 417

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 19.2 Options Form

Figure 19.1 Explanation Worksheet

418 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Finally, if the user selects the application’s third option, an amortization
table, frmInputs in Figure 19.3 is again displayed, using a slightly different expla-
nation label appropriate for the amortization objective. (This version of the
form is not shown here.) The amortization information is then shown graphi-
cally in the AmortizationChart sheet (see Figure 19.10) and in tabular form in
the Amortization worksheet (see Figure 19.11). The results shown here are for
a 24-month loan.

Figure 19.4 Payment Information

Figure 19.3 Inputs Form

Basic Ideas for Application Development with VBA 419

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Design Templates

Most of this application can be set up at design time, using only the Excel
interface—no VBA. The Model sheet, shown in Figure 19.12, is never displayed
to the user, but it is the key to the application. It can be set up completely at
design time, including range names and formulas, using any trial values in the
input cells. The key formula in cell B11 is ¼PMT(IntRate/12,Term,-Loan).

Figure 19.6 Inputs Form with a Different Label

Figure 19.5 Sensitivity Form

420 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(If you want to examine this sheet more closely, you will need to unhide it. To do
so, right-click any of the sheet tabs and select Unhide.)

In addition, templates can be created in the Sensitivity and Amortization
sheets, as shown in Figures 19.13 and 19.14. The inputs in both of these sheets
are linked to the input cells in the Model sheet. For example, the formula in cell
C4 of Figure 19.13 is ¼Price. Therefore, when the user fills in the inputs form in

Figure 19.8 Sensitivity Chart

$0

18
,0

00

21
,0

00

24
,0

00

27
,0

00

30
,0

00

33
,0

00

36
,0

00

39
,0

00

42
,0

00

45
,0

00

48
,0

00

51
,0

00

54
,0

00

57
,0

00

60
,0

00

Sensitivity to Price of Car

Price of Car

$500

$1,000

$1,500

$2,000

$2,500

$3,000

$3,500

$4,000

$4,500

15
,0

00

Monthly payment

Total interest

View Sensitivity SheetView Explanation Sheet

Figure 19.7 Information on Sensitivity Range

Basic Ideas for Application Development with VBA 421

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 19.9 Sensitivity Table

Price of 000,03$rac
Down 000,6$tnemyap
Annual interest %05.4etar
Term (months to 63)yap

ecirPInput to yrav

Price Monthly payment Total interest

$15,000.00
$18,000.00
$21,000.00
$24,000.00
$27,000.00
$30,000.00
$33,000.00
$36,000.00
$39,000.00
$42,000.00
$45,000.00
$48,000.00
$51,000.00
$54,000.00
$57,000.00
$60,000.00

$267.72
$356.96
$446.20
$535.44
$624.69
$713.93
$803.17
$892.41
$981.65

$1,070.89
$1,160.13
$1,249.37
$1,338.61
$1,427.85
$1,517.09
$1,606.33

$638.00
$850.67

$1,063.34
$1,276.01
$1,488.67
$1,701.34
$1,914.01
$2,126.68
$2,339.35
$2,552.01
$2,764.68
$2,977.35
$3,190.02
$3,402.69
$3,615.35
$3,828.02

Sensi�vity analysis

Basic inputs

View Sensi�vity Chart

View Explana�on Sheet

Figure 19.10 Amortization Chart

$0.00

Principal and Interest Payments Through Time

Month

$200.00

$800.00

$1,000.00

$1,200.00

View Explanation Sheet

Principal

Interest

1 62 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

View Amortization Sheet

422 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 19.11 Amortization Table

Price of 000,03$rac
Down 000,6$tnemyap
Annual interest rate 4.50%
Term (months to pay) 24

Month Beginning balance Payment Principal Interest Ending balance

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

$24,000.00
$23,042.45
$22,081.31
$21,116.57
$20,148.21
$19,176.22
$18,200.58
$17,221.29
$16,238.32
$15,251.67
$14,261.31
$13,267.25
$12,269.45
$11,267.91
$10,262.62
$9,253.56
$8,240.71
$7,224.07
$6,203.61
$5,179.32
$4,151.20
$3,119.22
$2,083.37
$1,043.63

$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55
$1,047.55

$957.55
$961.14
$964.74
$968.36
$971.99
$975.64
$979.30
$982.97
$986.65
$990.35
$994.07
$997.80

$1,001.54
$1,005.29
$1,009.06
$1,012.85
$1,016.64
$1,020.46
$1,024.28
$1,028.13
$1,031.98
$1,035.85
$1,039.73
$1,043.63

$90.00
$86.41
$82.80
$79.19
$75.56
$71.91
$68.25
$64.58
$60.89
$57.19
$53.48
$49.75
$46.01
$42.25
$38.48
$34.70
$30.90
$27.09
$23.26
$19.42
$15.57
$11.70
$7.81
$3.91

$23,042.45
$22,081.31
$21,116.57
$20,148.21
$19,176.22
$18,200.58
$17,221.29
$16,238.32
$15,251.67
$14,261.31
$13,267.25
$12,269.45
$11,267.91
$10,262.62

$9,253.56
$8,240.71
$7,224.07
$6,203.61
$5,179.32
$4,151.20
$3,119.22
$2,083.37
$1,043.63

$0.00

Amor�za�on schedule

Basic inputs
View Amor�za�on Chart

View Explana�on Sheet

Figure 19.12 Model Worksheet

1
2
3
4
5
6
7
8
9

10
11
12

A B
Car loan model

Inputs
Price of car $30,000
Down payment $6,000
Annual interest rate 4.50%
Term (months to pay) 24

Outputs
Amount financed $24,000
Monthly payment $1,047.55
Total interest paid $1,141.14

Basic Ideas for Application Development with VBA 423

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 19.3, the values are transferred to the Model sheet, and they are then
immediately available in the Sensitivity and Amortization sheets. Also, note the
partially filled-in section of the Amortization table (rows 10 and 11). It is a good
idea to enter the appropriate formulas at the top of this table at design time. VBA
can then be used to copy them down at run time. As an example, the formula for
interest in cell F10 is ¼IntRate/12*C10. (You can examine the Car Loan.xlsm
file for more details on the formulas.)

I will now examine how the inner details of the application work, starting
with the user forms and their event handlers.

frmOptions and Event Handlers

The design of frmOptions appears in Figure 19.15. It includes the usual OK and Can-
cel buttons, an explanation label, a frame for grouping, and three option buttons
named optPayment, optSensitivity, and optAmortization. Of course, these controls have
to be positioned and named appropriately (through the Properties window) at design
time. The Initialize sub checks the first option by default. The ShowOptionsDialog
function captures the user’s choice in the variable analysisOption, which is 1, 2, or 3.

Figure 19.13 Sensitivity Template

Price of 000,03$rac
Down 000,6$tnemyap
Annual interest %05.4etar
Term (months to 42)yap

Input to ecirPyrav

Price Monthly payment Total interest

Sensitivity analysis

Basic inputs

View Sensitivity Chart

View Explanation Sheet

Figure 19.14 Amortization Template

Price of 000,03$rac
Down 000,6$tnemyap
Annual interest rate 4.50%
Term (months to pay) 24

Month Beginning balance Payment Principal Interest Ending balance
1 $24,000.00 $1,047.55 $957.55 $90.00 $23,042.45
2 $23,042.45

Amortization schedule

Basic inputs
View Amortization Chart

View Explanation Sheet

424 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The code behind this form is straightforward and is listed below. (Recall that colons
can be used to separate two short lines of code on the same physical line. This is often
done in Case statements.)

Private cancel As Boolean

Public Function ShowOptionsDialog(analysisOption As Integer) As Boolean
Call Initialize
Me.Show
If Not cancel Then

Select Case True
Case optPayment.Value: analysisOption = 1
Case optSensitivity.Value: analysisOption = 2
Case optAmortization.Value: analysisOption = 3

End Select
End If
ShowOptionsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
optPayment.Value = True

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Figure 19.15 frmOptions Design

Basic Ideas for Application Development with VBA 425

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

frmInputs Design and Event Handlers

The design of frmInputs appears in Figure 19.16. It includes the usual OK and
Cancel buttons, a label named lblExplanation at the top, three text boxes named
txtPrice, txtDownPayment, and txtInterest (and corresponding labels), a frame for
grouping, and five option buttons named opt12, opt24, opt36, opt48, and opt60.
(Note that it was a design decision to limit the term of the loan to multiples of
12 months.) The lblExplanation at the top of the form has a blank caption at design
time. The explanation that is inserted at run time depends on which option the user
chooses. (Compare the labels in Figures 19.3 and 19.6, for example.)

The Initialize sub for this user form fills the three text boxes with the values
currently in the Model sheet. (Alternatively, some programmers might elect to
leave these boxes blank.) It also checks the appropriate option button, depending
on what term is currently in the Model sheet, and it sets the Caption property of
lblExplanation to explanation, a string variable that has, by this time, been defined
in the module code (shown later on). After some straightforward error checking
in a Valid function, the ShowInputsDialog function enters the user’s inputs in the
Model sheet. All of the code behind this form follows.

Figure 19.16 frmInputs Design

426 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private cancel As Boolean

Public Function ShowInputsDialog(explanation As String) As Boolean
Call Initialize(explanation)
Me.Show
If Not cancel Then

' Enter the user’s choices in the appropriate cells.
With wsModel

.Range(''Price'').Value = Val(txtPrice.Value)

.Range(''DownPayment'').Value = Val(txtDownPayment.Value)

.Range(''InterestRate'').Value = Val(txtInterestRate.Value)

Select Case True
Case opt12.Value: .Range(''Term'').Value = 12
Case opt24.Value: .Range(''Term'').Value = 24
Case opt36.Value: .Range(''Term'').Value = 36
Case opt48.Value: .Range(''Term'').Value = 48
Case opt60.Value: .Range(''Term'').Value = 60

End Select
End With

End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize(explanation As String)
' Enter the current values in the Model sheet in the text boxes.
With wsModel

lblExplanation.Caption = explanation
txtPrice.Value = Format(.Range(''Price'').Value, ''0'')
txtDownPayment.Value = Format(.Range(''DownPayment'').Value, ''0'')
txtInterestRate.Value = Format(.Range(''InterestRate'').Value, ''0.0000'')

' Check the appropriate option button, based on the value in the Model sheet.
Select Case .Range(''Term'').Value

Case 12: opt12.Value = True
Case 24: opt24.Value = True
Case 36: opt36.Value = True
Case 48: opt48.Value = True
Case 60: opt60.Value = True
Case Else: opt36.Value = True

End Select
End With

End Sub

Private Function Valid() As Boolean
Dim ctl As Control, response As Variant

Valid = True
For Each ctl In Me.Controls

If TypeName(ctl) = ''TextBox'' Then
If ctl.Value = '''' Or Not IsNumeric(ctl) Then

Valid = False
MsgBox ''Enter a positive number in each box.'', vbInformation
ctl.SetFocus
Exit Function

End If
If ctl.Value <= 0 Then

Valid = False
MsgBox ''Enter a positive number in each box.'', vbInformation

Basic Ideas for Application Development with VBA 427

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ctl.SetFocus
Exit Function

End If
End If

Next

If Val(txtDownPayment.Value) > Val(txtPrice.Value) Then
Valid = False
MsgBox ''The down payment can’t be greater than the price '' _

& ''the car!'', vbInformation, ''Improper input''
txtDownPayment.SetFocus
Exit Function

End If

If Val(txtInterestRate.Value) > 0.25 Then
response = MsgBox(''You entered an annual interest rate greater than 25%. '' _

& ''Do you really mean this?'', vbYesNo, ''Abnormal interest rate'')
If response = vbNo Then

Valid = False
txtInterestRate.SetFocus
Exit Function

End If
End If

End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub
Private Sub btnCancel_Click()

Unload Me
End

End Sub

frmSensitivity Design and Event Handlers

There are no new concepts in frmSensitivity, so I will simply display its design in
Figure 19.17 and list its code below. Its purpose is to capture the variable sensiti-
vityOption, which has possible values 1, 2, 3, 4.

Private cancel As Boolean

Public Function ShowSensitivityDialog(sensitivityOption As Integer) As Boolean
Call Initialize
Me.Show
If Not cancel Then

Select Case True

428 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case optPrice.Value: sensitivityOption = 1
Case optDownPayment.Value: sensitivityOption = 2
Case optInterestRate.Value: sensitivityOption = 3
Case optTerm.Value: sensitivityOption = 4

End Select
End If
ShowSensitivityDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
optPrice.Value = True

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

Module Code

The module contains the VBA code that does most of the work. As usual, its
Main sub acts as a control center, calling other subs to do most of the work,
including showing the dialog boxes.

Figure 19.17 frmSensitivity Design

Basic Ideas for Application Development with VBA 429

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Main Code

The Main sub begins by showing frmOptions. Based on the user’s response, it then
uses a Case construct to perform one of three possible actions: (1) show frmInputs
and calculate the monthly payment and total interest paid, (2) show frmSensitivity
and perform a sensitivity analysis on the selected input, or (3) create an amortiza-
tion table. Note that frmInputs is shown in each case, although the explanation
string variable varies slightly. Also, note that for the sensitivity option, there is a
nested Case construct that is based on the input variable chosen. (The comments
in the code provide further details.)

Sub MainProgram()
Dim analysisOption As Integer
Dim explanation As String
Dim sensitivityOption As Integer

' See which option of the application the user wants to run.
If frmOptions.ShowOptionsDialog(analysisOption) Then

Select Case analysisOption
Case 1

' This explanation string will appear at the top of frmInputs.
explanation = ''Supply the following inputs and the application '' _

& ''will calculate the monthly car payment, along with total '' _
& ''interest paid.''

' Get the user inputs and display the results in a message box.
If frmInputs.ShowInputsDialog(explanation) Then

MsgBox ''The monthly payment for these inputs is '' _
& Format(Range(''Payment'').Value, ''$0.00'') & ''.'' & vbCrLf _
& vbCrLf & ''The total interest paid is '' _
& Format(Range(''TotalInterest'').Value, ''$0.00''), _
vbInformation, ''Payment information''

End If

Case 2
' First, see which input to vary.
If frmSensitivity.ShowSensitivityDialog(sensitivityOption) Then

' This explanation string will appear at the top of frmInputs.
explanation = ''Enter the following inputs. The sensitivity '' _

& ''analysis will use these as starting points.''

' Get the user’s inputs.
If frmInputs.ShowInputsDialog(explanation) Then

' Perform the sensitivity analysis for the selected input.
Select Case sensitivityOption

Case 1: Call PriceSensitivity
Case 2: Call DownPaymentSensitivity
Case 3: Call InterestRateSensitivity
Case 4: Call TermSensitivity

End Select
End If

End If

Case 3
' This explanation string will appear at the top of the InputsForm.

430 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explanation = ''Enter the following inputs. The amortization '' _
& ''table will be based on these.''

If frmInputs.ShowInputsDialog(explanation) Then
Call Amortization

End If
End Select

End If
End Sub

PriceSensitivity Code

The PriceSensitivity sub is called if the user wants a sensitivity analysis on the price
of the car. It first unhides and activates the Sensitivity worksheet. Next, it clears
the contents from the previous run, if any. Then it uses a For loop to cycle
through prices as low as half the current price and as high as double the current
price. For each of these, it substitutes the price into the Price cell of the Model
sheet, captures the monthly payment and total interest paid from the corresponding
cells of the Model sheet, and places these values in the Sensitivity worksheet.
Note how the counter variable rowOffset keeps track of where to place these
values in the Sensitivity worksheet. At the end of this loop, it puts the original
price back in the Price cell of the Model sheet. Finally, it sets range variables
for the ranges of the sensitivity data, and it calls the UpdateSensitivityChart sub
(discussed below) with these ranges as arguments.

Sub PriceSensitivity()
Dim currentPrice As Currency
Dim price As Currency
Dim rowOffset As Integer
Dim i As Integer
Dim dataRange As Range
Dim xRange As Range

With wsSensitivity
.Visible = True
.Activate

' Enter some labels and clear the sensitivity table from a previous run, if any.
.Range("C9").Value = "Price"
With .Range("B11")

.Value = "Price"
Range(.Offset(1, 0), .Offset(1, 2).End(xlDown)).ClearContents

End With

' Capture the current price.
currentPrice = .Range("C4").Value
MsgBox "The price will be varied from half the current price " _

& "to double the current price, in increments of 10% of the " _
& "current price. (But it will never be less than the current " _
& "down payment.)", vbInformation, "Price range"

' For each possible price, enter it in the Price cell (in the Model sheet)
' and then store the corresponding payment and total interest values in
' the sensitivity table.
rowOffset = 0
With .Range("B11")

Basic Ideas for Application Development with VBA 431

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For i = −5 To 10
price = currentPrice * (1 + i / 10)
If price > = wsSensitivity.Range("C5").Value Then

rowOffset = rowOffset + 1
wsModel.Range("Price").Value = price
.Offset(rowOffset, 0).Value = Format(price, "$0.00")
.Offset(rowOffset, 1).Value = Format(wsModel.Range("Payment").Value, "$0.00")
.Offset(rowOffset, 2).Value = Format(wsModel.Range("TotalInterest").Value, "$0.00")

End If
Next

End With

' Restore the current price to the Price range (in the Model sheet).
wsModel.Range("Price").Value = currentPrice

' Set the ranges for the sensitivity chart and then update the chart.
With .Range("B11")

Set dataRange = Range(.Offset(1, 1), .Offset(1, 2).End(xlDown))
Set xRange = Range(.Offset(1, 0), .End(xlDown))

End With
End With

Call UpdateSensitivityChart("Price of Car", dataRange, xRange)
End Sub

UpdateSensitivityChart Code

The UpdateSensitivityChart sub takes three arguments: a string for chart titles, a range
for the source data, and another range for the horizontal axis variable. (Note how
Range object variables can be passed as arguments, just like any other variables.) It
then updates the already existing SensitivityChart sheet with these arguments. (If
you are not sure exactly what part of the chart each of the lines changes, set a break-
point at the Sub line. Then when you run the application, it will stop here, allowing
you to step through the sub with the F8 key and examine the effect of each line.)

Keep in mind that the SensitivityChart sheet and the AmortizationChart
sheet discussed below are created at design time, using Excel’s chart tools in the
usual way. Therefore, the only task required of VBA is to populate these charts
with the current data, and this is relatively simple. It would be more tedious to
create the chart sheets from scratch with VBA.

Sub UpdateSensitivityChart(inputParameter As String, dataRange As Range, _
xRange As Range)

With chtSensitivity
.Visible = True
.Activate
.SetSourceData dataRange
.SeriesCollection(1).Name = "Monthly payment"
.SeriesCollection(2).Name = "Total interest"
.SeriesCollection(1).XValues = xRange
.Axes(xlCategory).AxisTitle.Caption = inputParameter
.ChartTitle.Text = "Sensitivity to " & inputParameter
.Deselect

End With
End Sub

432 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DownPaymentSensitivity, InterestRateSensitivity,
and TermSensitivity Code

The next three subs are analogous to the PriceSensitivity sub. They are relevant
for sensitivity analyses on the down payment, the interest rate, and the term,
respectively. Their code has purposely not been supplied. They are left to you as
an exercise. (Right now, they contain only messages that you can delete when
you write your code.) Note that you should call the UpdateSensitivityChart sub
from each of them, using appropriate arguments in each case.

Sub DownPaymentSensitivity()
MsgBox "The code for this sensitivity analysis is not yet written. " _

& "Try writing it on your own.", vbInformation, "Incomplete"
End Sub

Sub InterestRateSensitivity()
MsgBox "The code for this sensitivity analysis is not yet written. " _

& "Try writing it on your own.", vbInformation, "Incomplete"
End Sub

Sub TermSensitivity()
MsgBox "The code for this sensitivity analysis is not yet written. " _

& "Try writing it on your own.", vbInformation, "Incomplete"
End Sub

Amortization Code

The Amortization sub creates an amortization table. It first unhides and activates
the Amortization worksheets and clears the contents of the previous run, if any.
Because the amortization table will have as many rows as the term of the loan,
the variable term is defined to help fill the table, and then the table is built. Its first
column, the month number, is filled with the DataSeries method of a Range object.
(This is equivalent to Excel’s Fill tool. You can learn the syntax for the DataSeries
line by using this tool with the macro recorder on.) The rest of the table is filled by
copying the relevant formulas down their respective columns. (These formulas were
entered in the template at design time. See rows 10 and 11 of Figure 19.14.)
Finally, the sub sets Range variables for the ranges of the amortization table, and
it calls the UpdateAmortizationChart sub with these ranges as arguments.

Sub Amortization()
Dim term As Integer
Dim dataRange As Range
Dim xRange As Range

With wsAmortization
.Visible = True
.Activate

' Clear out old table (but leave a few key formulas as is).
With .Range("B10")

Range(.Offset(2, 0), .Offset(2, 1).End(xlDown)).ClearContents
Range(.Offset(1, 2), .Offset(1, 5).End(xlDown)).ClearContents

End With

Basic Ideas for Application Development with VBA 433

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Capture the term in a variable. It is the "length" of the amortization table.
term = Range("C7").Value

' Autofill the first column of the table (1,2,3,etc.). Then copy the
' formulas already supplied down the other columns.
With .Range("B10")

.DataSeries Rowcol:=xlColumns, Step:=1, Stop:=term

.Offset(1, 1).Copy Range(.Offset(2, 1), .Offset(term – 1, 1))
Range(.Offset(0, 2), .Offset(0, 5)).Copy _

Range(.Offset(1, 2), .Offset(term – 1, 5))
End With

' Set the ranges for the amortization chart and then update the chart.
With .Range("B9")

Set dataRange = Range(.Offset(1, 3), .Offset(1, 4).End(xlDown))
Set xRange = Range(.Offset(1, 0), .End(xlDown))

End With
End With

Call UpdateAmortizationChart(dataRange, xRange)
End Sub

UpdateAmortizationChart Code

The UpdateAmortizationChart sub takes two arguments: a range for the source
data, and another range for the horizontal axis variable. It then updates the
already existing AmortizationChart sheet with these arguments.

Sub UpdateAmortizationChart(dataRange As Range, xRange As Range)
With chtAmortization

.Visible = True

.Activate

.SetSourceData dataRange

.SeriesCollection(1).Name = "Principal"

.SeriesCollection(2).Name = "Interest"

.SeriesCollection(1).XValues = xRange

.Deselect
End With

End Sub

Navigational Code

The remaining subs are attached to the buttons on the various sheets. They are
for navigational purposes only.

Sub ViewExplanation()
With wsExplanation

.Activate

.Range("F4").Select
End With

End Sub

434 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub ViewSensitivitySheet()
With wsSensitivity

.Activate

.Range("B1").Select
End With

End Sub

Sub ViewSensitivityChart()
chtSensitivity.Activate

End Sub

Sub ViewAmortizationSheet()
With wsAmortization

.Activate

.Range("B1").Select
End With

End Sub

Sub ViewAmortizationChart()
chtAmortization.Activate

End Sub

If you have used earlier editions of this book, you will observe that from the
user’s standpoint, this current car loan application acts exactly like previous ver-
sions, even though the code dealing with user forms is quite different. This is
common in programming, and you have undoubtedly seen it many times without
really being aware of it. Specifically, programs are often changed, usually to pro-
vide more efficient or up-to-date code, without changing what users see at all.
After all, users really don’t care how your code does what it does; they only care
that it works in a consistent manner. But if you change the program so that users
see something different, you risk incurring their wrath!

19.4 Summary

The car loan application is not the simplest one you will ever encounter, and there
is no way you could develop it in, say, an hour. There are admittedly many details
to take care of. As a tactical issue, you might want to try developing this application
on your own in pieces. For example, you might omit the parts on sensitivity analy-
sis and amortization, along with their charts, and develop only the part that displays
the message box for the monthly payment in Figure 19.4. Once you get this work-
ing properly, you can develop the sensitivity analysis part of the application. You
can then tackle the amortization table. The advantage of this approach is that you
can work on several small and relatively easy subprojects, rather than one daunting
large project, and gain confidence with your successes along the way. In addition, if
you keep these small subprojects in separate subs, you can test them independently
of one another, thereby eliminating bugs as you proceed.

If you keep this “divide and conquer” approach in mind, you will probably
agree that there is no single piece of the application that you cannot master with
some practice. Many applications in later chapters are like this one. They are fairly
long, but they are not necessarily difficult. Just remember the claim in Chapter 1

Basic Ideas for Application Development with VBA 435

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that you can be a successful programmer if you persevere. In fact, to be a success-
ful programmer, you must persevere.

EXERCISES

1. Complete the DownPaymentSensitivity, InterestRateSensitivity, and TermSensitivity
subs that were left incomplete.

2. The charts in the application are currently line charts. Suppose the initial reaction
from users is that they would rather see some other chart type such as stacked col-
umns. Make the necessary changes. (Do you need to rewrite any of the code?)

3. Change the application so that the term of the loan can be any number of months
from 12 to 60. Note that option buttons are no longer practical. Use a text box
instead to capture the term of the loan.

4. Suppose all car loans are for 36 months. Then there is no need to obtain this
input from the user, although it would be nice to inform the user of the term in
a message box. Change the application appropriately to handle this situation.

5. Suppose a down payment of 20% is required for all car loans. Then there is no
need to obtain this input from the user, although it would be nice to inform the
user of the down payment in a message box. Change the application appropriately
to handle this situation.

6. Change the application so that it is relevant for home loans (mortgages). Assume
that the term of the loan can be any number of years from 5 to 30 (although the
borrower makes monthly payments) and that a down payment of at least 10%
of the price of the home is required. Make sure there are no leftover references
to cars!

436 Chapter 19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Blending Application

20.1 Introduction

This application illustrates how a typical linear programming model, in this case an
oil-blending model, can be transformed into an impressive decision support system
with very little VBA coding. The key to the application is that it is a fixed-size
model. Specifically, it works (in its present form) only if there are three types of
crude oils blended into three gasoline products. This is certainly a limiting feature
of the application. However, the fixed-size property allows the entire application to
be set up at design time, without any VBA. The linear programming model can be
developed, a report can be created, and several charts can be created. The only
VBA tasks are to get the user’s inputs for the model and to run Solver. There are
many Excel details to take care of at design time, but the finished application is very
straightforward, with a minimal amount of VBA code.

New Learning Objective: VBA

● To see how VBA can be used to develop a complete decision support system
around a fixed-size optimization model by supplying input dialog boxes and
charts and reports for the results.

New Learning Objective: Non-VBA

● To develop an understanding of linear programming blending models.

20.2 Functionality of the Application

The application provides the following functionality:

1. The application is based on a typical oil-blending model with three crude oils
blended into three gasoline products. There are many inputs to the model,
including crude oil availabilities, gasoline demands, minimum octane and
maximum sulfur percentage requirements on the gasoline products, and
others, all of which can change each time the model is run. The user has a
chance to view all of these inputs and make any desired changes.

20

437

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. The model is developed in a Model worksheet and is optimized by Solver.
The key outputs are reported in a Report worksheet. Various aspects of the
solution are also displayed on several chart sheets. The user can view these
chart sheets by clicking navigational buttons on the Report worksheet.

20.3 Running the Application

The application is stored in the file Blending Oil.xlsm. When this file is opened,
the Explanation worksheet in Figure 20.1 is displayed.1 When the user clicks the

1Actually, assuming that a pre-2010 version of Excel is being used, the first thing the user sees upon
opening the file is a Solver warning. This warning appears in all future applications that invoke Solver.
It addresses the “missing Solver reference” problem discussed in Chapter 17. It indicates the necessary fix
in case of a Solver problem. (It appears that this problem was fixed in Excel 2010, so the warning doesn’t
appear in Excel 2010 or later versions.)

Figure 20.1 Explanation Worksheet

438 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

button on this sheet, the dialog box in Figure 20.2 appears, which indicates that
the inputs to the model are grouped into three categories. The user can view (and
then change, if desired) the inputs in any of these categories by checking the
appropriate options. If they are all checked, the dialog boxes in Figures 20.3,
20.4, and 20.5 appear sequentially. The inputs that appear initially in the boxes
are those from the previous run of the model (if any). Of course, any of these
inputs can be changed.

When the user has finished viewing/changing inputs, these inputs are substi-
tuted into the model in the (hidden) Model worksheet, and the model is opti-
mized with Solver. The important inputs and outputs are displayed in a Report
worksheet, as shown in Figure 20.6. This worksheet contains several buttons for
navigating to the various chart sheets and back to the Explanation worksheet.

The available charts appear in Figures 20.7–20.13. Each of these charts con-
tains a button that navigates back to the Report worksheet.

Figure 20.2 Initial Dialog Box

Figure 20.3 Dialog Box for Monetary Inputs

A Blending Application 439

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 20.4 Dialog Box for Octane, Sulfur Inputs

Figure 20.5 Dialog Box for Remaining Inputs

440 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 20.6 Report Worksheet

Report of optimal blending solution

)dlos dna(decudorp senilosag fo stnuomAdesahcrup sedurc fo stnuomA

euneveRtsoc noitcudorPdnameDdecudorPtsoc esahcruPelbaliavAdesahcruP
Crude 1 1500 5000 $82,500 Gas 1 3000 3000 $15,000 $210,000

Crude 2 4300 5000 $150,500 Gas 2 2000 2000 $10,000 $120,000

Crude 3 200 5000 $5,000 Gas 3 1000 1000 $5,000 $75,000

Totals 6000 15000 $238,000 Totals 6000 6000 $30,000 $405,000

Blending plan (gallons of crudes used in different gasolines)

Gas 1 Gas 2 Gas 3
Crude 1 1500.00 0.00 0.00

Crude 2 1500.00 2000.00 800.00

Crude 3 0.00 0.00 200.00

stnemeriuqer rufluSstnemeriuqer enatcO

dewolla xaMdeniatbOderiuqer niMdeniatbO
%00.1%57.01 saG00.1100.111 saG

%00.3%05.02 saG00.0100.012 saG

%00.1%00.13 saG00.906.93 saG

Monetary summary

Purchase cost $238,000

Production cost $30,000

Sales revenue $405,000

Profit $137,000

Figure 20.7 Chart of Crude Oils Purchased

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Gallons of Crudes Purchased

Crude 1 Crude 2 Crude 3

View Report Sheet

Purchased

Available

A Blending Application 441

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 20.8 Chart of Crude Oil Purchase Costs

$0

$20,000

$40,000

$60,000

$100,000

$140,000

$160,000

Crude 1 Crude 2 Crude 3

Crude Purchase Costs View Report Sheet

$120,000

$80,000

Figure 20.9 Chart of Gasolines Produced and Demands

0

500

1000

1500

2000

2500

3000

Gas 1 Gas 2 Gas 3

Gallons of Gasolines Produced View Report Sheet

Produced

Demand

442 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 20.10 Chart of Production Costs and Gasoline Revenues

$0

$50,000

$100,000

$150,000

$200,000

$250,000

Gas 1 Gas 2 Gas 3

Production Costs, Revenues from Gasolines View Report Sheet

Production
cost

Revenue

Figure 20.11 Chart of Blending Plan

Blending Plan: Gallons of Crudes Used in Gasolines View Report Sheet

Crude 1

Crude 2

Crude 3

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

Gas 1 Gas 2 Gas 3

Crude 1

Crude 2

Crude 3

A Blending Application 443

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 20.12 Chart of Octane Requirements

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Gas 1 Gas 2 Gas 3

Octane Requirements View Report Sheet

Obtained

Min required

Figure 20.13 Chart of Sulfur Percentage Requirements

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

Gas 1 Gas 2 Gas 3

Sulfur Requirements View Report Sheet

Obtained

Max allowed

444 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20.4 Setting Up the Excel Sheets

The Blending Oil.xlsm file contains three worksheets and seven chart sheets. All
of these can be developed at design time, without any VBA. The three worksheets
are the Explanation sheet in Figure 20.1, the Model sheet in Figure 20.14, and
the Report sheet in Figure 20.6. Because of the fixed size of the problem (always
three crude oils and three gasoline products), the structure of the model never
changes; the only changes are new input values. Therefore, this model can be
developed completely, including the Solver dialog box, at design time. Any inputs
can be used for testing the model. (The model itself is a straightforward applica-
tion of linear programming. You can open the Blending Oil.xlsm file, unhide
the Model worksheet, and examine its formulas if you like.) Similarly, the Report
worksheet can be developed, with links to appropriate cells in the Model work-
sheet, once and for all at design time. Finally, the charts in Figures 20.7 to 20.13
can be developed and linked to appropriate ranges in the Report worksheet at
design time. After these worksheets and chart sheets are developed, they are
ready and waiting for user inputs.

20.5 Getting Started with the VBA

The application includes four user forms, named frmInputTypes, frmInputs1, frmIn-
puts2, and frmInputs3, a single module, and, because this application will be invok-
ing Solver VBA functions, a reference to Solver.2 (Remember that you set a
reference with the Tools→References menu item in the VBE.) Once these items
are added, the Project Explorer window will appear as in Figure 20.15. (As
always, I have supplied meaningful code names for all of the sheets.)

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following event handler is placed in the ThisWorkbook code window. Note that it
uses For Each loops to hide all sheets except the Explanation worksheet.

Private Sub Workbook_Open()
Dim ws As Worksheet, cht As Chart
With wsExplanation

.Activate

.Range("F4").Select
End With
For Each ws In ThisWorkbook.Worksheets

If ws.CodeName <> "wsExplanation" Then ws.Visible = False
Next

2 It also contains the one other user form, frmSolver, that simply displays a message about possible
Solver problems when the workbook is opened. This is included in all of the Solver applications in
the remainder of the book, although users with Excel 2010 or later versions won’t see it.

A Blending Application 445

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 20.14 Model Worksheet

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

A B C D E F G
Oil blending model

Purchase prices per gallon of crude Sale price per barrel of gasoline
Crude saG55$1 1 Gas 2 Gas 3
Crude 57$06$07$53$2
Crude 52$3

Cost to transform one barrel of crude into one barrel of gasoline
$5

Requirements for gasolines
Gas 1 Gas 2 Gas 3

Minimum octane 11 10 9
Maximum sulfur 1% 3% 1%

Octane rufluSsgnitar content
Crude edurC211 1 1.0%
Crude edurC012 2 0.5%
Crude edurC83 3 3.0%

Purchase/produc�on plan
Gas 1 Gas 2 Gas 3 Total purchased Max Available

Crude 1 1500.00 0.00 0.00 1500 <= 5000
Crude 2 1500.00 2000.00 800.00 4300 <= 5000
Crude 0005=<00200.00200.000.03

Demand for gasolines
Gas 1 Gas 2 Gas 3

Amount produced 3000 2000 1000
<= <= <=

Maximum Demand 3000 2000 1000

Constraint on total produc�on
Total produced Max Capacity

6000 <= 15000

Octane constraints Gas 1 Gas 2 Gas 3
Actual total octane 33000 20000 9600

>= >= >=
Required 33000 20000 9000

Sulfur constraints Gas 1 Gas 2 Gas 3
Actual total sulfur 22.5 10 10

<= <= <=
010603deriuqeR

Purchase costs $238,000
Produc�on costs $30,000
Sales revenue $405,000

Profit $137,000

446 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For Each cht In ThisWorkbook.Charts
cht.Visible = False

Next
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then
frmSolver.Show

End Sub

20.6 The User Forms

frmInputTypes

The design of frmInputTypes is shown in Figure 20.16. It contains the usual OK
and Cancel buttons, an explanation label, and three check boxes named chkInputs1,
chkInputs2, and chkInputs3. The design of the user forms for this application is
completely straightforward. The text boxes must be positioned and named, the
labels must be positioned and captioned, and so on—straightforward operations.

The event handlers for this user form are listed below. The Initialize sub
checks each of the check boxes by default. The ShowInputTypesDialog function
captures the user’s entries in the check boxes in the Boolean variables blnInputs1,
blnInputs2, and blnInputs3.

Figure 20.15 Project Explorer Window

A Blending Application 447

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private cancel As Boolean

Public Function ShowInputTypesDialog(inputType1 As Boolean, _
inputType2 As Boolean, inputType3 As Boolean) As Boolean

Call Initialize
Me.Show
If Not cancel Then

inputType1 = chkInputs1.Value
inputType2 = chkInputs2.Value
inputType3 = chkInputs3.Value

End If
ShowInputTypesDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Have all boxes checked initially.
chkInputs1.Value = True
chkInputs2.Value = True
chkInputs3.Value = True

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

Figure 20.16 Design of frmInputTypes

448 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

frmInputs1

The design of frmInputs1 is shown in Figure 20.17. It contains OK and Cancel
buttons, an explanation label, two frames for grouping inputs, and seven text
boxes and corresponding labels. The three text boxes in the Unit crude costs
group are named txtCrude1, txtCrude2, and txtCrude3. The three text boxes in the
Unit gas prices group are named txtGas1, txtGas2, and txtGas3. Finally, the
production cost text box is named txtProdCost.

The Initialize sub captures the values in the Model worksheet (from a previous run,
if any) and enters them in the text boxes, and then the ShowInputs1Dialog function
takes the user’s choices and places them back in the Model worksheet. Note that it
uses the Val function to convert a string (which is always the result from a text box) to
a numeric value (which is required in the worksheet). Otherwise, arithmetic operations
couldn’t be performed on these cells in the worksheet. The Valid function performs
some error checking to ensure that the user’s inputs are numeric and positive.

Private cancel As Boolean

Public Function ShowInputs1Dialog() As Boolean
Call Initialize
Me.Show
If Not cancel Then

' Enter the user inputs in the (hidden) Model sheet.
With wsModel.Range("PurchCosts")

.Cells(1).Value = Val(txtCrude1.Text)

.Cells(2).Value = Val(txtCrude2.Text)

.Cells(3).Value = Val(txtCrude3.Text)
End With
With wsModel.Range("SellPrices")

.Cells(1).Value = Val(txtGas1.Text)

.Cells(2).Value = Val(txtGas2.Text)

.Cells(3).Value = Val(txtGas3.Text)

Figure 20.17 Design of frmInputs1

A Blending Application 449

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End With
wsModel.Range("ProdCost").Value = Val(txtProdCost.Text)

End If
ShowInputs1Dialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Initialize with the current values in the (hidden) Model sheet.
With wsModel.Range("PurchCosts")

txtCrude1.Text = .Cells(1).Value
txtCrude2.Text = .Cells(2).Value
txtCrude3.Text = .Cells(3).Value

End With
With wsModel.Range("SellPrices")

txtGas1.Text = .Cells(1).Value
txtGas2.Text = .Cells(2).Value
txtGas3.Text = .Cells(3).Value

End With
txtProdCost.Text = wsModel.Range("ProdCost").Value

End Sub

Private Function Valid() As Boolean
Dim ctl As Control
Valid = True
' Check that the text boxes have positive numeric values.
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If ctl.Value = "" Or Not IsNumeric(ctl) Then

Valid = False
MsgBox "Enter positive numeric values in all boxes.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If
If ctl.Value < 0 Then

Valid = False
MsgBox "Enter positive numeric values in all boxes.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If
End If

Next
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

450 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

frmInputs2 and frmInputs3

The other two input forms, frmInputs2 and frmInputs3, shown in Figures 20.4 and
20.5, are very similar. For example, frmInputs2 contains OK and Cancel buttons,
an explanation label, four frames for grouping the inputs, and 12 text boxes and
corresponding labels. The code behind these two forms is very similar to the
frmInputs1 code, so it is not listed here.

20.7 The Module

In most applications, the VBA code in the module does the majority of the work.
However, this is not the case here. There is a MainBlending module that “shows”
the appropriate forms, which capture the user’s inputs. Therefore, all the Main-
Blending sub needs to do is show the forms and then run Solver. (Note that it
must first unhide the Model worksheet. Solver cannot be run on a model in a
hidden sheet.) Other than this, the module contains only navigational subs (not
shown here). These are attached to the buttons on the Report worksheet and
the various chart sheets.

MainBlending Code

Sub MainBlending()
' This sub runs when the user clicks on the button on the Explanation sheet.
Dim inputType1 As Boolean, inputType2 As Boolean, inputType3 As Boolean
Dim solverStatus As Integer

' Find which types of inputs the user wants to view/change.
If frmInputTypes.ShowInputTypesDialog(inputType1, inputType2, inputType3) Then

' Show the input forms the user has requested.
' Exit if the user cancels from any of them.
If inputType1 Then

If Not frmInputs1.ShowInputs1Dialog Then Exit Sub
End If
If inputType2 Then

If Not frmInputs2.ShowInputs2Dialog Then Exit Sub
End If
If inputType3 Then

If Not frmInputs3.ShowInputs3Dialog Then Exit Sub
End If

Application.ScreenUpdating = False

' Unhide and activate the Model sheet, and run the Solver.
With wsModel

.Visible = True

.Activate
End With

' Call Solver and check for no feasible solutions.
solverStatus = SolverSolve(UserFinish:=True)
If solverStatus = 5 Then

A Blending Application 451

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' There are no feasible solutions, so report this and quit.
MsgBox "There is no feasible solution to the problem with these " _

& "inputs. Try again with different inputs.", _
vbInformation, "Not feasible"

wsModel.Visible = False
Call ViewExplanation

Else
' There is a solution, so report it in the Report sheet.
wsModel.Visible = False
With wsReport

.Visible = True

.Activate

.Range("A1").Select
End With

End If

Application.ScreenUpdating = True
End If

End Sub

20.8 Summary

This application is a great example of the functionality you can achieve with very
little VBA code. Although I don’t necessarily encourage you to create all of the
applications, starting from scratch, in the remaining chapters, I urge you to try
developing this blending application on your own. There are at least two ways you
can proceed. First, you can open a new, blank workbook and create the entire
application—model, user forms, and code. Alternatively, you can make a copy of
the Blending Oil.xlsm file. Then you can delete the user forms and the module
from your copy and recreate them on your own, using the explanations in this
chapter as a guide. In either case, you will find that there are no difficult steps in
this application; there are just a lot of relatively simple steps. In fact, you will find
that many of these steps are quite repetitive. Therefore, you should look for any
possible shortcuts, such as copying and pasting, to reduce the development time.

EXERCISES

1. All of the charts in this application are types of three-dimensional column charts.
Change the application so that they are different chart types. (You can decide
which you prefer.) Do you need to rewrite any of the VBA code?

2. Continuing Exercise 1, suppose you want to give the user the choice of chart
types. For example, suppose you want to give the user two choices: the current
chart types or some other chart type. (You can choose the other type.) Change
the application to allow this choice. Now you will have to add some new VBA
code, along with another user form. However, you should never need to create
any charts from scratch with VBA. You only need to modify existing charts.

452 Chapter 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Suppose there is another chemical additive—let’s call it Excron—that is part of
each crude oil. You know what percentage of each crude oil is Excron, and you
know the minimum percentages of each gasoline product that must be Excron.
That is, all of these percentages are inputs. Change the optimization model and
the application to take Excron into account. (Expand the appropriate user form
to capture the Excron inputs, and make all other necessary modifications.)

4. (More difficult) Changing the size of a model like this one can be quite tedious.
Try the following to see what is involved. Assume that the model can have either
two or three crude oils, and it can have either two or three gasoline products.
First, create a new user form called frmSize to capture these size options. Then
modify the rest of the application accordingly. (Hints: You can change the Visible
property of controls on the user forms to hide them or unhide them, depending
on whether they are needed. With VBA you can change the range names of the
parts of the Model worksheet that will appear in the Solver dialog box. As dis-
cussed in Chapter 17, this will make all Solver setups look the same, but you will
have to do a SolverReset and then respecify all settings because of changes in the
physical locations of the ranges. Finally, you might want to remove the formatting
from the Report worksheet—make it less fancy—to make modifications easier.)

A Blending Application 453

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Product Mix Application

21.1 Introduction

This application is an example of the product mix model. It is a prototype model
often used to introduce linear programming. The products illustrated here are
custom-made pieces of wood furniture that require labor hours from senior and
junior woodworkers, machine hours, and wood (measured in board feet). There
are constraints on the availability of the resources. For some of the products,
there are also constraints on the minimum and/or maximum production levels.
The objective is to maximize profit: revenues minus costs.

The linear programming model in this application is, if anything, simpler than
the blending model in the previous chapter. However, the VBA requirements are
considerably more extensive. The model is no longer fixed in size because the
user is allowed to include any number of products in the potential product mix.
This means, for example, that the number of decision variable cells in the optimi-
zation model can change from one run to another. From a decision support point
of view, this is much more realistic, but it also complicates the VBA. Only a lim-
ited part of the optimization model can be set up at design time. The rest must
be developed at run time with VBA code.

New Learning Objectives: VBA

● To see how VBA can be used to get the data inputs from one worksheet and
use them to build an optimization model in another worksheet.

● To illustrate how VBA can be used to develop an optimization model of
varying size.

● To illustrate how a VBA program that must perform many tasks can be
divided into several relatively small subroutines.

● To better understand how VBA can be used to enter formulas into cells.

New Learning Objectives: Non-VBA

● To develop an understanding of a prototype linear programming model: the
product mix model.

21

454

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21.2 Functionality of the Application

The application provides the following functionality:

1. It provides a database (on the Data worksheet) of all required inputs for the
model. Before running the application, the user can change these inputs. In
fact, it is possible to manually add or delete products and resources in the
list. The VBA code will always capture the current data in the Data worksheet
when it develops and solves the optimization model in the Model worksheet.

2. Given the set of all products listed in the Data worksheet, the user can select
the products that will be included in the product mix model. If a product is
not selected, it will not even be considered in the product mix.

3. Once the user selects the products to be included in the model, a product
mix model is developed in the Model worksheet, and Solver is invoked to
find the optimal product mix. The key results are then listed in a Report
worksheet.

21.3 Running the Application

The application is in the file Product Mix.xlsm. When this file is opened, the
explanation in Figure 21.1 appears.

Figure 21.1 Explanation Worksheet

A Product Mix Application 455

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The data for the products and the data for the resources appear in Figures 21.2
and 21.3. The unit costs in column D of Figure 21.2 are actually calculated from for-
mulas: Each is a sum of products of the unit usages in a product row of Figure 21.2
and the unit resource costs in column N of Figure 21.3. All other data are given
values. The MinUnits and MaxUnits in columns E and F of Figure 21.2 prescribe
lower and upper limits on the quantities of the products that can be produced. If a
MinUnits value is blank, it is replaced by 0 in the model. If a MaxUnits value is
blank, it is replaced by a suitably large value in the model (so that there is effectively
no upper limit).

When the user clicks the button in Figure 21.1, the dialog box in Figure 21.4
appears. This allows the user to select the products that will be included in
the model.

Once the products have been selected, VBA is used to develop the Model
worksheet. Any results on this sheet from a previous run are cleared. Then a new
model is developed, and Solver is set up and run. Finally, VBA unhides the
Report worksheet, clears any results from a previous run, and reports the new
solution. Typical Model and Report worksheets appear in Figures 21.5 and 21.6.
I will not spell out the formulas in the Model sheet; it is a straightforward linear
programming model. (To see these formulas, open the file, run the application
once, unhide the Model sheet, and examine its formulas.)

Figure 21.2 Data for the Products

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J K

Data on products: unit price, resources required per unit, minimum and maximum units
Product code Descrip�on UnitPrice UnitCost MinUnits MaxUnits SrLaborHrs JrLaborHrs MachineHrs OakFt CherryFt
1243 Oak end table $190 $130 20 40 0.5 1.3 0.4 2.8 0
2243 Cherry end table $203 $146 30 0.7 1.2 0.4 0 2.8
1456 Oak rocking chair $371 $277 5 20 2.1 2.9 1.2 5.2 0
2456 Cherry rocking chair $407 $308 5 15 2.5 2.7 1.2 0 5.2
1372 Oak coffee table $238 $167 10 30 1.3 1.7 0.6 3.2 0
2372 Cherry coffee table $259 $185 10 1.5 1.5 0.6 0 3.2
1531 Oak dining 06.517.12.39.1846$738$elbat
2531 Cherry dining table $964 $724 10 2.1 2.8 1.6 0 15.6
1635 Oak desk $1,084 $841 5 4.3 5.8 3.2 18.2 0
2635 Cherry desk $1,214 $938 5 4.5 5.6 3.5 0 18.2
1367 Oak bookshelves $401 $315 15 30 1.8 2.5 2.1 6.2 0
2367 Cherry bookshelves $455 $349 40 1.9 2.5 2.2 0 6.2

Figure 21.3 Data for the Resources

3

4

5

6

7

8

9

M N O

Data on resources
Resource UnitCost Availability
SrLaborHrs $20 263
JrLaborHrs $12 450
MachineHrs $15 225
OakFt $35 488
CherryFt $40 638

456 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 21.4 Dialog Box for Selecting Products in the Model

Figure 21.5 Model Worksheet

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A B C D E F G H I J K L M N

Product mix
Product code 2243 2456 1372 1531 2531

000150niM
<= <= <= <= <=

Produced 30 15 30 25 10
<= <= <= <= <=

Max 30 15 30 31 10

UnitPrice $203.00 $407.00 $238.00 $837.00 $964.00
UnitCost $146.40 $308.40 $167.40 $647.90 $723.60
UnitProfit $56.60 $98.60 $70.60 $189.10 $240.40

Resource yratenoMegasu summary Resources used per unit of products
Resource Used Available Total revenue $49,900 Resource/Product code 2243 2456 1372 1531 2531
SrLaborHrs 166.0 <= 263.0 Total cost $37,474 SrLaborHrs 0.7 2.5 1.3 1.9 2.1
JrLaborHrs 235.5 <= 450.0 Total profit $12,427 JrLaborHrs 1.2 2.7 1.7 3.2 2.8

6.17.16.02.14.0srHenihcaM0.522=<5.601srHenihcaM
06.512.300tFkaO0.884=<0.684tFkaO
6.51002.58.2tFyrrehC0.836=<0.813tFyrrehC

Figure 21.6 Report Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B C D E F G H I J K

Op�mal product mix

Monetary summary
Total revenue $49,900
Total cost $37,474
Total profit $12,427

Product data Resource data
Product code Descrip�on Units produced Revenue Cost Profit Resource Used Available Le� over
2243 Cherry end table 30 $6,090 $4,392 $1,698 SrLaborHrs 166.0 263.0 97.0
2456 Cherry rocking chair 15 $6,105 $4,626 $1,479 JrLaborHrs 235.5 450.0 214.5
1372 Oak coffee table 30 $7,140 $5,022 $2,118 MachineHrs 106.5 225.0 118.5
1531 Oak dining table 25 $20,925 $16,198 $4,728 OakFt 486.0 488.0 2.0
2531 Cherry dining table 10 $9,640 $7,236 $2,404 CherryFt 318.0 638.0 320.0

A Product Mix Application 457

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21.4 Setting Up the Excel Sheets

The Model and Report worksheets cannot be set up entirely at design time
because the number of products and the number of resources could change,
depending on the data entered in the Data worksheet and the user’s choice of
potential products from the user form. However, they can be set up partially. The
templates for the Model and Report worksheets appear in Figures 21.7 and 21.8.

21.5 Getting Started with the VBA

This application requires a user form named frmProducts, a single module, and a
reference to Solver. Once these items are added, the Project Explorer window
will appear as in Figure 21.9.1

Figure 21.7 Model Worksheet Template

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K

Model formula�on

Product mix
Product code
Min

Produced

Max

UnitPrice
UnitCost
UnitProfit

Resource yratenoMegasu summary Resources used per unit of products
Resource Used Available Total tcudorP/ecruoseReunever code

Total cost
Total profit

Figure 21.8 Report Worksheet Template

1

2

3

4

5

6

7

8

9

10

A B C D E F G H I J K

Op�mal product mix

Monetary summary
Total revenue
Total cost
Total profit

Product data Resource data
Product code Descrip�on Units produced Revenue Cost Profit Resource Used Available Le� over

1 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users of pre-2010 versions of Excel will see this message.

458 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. It also hides the
Model and Report worksheets, and it shows the Solver warning for pre-2010 ver-
sions of Excel.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("F4").Select
End With
wsModel.Visible = False
wsReport.Visible = False
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

21.6 The User Form

The design of frmProducts is shown in Figure 21.10. It has the usual OK and
Cancel buttons, a label for explanation at the top, and a list box named lbProduct.
The MultiSelect property for this list box should be changed to option 2 in the
Properties window (see Figure 21.11). This enables the user to select multiple
products from the list, not just a single product.

Figure 21.9 Project Explorer Window

A Product Mix Application 459

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 21.10 frmProducts Design

Figure 21.11 MultiSelect Property of the List Box

460 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Once the user form has been designed, the appropriate code can be written.
The Initialize sub indicates how the form should be presented initially to the user. It
fills the list box with the product array (which will have been populated by this time
with code in the module), and it selects the first product as the default. (Remember
once again that the Selected array for a multi-type list box is 0-based. The first item
in the list has index 0, the second has index 1, and so on.) The ShowProductsDialog
function captures the user’s selections in a Boolean isSelected array (1-based).

Private cancel As Boolean
Public Function ShowProductsDialog(product() As String, nProducts As Integer, _

isSelected() As Boolean) As Boolean
Dim i As Integer ' product index, 0-based
Call Initialize(product, nProducts)
Me.Show
If Not cancel Then

With lbProducts
For i = 1 To nProducts

isSelected(i) = .Selected(i - 1)
Next

End With
End If
ShowProductsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize(product() As String, nProducts As Integer)
' Add the product descriptions to the list.
Dim i As Integer
For i = 1 To nProducts

lbProducts.AddItem product(i)
Next
' Select the first item.
lbProducts.Selected(0) = True

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

21.7 The Module

Most of the work is performed by the VBA code in the module. This code is
listed below. The application uses a modular design, as described in Chapter 10.
After declaring the module-level variables at the top, the MainProductMix sub calls
several other subs in a logical order. Some of these subs call other subs. Again,
the purpose of dividing the overall program into so many small subs is to make
it more readable—and easier to debug.

A Product Mix Application 461

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note how a number of constants have been set to various cell addresses. These
refer to “anchor” cells in the Data, Model, and Report worksheets that will be used
in the code. If these worksheets were ever modified in some way, such as inserting
blank rows, these anchor addresses could easily be changed in the Const lines.

Option Statements and Module-Level Variables

Option Explicit

' Definition of module-level variables:
' nProducts - number of products listed in Data sheet
' nResources - number of resources listed in Data sheet
' product() - array of product names
' resource() - array of resource names
' isSelected() - Boolean array that indicates which products are selected
' from the user form

' These variables are declared as module-level variables (but not
' Public variables) to avoid a lot of argument-passing in this module.
' Because they aren’t Public, they still have to be passed to the form.
Dim nProducts As Integer, nResources As Integer
Dim product() As String, resource() As String
Dim isSelected() As Boolean

' Anchor cell addresses (created as constants so they could easily be changed).
' Note that these are used instead of range names.

' Data sheet
Const ProdAnchor = "A4"
Const ResAnchor = "M4"

' Model sheet
Const ProdMixAnchor = "A3"
Const ResUseAnchor = "A16"
Const MonSummAnchor = "F15"
Const UnitUseAnchor = "I16"

' Report sheet
Const ProdRepAnchor = "A9"
Const ResRepAnchor = "H9"

MainProductMix Code

The MainProductMix sub is the control center. It calls all of the other subs that do
the real work. The button on the Explanation worksheet (see Figure 21.1) has the
MainProductMix macro assigned to it. Note the feasible argument of the RunSolver
call. The RunSolver sub determines whether there are any feasible solutions, and it
passes this information back to the MainProductMix sub. There is no point in creating
a report if there are no feasible solutions.

Sub MainProductMix()
' This sub runs when the user clicks on the button on the Explanation sheet.
Dim feasible As Boolean

Call GetProducts
Call GetResources

462 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ReDim isSelected(1 To nProducts)
If frmProducts.ShowProductsDialog(product, nProducts, isSelected) Then

Application.ScreenUpdating = False
Call SetupModel
Call RunSolver(feasible)
If feasible Then Call CreateReport

End If
End Sub

GetProducts, GetResources Code

The GetProducts and GetResources subs find the numbers of products and resources
from the Data worksheet, redimension the product, resource, and isSelected arrays
appropriately, and fill them with the product and resource names from the Data
worksheet. Note how the “anchor” cells are used. Everything is offset relative to
them. This occurs many times throughout the application.

Sub GetProducts()
' This sub finds the number of products and their corresponding data.
With wsData.Range(ProdAnchor)

nProducts = Range(.Offset(1, 0), .End(xlDown)).Count
ReDim product(nProducts)
ReDim isSelected(nProducts)
Dim i As Integer ' product index
For i = 1 To nProducts

product(i) = .Offset(i, 1).Value
Next

End With
End Sub

Sub GetResources()
' This sub finds the number of resources and their corresponding data.
With wsData.Range(ResAnchor)

nResources = Range(.Offset(1, 0), .End(xlDown)).Count
ReDim resource(nResources)
Dim j As Integer ' resource index
For j = 1 To nResources

resource(j) = .Offset(j, 0).Value
Next

End With
End Sub

SetupModel Code

The SetupModel sub first unhides and activates the Model worksheet (which at
this point is only a template or contains data from a previous run), and then it
calls seven other subs to develop the optimization model.

Sub SetupModel()
' This sub develops the optimization model through a series of subroutines.
With wsModel

.Visible = True

.Activate

A Product Mix Application 463

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End With
Call ClearOldModel
Call EnterProductData
Call EnterResourceData
Call EnterUsageData
Call CalcMaxProduction
Call CalcResourceUsages
Call CalcMonetaryValues

End Sub

ClearOldModel Code

The ClearOldModel sub clears data, if any, from a previous run to return the
Model worksheet to its “template” form. Note that it uses the ClearContents
method. This deletes all values but leaves old formatting in place. Again, note
how the “anchor” cells are used with offsetting.

Sub ClearOldModel()
' This sub clears all of the old data, but not formatting,
' from any previous model.
With wsModel.Range(ProdMixAnchor)

Range(.Offset(1, 1), .Offset(10, 1).End(xlToRight)).ClearContents
End With
With wsModel.Range(ResUseAnchor)

Range(.Offset(1, 0), .Offset(1, 0).End(xlDown).Offset(0, 3)).ClearContents
End With
With wsModel.Range(MonSummAnchor)

Range(.Offset(1, 1), .Offset(3, 1)).ClearContents
End With
With wsModel.Range(UnitUseAnchor)

Range(.Offset(0, 0), .End(xlDown).End(xlToRight)).ClearContents
.Value = "Resource/Product code"

End With
End Sub

EnterProductData Code

The EnterProductData sub enters data about the selected products in the Model
worksheet. It also names a few ranges for later reference.

Sub EnterProductData()
' This sub enters the product data for all products selected in the
' Product Mix part of the Model sheet.
Dim i1 As Integer ' product index, selected products only
Dim i2 As Integer ' product index, all products
Dim minVal As Single

' Enter data only for the selected products
i1 = 0
With wsModel.Range(ProdMixAnchor)

For i2 = 1 To nProducts
If isSelected(i2) Then

i1 = i1 + 1

464 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Enter product code.
.Offset(1, i1).Value = wsData.Range(ProdAnchor) _

.Offset(i2, 0).Value

' Enter minimum production level.
' (Enter 0 if one isn't given in the Data sheet).
If wsData.Range(ProdAnchor).Offset(i2, 4).Value = "" Then

minVal = 0
Else

minVal = wsData.Range(ProdAnchor).Offset(i2, 4).Value
End If
.Offset(2, i1).Value = minVal
' Set the initial values of the decision variable cells to 0.
.Offset(4, i1).Value = 0

' Enter labels to identify constraints.
.Offset(3, i1).Value = "<="
.Offset(5, i1).Value = "<="

' Enter unit price and unit cost.
.Offset(8, i1).Value = wsData.Range(ProdAnchor) _

.Offset(i2, 2).Value
.Offset(9, i1).Value = wsData.Range(ProdAnchor) _

.Offset(i2, 3).Value

' Calculate unit profit.
.Offset(10, i1).FormulaR1C1 = "=R[-2]C-R[-1]C"

End If
Next

' Name various ranges.
Range(.Offset(2, 1), .Offset(2, 1).End(xlToRight)).Name = "Model!MinProd"
Range(.Offset(4, 1), .Offset(4, 1).End(xlToRight)).Name = "Model!Produced"
Range(.Offset(8, 1), .Offset(8, 1).End(xlToRight)).Name = "Model!UnitRev"
Range(.Offset(9, 1), .Offset(9, 1).End(xlToRight)).Name = "Model!UnitCost"
Range(.Offset(10, 1), .Offset(10, 1).End(xlToRight)).Name = "Model!UnitProfit"

End With
End Sub

EnterResourceData Code

The EnterResourceData sub enters the resource names and availabilities in the
Model worksheet and names a couple of ranges for later use.

Sub EnterResourceData()
' This sub enters the resources availabilities in the Resource
' Usage part of the Model sheet.
Dim j As Integer ' resource index

With wsModel.Range(ResUseAnchor)
For j = 1 To nResources

' Enter name of resource.
.Offset(j, 0).Value = resource(j)

' Enter label to identify constraint.
.Offset(j, 2).Value = "<="

A Product Mix Application 465

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Enter resource availability.
.Offset(j, 3).Value = wsData.Range(ResAnchor).Offset(j, 2).Value

Next

' Name resource ranges.
Range(.Offset(1, 1), .Offset(nResources, 1)).Name = "Model!Used"
Range(.Offset(1, 3), .Offset(nResources, 3)).Name = "Model!Available"

End With
End Sub

EnterUsageData Code

The EnterUsageData sub enters the table of unit resource usages (how much of
each resource is used by a unit of each product) in the Model worksheet.

Sub EnterUsageData()
' This sub enters the unit usages of resources for selected products
' in the resource usage part of the Model sheet.
Dim i1 As Integer ' product index, selected products only
Dim i2 As Integer ' product index, all products
Dim j As Integer ' resource index

With wsModel.Range(UnitUseAnchor)
' Enter resource names.
For j = 1 To nResources

.Offset(j, 0).Value = resource(j)
Next

' Enter data only for selected products.
i1 = 0
For i2 = 1 To nProducts

If isSelected(i2) Then
i1 = i1 + 1

' Enter product code.
.Offset(0, i1).Value = wsData.Range(ProdAnchor) _

.Offset(i2, 0).Value

' Enter unit usages of all resources used by this product.
For j = 1 To nResources

.Offset(j, i1).Value = wsData.Range(ProdAnchor) _
.Offset(i2, 5 + j).Value

Next
End If

Next
End With

End Sub

CalcMaxProduction Code

The CalcMaxProduction sub finds the maximum limit on production for each
selected product and enters it in the Model worksheet. If no explicit maximum
limit is given for a product in the Data worksheet, a suitable maximum limit is
calculated in this sub by seeing which of the resources would be most constrain-
ing if all of the resource were committed to this particular product.

466 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub CalcMaxProduction()
' This sub calculates the max production levels for all selected products.
Dim i1 As Integer ' product index, selected products only
Dim i2 As Integer ' product index, all products
Dim j As Integer ' resource index
Dim maxVal As Single
Dim unitUse As Single
Dim ratio As Single

' Enter data only for selected products, where i1 is a counter for these.
i1 = 0
With wsModel.Range(ProdMixAnchor)

For i2 = 1 To nProducts
If isSelected(i2) Then

i1 = i1 + 1
If wsData.Range(ProdAnchor).Offset(i2, 5).Value = "" Then

' No maximum production level was given, so find how much of
' this product could be produced if all of the resources were
' devoted to it, and use this as a maximum production level.
maxVal = 1000000
For j = 1 To nResources

unitUse = wsModel.Range(UnitUseAnchor).Offset(j, i1).Value
If unitUse > 0 Then

ratio = wsModel.Range("Available").Cells(j).Value / unitUse
If ratio < maxVal Then maxVal = ratio

End If
Next

' Enter calculated maximum production level
' (rounded down to nearest integer).
.Offset(6, i1).Value = Int(maxVal)

Else
' The maximum production level was given, so enter it.
.Offset(6, i1).Value = wsData.Range(ProdAnchor) _

.Offset(i2, 5).Value
End If

End If
Next

' Name the range of maximum production levels.
Range(.Offset(6, 1), .Offset(6, 1).End(xlToRight)).Name = "Model!MaxProd"

End With
End Sub

CalcResourceUsages Code

The CalcResourceUsages sub calculates the amount of each resource used by the
current product mix and enters it in the Model worksheet. Pay particular atten-
tion to the following two lines, which are inside the For loop on j.

unitUseAddress = Range(.Offset(j, 1), .Offset(j, 1).End(xlToRight)).Address
wsModel.Range("Used").Cells(j).Formula = "=Sumproduct(Produced," & unitUseAddress & ")"

The goal is to enter a formula such as = SUMPRODUCT(Produced,J17:
N17) in a cell. (For example, if j = 1, this would be the formula in cell B17 for

A Product Mix Application 467

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the model in Figure 21.5.) To do this, I find the address for the second argument
of the SUMPRODUCT function from the first line and store it in the string vari-
able unitUseAddress. Then I use string concatenation to build the formula in the
second line. Entering formulas in cells with VBA can be tricky, and it often
involves similar string concatenation to piece together a combination of literals
and string variables.

Sub CalcResourceUsages()
' This sub calculates the resource usages with a Sumproduct function.
' Note how the address of the row of unit usages for resource i is found first,
' then used as part of the formula string.
Dim j As Integer ' resource index
Dim unitUseAddress As String
With wsModel.Range(UnitUseAnchor)

For j = 1 To nResources
unitUseAddress = Range(.Offset(j, 1), .Offset(j, 1).End(xlToRight)).Address
wsModel.Range("Used").Cells(j).Formula = _

"=Sumproduct(Produced," & unitUseAddress & ")"
Next

End With
End Sub

CalcMonetaryValues Code

The CalcMonetaryValues sub uses Excel’s SUMPRODUCT function to calculate
the total revenue, total cost, and total profit from the current product mix. It
also names the corresponding cells for later reference.

Sub CalcMonetaryValues()
' This sub calculates the summary monetary values.
With wsModel.Range(MonSummAnchor)

.Offset(1, 1).Formula = "=Sumproduct(Produced,UnitRev)"

.Offset(2, 1).Formula = "=Sumproduct(Produced,UnitCost)"

.Offset(3, 1).Formula = "=Sumproduct(Produced,UnitProfit)"

' Name the monetary cells.
.Offset(1, 1).Name = "Model!TotRev"
.Offset(2, 1).Name = "Model!TotCost"
.Offset(3, 1).Name = "Model!TotProfit"

End With
End Sub

RunSolver Code

The RunSolver sub sets up Solver and then runs it.2 It checks whether there are
no feasible solutions. (Remember from Chapter 17 that the numerical code for
no feasible solutions in the SolverSolve function is 5.) If the model has no feasible

2Even though the Solver setup will always look the same—for example, it will always have the con-
straint Used<=Available—it must be reset and then set up from scratch each time the application is
run. If this is not done and the size of the model is different from the previous run, the Solver settings
will be interpreted incorrectly.

468 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

solutions, then the Model and Report worksheets are hidden, the Explanation
worksheet is activated, an appropriate message is displayed, and the application is
terminated. Note that this code imposes integer constraints on the decision vari-
able cells. Of course, if you do not want to impose integer constraints, you can
delete (or comment out) the appropriate line in this sub.

Sub RunSolver(feasible As Boolean)
' This sub sets up and runs Solver.
Dim solverStatus As Integer

' Reset Solver settings, then set up Solver.
SolverReset
SolverOk SetCell:=wsModel.Range("TotProfit"), MaxMinVal:=1, _

ByChange:=wsModel.Range("Produced"), Engine:=1

' Add constraints.
SolverAdd CellRef:=wsModel.Range("Produced"), Relation:=3, _

FormulaText:=wsModel.Range("MinProd").Address
SolverAdd CellRef:=wsModel.Range("Produced"), Relation:=1, _

FormulaText:=wsModel.Range("MaxProd").Address
SolverAdd CellRef:=wsModel.Range("Used"), Relation:=1, _

FormulaText:=wsModel.Range("Available").Address

' Comment out the next line if you don’t want integer constraints on production.
SolverAdd CellRef:=wsModel.Range("Produced"), Relation:=4
SolverOptions AssumeNonNeg:=True

' Run Solver and check for infeasibility.
solverStatus = SolverSolve(UserFinish:=True)
If solverStatus = 5 Then

' There is no feasible solution, so report this, tidy up, and quit.
MsgBox "This model has no feasible solution. Change the data " _

& "in the Data sheet and try running it again.", _
vbInformation, "No feasible solution"

With wsExplanation
.Activate
.Range("A1").Select

End With
wsModel.Visible = False
wsReport.Visible = False
feasible = False

Else
feasible = True

End If
End Sub

CreateReport Code

The CreateReport sub first unhides and activates the Report worksheet (which at this
point is only a template or contains results from a previous run). It then clears any
previous results and transfers the important results from the Model worksheet to
the appropriate places in the Report worksheet through a series of three short subs.

Sub CreateReport()
' This sub fills in the Report sheet, mostly by transferring the
' results from the Model sheet.

A Product Mix Application 469

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Hide Model sheet.
wsModel.Visible = False

' Unhide and activate Report sheet.
With wsReport

.Visible = True

.Activate

' Enter results in three steps.
Call EnterMonetaryResults
Call EnterProductResults
Call EnterResourceResults
' Make sure columns B and H are wide enough, then select cell A1.
.Columns("B:B").Columns.AutoFit
.Columns("H:H").Columns.AutoFit
.Range("A1").Select

End With
End Sub

EnterMonetaryResults, EnterProductResults, and
EnterResourceResults Code

These three short subs do exactly what their names imply: They transfer the key
results from the Model worksheet to the Report worksheet.

Sub EnterMonetaryResults()
' This sub transfers the total revenue, total cost, and total profit.
Dim i As Integer
With wsReport.Range("B3")

For i = 1 To 3
.Offset(i, 0).Value = wsModel.Range(MonSummAnchor).Offset(i, 1).Value

Next
End With

End Sub

In addition to transferring the production quantities to the Report work-
sheet, the EnterProductResults sub also performs simple calculations to report the
revenue, cost, and profit for each product individually.

Sub EnterProductResults()
' This sub transfers results for the products in the optimal product mix.
Dim i1 As Integer ' product index, selected products only
Dim i2 As Integer ' product index, all products

With wsReport.Range(ProdRepAnchor)
' Clear old data (if any).
Range(.Offset(1, 0), .Offset(1, 0).End(xlDown).End(xlToRight)) _

.ClearContents

' Enter results for selected products only, where i1 is a counter for these.
i1 = 0
For i2 = 1 To nProducts

470 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If isSelected(i2) Then
i1 = i1 + 1

' Enter product code, description, and number of units produced.
.Offset(i1, 0).Value = wsData.Range(ProdAnchor).Offset(i2, 0).Value
.Offset(i1, 1).Value = wsData.Range(ProdAnchor).Offset(i2, 1).Value
.Offset(i1, 2).Value = wsModel.Range("Produced").Cells(i1).Value

' Calculate revenue, cost, and profit for the product.
.Offset(i1, 3).Value = wsModel.Range("Produced").Cells(i1).Value * _

wsModel.Range("UnitRev").Cells(i1).Value
.Offset(i1, 4).Value = wsModel.Range("Produced").Cells(i1).Value * _

wsModel.Range("UnitCost").Cells(i1).Value
.Offset(i1, 5).Value = wsModel.Range("Produced").Cells(i1).Value * _

wsModel.Range("UnitProfit").Cells(i1).Value
End If

Next
End With

End Sub

In addition to transferring the resource usages and availabilities to the Report
sheet, the EnterResourceResults sub also calculates the amount of each resource
left over.

Sub EnterResourceResults()
' This sub transfers results about resource usage.
Dim j As Integer ' resource index

With wsReport.Range(ResRepAnchor)
' Clear old data (if any).
Range(.Offset(1, 0), .Offset(1, 0).End(xlDown).End(xlToRight)).ClearContents
For j = 1 To nResources

' Enter resource name, amount used, and amount available.
.Offset(j, 0).Value = wsData.Range(ResAnchor).Offset(j, 0).Value
.Offset(j, 1).Value = wsModel.Range("Used").Cells(j).Value
.Offset(j, 2).Value = wsModel.Range("Available").Cells(j).Value

' Calculate amount left over.
.Offset(j, 3).FormulaR1C1 = "=RC[-1]-RC[-2]"

Next
End With

End Sub

21.8 Summary

I promised in the introduction that this application is considerably more com-
plex from a VBA point of view than the previous chapter’s blending applica-
tion. Although most of it involves Excel manipulations that are easy to do
manually, a significant amount of programming is required to perform these
same operations with VBA. An entire optimization model must be developed
“on the fly” at run time. You can learn a lot of Excel VBA by carefully studying

A Product Mix Application 471

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the code in this application. Better yet, open the file, split the screen so that you
can see the Excel worksheets on one side and the VBA code on the other, step
through the program with the F8 key, and keep watches on a few key variables. This
can be very instructive. Finally, pay particular attention to how the overall program
has been structured as a series of fairly small subs. This, taken together with a liberal
dose of comments, makes the program much easier to read, understand, and debug.

EXERCISES

1. The application will work with any number of products in the Data worksheet,
provided the data are entered appropriately. Convince yourself of this by adding
a few more products to the section shown in Figure 21.2 and then rerunning the
application.

2. Continuing the previous exercise, the application will also work for any number
of resources, provided that you make space for them in the sections shown in
Figures 21.2 and 21.3. Convince yourself of this by adding a new resource (glue,
for example). What changes do you have to make to the overall file?

3. As the previous exercise illustrates, it might be inconvenient (and confusing) to
require the user to insert new columns if more resources are added. I originally
thought of putting the resource data in Figure 21.3 below, not to the right of, the
product data in Figure 21.2, but this could also cause a problem if more products
were added. (Then the user might need to insert extra rows.) Try the following alter-
native approach. Create two data worksheets, one for the product data in Figure
21.2, called Product Data, and one for the resource data in Figure 21.3, called
Resource Data. Transfer the current data to these two worksheets, and make any
necessary changes to the application. Now users will never have to insert any new
rows or columns. Do you believe this new design has any drawbacks (from a user’s,
not a programmer’s) point of view? Which design do you like best?

4. Change the application so that the user has no choice of the potential products in
the product mix. That is, all products listed in the Data worksheet will be in the
product mix model, and the user form in Figure 21.4 will no longer be necessary.
However, the application should still be written to adapt to any number of pro-
ducts that might be listed in the Data worksheet.

5. Continuing the previous exercise, continue to assume that all products in the Data
worksheet are potential products in the product mix. However, the company now
wants, in addition to the current Report worksheet, a second report worksheet
that shows how the optimal profit changes as the availability of all resources
increases. Specifically, it should show a table and a corresponding chart, such as in
Figure 21.12, on a Sensitivity Report worksheet. This table shows, for example,
that when all of the resource availabilities increase by 30%, the new optimal profit
is $23,392. Of course, your data might differ, depending on which products are
on your Data worksheet. (Hint: Do as much as you can at design time. Then
write VBA code to handle any tasks that must take place at run time.)

472 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 21.13 Chart of Optimal Production Levels for Exercise 6

0

5

10

15

20

25

30

35

40

45

O
a
k
e
n
d

ta
b
le

C
h
e
rr
y
e
n
d

ta
b
le

O
a
k
ro

ck
in
g

ch
a
ir

C
h
e
rr
y
ro

ck
in
g

ch
a
ir

O
a
k
co

ff
e
e

ta
b
le

C
h
e
rr
y
co

ff
e
e

ta
b
le

O
a
k
d
in
in
g

ta
b
le

C
h
e
rr
y
d
in
in
g

ta
b
le

O
a
k
d
e
sk

C
h
e
rr
y
d
e
sk

O
a
k

b
o
o
ks

h
e
lv
e
s

C
h
e
rr
y

b
o
o
ks

h
e
lv
e
s

Optimal Production Quantities View Report Sheet

Figure 21.12 Sensitivity Analysis for Exercise 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

KJIHGFEDCBA

Sensitivity of profit to resource availability

Percent increase in resource availabilities Profit

0% $18,240

10% $19,967

20% $21,421

30% $23,392

40% $25,094

50% $26,815

60% $28,478

70% $30,207

80% $31,842

90% $33,458

100% $34,650

Sensitivity Chart

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent increase in resource availability

Pr
of

it

A Product Mix Application 473

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. This application currently has no charts; it currently displays the outputs in tabular
form only. Change the application so that it also displays a column chart (on a
separate chart sheet) similar to the one in Figure 21.13, showing the amounts of
the various products produced. As part of your changes, create buttons on the
Report worksheet and the chart sheet, and write navigational subs to attach to
them to allow the user to go back and forth easily. (Hint: Create the chart with
Excel’s chart tools only, not VBA, using representative data from the Report
worksheet to populate it at design time. Then write VBA code to modify it appro-
priately at run time.)

474 Chapter 21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Worker Scheduling Application

22.1 Introduction

This application is based on a model for scheduling workers. A company needs to
schedule its workers to meet daily requirements for a 7-day week, and each
worker must work 5 days per week. Some of the workers can have nonconsecu-
tive days off. For example, a worker could be assigned to work Monday, Wednes-
day, Thursday, Friday, and Sunday. This worker’s 2 days off, Tuesday and
Saturday, are nonconsecutive. However, there is a constraint that no more than
a certain percentage of all workers can be assigned to nonconsecutive days-off
shifts, where this maximum percentage is an input to the model. The objective is
to minimize the weekly payroll, subject to meeting daily requirements, where the
hourly wage rate on weekdays can differ from the wage rate on weekends.

New Learning Objectives: VBA

● To see how VBA can be used to conduct a sensitivity analysis for an optimi-
zation model.

New Learning Objectives: Non-VBA

● To learn how employee scheduling can be performed with an optimization model
and how a sensitivity analysis can be performed on a key input parameter.

22.2 Functionality of the Application

This application provides the following functionality:

1. It allows a user to view and change the following inputs: daily requirements,
weekday and weekend wage rates, and maximum percentage of nonconsecu-
tive days off. For these given inputs, it finds the optimal solution to the
model and reports it in a user-friendly form.

2. For given daily requirements and wage rates, it performs a sensitivity analysis
on the maximum percentage of nonconsecutive days off and displays the
results graphically.

22

475

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22.3 Running the Application

The application is in the file Worker Scheduling.xlsm. When this file is opened,
the explanation and button in Figure 22.1 appear. By clicking the button, the user can
view and change the inputs in Figure 22.2. (The values shown are from the previous

Figure 22.2 Daily Requirements Dialog Box

Figure 22.1 Explanation Worksheet

476 Chapter 22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

run, if any.) When the OK button is clicked, the user’s inputs are placed in the
appropriate range of the Model worksheet (see Figure 22.5 later in the chapter).

Once these inputs are entered and the user clicks OK, Solver is invoked and
the optimal solution is reported in the Report worksheet, as shown in Figure 22.3.

If the user then clicks the Perform Sensitivity button, Solver is invoked several
times, once for each maximum nonconsecutive percentage from 0% to 100% in
increments of 10%, and important aspects of the optimal solutions appear graphi-
cally, as shown in Figure 22.4 Specifically, for each maximum percentage of

Figure 22.3 Report of Optimal Solution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J
Report of op�mal solu�on

Weekly rekroWstsoc rebmuNseitilibaliava of workers:
htiWderiuqeRelbaliavAyaD027,6$yadkeeW consecu�ve days off
htiW0202noM004,2$dnekeeW nonconsecu�ve days off

62latoT5151euT021,9$latoT
Wed 25 25

Op�mal assignments (posi�ve assignments only) Thu 20 20
Days off
Mon, 5151taS6nuS
Tue, 0101nuS01taS
Tue, 1nuS
Wed, 1nuS
Thu, 6nuS
Fri, 1nuS
Sat, 1nuS

Return to Explana�on Sheet Perform Sensi�vity

Number assigned Fri 25 25

19
7

Figure 22.4 Results of Sensitivity Analysis

Return to Explanation Sheet

Nonconsecutive

Total

35

28

2

0

5

7

27
26 26 26 26 26 26 26 26

191919
18

15

13

10

30

25

20

N
u

m
b

er
 o

f
W

o
rk

er
s

15

10

5

0

0% 10% 20% 30% 40% 50%

Maximum Pct Nonconsecutive Allowed

60% 70% 80% 90% 100%

Sensitivity to Max Pct Nonconsecutive Constraint

29

A Worker Scheduling Application 477

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

nonconsecutive days off, the report shows the total number of workers required
and the number of these who are assigned nonconsecutive days off.

All of these results are based on the prebuilt model in the Model worksheet,
shown in Figure 22.5. (Although the formulas for this model are reasonably

Figure 22.5 Scheduling Model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

A B C D E F G H
Worker scheduling problem

Maximum percent with nonconsecu�ve days ylruoHffo wage rates
00.8$yadkeeW%001

Weekend $12.00
Assignment of workers to days off pairs
Days off
Mon, 01euT
Mon, 00deW
Mon, 00uhT
Mon, 00irF
Mon, 00taS
Mon, 61nuS
Tue, 01deW
Tue, 00uhT
Tue, 00irF
Tue, 010taS
Tue, 10nuS
Wed, 01uhT
Wed, 00irF
Wed, 00taS
Wed, 10nuS
Thu, 01irF
Thu, 00taS
Thu, 60nuS
Fri, 01taS
Fri, 10nuS
Sat, 11nuS

26 <-- Total workers
Daily constraints on workers

Mon Tue Wed Thu Fri Sat Sun
01515202525102elbaliavA

>= >= >= >= >= >= >=
01515202525102deriuqeR

Consecu�ve days off constraint
Number nonconsecu�ve 19

<=
00.62mumixaM

Payroll
027,6$yadkeeW
004,2$dnekeeW
021,9$latoT

AssignmentsConsecu�ve

478 Chapter 22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

straightforward, you might want to examine them. To do so, you will need to
unhide the Model worksheet.)

22.4 Setting Up the Excel Sheets

This optimization model always has the same size because there are always 7 days
in a week. Therefore, most of the application can be developed with the Excel
interface—without any VBA. It contains the following four sheets.

1. The Explanation worksheet in Figure 22.1 contains an explanation of the
application in a text box, and it has a button for running the application.

2. The Model worksheet, shown in Figure 22.5, can be set up completely at
design time, using any sample input values. Also, the Solver settings can be
entered. Again, this is possible because the model itself will never change;
only the inputs to it will change. You can look through the logic of this
model in the Worker Scheduling.xlsm file. Most of it is straightforward.
Pay particular attention to the formulas for worker availabilities in row 32.
For example, the formula in cell E32 is =SUM(AvailThu). Here, AvailThu
is the range name used for a set of noncontiguous cells, namely, those deci-
sion variable cells where Thursday is not a day off. Giving range names to
noncontiguous ranges is indeed possible and can sometimes be useful.

3. A template for the report shown in Figure 22.3 can be developed in the
Report worksheet. This template appears in Figure 22.6. The costs section,
worker availabilities section, and numbers of workers section have formulas
linked to the Model worksheet, so they show the results from a previous
run, if any. However, the optimal assignments section is left blank. It will
contain the positive assignments only, and these will not be known until run
time. The VBA code takes care of transferring the positive assignments from
the Model worksheet to this section of the Report worksheet.

4. The chart in Figure 22.4 is located on a separate Chart sheet. This chart is
linked to the data in a remote area of the Model worksheet (see Figure 22.7).
This area contains the percentages in column AA and the counts from the
optimization model in columns AB and AC. Columns AB and AC contain,

Figure 22.6 Report Template

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D E F G H I J

Report of optimal solution

Weekly rekroWstsoc rebmuNseitilibaliava of workers:
htiWderiuqeRelbaliavAyaD027,6$yadkeeW consecutive days off
htiW0202noM004,2$dnekeeW nonconsecutive days off

62latoT5151euT021,9$latoT
Wed 25 25

Optimal assignments (positive assignments only) Thu 20 20
Days off

Sat 15 15
Sun 10 10

Return to Explanation Sheet Perform Sensitivity Analysis

11
15

Number assigned Fri 25 25

A Worker Scheduling Application 479

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

respectively, the numbers of workers with nonconsecutive days off and the
numbers of workers total in the optimal solutions. Any values can be used in
columns AB and AC initially for the purpose of building the chart with Excel’s
chart tools. They will eventually be replaced with the optimal values by VBA
when the sensitivity analysis is run.

22.5 Getting Started with the VBA

This application requires a user form named frmInputs, a module, and a reference
to Solver. Once these items are added, the Project Explorer window will appear as
in Figure 22.8.1

Workbook_Open Event Handler

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. The GoToExplanation
sub is actually in the module (see below), but it is perfectly acceptable to call a
sub from a module in the Workbook_Open sub.

Private Sub Workbook_Open()
Call GoToExplanation
If Not (Application.Version = "15.0" Or Application.Version = “14.0”) Then frmSolver.Show

End Sub

Figure 22.7 Data for Sensitivity Chart

1

2

3

4

5

6

7

8

9

10

11

12

13

AA AB AC

Sensi�vity of solu�ons to maxpct
MaxPct 0 29

0% 2 28
10% 5 27
20% 7 26
30% 10 26
40% 13 26
50% 13 26
60% 15 26
70% 19 26
80% 19 26
90% 19 26

100% 19 26

1 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users with pre-2010 versions of Excel will see this message.

480 Chapter 22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22.6 The User Form

The design of frmInputs uses 10 text boxes and accompanying labels, as shown in
Figure 22.9, along with the usual OK and Cancel buttons and a couple of expla-
nation labels to their left. The “day” boxes are named txtDay1 to txtDay7 (for
Monday to Sunday), the wage rate boxes are named txtWeekday and txtWeekend,
and the percentage box is named txtMaxPct.

The code behind frmInputs is listed below. The Initialize sub captures the exist-
ing inputs, if any, from the Model worksheet and uses them as starting values in
the text boxes. The ShowInputsDialog function then captures the user’s inputs,
subject to passing the usual types of error checks in the Valid function. Note that
the Val function converts user responses (treated as strings) to numbers, which are
placed in the appropriate cells of the Model worksheet.

Private cancel As Boolean

Public Function ShowInputsDialog() As Boolean
Dim ctl As Control
Dim day As Integer ' day index, 1 to 7

Call Initialize
Me.Show
If Not cancel Then

' Enter user's choices in Model sheet.
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If InStr(1, ctl.Name, "Day") > 0 Then

day = Right(ctl.Name, 1)
wsModel.Range("Required").Cells(day).Value = Val(ctl.Text)

ElseIf ctl.Name = "txtWeekday" Then
wsModel.Range("WeekdayRate").Value = Val(ctl.Text)

Figure 22.8 Project Explorer Window

A Worker Scheduling Application 481

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ElseIf ctl.Name = "txtWeekend" Then
wsModel.Range("WeekendRate").Value = Val(ctl.Text)

Else
wsModel.Range("MaxPct").Value = Val(ctl.Text)

End If
End If

Next
End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Enter values in the text boxes from the Model sheet.
Dim ctl As Control
Dim day As Integer

For Each ctl In Me.Controls
If TypeName(ctl) = "TextBox" Then

' Note that the boxes for Monday through Sunday have been named txtDay1
' through txtDay7. Therefore, these names all contain "Day" and the
' last character goes from 1 to 7.
If InStr(1, ctl.Name, "Day") > 0 Then

day = Right(ctl.Name, 1)
ctl.Text = wsModel.Range("Required").Cells(day)

ElseIf ctl.Name = "txtWeekday" Then
ctl.Text = wsModel.Range("WeekdayRate")

ElseIf ctl.Name = "txtWeekend" Then
ctl.Text = wsModel.Range("WeekendRate")

Else
ctl.Text = wsModel.Range("MaxPct")

End If
End If

Next
End Sub

Private Function Valid() As Boolean
Dim ctl As Control
Dim day As Integer

Valid = True
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If ctl.Text = "" Or Not IsNumeric(ctl.Text) Then

Valid = False
MsgBox "Enter a numeric value in each box.", _

vbInformation, "Improper entry"
ctl.SetFocus
Exit Function

ElseIf InStr(1, ctl.Name, "Day") > 0 And ctl.Text < 0 Then
Valid = False
MsgBox "Enter a nonnegative integer in each day box.", _

vbInformation, "Improper entry"
ctl.SetFocus
Exit Function

ElseIf InStr(1, ctl.Name, "Week") > 0 And ctl.Text <= 0 Then
Valid = False
MsgBox "Enter a positive wage rate in each wage box.", _

vbInformation, "Improper entry"
ctl.SetFocus
Exit Function

482 Chapter 22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ElseIf ctl.Name = "txtMaxPct" And (ctl.Text < 0 Or ctl.Text > 1) Then
Valid = False
MsgBox "Enter a percentage between 0 and 1 in the percentage box.", _

vbInformation, "Improper entry"
ctl.SetFocus
Exit Function

End If
End If

Next
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

Figure 22.9 frmInputs Design

A Worker Scheduling Application 483

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22.7 The Module

Most of the work in this application is performed by the VBA code in the module.
This code is listed below. It proceeds in a modular manner, as described in Chapter 10.

MainScheduling Code

This MainScheduling sub is the control center and is assigned to the button on the
Explanation worksheet. It calls other subs to do the real work.

Sub MainScheduling()
' This sub runs when the button on the Explanation sheet is clicked.
If frmInputs.ShowInputsDialog Then

Call RunSolver
Call CreateReport

End If
End Sub

RunSolver Code

The RunSolver sub unhides and activates the Model worksheet, and then it runs
Solver. Note that Solver is already set up (this was done at design time), so Sol-
verSolve is the only Solver function required. Also, note that there is no need to
check for feasibility because it is always possible to hire enough workers to meet
all daily requirements—it might just cost a lot.

Sub RunSolver()
' The Solver settings are already in place, so this sub just runs Solver.
Application.ScreenUpdating = False
With wsModel

.Visible = True

.Activate
End With
SolverSolve userfinish:=True

wsModel.Visible = False
End Sub

CreateReport Code

This CreateReport sub unhides and activates the Report worksheet, clears old
assignments, and then transfers positive assignments from the Model worksheet
to the appropriate cells (below A9) in the Report worksheet.

Sub CreateReport()
' This sub transfers the optimal results from the Model sheet to the Report sheet.
Dim iPair As Integer ' index of days off pair
Dim nPositive As Integer
Const nDaysOffPairs = 21

Application.ScreenUpdating = False

' Unhide the Report sheet and activate it.
With wsReport

.Visible = True

484 Chapter 22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Activate
End With

' Clear out old assignments from a previous run (the part below A9).
With wsReport.Range("A9")

Range(.Offset(1, 0), .Offset(1, 1).End(xlDown)).ClearContents
End With

' Transfer the positive assignments from the Model sheet to the Report sheet.
' nPositive counts the positive assignments.
nPositive = 0
With wsReport.Range("A9")

For iPair = 1 To nDaysOffPairs
If wsModel.Range("Assignments").Cells(iPair).Value > 0 Then

nPositive = nPositive + 1

' Record the names of the days off and the number of workers assigned.
.Offset(nPositive, 0).Value = wsModel.Range("Assignments") _

.Cells(iPair).Offset(0, -2).Value
.Offset(nPositive, 1).Value = wsModel.Range("Assignments") _

.Cells(iPair).Value
End If

Next
End With

wsReport.Range("A1").Select
End Sub

Sensitivity Code

The Sensitivity sub unhides and activates the Model worksheet, and then it runs
Solver 11 times for equally spaced values of the maximum percentage of noncon-
secutive days off. The results are stored in cells under cell AA1 (in the Model
worksheet). Because the prebuilt chart is linked to the data in these cells, the
chart updates automatically.

Public Sub Sensitivity()
' This sub performs sensitivity analysis on the maximum percentage
' nonconsecutive by running Solver repeatedly and reporting the results.
Dim iProblem As Integer ' index of problem
Const nProblems = 11

Application.ScreenUpdating = False

' Unhide and activate the Model sheet.
With wsModel

.Visible = True

.Activate
End With

' Solve problems for maximum percentage from 0 to 1 in increments of 0.1.
For iProblem = 1 To nProblems

wsModel.Range("MaxPct").Value = (iProblem - 1) * 0.1

' Enter the maximum percentage of days off, and reset all assignments
' (changing cells) to 0. Then run Solver.
wsModel.Range("Assignments").Value = 0
SolverSolve userfinish:=True

A Worker Scheduling Application 485

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Store the results in the range that the existing chart is linked to.
With wsModel.Range("AA1")

.Offset(iProblem + 1, 1).Value = wsModel.Range("Nonconsec").Value

.Offset(iProblem + 1, 2).Value = wsModel.Range("TotalWorkers").Value
End With

Next

' Show the results.
wsModel.Visible = False

Application.ScreenUpdating = True
With chtSensitivity

.Visible = True

.Activate
End With

End Sub

GoToExplanation Code

The GoToExplanation sub (not shown here) is for easy navigation. It is attached to
the corresponding buttons on the Model, Report, and Chart sheets.

22.8 Summary

This application is similar to the blending optimization model in Chapter 20 in
that the size of the model never changes. Therefore, most of the application,
including the entire optimization model, can be set up at design time. This
decreases the amount of VBA code necessary. One objective here has been to
show how to build sensitivity analysis into an application. This has been done for
the maximum percentage of workers with nonconsecutive days off, but in general
it can be done for any key input parameters. It is basically just a matter of running
Solver inside a loop and reporting the results.

EXERCISES

1. Change the application so that there is another button on the Report worksheet. This
is the option to perform a sensitivity analysis on the ratio of the weekend wage rate to
the weekday wage rate. When you implement this, use the current value of the week-
day wage rate from the Model worksheet, and let the ratio vary from 1 to 2 in incre-
ments of 0.1. In each case, capture the total cost. Then show the results of this
sensitivity analysis (total weekly payroll cost versus the ratio) in graphical form, similar
to that shown in Figure 22.4. (You can use the same general location of the Model
worksheet, starting in column AF, say, to store your sensitivity results and a new
chart sheet to show the results graphically. It should be transparent to the user.)

2. Repeat the previous exercise, but now add a third button on the Report work-
sheet that performs a sensitivity analysis on both parameters simultaneously. That
is, it should use a nested pair of For loops to vary the maximum percentage of
nonconsecutive days off from 0% to 100%, in increments of 10%, and to vary the
ratio from the previous problem from 1 to 2, in increments of 0.1. (This will

486 Chapter 22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

result in 11(11) = 121 Solver runs, and it will take awhile.) The total weekly pay-
roll cost from each run should be captured and stored in some remote location of
the Model worksheet, and a chart based on these results should be created and
displayed. You can decide on the most appropriate chart type. One possibility
might look like the chart in Figure 22.10.

3. Change the application so that there is no longer a sensitivity option. However, the
user should now be allowed to select from approximately 10 different preset patterns
of weekly requirements. For example, one pattern might be the weekend-heavy pat-
tern 10, 10, 10, 10, 10, 30, 30 (where these are the requirements for Monday
through Sunday), whereas another pattern might be the more stable pattern 15, 15,
15, 15, 20, 20, 15. You can make up any patterns you think are reasonable. Then
allow the user to choose a pattern, along with weekday and weekend wage rates
and the maximum percentage of nonconsecutive days off allowed, solve this particu-
lar problem, and present the results in a Report worksheet.

4. Change the model on the Model worksheet, and make any necessary modifications to
the application as a whole when each worker works only 4 days of the week, not 5.

Figure 22.10 Sensitivity Chart for Exercise 2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0%

20%

40%

60%

80%

100%

0

2000

4000

6000

8000

10000

12000

Ratio of Weekend to Weekday Rate M
ax

 P
ct

 o
f N

on
co

ns
ec

ut
iv

e

Sensitivity Chart of Weekly Payroll Cost

A Worker Scheduling Application 487

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Production-Planning

Application

23.1 Introduction

This application finds an optimal multiperiod production plan for a single prod-
uct. The objective is to minimize the sum of production and inventory costs,
subject to meeting demand on time and not exceeding production and inventory
capacities. This model is discussed in all management science textbooks, where
the future demands and unit production costs are generally assumed to be
known. In reality, these quantities, particularly the demands, must be forecasted
from historical data. This application uses exponential smoothing to forecast
future demands and unit production costs from historical data. Then it bases the
optimal production plan on the forecasted values.

In addition, users can enter new data, update the forecasts, and then run the
optimization model again. This allows the application to implement a rolling
planning horizon. For example, it can optimize for January through June, then
observe actual data for January and update forecasts, then optimize for February
through July, then observe actual data for February and update forecasts, and so
on. Because of these powerful features, this application is by far the most ambitious
application discussed so far.

New Learning Objectives: VBA

● To learn how an application with several user forms, worksheets, charts, and
various user options can be integrated within one relatively large VBA program.

New Learning Objectives: Non-VBA

● To learn how forecasts can be made with exponential smoothing methods
and then used as inputs to a production-planning optimization model.

● To see how a rolling planning horizon can be implemented.

23.2 Functionality of the Application

The application has the following functionality:

1. It finds the optimal production plan for a 3- to 12-month planning horizon,
using the data observed to date.

23

488

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. It allows users to view the historical data, along with the exponentially
smoothed forecasts, in tabular and graphical form.

3. It allows users to append new demand and unit production cost data to the
end of the historical period and update the forecasts.

4. It allows users to change any of the smoothing constants and update the
forecasts.

The historical data included in the application are fictional monthly data for
a period of several years. Demands are seasonal with an upward trend, so it is
appropriate to use Winters’ exponential smoothing method. Unit production
costs are not seasonal, but they have an upward trend. Therefore, it is appropriate
to use Holt’s exponential smoothing method for the cost data. Users can replace
these data with their own data (in the Data worksheet).

23.3 Running the Application

The application is stored in the file Production Planning.xlsm. When the file is
opened, the Explanation sheet in Figure 23.1 appears. This explanation indicates
two nonstandard features of the optimization model. First, the percentage of any
month’s production that is available to satisfy that month’s demand can be less
than 100%. For example, if this percentage is 70%, then 70% of this month’s
production can be used to satisfy this month’s demand. The other 30% of this
month’s production is available only for future months’ demands. Second, the
inventory cost in any month can be based on the ending inventory for the month
(the usual assumption), or it can be based on the average of the beginning and
ending inventories for the month. Note also that the production and inventory
capacities are assumed to be constant throughout the planning horizon. This
assumption could be relaxed, but it would require additional user inputs.

When the button on the Explanation worksheet is clicked, the dialog box in
Figure 23.2 appears. It indicates the four basic options for the application.

First Option

If the user selects the first option, the dialog box in Figure 23.3 appears. It requests
the inputs for the production planning model. It then develops this model on
the (hidden) Model worksheet, sets up and runs Solver, and reports the optimal
solution in tabular and graphical form, as shown in Figure 23.4.

Second Option

Historical data are stored in the Data worksheet. The second option in Figure 23.2
allows users to view these data, as shown in Figure 23.5 (where several
rows have been hidden). Note that the historical data appear in columns B and
C, and their exponentially smoothed forecasts appear in columns G and J.
(Some columns are hidden to shield the user from the exponential smoothing
calculations.)

A Production-Planning Application 489

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 23.1 Explanation Worksheet

Figure 23.2 Options Dialog Box

490 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 23.3 Inputs for Production Planning Model

Figure 23.4 Report of Optimal Production Plan

Month

Production

Ending inventory

Total production cost

Total holding cost

Total cost

View Explanation Sheet

$637,859

$15,520

$653,380

Summary of Optimal Production Plan

Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16

464.9

93.0

838.4

167.7

866.3

173.3 172.2

860.8 1354.7

500.0

947.7

189.5

800.0

1000.0

1200.0

1400.0

1600.0

0.0

Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16

200.0

400.0

600.0

Production

Ending

inventory

A Production-Planning Application 491

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the left two buttons on the Data worksheet are clicked, the charts
in Figures 23.6 and 23.7 appear. They show the actual data with the forecasts
superimposed.

Third Option

If the user selects the third option in Figure 23.2, the dialog box in Figure 23.8
appears. It asks for the number of months of new data. Then the dialog box in
Figure 23.9 is shown repeatedly, once for each new month.

The new data are automatically appended to the bottom of the historical
period in the Data sheet (see Figure 23.10), and the exponential smoothing
calculations are extended for this new period. If the user then asks for the new opti-
mal production plan, the planning horizon starts after the period of the new data,
as illustrated in Figure 23.11.

Fourth Option

Finally, if the user selects the fourth option in Figure 23.2, the dialog box in
Figure 23.12 appears. It requests new smoothing constants. The updated MAPE
(mean absolute percentage error) values are then reported in a message box, as
shown in Figure 23.13. The smoothing constants, along with initialization values
for Winters’ method and Holt’s method, are stored farther to the right in the
Data worksheet, as shown in Figure 23.14.

Figure 23.5 Data Worksheet with Forecasts

492 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 23.6 Demand Data and Forecasts

Ja
n
-1

1

M
a
r-

11

M
a
y-

11

Ju
l-
11

S
e
p
-1

1

N
o
v-

11

Ja
n
-1

2

M
a
r-

1
2

M
a
y-

1
2

Ju
l-
1
2

S
e
p
-1

2

N
o
v-

1
2

Ja
n
-1

3

M
a
r-

1
3

M
a
y-

1
3

Ju
l-
1
3

S
e
p
-1

3

N
o
v-

1
3

Ja
n
-1

4

M
a
r-

1
4

M
a
y-

1
4

Ju
l-
1
4

S
e
p
-1

4

N
o
v-

1
4

M
a
y-

1
5

Ju
l-
1
5

S
e
p
-1

5

N
o
v-

1
5

Ja
n
-1

5

M
a
r-

1
5

Time Series Plot of Demand and Forecasted Demand

Month

2000

1800

1600

1400

1200

1000

800

600

400

200

0

Demand
FCastDemand

View Unit Cost

Forecast Chart

View Explanation

Sheet

View Data Sheet

Figure 23.7 Unit Production Cost Data and Forecasts

0

20

40

60

80

100

120

140

J
a

n
-1

1

M
a

r-
1

1

M
a
y
-1

1

J
u
l-
1
1

S
e

p
-1

1

N
o
v
-1

1

J
a

n
-1

2

M
a

r-
1

2

M
a
y
-1

2

J
u
l-
1
2

S
e

p
-1

2

N
o
v
-1

2

J
a

n
-1

3

M
a

r-
1

3

M
a
y
-1

3

J
u
l-
1
3

S
e

p
-1

3

N
o
v
-1

3

J
a

n
-1

4

M
a

r-
1

4

M
a
y
-1

4

J
u
l-
1
4

S
e

p
-1

4

N
o
v
-1

4

J
a

n
-1

5

M
a

r-
1

5

M
a
y
-1

5

J
u
l-
1
5

S
e

p
-1

5

N
o
v
-1

5

Month

Time Series Plot of UnitCost and Forecasted UnitCost

UnitCost
FCastUnitCost

View Demand
Forecast Chart

View Explanation

Sheet

View Data Sheet

A Production-Planning Application 493

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 23.8 First New Data Dialog Box

Figure 23.9 Second New Data Dialog Box

Figure 23.10 Appended Data in Data Worksheet

Figure 23.11 New Production Plan Report

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

0.0

Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16

200.0

400.0

600.0

Production

Ending

inventory

Month

Production

Ending inventory

Total production cost

Total holding cost

Total cost

View Explanation Sheet

$784.889

$18,008

$802,897

Summary of Optimal Production Plan

Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16

338.6

67.7

1003.0

200.6

839.9

168.0 218.3

1091.3 1559.1

500.0

1608.9

321.8

494

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Possibility of No Feasible Solutions

There is always the possibility that the production planning model has no feasible
solutions. This typically occurs when there is not enough production capacity to
meet forecasted demands on time. In this case, the message box in Figure 23.15
is displayed.

Figure 23.12 Smoothing Constant Dialog Box

Figure 23.13 Updated MAPE Values

A Production-Planning Application 495

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

23.4 Setting Up the Excel Sheets

The Production Planning.xlsm file contains four worksheets, named Explanation,
Data, Model, and Report, and two chart sheets, named Demand_Forecast and Cost_
Forecast. The Data worksheet can be set up completely at design time, as shown in
Figures 23.5 and 23.14. Note that the hidden columns in Figure 23.5 must contain

Figure 23.14 Exponential Smoothing Information

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

AA AB AC AD AE AF AG
Smoothing parameters for exponen�al smoothing

Winters' method (for demand) Holt's method (for unit cost)
Level 0.3 Level 0.2
Trend 0.1 Trend 0.1
Seasonality 0.4

Ini�aliza�on values for Winters' method Ini�aliza�on values for Holt's method
Level 512 Level 55.7
Trend 11 Trend 1.5

Seasonal factors
Jan 0.7
Feb 0.7
Mar 0.8
Apr 0.8
May 0.9
Jun 1.2
Jul 1.5
Aug 1.5
Sep 1.1
Oct 0.7
Nov 0.7
Dec 1.4

Figure 23.15 No Feasible Solutions Message

496 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the exponential smoothing formulas for Winters’ and Holt’s methods. (See the Pro-
duction Planning.xlsm file for details. If you need to review exponential smoothing,
see the regression and forecasting chapter of Practical Management Science.)

The Model worksheet contains the linear programming production planning
model. It must be developed almost entirely at run time. The completed version
appears in Figure 23.16 for a 6-month planning horizon. Clearly, the number of

Figure 23.16 Completed Model Worksheet

A Production-Planning Application 497

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

columns in this model depends on the length of the planning horizon, which is
not known until run time. About the only parts that can be entered at design
time are the labels in column A. (The formula in cell B34 is the one exception.
It is always the sum of cells B32 and B33.)

A template for the Report worksheet shown earlier in Figure 23.4 can be
developed at design time, as shown in Figure 23.17. In particular, the embedded
chart can be created with Excel’s chart tools. It can then be linked to the appropri-
ate data in rows 3–5 at run time. Also, formulas in cells B7 to B9 can be entered at
design time. These formulas are links to the appropriate Model worksheet cells.

Similarly, the chart sheets shown earlier in Figures 23.6 and 23.7 can be
created at design time. Then they are linked to the appropriate data from the Data
worksheet at run time.

23.5 Getting Started with the VBA

The application includes five user forms, named frmOptions, frmInputs, frmNewData1,
frmNewData2, and frmSmConst, a single module, and a reference to Solver. Once
these are inserted, the Project Explorer window will appear as in Figure 23.18.1

Workbook_Open Code

To guarantee that the Explanation sheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. It also hides all sheets
except for the Explanation worksheet, and it displays the usual Solver warning.

Figure 23.17 Template for Report Worksheet

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Production

Ending
inventory

Month

Production

Ending inventory

Total production cost

Total holding cost

Total cost

View Explanation Sheet

$1,042,057

$23,997

$1,066,054

Summary of Optimal Production Plan

1 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users of pre-2010 versions of Excel will see this message.

498 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub Workbook_Open()
Dim sht As Object
With wsExplanation

.Activate

.Range("G4").Select
End With
For Each sht In ActiveWorkbook.Sheets

If sht.CodeName <> "wsExplanation" Then sht.Visible = False
Next
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

23.6 The User Forms

frmOptions

The frmOptions form has the usual OK and Cancel buttons, an explanation label, a
frame for grouping, and four option buttons named optOptimize, optViewData,
optNewData, and optSmConst. Its design appears in Figure 23.19.

The code behind frmOptions is straightforward and is listed below. The whole
purpose of the ShowOptionsDialog function is to capture the user’s choice in the
variable choice, with possible values 1 to 4.

Figure 23.18 Project Explorer Window

A Production-Planning Application 499

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private cancel As Boolean

Public Function ShowOptionsDialog(choice As Integer) As Boolean
Call Initialize
Me.Show
If Not cancel Then

' Capture the user’s choice.
If optOptimize.Value Then

choice = 1
ElseIf optViewData.Value Then

choice = 2
ElseIf optNewData.Value Then

choice = 3
Else

choice = 4
End If

End If
ShowOptionsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
optOptimize.Value = True

End Sub

Private Sub cmdOK_Click()
Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

frmInputs

The frmInputs form contains the usual OK and Cancel buttons; several explana-
tion labels; a frame that contains two options buttons named optEndInv and

Figure 23.19 frmOptions Design

500 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

optAvgInv; and six text boxes, named txtNMonths, txtInitInv, txtProdPct, txtHoldPct,
txtProdCap, and txtInvCap. Its design appears in Figure 23.20.

The code behind frmInputs is rather lengthy, but this is mostly because of
error checking for the text boxes. The Initialize sub fills the dialog box with the
previous settings from the Model worksheet. Then the ShowInputsDialog func-
tion captures the user’s settings in several model input variables and their values
are eventually entered in the appropriate cells of the Model worksheet. The
Valid function performs the error checking.

Private cancel As Boolean

Public Function ShowInputsDialog(nMonths As Integer, initInv As Long, _
prodPct As Single, holdPct As Single, prodCap As Long, _
invCap As Long, holdOpt As Integer) As Boolean

Call Initialize
Me.Show
If Not cancel Then

nMonths = txtNMonths.Text
initInv = txtInitInv.Text
prodPct = txtProdPct.Text
holdPct = txtHoldPct.Text
prodCap = txtProdCap.Text
invCap = txtInvCap.Text
If optEndInv.Value Then

holdOpt = 1
Else

holdOpt = 2

Figure 23.20 frmInputs Design

A Production-Planning Application 501

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End If
End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Enter values from the Model sheet.
With wsModel

txtNMonths.Text = .Range("NMonths").Value
txtInitInv.Text = .Range("InitInv").Value
txtProdPct.Text = Format(.Range("ProdPct").Value, "0.00")
txtHoldPct.Text = Format(.Range("HoldPct").Value, "0.00")
If .Range("HoldOpt").Value = 1 Then

optEndInv.Value = True
Else

optAvgInv.Value = True
End If
txtProdCap.Text = .Range("ProdCap").Value
txtInvCap.Text = .Range("InvCap").Value

End With
End Sub

Private Function Valid() As Boolean
Dim ctl As Control

Valid = True
' Check for numeric values in text boxes.
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If ctl.Value = "" Or Not IsNumeric(ctl.Value) Then

Valid = False
MsgBox "Enter a numeric value in each box.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If
End If

Next

' Check that txtNMonths is between 3 and 12.
If txtNMonths.Text < 3 Or txtNMonths.Text > 12 Then

Valid = False
MsgBox "Make the planning horizon at least 3 months " _

& "and no more than 12 months.", vbInformation, "Invalid entry"
txtNMonths.SetFocus
Exit Function

End If

' Initial inventory cannot be negative.
If txtInitInv.Text < 0 Then

Valid = False
MsgBox "Enter a nonnegative initial inventory.", _

vbInformation, "Invalid entry"
txtInitInv.SetFocus
Exit Function

End If

' The production percentage must be from 0 to 1.
If txtProdPct.Text < 0 Or txtProdPct.Text > 1 Then

502 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Valid = False
MsgBox "Enter a percentage (in decimal form) between 0 " _

& "and 1.", vbInformation, "Invalid entry"
txtProdPct.SetFocus
Exit Function

End If

' The holding cost percentage must be from 0 to 1.
If txtHoldPct.Text < 0 Or txtHoldPct.Text > 1 Then

Valid = False
MsgBox "Enter a percentage (in decimal form) between 0 " _

& "and 1.", vbInformation, "Invalid entry"
txtHoldPct.SetFocus
Exit Function

End If

' Production capacity cannot be negative.
If txtProdCap.Text < 0 Then

Valid = False
MsgBox "Enter a nonnegative production capacity.", _

vbInformation, "Invalid entry"
txtProdCap.SetFocus
Exit Function

End If

' Storage capacity cannot be negative.
If txtInvCap.Text < 0 Then

Valid = False
MsgBox "Enter a nonnegative storage capacity.", _

vbInformation, "Invalid entry"
txtInvCap.SetFocus
Exit Function

End If
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

frmNewData1 and frmNewData2

The two user forms for new data, shown earlier in Figures 23.8 and 23.9, are
straightforward, so their code is not listed here. The only new wrinkle is that an
Add Data button replaces the usual OK and Cancel buttons on frmNewData2. Actu-
ally, this button has exactly the same functionality as the usual OK button; only its
name and caption are different. The Cancel button is purposely omitted. By this
time, new data rows have been added to the Data worksheet, so the user must enter
demand and cost data for them.

A Production-Planning Application 503

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

frmSmConst

The frmSmConst form for the smoothing constants, shown earlier in Figure 23.12,
also contains no new ideas, so its code is not listed here. It is initialized with the
previous smoothing constants from the Model worksheet (see Figure 23.14). It then
places the user’s choice of smoothing constants in these same cells.

23.7 The Module

The module contains the code that does most of the work. As usual, the button
on the Explanation worksheet is attached to a MainProductionPlanning sub that
first shows frmOptions and then calls the appropriate sub, depending on the
value of the variable choice. The module-level variables and the code for the
MainProductionPlanning sub are listed below.

Option Statements and Module-level Variables

Option Explicit
Option Base 1

’ Definitions of important variables:
' choice: analysis to be run (1 to 4)
' nMonths: number of months in planning horizon
' initInv: initial inventory in first month of planning horizon
' prodPct: percentage of a month’s production that can be used to meet
' that month’s demand
' holdPct: percentage of unit production cost used for unit holding cost
' holdOpt: 1 or 2, depending on whether holding cost is based on ending
' inventory or average of beginning and ending inventory
' prodCap: production capacity, assumed constant each month
' invCap: storage capacity, assumed constant each month
' nMonthsNew: number of new data entries
' newMonth: month for new data
' newDemand: newly observed demand for newMonth
' newUnitCost: newly observed unit cost for newMonth

' These variables are declared as module-level variables (but not
' Public variables) to avoid a lot of argument-passing in this module.
' Because they aren’t Public, they still have to be passed to the forms.
Dim nMonths As Integer
Dim initInv As Long, prodPct As Single
Dim holdPct As Single, holdOpt As Integer
Dim prodCap As Long, invCap As Long

MainProductionPlanning Code

Sub MainProductionPlanning()
’ This is the main program that runs when the user clicks the button
’ on the Explanation sheet.
Dim choice As Integer
If frmOptions.ShowOptionsDialog(choice) Then

Select Case choice

504 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case 1
Call ProdModel

Case 2
Call ViewData

Case 3
Call NewData

Case 4
Call SmConstants

End Select
End If

End Sub

ProdModel Code

The ProdModel sub “shows” frmInputs, activates the Model worksheet, clears the con-
tents of any previous model, and calls several subs (EnterForecasts, EnterFormulas,
RunSolver, and CreateReport) to develop and optimize the production planning
model and report the results.

Sub ProdModel()
' This sub is run when the user wants to find an optimal production plan,
' based on the historical data observed so far.
Dim feasible As Boolean

If frmInputs.ShowInputsDialog(nMonths, initInv, prodPct, holdPct, _
prodCap, invCap, holdOpt) Then

Application.ScreenUpdating = False

' Activate the Model sheet and get rid of any old model.
With wsModel

.Visible = True

.Activate

.Range("B13:M33").ClearContents
’ Enter user inputs.
.Range("NMonths").Value = nMonths
.Range("InitInv").Value = initInv
.Range("ProdPct").Value = prodPct
.Range("HoldPct").Value = holdPct
.Range("ProdCap").Value = prodCap
.Range("InvCap").Value = invCap
.Range("HoldOpt").Value = holdOpt

End With

' Develop the model and optimize with Solver.
Call EnterForecasts
Call EnterFormulas
Call RunSolver(feasible)

' If feasible, transfer selected results to the Report sheet.
If feasible Then

Call CreateReport
wsModel.Visible = False

End If
Application.ScreenUpdating = True

End If
End Sub

A Production-Planning Application 505

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EnterForecasts Code

The purpose of the EnterForecasts sub is to calculate future forecasts of demands
and unit costs, based on the data in the Data worksheet, and then enter these in
the Model worksheet. Note that the Data worksheet contains forecasts for the his-
torical period only. Therefore, forecasts for the planning horizon must be calcu-
lated in this sub.

Unless you thoroughly understand Holt’s and Winters’ forecasting models,
you will probably not understand all of the details in this sub. In that case, it suf-
fices to know that the relevant formulas have already been entered in the Data
worksheet for the historical period. (This was done at design time.) This sub cop-
ies these formulas down for the planning period.

Sub EnterForecasts()
' This sub enters the forecasts of demand and unit cost in the Model sheet.
' They are calculated by Winters' and Holt's exponential smoothing models.
Dim i As Integer
Dim levelCell1 As Range, levelCell2 As Range, level1 As Single, level2 As Single
Dim trend1 As Single, trend2 As Single
Dim seasFactor As Single

' The levelCell1 and levelCell2 cells are the last values of "smoothed level"
' for demand and unit cost, respectively, in the Data sheet.
Set levelCell1 = wsData.Range("A3").Offset(0, 3).End(xlDown)
Set levelCell2 = wsData.Range("A3").Offset(0, 7).End(xlDown)

' The next four values are the basis for future forecasts.
level1 = levelCell1.Value
trend1 = levelCell1.Offset(0, 1).Value
level2 = levelCell2.Value
trend2 = levelCell2.Offset(0, 1).Value

' Fill up rows 13 and 29 of the Model sheet with the appropriate dates in the
' planning horizon. Dates are tricky to work with, but an easy way to do it here
' is to temporarily put the last historical date in cell A13, then use the
' AutoFill method to fill up the future dates in row 13, then replace the date
' in A13 with the label "Month", then copy row 13 to row 29.
With wsModel.Range("A13")

.Value = wsData.Range("A3").End(xlDown)

.AutoFill Destination:=Range(.Offset(0, 0), .Offset(0, nMonths)), _
Type:=xlFillDefault

.Value = "Month"
Range(.Offset(0, 1), .Offset(0, nMonths)).Copy Destination:=wsModel.Range("B29")

End With

' For demand forecasts in row 21, project the most recent level upward by i
' times the most recent trend, then multiply by the appropriate seasonal factor.
' Do the same for unit costs in row 30, except that there is no seasonality.
For i = 1 To nMonths

seasFactor = levelCell1.Offset(i − 12, 2).Value
wsModel.Range("A21").Offset(0, i).Value = (level1 + i * trend1) * seasFactor
wsModel.Range("A30").Offset(0, i).Value = level2 + i * trend2

Next

' Name some ranges for later use.
With wsModel.Range("A13")

506 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!Months"
End With
With wsModel.Range("A21")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!FDemands"
End With
With wsModel.Range("A30")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!FCosts"
End With

End Sub

EnterFormulas Code

The EnterFormulas sub is rather lengthy because it has to develop the optimiza-
tion model on the fly at run time. It enters all of the formulas in the Model work-
sheet and names ranges appropriately. The comments spell out the details. (It is
helpful to refer to Figure 23.16 when reading this code.)

Sub EnterFormulas()
' This sub enters all of the formulas for the production planning model.
' It uses the Formula or FormulaR1C1 property, depending on which is most natural.
Dim i As Integer

With wsModel
For i = 1 To nMonths

' Calculate beginning inventories in row 14. Other than the first, these
' equal the previous ending inventory (9 rows below).
If i = 1 Then

.Range("A14").Offset(0, i).Formula = "=InitInv"
Else

.Range("A14").Offset(0, i).FormulaR1C1 = "=R[9]C[−1]"
End If

' Row 15 contains the production quantities, the changing cells.
' Enter 0's initially.
.Range("A15").Offset(0, i).Value = 0

' Enter <= labels in row 16 to denote constraints.
.Range("A16").Offset(0, i).Value = "<="

' Enter a link to the ProdCap cell throughout row 17.
.Range("A17").Offset(0, i).Formula = "=ProdCap"

' Calculate onhand inventory in row 19 as beginning
' inventory (5 rows up) plus production percentage times
' production (4 rows up).
.Range("A19").Offset(0, i).FormulaR1C1 = "=R[−5]C+" & "ProdPct*R[−4]C"

' Enter >= labels in row 20 to denote constraints.
.Range("A20").Offset(0, i).Value = ">="

' Calculate ending inventory in row 23 as the difference between onhand
' inventory (4 rows up) and demand (2 rows up), plus (1 minus the
' production percentage) times the production (8 rows up).
.Range("A23").Offset(0, i).FormulaR1C1 = _

"=R[−4]C−R[−2]C+" & "(1−ProdPct)*R[−8]C"

' Enter a link to the InvCap cel throughout row 25.
.Range("A25").Offset(0, i).Formula = "=InvCap"

A Production-Planning Application 507

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Calculate the average of beginning inventory (12 rows up) and ending
' inventory (3 rows up) in row 26.
.Range("A26").Offset(0, i).FormulaR1C1 = "=(R[−12]C+R[−3]C)/2"

Next

' Name some ranges for later use.
With .Range("A15")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!Production"
End With
With .Range("A17")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!ProdCaps"
End With
With .Range("A19")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!Onhand"
End With
With .Range("A23")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!EndInv"
End With
With .Range("A25")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!InvCaps"
End With
With .Range("A26")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Model!AvgInv"
End With

' Calculate the total production cost.
.Range("B32").Formula = "=Sumproduct(Production,FCosts)"
' Calculate the total holding cost.
If holdOpt = 1 Then

.Range("B33").Formula = "=Sumproduct(EndInv,HoldPct*FCosts)"
Else

.Range("B33").Formula = "=Sumproduct(AvgInv,HoldPct*FCosts)"
End If

' The total cost in cell B34 already has a formula in it, which never changes.
End With

End Sub

RunSolver Code

The RunSolver sub resets the Solver dialog box, sets it up appropriately, and runs
Solver. A check is made for feasibility. If there are no feasible solutions, a message
to this effect is displayed and the ProdModel sub is called. The effect is to let the
user try again with new inputs.

Sub RunSolver()
Dim solverStatus As Integer

With wsModel
SolverReset
SolverOK SetCell:=.Range("TotalCost"), MaxMinVal:=2, _

ByChange:=Range("Production"), Engine:=1
SolverAdd CellRef:=.Range("Production"), Relation:=1, _

FormulaText:="ProdCaps"
SolverAdd CellRef:=.Range("OnHand"), Relation:=3, _

FormulaText:="FDemands"
SolverAdd CellRef:=.Range("EndInv"), Relation:=1, _

508 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FormulaText:="InvCaps"
SolverOptions AssumeNonNeg:=True
' Solve. If the result code is 5, this means there is no feasible solution, so
' display a message to that effect and call ProdModel (to try again).
solverStatus = SolverSolve(UserFinish:=True)
If solverStatus = 5 Then

MsgBox "There is no feasible solution with these inputs. Try " _
& "larger capacities.", vbExclamation, "No feasible solution"

Call ProdModel
End

End If
End With

End Sub

CreateReport Code

The CreateReport sub copies the data on months, production quantities, and end-
ing inventory levels from the Model worksheet to the Report worksheet. In the
case of ending inventory levels, the Model worksheet contains formulas, so these
are pasted as values in the Report worksheet. Finally, this sub updates the embed-
ded chart on the Report worksheet with the new data.

Sub CreateReport()
' The Report sheet is already set up (at design time), so just copy (with
' PasteSpecial/Values when formulas are involved) selected quantities to
' the Report sheet.
Dim i As Integer
Dim cht As Chart

' Unhide and activate the Report sheet.
With wsReport

.Visible = True

.Activate

' Clear old values.
.Range("B3:M5").ClearContents

' Copy results to rows 3−5.
wsModel.Range("Months").Copy Destination:=.Range("B3")
wsModel.Range("Production").Copy Destination:=.Range("B4")
wsModel.Range("EndInv").Copy
.Range("B5").PasteSpecial xlPasteValues

' Name some ranges for later use.
With .Range("A3")

Range(.Offset(0, 1), .Offset(0, nMonths)).Name = "Report!RepMonths"
Range(.Offset(1, 0), .Offset(1, nMonths)).Name = "Report!RepProd"
Range(.Offset(2, 0), .Offset(2, nMonths)).Name = "Report!RepEndInv"

End With

' Update the embedded chart on the Report sheet.
Set cht = .ChartObjects(1).Chart
cht.SetSourceData Source:=Union(.Range("RepProd"), .Range("RepEndInv"))
cht.SeriesCollection(1).XValues = .Range("RepMonths")

.Range("A1").Select
End With

End Sub

A Production-Planning Application 509

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

NewData Code

The NewData sub “shows” frmNewDatal and frmNewData2 and appends the new
data to the bottom of the historical data range in the Data worksheet. It then cop-
ies the exponential smoothing formulas down to these new rows, and it renames
ranges to include the new rows. Finally, it calls the UpdateCharts sub to update the
two chart sheets that show historical data with superimposed forecasts. Remember
that the charts themselves were created with the Excel’s chart tools at design time.

Sub NewData()
' This sub allows the user to enter newly observed demand and unit cost data.
Dim nMonthsNew As Integer, newMonth As Date
Dim newDemand As Long, newUnitCost As Single
Dim i As Integer

' Unhide and activate the Data sheet.
With wsData

.Visible = True

.Activate

' Get the number of new data values from the user.
If frmNewData1.ShowNewData1Dialog(nMonthsNew) Then

With .Range("A3").End(xlDown)
' Enter new dates in column A with the AutoFill method.
.AutoFill Range(.Offset(0, 0), .Offset(nMonthsNew, 0))

' Get new demand and unit cost data and enter them below old data.
For i = 1 To nMonthsNew

newMonth = .Offset(i, 0).Value
frmNewData2.ShowNewData2Dialog newMonth, newDemand, newUnitCost
.Offset(i, 1).Value = newDemand
.Offset(i, 2).Value = newUnitCost

Next
End With

' Copy formulas in columns D to L of the Data sheet down for new data.
' These implement the exponential smoothing methods.
With .Range("A3").Offset(0, 3).End(xlDown)

Range(.Offset(0, 0), .Offset(0, 8)).Copy _
Destination:=Range(.Offset(1, 0), .Offset(nMonthsNew, 8))

End With

' Rename the ranges for various columns in the Data sheet.
With .Range("A3")

Range(.Offset(1, 0), .End(xlDown)).Name = "Data!Months"
Range(.Offset(0, 1), .Offset(0, 1).End(xlDown)).Name = "Data!Demands"
Range(.Offset(0, 2), .Offset(0, 2).End(xlDown)).Name = "Data!UnitCosts"
Range(.Offset(0, 6), .Offset(0, 6).End(xlDown)).Name = "Data!DemFCasts"
Range(.Offset(0, 9), .Offset(0, 9).End(xlDown)).Name = "Data!CostFCasts"
Range(.Offset(1, 10), .Offset(1, 10).End(xlDown)).Name = "Data!_APE1"
Range(.Offset(1, 11), .Offset(1, 11).End(xlDown)).Name = "Data!_APE2"

End With
' Update the charts to include all data observed so far.
Call UpdateCharts

.Range("N9").Select
End If

End With
End Sub

510 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

UpdateCharts Code

The UpdateCharts sub resets the links to the data for the two chart sheets. This
is done to accommodate the new data that were just appended to the historical
data range.

Sub UpdateCharts()
' This sub updates the source data ranges for the two chart sheets.
' It is called only when the user enters new data.
With chtDemandForecast

.SetSourceData Source:=Union(wsData.Range("Demands"), wsData.Range("DemFCasts"))

.SeriesCollection(1).XValues = wsData.Range("Months")
End With
With chtCostForecast

.SetSourceData Source:=Union(wsData.Range("UnitCosts"), _
wsData.Range("CostFCasts"))

.SeriesCollection(1).XValues = wsData.Range("Months")
End With

End Sub

SmConstants Code

The SmConstants sub “shows” the frmSmConst form and displays a message
about the updated MAPE values. (Remember that the code behind frmSmConst
enters the new smoothing constants in the Data worksheet.)

Sub SmConstants()
' This sub allows the user to change the smoothing constants. After choosing them,
' everything on the Data sheet recalculates automatically and a message box shows the
' updated MAPE values.
If frmSmConst.ShowSmConstDialog Then

With wsData
MsgBox "MAPE for forecasting demand is " & _

Format(.Range("MAPE1").Value, "0.00%") & "." _
& vbCrLf & "MAPE for forecasting unit costs is " _
& Format(.Range("MAPE2").Value, "0.00%"), vbInformation, "Forecasting"

End With
End If

End Sub

Navigational Code

The rest of the subs (not listed here) are for navigational purposes. They are
attached to the buttons on the various sheets. You can see their code in the file.

23.8 Summary

This forecasting/optimization application is admittedly fairly long and complex, but
this is the price paid for accomplishing so much. The application combines two tradi-
tional areas of management science. First, it implements exponential smoothing

A Production-Planning Application 511

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

forecasting methods. Second, it uses the exponential smoothed forecasts as inputs to
a production planning optimization model. In this way, the application can be used
to implement the rolling planning horizon method used by many companies.

EXERCISES

1. The application currently creates a column chart of production quantities and
ending inventories on the Report worksheet (see Figure 23.4). Change it so that
two separate charts are created on the Report worksheet: one of production quanti-
ties and one of ending inventories. Also, make each of them line charts.

2. The planning horizon can currently be any number of months from 3 to 12.
Suppose the company involved insists on a 6-month planning horizon—no more,
no less. Would this make your job as a programmer easier or harder? Explain in
words what basic changes you would make to the application.

3. Some programmers might object to my EnterFormulas sub, arguing that it is too
long and should be broken up into smaller subs. Try doing this. You can decide
how many smaller subs to use and what specific task each should have. Then test
the application with your new code to check that it still works correctly.

4. I have used my own (fictional) historical data to illustrate the application. Try
using your own. Specifically, enter your own data in columns A, B, and C of the
Data worksheet (see Figure 23.5), and make sure the columns next to them (D-J)
have the same number of rows as your new data. (Delete rows or copy down if
necessary.) You will also have to enter “reasonable” initialization values for the
smoothing methods. (See Figure 23.14 for the cells involved.) Now run the appli-
cation to check that it still works correctly.

5. The third basic option in the application allows the user to enter any number of
new observations. Change this so that only one new observation (of demand and
unit cost) can be added on a given run. In this case, you won’t need frmNewData1.

6. (More difficult, and only for those familiar with exponential smoothing) The
fourth basic option in the application allows the user to enter any smoothing con-
stants from 0 to 1. Delete this option. Instead, have the application choose the
smoothing constants to minimize the root mean square error (RMSE), which is
defined as the square root of the sum of squared differences between observations
and forecasts. You will have to write code to set up and run Solver for this mini-
mization. Write this as two subs, one for the demands and one for the unit costs
(because each has its own set of smoothing constants). Then decide when these
subs should be called and update other subs accordingly.

7. (More difficult, and only for those familiar with exponential smoothing) The appli-
cation is written for a product with seasonal demand. This is the reason for using
Winters’ method. Change the application so that the user can choose (in an extra
user form) which of three exponential smoothing methods to use for forecasting
demand: simple, Holt’s, or Winters’. Then the appropriate formulas should be
used. (Hint: There are probably fewer required modifications than you might
expect because the formulas for simple exponential smoothing and Holt’s methods
are special cases of the built-in Winters’ method.)

512 Chapter 23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Transportation Application

24.1 Introduction

This application solves a well-known management science problem called the
transportation problem. A company needs to ship a product from its plants to its
retailers. Each route from a plant to a retailer has a unit shipping cost. The prob-
lem is to develop a shipping plan that gets the product from the plants to
the retailers at minimum cost. There are plant capacity constraints and retailer
demand constraints. There can be as many as 200 routes in the network.1 In the
usual management science terminology, the plants and retailers are called nodes,
and the routes from plants to retailers are called arcs.

This problem requires extensive input data, including node data (names of
plants and retailers, as well as capacities and demands) and arc data (unit costs for
all plant/retailer combinations). The data for a real problem of this type might well
reside on a database, not within Excel, so this possibility is illustrated here. The data
are in three related tables (Capacity, Demand, and UnitCost) of an Access database
called Transportation.mdb. This application illustrates how the Access data can be
imported into an Excel worksheet to create a Solver model, which can then be opti-
mized in the usual way. To do so, it uses Microsoft’s ActiveX Data Objects (ADO)
technology, discussed in Chapter 14, to import the data into Excel. You do not even
need to own Access to make it work. Fortunately, ADO is quite easy to implement
in VBA, as this chapter illustrates. This gives the developers of decision support sys-
tems a whole new level of power—the ability to access external databases from Excel.

New Learning Objective: VBA

● To learn how to import data from Access into an Excel application by using
ADO, and to use the imported data to set up a model on the fly.

New Learning Objective: Non-VBA

● To learn about transportation models and how they can be optimized with
Solver.

24

1This is due to a limitation of Solver, which allows at most 200 decision variable cells. This limitation
is for the version of Solver that is built into Excel. Frontline Systems offers commercial versions of
Solver with much larger limits.

513

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24.2 Functionality of the Application

The application performs the following functions:

1. It presents a dialog box where the user can choose from two lists: a list of plants
and a list of retailers. These lists are populated using ADO, which reads all of the
plants from the Capacity table and all of the retailers from the Demand table.
The resulting transportation model uses only the selected plants and retailers.

2. It again uses ADO, through VBA, to retrieve the data on capacities, demands,
and unit costs from the Access tables to develop a transportation model for the
selected plants and retailers. It then uses Solver to optimize this model.

3. It reports the minimum total cost and the positive amounts shipped on all
arcs in a Report worksheet.

24.3 Running the Application

The application is in the file Transportion.xlsm. When this file is opened, the
Explanation worksheet in Figure 24.1 appears. When the button is clicked, the user
sees the dialog box in Figure 24.2. It has a list of all plants and retailers in the data-
base, and the user can select any number of them from the lists. The data from the
database for the selected plants and retailers are then imported into the (hidden)
Model worksheet (see Figure 24.3), the transportation model is developed, Solver is
set up and run, and the results are transferred to the Report worksheet. This Report

Figure 24.1 Explanation Worksheet

514 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

worksheet, an example of which is shown in Figure 24.4, indicates all positive ship-
ments, along with the total shipping cost. At this point, the user can run another
problem (with a different selection of plants and/or retailers).

Figure 24.2 Dialog Box for Selecting Plants and Retailers

Figure 24.3 Transportation Model

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H I J K L
Transporta�on Model

Unit Costs Retailers
Chicago Detroit Cleveland Toronto New York Boston Indianapolis Capacity

Plants Sea�le $23.34 $27.14 $14.38 $19.76 $18.46 $24.64 $30.39 1300
Oakland $16.67 $22.42 $24.09 $12.23 $10.48 $21.97 $25.16 1200
Los Angeles $25.45 $31.54 $26.49 $27.70 $16.70 $25.81 $16.09 1000
San Diego $26.41 $20.58 $21.70 $10.68 $17.67 $21.15 $15.25 1500
Phoenix $23.36 $23.03 $22.62 $14.83 $14.31 $12.25 $20.55 1300
Salt Lake City $13.11 $18.50 $18.44 $21.11 $21.98 $12.65 $20.07 1000

Demand 500 450 200 500 500 300 450

Shipments Sent out
0 0 200 0 0 0 0 200
0 0 0 0 500 0 0 500
0 0 0 0 0 0 0 0
0 0 0 500 0 0 450 950
0 0 0 0 0 300 0 300

500 450 0 0 0 0 0 950
Sent in 500 450 200 500 500 300 450

Total Cost $38,874

A Transportation Application 515

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24.4 Setting Up the Access Database

The application depends entirely on the Access database. The application
uses the database with the Capacity, Demand, and UnitCost tables shown in
Figures 24.5, 24.6, and 24.7 (with some hidden rows in the latter). The tables
are related through the PlantID and RetailerID fields, as indicated by the rela-
tionships diagram in Figure 24.8. The application will work for any database
structured this way, provided the following are true:

● It should be named Transportation.mdb, and it should be located in the same
folder as the Transportation.xlsm Excel file. Actually, the file name could
be changed, but the appropriate line in the VBA module, where the name of
the file is specified, would have to be changed accordingly.

● It should have three tables named Capacity, Demand, and UnitCost.
● The Capacity table should be structured as in Figure 24.5. It should have a

record (row) for each plant, and it should have three fields (columns) named
PlantID, Plant, and Capacity. The PlantID field is an AutoNumber primary
key field, used to index the plants. (This means that it is automatically popu-
lated with consecutive integers.) The Plant field contains the name of the
plant, and the Capacity field contains the capacity of the plant. The Demand
table should be structured similarly for the retailers.

● The UnitCost table should be structured as in Figure 24.7. It should have
a record for each plant-retailer pair, and it should have three fields named
PlantID, RetailerID, and UnitCost. The PlantID and RetailerID fields are

Figure 24.4 Report of Optimal Solution

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

B C D E F G H I

Optimal Solution

Shipments from latoTelttaeS shipping cost is $38,874
200 units to Cleveland

Shipments from Oakland
500 units to New York

No shipments from Los Angeles

Shipments from San Diego
500 units to Toronto
450 units to Indianapolis

Shipments from Phoenix
300 units to Boston

Shipments from Salt Lake City
500 units to Chicago
450 units to Detroit

Run another problem

516 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 24.5 Capacity Table in Access Database

Figure 24.6 Demand Table in Access Database

A Transportation Application 517

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

foreign keys. They reference the corresponding rows in the Capacity and
Demand tables. The UnitCost field contains the unit shipping cost for the
associated plant-retailer route.

● The tables should be related as indicated in Figure 24.8.

Figure 24.7 UnitCost Table in Access Database

Figure 24.8 Relationships Diagram for Access Database

518 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24.5 Setting Up the Excel Sheets

The Transportation.xlsm file contains three worksheets: the Explanation worksheet
in Figure 24.1, the Model worksheet in Figure 24.3, and the Report worksheet in
Figure 24.4. The Model worksheet must be set up almost completely at run time
because its size depends on the plants and retailers selected by the user. Therefore,
the only template that can be formed in the Model worksheet at design time is
shown in Figure 24.9. Similarly, the only template that can be set up in the Report
worksheet at design time is shown in Figure 24.10.

24.6 Getting Started with the VBA

This application requires a module and a user form named frmInputs.2 In addi-
tion, two references must be set. First, because Solver functions are used, a refer-
ence must be set to Solver. Also, because the ADO object model is being used, a
reference must be set to it. To do so, select the Tools→References menu item in
the VBE, scroll down the list for the Microsoft ActiveX Data Objects x.x Library

Figure 24.9 Template for Model Worksheet

1
A B C D E

Transportation Model1
2
3
4
5
6

Transportation Model

Unit Costs Retailers

Plants

Figure 24.10 Template for Report Worksheet

1
2
3
4
5
6
7
8

A B C D E F G H I

Optimal Solution

Total shipping cost is

Run another problem

2 It also contains the usual frmSolver that simply displays a message about possible Solver problems
when the workbook is opened, but only users of pre-2010 versions of Excel will see this message.

A Transportation Application 519

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

items, and check one of their boxes.3 (See Figure 24.11.) After this is done, the
Project Explorer will look as shown in Figure 24.12. Note that there is no refer-
ence showing for ADO, only for Solver. Evidently, Microsoft lists only the non-
Microsoft references in the Project Explorer.

3My PC lists versions 2.0, 2.1, 2.5, 2.6, 2.7, 2.8, and 6.1 of the ADO library. By the time you read this,
there might be later versions. I have used version 2.8 in this application to be compatible with users who
have earlier versions of Excel, but any of these versions, at least any from 2.5 on, should work fine.

Figure 24.11 References Dialog Box

Figure 24.12 Project Explorer Window

520 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Workbook_Open Code

To guarantee that the Explanation sheet appears when the file is opened, the following
code is placed in the ThisWorkbook code window. It also hides the Model and Report
worksheets, and it displays the usual Solver warning for pre-2010 versions of Excel.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("G18").Select
End With
wsModel.Visible = False
wsReport.Visible = False
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

24.7 The User Form

The frmInputs form allows the user to select any subsets of plants and retailers
from the sets of all plants and retailers in the database. It uses two list boxes,
named lbPlants and lbRetailers, to do this. Each has its MultiSelect property set to
2-fmMultiSelectExtended so that the user can indeed select several items from each
list. The design of this form is shown in Figure 24.13.

Recall from Chapter 11 that multi-select list boxes have a Selected property
that is essentially a 0-based Boolean array. Each element indicates whether the cor-
responding item in the list has been selected. The ShowInputsDialog function uses
this property to capture the selected plants and retailers in 1-based arrays, selected-
Plant and selectedRetailer. (The Valid function also checks that the user selects at
least one item from each list.) After it captures these arrays, it builds two strings,
plantList and retailerList, that are used in a later SQL statement to get the required
unit costs from the UnitCost table. For example, if the user selects the plants Seat-
tle, Oakland, and Dallas, then plantList is "('Seattle','Oakland', 'Dallas')". The Initialize
sub populates the list boxes with all of the plants and retailers from the database,
which by this time have been stored in the arrays existingPlants and existingRetailers.

Figure 24.13 frmInputs Design

A Transportation Application 521

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private cancel As Boolean

Public Function ShowInputsDialog(existingPlant() As String, _
existingRetailer() As String, _
nSelectedPlants As Integer, selectedPlant() As String, _
nSelectedRetailers As Integer, selectedRetailer() As String, _
plantList As String, retailerList As String) As Boolean

Dim i As Integer

Call Initialize(existingPlant, existingRetailer)
Me.Show
If Not cancel Then

' Fill an array, selectedPlant, of the plants selected.
nSelectedPlants = 0
For i = 1 To lbPlants.ListCount

If lbPlants.Selected(i - 1) Then
nSelectedPlants = nSelectedPlants + 1
ReDim Preserve selectedPlant(1 To nSelectedPlants)
selectedPlant(nSelectedPlants) = lbPlants.List(i - 1)

End If
Next

' Build a string, plantList, that looks something like
' ('Seattle','Oakland','Dallas'), depending on plants selected.
plantList = "("
For i = 1 To nSelectedPlants

If i < nSelectedPlants Then
plantList = plantList & "'" & selectedPlant(i) & "',"

Else
plantList = plantList & "'" & selectedPlant(i) & "')"

End If
Next

' Fill an array, selectedRetailer, of the retailers selected.
nSelectedRetailers = 0
For i = 1 To lbRetailers.ListCount

If lbRetailers.Selected(i - 1) Then
nSelectedRetailers = nSelectedRetailers + 1
ReDim Preserve selectedRetailer(1 To nSelectedRetailers)
selectedRetailer(nSelectedRetailers) = lbRetailers.List(i - 1)

End If
Next

' Build a similar string, retailerList, depending on retailers selected.
retailerList = "("
For i = 1 To nSelectedRetailers

If i < nSelectedRetailers Then
retailerList = retailerList & "'" & selectedRetailer(i) & "',"

Else
retailerList = retailerList & "'" & selectedRetailer(i) & "')"

End If
Next

End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize(existingPlant() As String, existingRetailer() As String)
' Populate the listboxes with the arrays.
lbPlants.List = existingPlant
lbRetailers.List = existingRetailer

End Sub

522 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Function Valid() As Boolean
Dim nSelPlants As Integer, nSelRetailers As Integer
Dim i As Integer

Valid = True
' At least one plant and at least one retailer must be selected.
nSelPlants = 0
For i = 1 To lbPlants.ListCount

If lbPlants.Selected(i - 1) Then
nSelPlants = nSelPlants + 1

End If
Next
If nSelPlants = 0 Then

Valid = False
MsgBox "You must select at least one plant.", vbInformation, _

"Selection required"
Exit Function

End If

nSelRetailers = 0
For i = 1 To lbRetailers.ListCount

If lbRetailers.Selected(i - 1) Then
nSelRetailers = nSelRetailers + 1

End If
Next
If nSelRetailers = 0 Then

Valid = False
MsgBox "You must select at least one retailer.", vbExclamation, _

"Selection required"
Exit Function

End If
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

24.8 The Module

For a change, there are no module-level variables in the module. Instead, vari-
ables are passed from sub to sub, depending on where they are needed. This
requires you to check exactly which variables are used in each sub, but it is a
good programming practice.

The button on the Explanation worksheet is attached to the MainTransporta-
tion sub in the module. This sub calls other subs to retrieve the data from the

A Transportation Application 523

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Access database, develop the transportation model, run Solver, and report the
results. Note how it uses the keyword New to instantiate the Connection object
cn. This is done exactly as explained in Chapter 14, so you can refer back to that
chapter for details.

MainTransportation Code

Sub MainTransportation()
' This is the main macro that is run when the button on the
' Explanation sheet is clicked.

' The following variables could be declared as module-level, which
' would require much less passing of arguments below. However, the
' method used here shows how variables CAN be passed.
Dim cn As New ADODB.Connection
Dim existingPlant() As String, existingRetailer() As String
Dim nSelectedPlants As Integer, nSelectedRetailers As Integer
Dim selectedPlant() As String, selectedRetailer() As String
Dim plantList As String, retailerList As String
Dim feasible As Boolean

Application.ScreenUpdating = False

' Open a connection to the database. This Excel workbook
' and the Access database should be in the same folder.
With cn

.ConnectionString = "Data Source=" & _
ThisWorkbook.Path & "\Transportation.mdb"

.Provider = "Microsoft.ACE.OLEDB.12.0"

.Open
End With

' Import the required data from the database.
Call GetPlantAndRetailers(cn, existingPlant, existingRetailer)
If frmInputs.ShowInputsDialog(existingPlant, existingRetailer, _

nSelectedPlants, selectedPlant, nSelectedRetailers, _
selectedRetailer, plantList, retailerList) Then

If Not WithinSolverLimit(nSelectedPlants, _
nSelectedRetailers) Then Exit Sub

Call EnterModelData(cn, nSelectedPlants, selectedPlant, _
nSelectedRetailers, selectedRetailer, _
plantList, retailerList)

' Close the connection to the database.
cn.Close
Set cn = Nothing

' Set up and solver the model.
Call EnterFormulas(nSelectedPlants, nSelectedRetailers)
Call SetupAndRunSolver(feasible)
If feasible Then

Call CreateReport(nSelectedPlants, nSelectedRetailers, _
selectedPlant, selectedRetailer)

End If
End If

End Sub

524 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GetPlantsAndRetailers Code

The GetPlantsAndRetailers sub imports the data from the Capacity and Demand
tables of the Access database. Because a connection to the Transportation.mdb
database file is already open (from the MainTransportation code), it can immedi-
ately open a recordset based on a simple SQL statement: Select Plant From
Capacity. Once this recordset is open, the code loops through the records and
stores the plant names in the existingPlant array for later use in the Model work-
sheet. Then it performs similar steps for retailers.

You should refer to the general discussion of ADO in Chapter 14 as you examine
this code. However, it is actually very straightforward once you see the big picture.
Once a recordset based on an SQL statement is open, you move through each record
of the recordset and extract data from its fields. For example, you reference
.Fields("Plant").Value to get the value of the Plant field in the current record. Note
that this reference is inside a With rs construction, where rs is the recordset. This
means that the reference is really to rs.Fields("Plant").Value. Therefore, you see that the
familiar “dot” notation used for Excel objects and properties carries over to ADO.

Several things are worth mentioning about this code. First, it uses a Do loop
to step through the records (rows) of the recordset. The stopping condition is
While Not .EOF, which is really short for While Not rs.EOF. This means to keep
going until you reach the end of the file. Second, there must be a .MoveNext line
inside the loop. Otherwise, the recordset will be stuck on its first record, creating
an infinite loop. Finally, you should always close a recordset (rs.Close) when
you’re finished getting its data.

Sub GetPlantAndRetailers(cn As ADODB.Connection, _
existingPlant() As String, existingRetailer() As String)

' This sub gets the potential plants and retailers from the database so that
' they can be entered in the listboxes.
Dim nExisitingPlants As Integer, nExisitingRetailers As Integer
Dim i As Integer, j As Integer
Dim rs As New ADODB.Recordset
Dim SQL As String

' Get the plants from the Capacity table to populate the array existingPlant.
SQL = "Select Plant From Capacity"
With rs

.Open SQL, cn
nExisitingPlants = 0
Do While Not .EOF

nExisitingPlants = nExisitingPlants + 1
ReDim Preserve existingPlant(1 To nExisitingPlants)
existingPlant(nExisitingPlants) = .Fields("Plant").Value
.MoveNext

Loop
.Close

End With

' Get the retailers from the Demand table to populate the array existingRetailer.
SQL = "Select Retailer from Demand"
With rs

.Open SQL, cn

A Transportation Application 525

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

nExisitingRetailers = 0
Do While Not .EOF

nExisitingRetailers = nExisitingRetailers + 1
ReDim Preserve existingRetailer(1 To nExisitingRetailers)
existingRetailer(nExisitingRetailers) = .Fields("Retailer").Value
.MoveNext

Loop
.Close

End With

Set rs = Nothing
End Sub

WithinSolverLimit Code

After the user has selected plants and retailers from frmInputs, the WithinSolverLimits
function checks whether the Solver limit of 200 changing cells has been exceeded.
If so, the user is asked to make other selections.

Function WithinSolverLimit(nSelectedPlants As Integer, _
nSelectedRetailers As Integer) As Boolean

Dim nChangingCells As Integer

nChangingCells = nSelectedPlants * nSelectedRetailers
If nChangingCells > 200 Then

MsgBox "With your selections, there are " & nChangingCells _
& " changing cells in the model (" & nSelectedPlants & " x " _
& nSelectedRetailers & "). The most Solver can handle is 200. " _
& "Run the program again, and choose fewer plants or retailers.", _
vbExclamation, "Model too large"

WithinSolverLimit = False
Else

WithinSolverLimit = True
End If

End Function

EnterModelData Code

The EnterModelData sub does the hard work. It uses three SQL statements to
import the unit costs, the capacities, and the demands corresponding to the plants
and retailers selected from frmInputs. It then places the imported data into the
appropriate ranges of the Model worksheet (see Figure 24.3). The hardest part
of this sub is the SQL statement for obtaining the unit costs. Although the unit
costs obviously come from the UnitCost table, the SQL statement requires inner
joins with the Capacity and Demand tables. This is because the UnitCost table
stores only IDs (indexes) for the plants and retailers, whereas they need to be
accessed by names such as Seattle. Also, the Where clause of this SQL statement
uses the plantList and retailerList strings created earlier. It will look something like:
Where Plant In ('Seattle', 'Oakland', 'Dallas') And Retailer In ('Chicago',
'New York', 'Miami', 'Orlando', 'Little Rock', 'New Orleans'). This clause fil-
ters out all unit costs except those for the cities listed. The rest of the code is fairly
straightforward and is explained by the comments.

526 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub EnterModelData(cn As ADODB.Connection, nSelectedPlants As Integer, _
selectedPlant() As String, nSelectedRetailers As Integer, _
selectedRetailer() As String, plantList As String, retailerList As String)

' The following macro uses ADO to place the appropriate data
' from the database in the appropriate cells of the Model sheet.
Dim SQL As String
Dim rs As New ADODB.Recordset
Dim i As Integer, j As Integer
Dim topCell As Range

' Clear everything from Model sheet (including formatting).
With wsModel

.Cells.Clear

.Activate

' Enter labels.
.Range("A1").Value = "Transportation Model"
.Range("B3").Value = "Unit Costs"
.Range("B5").Value = "Plants"
.Range("D3").Value = "Retailers"

Set topCell = .Range("C4")

End With

' Add headings.
With topCell

For i = 1 To nSelectedPlants
.Offset(i, 0).Value = selectedPlant(i)

Next
For j = 1 To nSelectedRetailers

.Offset(0, j).Value = selectedRetailer(j)
Next

End With

' Get the data with the following SQL statement, and use the
' data to fill in the UnitCost range. The SQL statement requires a couple
' of inner joins. The reason is that the UnitCost table lists only the
' ID’s of the plants and retailers. Their names, required in the Where clause,
' are stored in the Capacity and Demand tables.
SQL = "Select UC.UnitCost " _

& "From (UnitCost UC Inner Join Capacity C On UC.PlantID = C.PlantID) " _
& "Inner Join Demand D On UC.RetailerID = D.RetailerID " _
& "Where C.Plant In " & plantList & " And D.Retailer In " & retailerList

With rs
.Open SQL, cn
For i = 1 To nSelectedPlants

For j = 1 To nSelectedRetailers
topCell.Offset(i, j).Value = .Fields("UnitCost").Value
.MoveNext

Next
Next
.Close

End With

' Name the range
With topCell

Range(.Offset(1, 1), .Offset(nSelectedPlants, nSelectedRetailers)) _
.Name = "UnitCosts"

End With

A Transportation Application 527

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Do the same type of operation to fill in the capacities.
Set topCell = wsModel.Range("C4").Offset(0, nSelectedRetailers + 2)
topCell.Value = "Capacity"

SQL = "Select Capacity From Capacity " & _
"Where Plant In " & plantList

With rs
.Open SQL, cn
For i = 1 To nSelectedPlants

topCell.Offset(i, 0).Value = .Fields("Capacity").Value
.MoveNext

Next
.Close

End With

With topCell
Range(.Offset(1, 0), .Offset(nSelectedPlants, 0)).Name = "Capacities"

End With

' Do the same type of operation to fill in the demands.
Set topCell = wsModel.Range("C4").Offset(nSelectedPlants + 2, 0)
topCell.Value = "Demand"

SQL = "Select Demand From Demand " & _
"Where Retailer In " & retailerList

With rs
.Open SQL, cn
For j = 1 To nSelectedRetailers

topCell.Offset(0, j).Value = .Fields("Demand").Value
.MoveNext

Next
.Close

End With

Set rs = Nothing

With topCell
Range(.Offset(0, 1), .Offset(0, nSelectedRetailers)).Name = "Demands"

End With
End Sub

EnterFormulas Code

By this time, ADO has done its job and is no longer needed. The required data from
the database have now been placed in the Model worksheet. The EnterFormulas sub
finishes the model by adding formulas to the Model worksheet. These are straight-
forward. (Again, see Figure 24.3.) Specifically, SUM formulas are required to calcu-
late the total amounts shipped out of any plant and into any retailer. Also, a
SUMPRODUCT formula is needed to find the total cost—the sum of unit costs
times amounts shipped.

Sub EnterFormulas(nSelectedPlants As Integer, nSelectedRetailers As Integer)
' This sub puts the various formulas in the Model sheet, including
' the total shipped out of each plant and the total shipped into
' each retailer.
Dim outOfRange As Range, intoRange As Range

528 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim topCell As Range

With wsModel
.Activate

' Set up changing cells (Shipments) range and enter 0's as initial values
.Range("B4").Offset(nSelectedPlants + 4, 0).Value = "Shipments"

Set topCell = .Range("C4").Offset(nSelectedPlants + 4, 0)
With Range(topCell.Offset(1, 1), _

topCell.Offset(nSelectedPlants, nSelectedRetailers))
.Name = "Shipments"
.Value = 0
.BorderAround Weight:=xlMedium, ColorIndex:=3

End With

' Enter formulas for row and column sums for "SentOut" and "SentIn" ranges.
Set topCell = .Range("Shipments").Cells(1)

End With

With topCell
.Offset(−1, nSelectedRetailers).Value = "Sent out"
.Offset(nSelectedPlants, −1).Value = "Sent in"
Set outOfRange = Range(.Offset(0, nSelectedRetailers), _

.Offset(nSelectedPlants − 1, nSelectedRetailers))
Set intoRange = Range(.Offset(nSelectedPlants, 0), _

.Offset(nSelectedPlants, nSelectedRetailers − 1))
End With

With outOfRange
.Name = "SentOut"
.FormulaR1C1 = "=SUM(RC[−" & nSelectedRetailers & "]:RC[−1])"

End With

With intoRange
.Name = "SentIn"
.FormulaR1C1 = "=SUM(R[−" & nSelectedPlants &"]C:R[−1]C)"

End With

' Calculate total cost in "TotalCost" range.
Set topCell = wsModel.Range("SentIn").Item(1).Offset(2, 0)
With topCell

.Formula = "=SumProduct(UnitCosts,Shipments)"

.Name = "TotalCost"

.NumberFormat = "$#,##0_);($#,##0)"

.Offset(0, −2).Value = "Total Cost"
End With

wsModel.Range("A1").Select
End Sub

SetupAndRunSolver Code

The SetupAndRunSolver sub sets up and then runs Solver. It checks for infeasibility
(code 5 of the SolverSolve function). If there are no feasible solutions, a message to
that effect is displayed and the user is asked to make different input selections.

A Transportation Application 529

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub SetupAndRunSolver(feasible As Boolean)
Dim solverStatus As Integer

With wsModel
.Visible = True
.Activate

SolverReset
SolverAdd .Range("Shipments"), 3, 0
SolverAdd .Range("SentOut"), 1, "Capacities"
SolverAdd .Range("SentIn"), 3, "Demands"
SolverOptions AssumeNonNeg:=True
SolverOk SetCell:=.Range("TotalCost"), MaxMinVal:=2, _

ByChange:=.Range("Shipments"), Engine:=1

' Run Solver. If there are no feasible solutions (code 5), call the
' MainTransport sub. The effect is to let the user try again.
solverStatus = SolverSolve(UserFinish:=True)
If solverStatus = 5 Then

MsgBox "There is no feasible solution. Try a different combination of " _
& "plants and retailers.", vbExclamation, "Infeasible"

.Visible = False
wsExplanation.Activate
feasible = False

Else
feasible = True
.Visible = False

End If
End With

End Sub

CreateReport Code

Finally, the CreateReport sub transfers the total shipping cost and the information
about all routes with positive flows to the Report worksheet. If there are no ship-
ments out of a particular plant, a note to this effect is included in the report. (See
Figure 24.4 for an example.)

Sub CreateReport(nSelectedPlants As Integer, nSelectedRetailers As Integer, _
selectedPlant() As String, selectedRetailer() As String)

' Finally, report the results in the Report sheet.
Dim i As Integer, j As Integer
Dim nShippedTo As Integer, amountShipped As Integer
Dim topCell As Range

' Clear everything from Report sheet (including formatting), but not the button.
With wsReport

.Cells.Clear

.Visible = True

.Activate

' Enter heading and format.
With .Range("B1")

.Value = "Optimal Solution"
With .Font

.Size = 14

.Bold = True
End With

530 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

End With
With ActiveWindow

.DisplayGridlines = False

.DisplayHeadings = False
End With
.Cells.Interior.ColorIndex = 40
.Columns("B:B").Font.ColorIndex = 1
.Columns("C:C").Font.ColorIndex = 5
.Range("B1").Font.ColorIndex = 1

' For each route that ships a positive amount, print how much is shipped.
Set topCell = .Range("B3")
For i = 1 To nSelectedPlants

If wsModel.Range("SentOut").Cells(i).Value > 0.1 Then
With topCell

.Value = "Shipments from " & selectedPlant(i)

.Font.Bold = True
End With
nShippedTo = 0
For j = 1 To nSelectedRetailers

amountShipped = wsModel.Range("Shipments").Cells(i, j).Value
If amountShipped > 0.01 Then

nShippedTo = nShippedTo + 1
topCell.Offset(nShippedTo, 1).Value = _

amountShipped & " units to " & selectedRetailer(j)
End If

Next
Set topCell = topCell.Offset(nShippedTo + 2, 0)

Else
With topCell

.Value = "No shipments from " & selectedPlant(i)

.Font.Bold = True
End With
Set topCell = topCell.Offset(2, 0)

End If
Next

' Record the total shipping cost.
With .Range("G3")

.Value = "Total shipping cost is " & _
Format(wsModel.Range("TotalCost").Value, "$#,##0;($#,##0)")

.Font.Bold = True
End With

.Range("A1").Select
End With

End Sub

24.9 Summary

Virtually all of the VBA applications you will develop in Excel will require data, and
it is very possible that the required data will reside in an external database format
such as Access. (Actually, it is more likely that the data will reside in a server-based
database such as SQL Server or Oracle, but the code would not change much from
what I have presented here.) This chapter has demonstrated how to import the data

A Transportation Application 531

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

from an Access database into Excel for use in a transportation model. This requires
you to use the basic functionality of the ADO object model. It also requires you to
know how to write SQL statements, the language of databases. However, the effort
required to learn these is well spent. Knowing how to import data from an external
database is an extremely valuable skill in today’s business world, and it is likely to
become even more valuable in the future.

EXERCISES

1. The application currently has no charts. Change it so that the user can view two
charts (each on a separate chart sheet) after Solver has been run. The first should
be a column chart showing the total amount shipped and the total capacity for
each selected plant, something similar to that in Figure 24.14. Likewise, the sec-
ond chart should show the total amount shipped to each selected retailer and the
retailer’s demand. (Actually, the latter two should be equal, given the way the
transportation problem has been modeled. There is absolutely no incentive to
send a retailer more than it demands.) As always, do as much at design time, and
write as little VBA code, as possible.

2. I claimed that this application works with any data, provided that the database
file is structured properly. Try the following. Open the Transportation.mdb file

Figure 24.14 Shipments from Plants for Exercise 1

Capacities and Amounts Sent Out

0

200

400

600

800

1000

1200

1400

1600

Plant

Oakland Los Angeles San Diego Phoenix Salt Lake City

Capacity

Sent out

Return to Report Sheet

532 Chapter 24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in Access and change its data in some way. (You can change names of plants, unit
costs, and so on. You can even add some plants or retailers. Just be sure that there
is a row in the UnitCost table for each plant-retailer pair.) Then rerun the applica-
tion to check that it still works properly.

3. Repeat the previous exercise, but now create a new Access file called MyData.mdb
(stored in the same folder as the Excel application), structured exactly as
Transportation.mdb, and add some data to it. Then rerun the application to
check that it still works properly. (Note that you will have to change one line of
the VBA code so that it references the correct name of your new Access file.)

4. The previous problem indicates a “fix” that no business would ever tolerate—they
would never be willing to get into the VBA code to change a file name reference.
A much better alternative is to change the VBA code in the first place so that it
asks the user for the location and name of the database file. You could do this
with an input box (and risk having the user spell something wrong), but Excel pro-
vides an easier way with the FileDialog object, as illustrated in Chapter 13. Use this
to change the application, so that it prompts the user for the name and location of
the database file. Actually, you should probably precede the above line with a
MsgBox statement so that the user knows she is being asked to select the file with
the data. Then try the modified application with your own Access file, stored in a
folder different from the folder containing the Excel application.

A Transportation Application 533

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Stock-Trading Simulation

Application

25.1 Introduction

In Practical Management Science, we illustrate two ways to run spreadsheet simu-
lations. Each method starts with a spreadsheet model that includes random quan-
tities in selected cells. The first method creates a data table to replicate desired
outputs. Summary measures and charts can then be obtained manually from this
data table. The second method uses Palisade’s @RISK simulation add-in. Once
the user designates desired output cells, @RISK runs all of the replications and
automatically creates summary measures, including charts, for these outputs. This
application illustrates how VBA can be used to automate a simulation model, sim-
ilar to the way @RISK does it. However, no data tables are created, and no add-
ins are required.

The model itself simulates the trading activity of an investor in the stock
market over the period of a year (250 trading days). This investor starts with a
given amount of cash and owns several shares of a stock. The investor then uses
a “buy low/sell high” trading strategy. The trading strategy implemented in the
model is as follows: If the price of the stock increases 2 days in a row, the investor
sells 10% of his shares. If it increases 3 days in a row, he sells 25% of his shares. In
the other direction, if the price decreases 2 days in a row, the investor buys 10%
more shares. For example, if he owns 500 shares, he buys 50 more shares. If the
price decreases 3 days in a row, he buys 25% more shares. The only restriction on
buying is that the investor cannot spend more than his current cash. The price of
the stock is generated randomly through a lognormal model used by many finan-
cial analysts.

The simulation keeps track of five output measures: (1) the investor’s cash
at the end of the year, (2) the value of the investor’s stock at the end of the year,
(3) the gain (or loss) from the investor’s cash/stock portfolio at the end of the year,
relative to what he owned at the beginning of the year, (4) the lowest price of the
stock during the year, and (5) the highest price of the stock during the year.

New Learning Objectives: VBA

● To illustrate how to automate a spreadsheet simulation model with VBA.
● To illustrate how the run time of a simulation can be affected by the recalcu-

lation mode.
● To show how to use VBA to enter an array function into an Excel range.

25

534

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Learning Objective: Non-VBA

● To show how simulation can be used to measure the effectiveness of a stock
market trading strategy.

25.2 Functionality of the Application

The application has the following functionality:

1. It allows the user to specify a trading strategy. As written, the user can change
the percentages to sell if the stock price increases 2 or 3 days in a row and
the similar percentages to buy if the price decreases 2 or 3 days in a row. The
model can be modified slightly to examine other types of trading strategies—
buy high, sell low, for example—without any changes in the VBA code.

2. The simulation can be run for up to 1,000 replications. (This limit can easily be
changed.) As it runs, it keeps track of the five outputs listed in the introduc-
tion. It then reports summary measures for these outputs (minimum, maxi-
mum, average, standard deviation, median, and 5th and 95th percentiles), and
it creates histograms of the outputs. The application can be modified fairly
easily to incorporate other outputs from the simulation.

25.3 Running the Application

The application is stored in the file Stock Trading.xlsm. When this file is opened,
the user sees the Explanation worksheet in Figure 25.1.

Figure 25.1 Explanation Worksheet

A Stock-Trading Simulation Application 535

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the user clicks the left button, the Inputs worksheet in Figure 25.2 appears.
The various inputs appear in blue. The user can change any of these before run-
ning the simulation. In particular, a different trading strategy can be tried by
changing the percentages in column J. Also, note that the current price (on day
1) and the prices on the 3 previous days are shown in column E. Because the
investor’s trading strategy depends on the three previous price changes, these past
prices are required for the trading decisions on the first few days.

When the user clicks the button in Figure 25.2 (or the right button in
Figure 25.1), the input box in Figure 25.3 is displayed. Here the user can
choose any number of replications, up to 1000, for the simulation.

After the user clicks the OK button, the simulation runs. It recalculates the
random numbers on the hidden Model worksheet (more about this later) for
each replication, stores the outputs on the (hidden) Replications worksheet, and
calculates summary measures, which are stored on the Summary worksheet, shown
in Figure 25.4. This can take quite a while, so a replication counter placed on the
Explanation worksheet shows the progress. This counter is certainly not necessary
for the proper running of the simulation, but it is a nice touch for the user.

Each output has a corresponding histogram worksheet. These are created
at design time, and they are then updated at the end of the simulation. As

Figure 25.2 Inputs Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A B C D E F G H I J K L
Inputs to simula�on

tneceRstupnI stock gnidarTsecirp strategy
Ini�al cash $75,000 3 days ago $49.86 Buying: if change is nega�ve
Ini�al shares owned 500 2 days ago $49.79 3 days in a row, buy 25% of current shares

1 day ago $49.95 2 days in a row, buy 10% of current shares
Daily growth rate of stock price Current $50.00 Selling: if change is posi�ve
Mean 0.01% 3 days in a row, sell 25% of current shares
StDev 2.0% 2 days in a row, sell 10% of current shares

Implica�on for the year (assuming 250 trading days per year)
Mean 2.50% (average annual growth rate of stock price)
StDev 31.62% (standard devia�on of annual growth rate)

Enter any new inputs in the blue cells. Then click on the bu�on
below to run the simula�on with these inputs.

Run the simula�on

Figure 25.3 Input Box for Number of Replications

536 Chapter 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

an example, the histogram for the cumulative gain/loss output appears in
Figure 25.5.

If the user then returns to the Explanation worksheet and runs the simulation
again, the results will differ, even if the same inputs are used, because new random
numbers will be used in the simulation.

Figure 25.4 Summary Results from Simulation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B C D E F
Summary results from the simula�on

Ending cash Ending stock value Cum gain/loss Min price Max price
83$0$niM ($33,081) $16.29 $50.00

89.731$00.05$128,13$199,301$703,121$xaM
Average $90,039 $11,102 $255 $39.36 $63.60

94.31$78.6$814,8$185,02$049,22$vedtS
Median $100,002 $1,925 $1,923 $40.04 $59.69
5th percen�le $38,793 $53 ($18,704) $27.25 $50.18
95th percen�le $106,334 $62,013 $10,029 $49.50 $88.56

For further results, take a look at any of the histogram sheets. They show
histograms of the various output measures.

Figure 25.5 Histogram for Cumulative Gain/Loss

0

20

40

60

80

100

120

140

160

180

200

<=
–1

87
04

–1
87

04
–1

51
12

–1
51

12
–1

15
21

–1
15

21
–7

92
9

–7
92

9–
43

37

–4
33

7–
74

6

–7
46

–2
84

6

28
46

–6
43

7

64
37

–1
00

29

>1
00

29

Histogram for Cumulative Gain/Loss

A Stock-Trading Simulation Application 537

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25.4 Setting Up the Excel Sheets

The Stock Trading.xlsm file contains 10 worksheets. These are named Explanation,
Inputs, Model, Replications, Summary, and Histogram1 through Histogram5.

The Model Worksheet

The Model worksheet, shown in Figure 25.6 (with many hidden rows), can be set
up completely at design time. From row 10 down, this worksheet models the trad-
ing activity for a 250-day period. I will discuss a few of the formulas in this sheet;
you can open the file and examine the rest. First, the stock prices in column B are
determined from the well-known lognormal stock price model. Specifically, the
formula in cell B17, which is copied down column B, is

=ROUND(B16*EXP((GrMean–0.5 *GrStdev^2)
+GrStdev*NORMINV(RAND(),0,1)),2)

This formula uses the daily mean growth rate and standard deviation of growth
rate (GrMean and GrStdev, from cells B8 and B9 of the Inputs worksheet), along
with a standard normal random number—from NORMINV(RAND(),0,1)—to
generate the day’s price from the previous day’s price in cell B16.

Second, the trading strategy is implemented in columns E and F with rather
complex IF functions. For example, the number of shares bought in cell F16 uses
the formula

Figure 25.6 Simulation Model and Outputs

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

261

262

263

264

265

A B C D E F G H I J K L
Stock Market Simula�on

Outputs from one year-long simula�on
Ending cash $101,386
Ending value of stock owned $62
Cumula�ve gain/loss $1,448
Lowest stock price $42.02
Highest stock price $71.85

Simula�on
Stock price Trading eulaVytivitca of stock/cash por�olio

Day
Beginning

price
Change from
previous day

Beginning
shares

Shares
sold

Shares
purchase

Ending
shares

Beginning
cash

Change in
cash

Ending
cash

Worth of
shares

Cumula�ve
gain/loss

$49.86
$49.79 -$0.07
$49.95 $0.16

1 $50.00 $0.05 500 50 0 450 $75,000 $2,500 $77,500 $22,500 $0
2 $50.53 $0.53 450 113 0 337 $77,500 $5,710 $83,210 $17,029 $239
3 $51.63 $1.10 337 84 0 253 $83,210 $4,337 $87,547 $13,062 $609
4 $51.86 $0.23 253 63 0 190 $87,547 $3,267 $90,814 $9,853 $667
5 $52.90 $1.04 190 48 0 142 $90,814 $2,539 $93,353 $7,512 $865

246 $68.75 -$2.69 1 0 0 1 $101,386 $0 $101,386 $69 $1,455
247 $67.36 -$1.39 1 0 0 1 $101,386 $0 $101,386 $67 $1,454
248 $65.08 -$2.28 1 0 0 1 $101,386 $0 $101,386 $65 $1,451
249 $62.76 -$2.32 1 0 0 1 $101,386 $0 $101,386 $63 $1,449
250 $62.19 -$0.57 1 0 0 1 $101,386 $0 $101,386 $62 $1,448

538 Chapter 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

=IF(AND(C14<0,C15<0,C16<0),MIN(ROUND(BuyPct3 *D16,0),
INT(H16/B16)),IF(AND(C15<0,C16<0),MIN(ROUND
(BuyPct2 *D16,0),INT(H16/B16)),0))

Here, BuyPct3 and BuyPct2 are 25% and 10%, respectively, from cells J5 and J6
of the Inputs worksheet. The formula first checks whether the price has decreased
3 days in a row. If it has, the investor buys the smaller of two quantities—the number
of shares he would like to buy (25% of what he owns), and the number of shares he
has cash for (his cash divided by the current stock price, rounded down to the near-
est integer). If the price has not decreased 3 days in a row, the formula then checks
whether it has decreased 2 days in a row. If it has, the investor again purchases the
smaller of two quantities. If it hasn’t, the investor buys nothing.

Finally, the cumulative gain/loss in column L is the current value of the
cash/stock portfolio minus the initial value on day 1. For example, the formula
for the last day in cell L265 is

=(J265+K265)– (InitCash+InitShares * InitPrice)

where InitCash, InitShares, and InitPrice refer to cells B4, B5, and E7 of the
Inputs worksheet.

Once the 250-day model has been developed, the outputs in rows 4–8 can
be calculated easily. For example, the formulas in cells B6 and B7 are =L265
and =MIN(B16:B265). Note that these outputs summarize a single 250-day
replication.

The Replication Worksheet

When the simulation runs for, say, 500 replications, the VBA code forces the
model to recalculate 500 times, each time producing new random numbers and
therefore new outputs in the Model worksheet. It captures these outputs and
stores them in the (hidden) Replications worksheet, as shown in Figure 25.7
(with many hidden rows). These outputs are then summarized in the Summary
worksheet at the end of the simulation. Note that the Replications worksheet
and the Summary worksheet (in Figure 25.4) have only labels, no numbers, at
design time.

Figure 25.7 Replications Worksheet

1

2

3

4

5

6

7

501

502

503

A B C D E F
Results of individual replica�ons

Replica�on Ending cash Ending stock value Cum gain/loss Min price Max price
1 $104,408 $3,579 ($912) $46.01 $59.26
2 $103,063 $5,549 $6,586 $39.06 $61.87
3 $82,438 $3,617 ($10,782) $47.76 $70.13
4 $107,709 $247 $7,897 $46.62 $90.65

498 $103,899 $7,128 $1,173 $39.48 $62.43
499 $105,395 $54 $1,688 $42.17 $93.51
500 $41,788 $57 ($2,553) $44.44 $63.52

A Stock-Trading Simulation Application 539

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data Sheets for Histograms

The histogram for each output is formed from a column of data in Figure 25.7
and from information on categories (usually called bins). The individual data,
such as ending cash amounts, are placed into these bins and are then counted to
obtain the histogram. The application uses 10 bins for each histogram. The first bin
extends up to the 5th percentile for the output, the last extends beyond the 95th
percentile, and the other eight bins are of equal width between the extremes. This
information is summarized in a histogram sheet for each output at the end of
the simulation.

For example, Figure 25.8 shows the data for the Cumulative Gain/Loss out-
put. Column A contains the upper limit of each bin (other than the rightmost),
column B contains horizontal axis labels (where −18704-−15112, for example,
means “from minus 18704 to minus 15112”), and column C contains the frequen-
cies (obtained with Excel’s FREQUENCY function, discussed below).

Note that sample data can be placed in these data worksheets, and histograms
can be created from the sample data, at design time. The data in the histogram
worksheets can then be updated at run time, and the histograms will change
automatically.

25.5 Getting Started with the VBA

This application includes only a module—no user forms and no references. Once
the module is inserted, the Project Explorer window will appear as in Figure 25.9.

Workbook_Open Code

The following code is placed in the ThisWorkbook code window. It activates the
Explanation worksheet and hides all other worksheets.

Figure 25.8 Data for Cumulative Gain/Loss Histogram

1

2

3

4

5

6

7

8

9

10

11

12

13

A B C

Frequency table for Cum gain/loss

Upper limit Category Frequency
-18704 <=-18704 25
-15112 -18704--15112 6
-11521 -15112--11521 13
-7929 -11521--7929 23
-4337 -7929--4337 26
-746 -4337--746 32
2846 -746-2846 180
6437 2846-6437 132

10029 6437-10029 38
>10029 25

540 Chapter 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub Workbook_Open()
Dim ws As Worksheet
With wsExplanation

.Activate

.Range("G4").Select
End With
For Each ws In ThisWorkbook.Worksheets

If ws.CodeName <> "wsExplanation" Then ws.Visible = False
Next

End Sub

25.6 The Module

The module contains a Main sub, which calls several subs to do most of the
work. The Main sub also does some work itself. It gets the number of desired
replications from an input box, it clears the contents from the Replications work-
sheet from any previous run, and it places some (temporary) labels in row 21 of
the Explanation worksheet. These are used to show the progress of the simulation
as it runs.

Main Code

Option Explicit

Dim nReps As Integer

Sub Main ()
' This sub runs when the user clicks the "Run the simulation"
' button on the Explanation sheet (or the Inputs sheet).

Figure 25.9 Project Explorer Window

A Stock-Trading Simulation Application 541

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim i As Integer

' Get the number of replications (no greater than 1000).
Do

nReps = InputBox("How many replications of the year-long " _
& "simulation do you want to run? (Enter an integer no " _
& "greater than 1000.)", "Number of reps")

If nReps > 1000 Then MsgBox "The number of reps should not " _
& "exceed 1000.", vbExclamation, "Too many reps"

Loop Until nReps <= 1000

' Clear previous results.
With wsReplications.Range("A3")

Range(.Offset(1, 0), .Offset(0, 5).End(xlDown)).ClearContents
End With

' Enter labels for a replication counter on the Explanation sheet.
With wsExplanation

.Activate

.Range("D21").Value = "Simulating replication"

.Range("G21").Value = "of"

.Range("H21").Value = nReps

' Run the simulation and collect the stats.
Call RunSimulation

' Delete counters and turn off screen updating.
.Range("D21:H21").ClearContents
Application.ScreenUpdating = False

Call CollectStats

' Delete the replication counter on the Explanation sheet.
.Range("D18:H18").ClearContents

' Update the histogram data.
Call UpdateHistograms

End With

' Show the results.
With wsSummary

.Visible = True

.Activate

.Range("A2").Select
End With

' Unhide the histogram sheets.
For i = 1 To 5

Worksheets("Histogram " & i).Visible = True
Next

Application.ScreenUpdating = True
End Sub

RunSimulation Code

The RunSimulation sub runs the simulation for the desired number of replications
and stores the outputs in the Replications worksheet for later summarization.

542 Chapter 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The key to this sub is the Calculate method of the Application object (which is
Excel itself). Each time this method is called, it forces a recalculation of the
workbook, which generates new random numbers in the simulation model. It’s
that simple.

A note on Recalculation. Each recalculation takes a fraction of a second, but
these fractions add up. The recalculations take place each time the Calculate
method is called from VBA code, but also each time any change is made to the
workbook. This means, for example, that each of the Offset lines below causes a
recalculation—each time through the loop. The effect is that the simulation runs
rather slowly. Fortunately, it is possible to change Excel’s recalculation mode from
Automatic, the default mode, to Manual. (To do this, use the Calculation
Options dropdown list on the Formulas ribbon.) In Manual mode, recalculations
take place only when the Calculate method is called from VBA (or the F9 key is
pressed). I originally ran the simulation in Automatic mode. However, when I con-
verted to Manual mode, the run time decreased dramatically (by a factor of
about 7 for a 500-replication run). Try it yourself.

Sub RunSimulation()
' This sub runs the replications of the simulation. The simulation
' model is already set up, so all this sub has to do is force a
' recalculation of the sheet and record the results.

' Loop over the replications.
Dim i As Integer
For i = 1 To nReps

' Show the current replication number on the Explanation sheet.
wsExplanation.Range("RepNumber").Value = i

' Force a recalculation.
Application.Calculate

' Record outputs on the Replication sheet.
With wsReplications.Range("A3")

.Offset(i, 0).Value = i

.Offset(i, 1).Value = wsModel.Range("EndCash").Value

.Offset(i, 2).Value = wsModel.Range("EndStockVal").Value

.Offset(i, 3).Value = wsModel.Range("CumGainLoss").Value

.Offset(i, 4).Value = wsModel.Range("MinPrice").Value

.Offset(i, 5).Value = wsModel.Range("MaxPrice").Value
End With

Next
End Sub

CollectStats Code

The CollectStats sub uses a For loop to go through the simulation outputs, one at
a time. For each, it “sets” the repRange object variable to the range of data in the
Replications worksheet to be summarized. It then uses Excel functions to calcu-
late the summary measures and places them in the Summary worksheet. For

A Stock-Trading Simulation Application 543

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

example, WorksheetFunction.Average(repRange) uses Excel’s AVERAGE function
to calculate the average of the data in repRange.

Sub CollectStats()
' This sub summarizes the results of all replications of the simulation.
Dim i As Integer
Dim repRange As Range

' Loop over the output measures.
For i = 1 To 5

' RepRange is the range on the Replications sheet to summarize.
With wsReplications.Range("A3")

Set repRange = Range(.Offset(1, i), .Offset(nReps, i))
End With

' Use Excel's functions to calculate summary measures, and put
' them on the Summary sheet.
With wsSummary.Range("A3")

.Offset(1, i).Value = WorksheetFunction.Min(repRange)

.Offset(2, i).Value = WorksheetFunction.Max(repRange)

.Offset(3, i).Value = WorksheetFunction.Average(repRange)

.Offset(4, i).Value = WorksheetFunction.StDev(repRange)

.Offset(5, i).Value = WorksheetFunction.Median(repRange)

.Offset(6, i).Value = WorksheetFunction.Percentile(repRange, 0.05)

.Offset(7, i).Value = WorksheetFunction.Percentile(repRange, 0.95)
End With

Next
End Sub

UpdateHistograms Code

The UpdateHistograms sub also loops over the simulation outputs. For each, it
updates the appropriate histogram worksheet (see Figure 25.8), using the results
from the simulation.

A note on Array Functions. Pay particular attention to the line.

Range(.Offset(1, 2), .Offset(10, 2)).FormulaArray = _
"=Frequency(Replications!" & repRange.Address & "," _
& binRange.Address & ")"

Excel’s FREQUENCY function is called an array function. To enter it man-
ually in a worksheet, you need to highlight the range where the frequencies will
be placed, type the formula, and press Ctrl+Shift+Enter. To do this in VBA, you
specify the range where it will be entered and then use the FormulaArray property.
Two other points about this formula are worth noting. First, it is not enough to
specify RepRange.Address in the first argument. Because this range is on a different
worksheet from where the formula is entered, it must be qualified by the worksheet

544 Chapter 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

name or code name. (I use the latter.) Second, the binRange required in the second
argument is the range of upper limits for the bins. These are the values in column
A of the relevant histogram worksheet.

Sub UpdateHistograms()
' This sub changes the settings for histograms of simulation
' data appropriately.

Dim i As Integer, j As Integer
Dim pct5 As Single, pct95 As Single, increment As Single
Dim repRange As Range, binRange As Range

' Loop over the output measures.
For i = 1 To 5

' The histograms each have 10 "bins". The lowest extends
' up to the 5th percentile, the last extends beyond the
' 95th percentile, and the remaining ones are equal length
' beyond these extremes.
pct5 = wsSummary.Range("A9").Offset(0, i).Value
pct95 = wsSummary.Range("A10").Offset(0, i).Value
increment = (pct95 - pct5) / 8

' RepRange contains the data for the histogram.
With wsReplications.Range("A3")

Set repRange = Range(.Offset(1, i), .Offset(nReps, i))
End With

' The histogram sheets contain the data for building the histograms.
' Column A has the bins, column B has labels for the horizontal axis,
' and column C has the frequencies (for the heights of the bars).
With Worksheets("Histogram " & i).Range("A3")

.Offset(1, 0).Value = Round(pct5, 0)

.Offset(1, 1).Value = "<=" & .Offset(1, 0).Value
For j = 2 To 9

.Offset(j, 0).Value = Round(pct5 + (j - 1) * increment, 0)

.Offset(j, 1).Value = Round(.Offset(j - 1, 0), 0) _
& "-" & Round(.Offset(j, 0).Value, 0)

Next
.Offset(10, 1).Value = ">" & Round(.Offset(9, 0).Value, 0)
Set binRange = Range(.Offset(1, 0), .Offset(9, 0))

' Excel's Frequency function is an array formula, so the
' appropriate property is the FormulaArray property.
Range(.Offset(1, 2), .Offset(10, 2)).FormulaArray = _

"=Frequency(Replications!" & repRange.Address & "," _
& binRange.Address & ")"

End With
Next

End Sub

ViewChangeInputs Code

The ViewChangeInputs sub unhides and activates the Inputs worksheet, allow-
ing the user to view the inputs or enter different inputs before running the
simulation.

A Stock-Trading Simulation Application 545

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub ViewChangeInputs()
' This sub runs when the user clicks the "View/change
' inputs" button on the Explanation sheet.

' Unhide and activate the Inputs sheet so that the user
' can view or change them.
With wsInputs

.Visible = True

.Activate
End With

End Sub

25.7 Summary

This application illustrates how to run a spreadsheet simulation model with VBA.
You first develop a spreadsheet simulation model, including one or more cells with
random functions, in a Model worksheet. To replicate this model, you use a For
loop, inside which you call the Calculate method of the Application object to force
a recalculation with new random numbers. The rest is a simple matter of recording
selected outputs on a Replications worksheet and then summarizing them as
desired at the end of the simulation. Because all of this can take a while, especially
with many replications of a complex model, it is a good idea to set Excel’s calcula-
tion mode to Manual, rather the Automatic, before running the simulation.

EXERCISES

1. Prove to yourself that the simulation runs much faster when Excel’s calculation
mode is set to Manual. Run the simulation in the current Stock Trading.xlsm
file for about 250 replications, with calculation mode set to Manual. Then change
the calculation mode to Automatic and run the simulation again. Keep track of
the run time for each—you should see a noticeable difference.

2. Experiment with the same basic buy-low/sell-high trading strategy, but with dif-
ferent percentages in column J of the Inputs worksheet. Can you find any strate-
gies that consistently outperform others?

3. Repeat the previous exercise, but now change the basic type of strategy to buy
high/sell low. That is, if the price goes up, you buy more shares, whereas if
it goes down, you sell. What changes do you need to make to the simulation
model? Do you need to make any changes to the VBA code? Do these strategies
tend to do better or worse than those in the previous exercise?

4. Change the application so that there is no limit on the shares the investor can
buy. For example, if his strategy tells him to buy 25% more shares but he doesn’t
have enough cash to do so, he borrows the cash he needs. Now his cash positions
in columns H and J of the Model worksheet can be negative, indicating that he
owes money to the lender. Capture the maximum he ever owes during the year
in an extra output cell, keep track of it, and summarize it, just like the other out-
puts, with your VBA code.

546 Chapter 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Change the application so that if the investor ever gets to a point where his
cumulative gain for the year is above some threshold level, he sells his stock and
does no more trading for the rest of the year. Your revised application should ask
for the threshold with an input box. Also, it should add an extra output cell: the
number of days it takes to reach the threshold (which is defined as 251 in case he
never gets there). Keep track of this output and summarize it, just like the other
outputs, with your VBA code.

A Stock-Trading Simulation Application 547

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Capital Budgeting Application

26.1 Introduction

This application illustrates how VBA can be used to compare an optimal procedure
with a good but nonoptimal heuristic procedure. This is done for a capital budget-
ing problem, where a company must decide which of several projects to undertake.
Each project incurs an initial cost and provides a stream of future cash flows, summa-
rized by a net present value (NPV). Each project is an all-or-nothing proposition—it
cannot be undertaken partway. Other than that, the only constraint is that the
sum of the initial costs of the projects undertaken cannot exceed a given budget.
The objective is to find the subset of projects that maximizes the total NPV and
stays within the budget.

One solution method is to solve the problem optimally with Excel’s Solver,
using binary decision variable cells to indicate which projects to undertake.
Another possibility is to use an intuitive heuristic procedure that operates as fol-
lows. It first ranks the projects in decreasing order of the ratio of NPV to initial
cost (“bang for buck”). Then it goes through the list of projects in this order,
adding each as long as there is enough money left in the budget. The application
compares the total NPVs obtained by these two methods.

New Learning Objectives: VBA

● To illustrate how a simple heuristic can be implemented in VBA with looping
and arrays.

● To illustrate how random inputs for a model can be generated by VBA as
formulas in a worksheet and how they can then be “frozen” with the Copy
and PasteSpecial methods of Range objects.

New Learning Objectives: Non-VBA

● To compare a simple heuristic solution method with an optimal integer
programming method.

● To show the effect of the Solver’s Integer Optimality setting in an integer pro-
gramming model.

26

548

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26.2 Functionality of the Application

The application has the following functionality:

1. It first asks the user for the total number of projects, which can be any number
up to 30. It then randomly generates the inputs for a model with this many
projects—the initial costs, the NPVs, and the budget. It does this so that there
is a large enough budget to undertake many, but not all, of the projects.

2. Given the inputs, a capital-budgeting model is developed in the (hidden)
Model worksheet, and it is solved as a 0-1 integer programming model with
Solver. The heuristic procedure is also used to solve the same problem. The
outputs from both procedures are shown in the Report worksheet, including
the heuristic’s total NPV as a percentage of Solver’s total NPV.

3. The program can be repeated as often as the user desires, using different ran-
dom inputs on each run.

4. To show the effect of the Solver’s Integer Optimality setting (which is set to
0 in all of the Solver runs), a worksheet named Interesting accompanies the file.
It shows one problem where the optimal solution was not found by Solver
when the Integer Optimality setting was set to 5%. (This worksheet is not really
part of the VBA application, but it illustrates an interesting aspect of Solver.)1

26.3 Running the Application

The application is stored in the Capital Budgeting.xlsm file. Upon opening it, the
user sees the Explanation sheet in Figure 26.1. When the button on this sheet is
clicked, the dialog box in Figure 26.2 appears and asks the user for a number of projects
(up to 30). It then randomly generates the inputs for a capital budgeting model with
this many projects in the Model worksheet, solves it optimally with Solver, performs
the heuristic on this same problem, and reports the results in the Report worksheet.

Typical Report worksheets from two separate runs of the application appear
in Figures 26.3 and 26.4. Each of these problems has 30 potential projects. The
first is a case where the heuristic obtains the optimal solution. The second is a
case where the heuristic’s NPV is only about 95% as large as the optimal NPV.
By running the application on many problems of varying sizes, it becomes appar-
ent that the heuristic is quite good, often finding the optimal solution and almost
always coming within a few percentage points of the optimal solution.

The three buttons at the bottom of the Report worksheet give the user three
options. The user can solve another problem by clicking the left button. Alterna-
tively, the user can view the (hidden) Model worksheet, shown in Figure 26.5
(with several hidden columns), or the Interesting sheet (not shown here). Each
of these worksheets has a button that leads back to the Report worksheet.

1Solver’s Integer Optimality setting was previously called the Tolerance. Also, the previous default set-
ting was 5%; now it is 1%.

A Capital Budgeting Application 549

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 26.1 Explanation Worksheet

Figure 26.2 Number of Projects Input Box

Figure 26.3 Example Where Heuristic Is Optimal

550

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26.4 Setting Up the Excel Sheets

The Capital Budgeting.xlsm file has four worksheets: the Explanation sheet
in Figure 26.1, the Report sheet in Figures 26.3 and 26.4, the Model sheet in
Figure 26.5, and the Interesting sheet (not shown here, but just another version

Figure 26.4 Example Where Heuristic Is Not Optimal

Figure 26.5 Optimization Model

A Capital Budgeting Application 551

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of the Model sheet). The Model and Report worksheets cannot be set up
completely at design time because they depend on the number of projects. This
number determines the number of columns that are necessary in the model. (See
rows 4–8 in Figure 26.5.) However, it is possible to develop templates for these
sheets. The Model template is shown in Figure 26.6, where the range names
that can be created in the Model worksheet at design time are listed.

The Report worksheet template is shown in Figure 26.7, again with the range
names used. Note that cell C15 contains the formula =TotNPVHeur/TotNPVOpt.
Its current value is undefined (0 divided by 0) because both total NPVs are currently
0, but it reports correctly when the application runs.

Figure 26.6 Model Worksheet Template

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

A B C D E F G
Capital Budge�ng egnaRledoM names at design �me:

Budget =Model!D11
11B!ledoM=tsoCtoTledoM
31B!ledoM=VPNtoTtnemtsevnI

Investment level
NPV
Investment cost
Bang-for-buck

Budget constraint Spent Available
<=

Total NPV

Return to the Report sheet

Note that the Solver Integer Op�mality se�ng has been set to 0.

Figure 26.7 Report Worksheet Template

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

FEDCBA

Op�mal Investment Policy Range names at design �me:
InvestHeur =Report!C10

Investments InvestOpt =Report!C4
Le�over cash Le�overHeur =Report!C11
Total NPV Le�overOpt =Report!C5

TotNPVHeur =Report!C12
Investment Policy from Heuris�c Policy TotNPVOpt =Report!C6

Investments
Le�over cash
Total NPV

Subop�mal NPV as a % of op�mal NPV
#DIV/0!

Run another problem with new inputs View Model sheet View Interes�ng sheet

552 Chapter 26

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

VBA is then used to fill in these templates at run time. (Again, the Interesting
worksheet is not really a part of the application; it is appended only to illustrate
the effect of Solver’s Integer Optimality setting. Therefore, it was created at
design time and never changes.)

26.5 Getting Started with the VBA

This application requires a user form named frmProjects, a module, and a refer-
ence to Solver.2 Once these items are added, the Project Explorer window
appears as in Figure 26.8.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. It uses a For Each
loop to hide all worksheets except the Explanation worksheet.

Private Sub Workbook_Open()
Dim ws As Worksheet
With wsExplanation

.Activate

.Range("F4").Select
End With
For Each ws In ThisWorkbook.Worksheets

If ws.CodeName <> "wsExplanation" Then ws.Visible = False
Next
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

2 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users of pre-2010 versions of Excel will see this message.

Figure 26.8 Project Explorer Window

A Capital Budgeting Application 553

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26.6 The User Form

The frmProjects form, shown in Figure 26.9, contains the usual OK and Cancel
buttons, an explanation label, and a text box named txtNProjects and an accompa-
nying label. The code behind this form, listed below, is completely straightfor-
ward. The whole purpose is to capture the number of projects in the variable
nProjects, a number that should be no larger than 30.

Private cancel As Boolean

Public Function ShowProjectsDialog(nProjects As Integer) As Boolean
Call Initialize
Me.Show
If Not cancel Then

nProjects = txtNProjects.Text
End If
ShowProjectsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
txtNProjects.Text = ""

End Sub

Private Function Valid() As Boolean
Dim nProj As Integer
Valid = True
' Make sure the box is not empty and is numeric.
If txtNProjects.Text = "" Or Not IsNumeric(txtNProjects.Text) Then

Valid = False
MsgBox "Enter a positive number of projects.", _

vbInformation, "Invalid entry"
txtNProjects.SetFocus
Exit Function

End If

' Check that the number of projects is from 1 to 30, the most
' allowed in this application.
nProj = txtNProjects.Value
If nProj < 1 Or nProj > 30 Then

Valid = False
MsgBox "Enter a number from 1 to 30.", _

vbInformation, "Invalid entry"
txtNProjects.SetFocus

End If
End Function

Figure 26.9 frmProjects Design

554 Chapter 26

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

26.7 The Module

The main work is performed by the code in the module. When the user clicks the
button on the Explanation worksheet (or the left button on the Report work-
sheet), the MainCapitalBudgeting sub runs. It “shows” frmProjects and then calls
other subs that perform the individual tasks.

Option Statements and Module-Level Variables

Option Explicit

' Definitions of module-level variables:
' nProjects - number of potential projects (<=30)
' zeroOne - binary array, indicates which projects are chosen by the heuristic
' leftoverHeur - amount of budget left over using heuristic
' totalNPVHeur - total NPV using heuristic
' leftoverOpt - amount of budget left over from the optimal solution
' totalNPVOpt - total NPV from the optimal solution

Dim nProjects As Integer
Dim zeroOne(1 To 30) As Integer
Dim leftoverHeur As Single, totalNPVHeur As Single
Dim leftoverOpt As Single, totalNPVOpt As Single

MainCapitalBudgeting Code

Sub MainCapitalBudgeting()
' The macro is run when the user clicks on the button on the Explanation sheet.

Application.ScreenUpdating = False

' Get the number of potential projects.
If frmProjects.ShowProjectsDialog(nProjects) Then

' Calculate random inputs for the model (NPVs, costs, and budget).
Call GetInputs
' Sort projects on "bang for buck".
Call SortProjects
' Calculate the optimal investments.
Call RunSolver
' Calculate the investments based on the heuristic.
Call Heuristic

A Capital Budgeting Application 555

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Report the results.
Call CreateReport

End If
End Sub

GetInputs Code

The GetInputs sub uses the combination of Excel’s RAND and NORMINV
functions to generate normally distributed values for the budget and for the
initial costs and NPVs of the projects. The details are described in the com-
ments below. Actually, this sub enters formulas for these random values, and
it then “freezes” them with the Copy and PasteSpecial/Values method. (There is
no particular reason for using the normal distribution here. I simply want to gener-
ate “representative” problems randomly, and the normal distribution works as well
as any other distribution.) Finally, an initial solution of all 1’s is used, so that all pro-
jects are initially undertaken. Actually, any other initial solution could be used, and
the one used here almost certainly overspends the budget.

Sub GetInputs()
' This sub randomly generates inputs for a new version of the capital
' budgeting model.
Dim i As Integer

' Unhide and activate the Model sheet.
With wsModel

.Visible = True

.Activate

With .Range("A4")
' Clear previous data and name some ranges.
Range(.Offset(0, 1), .Offset(4, 1).End(xlToRight)).ClearContents
For i = 1 To nProjects

.Offset(0, i).Value = i
Next
Range(.Offset(1, 1), .Offset(1, nProjects)).Name = "InvLevel"
Range(.Offset(2, 1), .Offset(2, nProjects)).Name = "NPV"
Range(.Offset(3, 1), .Offset(3, nProjects)).Name = "InvCost"

' Calculate the ratio of NPV to investment cost (bang for buck).
Range(.Offset(4, 1), .Offset(4, nProjects)).FormulaR1C1 = "=R[-2]C/R[-1]C"

End With

' Randomly generate NPVs, costs, and budget. Use the Round function,
' with second argument -2, to round these to the nearest $100. The
' parameters used here have been chosen to generate "interesting" models.

' Each NPV is normal, mean $25000, standard deviation $6000.
.Range("NPV").Formula = "=Round(NORMINV(RAND(),25000,6000),-2)"

' Each cost is between 10% and 40% of corresponding NPV.
.Range("InvCost").Formula = "=Round(NPV*(.1+.3*RAND()),-2)"

' The budget is between 30% and 90% of the total cost of all investments.
.Range("Budget").Formula = "=Round(SUM(InvCost)*(.3+.6*RAND()),-2)"

' "Freeze" the random numbers.
With Union(.Range("NPV"), .Range("InvCost"))

556 Chapter 26

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Copy

.PasteSpecial Paste:=xlValues
End With
With .Range("Budget")

.Copy

.PasteSpecial Paste:=xlValues
End With

' Get rid of the dotted line around the copy range.
Application.CutCopyMode = False

' Use all 1's as an initial solution.
.Range("InvLevel").Value = 1

' Calculate the total investment cost and the total NPV.
.Range("TotCost").Formula = "=Sumproduct(InvCost,InvLevel)"
.Range("TotNPV").Formula = "=Sumproduct(NPV,InvLevel)"

End With
End Sub

SortProjects Code

The SortProjects sub sorts the projects according to “bang for buck,” putting
those with the largest ratios of NPV to investment cost to the right. Note that
the Orientation argument of the Sort method must be used because the values are
in a row, not a column.

Sub SortProjects()
' This sub sorts the projects in increasing order of "bang for buck."
With wsModel.Range("A4")

Range(.Offset(1, 1), .Offset(4, nProjects)).Sort _
Key1:=wsModel.Range("B8"), Order1:=xlAscending, _
Orientation:=xlLeftToRight, Header:=xlNo

End With
End Sub

RunSolver Code

The RunSolver sets up and then runs Solver. It must be reset and then set up each
time through, just in case the size of the problem (the number of projects) has chan-
ged. Note how the Integer Optimality setting is set to 0 in the SolverOptions state-
ment with the IntTolerance argument. This guarantees that Solver will continue to
search until it has found the optimal solution. The nonoptimal solution on the Inter-
esting sheet occurred because this setting was 5%. (The SolverWithout argument in
this statement indicates that integer constraints should not be ignored.)

Sub RunSolver()
' Set up and run the Solver to find the optimal integer solution.
With wsModel

SolverReset
SolverOK SetCell:=.Range("TotNPV"), MaxMinVal:=1, _

ByChange:=.Range("InvLevel"), Engine:=1

A Capital Budgeting Application 557

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SolverOptions SolveWithout:=False, IntTolerance:=0
SolverAdd CellRef:=.Range("TotCost"), Relation:=1, FormulaText:="Budget"
SolverAdd CellRef:=.Range("InvLevel"), Relation:=5
SolverSolve UserFinish:=True

' Capture the optimal total NPV and the amount of the budget left over.
totalNPVOpt = .Range("TotNPV").Value
leftoverOpt = .Range("Budget").Value - .Range("TotCost").Value

End With
End Sub

Heuristic Code

The Heuristic sub implements the heuristic. It is a perfect example of looping and
arrays. The first For loop sets all zeroOne array elements to 0. Then a single pass
through the second For loop checks whether there is enough money left in the
budget for each project, where the projects are examined in decreasing order of
bang for buck. If enough money is left, the project’s zeroOne value is set to 1,
its investment cost is subtracted from the remaining budget, and its NPV is
added to the total NPV for the heuristic.

Sub Heuristic()
' This sub finds the heuristic solution by choosing the investments in decreasing
' order of bang for buck.
Dim i As Integer

' Initialize values so that no projects are undertaken and the whole budget is available.
For i = 1 To nProjects

zeroOne(i) = 0
Next
totalNPVHeur = 0
leftoverHeur = Range("Budget").Value

' Loop through all projects in decreasing order of "bang for buck."
' Include the project only if its cost is no more than the remaining budget.
With wsModel

For i = nProjects To 1 Step -1
If .Range("InvCost").Cells(i).Value <= leftoverHeur Then

leftoverHeur = leftoverHeur - .Range("InvCost").Cells(i).Value
totalNPVHeur = totalNPVHeur + .Range("NPV").Cells(i).Value
zeroOne(i) = 1

End If
Next

End With
End Sub

CreateReport Code

The CreateReport sub places the results from Solver and the heuristic in the Report
worksheet. The main difficulty in doing this is creating strings that list the projects
undertaken in each solution. (See the lists of investments in Figure 26.3, for
example.) To see how this works, suppose the optimal solution undertakes projects
4, 6, 9, and 10. The string "4,6,9,10" is then created and placed in the InvestOpt

558 Chapter 26

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cell of the Report worksheet. This string and the similar string for the heuristic
solution are “built” one step at a time by using string concatenation and the For
loop in the middle of the sub. Note that the number of projects undertaken must
be known so that the For loop knows when to stop adding a comma to the string.
(There is no comma after 10 in the above string.) Therefore, the first For loop in
the sub counts the number of projects undertaken by each solution. Then this
count variable can be used in an If construction in the second For loop to indicate
when to stop adding the comma.

Sub CreateReport()
' This sub shows the results, so that a comparison of the optimal and
' heuristic solutions can be made.
Dim i As Integer
Dim investOpt As String, investHeur As String
Dim nOpt As Integer, nHeur As Integer
Dim counter1 As Integer, counter2 As Integer

' Hide the Model sheet, then unhide and activate the Report sheet.
wsModel.Visible = False
With wsReport

.Visible = True

.Activate
Range("A1").Select

' Find the number of investments under the optimal plan (NOpt) and
' under the suboptimal plan (NHeur).
nOpt = 0
nHeur = 0
For i = 1 To nProjects

If wsModel.Range("InvLevel").Cells(i).Value = 1 Then
nOpt = nOpt + 1

End If
If zeroOne(i) = 1 Then

nHeur = nHeur + 1
End If

Next

' Create strings investOpt and investHeur that list the investments undertaken
' by the two plans. First, initialize strings and counters.
investOpt = ""
investHeur = ""
counter1 = 0
counter2 = 0

' Loop through all projects.
For i = 1 To nProjects

' Check whether this project is in the optimal solution.
If wsModel.Range("InvLevel").Cells(i).Value = 1 Then

counter1 = counter1 + 1
' Add a comma to the string only if this investment is not the last one.
If counter1 < nOpt Then

investOpt = investOpt & i & ","
Else

investOpt = investOpt & i
End If

End If

A Capital Budgeting Application 559

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Check whether this project is selected by the heuristic.
If zeroOne(i) = 1 Then

counter2 = counter2 + 1
' Add a comma to the string only if this investment is not the last one.
If counter2 < nHeur Then

investHeur = investHeur & i & ","
Else

investHeur = investHeur & i
End If

End If
Next

' Enter the results in the Report sheet, where the range names were created
' in this sheet at design time.
.Range("InvestOpt").Value = investOpt
.Range("InvestHeur").Value = investHeur
.Range("LeftoverOpt").Value = leftoverOpt
.Range("TotNPVOpt").Value = totalNPVOpt
.Range("LeftoverHeur").Value = leftoverHeur
.Range("TotNPVHeur").Value = totalNPVHeur

End With
End Sub

Navigation Code

The remaining “View” subs (not shown here) allow for easy navigation through
the application. They are attached to the corresponding buttons on the Model,
Interesting, and Report worksheets.

26.8 Summary

This application has illustrated how VBA can be used to generate representative
problems of a certain type and then compare the optimal Solver solutions for
these problems to heuristic solutions. The context here is capital budgeting, but
the same approach could be used to evaluate heuristics to other types of manage-
ment science problems.

EXERCISES

1. The RunSolver sub sets the Integer Optimality setting to 0 to ensure that it
gets the optimal solution. Change the application so that instead of running the
heuristic, Solver is run once with this setting at 0, and it is run again with the
intTolerance argument omitted in the SolverOptions statement (which will set
the setting to its default value). Also, change labels appropriately on the Report
worksheet. Now the report should compare a solution known to be optimal with
one that might not be optimal. Then run the application a few times. Do the two
solutions ever differ? (The solution on the Interesting sheet shows that they can
differ, but it might not happen very often.)

560 Chapter 26

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. The GetInputs sub generates random inputs with statements such as the following:

.Range("NPV").Formula = "=ROUND(NORMINV(RAND(),25000,6000),-2)"

This formula fills the NPV range in the Model worksheet with the specified for-
mula. Later, it “freezes” these formulas by copying and then pasting special with
the values option. Another possible approach is the following. Inside a For loop
that goes over all investments, replace the above line by

randNPV = Round(Application.WorksheetFunction.Normlnv(Rnd, 25000, 6000), -2)

This line also generates a random NPV and stores it in the variable randNPV. It
does so with the VBA random number generator Rnd, not with Excel’s RAND
function, and it borrows Excel’s NORMINV function to get a normally distrib-
uted random NPV. It should then place the randNPV value in the appropriate
cell of the Model worksheet. However, no copying and pasting are necessary
now. Change the GetInputs sub to implement this approach for all random inputs.
If you want different random numbers each time you run the application, you
should also insert a Randomize line near the top of the MainCapitalBudgeting sub.
(This approach is not necessarily better or worse than the formula approach; it is
simply an alternative.)

3. Change the heuristic so that it works as follows. First, it orders the investments in
increasing order of their investment costs. Then it proceeds as before, scanning
from left to right and choosing each investment as long as there is enough budget
left to afford it. How does this heuristic compare with the optimal solution? What
would you expect?

4. Repeat the previous problem, but now use the heuristic that orders the invest-
ments in decreasing order of their NPVs.

5. (More difficult) Change the model so that some investments incur an investment
cost right away, some incur an investment cost a year from now, and some incur
an investment cost right away and a year from now. There are now two budget
amounts: the amount available right away and another amount that is allocated
for a year from now. A decision on each investment must be made right away—
to invest (and gain an NPV) or not to invest. The amount that can be spent a
year from now includes the budget set aside for a year from now, plus any of the
current budget not used. The following heuristic is proposed. It sorts the invest-
ments in decreasing order of the ratio of NPV to the total investment cost. It
then goes through the investments from left to right and chooses each investment
as long as there is enough money in each year’s budget to afford it. (It never con-
siders the possibility of having leftover money from the year 1 budget in year 2.)
Develop an application similar to the one in the chapter that implements this new
model and compares the heuristic to the optimal Solver solution for randomly
generated problems. (If you like, you can use the method described in Exercise 2
to generate the random inputs.)

A Capital Budgeting Application 561

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Regression Application

27.1 Introduction

This application uses regression to estimate the relationship between any two vari-
ables, such as demand and price. It creates four scatterplots on separate chart
sheets, each with a different type of trend line (linear, power, exponential, and
logarithmic) superimposed, and calculates the parameters and the mean absolute
percentage error (MAPE) for the best-fitting trend line of each type.

New Learning Objectives: VBA

● To illustrate how RefEdit controls can be used in user forms to specify ranges
from a worksheet.

● To show how formulas can be entered in cells with the FormulaR1C1 prop-
erty, using a combination of absolute and relative addresses.

New Learning Objectives: Non-VBA

● To illustrate how the relationship between two variables can be estimated by
well-known and widely accepted trend lines, and how the fits from these
trend lines can be compared with a measure such as MAPE.1

27.2 Functionality of the Application

This application provides the following functionality.

1. The user first selects data for two variables from the Data worksheet. (The
sample price/demand data can be used, or the user can enter new data. In
the latter case, the new data should be entered in the Data worksheet before
running the application.) The data for the two variables should come in pairs
(a price and a demand for each of several time periods, for example). One
variable is designated as the independent variable; the other is designated as
the dependent variable.

27

1Three of the four trend lines in this application are actually trend curves, but following Excel’s termi-
nology, I will refer to all of the as trend lines.

562

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Four chart sheets named Linear, Power, Exponential, and Logarithmic are
created. Each chart is a scatterplot of the two variables, with the appropriate
trend line (linear, power, exponential, or logarithmic) superimposed.

3. All calculations are performed in the Report worksheet. This worksheet con-
tains a copy of the data, logarithms of the data (required for all but the linear
case), formulas for the parameters of the best-fitting trend line of each type,
columns of absolute percentage errors in predicting one variable from the
other for each trend line, and the MAPE for each trend line.

27.3 Running the Application

The application is in the file Regression.xlsm. When this file is opened, the
explanation in Figure 27.1 appears. When the user clicks the button, the Data
worksheet and the dialog box in Figure 27.2 appear. The user must supply the
ranges for the two variables, which should contain variable names at the top.
Note that the data set can contain more than two variables, but this application
works with only two of them. The only requirement is that the two ranges identi-
fied in the dialog box must have equal numbers of cells, because the data (price
and demand, for example) must come in pairs.

Once the ranges are specified, the application performs calculations on the
Report worksheet and creates charts on four separate chart sheets named Linear,
Power, Exponential, and Logarithmic. The completed Report worksheet appears
in Figure 27.3. It shows the absolute percentage errors for the four fits in col-
umns H, I, J, and K, and it shows summary measures of the fits in the range C5:
F7. (The comments in cells C4 through F4 remind the user of the equation for
each trend line.) Each chart sheet displays a scatterplot of the data, a superim-
posed trend line, and the equation of that trend line. For example, Figure 27.4
shows the scatterplot and the power trend line on the Power chart sheet.

Figure 27.1 Explanation Worksheet

A Regression Application 563

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 27.3 Report Worksheet Results

1
2
3

4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G H I J K
Calcula�ons and report

Parameters of best-fi�ng equa�ons
Linear Power Exponen�al Logarithmic

a 6532.4110 1195683.7341 9925.9225 20645.2131
b -23.7515 -1.1990 -0.0081 -3530.0722
MAPE 2.79% 2.97% 2.87% 2.86%

Absolute percentage errors
cimhtiragoLlaitnenopxErewoPraeniL)dnameD(goL)ecirP(goLdnameDecirP

%56.3%89.3%79.4%18.24731.82448.40243721
%13.1%61.1%99.0%84.15131.88798.40043431
%46.1%47.1%57.1%16.14680.87219.40523631
%93.5%63.5%35.5%52.55431.85439.40143931
%43.0%63.0%21.0%45.08760.86149.40913041
%92.2%92.2%65.2%50.24680.88849.40523141
%60.5%39.4%84.4%05.56859.72799.40682841
%33.5%81.5%47.4%87.50849.79300.50382941
%61.7%13.7%96.7%77.63850.83710.50613151
%75.1%83.1%30.1%49.15449.70730.50282451
%12.2%10.2%96.1%55.22039.74340.50872551
%85.3%87.3%00.4%33.35279.72650.50092751
%80.2%92.2%24.2%29.19049.79860.50182951
%60.0%52.0%02.0%55.05558.70811.50852761
%84.1%13.1%68.1%88.00238.70421.50252861
%76.2%45.2%14.3%86.16597.77141.50342171

The values to the le� and below show the parameters
of the best fits and the corresponding absolute
percentage errors and MAPEs. See the Linear, Power,
Exponen�al, and Logarithmic sheets for the
corresponding charts.

Figure 27.2 Variable Ranges Dialog Box

564 Chapter 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27.4 Setting Up the Excel Sheets

This Regression.xlsm file contains three worksheets and four chart sheets. The
worksheets are the Explanation sheet in Figure 27.1, the Data sheet in Figure 27.2,
and the Report sheet in Figure 27.3. The Data sheet must contain data for at least
two variables. A template in the Report sheet can be created at design time with
any sample data, as indicated in Figure 27.5. The application always places the
data in columns B and C of this sheet, starting in row 10 (with labels in row 9).
Then four chart sheets, named Linear, Power, Exponential, and Logarithmic, can

Figure 27.4 Scatterplot and Power Trend Line

y = 1E+06x–1.199

2187

2387

114.3 124.3 134.3 144.3 154.3 164.3 174.3 184.3

2587

2787

2987

3187

3387

3587

D
em

an
d

Price

Power Fit

3787

This equation implies that when X
increases by 1%, Y changes by a
constant percentage. (For this
reason, it is called a “constant
elasticity” equation.) This constant
percentage is approximately the
exponent of X.

Figure 27.5 Report Worksheet Template

1
2
3

4
5
6
7

8
9

A B C D E F G H I J K
Calcula�ons and report

Parameters of best-fi�ng equa�ons
Linear Power Exponen�al Logarithmic

a
b
MAPE

Absolute percentage errors
cimhtiragoLlaitnenopxErewoPraeniL)dnameD(goL)ecirP(goLdnameDecirP

The values to the le� and below show the parameters
of the best fits and the corresponding absolute
percentage errors and MAPEs. See the Linear, Power,
Exponen�al, and Logarithmic sheets for the
corresponding charts.

A Regression Application 565

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

be created at design time with Excel’s chart tools, using the sample data in columns
B and C of the Report sheet template as the source data for scatterplots. Also, the
trend lines and the associated equations for them can be placed on the charts by
using Excel’s trendline option (found by right-clicking a chart series and selecting
Add Trendline). The important point is that these charts can be created, along
with any desired formatting, at design time. The only changes required at run
time are to their source data, titles, and axis settings.

27.5 Getting Started with the VBA

This application requires a single user form named frmData and a module. Once
they are inserted, the Project Explorer window will appear as in Figure 27.6.

Workbook_Open Code

To guarantee that the Explanation sheet appears when the file is opened, the fol-
lowing code is entered in the ThisWorkbook code window. This code also hides
most of the other sheets.

Private Sub Workbook_Open()
Dim cht As Chart
With wsExplanation

.Activate

.Range("F4").Select
End With
wsReport.Visible = False
For Each cht In ThisWorkbook.Charts

cht.Visible = False
Next

End Sub

Figure 27.6 Project Explorer Window

566 Chapter 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27.6 The User Form

The design of the frmData forms appears in Figure 27.7 It includes the usual
OK and Cancel buttons, several labels, and two controls named rfeRange1 and
rfeRange2 for the data ranges. These latter two boxes are called RefEdit controls.
They are controls perfectly suited for allowing a user to select ranges. The RefEdit
control is the lower left-hand control in the Control Toolbox in Figure 27.8.

A Note about RefEdit Controls. Remember from Chapter 11 that RefEdit
controls act somewhat differently from the other controls on the Control Tool-
box in Figure 27.8. Specifically, if you use the Object Browser to look for online
help on the RefEdit control under the MSForms library, you won’t find it. The
RefEdit control has its own library, which you can open by using the Tools →

References menu item in the VBE and checking the RefEdit Control box.
There you can find the desired online help under the RefEdit library. This brings
up another curious point. You do not have to set a reference to the RefEdit Con-
trol to use one of these controls on a user form. As soon as you place a RefEdit
control on a user form, the RefEdit Control box is automatically checked in the
list of references.

Figure 27.7 frmData Design

Figure 27.8 Control Toolbox

A Regression Application 567

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The event handlers for frmData are listed below. The Initialize sub clears the
two range boxes. The ShowDataDialog function captures the user’s inputs after the
Valid function checks for errors. (Other than checking for blank boxes, the only other
error check is to ensure that the two specified ranges have the same number of cells.)
Note that the specified ranges are captured in the Range variables range1 and range2.
Then the variable names are captured in the variables var1Name and var2Name, and
the data ranges are captured in the variables var1Range and var2Range. (The latter two
must be captured with the keyword Set because they are object variables.)

Note that the Value (or Text) property of a RefEdit control returns the
address of the designated range as a string. Then a line such as

Set range1 = Range(rfeRange1.Value)

can be used to define the Range object variable range1.

Private cancel As Boolean

Public Function ShowDataDialog(var1Name As String, var2Name As String, _
var1Range As Range, var2Range As Range, nObs As Integer) As Boolean

Dim ctl As Control
Dim nCells As Integer
Dim range1 As Range, range2 As Range

Call Initialize
Me.Show
If Not cancel Then

' Capture names and ranges.
Set range1 = Range(rfeRange1.Text)
Set range2 = Range(rfeRange2.Text)
' By now, we know each range has the same number of cells.
nCells = range1.Rows.Count

var1Name = range1.Cells(1).Value
var2Name = range2.Cells(1).Value
Set var1Range = Range(range1.Cells(2), range1.Cells(nCells))
Set var2Range = Range(range2.Cells(2), range2.Cells(nCells))
nObs = nCells - 1

End If
ShowDataDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
rfeRange1.Value = ""
rfeRange2.Value = ""

End Sub

Private Function Valid() As Boolean
Dim ctl As Control
Dim nCells1 As Integer, nCells2 As Integer
Dim range1 As Range, range2 As Range

Valid = True
' Check whether any box is empty.
For Each ctl In Me.Controls

If TypeName(ctl) = "RefEdit" Then

568 Chapter 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If ctl.Text = "" Then
Valid = False
MsgBox "Enter a range in each box.", vbInformation
ctl.SetFocus
Exit Function

End If
End If

Next

' Capture names and ranges.
Set range1 = Range(rfeRange1.Text)
Set range2 = Range(rfeRange2.Text)
nCells1 = range1.Rows.Count
nCells2 = range2.Rows.Count

' Check that both ranges are of the same length.
If nCells1 <> nCells2 Then

Valid = False
MsgBox "Make sure the two ranges have equal numbers " _

& "of cells", vbExclamation, "Improper selections"
rfeRange1.SetFocus
Exit Function

End If
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
wsExplanation.Activate
Range("F4").Select
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

27.7 The Module

Most of the work is performed by the VBA code in the module. This code
is listed below. The Main sub is attached to the button on the Explanation
worksheet. In turn, it first uses a DataSheetExists function to check whether
there is a Data sheet, it shows the user form, and then it calls the subs Transfer-
Data, ModifyCharts, and DoCalculations. The module-level variables are listed
below. Just remember that index 1 is for the independent variable on the hori-
zontal axis and index 2 is for the dependent variable on the vertical axis.

A Regression Application 569

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Option Statement and Module-Level Variables

Option Explicit

' Definitions of module-level variables
' nObs - number of observations for each variable
' var1Range - range of the data on the horizontal axis
' var1LogRange - range of logs of data in var1Range
' var1Min - smallest observation in var1Range
' var1Max - largest observation in var1Range
' var1Name - descriptive name of horizontal axis variable
' var2Range, var2LogRange, var2Min, var2Max,
' var2Name - similar for vertical axis variable
' chartDataRange - range containing both variables for use in scatterplot

Dim nObs As Integer
Dim var1Range As Range, var1LogRange As Range
Dim var1Min As Single, var1Max As Single, var1Name As String
Dim var2Range As Range, var2LogRange As Range
Dim var2Min As Single, var2Max As Single, var2Name As String
Dim chartDataRange As Range

Main Code

Sub Main()
' This sub runs when the user clicks on the button on the Explanation sheet.

' Specify the data on the Data sheet to be used.
If DataSheetExists Then

' Note that the refEdit controls won’t work correctly if
' ScreenUpdating is turned off.
If frmData.ShowDataDialog(var1Name, var2Name, _

var1Range, var2Range, nObs) Then
' Transfer the data to the Report sheet and perform the analysis.
Application.ScreenUpdating = False
Call TransferData
Call ModifyCharts
Call DoCalculations
Application.ScreenUpdating = True

End If
End If

End Sub

Function DataSheetExists() As Boolean
' This sub gets the data on the two variables from the Data sheet.

' If there is a Data sheet, activate it.
DataSheetExists = True
On Error Resume Next
wsData.Activate
If Err.Number <> 0 Then

DataSheetExists = False
MsgBox "There should be a Data sheet that contains the " _

& "data you want to analyze.", vbInformation

570 Chapter 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With wsExplanation
.Activate
.Range("F4").Select

End With
End If

End Function

TransferData Code

The TransferData sub copies the selected data in the Data worksheet to columns B
and C of the Report worksheet. When Excel creates a scatterplot (a scatter chart in
Excel’s terminology), it automatically places the variable in the leftmost column on
the horizontal axis. Therefore, the variable designated as the independent variable is
copied to column B, and the variable designated as the dependent variable is copied
to column C. Note that the var1Range and var2Range object variables are set to the
data ranges in columns B and C. Then the chartDataRange variable is set to their
union—both columns B and C—for later use as the source range of the scatterplots.

Sub TransferData()
' This sub transfers the data to the Report sheet, and sets up
' that sheet for further analysis.

' Unhide and activate the Report sheet.
With wsReport

.Visible = True

.Activate

' Clear any data from a previous run.
.Range("B9").CurrentRegion.ClearContents
With .Range("H9")

Range(.Offset(1, 0), .End(xlDown).Offset(0, 3)).ClearContents
End With

' Add and format some labels.
.Range("B9").Value = var1Name
.Range("C9").Value = var2Name

' Copy the Data from the Data sheet to the Report sheet, with the first
' variable selected in column B and the second variable in column C.
var1Range.Copy Destination:=.Range("B10")
var2Range.Copy Destination:=.Range("C10")

' Set the pasted ranges and the chart range to Range object variables.
With .Range("B9")

Set var1Range = Range(.Offset(1, 0), .Offset(nObs, 0))
Set var2Range = Range(.Offset(1, 1), .Offset(nObs, 1))
Set chartDataRange = Union(var1Range, var2Range)

End With
End With

' Capture the min and max of the variables for charting purposes.
var1Min = Application.Min(var1Range)
var1Max = Application.Max(var1Range)
var2Min = Application.Min(var2Range)
var2Max = Application.Max(var2Range)

End Sub

A Regression Application 571

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ModifyCharts Code

The ModifyCharts sub modifies the properties of the charts that are affected by
new data. (Recall that these charts are created at design time.) These properties
include the source data, the titles, and the axes. For the latter, the application
sets minimum and maximum values for the axes so that the data points fill up
most of the chart. Specifically, it ensures that each axis extends from 10% below
the smallest observation (on that axis) to 10% above the largest observation.
(This was a design decision. It could be done differently.)

Sub ModifyCharts()
' This sub gets the chart sheets ready for the scatterplots of the
' data and the various trendlines.
Dim cht As Chart

' Loop through all chart sheets.
For Each cht In ActiveWorkbook.Charts

' Unhide and activate the chart.
With cht

.Visible = True

.Activate

' Specify the source data for the chart.
.SetSourceData Source:=chartDataRange, PlotBy:=xlColumns

' The xlCategory axis is the horizontal axis, and the xlValue axis is
' the vertical axis.
With .Axes(xlCategory)

.AxisTitle.Characters.Text = var1Name

' Set the min and max values on the horizontal axis. This is done
' so that the data will just about "fill" the chart.
.MinimumScale = var1Min * 0.9
.MaximumScale = var1Max * 1.1

End With

' Set similar properties for the vertical axis.
With .Axes(xlValue)

.AxisTitle.Characters.Text = var2Name

.MinimumScale = var2Min * 0.9

.MaximumScale = var2Max * 1.1
End With

End With
Next

End Sub

DoCalculations Code

The DoCalculations sub enters formulas in the appropriate ranges of the Report
worksheet. It first creates logarithms of the data in columns D and E. Next, it
uses formulas from regression to calculate the parameters of the best-fitting trend
lines in the range C5:E6. It then calculates the absolute percentage errors in col-
umns H, I, J, and K. Finally, it calculates the MAPE values in the range C7:F7.

572 Chapter 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Note on the FormulaR1C1 Property. Pay particular attention to how
the FormulaR1C1 property of ranges is used several times to enter formulas with
relative and absolute addresses. For example, the relative reference RC[-2] refers to
the same row and two columns to the left of the cell it is referenced by. If this is
called from cell E5, say, it refers to cell C5; if it is called from cell G23, it refers to
cell E23; and so on. In contrast, the reference R5C3, without brackets, is an abso-
lute reference to the cell in row 5 and column C. It is equivalent to C5. The
formulas for calculating absolute percentage errors toward the bottom of this sub
use a combination of relative and absolute references. The relative parts are for
the actual and estimated values of the variable; the absolute parts are for the para-
meters of the fitted equation. The FormulaR1C1 property is somewhat more diffi-
cult to learn than the Formula property, but it is often more convenient—it
enables you to fill an entire range with formulas with a single line of code—no
loops or copying are required.

Sub DoCalculations()
' This sub uses Excel’s built-in regression functions to calculate
' the parameters of the various trendlines, and then it calculates some
' error measures to get the MAPEs.
Dim parameterRange As Range, APERange As Range
Dim i As Integer

With wsReport
.Activate

' Enter labels for the log variables.
.Range("D9").Value = "Log(" & var1Name & ")"
.Range("E9").Value = "Log(" & var2Name & ")"

' Create logarithms of the two variables in columns D and E for later use.
With .Range("D9")

Range(.Offset(1, 0), .Offset(nObs, 1)).FormulaR1C1 = "=Ln(RC[-2])"
Set var1LogRange = Range(.Offset(1, 0), .Offset(nObs, 0))
Set var2LogRange = Range(.Offset(1, 1), .Offset(nObs, 1))

End With
' Calculate the best-fitting parameters with formulas using Excel’s
' Intercept and Slope functions, and place them in parameterRange.
' (The details won’t be clear unless you know regression.)
Set parameterRange = .Range("C5:E6")

End With

With parameterRange

' The linear fit uses original data.
.Cells(1, 1).Formula = "=Intercept(" & var2Range.Address & "," _

& var1Range.Address & ")"
.Cells(2, 1).Formula = "=Slope(" & var2Range.Address &"," _

& var1Range.Address & ")"

' The power fit uses logs of both variables.
.Cells(1, 2).Formula = "=Exp(Intercept(" & var2LogRange.Address & "," _

& var1LogRange.Address & "))"
.Cells(2, 2).Formula = "=Slope(" & var2LogRange.Address & "," _

& var1LogRange.Address & ")"

A Regression Application 573

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' The exponential fit uses original variable 1 and log of variable 2.
.Cells(1, 3).Formula = "=Exp(Intercept(" & var2LogRange.Address & "," _

& var1Range.Address & "))"
.Cells(2, 3).Formula = "=Slope(" & var2LogRange.Address & "," _

& var1Range.Address & ")"

' The logarithmic fit uses log of variable 1 and original variable 2.
.Cells(1, 4).Formula = "=Intercept(" & var2Range.Address & "," _

& var1LogRange.Address & ")"
.Cells(2, 4).Formula = "=Slope(" & var2Range.Address &"," _

& var1LogRange.Address & ")"
End With

' Calculate the absolute percentage errors (with formulas) when predicting
' variable 2 from the four trend lines.
With wsReport.Range("H9")

Range(.Offset(1, 0), .Offset(nObs, 0)).FormulaR1C1 = _
"=Abs(RC[-5]-(R5C3+R6C3*RC[-6]))/RC[-5]"

Range(.Offset(1, 1), .Offset(nObs, 1)).FormulaR1C1 = _
"=Abs(RC[-6]-R5C4*RC[-7]^R6C4)/RC[-6]"

Range(.Offset(1, 2), .Offset(nObs, 2)).FormulaR1C1 = _
"=Abs(RC[-7]-R5C5*Exp(R6C5*RC[-8]))/RC[-7]"

Range(.Offset(1, 3), .Offset(nObs, 3)).FormulaR1C1 = _
"=Abs(RC[-8]-(R5C6+R6C6*RC[-7]))/RC[-8]"

Set APERange = Range(.Offset(1, 0), .Offset(nObs, 3))
End With

' Calculate the MAPE values for the four trend lines.
With wsReport.Range("B7")

For i = 1 To 4
.Offset(0, i).Formula = _

"=Average(" & APERange.Columns(i).Address & ")"
Next

End With
End Sub

27.8 Summary

Finding a trend line that relates two variables, or finding the best of several such
trend lines, is an extremely important task in the business world. Excel has several
built-in tools for estimating such trend lines, including the ability to superimpose
trend lines and their equations on a scatterplot. This application illustrates how
the whole process can be automated with VBA. The charts indicate visually how
well the trend lines fit the data, and the corresponding regression equations can
be used for forecasting.

EXERCISES

1. The application currently calculates the MAPE for each trend line. Another fre-
quently used measure of the goodness of fit is the mean absolute error (MAE).
It is the average of the absolute differences between the actual and predicted

574 Chapter 27

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

values. Change the application so that it reports the MAE for each trend line
rather than the MAPE.

2. Repeat the previous exercise, but now report the root mean square error (RMSE)
instead of the MAPE. This is defined as the square root of the average of squared
differences between the actual and predicted values. It is another popular measure
of the goodness of fit.

3. Change the application so that it reports all three goodness-of-fit measures for
each trend line: the MAPE, the MAE from Exercise 1, and the RMSE from Exer-
cise 2.

4. The application currently shows only the absolute percentage errors in columns
H, I, J, and K of the Report worksheet. It doesn’t explicitly show the predicted
values from the regression equations, although it implicitly uses them in the equa-
tions for the absolute percentage errors. Change the application so that it enters
the predicted values, with formulas, in columns H, I, J, and K, and then it enters
the absolute percentage errors, again as formulas, in columns L, M, N, and O.
Actually, you should be able to use a single FormulaR1C1 property to enter all of
the errors in the latter four columns.

5. This application is typical in the sense that it requires input data. The question
from the developer’s point of view is where the data are likely to reside. Here I
have assumed that the data reside in a Data worksheet in the same file as the
application. This exercise and the next one explore other possibilities. For this
exercise, assume that the data reside in some other worksheet but in the same
file as the application. Change the application so that it can locate the data, wher-
ever they might be. (Hint: The RefEdit control allows a user to select a range
from any worksheet.)

6. For this exercise, assume that the data are in another Excel workbook. It will be
up to the user to specify the workbook and then the data ranges in that work-
book. Change the application so that (1) it informs the user with a message box
that he is about to be prompted for the data file; (2) it uses the FileDialog object
as illustrated in Chapter 13 to select the data file and then open this file; (3) it
uses the same frmData as in Figure 27.2 to get the data ranges; (4) it enters the
required data in the Report worksheet of the application file; (5) it closes the
data file; and (6) it proceeds as before to analyze the data.

A Regression Application 575

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An Exponential Utility

Application

28.1 Introduction

This application illustrates a rather surprising result that can occur when a decision
maker is risk averse.1 Suppose you can enter a risky venture where there will be
either a gain of G or a loss of L. The probability of the gain is p and the probability
of the loss is 1– p. You can have any share s of this venture, where s is a fraction
from 0 to 1. Then if there is a gain, you win sG; if there is a loss, you lose sL. You
must decide what share you want, given that you are risk averse and have an
exponential utility function with risk tolerance parameter R. (The larger your R is,
the more willing you are to take risks.)

The surprising result is that if the gain G increases and all other parameters
remain constant, your optimal share s might decrease. In other words, you might
want a smaller share of a better thing. The intuition is that if you are risk averse,
you do not like risky ventures. However, as G increases, you can have less expo-
sure to risk by decreasing your share s and still expect to do better in the
venture.

In case this argument does not convince you, the application calculates the
optimal share s for varying values of G and plots them graphically. The resulting
chart shows clearly, at least for some values of the parameters, that the optimal
value of s can decrease as G increases.

New Learning Objectives: VBA

● To learn how a VBA application, especially one that uses a chart, can illus-
trate a result that might be very difficult to understand—or believe—in any
other way.

New Learning Objectives: Non-VBA

● To illustrate the role of risk in decision making under uncertainty.

28

1 It is based on the article “Too Much of a Good Thing?” by D. Clyman, M. Walls, and J. Dyer, in
Operations Research, Vol. 47, No. 6 (1999).

576

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28.2 Functionality of the Application

The application is slightly more general than explained in the introduction. It
does the following:

1. It first gets the inputs G, L, p, and R from the user in a dialog box. This dialog
box also asks whether the user wants to vary G or L in a sensitivity analysis, and
it asks for the range of values for the sensitivity analysis. Although the sensitiv-
ity analysis on the gain G is of primary interest, it might also be interesting to
perform a sensitivity analysis on the loss L.

2. The user’s expected utility from the risky venture, given a share s, is calcu-
lated in the Model worksheet, and then it is maximized with Solver (as a
nonlinear model) several times, once for each value of G (or L) in the sensi-
tivity analysis.

3. The Solver results are shown graphically in a chart sheet named SensitivityChart.
4. The model and chart show the optimal share s. They also show the corre-

sponding certainty equivalent. This is the dollar equivalent of the risky venture,
using the optimal share s. More specifically, it is the dollar amount such that
the decision maker is indifferent between (1) receiving this dollar amount for
sure and (2) participating in the risky venture. This certainty equivalent should
increase as G increases, even though s might decrease. The chart indicates that
this is indeed the case.

28.3 Running the Application

The application is stored in the file Exponential Utility.xlsm. When this file is
opened, the Explanation worksheet in Figure 28.1 is displayed. Clicking the but-
ton on this sheet produces the dialog box in Figure 28.2 Its top four text boxes
are filled with parameters from a previous run, if any. (To make things more
interesting, you might want to think of the monetary amounts as expressed in
millions of dollars.) The other options are set at chosen default values.

Once the OK button is clicked, the application runs Solver on the (hidden)
Model worksheet several times, once for each value in the sensitivity analysis, and
reports the results in the SensitivityChart sheet. For the parameters in Figure 28.2,
the chart appears as in Figure 28.3. This chart shows clearly that the optimal share
reaches its maximum of about 0.46 when the gain G has increased by about 60%
above its original value of $68 million. As G increases further, the optimal share
decreases slightly. However, the certainty equivalent continues to increase. This sim-
ply means that as G increases, the decision maker values the risky venture more.

The Model worksheet that is the basis for this chart appears in Figure 28.4. It
is discussed in more detail below.

If the second option button in Figure 28.2 is selected, the sensitivity analysis
is performed on the loss L, so that L varies and all other parameters remain

An Exponential Utility Application 577

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

constant. The chart from this analysis appears in Figure 28.5. This chart shows no
surprises. As the loss increases, you want a smaller share of a bad thing, and your
certainty equivalent also decreases steadily.

28.4 Setting Up the Excel Sheets

The Exponential Utility.xlsm file contains two worksheets: the Explanation
worksheet in Figure 28.1 and the Model worksheet in Figure 28.4. It also con-
tains the SensitivityChart chart sheet. Except for the sensitivity section (from row
17 down), a template for the Model worksheet can be formed at design time, as
shown in Figure 28.6. (The input cells are shaded blue, and the decision vari-
able cell is shaded red.) The formula in cell B12 calculates the expected utility
for any share in cell B11, and the formula in cell B13 calculates the correspond-
ing certainty equivalent. These formulas are listed after the charts below.

Figure 28.1 Explanation Worksheet

578 Chapter 28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 28.2 Inputs Dialog Box

Figure 28.3 Chart for Sensitivity Analysis on Gain

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

0.000
250% 225% 0% 25% 50% 75% 100%

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

C
er

ta
in

ty
 E

q
u

iv
al

en
t

O
p

ti
m

al
 S

h
ar

e

Percentage Increase in Gain

Sensitivity Analysis

Optimal share
Certainty
equivalent

View Model Sheet

View Explanation
Sheet

An Exponential Utility Application 579

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

=PrSuc*ð1- EXPð-Share*Gain=RiskTolÞÞ+ð1-PrSucÞ*ð1-EXPð-Share*ð-LossÞ=RiskTolÞÞ

and

=-RiskTol*LNð1-ExpUtilÞ

(See the decision making under uncertainty chapter of Practical Management Science
for a discussion of expected utility and exponential utility functions.) Then Solver is
set up to maximize cell B12, with the single changing cell B11 constrained to be
between 0 and 1. Because of the exponential utility function, this model must be
solved as a nonlinear model.

Figure 28.4 Optimization Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

36

37

38

39

40

41

42

43

44

45

46

47

A B C D E

Decision model

Inputs Original values Pct change
Gain with
Loss with
Probability of

Risk

Decision
Share of
Expected u�lity 0.037
Certainty equivalent 1.866

Op�mal share and certainty equivalent as a func�on of percentage change in Gain
Percentage change Op�mal share Certainty equivalent

-
-
-
-
-

50% 0.000 0.000
45% 0.063 0.023
40% 0.137 0.118
35% 0.197 0.267
30% 0.246 0.453
45% 0.456 3.915
50% 0.457 4.117
55% 0.458 4.314
60% 0.458 4.505
65% 0.458 4.691
70% 0.457 4.872
75% 0.457 5.048
80% 0.456 5.220
85% 0.454 5.387
90% 0.453 5.549
95% 0.451 5.707

100% 0.449 5.861

Explana�on

View Chart

View
sheet

success 0.300

tolerance 50.00

project 0.400

%000.8600.86sseccus
%000.5100.51eruliaf

580 Chapter 28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The chart sheet can also be created at design time. To do this, you can
enter any trial values in columns A, B, and C of the sensitivity section of the
Model worksheet (see Figure 28.4) and then create the chart from these trial
values. The VBA code will then update the chart with the appropriate values
at run time.

Figure 28.5 Chart for Sensitivity Analysis on Loss

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

0.000
250% 225% 0% 25% 50% 75% 100%

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

C
er

ta
in

ty
 E

q
u

iv
al

en
t

O
p

ti
m

al
 S

h
ar

e

Percentage Increase in Loss

Sensitivity Analysis

View Model Sheet

Optimal share
Certainty
equivalent

View Explanation
Sheet

Figure 28.6 Model Worksheet Template

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E

Decision model

Inputs Original values Pct change
Gain with
Loss with
Probability of

Risk

Decision
Share of
Expected utility 0.037
Certainty equivalent 1.866

Optimal share and certainty equivalent as a function of percentage change in Loss
Percentage change Optimal share Certainty equivalent

View Chart

View Explanation
sheet

success 0.300

tolerance 50.00

project 0.400

%000.8600.86sseccus
%000.5100.51eruliaf

An Exponential Utility Application 581

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28.5 Getting Started with the VBA

This application requires a user form named frmInputs, a module, and a reference
to Solver.2 Once these items are added, the Project Explorer window will appear
as in Figure 28.7.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. It also hides all other
sheets and displays the Solver warning.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("F4").Select
End With
wsModel.Visible = False
chtSensitivity.Visible = False
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

28.6 The User Form

The design of frmInputs is shown in Figure 28.8. It includes the usual OK and
Cancel buttons, two explanation labels, two frames for grouping controls, two
option buttons named optGain and optLoss, and six text boxes with corresponding

2It also includes the usual frmSolver form for displaying a warning about Solver, but only users of pre-
2010 versions of Excel will see this message.

Figure 28.7 Project Explorer Window

582 Chapter 28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

labels. These text boxes (from top to bottom) are named txtGain, txtLoss,
txtPrSuccess, txtRiskTol, txtPctBelow, and txtPctAbove.

The code behind this user form is listed below. The Initialize sub captures
the values from the Model worksheet from a previous run, if any, and places
them in the top four text boxes. It then chooses the first option button by default,
and it places the default values 0 and 1 in the bottom two text boxes. (Note how
the Format function is used to ensure that the values in the top four text boxes are
formatted as numbers with two decimals.) The ShowInputsDialog function captures
the user’s inputs for later use in the module. The Valid function does appropriate
error checking for the various user inputs.

Figure 28.8 frmInputs Design

An Exponential Utility Application 583

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private cancel As Boolean

Public Function ShowInputsDialog(gain As Single, loss As Single, _
probSuccess As Single, riskTol As Single, inputToChange As String, _
pctBelow As Single, pctAbove As Single) As Boolean

Call Initialize
Me.Show
If Not cancel Then

gain = txtGain.Text
loss = txtLoss.Text
probSuccess = txtPrSuccess.Text
riskTol = txtRiskTol.Text
If optGain.Value Then

inputToChange = "Gain"
Else

inputToChange = "Loss"
End If
pctBelow = txtPctBelow.Text
pctAbove = txtPctAbove.Text

End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
’ Capture the values from the Model sheet in the first four boxes, and
’ use appropriate default values for the others.
With wsModel

txtGain.Text = Format(.Range("OrigGain").Value, "0.00")
txtLoss.Text = Format(.Range("OrigLoss").Value, "0.00")
txtPrSuccess.Text = Format(.Range("PrSuccess").Value, "0.00")
txtRiskTol.Text = Format(.Range("RiskTol").Value, "0.00")

End With

optGain.Value = True
txtPctBelow.Text = 0
txtPctAbove.Text = 1

End Sub

Private Function Valid() As Boolean
Dim ctl As Control

Valid = True
’ Each text box must be numeric, the PctBelow box must not be positive,
’ the PrSuccess must be between 0 and 1, and the other boxes must nonnegative.
For Each ctl In Me.Controls

If TypeName(ctl) = "TextBox" Then
If ctl.Value = "" Or Not IsNumeric(ctl) Then

Valid = False
MsgBox "Enter numerical values in all of the boxes.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If
If ctl.Name = "txtPctBelow" Then

If ctl.Value > 0 Then
Valid = False
MsgBox "Enter a nonpositive value in this box.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If

584 Chapter 28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ElseIf ctl.Name = "txtPrSuccess" Then
If ctl.Value < 0 Or ctl.Value > 1 Then

Valid = False
MsgBox "Enter a value between 0 and 1 in this box.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If
Else

If ctl.Value < 0 Then
MsgBox "Enter a nonnegative value in this box.", _

vbInformation, "Invalid entry"
Valid = False
ctl.SetFocus
Exit Function

End If
End If

End If
Next

End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

28.7 The Module

The module contains a MainExponentialUtility sub that first “shows” frmInputs and
then calls several other subs to do the real work. The code is listed below.

Option Statement and Module-Level Variables

Option Explicit

' The following variables capture the user's inputs. Note that
' inputToChange will be "Gain" or "Loss". Also, pctBelow and pctAbove
' are the extremes in percentage changes for the sensitivity analysis.
Dim gain As Single, loss As Single, probSuccess As Single
Dim riskTol As Single
Dim inputToChange As String, pctBelow As Single, pctAbove As Single

MainExponentialUtility Code

The MainExponentialUtility sub gets the user inputs from frmInputs, enters these in
the Model worksheet, performs the sensitivity analysis in the Model worksheet,
and updates the chart.

An Exponential Utility Application 585

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub MainExponentialUtility()
' This is the sub that the user runs by clicking on the button on
' the Explanation sheet.

' Get the user inputs.
If frmInputs.ShowInputsDialog(gain, loss, _

probSuccess, riskTol, inputToChange, _
pctBelow, pctAbove) Then

Application.ScreenUpdating = False
’ Enter the user inputs into the Model sheet.
Call EnterInputs
’ Run the sensitivity analysis in the Model sheet.
Call Sensitivity
’ Show and update the chart.
Call UpdateChart
Application.ScreenUpdating = True

End If
End Sub

EnterInputs Code

The EnterInputs sub enters the user’s inputs from frmInputs and enters them into
named ranges of the Model worksheet. (Refer to Figure 28.4.) It enters an initial
share of 0.5 in the decision variable cell, although any other initial share could be
entered instead.

Sub EnterInputs()
' Enter the user inputs from the form into the Model sheet.

' Unhide and activate the Model sheet.
With wsModel

.Visible = True

.Activate

' Enter the user's inputs into cells (already range-named) in the Model sheet.
.Range("OrigGain").Value = gain
.Range("OrigLoss").Value = loss
.Range("PrSuccess").Value = probSuccess
.Range("RiskTol").Value = riskTol

' Set the initial share to 0.5; Solver will find the optimal share.
.Range("Share").Value = 0.5

End With
End Sub

Sensitivity Code

The Sensitivity sub runs the sensitivity analysis on the chosen input parameter
(gain or loss). To do this, it uses a Do loop to run through the various percentage
changes for the selected input, and for each setting, it runs Solver to find the opti-
mal share. As it does this, it records the optimal share and the corresponding
expected utility and certainty equivalent in the sensitivity section of the Model
worksheet. These values are the basis for the chart.

586 Chapter 28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Sensitivity()
' This sub runs a sensitivity analysis on the percentage change in the
' input (gain or loss) being changed.
Dim rowOffset As Integer
Dim currentPct As Single

' Enter an appropriate label.
wsModel.Range("A15").Value = "Optimal share and certainty equivalent as a function " _

& "of percentage change in " & inputToChange
With wsModel.Range("A16")

' Clear out old values, if any, from the previous sensitivity table.
Range(.Offset(1, 0), .Offset(1, 2).End(xlDown)).ClearContents

' rowOffset is the current number of rows below row 16, i.e., where the results
' from the current Solver run will be placed.
' currentPct is the current percentage change in the input being changed.
rowOffset = 1
currentPct = pctBelow

' Loop through the percentages to change, incrementing by 5% each time.

' Enter the current percentage in the sensitivity table and up above
' (in the PctGain or PctLoss cell), which ties it to the model.
.Offset(rowOffset, 0).Value = currentPct
wsModel.Range("Pct" & inputToChange).Value = currentPct

' Run Solver, which has already been set up.
SolverSolve UserFinish:=True

' Enter the Solver results in the sensitivity table.
.Offset(rowOffset, 1).Value = wsModel.Range("Share").Value
.Offset(rowOffset, 2).Value = wsModel.Range("CertEquiv").Value

' Update rowOffset and currentPct for the next time through the loop (if any).

rowOffset = rowOffset + 1
currentPct = currentPct + 0.05

' The +0.001 in the next statement handles numerical roundoff. It ensures
' that the loop will be run when currentPct is equal to pctAbove.

Loop While currentPct <= pctAbove + 0.001

' Run Solver one more time, using the original (user's input) values.
' (This isn't really necessary, but the user might want to see the model
' results with the original inputs.)
wsModel.Range("Pct" & inputToChange).Value = 0
SolverSolve UserFinish:=True

End With

' Hide the Model sheet.
wsModel.Visible = False

End Sub

UpdateChart Code

Recall that the chart has already been created and formatted as desired at design
time. Therefore, the only purpose of the UpdateChart sub is to populate the chart
with the data from the sensitivity analysis. It does this by using the SetSourceData

An Exponential Utility Application 587

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

method of the active chart. To label the horizontal axis appropriately, it sets the
Text property of the Axes(xlCategory).AxisTitle.Characters object. To set the data
range for the horizontal axis, that is, the range of percentage changes, it sets the
XValues property of the SeriesCollection(1) object. (This object refers to the first
of the two series plotted in the chart. Because they are both based on the same
set of percentage changes, either could be used in this XValues statement.)

Sub UpdateChart()
' This sub updates the (already-created) chart to show the results of
' the sensitivity analysis.

Dim chartData As Range, chartPcts As Range

' Define ranges for the parts of the sensitivity table used for the chart.
With wsModel.Range("A16")

Set chartData = Range(.Offset(0, 1), .Offset(0, 2).End(xlDown))
Set chartPcts = Range(.Offset(1, 0), .End(xlDown))

End With

' Unhide and activate the chart sheet.
With chtSensitivity

.Visible = True

.Activate
End With

' Update the chart, which was already set up at design time.
With ActiveChart

.Axes(xlCategory).AxisTitle.Characters.Text = _
"Percentage increase in " & inputToChange

.SetSourceData chartData

.SeriesCollection(1).XValues = chartPcts
End With

End Sub

Navigational Code

The remaining “View” subs (not shown here) allow for easy navigation through
the application. They are attached to the corresponding buttons on the Model
and SensitivityChart sheets.

Sub ViewModel()
With wsModel

.Visible = True

.Activate

.Range("A2").Select
End With

End Sub

Sub ViewExplanation()
With wsExplanation

.Activate

.Range("F4").Select
End With
wsModel.Visible = False

588 Chapter 28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

chtSensitivity.Visible = False
End Sub

Sub ViewChart()
wsModel.Visible = False
chtSensitivity.Activate

End Sub

28.8 Summary

This chapter has illustrated how a certain type of unexpected behavior can be
demonstrated clearly to an unconvinced user. More generally, it has illustrated
how a VBA application can perform a sensitivity analysis and present the results
in a clear graphical format. This particular application allows users to run the sen-
sitivity analysis with a variety of inputs to gain insight into the role risk aversion
plays in risky ventures.

EXERCISES

1. Change the application so that it is possible to perform a sensitivity analysis on the
probability p of gain G. In this case, the user should be asked to select the range
that p can vary over, in increments of 0.05, where the lower and upper limits of
this range must be multiples of 0.05 from 0 to 1. The resulting chart should be
like the ones illustrated in the chapter except that the horizontal axis should now
show p.

2. Change the application so that it is possible to perform a sensitivity analysis on the
risk tolerance parameter R. In this case, the user should be asked to select the
range that R can vary over. The resulting chart should be like the ones illustrated
in the chapter except that the horizontal axis should now show R.

3. Change the application so that it is possible to perform a sensitivity analysis on
both L and G simultaneously. Specifically, the user should be asked for values of
these parameters (as well as p and R). Then it should perform a sensitivity analysis
where the possible loss and gain are of the form mL and mG, where m is a multi-
ple that varies from 1 to 10 in increments of 1. The resulting chart should be like
the ones illustrated in the chapter except the horizontal axis should now show the
multiple m.

4. Change the application so that the risky venture has three possible outcomes: a
large gain G, a smaller gain g, and a loss L. The associated probabilities should
be inputs that sum to 1. The user should now be allowed to perform a sensitivity
analysis on G, g, or L. However, g should always be less than G.

An Exponential Utility Application 589

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Queueing Simulation

Application

29.1 Introduction

As Chapter 25 illustrated, spreadsheet simulation usually means creating a spread-
sheet model with random numbers in certain cells and then replicating the model
with a data table, an add-in such as @RISK, or VBA. This chapter illustrates a sim-
ulation model that is very difficult to model with spreadsheet formulas because of
the timing and bookkeeping involved. A more natural approach is to take care of
all the model’s logic in VBA and then simply report the results on a worksheet.

The model considered here is a multiserver queueing model. Customers arrive at
random times to a service center, such as a bank. There are several identical servers
(identical in the sense that they all have the same service time probability distribu-
tion). If a customer arrives and all servers are busy, the customer joins the end of a
single queue. However, the model assumes that there is a maximum number of cus-
tomers allowed in the queue. If the queue is already full when a customer arrives, this
customer is turned away. At the beginning of the simulation, there are no customers
in the system. The system is then simulated for a user-defined length of clock time. At
this time, no further arrivals are allowed to enter the system, but customers already
present are served. (This is analogous to a bank that locks its doors at 5:30 P.M. but
allows customers already in the bank to finish.) The simulation terminates when the
last customer departs. The model developed here assumes the times between arrivals
and the service times are exponentially distributed, a very common assumption in
queueing analysis, but other distributions could be used instead.

The purpose of the simulation is to simulate the system for the prescribed
amount of time and, as it runs, collect statistics on the system behavior. At the
end, the application reports measures such as the average amount of time in queue
for a typical customer, the fraction of time a typical server is busy, the fraction of all
arriving customers who are turned away, and others.

New Learning Objectives: VBA

● To learn how to use VBA to take care of the timing and bookkeeping details
in a queueing simulation.

New Learning Objectives: Non-VBA

● To understand the effect of system inputs (arrival rate, mean service time,
number of servers) on system outputs (average time in queue, average number
in queue, and others) in a typical queueing model.

29

590

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29.2 Functionality of the Application

The application allows the user to change six inputs to the queueing model:
(1) the time unit (minute or hour, say), (2) the customer arrival rate to the sys-
tem, (3) the mean service time per customer, (4) the number of servers, (5) the
maximum number of customers allowed in the queue, and (6) the closing time
(the time when no more customers are allowed to enter the system). The sim-
ulation then runs for the specified amount of time and keeps track of many
interesting output measures, such as the average amount of time in queue for
a typical customer, the fraction of time a typical server is busy, and the fraction
of all arriving customers who are turned away. It also tabulates the probability
distribution of the number of customers in the queue and shows this distribu-
tion graphically.

29.3 Running the Application

The application is stored in the file Queueing Simulation.xlsm. Upon opening this
file, the user sees the Explanation worksheet in Figure 29.1. When the button on this
form is clicked, the user sees the Report worksheet, the top part of which appears in
Figure 29.2. This allows the user to change the inputs in the shaded cells.

The button allows the user to run the simulation. It runs for the simulated time
shown in cell B9 of Figure 29.2, and then it continues until all customers currently
in the system have finished service. When this occurs, statistical measures are calcu-
lated and reported in the bottom half of the Report worksheet, as in Figure 29.3.
For example, during this 480-minute run, 524 customers arrived, 38 of them were
turned away, the average time in the queue per customer was 4.10 minutes, and the
longest time any customer spent in the queue was 14.71 minutes. Also, the typical
server was busy 90.8% of the time, and there was no queue at all 25.83% of the

Figure 29.1 Explanation Worksheet

A Queueing Simulation Application 591

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

time. Finally, it took 6.52 minutes to service all customers who were in the system
at time 480.

These results are for a single replication of the 480-minute simulation.
Clicking repeatedly on the Run button causes different results to appear. As
you can check, these results can differ dramatically, even with the same
inputs. Some 480-minute days experience a lot of congestion, and some
experience relatively little congestion—just as in real life. It would be possi-
ble to embed the current VBA code in a loop over a number of replications.
For example, you could simulate 100 480-minute days, each starting empty
and idle (no customers in the system). Then you could summarize output
measures across days. (You will get a chance to do this in an exercise at the
end of the chapter.)

Figure 29.2 Input Section of Report Worksheet

1
2
3
4
5
6
7
8
9

GFEDCBA
Multiple Server Queueing Simulation

Inputs
Time etunimtinu
Customer arrival 000.1etar customers/minute
Mean service 007.2emit minutes
Number of 3srevres
Maximum allowed in 01eueuq Measure of system congestion
Simulation run 084emit minutes Traffic intensity 0.9

Change any of the inputs in the blue cells
and then click on the top button to run
the simulation.

Figure 29.3 Simulation Results

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

IHGFEDCBA
Simulation Outputs
Time last customer leaves 486.52 minutes

Average time in queue per customer 4.10 minutes
Maximum time in queue for any customer 14.71 minutes
Average number of customers in queue 4.10
Maximum number in 01eueuq

Fraction of time each server is busy 90.8%

Number of customers processed 486
Number of customers turned away 38
Fraction of customers turned away 7.3%

Probability distribution of number in queue
Number in queue % of time

0 25.83%
1 7.14%
2 8.22%
3 5.82%
4 7.43%
5 8.32%
6 7.53%
7 7.92%
8 7.54%
9 5.80%

10 8.44%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 o

f ti
m

e

of customers

Distribution of number in queue

Run the simulation

592 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29.4 Setting Up the Excel Sheets

The Queueing Simulation.xlsm file contains two worksheets, named Explana-
tion and Report. The Report worksheet can be set up only as a template, with
sample inputs in the inputs section and labels only in the outputs section. One
measure, called the traffic intensity, can be calculated in cell E9 (see Figure 29.2)
with the formula

=ArriveRate=ðNServers=MeanServeTimeÞ

This is actually the arrival rate divided by the maximum service rate of the system—

when all servers are busy. If it is greater than 1 or only slightly below 1, the system
is likely to experience long waiting times, and many arriving customers are likely to
be turned away. However, if the traffic intensity is well less than 1, there is usually
very little waiting in line, and the servers will tend to have a lot of idle time. The
sample results in Figure 29.3 show that considerable congestion can occur even
when the traffic intensity is “only” 0.9. Of course, the simulation outputs show
exactly what happens on any given run.

The chart can be created at design time with Excel’s chart tools, using any
sample data in rows 27 down in the Report worksheet. Then it can be linked to
the actual data at run time.

29.5 Getting Started with the VBA

The application includes only a module—no user forms and no references. Once
the module is added, the Project Explorer window will appear as in Figure 29.4.

Workbook_Open Code

The Workbook_Open sub guarantees that the Explanation worksheet appears
when the file is opened, and it hides the Report worksheet.

Figure 29.4 Project Explorer Window

A Queueing Simulation Application 593

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("E4").Select
End With
wsReport.Visible = False

End Sub

29.6 Structure of a Queueing Simulation

As stated in the introduction, there is no Model worksheet where the logic of the
model is captured. Everything is done in memory with VBA. A worksheet is used
only as a place to show the inputs and the eventual outputs. Therefore, the VBA
code has to take care of all the timing and statistical bookkeeping as the simula-
tion progresses. The general ideas are explained here.

The key idea is one of scheduled events. At any point in time, there is a list
of scheduled events of two types. The first type is an arrival. Each time an
arrival occurs, the next arrival is scheduled at some random time in the future.
When it occurs, another arrival is scheduled, and so on. The second type of
event is a service completion. Each time a customer goes into service (possibly
after waiting in the queue), a service completion is scheduled at a random time
in the future.

It is important to understand that nothing happens, in terms of computer
code, between events. There is a simulation “clock” that is updated from one
event time to the next. All of the action occurs at these event times.

The overall logic of the simulation is placed inside a Do loop, which continues
until the arrivals have been cut off (because they would occur after closing time)
and all customers have been cleared from the system. Each pass through the loop
deals with a single event—the next (most imminent) event. It is implemented
with the following four subroutines.

FindNextEvent Sub

This sub is the key to any queueing simulation. It scans through the list of all
scheduled events and finds the most imminent one. For example, it might find
that the next event is a departure from server 3 that will occur at clock time
100.47. It would then reset the clock to time 100.47 and return the information
about the next event (a service completion from server 3). The next time
through, the clock would be reset from 100.47 to the time of the next event.

UpdateStatistics Sub

This sub, always called right after the FindNextEvent sub, updates any statistical
counters with information since the previous event time. As an example, suppose
the clock has just been reset to time 100.47 and the previous clock time was
99.89. Also, suppose there were three customers in the queue from time 99.89
to time 100.47. (Remember that nothing happens between events, so the

594 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number in the queue has to remain constant during this time interval.) Then if
there is a statistical variable that accumulates the total customer minutes spent
in the queue, this sub adds three times the difference (100.47 – 99.89) to the
previous value of this variable.

Arrival Sub

If the FindNextEvent sub determines that the next event is an arrival, the following
logic is played out.

● Schedule the time of the next arrival. If this time is after closing time, disallow
the next arrival and don’t schedule any future arrivals.

● Check whether the queue is already full. If it is, turn this customer away, and
add 1 to the number of customers turned away.

● Check whether all servers are busy. If they are, put this arrival at the end of
the queue and keep track of his arrival time to the system (for later statistics).
Otherwise, find an idle server, place this customer in service, and schedule a
service completion.

Departure Sub

If the FindNextEvent sub determines that the next event is a departure from a par-
ticular server, then the following logic is played out:

● Increase the number of completed customers by 1.
● Check whether there is anyone in the queue. If there is no queue, decrease

the number of busy servers by 1, and do not schedule a new departure event
for the server who just finished. Otherwise, if there is at least one customer in
the queue, keep this server busy with the customer at the front of the queue,
move all other customers up one space in the queue, and schedule a depar-
ture event for this server.

Outputs

Once the clock time is past closing time and all customers have departed, the only
thing left to do is report the outputs for the simulation. Some outputs must be
calculated first. Other than counters such as the number of customers turned
away, the outputs are of two types: customer stats and time stats.

A typical customer stat is the average time spent in queue per customer. To
obtain this average, you keep track of a variable that sums the queueing times of
all customers. Then at the end of the simulation, you divide it by the number of
customers who have completed service to obtain the desired average.

A typical time stat is the average number of customers in the queue. To obtain
this average, you keep track of a variable that sums the total number of customer-
minutes spent in the queue. For example, if six customers wait in queue for half a
minute each, this contributes three customer minutes to the total. Then at the end
of the simulation, you divide this variable by the final clock time to obtain the
desired average. (Can you convince yourself that this gives the desired average?)

A Queueing Simulation Application 595

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Another typical time stat is the average server utilization, defined as the frac-
tion of time a typical server is busy. To obtain this average, you keep track of a
variable that sums the total number of server minutes spent serving customers.
At the end of the simulation, you divide this variable by the final clock time to
obtain the average number of servers busy, and you then divide this ratio by the
number of servers to obtain the desired server utilization.

The Need for Careful Programming

The logic of most queueing simulations is really quite straightforward—you play
out the events as they occur through time. However, the devil is in the details.
Queueing simulations are difficult to get correct. Part of the reason is that there
are so many interrelated details. Perhaps an even more important reason is that
you don’t know what the “answers” ought to be, so it is often not clear whether
a queueing simulation is working correctly or not. (I can only imagine how many
supposedly correct simulations in the business world are really wrong.) My intent
is not to scare you away. Rather, it is to emphasize the need for careful program-
ming. At the very least, variables and subroutines should be named meaningfully.
A variable’s name should leave little doubt about what it represents. Also, queueing
simulations should probably be commented more extensively than any other pro-
grams in the book. This clearly helps people who read the program, but it also
helps you, the programmer, to understand your own logic.

29.7 The Module

Now let’s take a look at the code for this application. The following list separates
the module-level variables into three categories for ease of interpretation. The sys-
tem parameters are the user inputs. The system status indicators define the current
status of the system at any point in time. The statistical variables are the “book-
keeping” variables that are eventually used to calculate the simulation outputs.
You should read these definitions carefully.

Option Statement and Module-Level Variables

Option Explicit

' Declare system parameters.
' meanIATime - mean interarrival time (reciprocal of arrival rate)
' meanServeTime - mean service time
' nServers - number of servers
' maxAllowedInQ - maximum number of customers allowed in the queue
' closeTime - clock time when no future arrivals are accepted

Dim meanIATime As Single
Dim meanServeTime As Single
Dim nServers As Integer
Dim maxAllowedInQ As Integer
Dim closeTime As Single

596 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Declare system status indicators.
' nInQueue - number of customers currently in the queue
' nBusy - number of servers currently busy
' clockTime - current clock time, where the initial clock time is 0
' eventScheduled(i) - True or False, depending on whether an event of type i is
' scheduled or not, for i>=0, where i=0 corresponds to arrivals and i from
' 1 to nServers corresponds to server i service completions
' timeOfLastEvent - clock time of previous event
' timeOfNextEvent(i) - the scheduled clock time of the next event of type i
' (only defined when eventScheduled(i) is True)

Dim nInQueue As Integer
Dim nBusy As Integer
Dim clockTime As Single
Dim eventScheduled() As Boolean
Dim timeOfLastEvent As Single
Dim timeOfNextEvent() As Single

' Declare statistical variables.
' nServed - number of customers who have completed service so far
' nLost - number of customers who have been turned away so far
' maxNInQueue - maximum number in the queue at any point in time so far
' maxTimeInQueue - maximum time any customer has spent in the queue so far
' timeOfArrival(i) - arrival time of the customer currently in the i-th
' place in the queue, for i>=1
' totalTimeInQueue - total customer-time units spent in the queue so far
' totalTimeBusy - total server-time units spent serving customers so far
' sumOfQueueTimes - sum of all times in the queue so far, where sum is over
' customers who have completed their times in the queue
' queueTimeArray(i) - amount of time there have been exactly i customers
' in the queue, for i>=0

Dim nServed As Long
Dim nLost As Integer
Dim maxNInQueue As Integer
Dim maxTimeInQueue As Single
Dim timeOfArrival() As Single
Dim totalTimeInQueue As Single
Dim totalTimeBusy As Single
Dim sumOfQueueTimes As Single
Dim queueTimeArray() As Single

Main Code

The Main sub is attached to the button on the Report worksheet. It runs the sim-
ulation. It first calls VBA’s Randomize function to ensure that different random
numbers are used for each simulation run, it clears old results from the Report
worksheet, it captures the inputs from the Report worksheet, and it calls the
Initialize sub to initialize the simulation (see explanation below). Then it enters
a Do loop, as explained in the previous section. This loop processes one event
after another until the arrivals have been cut off and all customers have been
cleared from the system. Finally, it calls the Report sub to calculate the outputs
and place them on the Report worksheet.

A Queueing Simulation Application 597

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub Main()
' This sub runs when the user clicks on the "Run the simulation" button on
' the Simulation sheet. It sets up and runs the simulation.
Dim nextEventType As Integer
Dim finishedServer As Integer

' Always start with new random numbers.
Randomize

' Clear previous results, if any, from the Report sheet.
Call ClearOldResults

' Get inputs from the Report Sheet.
With wsReport

meanIATime = 1 / .Range("ArriveRate").Value
meanServeTime = .Range("MeanServeTime").Value
nServers = .Range("nServers").Value
maxAllowedInQ = .Range("MaxAllowedInQ").Value
closeTime = .Range("CloseTime").Value

End With

' The next two arrays have an element for arrivals (index 0)
' and one for each server.
ReDim eventScheduled(nServers + 1)
ReDim timeOfNextEvent(nServers + 1)

' Set counters, status indicators to 0 and schedule first arrival.
Call Initialize

' Keep simulating until the last customer has left.

' Find the time and type of the next event, and reset the clock.
' Capture the index of the finished server in case the next event
' is a service completion.
Call FindNextEvent(nextEventType, finishedServer)

' Update statistics since the last event.
Call UpdateStatistics

' nextEventType is 1 for an arrival, 2 for a departure.
If nextEventType = 1 Then

Call Arrival
Else

Call Departure(finishedServer)
End If

Loop Until Not eventScheduled(0) And nBusy = 0

' Report the results.
Call Report

End Sub

ClearOldResults Code

The ClearOldResults sub clears all outputs from a previous run from the output
section of the Report worksheet.

598 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub ClearOldResults()
' This sub clears the results from any previous simulation.
With wsReport

.Range("B12:B23").ClearContents
With .Range("A26")

Range(.Offset(1, 0), .Offset(0, 1).End(xlDown)).ClearContents
End With

End With
End Sub

Initialize Code

Most of the Initialize sub involves setting status indicators and statistical variables
to 0. (Remember that the simulation starts at clock time 0 with no customers in
the system—empty and idle.) Note in particular how the array queueTimeArray is
initialized. By the time the simulation has finished, there should be an element in
this array for each number of customers that have ever been in the queue. At
time 0, however, there is no way to know how long the queue will eventually
grow. Therefore, the queueTimeArray is initialized to have only one element, the 0
element. It will then be redimensioned appropriately as the queue grows later on.

The Initialize sub also schedules the first event—the time of the first arrival. It
does this by setting eventScheduled(0) to True and generating a random time for
this event in timeOfNextEvent(0). However, it sets eventScheduled(i) to False for i
from 1 to nServers. This is because all of the servers are currently idle, so they
should not have scheduled service completions. It is important to use careful
indexing. Here, I have indexed an arrival with index 0 and service completions
with indexes 1 to nServers. Other indexing could be used, but this one is fairly
natural and easy to remember.

Sub Initialize()
' This sub initializes the simulation to the "empty and idle" state and
' sets all statistical counters to 0. It then schedules the first arrival.
Dim i As Integer

' Initialize system status indicators.
clockTime = 0
nBusy = 0
nInQueue = 0
timeOfLastEvent = 0

' Initialize statistical variables.
nServed = 0
nLost = 0
sumOfQueueTimes = 0
maxTimeInQueue = 0
totalTimeInQueue = 0
maxNInQueue = 0
totalTimeBusy = 0

' Redimension the queueTimeArray array to have one element (the 0 element,
' for the amount of time when there are 0 customers in the queue).

A Queueing Simulation Application 599

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ReDim queueTimeArray(1)
queueTimeArray(0) = 0

' Schedule an arrival from the exponential distribution.
eventScheduled(0) = True
timeOfNextEvent(0) = Exponential(meanIATime)

' Don’t schedule any departures because there are no customers in the system.
For i = 1 To nServers

eventScheduled(i) = False
Next

End Sub

Generating Exponentially Distributed Random Numbers

The random interarrival times and service times in this simulation are all exponen-
tially distributed.1 (Again, this is an assumption frequently made in queueing
models.) If an exponential distribution has mean m, you can generate a random
number from it with the VBA expression

-m * Log(Rnd)

Here, Rnd is VBA’s function for generating uniformly distributed random num-
bers from 0 to 1, and Log is VBA’s natural logarithm function. (The minus sign
is required because the logarithm of a number between 0 and 1 is negative.)
Because exponentially distributed random numbers are generated several times in
the program, I wrote the following function subroutine to take care of it.

Function Exponential(mean As Single) As Single
' This generates a random number from an exponential distribution
' with a given mean.
Exponential = -mean * Log(Rnd)

End Function

FindNextEvent Code

The FindNextEvent sub is the key to the simulation. When it is called, there are
typically several events scheduled to occur in the future (such as an arrival and
several service completions). The nextEventTime variable captures the minimum
of these—the time of the most imminent event. If the most imminent event
is an arrival, nextEventType is set to 1. If it is a departure, nextEventType is set to
2, and finishedServer records the index of the server who just completed service.

1The term interarrival time means the time between two successive customer arrivals.

600 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In either case, clockTime is reset to nextEventTime. This operation is crucial. If clock-
Time were not updated, the simulation would never end.

Sub FindNextEvent(nextEventType As Integer, finishedServer As Integer)
' This sub finds the type (arrival, departure, or closing time) of the next
' event and advances the simulation clock to the time of the next event.
Dim i As Integer
Dim nextEventTime As Single

' nextEventTime will be the minimum of the scheduled event times.
' Start by setting it to a large value.
nextEventTime = 10 * closeTime

' Find type and time of the next (most imminent) scheduled event. Note that
' there is a potential event scheduled for the next arrival (indexed as 0) and
' for each server completion (indexed as 1 to nServers).
For i = 0 To nServers

' Check if there is an event schedule of type i.
If eventScheduled(i) Then

' If the current event is the most imminent so far, record it.
If timeOfNextEvent(i) < nextEventTime Then

nextEventTime = timeOfNextEvent(i)
If i = 0 Then

' It’s an arrival.
nextEventType = 1

Else
' It’s a departure - record the index of the server who finished.
nextEventType = 2
finishedServer = i

End If
End If

End If
Next

' Advance the clock to the time of the next event.
clockTime = nextEventTime

End Sub

UpdateStatistics Code

The UpdateStatistics sub first defines timeSinceLastEvent as the elapsed time since
the previous event. At the end of the sub, it resets timeOfLastEvent to the current
clock time (in anticipation of the next time this sub is called). In between, it
updates any statistics with what has occurred during the elapsed time. For exam-
ple, queueTimeArray(i) in general is the amount of time exactly i customers have
been in the queue. During the time since the previous event, the number in the
queue has been a constant value, nInQueue, so timeSinceLastEvent is added to
the array element queueTimeArray(nInQueue). The next two lines add the num-
ber of customer-time units in the queue and the number of server-time units
being busy, respectively, to the totalTimeInQueue and totalTimeBusy variables.
If there were other outputs to keep track of, they would be updated similarly
in this sub.

A Queueing Simulation Application 601

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub UpdateStatistics()
' This sub updates statistics since the time of the previous event.
Dim timeSinceLastEvent As Single

' timeSinceLastEvent is the time since the last update.
timeSinceLastEvent = clockTime - timeOfLastEvent

' Update statistical variables.
queueTimeArray(nInQueue) = queueTimeArray(nInQueue) + timeSinceLastEvent
totalTimeInQueue = totalTimeInQueue + nInQueue * timeSinceLastEvent
totalTimeBusy = totalTimeBusy + nBusy * timeSinceLastEvent

' Reset timeOfLastEvent to the current time.
timeOfLastEvent = clockTime

End Sub

Arrival Code

The Arrival sub plays out the logic described in the previous section for an
arrival event. The comments clarify the details. Note in particular the case
where the arrival must enter the queue. A check is made to see whether this makes
the queue length longer than it has ever been before. If it is, the maxNInQueue
variable is updated, and the queueTimeArray and timeOfArrival arrays are redimen-
sioned (to have an extra element). You can think of the timeOfArrival values as
“tags” placed on the customers. Each tag shows when the customer arrived to
the system. When a customer eventually goes into service, his tag is used to cal-
culate how long he has spent in the queue: the current clock time minus his
timeOfArrival value.

Sub Arrival()
' This sub takes care of all the logic when a customer arrives.
Dim i As Integer

' Schedule the next arrival.
timeOfNextEvent(0) = clockTime + Exponential(meanIATime)

' Cut off the arrival stream if it is past closing time.
If timeOfNextEvent(0) > closeTime Then

eventScheduled(0) = False
End if

' If the queue is already full, this customer is turned away.
If nInQueue = maxAllowedInQ Then

nLost = nLost + 1
Exit Sub

End if

' Check if all servers are busy.
If nBusy = nServers then

' All servers are busy, so put this customer at the end of the queue.
nInQueue = nInQueue + 1

602 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' If the queue is now longer than it has been before, update maxNInQueue
' and redimension arrays appropriately.
If nInQueue > maxNInQueue Then

maxNInQueue = nInQueue

' queueTimeArray is 0-based, with elements 0 to maxNInQueue.
ReDim Preserve queueTimeArray(0 To maxNInQueue)

' timeOfArrival is 1-based, with elements 1 to maxNInQueue.
ReDim Preserve timeOfArrival(1 To maxNInQueue)

End if

' Keep track of this customer’s arrival time (for later stats).
timeOfArrival(nInQueue) = clockTime

Else
' The customer can go directly into service, so update the number of servers busy.
nBusy = nBusy + 1

' This loop searches for the first idle server and schedules a departure
' event for this server.
For i = 1 To nServers

If Not eventScheduled(i) Then
eventScheduled(i) = True
timeOfNextEvent(i) = clockTime + Exponential(meanServeTime)
Exit For

End If
Next

End If
End Sub

Departure Code

The Departure sub plays out the logic described in the previous section for a
service completion event. It takes one argument to identify the server who just
completed service. Again, the comments clarify the details. The final For loop is
important. The timeOfArrival “tags” should remain with the customers as they
move up one space in the queue. Therefore, the timeOfArrival(1) value, the
time of arrival of the first person in line becomes timeOfArrival(2) (because this
person used to be second in line), timeOfArrival(2) becomes timeOfArrival(3),
and so on.

Sub Departure(finishedServer As Integer)
' This sub takes care of the logic when a customer departs from service.
Dim i As Integer
Dim timeInQueue As Single

' Update number of customers who have finished.
nServed = nServed + 1

' Check if any customers are waiting in queue.
If nInQueue = 0 Then

A Queueing Simulation Application 603

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' No one is in the queue, so make the server who just finished idle.
nBusy = nBusy - 1
eventScheduled(finishedServer) = False

Else

' At least one person is in the queue, so take first customer
' in queue into service.
nInQueue = nInQueue - 1

' timeInQueue is the time this customer has been waiting in line.
timeInQueue = clockTime - timeOfArrival(1)

' Check if this is a new maximum time in queue.
If timeInQueue > maxTimeInQueue Then

maxTimeInQueue = timeInQueue
End if

' Update the total of all customer queue times so far.
sumOfQueueTimes = sumOfQueueTimes + timeInQueue

' Schedule departure for this customer with the same server who just finished.
timeOfNextEvent(finishedServer) = clockTime + Exponential(meanServeTime)

' Move everyone else in line up one space.
For i = 1 To nInQueue

timeOfArrival(i) = timeOfArrival(i + 1)
Next

End If
End Sub

Report Code

The Report sub, called at the end of the simulation, calculates customer stats and
time stats and then reports the results in named ranges in the Report worksheet.
It also names two ranges where the probability distribution of queue length is
stored, and it updates the chart.

Sub Report()
' This sub calculates and then reports summary measures for the simulation.
Dim i As Integer
Dim avgTimeInQueue As Single
Dim avgNInQueue As Single
Dim avgNBusy As Single
Dim ser As Series

' Calculate averages.
avgTimeInQueue = sumOfQueueTimes / nServed
avgNInQueue = totalTimeInQueue / clockTime
avgNBusy = totalTimeBusy / clockTime

' queueTimeArray records, for each value from 0 to maxNInQueue, the percentage
' of time that many customers were waiting in the queue.
For i = 0 To maxNInQueue

604 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

queueTimeArray(i) = queueTimeArray(i) / clockTime
Next

' Enter simulate results in named ranges.
With wsReport

.Range("FinalTime").Value = clockTime

.Range("NServed").Value = nServed

.Range("AvgTimeInQ").Value = avgTimeInQueue

.Range("MaxTimeInQ").Value = maxTimeInQueue

.Range("AvgNInQ").Value = avgNInQueue

.Range("MaxNInQ").Value = maxNInQueue

.Range("AvgServerUtil").Value = avgNBusy / nServers

.Range("NLost").Value = nLost

.Range("PctLost").Formula = "=NLost/(NLost+NServed)"

' Enter the queue length distribution from row 27 down, and name the two columns.
With .Range("A27")

For i = 0 To maxNInQueue
.Offset(i, 0).Value = i
.Offset(i, 1).Value = queueTimeArray(i)

Next
Range(.Offset(0, 0), .Offset(maxNInQueue, 0)).Name = "Report!NInQueue"
Range(.Offset(0, 1), .Offset(maxNInQueue, 1)).Name = "Report!PctOfTime"

End With

' Update the chart.
Set ser = .ChartObjects(1).Chart.SeriesCollection(1)
ser.Values = .Range("PctOfTime")
ser.XValues = .Range("nInQueue")

.Range("A1").Select
End With

End Sub

ViewChangeInputs Code

This last sub is for navigational purposes. It is attached to the button on the
Explanation worksheet. It unhides and activates the Report worksheet so that
the user can view and change any inputs before running the simulation. It
also clears any old outputs from the Report worksheet. (These inputs could
be obtained from a user form, but I have done it this way for variety.)

Sub ViewChangeInputs()
' This sub runs when the user clicks on the "View/Change Inputs" button on the
' Explanation sheet. It clears old results, if any, and lets the user see
' the Report sheet.
With wsReport

.Visible = True

.Activate
End With
Call ClearOldResults

End Sub

A Queueing Simulation Application 605

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29.8 Summary

A typical queueing simulation program, as illustrated in this chapter, is consider-
ably different from most of the other applications in this book. The reason is
that all of the logic must be done behind the scenes in VBA code—there is no
spreadsheet model. Although the overall flow of the program is conceptually
straightforward, there are many timing and bookkeeping details to keep straight,
which means that a programmer must be extremely careful. However, this type
of program provides an excellent way to sharpen your programming skills.
Besides, a successfully completed queueing simulation program can provide many
important insights into the system being modeled.

EXERCISES

1. Change the simulation so that there is no upper limit on the number allowed in
the queue. This means that no customers will be turned away because the system
is full. (Make sure you delete any variables that are no longer needed.)

2. Continuing the previous exercise, assume that each customer who arrives to the
system looks at the queue (if there is one) and then decides whether to join.
Assume the probability that a customer joins the queue is of the form rn, where
r is an input between 0 and 1 (probably close to 1), and n is the current number
of customers in the queue. We say that a customer “balks” if she decides not to
join. Keep track of the number of customers who balk.

3. Change the simulation so that the servers have different mean service times, so
that some tend to be faster than others. Assume that an arrival always chooses
the fastest idle server (if multiple servers are idle). Now report the fraction of
time each server is busy.

4. Change the simulation so that all activity stops at closing time—the customers
currently in the system are not serviced any further. Report the number of custo-
mers still in the system at closing time. (Make sure you update statistics from the
time of the last event until closing time.)

5. (More difficult) This exercise is based on the “express” lines you see at some ser-
vice centers. Assume that arriving customers are designated as “regular” or
“express” customers when they arrive. The probability that an arrival is an express
customer is an input between 0 and 1. Express customers have a relatively small
mean service time. The mean service time for regular customers is larger. One of
the servers is an “express” server. This server handles only the express customers.
The other servers can serve either type of customer. The customers wait (at least
conceptually, if not physically) in two separate lines. They are served in first-come,
first-served order as servers become available, although the express server cannot
serve a regular customer. If an express customer enters and a regular server and
the express server are both idle, you can assume that the customer goes to the
express server. Change the simulation appropriately to handle this situation, and
keep track of separate statistics for express customers and regular customers, as
well as for regular servers and the express server.

606 Chapter 29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Change the program so that the current simulation is embedded in a For loop
from 1 to 100. Each time through the loop, one simulation is run, and its outputs
(you can select which ones) are reported on a Replications worksheet, one row
per replication. After all 100 simulations have run, summarize the selected out-
puts on a Summary worksheet. For each output, report the following summary
measures: minimum, maximum, average, standard deviation, median, and 5th
and 95th percentiles. For example, if one of your outputs on any replication is
the maximum number in queue, then you will get 100 such maximums, one for
each replication. The Summary worksheet should summarize these 100 numbers:
their average, their standard deviation, and so on. In this way, you can see how
results vary from one replication to another.

A Queueing Simulation Application 607

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An Option-Pricing Application

30.1 Introduction

This application prices European and American call and put options. A European call
option on a certain stock allows the owner of the option to purchase 100 shares of the
stock for a certain price, called the exercise (or strike) price, on a certain date in
the future, called the exercise date. A put option is the same except that it allows the
owner to sell 100 shares on the exercise date. An American option is similar, but it
can be exercised on any date between the current date and the exercise date.

The owner of a call option hopes that the price of the stock will increase
above the exercise price. The option can then be exercised, and the owner can
make the difference by buying the stock at the exercise price and immediately sell-
ing it back at the actual price. The opposite is true for a put option. For a put
option, the owner hopes that the price of the stock will decrease below the exer-
cise price so that he can sell it for a relatively high price and immediately “cover
his position” by buying it back at a cheaper price. The question answered by this
application is how much these options are worth.

It is relatively easy to price European options. This is done with the famous
Black-Scholes formula. American options are considerably more difficult to
price. The usual method is to use a technique called binomial trees, as is done
in this application. In addition, it can be shown that if no dividends are given,
as is assumed here, it is never optimal to exercise an American call option early
(before the exercise date). However, this is not true for American put options.
For American puts, there is an early exercise boundary that specifies when the
put should be exercised. Specifically, this boundary consists of a cutoff price for
each date in the future before the exercise date. If the actual stock price falls
below this cutoff price on any particular date, then the put should be exercised
on that date. This application calculates the early exercise boundary for American
put options (if the user requests it).

New Learning Objectives: VBA

● To gain practice working with dates, including the use of a user-defined function
for calculating the number of days between two specified dates, excluding week-
ends, and to learn how to use the very handy calendar control in a user form.

● To learn how to manipulate Excel’s status bar to indicate the progress of a program.
● To learn how to deal with literal double quotes inside a string.
● To learn how to use Excel’s Goal Seek tool with VBA.

30

608

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Learning Objectives: Non-VBA

● To gain some knowledge of how options work and how they are priced,
including the use of the Black-Scholes formula for European options and
binomial trees for American options.

30.2 Functionality of the Application

The application has the following functionality:

1. It first asks the user for the inputs required to price any option. These include
(1) the current price of the stock, (2) the exercise price, (3) the exercise date,
(4) the annual risk-free rate of interest, (5) the volatility of the stock price
(the standard deviation of its annual return), and (6) the type of option
(European or American, call or put). It is assumed that the current date is
the actual date the user runs the program, so that the exercise date must be
after this. (Actually, the current date is taken to be the next Monday in
case the user runs the program on a weekend.) Note that the current date
can be found with Excel’s TODAY function.1

2. It next calculates the price of the option and displays it in a message box.
3. If the option is an American put option, the user can also request the early

exercise boundary.

There are two underlying assumptions. First, it is assumed that there are no
dividends for the stock. If there were, the calculations would need to be modified.
Second, it is assumed that trading days include weekdays but not weekends. This
assumption is used to calculate the duration of the option, the number of trading
days between the current date and the exercise date. It would be possible to
exclude some weekdays as trading days (the Fourth of July, for example), but
this would add complexity to the application, and it has not been done here.

This application uses a calendar control on the user form. See Section 11.3 of
Chapter 11 for instructions on registering this control on your computer. The
application won’t work properly until you do so.

30.3 Running the Application

The application is stored in the file Stock Options.xlsm. Upon opening this file,
the user sees the Explanation worksheet in Figure 30.1. When the button on this
form is clicked, the dialog box in Figure 30.2 appears. The inputs on the left are
the current values in the EuroModel worksheet (more about it later). Of course,
any of these can be changed.

1All examples shown in this chapter were run on 8/19/2014, a Tuesday.

An Option-Pricing Application 609

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the user selects any type of option other than an American put, the price of
the option is calculated in the EuroModel or the AmerModel worksheet, and the
result is displayed in a message box, as shown in Figure 30.3.

For an American put option, the message box in Figure 30.4 appears. If the
user clicks the No button, the same type of message as in Figure 30.3 appears. If
the user clicks the Yes button, the early exercise boundary is calculated and is
reported in the AmerPutReport worksheet, as shown in Figure 30.5. This partic-
ular example assumes that the exercise date is 9/4/2014 and the exercise price is
$53. If this were a European put, the owner would wait until the exercise date
and then exercise the option only if the actual stock price were less than $53.
However, the report indicates that the American put should be exercised on, say,
8/22/2014 if it hasn’t been exercised already and the actual price on 8/22/
2014 is less than $46.88. By the way, the European put with these same inputs
is priced at $347.10. The American option provides more flexibility, so it is priced
slightly higher at $352.62.

Figure 30.1 Explanation Worksheet

610 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 30.2 Inputs Dialog Box

Figure 30.3 Message Box for Option Price

An Option-Pricing Application 611

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30.4 Setting Up the Excel Sheets

The Stock Options.xlsm file contains four worksheets: the Explanation sheet,
the EuroModel sheet, the AmerModel sheet, and the AmerPutReport sheet. The
EuroModel Worksheet, shown in Figure 30.6, can be set up completely at design
time, using any trial values in the input cells. The current date is calculated in cell
B7 with Excel’s TODAY function. Actually, it uses an IF formula together with
Excel’s WEEKDAY function to return today’s date or the following Monday in
case today is a weekend day. The formula is

=IF(WEEKDAY(TODAY())=1,TODAY()+1,IF(WEEKDAY(TODAY())=7,
TODAY()+2,TODAY()))

Figure 30.5 Early Exercise Boundary in AmerPutReport Worksheet

Figure 30.4 Request for Early Exercise Boundary

612 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that WEEKDAY of any date returns 1 for Sunday and 7 for Saturday. The
duration of the option (number of trading days until the exercise date) is calcu-
lated in cell B12 with a function called TradeDays, written just for this application
(see the code at the end of the chapter). The formulas in cells B15, B16, E15,
E16, and B18 implement the Black-Scholes formula. (These formulas are rather
technical. See the Stock Options.xlsm file for the details.)

A Note on Range Names.2 The EuroModel and AmerModel worksheets each
have input sections that use several of the same range names, such as RiskfreeRate for
cell B9. If you want to use the same range names for different worksheets, you need to
be careful. The best way is to precede them by their worksheet name when you define
them. Specifically, to define the RiskfreeRate range name for the EuroModel
sheet, first select cell B9 in this sheet and then select Excel’s Name Manager on
the Formulas ribbon. In the “Refers to” box, enter Euro-Model!RiskfreeRate. This
creates a “worksheet-level” name. You can then proceed similarly to create the name
AmerModel!RiskfreeRate for cell B9 of the AmerModel worksheet. Then VBA code
such as wsAmerModel.Range("RiskfreeRate") can be used to refer to the appropriate
range.

The AmerModel worksheet sets up a binomial tree for calculating the price of an
American call or put. A finished version of this worksheet appears in Figure 30.7 for a
call option with duration 4 days. The binomial tree calculations are performed in
the two triangular ranges, which in general have as many rows and columns as the

Figure 30.6 EuroModel Worksheet

2See Section 6.6 of Chapter 6 for a more complete discussion of this range name issue.

An Option-Pricing Application 613

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

duration plus one. Without going into the technical details, I will simply state that
the option price is always in the upper-left corner of the bottom triangle—in this
case, about $310.3 (The value shown in the worksheet is the price per share. The
$310 price is for 100 shares.) These triangular ranges must be calculated at run
time. The only template that can be created at design time appears in Figure 30.8.

Finally, the AmerPutReport worksheet, shown earlier in Figure 30.5, must be
filled in almost entirely at run time. The only template that can be set up at
design time contains labels, as shown in Figure 30.9.

3A good explanation of binomial trees and how they can be implemented in Excel appears in
Chapter 56 of Winston, W., Financial Models Using Simulation and Optimization, 3rd edition,
Palisade Corporation, 2008.

Figure 30.7 Finished AmerModel Worksheet

614 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30.5 Getting Started with the VBA

The application includes one user form named frmInputs and a module. The
Solver add-in is never used, so no reference to it is necessary. (The Goal Seek
tool is used, but no reference is necessary for it.) Once these items are added,
the Project Explorer window will appear as in Figure 30.10.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. It also hides all other
worksheets.

Figure 30.8 AmerModel Worksheet Template

Figure 30.9 AmerPutReport Worksheet Template

1
2
3
4
5
6

A B C D E F G
Option price and early exercise boundary for the American put option

Price of option $80.41

Early exercise boundary: exercise only if stock price on this day is below the value in column B.
Trading date Boundary price

View Explanation Sheet

An Option-Pricing Application 615

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub Workbook_Open()
Dim ws As Worksheet
With wsExplanation

.Activate

.Range("F12").Select
End With
For Each ws In ThisWorkbook.Worksheets

If ws.CodeName <> "wsExplanation" Then ws.Visible = False
Next

End Sub

30.6 The User Form

The design for frmInputs, shown in Figure 30.11, contains the usual OK and
Cancel buttons, an explanation label, four text boxes and associated labels, a cal-
endar and an associated label, and a frame that contains four option buttons.
The text boxes are named txtCurrentPrice, txtExercisePrice, txtRiskfreeRate, and
txtVolatility. The option buttons are named optEuroCall, optEuroPut, optAmerCall,
and optAmerPut.

For the exercise price, I have used a calendar control. This is a very handy
control for obtaining a date. It requires almost no work on the programmer’s
part, and it is very easy for the user. This control unfortunately disappeared in
Office 2010, but as explained in Section 11.3 of Chapter 11, you can get it
back. Once you register this control as explained there, you can right-click any
blank gray area of the Control Toolbox (see Figure 30.12) and select Additional
Controls. Then select the Calendar control, as shown in Figure 30.13, and the
calendar control will be added to the Toolbox. Among other properties, the con-
trol has a Value property that returns the selected date (as a Date type). It also has
Year, Month, and Day properties that return these values for the selected date.
(Month returns 1 to 12.) The only annoying feature of this control is that if the

Figure 30.10 Project Explorer Window

616 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 30.11 frmInputs Design

Figure 30.12 Additional Controls

An Option-Pricing Application 617

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

user changes the month or year, no day is selected, which leads to unexpected
behavior. This is the reason for the prompt in the middle of Figure 30.11.

Most of the form code is straightforward. However, there is one twist. I want
the four text boxes and the calendar to be filled with the inputs from the
EuroModel worksheet if either of the first two option buttons is checked, and I
want them to be filled with the inputs from the AmerModel worksheet if either of
the bottom two option buttons is checked. Therefore, I added a utility sub called
FillInputs that takes an argument country, which will be “Euro” or “Amer.” The
Initialize code checks the European Call option button by default and then calls
FillInputs with argument “Euro.” But this is not all. There are also event handlers
for the Click event of each option button. Each of these calls FillInputs with the
appropriate argument. This way, the text boxes and the calendar are filled with
data from the appropriate worksheet regardless of which option button is checked.

Private cancel As Boolean

Public Function ShowInputsDialog(currentDate As Date, _
exerciseDate As Date, currentPrice As Single, _
exercisePrice As Single, riskfreeRate As Single, _
volatility As Single, optionType As Integer) As Boolean

Figure 30.13 Adding the Calendar Control

618 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Call Initialize
Me.Show
If Not cancel Then

' Capture the dates. Note that the current date is entered in the
' EuroModel and AmerModel sheets as today’s date (or the next Monday
' if today is a weekend day.)
currentDate = wsEuroModel.Range("B7").Value
exerciseDate = calExerciseDate.Value

' Capture the other inputs.
currentPrice = txtCurrentPrice.Text
exercisePrice = txtExercisePrice.Text
riskfreeRate = txtRiskfreeRate.Text
volatility = txtVolatility.Text

Select Case True
Case optEuroCall.Value

optionType = 1
Case optEuroPut.Value

optionType = 2
Case optAmerCall.Value

optionType = 3
Case optAmerPut.Value

optionType = 4
End Select

End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Check the European call option and enter values
' for the other parameters from the EuroModel sheet.
optEuroCall.Value = True
With calExerciseDate

.Year = Year(Date)

.Month = Month(Date)

.Day = Day(Date)
End With
Call FillInputs("Euro")

End Sub

Private Function Valid() As Boolean
' Perform error checking for user inputs.
Dim ctl As Control
Dim curDate As Date, exDate As Date

Valid = True
For Each ctl In Me.Controls

' Make sure the non-date boxes have positive numeric values.
If ctl.Name = "txtCurrentPrice" Or ctl.Name = "txtExercisePrice" Or _

ctl.Name = "txtRiskfreeRate" Or ctl.Name = "txtVolatility" Then
If ctl.Value = "" Or Not IsNumeric(ctl) Then

Valid = False
MsgBox "Enter a positive value in this box.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If

An Option-Pricing Application 619

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If ctl.Value <= 0 Then
Valid = False
MsgBox "Enter a positive value in this box.", _

vbInformation, "Invalid entry"
ctl.SetFocus
Exit Function

End If
End If

Next

' Capture the dates. Note that the current date is entered in the
' EuroModel and AmerModel sheets as today’s date (or the next Monday
' if today is a weekend day.)
curDate = wsEuroModel.Range("B7").Value
exDate = calExerciseDate.Value

' Make sure the exercise date is after the current date.
If curDate >= exDate Then

MsgBox "The exercise date must be after the next trading day (" _
& Format(curDate, "mm/dd/yyyy") & ").", _
vbInformation, "Invalid dates"

Valid = False
calExerciseDate.SetFocus
Exit Function

End If
End Function

Private Sub FillInputs(country As String)
Dim ws As Worksheet

If country = "Euro" Then
Set ws = wsEuroModel

Else
Set ws = wsAmerModel

End If

With ws
txtCurrentPrice.Text = Format(.Range("CurrentPrice").Value, "0.00")
txtExercisePrice.Text = Format(.Range("ExercisePrice").Value, "0.00")
calExerciseDate.Value = .Range("ExerciseDate").Value
txtRiskfreeRate.Text = Format(.Range("RiskfreeRate").Value, "0.000")
txtVolatility.Text = Format(.Range("Volatility").Value, "0.000")

End With
End Sub

Private Sub optAmerCall_Click()
Call FillInputs("Amer")

End Sub

Private Sub optAmerPut_Click()
Call FillInputs("Amer")

End Sub

Private Sub optEuroCall_Click()
Call FillInputs("Euro")

End Sub

Private Sub optEuroPut_Click()
Call FillInputs("Euro")

End Sub

620 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

30.7 The Module

The module consists of a Main sub that “shows” frmInputs and then calls the appro-
priate sub, EuroModel or AmerModel. The EuroModel sub is simple because the Euro-
Model sheet is already set up at design time. However, the AmerModel sub is
considerably more complex. It has to create all of the formulas for the binomial
tree method. In addition, it needs to calculate the early exercise boundary for an
American put option. The details in the code are not spelled out here. They won’t
make much sense unless you thoroughly understand binomial trees and how they
can be used to calculate the option price and the early exercise boundary.4 I will
simply present the code and let the comments speak for themselves.

Options Statement and Module-Level Variables

Option Explicit

' Definitions of module-level variables:
' optionType: 1 (European call), 2 (European put),
' 3 (American call), or 4 (American put)
' optionName: "call" or "put"
' currentPrice: current stock price
' exercisePrice: exercise price of option
' currentDate: current date (when option is purchased)
' exerciseDate: exercise date of option
' riskfreeRate: riskfree rate (annual)
' volatility: volatility of stock
' duration: duration of option (in trading days)
' cutoff(): an array showing the early exercise boundary for
' an American put
' optionPrice: price of the option
' wantExtra: vbYes or vbNo, indicates whether the user wants to
' calculate the early exercise boundary for an American put

4However, it is very instructive to read the Winston chapter referenced earlier and then see how the
code in this application implements his method.

An Option-Pricing Application 621

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dim optionType As Integer, optionName As String
Dim currentPrice As Single, exercisePrice As Single
Dim currentDate As Date, exerciseDate As Date
Dim riskfreeRate As Single, volatility As Single
Dim duration As Integer
Dim optionPrice As Single
Dim cutoff() As Variant, wantExtra As Integer

Main Code

Sub Main()
' This sub runs when the user clicks on the button on the Explanation sheet.

' Get the user inputs.
If frmInputs.ShowInputsDialog(currentDate, exerciseDate, _

currentPrice, exercisePrice, riskfreeRate, _
volatility, optionType) Then

' Check if user wants the early exercise boundary (only for an American put).
wantExtra = vbNo
If optionType = 4 Then

wantExtra = MsgBox("Do you want to calculate the early exercise boundary? " _
& "(If you click on No, you will get only the price of the option.)", _
vbYesNo, "Extra info")

End If

' Define option name, depending on whether the user wants a call or a put.
If optionType = 1 Or optionType = 3 Then

optionName = "call"
Else

optionName = "put"
End If

' Do the appropriate analysis, either for a European or an American option.
If optionType <= 2 Then

Call EuroModel
Else

Call AmerModel
End If

End If
End Sub

EuroModel Code

The EuroModel sub calls the EnterInputs sub to enter the user’s inputs in the
appropriate cells, gets the option price, and displays an appropriate message.

Sub EuroModel()
' This sub shows the EuroModel sheet, enters the user inputs in
' input cells, and displays the price of the option. The formulas
' for calculating the price are already in the sheet.

622 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Enter the inputs for the European model and get the result.
With wsEuroModel

Call EnterInputs(wsEuroModel)
optionPrice = .Range("B18").Value

End With

' Display the results.
MsgBox "The price of this European " & optionName & " is " _

& Format(optionPrice, "$0.00"), vbInformation, optionName & " price"
End Sub

EnterInputs Code

The EnterInputs sub takes the user’s inputs and enters them in the input cells
of the specified worksheet. Because the input cells have the same range names in
both the EuroModel and the AmerModel worksheets, this same code can be called
from both the EuroModel and AmerModel subs. This means that it has to be written
only once. Note that if the duration of the option is extremely long, the range for
the binomial tree (for an American option) could extend beyond the right edge
of the worksheet. (Of course, this is much less likely in Excel 2007 and later versions,
which have many more columns.) A check is made for this by using
ws.Columns.Count. This returns the number of columns in a worksheet.

Sub EnterInputs(ws As Worksheet)
' This sub enters the user’s inputs into the appropriate sheet
' (EuroModel or AmerModel). This same sub is called for both the
' European and the American models.

With ws
If optionType <= 2 Then

.Range("EuroOptType") = optionType
Else

.Range("AmerOptType") = optionType - 2
End If
.Range("CurrentPrice").Value = currentPrice
.Range("ExercisePrice").Value = exercisePrice
.Range("ExerciseDate").Value = exerciseDate
.Range("RiskfreeRate").Value = riskfreeRate
.Range("Volatility").Value = volatility
duration = .Range("Duration").Value

End With

' Check whether the duration would take the American model beyond the
' limits of a typical worksheet. If it does, quit.
If optionType >= 3 And duration > ws.Columns.Count - 2 Then

MsgBox "Excel cannot accommodate " & duration & " trading days. Its " _
& "maximum is " & ActiveSheet.Columns.Count - 2 & ". " _
& "Try again with less days till the exercise date.", _
vbInformation, "Too many trading days"

wsExplanation.Activate
End

End If

An Option-Pricing Application 623

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Redim cutoff array in case the user wants the early exercise boundary
' for an American put.
If optionType = 4 And wantExtra = vbYes Then

ReDim cutoff(1 To duration)
End If

End Sub

AmerModel Code

The AmerModel sub implements the American option pricing. It runs the same
EnterInputs sub as above, and then calls the DevelopAmerModel sub to do most of
the work. If the option is an American put and the user wants the early exercise
boundary, this sub also calls the CreateAmerReport sub to report this information.

Sub AmerModel()
' This sub creates the binomial tree model for an American option.

' Enter the user inputs.
Call EnterInputs(wsAmerModel)

' Develop the model
Call DevelopAmerModel

' Display the option price unless it is a put option and the user
' wants the early exercise boundary. In this case, create a report.
If optionType = 3 Or wantExtra = vbNo Then

' Hide the AmerModel sheet, activate the Explanation sheet,
' and display a message about the option’s price.
MsgBox "The price of this American " & optionName & " is " _

& Format(optionPrice, "$0.00"), vbInformation, optionName & " price"

Else
' This is an American put and the user wants the early exercise
' boundary, so it must be created.
With wsAmerPutReport

.Visible = True

.Activate
End With

Call CreateAmerReport
End If

End Sub

DevelopAmerModel Code

The DevelopAmerModel sub acts as its own control center, calling a number of
subs (ErasePrevious, CalcFuturePrices, CalcValues, and, in the case of an early
exercise boundary, EraseRowCol and RunGoalSeek) to set up the AmerModel
worksheet and, if appropriate, calculate the early exercise boundary.

A Note on Status Bar Messages. The calculations for the early exercise
boundary can take a while, so it is useful to indicate the progress to the user in

624 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the status bar at the bottom of the screen. Two properties of the Application
object are useful here. The DisplayStatusBar property is Boolean; it is True if the
status bar is visible, and it is False otherwise. The StatusBar property returns the
message in the status bar. However, this property can also be set to False, which
deletes the current message from the status bar.

To illustrate these properties, the next two lines capture whether the status
bar was visible (in the Boolean variable oldStatusBar) and then ensure that it
is visible.

oldStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True

The next line displays a progress indicator on the status bar that keeps changing
as the program proceeds through a For loop.

Application.StatusBar = "Running Goal Seek on trading " _
& "day " & Duration - i + 1 & " of " & Duration

Finally, the first of the next two lines removes the message, and the second
restores the status bar to its original state (visible or not visible).

Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar

This technique can be very useful if your program takes a long time to run. Users will
at least know that something is happening. Try running the program for an American
put option with a duration of several months, and you will see what I mean.

Here is the DevelopAmerModel sub in its entirety.

Sub DevelopAmerModel()
' This sub develops the binomial tree model for an American option.
Dim i As Integer
Dim oldStatusBar As Boolean

' Clear any previous model.
Call ErasePrevious
' Calculate the possible future stock prices in a triangular range.
Call CalcFuturePrices
' Calculate the expected cash flows from the option by following an optimal strategy.
Call CalcValues

' Calculate the early exercise boundary if the user requests it.
If optionType = 4 And wantExtra = vbYes Then

' The StatusBar statements allow the user to track the progress of the calculations.
oldStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True

An Option-Pricing Application 625

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' The following loop solves a series of Goal Seek problems. Each finds the early
' exercise cutoff price (exercise only if current price is below this price) for a
' particular trading day. In this loop, i represents the row and column of the binomial
' tree "values" area that will be erased. This corresponds to trading day duration-i+1.
wsAmerModel.Range("A20").Offset(duration + 2, 0).Value = "Goal Seek set cell:"

For i = duration To 2 Step -1
Application.StatusBar = "Running Goal Seek on trading " _

& "day " & duration - i + 1 & " of " & duration
Call EraseRowCol(i)
Call RunGoalSeek
cutoff(duration - i + 1) = wsAmerModel.Range("B21").Value

Next

' Delete the message from the status bar and restore it to its original state.
Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar

' The cutoff on the last day requires no calculation; it is the exercise price.
cutoff(duration) = exercisePrice

End If
End Sub

ErasePrevious Code

The ErasePrevious sub clears the contents of the triangular ranges in the Amer-
Model worksheet from a previous run, if any.

Sub ErasePrevious()
' This sub clears the calculations from any previous model in the AmerModel sheet.
With wsAmerModel.Range("A20")

Range(.Offset(0, 0), _
.End(xlToRight).End(xlDown).End(xlDown).End(xlDown)) _
.ClearContents

End With
End Sub

CalcFuturePrices Code

The binomial tree method is based on an approximation where the stock price
can go up or down on any particular day. The CalcFuturePrices sub calculates all
possible future prices in the first triangular array in the AmerModel worksheet.
(Each column corresponds to a particular day in the future.)

Sub CalcFuturePrices()
' This sub sets up the possible future stock prices for the binomial tree
' method in a triangular region, starting in cell B21.
Dim j As Integer

With wsAmerModel.Range("A20")
.Value = "Future prices"

626 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Enter headings in top row, left column.
For j = 0 To duration

.Offset(j + 1, 0).Value = j

.Offset(0, j + 1).Value = j
Next

' Get started by entering the current price in the top left cell
' of the triangular region.
.Offset(1, 1).Value = wsAmerModel.Range("CurrentPrice").Value

' Each entry in the top row is just UpFactor times the previous entry.
Range(.Offset(1, 2), .Offset(1, duration + 1)) _

.FormulaR1C1 = "=UpFactor*RC[-1]"

' Each entry in other rows is (DownFactor/UpFactor) times the
' entry right above it.
Range(.Offset(2, 1), .Offset(duration + 1, duration + 1)) _

.FormulaR1C1 = "=If(RC1<=R20C,(DownFactor/UpFactor)*R[-1]C,"""")"
End With

End Sub

CalcValues Code

The key to the binomial tree method is that at the beginning of each day, the
decision on whether to exercise or not is based on the maximum of two quanti-
ties: the value from exercising now and the expected value from waiting a day and
then deciding whether to exercise. This permits a simple recursion that is imple-
mented in the CalcValues sub. The FormulaR1C1 line in this sub enters the same
formula (using relative addressing) in the entire second triangular range of the
AmerModel worksheet.

A Note on Double Quotes Embedded in Strings. Suppose you want to
use VBA to enter a formula such as =IF(A5<=10,15, "NA") in cell B5. This for-
mula uses a pair of double quotes to enter a string in the cell B5 if the condition
is false. It is tempting to write the following line of code:

Range("B5").Formula = "=If(A5<=10,15,"NA")"

This line enters the formula literally between the two outer double quotes.
However, it will not work correctly. The problem is that VBA will read the for-
mula up through "=If(A5<=10,15," and think it is finished because it has run into
a second double quote. You need to indicate that the inner two double quotes
should be treated as literals, not as double quotes enclosing the string that the
formula consists of.

In general, if you want a double quote in a string to be treated as a literal and
not as one of the double quotes enclosing the string, you need to precede it with
another double quote. The following line does the job:

An Option-Pricing Application 627

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Range("B5").Formula = "=If(A5<=10,15,""NA"")"

The formula toward the bottom of the following sub illustrates how this
technique is used. In fact, it can be used for any strings, not just formulas. For
example, the following line illustrates how to handle double quotes around the
word strange in a message box.

MsgBox "The results from this run were somewhat ""strange""."

Again, any two consecutive double quotes inside a string are interpreted as one
literal double quote.

Here is the CalcValues sub in its entirety.

Sub CalcValues()
' This sub implements the binomial tree method in another triangular
' region, right below the previous one. Each formula says that the price
' of the option at any point of the time is the maximum of two quantities:
' the cash flow from exercising now and the expected value from waiting a
' day and then deciding.
Dim j As Integer

With wsAmerModel.Range("A20").Offset(duration + 3, 0)

' Enter headings.
.Value = "Option values"
For j = 0 To duration

.Offset(j + 1, 0).Value = j

.Offset(0, j + 1).Value = j
Next

' Enter the ending value of the option in the last column.
If optionType = 3 Then ' call option

Range(.Offset(1, duration + 1), _
.Offset(duration + 1, duration + 1)).FormulaR1C1 = _
"=Max(R[-" & duration + 3 & "]C-ExercisePrice,0)"

Else 'put option
Range(.Offset(1, duration + 1), _

.Offset(duration + 1, duration + 1)).FormulaR1C1 = _
"=Max(ExercisePrice-R[-" & duration + 3 & "]C,0)"

End If

' Enter the appropriate formula in the rest of the cells of the
' triangular region.
If optionType = 3 Then ' call option

Range(.Offset(1, 1), .Offset(duration, duration)).FormulaR1C1 = _
"=If(RC1<=R20C,(PrUp*RC[1]+PrDown*R[1]C[1])/(1+RiskfreeRate/260),"""")"

Else ' put option
Range(.Offset(1, 1), .Offset(duration, duration)).FormulaR1C1 = _

"=If(RC1<=R20C,Max(ExercisePrice-R[-" & duration + 3 & "]C," _
& "(PrUp*RC[1]+PrDown*R[1]C[1])/(1+RiskfreeRate/260)),"""")"

End If

628 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' The option price is the top left entry of the region.
optionPrice = .Offset(1, 1).Value * 100

End With
End Sub

EraseRowCol and RunGoalSeek Code

The calculation of the early exercise boundary, as explained in the Winston chap-
ter referenced earlier, can be accomplished by a suitable modification of the sec-
ond triangular range of the AmerModel worksheet and a call to Excel’s Goal
Seek tool. (Goal Seek is used in general to solve one equation in one unknown.)
The following two subs implement this method.

Sub EraseRowCol(i As Integer)
' A quick way to get the early exercise boundary is to delete the bottom and
' leftmost row and column of the triangular "values" region and then run
' Goal Seek. This sub deletes row i and column i of the region.
With wsAmerModel.Range("A20").Offset(duration + 3, 0)

Range(.Offset(i + 1, 1), .Offset(i + 1, i + 1)).ClearContents
Range(.Offset(1, i + 1), .Offset(i + 1, i + 1)).ClearContents

End With
End Sub

A Note on Using Goal Seek in VBA. Goal Seek is an Excel tool (found in
the What-If Analysis dropdown list on the Data ribbon) for solving one equation
in one unknown. It requires you to specify three things: (1) a cell containing a
formula that you want to force to some value, (2) the value you want to force it
to, and (3) a “changing cell” that can be varied to force the formula to the
required value. It is easy to invoke Goal Seek from VBA, using the GoalSeek
method of a Range object. The following line illustrates how to do it.

Range("B20").GoalSeek Goal:=0, ChangingCell:=Range("B21")

This line forces the value in cell B20 to 0, using cell B21 as the changing cell.
As this example shows, the GoalSeek method takes two arguments: the value to
be forced to and the changing cell. It is used to calculate the early exercise
boundary in the following RunGoalSeek sub.

Sub RunGoalSeek()
' This sub runs Goal Seek. (It would also be possible to run Solver, but
' Goal Seek is easier.) The changing cell is B21, which contains a trial
' value for the price of the stock. Initialize it to a value that is
' certainly too high: the exercise price.

With wsAmerModel.Range("B21")
.Value = exercisePrice
.NumberFormat = "General"

End With

An Option-Pricing Application 629

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' In between the two triangular regions (in column B), enter a formula:
' the difference between the cash flow from exercising now and the optimal
' cash flow. Then run Goal Seek, trying to drive the value from this
' formula to 0.
With wsAmerModel.Range("A20").Offset(duration + 2, 1)

.Formula = "=ExercisePrice-B21-" & .Offset(2, 0).Address

.NumberFormat = "General"

.GoalSeek Goal:=0, ChangingCell:=wsAmerModel.Range("B21")
End With

End Sub

CreateAmerReport Code

Finally, the CreateAmerReport sub fills in the AmerPutReport worksheet with the
information (calculated earlier and stored in the cutoff array) about the early exercise
boundary. The most interesting part of this sub is the handling of dates. Note how
the report in Figure 30.5 skips dates corresponding to weekend days (nontrading
days). This is implemented in the sub with an If construct and Excel’s WEEKDAY
function, which returns 7 for a Saturday and 1 for a Sunday. Note that the thisDate
variable needs to be declared as a Date variable to make this work properly.

Sub CreateAmerReport()
' This sub creates a report of the option price and the early exercise boundary, but
' only for an American put and only when the user requests the early exercise boundary.
Dim i As Integer
Dim thisDate As Date
With wsAmerPutReport

' Record the option price.
.Range("B3").Value = optionPrice

' Record the early exercise prices, starting in cell B7. Note that thisDate captures
' the actual date, but it excludes weekends.
With .Range("A6")

Range(.Offset(1, 0), .Offset(1, 1).End(xlDown)).ClearContents
thisDate = currentDate
For i = 1 To duration

thisDate = thisDate + 1

' If thisDate is a Saturday, make it the next Monday.
If Application.Weekday(thisDate) = 7 Then

thisDate = thisDate + 2

' If thisDate is a Sunday, make it the next Monday.
ElseIf Application.Weekday(thisDate) = 1 Then

thisDate = thisDate + 1
End If
.Offset(i, 0).Value = thisDate
.Offset(i, 1).Value = cutoff(i)

Next
End With

.Range("A1").Select
End With

End Sub

630 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ViewExplanation Code

This sub is used for navigational purposes (from the button on the AmerPutReport
worksheet).

Sub ViewExplanation()
With wsExplanation

.Activate

.Range("F4").Select
End With
wsAmerPutReport.Visible = False

End Sub

TradeDays Function

Two inputs to the option pricing model are the current date and exercise date.
The pricing models actually require the duration of the option, defined as the
number of trading days until the exercise date. To calculate the duration, I cre-
ated a TradeDays function specifically for this purpose, with the code listed
below. It again uses Excel’s WEEKDAY function to skip weekends. It can then
be used in an Excel formula in the usual way. For example, the formula in cell
B12 of the EuroModel worksheet (see Figure 30.6) is

=TradeDaysðCurrentDate;ExerciseDateÞ

This is a perfect example of creating a function to perform a particular task when
Excel doesn’t have a built-in function to perform it. If you want to use this func-
tion in your own workbooks, you should insert a module in your workbook and
copy the following code to it.

Function TradeDays(firstDate As Date, lastDate As Date) As Integer
' This function returns the number of trading days between two dates.
' It excludes weekends only, although with extra logic, it could be
' changed to exclude other days (such as Christmas). Note how it uses
' Excel's Weekday function, which returns 1 for Sundays, 7 for Saturdays.

Dim nDays As Integer
Dim i As Integer
Dim currentDay As Integer

' Start with the number of days from FirstDate to LastDate
nDays = lastDate - firstDate
TradeDays = nDays

' Now subtract a day for every weekend day.
For i = 1 To nDays

currentDay = Application.WorksheetFunction.Weekday(firstDate + i)
If currentDay = 1 Or currentDay = 7 Then

TradeDays = TradeDays - 1
End If

Next
End Function

An Option-Pricing Application 631

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30.8 Summary

This application doesn’t require a lot of inputs, and it doesn’t produce a lot of
outputs, but it does perform a number of rather complex calculations in the back-
ground to produce some very useful results. Considering that the options business
in the financial community is a billion-dollar business annually, an application such
as this one can be extremely valuable to financial analysts and investors.

EXERCISES

1. Develop a message box statement that displays the following message, exactly as it
is written here:

When you want a literal double quote, ", in a string, you should use another double quote, as in "".

2. Consider the following formula that you want to enter, via VBA, in cell C3: =If
(A3="West","Los Angeles",If(A3="East","New York",""). Write a VBA state-
ment to set the Formula property of cell C3 correctly.

3. The file IRR.xlsx contains data on an investment that requires an initial cost
at the beginning of year 1 and then receives cash inflows at the ends of years
1 through 10. The net present value (NPV) of this investment is calculated in
cell B11 for the discount rate in cell B3. The internal rate of return (IRR) of the
investment is defined as the discount rate that makes the NPV equal to 0. Write a
VBA sub, using the GoalSeek method, to calculate the IRR and display it in a
message box, formatted as a percentage with two decimals. (Note: Excel has a
built-in IRR function. It should obtain the same result as your VBA sub.)

4. The file Certainty Equivalent.xlsx contains the probability distribution of the mon-
etary outcome for a given investment. Assume that a decision maker is risk averse and
has an exponential utility function with the risk tolerance parameter R given in cell
B3. Then the utility of any monetary outcome x is e-x/R, the expected utility of an
investment is the “sumproduct” of probabilities and utilities of monetary outcomes,
and the certainty equivalent of the investment is the dollar amount such that its util-
ity is equal to the expected utility of the investment. In words, the certainty equiva-
lent is the monetary value such that the investor is indifferent between (1) getting
this monetary value for sure and (2) getting into the risky investment. Write a sub
that calculates the expected utility of the investment described from row 7 down
and uses the GoalSeek method to calculate the certainty equivalent. Display both of
these outputs in a message box. Write the sub so that it will work for any probability
distribution listed from row 7 down and any risk tolerance given in cell B3.

5. Change the TradeDays function so that it also excludes the fixed dates January 1,
December 25, and July 4. (In addition, you can exclude any other fixed dates you
want to exclude. However, it would be much more difficult to exclude a “float-
ing” holiday such as Thanksgiving, so don’t worry about these.) Then change
the CreateAmerReport sub so that it also excludes these fixed dates.

632 Chapter 30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. The preceding exercise claimed that it would be difficult to exclude “floating”
holidays like Thanksgiving (the fourth Thursday in November). Is this true?
Write a function subroutine called Thanksgiving that takes one argument called
Year. (For example, this argument will have values like 2015.) It then returns the
date that Thanksgiving falls on. Then redo the previous exercise, excluding
Thanksgiving as well as the other fixed dates.

7. The file City Sales.xlsx contains sales of 100 products for five cities in California
(each on a different sheet) for each day over a 2-year period. Write a sub that fills
a two-dimensional array maxSale, where maxSale(i, j) is the maximum sale, over all
days, for product j in city i. This will take a while to run, so display a message such
as “Analyzing product 17 in San Diego” in the status bar that shows the current
city and product being analyzed. Make sure the message disappears when all cities
and products have been analyzed.

An Option-Pricing Application 633

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An Application for Finding

Betas of Stocks

31.1 Introduction

The beta of a stock is a measure of how the stock’s price changes as a market index
changes. It is the coefficient of the market return when the returns of the stock are
regressed on the market returns. If the beta of a stock is greater than 1, the stock is
relatively volatile; if the market changes by a certain percentage, the stock’s price
tends to change by a larger percentage. The opposite is true when the beta of a
stock is less than 1. This application calculates the beta for any company given histori-
cal price data on the company’s monthly stock prices and a market index. It uses one
of four possible criteria to find the best-fitting regression equation. More details on
estimation of stock betas can be found in Chapter 7 of Practical Management Science.

The application also illustrates another way of getting data from an application—
from another Excel file that is not currently open.

New Learning Objectives: VBA

● To illustrate how to capture data from one workbook for use in a VBA
application in another workbook.

● To illustrate two features of list boxes: the use of two columns and the
RowSource property for populating a list box.

New Learning Objectives: Non-VBA

● To learn how nonlinear optimization can be used to estimate the beta of a
stock, using any of four possible optimization criteria.

31.2 Functionality of the Application

The application, stored in the file Stock Beta.xlsm, gets the required stock return
data from another file, Stock Data.xlsx. The application is written so that these two
files must be in the same folder. The Stock Data.xlsx file contains monthly stock
price data for many large US companies from January 2009 through December
2013. It also contains monthly data on an S&P 500 market index during this same
period. The user can choose any of these companies, a period of time containing at
least 36 months (such as January 2011 to December 2013), and one of four criteria
to minimize: sum of squared errors, weighted sum of squared errors, sum of absolute
errors, or maximum absolute error. (I chose the 36-month limit somewhat
arbitrarily.) The application then uses the company’s returns and the market returns

31

634

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for this period, and it estimates the stock’s beta using the specified criterion. It does
this by estimating a regression equation of the form Y = a + bX, where Y is the
stock return,X is the market return, and b estimates the stock’s beta. It is also possible
to view a time series plot of the stock’s returns, with the predictions of its returns
from the regression equation superimposed on the plot.

Each stock in the Stock Data.xlsx file has its own worksheet. You can add more
worksheets for other stocks, and the application will automatically recognize them. If
you want to run the application with more recent data on the included companies or
any other companies, only a few changes in the VBA code are necessary. As it stands,
it expects monthly returns from January 2009 through December 2013, but these
can be changed easily in the code.

This application uses a calendar control on the user form. See Section 11.3 of
Chapter 11 for instructions on registering this control on your computer. The
application won’t work properly until you do so.

31.3 Running the Application

When the Stock Beta.xlsm file is opened, the Explanation sheet in Figure 31.1
appears. After clicking on the button in this sheet, the user sees the dialog box

Figure 31.1 Explanation Worksheet

An Application for Finding Betas of Stocks 635

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in Figure 31.2. As it is filled out here, it will find the beta for IBM, based on the
returns from January 2010 to December 2013, using the weighted sum of
squared errors criterion with a weighting constant of 0.98. Note that I have cho-
sen to use calendar controls. Because the data are monthly, it doesn’t matter
which day of the month you choose in either of the calendars. However, a day
does need to be chosen, or completely wrong dates will be returned.

At this point, the data from the IBM and S&P500 sheets in the Stock
Data.xlsx file are copied to the Model worksheet in the Stock Beta.xlsm file. Then
a Solver model is set up and optimized according to the specified criterion. The
resulting beta is displayed in the message box in Figure 31.3, and the full details
(with a number of hidden rows) appear in the Model worksheet in Figure 31.4.

When the left button on the Model worksheet is clicked, the chart in
Figure 31.5 is displayed. It shows the stock’s returns with the predictions
from the best-fitting regression equation superimposed.

Figure 31.2 Inputs Dialog Box

636 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 31.3 Beta for Selected Company

Figure 31.4 Completed Model Worksheet for Selected Company

Figure 31.5 Time Series Plot of Returns and Predictions

0.15000

0.10000

0.05000

0.00000

–0.05000

–0.10000

Stock Returns and Predictions for IBM from 01/2010 to 12/2013

Stock return

Predicted

An Application for Finding Betas of Stocks 637

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31.4 Setting Up the Excel Sheets

The Stock Beta.xlsm file contains an Explanation worksheet, a Model worksheet, and
a chart sheet named TimeSeriesChart. The Stock Data.xlsx file contains an S&P500
worksheet and a separate worksheet for each company. These individual company
worksheets are named by the company’s ticker symbol (e.g., GE for General
Electric, JNJ for Johnson & Johnson). A typical company worksheet is structured as
in Figure 31.6. It contains dates (in reverse chronological order) in column A, monthly
closing prices in column B, corresponding returns in column C, and the company’s
name in cell E1. (Note that many rows are not shown in the figure.) You
can add sheets for additional companies in the Stock Data.xlsx file, but they should
all be structured in this way. The S&P500 sheet is structured similarly, as shown in
Figure 31.7. Note that the closing prices extend back to December 2008, whereas
the returns extend back only to January 2009. This is because each return, being a
percentage change, requires the previous closing price.

The Model worksheet in the Stock Beta.xlsm file can be set up at design time
as a template, with the labels and range names shown in Figure 31.8. The body of

Figure 31.6 Typical Company Worksheet

Figure 31.7 S&P500 Worksheet

638 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

it must be filled in at run time. The TimeSeriesChart sheet can be created with
Excel’s chart tools at design time, using any trial data. It is then linked to the actual
data on the Model worksheet at run time.

31.5 Getting Started with the VBA

The Stock Beta.xlsm file includes a single user form named frmInputs, a module, and
a reference to Solver.1 Once these items are added, the Project Explorer window will
appear as in Figure 31.9.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. As usual, it hides all
sheets except the Explanation worksheet, and it displays the Solver warning
when used with pre-2010 versions of Excel.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("E4").Select
End With
wsModel.Visible = False
chtTimeSeries.Visible = False
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then
frmSolver.Show

End Sub

Figure 31.8 Model Worksheet Template

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A B C D E F G H I J K L

Es�ma�on model for

Parameters
Alpha
Beta

Weigh�ng constant

Op�miza�on model
Date Mkt return Stock return Predicted Error SqError AbsError Weight Target for op�miza�on

Range names used:
Alpha =Model!B4
AlphaBeta =Model!B4:B5
Beta =Model!B5
Objec�ve =Model!K11
Weight =Model!B7

View Time Series Chart View Explana�on Sheet

1 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users of pre-2010 versions of Excel will see this message.

An Application for Finding Betas of Stocks 639

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31.6 The User Form

The design of frmInputs appears in Figure 31.10. It contains the usual OK and
Cancel buttons, several labels, a text box, a frame for grouping, four option but-
tons, a list box, and two calendar controls. (See Section 11.3 of Chapter 11 for a
discussion of the calendar control.) The text is named txtWeight; the option but-
tons are named optSSE, optWSSE, optSAE, and optMinimax; the list box is
named lbCompanies; and the calendars are named calBeginning and calEnding.

The text boxes and option buttons are standard. However, the list box pre-
sents two new features. Specifically, its ColumnCount property is set to 2 at design
time. (See Figure 31.11.) This indicates that the list will contain two columns,
one for the ticker symbols and one for the company names. The BoundColumn
property of the list box then specifies which column the Value property refers to.
For example, if you want to get an item from the list in the first column, you set
the BoundColumn property to 1 before accessing the Value property. Finally, the
RowSource property is set to the worksheet range named Companies at design
time (using the Properties window). Then the list box is automatically populated
with the list in this range.

The Initialize sub selects the first company in the list box, it sets the calendars to
the earliest and latest dates in the data set, it checks the SSE option, and it clears the
weight box and disables it. The Valid function performs a considerable amount of
error checking before finally capturing the user’s inputs in a number of variables.
Note the use of VBA’s DateDiff function in the Valid function. It takes three argu-
ments: a time period (e.g., “m” for month) and two dates, and it returns the number
of time periods between these two dates. For example, it returns 3 if the time period
is a month and the dates are March 2013 and June 2013.

Figure 31.9 Project Explorer Window

640 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private cancel As Boolean

Public Function ShowInputsDialog(ticker As String, _
company As String, firstDate As Date, _
lastDate As Date, method As String, weight As Single) As Boolean

Call Initialize
Me.Show
If Not cancel Then

' Get the ticker symbol and company name from the user’s selection.
' The BoundColumn of a list box indicates which column the Value
' property refers to.
With lbCompanies

.BoundColumn = 1
ticker = .Value
.BoundColumn = 2
company = .Value

End With
firstDate = DateSerial(calBeginning.Year, calBeginning.Month, 1)
lastDate = DateSerial(calEnding.Year, calEnding.Month, 1)
' Capture the method to use for optimization.
Select Case True

Case optSSE.Value: method = "SSE"
Case optWSSE.Value

method = "WSSE"
weight = txtWeight.Value

Figure 31.10 frmInputs Design

An Application for Finding Betas of Stocks 641

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case optSAE.Value: method = "SAE"
Case optMinimax.Value: method = "Minimax"

End Select
End If
ShowInputsDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Note that the list box is populated by setting its ColumnCount property
' to 2 and its RowSource property to Companies. These are both set at
' design time in the Properties window. The Companies range (in the Model
' sheet) is populated, right before this user form is displayed, with the
' CreateCompanyList sub in Module1.
lbCompanies.ListIndex = 0
With calBeginning

.Day = 1

.Month = Month(EARLIEST_DATE)

.Year = Year(EARLIEST_DATE)
End With
With calEnding

.Day = 1

.Month = Month(LATEST_DATE)

.Year = Year(LATEST_DATE)
End With
optSSE.Value = True
With txtWeight

.Text = ""

.Enabled = False
End With

End Sub

Private Function Valid() As Boolean
Dim ctl As Control
Dim fDate As Date, lDate As Date
Dim wt As Single

Valid = True
' Make sure the dates are allowable.
fDate = DateSerial(calBeginning.Year, calBeginning.Month, 1)
lDate = DateSerial(calEnding.Year, calEnding.Month, 1)
If fDate < EARLIEST_DATE Then

Valid = False
MsgBox "The beginning date cannot be before " & _

Format(EARLIEST_DATE, "mm/dd/yyyy") & ". Choose again.", _
vbExclamation, "Invalid date"

calBeginning.SetFocus
Exit Function

ElseIf lDate > LATEST_DATE Then
Valid = False
MsgBox "The ending date cannot be after " & _

Format(LATEST_DATE, "mm/dd/yyyy") & ". Choose again.", _
vbExclamation, "Invalid date"

calEnding.SetFocus
Exit Function

End If

' Use the VBA DateDiff function to get number of months between two dates.
' The first argument "m" means month, the second and third arguments are the

642 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' first and last dates for the difference. Note that a literal month is again
' enclosed in pound signs.

' Check that the last date is at least 3 years after the first date.
If DateDiff("m", fDate, lDate) + 1 < 36 Then

Valid = False
MsgBox "Choose dates so that you have at least " _

& "36 months of data", vbExclamation, "Invalid dates"
calBeginning.SetFocus
Exit Function

End If

' Check inputs in case WSSE is selected.
If optWSSE.Value Then

' Check that the weight box is not blank and is numeric.
If Not IsNumeric(txtWeight) Or txtWeight.Text = "" Then

Valid = False
MsgBox "Enter a numerical weight between 0 and 1.", _

vbInformation, "Invalid weight"
txtWeight.SetFocus
Exit Function

Else
wt = txtWeight.Text
' Check that the weight is between 0 and 1.
If wt < 0 Or wt > 1 Then

Valid = False
MsgBox "Enter a weight between 0 and 1.", vbInformation, _

"Invalid weight"
txtWeight.SetFocus
Exit Function

End If
End If

End If
End Function
Private Sub cmdOK_Click()

If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

There is also an event handler for each option button’s Click event. This enables or
disables the weight box, depending on which button has been checked. It makes no
sense for the user to enter a value for the weight unless the weighted sum of squares
criterion is selected. Remember that event handlers can be written for numerous
events for any of the controls on a user form. The following subs illustrate how this
works for the Click events of option buttons. Specifically, these subs enable or disable
txtWeight, depending on which optimization method has been chosen. This text box
should be enabled when the user clicks the WSSE option, and it should be disabled
when the user clicks any of the other option buttons. To see the effect, run the applica-
tion and click the various option buttons.

An Application for Finding Betas of Stocks 643

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub optSSE_Click()
txtWeight.Enabled = False

End Sub

Private Sub optWSSE_Click()
With txtWeight

.Enabled = True

.SetFocus
End With

End Sub

Private Sub optSAE_Click()
txtWeight.Enabled = False

End Sub

Private Sub optMinimax_Click()
txtWeight.Enabled = False

End Sub

31.7 The Module

The MainStockBeta sub is attached to the button on the Explanation worksheet.
It first creates a list of companies by opening the StockData.xlsx file and looping
through its worksheets. Then it “shows” frmInputs to get the user’s inputs. Next,

Figure 31.11 Properties of List Box

644 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

it sets up a model and optimizes it, and it updates the chart. It also takes care of
closing the Stock Data.xlsx file when it is no longer needed.

Option Statement and Module-Level Variables

' Definition of module-level variables
' ticker - ticker ticker of selected company
' company - name of selected company
' method - optimization method used
' weight - weighting constant (for weighted least squares only)
' firstDate - first date of selected time period
' lastDate - last date of selected time period
' nMonths - number of months in selected time period
' firstDateRow - first row of data for estimation period (remember
' that data are listed in reverse chronological order)
' wbData - a workbook object variable for the Stock Data file

Dim ticker As String, company As String
Dim method As String, weight As Single
Dim firstDate As Date, lastDate As Date
Dim nMonths As Integer, firstDateRow As Integer
Dim wbData As Workbook

' Change the following if the dates in the data file change.
Public Const EARLIEST_DATE = #1/1/2009#
Public Const LATEST_DATE = #12/31/2013#

MainStockBeta Code

Sub MainStockBeta()
' This sub runs when the user clicks on the button in the Explanation sheet.

' Create a list of companies in the Companies range.
Call CreateCompanyList

' Get user choices.
If frmInputs.ShowInputsDialog(ticker, company, _

firstDate, lastDate, method, weight) Then

nMonths = DateDiff("m", firstDate, lastDate) + 1
firstDateRow = DateDiff("m", lastDate, LATEST_DATE) + 1

Application.ScreenUpdating = False

' Comment out the next line and run the program. You’ll probably be
' asked about saving information on the clipboard – annoying, so
' I added the following line.
Application.DisplayAlerts = False

' Set up the model in the Model sheet, use the Solver to optimize,
' and update the time series chart.
Call SetupModel
Call RunSolver
Call UpdateChart

An Application for Finding Betas of Stocks 645

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Application.ScreenUpdating = True

' Display the beta in a message box.
' (Details are displayed to the user in the Model sheet.)
MsgBox "The beta for " & company & " for this period is " _

& Format(wsModel.Range("Beta"), "0.000") & ". The rest of this sheet " _
& "shows the model for estimating this beta.", vbInformation, "Beta"

Else
Application.DisplayAlerts = False
wbData.Close
Application.DisplayAlerts = True

End If
End Sub

CreateCompanyList Code

The CreateCompanyList sub opens the Stock Data.xlsx workbook and loops through
all of its worksheets (other than the S&P500 worksheet) to see which companies are
included. As it does this, it creates a list in columns AA and AB of theModel worksheet

Figure 31.12 Companies List in Model Worksheet

646 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in the Stock Beta.xlsm workbook and names the corresponding range Companies.
(See Figure 31.12.) This range is the source for the list box in frmInputs because its
RowSource property is set to Companies at design time. Note the error-handling code.
If the Stock Data.xlsx file cannot be found, control passes to the MissingFile label. At
that point, an error message is displayed, and the program ends. However, if there is
no error—the file exists—an Exit Sub statement ensures that the lines following the
label are not executed. This is the one time when it is accepted programming practice
to use a GoTo statement.

Sub CreateCompanyList()
' This sub creates a list of companies in the Companies range
' (in columns AA, AB of the Model sheet) for populating the list box
' in the user form.
Dim ws As Worksheet
Dim i As Integer

' Clear old list.
With wsModel

.Range("Companies").ClearContents

' Open the Stock Data file. If it is not in the same folder as the
' Stock Beta file, an error occurs, and the program ends. Otherwise, make
' Stock Beta the active workbook. Remember that ThisWorkbook refers to
' the file that contains the code, i.e., this one.
On Error GoTo MissingFile
Set wbData = Workbooks.Open(ThisWorkbook.Path & "\Stock Data.xlsx")
ThisWorkbook.Activate

' Go through all worksheets in the Stock Data file. If the name is not S&P500,
' add to the list. The sheet name is the ticker symbol, and its cell E1 should
' contain the company name. Note that the RowSource property of the list box in
' frmInputs is set to Companies. So as soon as the Companies range is populated,
' the list box is populated also.
i = 0
With .Range("AA1")

For Each ws In wbData.Worksheets
If ws.Name <> "S&P500" Then

i = i + 1
.Offset(i, 0).Value = ws.Name
.Offset(i, 1).Value = ws.Range("E1").Value

End If
Next
Range(.Offset(1, 0), .Offset(i, 1)).Name = "Model!Companies"

' Sort the list on the ticker symbol.
.Sort Key1:=.Cells(1, 1), Header:=xlYes

End With
End With
Exit Sub

MissingFile:
MsgBox "There is no Stock Data.xlsx file in the same folder as this " _

& "workbook, so the application cannot continue.", _
vbExclamation, "Missing file"

End
End Sub

An Application for Finding Betas of Stocks 647

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SetupModel Code

The SetupModel sub activates the Model worksheet and then calls two subs, Copy-
Data and EnterFormulas, to set up the model for estimating the beta of the stock.

Sub SetupModel()
' This sub sets up the optimization model.

' Unhide and activate the Model sheet.
With wsModel

.Visible = True

.Activate

' Set up the model.
Call CopyData
Call EnterFormulas

.Range("A1").Select
End With

End Sub

CopyData Code

At this point, the Stock Data.xlsx file is still open, so the CopyData sub copies
the data on dates and monthly returns from the selected company sheet and the
S&P500 sheet to the Model worksheet. It uses the PasteSpecial method to paste
the monthly return formulas as values.

Sub CopyData()
' This sub copies the data from the S&P500 sheet and the sheet for the selected
' company to the Model sheet.

' First, clear any previous results from the Model sheet.
With wsModel.Range("A10")

Range(.Offset(1, 0), .End(xlDown).End(xlToRight)).ClearContents
End With

' Copy the dates and returns from the S&P500 sheet of the StockData file to
' columns A and B of the Model sheet. Because the Returns columns of the
' stock sheets contain formulas, they are pasted special as values in the
' Model sheet.
With wbData.Worksheets("S&P500").Range("A3")

Range(.Offset(firstDateRow, 0), .Offset(firstDateRow + nMonths - 1, 0)).Copy _
Destination:=wsModel.Range("A11")

Range(.Offset(firstDateRow, 2), .Offset(firstDateRow + nMonths - 1, 2)).Copy
wsModel.Range("B11").PasteSpecial xlPasteValues

End With

' Similarly, copy the returns from the selected company to column C of the
' Model sheet.
With wbData.Worksheets(ticker).Range("A3")

Range(.Offset(firstDateRow, 2), .Offset(firstDateRow + nMonths - 1, 2)).Copy
wsModel.Range("C11").PasteSpecial xlPasteValues

End With

648 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Close the Stock Data file.
wbData.Close

End Sub

EnterFormulas Code

The EnterFormulas sub is somewhat long, but it is straightforward. It enters the formu-
las for the optimization model, including the predicted returns, the errors, the squared
errors, the absolute errors, the weights for the weighted sum of squares method
(if applicable), and the appropriate objective for the criterion selected. The Case
construct is used here to perform different tasks depending on the value of method.

Sub EnterFormulas()
' This sub enters all the required formulas in the Model sheet.
Dim methodName As String

' First, enter an appropriate label in cell A1.
Select Case method

Case "SSE": methodName = "sum of squared errors"
Case "WSSE": methodName = "weighted sum of squared errors"
Case "SAE": methodName = "sum of absolute errors"
Case "Minimax": methodName = "minimax"

End Select

With wsModel
.Range("A1").Value = "Estimation model for " & company & ": period from " _

& Format(firstDate, "mm/yyyy") & " to " & Format(lastDate, "mm/yyyy") _
& ", " & methodName & " estimation method"

' Enter the weight in the Weight cell (if weighted least squares is selected).
If method = "WSSE" Then

.Range("Weight").Value = weight
Else

.Range("Weight").Value = "NA"
End If

' Enter the predictions, errors, squared errors, and absolute errors with
' the appropriate formulas in columns D-G.
With .Range("D10")

Range(.Offset(1, 0), .Offset(nMonths, 0)).FormulaR1C1 = "=Alpha+Beta*RC[-2]"
Range(.Offset(1, 1), .Offset(nMonths, 1)).FormulaR1C1 = "=RC[-2]-RC[-1]"
Range(.Offset(1, 2), .Offset(nMonths, 2)).FormulaR1C1 = "=RC[-1]^2"
Range(.Offset(1, 3), .Offset(nMonths, 3)).FormulaR1C1 = "=Abs(RC[-2])"
If method = "WSSE" Then

.Offset(0, 4).Value = "Weight"

.Offset(1, 4).Value = 1
Range(.Offset(2, 4), .Offset(nMonths, 4)).FormulaR1C1= "=Weight*R[-1]C"

Else
Range(.Offset(0, 4), .Offset(nMonths, 4)).Value = ""

End If
End With

' Name the appropriate range and then enter a formula for the appropriate
' objective in the Objective cell.

An Application for Finding Betas of Stocks 649

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Select Case method
Case "SSE"

With .Range("F10")
Range(.Offset(1, 0), .Offset(nMonths, 0)).Name = "Model!SqErrs"

End With
With .Range("Objective")

.Offset(0, -1).Value = method

.Formula = "=Sum(SqErrs)"
End With

Case "WSSE"
With .Range("F10")

Range(.Offset(1, 0), .Offset(nMonths, 0)).Name = "Model!SqErrs"
End With
With .Range("H10")

Range(.Offset(1, 0), .Offset(nMonths, 0)).Name = "Model!Weights"
End With
With .Range("Objective")

.Offset(0, -1).Value = method

.Formula = "=Sumproduct(Weights,SqErrs)"
End With

Case "SAE"
With .Range("G10")

Range(.Offset(1, 0), .Offset(nMonths, 0)).Name = "Model!AbsErrs"
End With
With .Range("Objective")

.Offset(0, -1).Value = method

.Formula = "=Sum(AbsErrs)"
End With

Case "Minimax"
With .Range("G10")

Range(.Offset(1, 0), .Offset(nMonths, 0)).Name = "Model!AbsErrs"
End With
With .Range("Objective")

.Offset(0, -1).Value = method

.Formula = "=Max(AbsErrs)"
End With

End Select
End With

End Sub

RunSolver Code

The RunSolver sub is particularly simple because Solver can be set up completely at
design time and the size of the model never changes. Note that the Solver setup
minimizes the Objective cell, has the AlphaBeta range as decision variable cells, and
has no constraints. (With no constraints, there is no need to check for feasibility—
there is bound to be a feasible solution.)

Sub RunSolver()
' Run Solver, which is developed once and for all at design time.
SolverSolve UserFinish:=True

End Sub

650 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

UpdateChart Code

The time series chart is created at design time, so all the UpdateChart sub has to
do is link the chart to the correct data and modify its title appropriately.

Sub UpdateChart()
' This sub updates the existing chart with the results of the optimization.
Dim sourceData As Range, sourceDates As Range

' Set range variables for the dates and data ranges for the chart.
With wsModel.Range("A10")

Set sourceDates = Range(.Offset(1, 0), .Offset(nMonths, 0))
Set sourceData = Range(.Offset(0, 2), .Offset(nMonths, 3))

End With

' Update the chart, including its title.
With chtTimeSeries

.SetSourceData sourceData

.SeriesCollection(1).XValues = sourceDates

.ChartTitle.Text = "Stock returns and predictions for " & company _
& " from " & Format(firstDate, "mm/yyyy") & " to " _
& Format(lastDate, "mm/yyyy")

End With
End Sub

Navigational Subs

The remaining subs are for navigational purposes and are not shown here.

31.8 Summary

This application illustrates another way to obtain data for a VBA application: from
another Excel file. If the data are already stored in another Excel file, there is no
point in appending all of the data to the file that contains the application. Instead,
the data file can be opened (and later closed) programmatically, and the necessary
data can be copied to the application file. This application also illustrates four
common and useful estimation methods that can be used not only for estimating
stock betas, but also for other estimation problems.

EXERCISES

1. The file Sales Offices.xlsx contains data on a company’s sales offices. Each row
lists the location of the office (country, state or province, if any, and city) and
the sales for the current year. Open another file, and insert a user form and a
module in this new file. The user form should contain the usual OK and Cancel
buttons and a list box (with an appropriate label above the list box for explana-
tion). The list box should contain three columns: one for country, one for state/
province, and one for city. The user should be allowed to choose exactly one item
from the list. There should then be a sub in the module that shows the user form

An Application for Finding Betas of Stocks 651

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and then displays a message for the selected location, such as “The office in the
city of Vancouver in the province of British Columbia in Canada has yearly sales
of $987,000.” Note that the part about the state/province will be absent for the
offices not in the United States or Canada. This sub will also have to open the
Sales Office.xlsx file (and close it at the end) with VBA code.

2. Repeat the previous exercise, but now allow the user to select any number of
locations from the list. Then, inside a loop, the sub should display the same type
of message for each location selected.

3. Change the application in this chapter and the data file as follows. For the data
file, go to a suitable source (probably the Web), find monthly closing prices for
the companies in the file for months after this application was written (from Janu-
ary 2014 on), and add them to the tops of the sheets in the Stock Data.xlsx file.
You will also have to find the corresponding market index data. It has ticker sym-
bol ^GSPC. Feel free to add worksheets for other companies as well if you like.
Then make any necessary updates to the Stock Beta.xlsm file, including the
code, to make it work with the expanded data set.

4. Suppose the Stock Data.xlsx file has stock price data for different months for dif-
ferent companies. For example, it might have data going back to 2007 for one
company and data going back to only 2009 for another company. Rewrite the
code in the Stock Beta.xlsm file to ensure that it uses only the data available.
Should the dialog box in Figure 31.2 be redesigned? Should its event handlers
be changed? These are design issues you can decide. In any case, you can assume
that there are plenty of data for the S&P500 market index—it goes back at least
as far as any of the companies—and that the most recent closing price date is the
same for all companies.

5. The current Stock Data.xlsx worksheets all have stock returns calculated in col-
umn C. Suppose these are not yet calculated—each column C is blank. For exam-
ple, this might be the case if you downloaded the closing prices from some
source, and this source gave only the prices, not the returns. Change the VBA
code as necessary so that it calculates the required returns on the fly.

6. Suppose the stock price data are in some file (in the same format as given here) in
some folder, but the file name is not necessarily Stock Data.xlsx and the folder is
not necessarily the same as the folder where the Stock Beta.xlsm file resides.
Therefore, you need to give the user a way to locate the data file. You could do
this with an input box (and risk having the user spell something wrong), but
Excel provides an easier way with the FileDialog object discussed in Chapter 13.
Use this latter method to change the application so that it prompts the user for
the name and location of the data file. Actually, you should probably precede the
above line with a MsgBox statement so that the user knows she is being asked to
select the file with the data. Then try the modified application with your own
Excel file, stored in a different folder from the folder containing the Excel
application.

652 Chapter 31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Portfolio Optimization

Application

32.1 Introduction

This application is probably the most ambitious application in the book, and it is
possibly also the most exciting one. There is a Yahoo Web site that contains his-
torical stock price data for many companies during any time period. The appli-
cation retrieves the stock price data into an Excel file; calculates the means,
standard deviations, and correlations for the corresponding stock returns; sets
up a portfolio optimization model to minimize the portfolio variance (a measure
of risk) for a given minimum required mean return; and solves this model for
several minimum required mean returns to find the efficient frontier, which is
shown in tabular and graphical form. The user can select any group of stocks
and any time period. All of this is done in real time, so an active Web connec-
tion is required.

There is a price to pay for anything this powerful—the VBA code is lengthy
and sometimes rather difficult. But if you have the perseverance to work through
it, you are well on your way to becoming a real—and valuable—programmer.

Unfortunately, this application relies on a data source that we as program-
mers cannot control: the Web. The Yahoo site changes unpredictably from time
to time, so there is no guarantee that the code presented here will always work.
If I could fix this once and for all, I would; it has been a source of frustration for
years. However, to avoid crashes, the current application performs an error check.
If the Web query fails, then rather than present an obscure error message, the
application continues with some fixed stock price data. (The fixed data are stored
in a hidden worksheet called ClosingPricesFixed. You can substitute your own
data for mine if you like.) Admittedly, the rest of the output will not be for the
stocks or dates you requested, but it’s better than a crash.

New Learning Objectives: VBA

● To learn how to run Web queries with VBA code.

New Learning Objectives: Non-VBA

● To gain some experience with portfolio optimization and efficient frontiers.
● To learn what Web queries are, and how to run them through the Excel

interface.

32

653

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32.2 Functionality of the Application

The application is stored in the Stock Query.xlsm file. At run time, this file contains
no data except a list of companies and their stock symbols in the Stocks worksheet.1

You can add to this list if you want. The application allows you to select any stocks
from the current list and a time period, such as from January 2009 to December
2013. It then performs a Web query, which opens Yahoo Web pages for the
selected stocks and time period, and imports the stock price data into the Stock
Query.xlsm file. From that point, the Web part of the application is finished,
and the necessary calculations leading to the efficient frontier are performed. (The
Example Files folder also contains a scaled-down application called Web Query
Prices Only.xlsm. This application allows you to download any historical stock
prices, but it doesn’t analyze them in any way.)

This application uses a calendar control on a user form. See Section 11.3 of
Chapter 11 for instructions on registering this control on your computer. The
application won’t work properly until you do so.

32.3 Running the Application

The first step is to make sure a Web connection is available, but you do not have
to open your browser or go to the Yahoo Web site. Next, when the Stock
Query.xlsm file is opened, the Explanation worksheet in Figure 32.1 appears.
When the user clicks the button on this sheet, the dialog box in Figure 32.2 is dis-
played, where the user can select any number of stocks from the list. (A portfolio
will eventually be formed from the stocks selected.) Then the dialog box in Figure
32.3 appears, where the user can select a time period.

After these selections, there is no further user involvement. From here, the
application does its work in steps. First, it retrieves the data from the Web. A new
Query worksheet for each selected stock is created, and the Web data are imported
into it. A sample appears in Figure 32.4. The only data on this page used in the
application are the adjusted closing prices (adjusted for dividends and stock splits)
in the last column. The next section discusses Web queries in some detail.

The data from this Query worksheet are transferred to the ClosingPrices work-
sheet, and then the Query worksheet is deleted. This is done for each selected stock.
Next, the monthly returns (percentage changes in the adjusted closing prices) are
calculated for all stocks on the Returns worksheet. Both the closing prices and
returns are listed in increasing chronological order. (Note that the order is reversed
in Figure 32.4. This is how it comes back from the Web.) Portions of the Closing-
Prices and Returns worksheets appear in Figures 32.5 and 32.6.

The next step is to calculate summary measures (means, standard deviations,
and correlations) for these historical returns. This is done in the SummaryMeasures

1The file might also contain some leftover data from a previous run, but these data are eventually deleted.
Additionally, it includes the hidden StockPricesFixes worksheet discussed in the introduction.

654 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

worksheet, with the results shown in Figure 32.7. These summary measures are
used as the input data for a portfolio optimization model, which is created in
the Model worksheet, as shown in Figure 32.8. This optimization model finds
the optimal weights (fractions of each dollar invested in the various stocks) that
minimize the variance of the portfolio (in cell B19) subject to achieving a mini-
mum required mean return (in cell D16).

Finally, the application solves this model for 11 equally spaced values of the mini-
mum required mean return in cell D16. These values vary from the minimum return to
the maximum return in row 5. This sweeps out the efficient frontier, which is reported
in the EfficientFrontier worksheet in Figures 32.9 and 32.10. Note that this worksheet
also shows the optimal weights for the various portfolios. For example, DuPont (DD)
is in the optimal portfolio when a small mean return is required, but it is evidently too
safe when a larger mean return is required. In contrast, American Express gets all of the
weight when the largest mean return is required. It evidently has higher return—and
higher risk. All of this occurs behind the scenes, and fairly quickly, when the user clicks

Figure 32.1 Explanation Worksheet

A Portfolio Optimization Application 655

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 32.2 Stock Selection Dialog Box

Figure 32.3 Dates Selection Dialog Box

656 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 32.4 Data from Typical Web Query

Figure 32.5 ClosingPrices Worksheet

Figure 32.6 Returns Worksheet

A Portfolio Optimization Application 657

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the OK button in Figure 32.3. The connection to the Yahoo site is made, the data are
returned, the calculations are performed, and, like magic, the user sees the efficient
frontier chart. (Again, remember that even if the Web query fails, the user will see all
of these reports for the data in the StockPricesFixed worksheet.)

Figure 32.7 SummaryMeasures Worksheet

Figure 32.8 Model Worksheet

658 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32.4 Web Queries in Excel

To understand this application, you must first understand a bit about Web queries.
The application uses VBA to perform a Web query, but a Web query can be per-
formed through the Excel interface, without any VBA. To do this, open a blank
sheet in Excel and click the From Web button on the Data ribbon. This brings up

Figure 32.10 Efficient Frontier Chart

Figure 32.9 Efficient Frontier Data

A Portfolio Optimization Application 659

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the dialog box in Figure 32.11, although the top box will depend on the home
page for your browser. The essence of the procedure is that when you type a
URL in the top box, the tables from the corresponding Web site are designated
with yellow arrows. When you click any of them, it turns green. Then, when you
click on Import, all the tables with green buttons are imported into Excel.

Sometimes the Web site, like the Yahoo site for this application, asks for
parameters—the dates and the stock symbol, as in Figure 32.12. When you click
the Go button in Figure 32.12, you get the requested data on a page with a
URL like the following: http://finance.yahoo.com/q/hp?s=AA&a=10&b=8&c=2006
&d=10 &e=8&f=2008&g=m&y=0.

Figure 32.11 Web Query Dialog Box

Figure 32.12 Web Site Request for Stock Prices

660 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You have probably seen URLs like this, where there is a question mark fol-
lowed by several “key-value” pairs, such as c=2006, separated by ampersands.
The part following the question mark is called a query string. It indicates the
information the user wants. This one has nine keys, named s, a, b, c, d, e, f, g,
and y. The first indicates the stock symbol, the next three indicate the initial date
requested (month, day, year), where for some reason the months are indexed
0 through 11. The next three indicate the ending date requested. The part g=m
indicates that you want monthly data. Finally, y=0 has something to do with how
many rows are returned per page.

This is simply the way the Yahoo site works, but you have to understand its
query string to understand the code in the application. The code essentially fills in
the pieces of the query string, depending on the user’s choices from the user forms
in Figures 32.2 and 32.3. Specifically, you will see the following code later on:

ConnectString = "URL;http://finance.yahoo.com/q/hp?" _
& "s=" & tickerSymbol(iStock) _
& "&a=" & Month(startDate) - 1 _
& "&b=" & Day(startDate) & "&c=" & Year(startDate) _
& "&d=" & Month(endDate) - 1 & "&e=" & Day(endDate) _
& "&f=" & Year(endDate) & "&g=" & timelnterval

This line “builds” the URL required to access the stock data for a particular set
of dates and a particular ticker symbol. (The part containing the “y” element isn’t
shown here, but it is in the application.) This connection string is the key to the
whole process. It specifies where the data are located on the Web and which data
you want from that site. Except for the fact that this string starts with URL and a
semicolon, it is just like the URL in the dialog box in Figure 32.11.

This brief introduction gives you a taste of Web queries—how they can be
performed through the Excel interface and what you need to perform them with
VBA. This whole topic is still fairly new, and more user-friendly tools for extract-
ing data from the Web into Excel are being developed. Right now, you typically
must do some detective work on each Web site you want to query and then hope
for the best. This stock application is not as “bulletproof” as the other applica-
tions discussed in this book. There is no guarantee that the Web sites will remain
as they are, and there is no guarantee that they will return clean data or any data
at all.

For these reasons, you might encounter problems when you run this applica-
tion with new stocks or different time periods. In fact, you might experience pro-
blems I never even anticipated. Unfortunately, these are the perils of working
with the Web.

32.5 Setting Up the Excel Sheets

The Stock Query.xlsm file contains the following worksheets at design time:
Explanation, Stocks, ClosingPrices, Returns, SummaryMeasures, Model, Efficient-
Frontier, and ClosingPricesFixed. There is very little that can be done at design
time to set up these worksheets. The only steps possible are to list the stocks in

A Portfolio Optimization Application 661

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the Stocks worksheet, as shown in Figure 32.13, and to develop a scatter chart in
the EfficientFrontier worksheet using any trial data. The chart will then be popu-
lated with the actual data at run time.

32.6 Getting Started with the VBA

The application requires two user forms, named frmStocks and frmDates, a mod-
ule, and a reference to Solver.2 Once these items are added, the Project Explorer
window will appear as in Figure 32.14.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. For a change, it
doesn’t bother to hide any sheets.

Private Sub Workbook_Open()
With wsExplanation

Figure 32.13 Stocks Worksheet

2 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users of pre-2010 versions of Excel will see this message.

662 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Activate

.Range("F4").Select
End With
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

32.7 The User Forms

frmStocks

The design for frmStocks appears in Figure 32.15. It contains the usual OK and
Cancel buttons, an explanation label, and a list box named lbCompanies. At
design time, you should change three of the list box’s properties: change the
MultiSelect property to option 2 (so that multiple companies can be selected),
change the ColumnCount property to 2, and change the RowSource property to
Stocks. This is the range name in the Stocks worksheet where the list of compa-
nies and ticker symbols are located. (See Figure 32.13.)

The code behind this form is fairly straightforward. The Initialize sub selects
the first company in the list by default. Then the ShowStocksDialog function uses
the Selected array property of the list box to capture the names and ticker sym-
bols of the selected stocks in the arrays stockName and ticker.

A Note on Multicolumn List Boxes. Like the user form from the previous
chapter, this list box has two columns. You could use a combination of the

Figure 32.14 Project Explorer Window

A Portfolio Optimization Application 663

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

BoundColumn and Value properties to retrieve values from the two columns. (See
the previous chapter for how this is done.) Alternatively, you can use the List
property like a two-dimensional array, which is done here. The first index indi-
cates how far down the list you are (starting with index 0 for the first item in
the list), and the second index is 0 for the first column and 1 for the second col-
umn. With list boxes, there always seems to be more than one way to accom-
plish the same thing.

Private cancel As Boolean

Public Function ShowStocksDialog(nStocks As Integer, _
tickerSymbol() As String, stockName() As String) As Boolean

Dim i As Integer
Call Initialize
Me.Show
If Not cancel Then

' Capture the number of stocks selected, their symbols, and their names.
nStocks = 0
For i = 0 To lbCompanies.ListCount - 1

If lbCompanies.Selected(i) Then
nStocks = nStocks + 1
If nStocks = 1 Then

ReDim tickerSymbol(1 To 1)
ReDim stockName(1 To 1)

Else
ReDim Preserve tickerSymbol(1 To nStocks)
ReDim Preserve stockName(1 To nStocks)

End If
tickerSymbol(nStocks) = lbCompanies.List(i, 0)
stockName(nStocks) = lbCompanies.List(i, 1)

End If

Figure 32.15 frmStocks Design

664 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Next
End If
ShowStocksDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
lbCompanies.Selected(0) = True

End Sub

Private Function Valid() As Boolean
Dim i As Integer, nSel As Integer

Valid = True
nSel = 0
For i = 0 To lbCompanies.ListCount - 1

If lbCompanies.Selected(i) Then nSel = nSel + 1
Next
If nSel <= 1 Then

Valid = False
MsgBox "You should select at least two stocks for interesting results.", vbInformation

End If
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

frmDates

The frmDates form, with design shown in Figure 32.16, contains OK and Cancel
buttons, some labels, three option buttons, and two calendar controls. The option
buttons are named optMonth, optWeek, and optDay, and the calendars are named
calStartDate and calEndDate. (See Section 11.3 of Chapter 11 for a discussion of
the calendar control.)

The code behind frmDates, listed below, contain no new ideas. Other than
some obvious checks on dates, it makes no other error checks. If the user requests
dates for which the Web site has no data, the program will not work correctly.

Private cancel As Boolean

Public Function ShowDatesDialog(startDate As Date, _
endDate As Date, timeInterval As String) As Boolean

Call Initialize

A Portfolio Optimization Application 665

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Me.Show
If Not cancel Then

startDate = calStartDate.Value
endDate = calEndDate.Value
Select Case True

Case optMonth: timeInterval = "m"
Case optWeek: timeInterval = "w"
Case optDay: timeInterval = "d"

End Select
End If
ShowDatesDialog = Not cancel
Unload Me

End Function

Private Sub Initialize()
' Make the starting date two years before today’s date.
calStartDate.Value = DateSerial(Year(Date) − 2, Month(Date), Day(Date))
calEndDate.Value = Date
optMonth.Value = True

End Sub

Private Function Valid() As Boolean
Dim sDate As Date, eDate As Date

Figure 32.16 frmDates Design

666 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Valid = True
' Capture the dates for error checking.
sDate = calStartDate.Value
eDate = calEndDate.Value

If sDate >= eDate Then
Valid = False
MsgBox "The starting date should be before the ending date.", _

vbInformation, "Invalid dates"
calStartDate.SetFocus
Exit Function

ElseIf sDate < EARLIEST_DATE Then
Valid = False
MsgBox "The starting date shouldn’t be before 1990.", _

vbInformation, "Start date too early"
calStartDate.SetFocus
Exit Function

ElseIf eDate > Date Then
Valid = False
MsgBox "The ending date shouldn’t be after today’s date.", _

vbInformation, "End date too late"
calEndDate.SetFocus
Exit Function

End If
End Function

Private Sub cmdOK_Click()
If Valid Then Me.Hide
cancel = False

End Sub

Private Sub cmdCancel_Click()
Me.Hide
cancel = True

End Sub

Private Sub UserForm_QueryClose(cancel As Integer, CloseMode As Integer)
If CloseMode = vbFormControlMenu Then cmdCancel_Click

End Sub

32.8 The Module

The module must accomplish a long list of tasks. It starts with the MainStockQuery sub,
which is attached to the button on the Explanation worksheet. This sub “shows” the
two user forms and then calls a number of other subs to accomplish the various tasks.
The module-level variables and the code for the MainStockQuery sub are listed below.

Option Statement and Module-Level Variables

Option Explicit

' Definitions of main variables:
' nStocks: number of stocks chosen by user
' tickerSymbol(): array of ticker symbols of stocks chosen by user
' stockName(): array of company names for stocks chosen by user

A Portfolio Optimization Application 667

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' startDate: starting date for data (user input)
' endDate: ending date for data (user input)

' Variables from forms
Dim nStocks As Integer, tickerSymbol() As String, stockName() As String
Dim startDate As Date, endDate As Date, timeInterval As String

' Other module-level variables
Dim nWebQueries As Integer
Dim minReturn As Single
Dim maxReturn As Single

Public Const EARLIEST_DATE = #1/1/1990#

MainStockQuery Code

Sub MainStockQuery()
Dim sIndex As Integer
Dim oldStatusBar As Boolean
Dim success As Boolean

' Name the range with the ticker symbols and company names.
With wsStocks.Range("A3")

Range(.Offset(1, 0), .Offset(1, 1).End(xlDown)).Name = "Stocks!Stocks"
End With

' Get the user’s choices of stocks and dates.
If frmStocks.ShowStocksDialog(nStocks, tickerSymbol, stockName) Then

If frmDates.ShowDatesDialog(startDate, endDate, timeInterval) Then

' Yahoo evidently returns 67 months or weeks per screen, but only 66 days.
' I figured this out with a lot of trial and error. Unfortunately, there is
' no guarantee that it won’t change.
Select Case timeInterval

Case "m"
If DateDiff("m", startDate, endDate) + 1 Mod 67 = 0 Then

nWebQueries = (DateDiff("m", startDate, endDate) + 1) / 67
Else

nWebQueries = Int((DateDiff("m", startDate, endDate) + 1) / 67) + 1
End If

Case "w"
If DateDiff("w", startDate, endDate) + 1 Mod 67 = 0 Then

nWebQueries = (DateDiff("w", startDate, endDate) + 1) / 67
Else

nWebQueries = Int((DateDiff("w", startDate, endDate) + 1) / 67) + 1
End If

Case "d"
If (DateDiff("w", startDate, endDate) + 1) * 5 Mod 66 = 0 Then

nWebQueries = (DateDiff("w", startDate, endDate) + 1) * 5 / 66
Else

nWebQueries = Int((DateDiff("w", startDate, endDate) + 1) * 5 / 66) + 1
End If

End Select

Application.ScreenUpdating = False

Call ClearOldData

668 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

oldStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True

' For each requested stock, add a new sheet and run a Web query. Show the
' progress in the status bar.
For sIndex = 1 To nStocks

Application.StatusBar = "Running web query for " & tickerSymbol(sIndex)
Call RunQuery(sIndex, success)
If Not success Then

MsgBox "The Web query didn’t succeed, so the rest of the application " _
& "will proceed with the fixed stock price data on the (hidden) " _
& "ClosingPricesFixed sheet.", vbInformation, "Web query failed"

Exit For
End If

Next
Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar

' Add stock labels and sort appropriately.
If success Then

Call FinishClosingPrices
Else

' Work with data on (hidden) ClosingPricesFixed sheet.
With wsClosingPrices

.Activate

.UsedRange.ClearContents
wsClosingPricesFixed.UsedRange.Copy _

Destination:=.Range("A1")
With .Range("A3")

nStocks = Range(.Offset(0, 1), .End(xlToRight)).Columns.Count
ReDim tickerSymbol(1 To nStocks)
For sIndex = 1 To nStocks

tickerSymbol(sIndex) = .Offset(0, sIndex).Value
Next

End With
End With

End If

' Calculate returns.
Call Returns

' Calculate summary measures on the SummaryMeasures sheet.
Call SummaryMeasures

' Create the portfolio optimization model and optimize.
Call CreateModel
Call RunSolver

' Create the chart of the efficient frontier and update its chart.
Call EfficientFrontier
Call UpdateChart
Application.ScreenUpdating = True

End If
End If

End Sub

ClearOldData Code

The ClearOldData sub clears all previous data from ClosingPrices worksheet and
adds some labels for the new data.

A Portfolio Optimization Application 669

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sub ClearOldData()
' Clear contents from the ClosingPrices sheet.
With wsClosingPrices.Range("A3")

Range(.Offset(0, 0), .End(xlDown).End(xlToRight)).ClearContents
Select Case timeInterval

Case "m": .Value = "Month"
Case "w": .Value = "Week"
Case "d": .Value = "Day"

End Select
End With

End Sub

RunQuery Code

The RunQuery sub is the crucial sub. It creates a connection string (stored in the
connectString variable), which is essentially the URL for the Web site, as discussed
in Section 32.4. It then adds a QueryTable object to the active worksheet, with the
output range starting in cell Al. (By this time, qryTable has been declared as a
QueryTable object.)

This is followed by various properties of the QueryTable object. As the com-
ment indicates, I discovered this code by creating the Web query through the
Excel interface with the macro recorder on. The recorded code lists a lot of other
properties of the QueryTable object, but after some experimenting, it appears that
the ones shown below are the only ones required. Of course, you can look up
more information on the properties of QueryTable objects in the Object Browser.

Sub RunQuery(iStock As Integer, successful As Boolean)
' This sets up a new Web query and runs it, placing the Web
' data into the active sheet.
Dim connectString As String
Dim qryTable As QueryTable
Dim rowOffset As Integer
Dim qIndex As Integer
Dim foundNothing As Boolean

rowOffset = 1
foundNothing = False
For qIndex = 1 To nWebQueries

Worksheets.Add
ActiveSheet.Name = "Query"
' The next line builds a long string that is essentially the URL
' (preceded by URL;). It is used to define the query. Note how it
' inserts the user’s inputs into the string. The "keys", such as a, b,
' and so on) store the user’s inputs (dates and ticker symbol). (For some
' unknown reason, Yahoo’s month code is 0-based. E.g., 2 is for March.
connectString = "URL;http://finance.yahoo.com/q/hp?" _

& "s=" & tickerSymbol(iStock) _
& "&a=" & Month(startDate) - 1 _
& "&b=" & Day(startDate) & "&c=" & Year(startDate) _
& "&d=" & Month(endDate) - 1 & "&e=" & Day(endDate) _
& "&f=" & Year(endDate) & "&g=" & timeInterval

If timeInterval = "m" Or timeInterval = "w" Then
connectString = connectString & "&y=" & (qIndex - 1) * 67

Else
connectString = connectString & "&y=" & (qIndex - 1) * 66

End If

670 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' The next few lines create a QueryTable object with appropriate properties.
' I got this code by recording, then deleting parts that appeared unnecessary.
Set qryTable = ActiveSheet.QueryTables.Add(Connection:=connectString, _

Destination:=Range("A1"))
On Error Resume Next
With qryTable

.WebSelectionType = xlAllTables

.WebFormatting = xlWebFormattingAll

.Refresh BackgroundQuery:=False
End With

If Err.Number = 0 Then
successful = True
Call TransferPrices(iStock, rowOffset, foundNothing)

Else
successful = False

End If
If foundNothing Then successful = False

' In any case, delete the Query sheet.
Application.DisplayAlerts = False
ActiveWorkbook.Connections(1).Delete
Worksheets("Query").Delete
Application.DisplayAlerts = True

Next
End Sub

TransferPrices Code

The rest of the subs handle the details—and there are a lot of details. The com-
ments provide most of the explanation you should need. In fact, in complex pro-
grams such as this one, extensive and well-written comments are crucial.

The TransferPrices sub must copy the data below the “Adj Close” label in the
Query worksheet (see Figure 32.4) to the appropriate column in the Closing-
Prices worksheet. Then it must transform the closing prices to returns (percentage
changes) on the Returns worksheet. There are two problems that it encounters,
both caused by the format of the imported Web data (over which I have no con-
trol). First, it is possible that some stocks will return no data. Second, there are
several blank cells in the data below the “Adj Close” label because of dividends
and stock splits. The VBA code must be written to skip over these blanks.

Sub TransferPrices(iStock As Integer, rowOffset As Integer, foundNothing As Boolean)
' This sub transfers the closing prices from the Query sheet to the
' ClosingPrices sheet. It puts the resulting prices in the correct format.
Dim counter As Integer
Dim adjCloseCell As Range
Dim closeRange As Range

' Activate the ClosingPrices sheet.
wsClosingPrices.Activate

counter = 1

' Try to find the label "Adj Close" in this stock’s sheet. This Find method
' returns a range object, which is set to adjCloseCell. If the Web query

A Portfolio Optimization Application 671

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' couldn’t find any data for this stock (for whatever reason), this find
' will be unsuccessful and adjCloseCell will be set to Nothing.
Set adjCloseCell = Worksheets("Query").Cells.Find(What:="Adj Close")
If adjCloseCell Is Nothing Then

foundNothing = True
Exit Sub

End If
Set closeRange = Worksheets("Query").Range(adjCloseCell.Address)

' Loop through the rows until encountering a blank cell.
Do Until Left(closeRange.Offset(counter, -6).Value, 1) = ""

' rowOffset is how far down the Closing Prices sheet (below A3) we are.
' counter is how far down the Query sheet we are.
If closeRange.Offset(counter, 0).Value <> "" Then

' Enter date indexes in column A of the Closing Prices sheet.
If iStock = 1 Then _

wsClosingPrices.Range("A3").Offset(rowOffset, 0).Value = rowOffset

' Transfer the closing price to the appropriate row and column of the
' Closing Prices sheet.
wsClosingPrices.Range("A3").Offset(rowOffset, iStock).Value _

= closeRange.Offset(counter, 0).Value

' Update rowOffset after every transfer.
rowOffset = rowOffset + 1

End If

' Update counter whether or not a blank was found in the
' Adj Close column.
counter = counter + 1

Loop
End Sub

FinishClosingPrices Code

The FinishClosingPrices sub adds some labels and sorts the closing prices in
increasing chronological order.

Sub FinishClosingPrices()
'This sub finishes setting up the ClosingPrices sheet.
Dim sIndex As Integer
Dim sortRange As Range

With wsClosingPrices
' Enter tickerSymbol symbols as headings.
For sIndex = 1 To nStocks

.Range("A3").Offset(0, sIndex).Value = tickerSymbol(sIndex)
Next

' Sort the data from earliest to latest (the Web query brings them in
' in the opposite order).
.Range("A3").Sort Key1:=Range("A:A"), Order1:=xlDescending, Header:=xlYes

' Put the date indexes back into increasing order.
Set sortRange = Range(.Range("A3"), .Range("A3").End(xlDown))
sortRange.Sort Key1:=.Range("A:A"), Order1:=xlAscending, Header:=xlYes

672 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Select Case timeInterval
Case "m"

.Range("A1").Value = "Monthly closing prices from " _
& Format(startDate, "mm/dd/yyyy") & " to " & Format(endDate, "mm/dd/yyyy")

Case "w"
.Range("A1").Value = "Weekly closing prices from " _

& Format(startDate, "mm/dd/yyyy") & " to " & Format(endDate, "mm/dd/yyyy")
Case "d"

.Range("A1").Value = "Daily closing prices from " _
& Format(startDate, "mm/dd/yyyy") & " to " & Format(endDate, "mm/dd/yyyy")

End Select
End With

End Sub

Returns Code

The Returns sub creates the stock returns (percentage changes) on the Returns
worksheet.

Sub Returns()
Dim rowOffset As Integer
Dim sIndex As Integer

With wsReturns
.Cells.ClearContents
.Range("A1").Value = "Corresponding returns"
.Range("A3").Value = "Time period"
For sIndex = 1 To nStocks

.Range("A3").Offset(0, sIndex).Value = tickerSymbol(sIndex)
Next

End With

With wsClosingPrices.Range("A3")
rowOffset = 1
Do

If .Offset(rowOffset + 1, 0).Value <> "" Then
wsReturns.Range("A3").Offset(rowOffset, 0).Value = rowOffset + 1

End If
For sIndex = 1 To nStocks

If .Offset(rowOffset, sIndex).Value <> "" _
And .Offset(rowOffset + 1, sIndex).Value <> "" Then

wsReturns.Range("A3").Offset(rowOffset, sIndex).Value = _
.Offset(rowOffset + 1, sIndex).Value _

/ .Offset(rowOffset, sIndex).Value - 1
End If

Next
rowOffset = rowOffset + 1

Loop Until .Offset(rowOffset, 0).Value = ""
End With

With wsReturns.Range("A3")
For sIndex = 1 To nStocks

With .Offset(0, sIndex)
Range(.Offset(1, 0), .Offset(rowOffset − 2, 0)).Name = _

"Returns!" & tickerSymbol(sIndex)
End With

Next
End With

End Sub

A Portfolio Optimization Application 673

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SummaryMeasures Code

The SummaryMeasures sub uses Excel’s AVERAGE, STDEV, and CORREL func-
tions to summarize the stock return data in the SummaryMeasures worksheet.

Sub SummaryMeasures()
Dim sIndex1 As Integer, sIndex2 As Integer

' Enter formulas for averages and standard deviations (using Excel functions).
With wsSummaryMeasures

.Cells.ClearContents

.Range("A1").Value = "Summary measures for stock returns"

.Range("A3").Value = "Stocks"

.Range("A4").Value = "Means"

.Range("A5").Value = "Stdevs"

.Range("A7").Value = "Correlations"
For sIndex1 = 1 To nStocks

.Range("A3").Offset(0, sIndex1).Value = tickerSymbol(sIndex1)

.Range("A4").Offset(0, sIndex1).Formula = "=Average(Returns!" & tickerSymbol(sIndex1) & ")"

.Range("A5").Offset(0, sIndex1).Formula = "=Stdev(Returns!" & tickerSymbol(sIndex1) & ")"
Next

' Create a table of correlations (using Excel’s Correl function).
With .Range("A7")

For sIndex1 = 1 To nStocks
.Offset(sIndex1, 0).Value = tickerSymbol(sIndex1)
.Offset(0, sIndex1).Value = tickerSymbol(sIndex1)

Next
For sIndex1 = 1 To nStocks

For sIndex2 = 1 To nStocks
.Offset(sIndex1, sIndex2).Formula = _

"=Correl(Returns!" & tickerSymbol(sIndex1) & _
",Returns!" & tickerSymbol(sIndex2) & ")"

Next
Next

End With
End With

End Sub

CreateModel Code

The CreateModel sub uses the summary measures from the previous sub as inputs
to a portfolio optimization model (see Figure 32.8).

Sub CreateModel()
' This sub creates the portfolio optimization model in the Model sheet.
Dim sIndex1 As Integer, sIndex2 As Integer

With wsModel
.Activate
.Cells.ClearContents

' Enter title and headings.
.Range("A1").Value = "Portfolio selection model (solution shown is when " _

& "required return is halfway between minimum and maximum of stock returns)"
With .Range("A3")

674 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Value = "Stock"

.Offset(1, 0).Value = "Weights"

.Offset(2, 0).Value = "Means"
For sIndex1 = 1 To nStocks

.Offset(0, sIndex1).Value = tickerSymbol(sIndex1)

' Enter initial equal weights for the portfolio (Solver will find the optimal)
' weights and formulas for the average returns.
.Offset(1, sIndex1).Value = 1 / nStocks
.Offset(2, sIndex1).Formula = "=Average(Returns!" & tickerSymbol(sIndex1) & ")"

Next
End With

' Name some ranges.
With .Range("A4")

Range(.Offset(0, 1), .Offset(0, 1).End(xlToRight)).Name = "Model!Weights"
Range(.Offset(1, 1), .Offset(1, 1).End(xlToRight)).Name = "Model!Means"

End With

' Find the smallest and largest of the average returns, which will be used
' to create the efficient frontier.
minReturn = WorksheetFunction.Min(.Range("Means"))
maxReturn = WorksheetFunction.Max(.Range("Means"))

' Calculate the sum of weights (which will be constrained to be 1).
With .Range("A3").Offset(0, nStocks + 1)

.Value = "Sum"

.Offset(1, 0).Name = "Model!SumWeights"

.Offset(1, 0).Formula = "=Sum(Weights)"
End With

' Calculate table of covariances (using Excel's Covar function).
With .Range("A7")

.Value = "Covariances"
For sIndex1 = 1 To nStocks

.Offset(sIndex1, 0).Value = tickerSymbol(sIndex1)

.Offset(0, sIndex1).Value = tickerSymbol(sIndex1)
Next
For sIndex1 = 1 To nStocks

For sIndex2 = 1 To nStocks
.Offset(sIndex1, sIndex2).Formula = _

"=Covar(Returns!" & tickerSymbol(sIndex1) & _
",Returns!" & tickerSymbol(sIndex2) & ")"

Next
Next
Range(.Offset(1, 1), .Offset(nStocks, nStocks)).Name = "Model!Covar"

End With

' Form lower bound constraint on mean portfolio return, using an intial lower
' bound halfway between the smallest and largest mean returns. (This lower bound
' will be varied through the whole range when finding the efficient frontier.
With .Range("A7").Offset(nStocks + 2, 0)

.Value = "Constraint on mean return"

.Offset(1, 1).Formula = "=Sumproduct(Weights,Means)"

.Offset(1, 2).Value = ">="

.Offset(1, 3).Value = (minReturn + maxReturn) / 2

.Offset(1, 1).Name = "Model!MeanReturn"

.Offset(1, 3).Name = "Model!RequiredReturn"

' Calculate the variance of the portfolio (using Excel's MMult and
' Transpose matrix functions.) Note that it uses the FormulaArray property.
' This is analogous to pressing Ctrl-Shift-Enter in Excel.

A Portfolio Optimization Application 675

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Offset(3, 0).Value = "Portfolio variance"
With .Offset(4, 1)

.FormulaArray = "=MMult(Weights,MMult(Covar,Transpose(Weights)))"

.Name = "Model!PortfolioVariance"
End With
' Calculate the standard deviation of the portfolio.
.Offset(6, 0).Value = "Portfolio standard deviation"
With .Offset(7, 1)

.Formula = "=Sqrt(PortfolioVariance)"

.Name = "Model!PortfolioStdev"
End With

End With

' Adjust width of column A.
.Columns("A:A").ColumnWidth = 11

End With
End Sub

RunSolver Code

The RunSolver sub is straightforward. It sets up Solver and then runs it. Note that
it uses the GRG Nonlinear solving method (engine index 2) because the portfolio
standard deviation is a nonlinear function of the stock weights.

Sub RunSolver()
' Set up and run Solver.
With wsModel

SolverReset
SolverOk SetCell:=.Range("PortfolioVariance"), MaxMinVal:=2, _

ByChange:=.Range("Weights"), Engine:=2
SolverAdd CellRef:=.Range("SumWeights"), Relation:=2, FormulaText:=1
SolverAdd CellRef:=.Range("MeanReturn"), Relation:=3, _

FormulaText:="RequiredReturn"
SolverOptions AssumeNonNeg:=True
SolverSolve UserFinish:=True

End With
End Sub

EfficientFrontier Code

The EfficientFrontier sub runs Solver several times and records the results in the Effi-
cientFrontier worksheet. Each run uses a different minimum required mean portfolio
return. Finally, it calls the UpdateChart sub to update the efficient frontier chart.

Sub EfficientFrontier()
' For each of 11 equally spaced values of the required mean portfolio return, run
' Solver and record the results on the EfficientFrontier sheet.
' Note the Model sheet is still the active sheet.
' The sheet with the Solver model must be active to run Solver.
Dim sIndex As Integer
Dim run As Integer

With wsEfficientFrontier
.Cells.ClearContents

676 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

.Range("A1").Value = "Efficient frontier"

.Range("B3").Value = "PortStdev"

.Range("C3").Value = "ReqdReturn"

.Range("E2").Value = "Weights for these optimal portfolios"
With .Range("D3")

For sIndex = 1 To nStocks
.Offset(0, sIndex).Value = tickerSymbol(sIndex)

Next
End With

' Portfolio standard deviations and means are recorded in columns B and C.
' The corresponding portfolio weights are recorded from column E over.
' First, enter headings.

For sIndex = 1 To nStocks
.Range("D3").Offset(0, sIndex).Value = tickerSymbol(sIndex)

Next
End With

' Run the Solver 11 times and record the results.
For run = 0 To 10

wsModel.Range("RequiredReturn") = minReturn + run * (maxReturn − minReturn) / 10
SolverSolve UserFinish:=True
With wsEfficientFrontier.Range("B4")

.Offset(run, 0).Value = wsModel.Range("PortfolioStdev").Value

.Offset(run, 1).Value = wsModel.Range("RequiredReturn").Value
End With
With wsEfficientFrontier.Range("E4")

For sIndex = 1 To nStocks
.Offset(run, sIndex − 1).Value _

= wsModel.Range("Weights").Cells(sIndex).Value
Next

End With
Next

wsEfficientFrontier.Activate
Call UpdateChart

End Sub

UpdateChart Code

The efficient frontier chart already exists as a scatter chart (of the type with the
dots connected). The UpdateChart sub populates it with the newly calculated
data in the EfficientFrontier worksheet.

Sub UpdateChart()
' This sub updates the efficient frontier chart.
Dim sourceRange As Range
Dim minX As Single, maxX As Single
Dim minY As Single, maxY As Single
Dim xLength As Single, yLength As Single

' Set minX, minY, etc. is for scaling the axes nicely.
With wsEfficientFrontier

Set sourceRange = .Range("B4:C14")
minX = .Range("B4").Value
maxX = .Range("B14").Value
minY = .Range("C4").Value
maxY = .Range("C14").Value

A Portfolio Optimization Application 677

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xLength = maxX - minX
yLength = maxY - minY

End With

' Update the chart settings to update the chart.
With wsEfficientFrontier.ChartObjects(1).Chart

.SetSourceData sourceRange
With .Axes(xlCategory)

.MinimumScale = minX - 0.1 * xLength

.MaximumScale = maxX + 0.1 * xLength
End With
With .Axes(xlValue)

.MinimumScale = minY - 0.1 * yLength

.MaximumScale = maxY + 0.1 * yLength
End With

End With

wsEfficientFrontier.Range("A2").Select
End Sub

32.9 Summary

This application has been developed to impress—and to be useful to financial
analysts and investors. To achieve anything this ambitious, a lot of code must be
written, and it is not always straightforward. However, I hope you agree that it
is well worth the effort. You should pay particular attention to the RunQuery
sub, where the data from the Web site are retrieved. In fact, I suspect that many
of you will be anxious to make appropriate modifications to this code to obtain
data from other Web sites. The ability to access the mounds of data available on
the Web and then analyze the data with Excel’s many tools is indeed a powerful
combination. But remember that you are at the mercy of the Web developers. If
they change their site, they can easily break your code.

EXERCISES

1. Note that all summary measures are entered as formulas in the SummaryMeasures
sub. There is no real need to do it this way. Change this sub so that all summary
measures are entered as values.

2. The TransferPrices sub uses the Find method to find a cell with some specified
value. There is also a FindNext method. (Each is a method of the Range object.)
These can be used in VBA similar to the way they are used in the usual Excel
interface to find a piece of information (or the next such piece of information).
The file Piano Orders.xlsx contains a list of orders for Steinway pianos. It lists
the date of the order and the state where the order was made. Write a sub that
searches through the list of states to find each occurrence of California and colors
the background of each such cell yellow. (Hint: Look up the Find and FindNext
methods of the Range object in the Object Browser.)

3. Find a Web site that contains at least one table of data and allows the user to make
a choice, such as I did in this application when I got to choose the period of

678 Chapter 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

time and the ticker symbol. (If you can’t find any of your own, try one like the
following: http://www.cbssports.com/tennis/scoreboard/results/2010/0122,
where the date is indicated at the end.) Then write a sub that retrieves the
data specified by a user’s choices. These choices can be obtained from
an input box or a user form, whichever is more natural for the context.
(For example, in this application I got the user’s choices from the dialog boxes
in Figure 32.2 and Figure 32.3.)

4. Sometimes you get lucky with Web sites. I was looking for current Major League
Baseball rosters, and I found them at a Sports Network site with a typical URL
such as follows: http://www.sportsnetwork.com/merge/tsnform.aspx?c=sports-
network&page=mlb/teams/027/roster.aspx?team=027. This provides the roster
for the team with index 27, which happens to be the Baltimore Orioles. Now try
the following: (1) Run a Web query manually from one of these URLs. (2) Run it
again with the recorder on. (3) Learning from the recorded code, write a VBA
program that finds the current rosters for all teams and lists each on a separate
team worksheet.

A Portfolio Optimization Application 679

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Data Envelopment Analysis

Application

33.1 Introduction

Data Envelopment Analysis (DEA) is a method for comparing the relative efficiency
of organizational units such as banks, hospitals, and schools, where efficiency relates
to the ability to transform inputs into outputs. For example, DEA could analyze sev-
eral branch banks, where the inputs for each branch might be labor hours, square
feet of space, and supplies used, and the outputs might be the numbers of loan
applications, deposits processed, and checks processed during some time period.
DEA could then use these data in several linear programming models, one for each
branch, to see whether each branch can attach unit costs to its inputs and unit prices
to its outputs to make itself appear efficient. By definition, a branch is “efficient” if
the total value of its outputs is equal to the total value of its inputs. It is “inefficient”
if the total value of its outputs is less than the total value of its inputs.

This application takes data from a text (.txt) file, sets up a Solver model, runs
it for each of the organizational units, and reports the results. Among other
things, this application illustrates how to import data from a text file into an Excel
application.

New Learning Objectives: VBA

● To learn how the data from a comma-delimited text file can be imported into
an Excel application (although this material was covered briefly in Chapter 13).

● To see how a comma-delimited string can be parsed by using appropriate
loops and string functions.

New Learning Objectives: Non-VBA

● To learn how the DEA procedure can compare various organizational units
for efficiency.

33.2 Functionality of the Application

The data for the application are in a file called DEA.txt. This is a simple text file
that can be created with the Windows NotePad or any comparable text editor. It
lists the names of the inputs and outputs, the names of the organizational units,

33

680

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and the inputs used and outputs produced by each unit. The application imports
these data into the DEA.xlsm application file, where they are used as input data
for a linear programming model. This model is solved for each organizational
unit to see whether the unit is efficient. The results are then reported in a Report
worksheet.

As the application is currently written, the DEA.txt and DEA.xlsm files
should be stored in the same folder. The current DEA.txt file contains data on
four organizational units (departments in a university), each with three inputs and
two outputs. However, these data can be replaced with any data, with any numbers
of organizational units, inputs, and outputs, and the application will respond appro-
priately. The format for the data in the DEA.txt file is discussed below.

33.3 Running the Application

When the DEA.xlsm file is opened, the Explanation worksheet in Figure 33.1
appears. When the button on this sheet is clicked, the application then opens the
DEA.txt file, reads the data and stores it in arrays, sets up a linear programming

Figure 33.1 Explanation Worksheet

A Data Envelopment Analysis Application 681

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

model in a (hidden) Model worksheet, solves it once for each organizational unit,
and reports the results in the Report worksheet shown in Figure 33.2.

There are three sections in this report. The one on the left indicates whether
the units are efficient by reporting the maximum total output value from the lin-
ear programming model for each unit. Because the total input values are scaled to
be 1, a unit is efficient only if its total output value is 1. For these data, all units
are efficient except HPER. The section on the top right reports the original data.
It shows the quantities of inputs used and outputs produced for each unit.

Finally, the section on the bottom right indicates input costs and output
values from the linear programming model, where input costs are scaled so that
they sum to 1 for each unit. For example, Education (internally) assigns unit
costs to its inputs so that the total values of its faculty and support staff used are
0.674 and 0.326, respectively. It attaches zero value to its supply budget input.
Similarly, it attaches unit prices to its outputs so that the total values of its credit
hours and research pubs produced are 0.890 and 0.110, respectively. With these
unit costs and unit prices, Education’s total output value is equal to its total
input value (both equal 1), which means that it is an efficient unit.

This report is based on the linear programming model shown in Figure 33.3.
The version shown here is for checking the efficiency of unit 4 (HPER). It indi-
cates the range names used. Of course, the actual ranges would change if there
were different numbers of organizational units, inputs, or outputs.

The VBA code sets up this model at run time. It then substitutes the index
for each organizational unit (1–4 in this example) in cell B3. The formulas in
cells B21 and B24 are linked to this value through VLOOKUP functions so that
they update automatically. Then Solver is run for each index in cell B3.

33.4 Setting Up the Excel Sheets and the Text File

The DEA.xlsm file contains three worksheets named Explanation, Model, and
Report. However, there are no templates for the Model and Report worksheets.
At design time, they are blank. The reason is that if the numbers of organiza-

Figure 33.2 Report Worksheet

Summary of analysis

Given data from text file
Efficiency of units decudorp stuptuOdesu stupnI

00.52200.5100.500.0700.051ssenisuBseY000.1ssenisuB
00.0704.500.300.0200.06noitacudEseY000.1noitacudE

Arts & Sciences 1.000 Yes Arts & Sciences 800.00 140.00 20.00 56.00 1300.00
00.0401.200.100.5100.03REPHoN848.0REPH

Values from LP model
Total costs of inputs used Total values of outputs produced

Unit LP maximum output Efficient? Unit Faculty Support Staff Supply Budget Credit Hours Research Pubs

Unit Faculty Support Staff Supply Budget Credit Hours Research Pubs
Business 0.597 0.403 0.000 0.875 0.125
Education 0.674 0.326 0.000 0.890 0.110
Arts & Sciences 0.798 0.202 0.000 0.819 0.181
HPER 1.000 0.000 0.000 0.152 0.696

View Explana�on Sheet

682 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tional units, inputs, or outputs change due to new data in the DEA.txt file, the
Model and Report setups change dramatically. Therefore, it is easier to start
with a clean slate and then fill these sheets completely—values, formulas, head-
ings, and formatting—through VBA code at run time. The DEA.txt file should
be structured as a comma-delimited file, as shown in Figure 33.4. The first row

Figure 33.3 Model Worksheet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

HGFEDCBA

4tinu

DEA model

Selected

Inputs used Faculty Support
52251ssenisuB507051ssenisuB
074.5noitacudE30206noitacudE

Arts & strA02041008secneicS
041.2REPH15103REPH

Unit tinU00330.0stsoc

Constraints
Unit index Input

 Staff Supply Budget Outputs used Credit Hours Research Pubs

 & Sciences 56 1300

 prices 0.0725 0.0174

 that input costs must cover output values Range names used:
 costs Output values InputCosts =Model!B11:D11

9D:6B!ledoM=desUstupnI5=>51
2 2 >= 1.609 InputValues =Model!B15:B18
3 26.667 >= 26.667 LTable =Model!A15:D18
4 1 >= 0.848 OutputPrices =Model!G11:H11

OutputsProduced =Model!G6:H9
Constraint that selected unit's input cost must equal a nominal value of 1 OutputValues =Model!D15:D18
Selected unit's input 12B!ledoM=eulaVtupnIleS1=1tsoc

SelOutputValue =Model!B24
Maximize selected unit's output value (to see if it is 1, hence efficient)
Selected unit's output value 0.848

Figure 33.4 Structure of Text File

A Data Envelopment Analysis Application 683

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

should contain the names of the inputs, separated by commas. The second
row should contain the names of the outputs, separated by commas. There
should then be three lines for each organizational unit. The first should con-
tain the unit’s name, and the second and third should contain its inputs used
and outputs produced, respectively, with input values separated by commas
and output values separated by commas. There should not be any spaces fol-
lowing the commas. If the data are not structured in this way, the application
will either crash (with a “nice” error message) or yield misleading results.

33.5 Getting Started with the VBA

The application contains a single user form named frmInputs, a module, and a ref-
erence to Solver. Once these items are added, the Project Explorer window will
appear as in Figure 33.5.1

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. This sub also hides
the Model and Report worksheets and displays the usual Solver warning when
used with pre-2010 versions of Excel.

1 It also contains the usual frmSolver that displays a message about possible Solver problems when the
workbook is opened, but only users of pre-2010 versions of Excel will see this message.

Figure 33.5 Project Explorer Window

684 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("F5").Select
End With
wsReport.Visible = False
wsModel.Visible = False
If Not (Application.Version = "15.0" Or Application.Version = "14.0") Then frmSolver.Show

End Sub

33.6 Getting Data from a Text File

Perhaps the most interesting part of this application, at least from a VBA stand-
point, is the way the data are obtained from the text file. To open the text file,
the following line is required:2

Open ThisWorkbook.Path & "\DEA.txt" For Input As #1

The “#1” essentially means that this is the first text file opened. (If another
were opened in the same session, it would be opened as #2, and so on.) Eventu-
ally, the file should be closed with the line

Close #1

To read a single line from the text file, the following code is required, where
dataLine is a string variable:

Line Input #1, dataLine

Each time this line of code is executed, the next entire line of data is stored
as a string in the dataLine variable. Typically, there are several pieces of data in a
line of text, separated by commas. The individual pieces must then be parsed.
Because this parsing operation is required several times, the program contains a
ParseLine sub that is called whenever it is needed. The ParseLine sub takes three
arguments: the dataLine string, the expected number of pieces of data, and
an array (I’ve named it retumArray) to be filled with the individual pieces of data.
It then passes the filled retumArray array back to a GetData sub, where its contents
are put into array variables, such as inputName. The details appear in the next
section.

2Although the steps for importing text data into Excel were discussed briefly in Chapter 13, they are
repeated here for your convenience.

A Data Envelopment Analysis Application 685

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summarizing, the steps required to import data from a text file are: (1) open
the file; (2) read an entire line; (3) parse the line into its separate pieces of data;
repeat steps (2) and (3) for each line in the text file; and (4) close the file.

33.7 The Module

Almost everything is done at run time with the code in the module. The but-
ton on the Explanation worksheet is attached to the MainDEA sub. This sub
first captures the data from the text file in module-level arrays. Next, it sets up
the linear programming model and solves it for each organizational unit.
Finally, it creates the report. The module-level variables and the MainDEA sub
are listed below.

Option Statements and Module-Level Variables

Option Explicit
Option Base 1

' Definitions of module-level variables:
' nUnits: number of organization units
' unitName(): array of names of units
' nInputs: number of inputs for each unit
' inputName(): array of names of inputs
' inputUsed(): two-dimensional array of inputs used by units (first
' dimension is the unit, second is the input)
' nOutputs: number of outputs for each unit
' outputName(): array of names of outputs
' outputProduced(): two-dimensional array of outputs produced by units (first
' dimension is the unit, second is the output)
' totalInputCost(): two-dimensional array (first subscript is unit,
' second is input) - e.g., TotalInputCost(1,3) is the unit cost
' of input 3 multiplied by the amount of input 3 used by unit 1
' totalOutputValue(): same as TotalInputCost array, except for outputs.
' efficiencyIndex(): an array of maximum outputs from LP model, one for each unit

Dim nUnits As Integer, unitName() As String
Dim nInputs As Integer, inputName() As String, inputUsed() As Single
Dim nOutputs As Integer, outputName() As String, outputProduced() As Single
Dim totalInputCost() As Single, totalOutputValue() As Single
Dim efficiencyIndex() As Single

MainDEA Code

Sub MainDEA()
' This sub runs when the user clicks on the button in the Explanation sheet.
Application.ScreenUpdating = False
' Get data from the DEA.txt file
Call GetData
' Create the model in the Model sheet.

686 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Call CreateModel
' Set up and run the Solver several times, once for each unit.
Call RunSolver
' Fill in the Report sheet.
Call CreateReport
Application.ScreenUpdating = True

End Sub

GetData Code

The GetData sub is responsible for importing the data from the text file into
Excel. First, an attempt is made to open the text file. If there is an error (no
such file exists, at least not in the same folder as the application file), an error
message is displayed and the program ends. Otherwise, the file is read line by
line. If there is ever an error of any type (probably because the text file isn’t struc-
tured properly), control passes to the BadData label, a message is displayed, and
the program ends. Note how the On Error statements discussed in Chapter 12
are used here to trap for these errors.

Pay particular attention to the ParseLine calls. (The code for the ParseLine
sub is listed below.) For example, after the first line of the text file (the one with
the names of the inputs) is stored in the dataLine string, the following line is
called:

Call ParseLine(dataLine, nInputs, returnArray)

The second argument indicates the number of separate pieces of data that are
expected in the dataLine string. This string is then parsed, and its pieces are placed
in the returnArray array (this is done in the ParseLine sub) so that the array is
available for the GetData sub.

Sub GetData()
' Read the data from the DEA.txt file and store it in arrays.

Dim i As Integer, j As Integer
Dim dataLine As String
Dim returnArray() As String
Dim nInputsRead As Integer, nOutputsRead As Integer

' Try to open the DEA.txt file, but check for an error in case it doesn’t exist.
On Error Resume Next
Open ThisWorkbook.Path & "\DEA.txt" For Input As #1

' Quit if there is no DEA.txt file in the directory of this workbook.
If Err.Number <> 0 Then

MsgBox "There is no DEA.txt file in the same directory as " _
& "this workbook, so the application cannot continue.", _

vbInformation, "Missing file"
End

End If

A Data Envelopment Analysis Application 687

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Quit if anything goes wrong reading the file.
On Error GoTo BadData

' The first line contains the names of the inputs.
Line Input #1, dataLine
Call ParseLine(dataLine, nInputs, returnArray)

' Transfer contents of returnArray array to inputName array.
ReDim inputName(nInputs)
For i = 1 To nInputs

inputName(i) = returnArray(i)
Next

' Do it again, reading the second line for the output names.
Line Input #1, dataLine
Call ParseLine(dataLine, nOutputs, returnArray)
ReDim outputName(nOutputs)
For i = 1 To nOutputs

outputName(i) = returnArray(i)
Next

' Now go through each organizational unit.
nUnits = 0
Do While Not EOF(1)

' Add another unit and redimension arrays appropriately. Note that
' only the second dimension of a two-dimensional array can be
' redimensioned dynamically with a Redim statement.
nUnits = nUnits + 1
ReDim Preserve unitName(nUnits)
ReDim Preserve inputUsed(nInputs, nUnits)
ReDim Preserve outputProduced(nOutputs, nUnits)

' The unit’s name is in the first line - no parsing required.
Line Input #1, dataLine
unitName(nUnits) = dataLine

' The unit’s inputs used are in the second line.
Line Input #1, dataLine
Call ParseLine(dataLine, nInputsRead, returnArray)

' Quit if the number of data items in this line is not the same
' as the number of inputs (which is known by now).
If nInputsRead <> nInputs Then

GoTo BadData
End If

' Store the input data in this line for later use.
For j = 1 To nInputs

inputUsed(j, nUnits) = returnArray(j)
Next

' Do the same for the unit’s outputs produced, which are in the next line.
Line Input #1, dataLine
Call ParseLine(dataLine, nOutputsRead, returnArray)

If nOutputsRead <> nOutputs Then
GoTo BadData

End If

688 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For j = 1 To nOutputs
outputProduced(j, nUnits) = returnArray(j)

Next
Loop

' Close the data file.
Close #1

' Now that we know the numbers of units, inputs and outputs,
' redimension other arrays.

ReDim efficiencyIndex(nUnits)
ReDim totalInputCost(nInputs, nUnits)
ReDim totalOutputValue(nOutputs, nUnits)

Exit Sub

BadData:
MsgBox "The data file is not set up properly, so the application " _

& "cannot continue.", vbInformation, "Invalid data"
End

End Sub

ParseLine Code

To parse a string dataLine into its individual pieces of data, the ParseLine sub uses
a For loop to go through the string one character at a time (from left to right),
using the Mid function. Specifically, Mid(dataLine, i, 1) returns the character in
position i of the string dataLine. As it reads these characters, it builds a currentText
string. As it progresses, it checks whether each character is a comma or the last
character in the dataLine string. In either case, it captures the characters stored in
the currentText string as the next element of the returnArray array and resets
currentText to an empty string. If it ever fills the array with the expected number
of elements before parsing the entire dataLine string, it exits prematurely. (This
could be the case if a text line contained more data than is required.)

It is very instructive to step through this sub one line at a time (with the F8
key) and keep a watch on the dataLine and currentText strings in the Watch win-
dow. This allows you to see exactly how the strings are parsed.3

Sub ParseLine(dataLine As String, nValues As Integer, returnArray() As String)
' This sub parses a line of data from the text file into individual pieces of data.
' It returns an array of the pieces of data and number of pieces (in nValues).

Dim i As Integer
Dim char As String
Dim counter As Integer ' counts the pieces of data in the line
Dim currentText As String ' text since last comma

3As mentioned in Chapter 13, I have included the parsing code because it is a great exercise in com-
puting logic. However, there is a VBA function, Split, that makes most of this parsing code unneces-
sary. One of the exercises asks you to modify the application to take advantage of the Split function.

A Data Envelopment Analysis Application 689

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Counter counts the number of pieces of data in the line.
counter = 1
ReDim returnArray(counter)

' currentText is any piece of data in the line, where the pieces
' are separated by commas.
currentText = ""

' Go through the string a character at a time.
For i = 1 To Len(dataLine)

' Get the character in position i.
char = Mid(dataLine, i, 1)
' Check if the character is a comma or the last character in the string.
If char = "," Then

returnArray(counter) = currentText

' Get ready for the next piece of data.
currentText = ""
counter = counter + 1
ReDim Preserve returnArray(counter)

ElseIf i = Len(dataLine) Then
' Capture this last piece of data and return the number of pieces.
currentText = currentText & Mid(dataLine, i, 1)
returnArray(counter) = currentText
nValues = counter

Else
' Add this character to the currentText string.
currentText = currentText & Mid(dataLine, i, 1)

End If
Next i

End Sub

CreateModel Code

The CreateModel sub clears the Model worksheet completely by using the Clear-
Contents method of the UsedRange. (Recall from Chapter 6 that the UsedRange
of a worksheet is basically the area of the worksheet that contains any data.) Then
it calls two subs, EnterInputsOutputs and CalcFormulas, to develop the linear pro-
gramming model.

Sub CreateModel()
' This sub creates the LP model and reports the results.

' First, unhide and activate the Model sheet and clear all contents.
With wsModel

.Visible = True

.Activate

.UsedRange.ClearContents

' Enter labels. (Cell B3 will contain the index of the unit currently being
' analyzed for efficiency.)
.Range("A1").Value = "DEA model"
.Range("A3").Value = "Selected unit"

End With

690 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Enter the user data.
Call EnterInputsOutputs

' Calculate all required formulas for the model.
Call CalcFormulas

End Sub

EnterInputsOutputs Code

The EnterInputsOutputs sub enters the data from the text file, which are by now
stored in arrays (from the GetData sub), into the Model worksheet. It also enters
descriptive headings. Keep in mind that the Model worksheet is practically blank
when this sub and the next sub are called, so they have a considerable amount of
work to do. Refer to Figure 33.3 and its list of range names as you read this code.

Sub EnterInputsOutputs()
' This sub enters the inputs for the DEA model.
Dim i As Integer, j As Integer

With wsModel
' Enter labels and data.
With .Range("A5")

.Value = "Inputs used"
For j = 1 To nInputs

.Offset(0, j).Value = inputName(j)
Next
For i = 1 To nUnits

.Offset(i, 0).Value = unitName(i)
For j = 1 To nInputs

.Offset(i, j).Value = inputUsed(j, i)
Next

Next

' Name the range of input amounts.
' It will be used for formulas in the Model sheet.
Range(.Offset(1, 1), .Offset(nUnits, nInputs)).Name = _

"Model!InputsUsed"

' Enter 0’s as initial values for the input cost changing cells.
With .Offset(nUnits + 2, 0)

.Value = "Unit costs"
For j = 1 To nInputs

.Offset(0, j).Value = 0
Next

' Name the range of the changing cells for inputs.
Range(.Offset(0, 1), .Offset(0, nInputs)).Name = _

"Model!InputCosts"
End With

End With

' Do the same for the outputs.
With .Range("A5").Offset(0, nInputs + 2)

.Value = "Outputs used"
For j = 1 To nOutputs

.Offset(0, j).Value = outputName(j)

A Data Envelopment Analysis Application 691

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Next
For i = 1 To nUnits

.Offset(i, 0).Value = unitName(i)
For j = 1 To nOutputs

.Offset(i, j).Value = outputProduced(j, i)
Next

Next
Range(.Offset(1, 1), .Offset(nUnits, nOutputs)).Name = _

"Model!OutputsProduced"
With .Offset(nUnits + 2, 0)

.Value = "Unit prices"
For j = 1 To nOutputs

.Offset(0, j).Value = 0
Next
Range(.Offset(0, 1), .Offset(0, nOutputs)).Name = _

"Model!OutputPrices"
End With

End With
End With

End Sub

CalcFormulas Code

The CalcFormulas sub continues the model development by entering all required
formulas and naming various ranges. Again, refer to Figure 33.3 and its list of
range names as you read this code.

Sub CalcFormulas()
' This sub calculates formulas for the Model, starting just below the changing
' cells from the previous sub.

Dim i As Integer
With wsModel.Range("A5").Offset(nUnits + 4, 0)

' Set up constraints that input costs incurred must be greater than
' or equal to output values achieved.
.Value = "Constraints that input costs must cover output values"
.Offset(1, 0).Value = "Unit index"
.Offset(1, 1).Value = "Input costs"
.Offset(1, 3).Value = "Output values"

' There is a constraint for each unit.
For i = 1 To nUnits

' Labels in column A (1, 2, etc.) are needed for later on, to
' enable use of VLookup function.
.Offset(1 + i, 0).Value = i

' The input cost incurred for any unit is the sumproduct of the changing
' cell range (UnitCosts) and the appropriate input data row. The same goes
' for output value. Note how the appropriate row is specified.
.Offset(1 + i, 1).Formula = _

"=Sumproduct(InputCosts," & Range("InputsUsed").Rows(i).Address & ")"
.Offset(1 + i, 2).Value = ">="
.Offset(1 + i, 3).Formula = _

"=Sumproduct(OutputPrices," _

692 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

& Range("OutputsProduced").Rows(i).Address & ")"
Next

' Name appropriate ranges. LTable is for later on with the VLookup function.
Range(.Offset(2, 1), .Offset(nUnits + 1, 1)).Name = "Model!InputValues"
Range(.Offset(2, 3), .Offset(nUnits + 1, 3)).Name = "Model!OutputValues"
Range(.Offset(2, 0), .Offset(nUnits + 1, 3)).Name = "Model!LTable"

End With

' Set up constraint that the selected unit’s total input cost is 1.
With wsModel.Range("A5").Offset(2 * nUnits + 7, 0)

.Value = "Constraint that selected unit’s input cost must " _
& "equal a nominal value of 1"

.Offset(1, 0).Value = "Selected unit’s input cost"

' Get the selected unit’s total input cost with a VLookup.
With .Offset(1, 1)

.Formula = "=VLookup(B3,LTable,2)"

.Name = "Model!SelInputValue"
End With
.Offset(1, 2).Value = "="
.Offset(1, 3).Value = 1
.Offset(3, 0).Value = "Maximize selected unit’s output value " _

& "(to see if it is 1, hence efficient)"
.Offset(4, 0).Value = "Selected unit’s output value"

' Get the selected unit’s total output value with a VLookup.
' It is the target cell for maximization.
With .Offset(4, 1)

.Formula = "=VLookup(B3,LTable,4)"

.Name = "Model!SelOutputValue"
End With

End With
End Sub

RunSolver Code

The RunSolver sub uses a For loop to go through each organizational unit and
solve the appropriate model. (The particular unit being analyzed depends on the
index placed in cell B3.) It then captures the Solver results in the arrays efficien-
cyIndex, totalInputCost, and totalOuputValue for later use in the report.

Sub RunSolver()
' This sub sets up and runs Solver once for each unit, first placing
' its index (1, 2, etc.) in cell B3.
Dim i As Integer, j As Integer

With wsModel
For i = 1 To nUnits

.Range("B3").Value = i
SolverReset
SolverOk SetCell:=.Range("SelOutputValue"), MaxMinVal:=1, _

ByChange:=Union(.Range("InputCosts"), .Range("OutputPrices")), _
Engine:=1

SolverAdd CellRef:=.Range("InputValues"), Relation:=3, _
FormulaText:="OutputValues"

A Data Envelopment Analysis Application 693

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SolverAdd CellRef:=.Range("SelInputValue"), Relation:=2, FormulaText:=1
SolverOptions AssumeNonNeg:=True
SolverSolve UserFinish:=True

' Capture the quantities for the report in the totalInputCost,
' totalOutputValue, and efficiencyIndex arrays.
For j = 1 To nInputs

totalInputCost(j, i) = .Range("InputCosts").Cells(j).Value _
* inputUsed(j, i)

Next
For j = 1 To nOutputs
totalOutputValue(j, i) = .Range("OutputPrices").Cells(j).Value _

* outputProduced(j, i)
Next
efficiencyIndex(i) = .Range("SelOutputValue").Value

Next

' Hide the Model sheet.
.Visible = False

End With
End Sub

CreateReport Code

To create the report, the current Report worksheet is cleared completely. (Again,
it is easier to start from scratch than to try to salvage anything from a previous
report.) This provides a fresh start, but it means that all of the data transfers and
all desired formatting must be done at run time through VBA code. There is
nothing difficult about it, but there are a lot of steps. In the spirit of modulariz-
ing, the CreateReport sub does a few tasks and then calls three subs, FirstSection,
SecondSection, and ThirdSection, to do the majority of the work.

Sub CreateReport()
' This sub creates a report of the Solver results.
Dim i As Integer, j As Integer

' It’s easier to start with a brand new Report sheet, so
' everything is cleared from the old one.
With wsReport

.Cells.Clear

.Visible = True

.Activate

' Shrink column width of column A and format the title in cell B2.
.Columns("A:A").ColumnWidth = 3
With .Range("B1")

.Value = "Summary of analysis"

.RowHeight = 40

.VerticalAlignment = xlCenter

.Font.Bold = True

.Font.Size = 16
End With

' Build the rest of the report in three sections with the following three subs.
Call FirstSection

694 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Call SecondSection
Call ThirdSection

.Range("A1").Select
End With

End Sub

FirstSection Code

Referring to the report in Figure 33.2, the first section is the section on the left,
the second section is the top-right section, and the third section is the bottom-
right section. Each of the following subs adds headings and data and then formats
its section appropriately. (Interestingly, Excel 2007 and later versions no longer
show an AutoFormat method for a Range in the Object Browser, but the old Auto-
Format method still works.)

Sub FirstSection()
' This sub enters the efficiencies for the units.
Dim i As Integer

With wsReport
' Enter headings.
With .Range("B3")

.Value = "Efficiency of units"

.Font.Bold = True

.Font.Size = 12
End With
With .Range("B4")

.Value = "Unit"

.Offset(0, 1).Value = "LP maximum output"

.Offset(0, 2).Value = "Efficient?"
For i = 1 To nUnits

.Offset(i, 0).Value = unitName(i)

' Enter target values from the optimization.
.Offset(i, 1) = efficiencyIndex(i)

' Enter Yes or No depending on whether the target = 1 or < 1.
If efficiencyIndex(i) < 1 Then

.Offset(i, 2).Value = "No"
Else

.Offset(i, 2).Value = "Yes"
End If

Next

' Format appropriately.
Range(.Offset(1, 1), .Offset(nUnits, 1)).NumberFormat = "0.000"
Range(.Offset(0, 0), .Offset(nUnits, 2)).AutoFormat xlRangeAutoFormatClassic3
.HorizontalAlignment = xlLeft
Range(.Offset(1, 2), .Offset(nUnits, 2)).HorizontalAlignment = xlRight

End With
End With

End Sub

A Data Envelopment Analysis Application 695

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SecondSection Code

Sub SecondSection()
' This sub enters the given data from the DEA.txt file.
Dim i As Integer, j As Integer

With wsReport
' Enter headings.
With .Range("F2")

.Value = "Given data from text file"

.Font.Bold = True

.Font.Size = 12
End With

With .Range("F4")
' Enter more headings.
.Value = "Unit"
With .Offset(-1, 1)

.Value = "Inputs used"

.Font.Bold = True
End With
With .Offset(-1, nInputs + 1)

.Value = "Outputs produced"

.Font.Bold = True
End With
For i = 1 To nUnits

.Offset(i, 0).Value = unitName(i)
Next
For j = 1 To nInputs

.Offset(0, j).Value = inputName(j)
Next

For j = 1 To nOutputs
.Offset(0, nInputs + j).Value = outputName(j)

Next

' Enter the inputs used and outputs produced.
For i = 1 To nUnits

For j = 1 To nInputs
.Offset(i, j).Value = inputUsed(j, i)

Next
For j = 1 To nOutputs

.Offset(i, nInputs + j).Value = outputProduced(j, i)
Next

Next

' Format appropriately.
Range(.Offset(1, 1), .Offset(nUnits, nInputs + nOutputs)) _

.NumberFormat = "0.00"
Range(.Offset(0, 0), .Offset(nUnits, nInputs + nOutputs)) _

.AutoFormat xlRangeAutoFormatClassic3
.HorizontalAlignment = xlLeft

End With
End With

End Sub

696 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ThirdSection Code

Sub ThirdSection()
' This sub is almost the same as the previous sub, but now the data are
' total costs of inputs used and total values of outputs produced, as
' calculated from the LP model.
Dim i As Integer, j As Integer

With wsReport
With .Range("F4").Offset(nUnits + 2, 0)

.Value = "Values from LP model"

.Font.Bold = True

.Font.Size = 12
End With

With .Range("F4").Offset(nUnits + 4, 0)
.Value = "Unit"
With .Offset(-1, 1)

.Value = "Total costs of inputs used"

.Font.Bold = True
End With
With .Offset(-1, nInputs + 1)

.Value = "Total values of outputs produced"

.Font.Bold = True
End With
For i = 1 To nUnits

.Offset(i, 0).Value = unitName(i)
Next
For j = 1 To nInputs

.Offset(0, j).Value = inputName(j)
Next
For j = 1 To nOutputs

.Offset(0, nInputs + j).Value = outputName(j)
Next

' Enter the data from the LP runs. (These were calculated in the RunSolver sub.)
For i = 1 To nUnits

For j = 1 To nInputs
.Offset(i, j).Value = totalInputCost(j, i)

Next
For j = 1 To nOutputs

.Offset(i, nInputs + j).Value = totalOutputValue(j, i)
Next

Next
Range(.Offset(1, 1), .Offset(nUnits, nInputs + nOutputs)) _

.NumberFormat = "0.000"
Range(.Offset(0, 0), .Offset(nUnits, nInputs + nOutputs)) _

.AutoFormat xlRangeAutoFormatClassic3
.HorizontalAlignment = xlLeft

End With
End With

End Sub

A Data Envelopment Analysis Application 697

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ViewExplanation Code

The ViewExplanation sub lets the user navigate back to the Explanation worksheet,
and it hides the Report worksheet.

Sub ViewExplanation()
With wsExplanation

.Activate

.Range("F5").Select
End With
wsReport.Visible = False

End Sub

33.8 Summary

This application has illustrated a very useful method, DEA, for comparing organi-
zational units for relative efficiency. This method has been used in a number of
real applications in various industries. (See the references in Chapter 4 of Practical
Management Science.) In addition, this chapter has illustrated a method for
importing data from a comma-delimited text file into Excel. This involves parsing
data into its individual pieces, a technique that is very useful in its own right in a
variety of contexts.

EXERCISES

1. If you ever try to open a text (.txt) file in Excel, you will see that it takes you
through a wizard. One of the steps asks for the character delimiter. One choice
is the comma (the one used here), and another is the tab character. Rewrite the
ParseLine sub so that the separating character is the tab rather than the comma.
Then get into Notepad, open the DEA.txt file, replace each comma with a tab
(highlight the comma and press the Tab key), and rerun the application with
your new ParseLine sub. You should get the same results as before. (Hint: Open
the VBA library in the Object Browser and look under Constants to find the tab
character.)

2. Rewrite the ParseLine sub so that it is slightly more general. It should receive an
extra argument called separator, declared as String type. The separator is any single
character that separates the pieces of the long string being parsed. In the applica-
tion, the separator was the comma, but it might be another character in other
applications.

3. Suppose a line from a text file uses a single comma to separate pieces of data, but
it uses two consecutive commas to indicate that a comma is part of a piece a data.
For example, the line 23,290,21,200 has three pieces of data: 23, 290, and
21,200. Rewrite the ParseLine sub to parse a typical line with this comma
convention.

698 Chapter 33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. I claimed that this application works with any data, provided that the text file is
structured properly. Try the following. Open the DEA.txt file in Notepad and
change its data in some way. (For example, try adding another academic depart-
ment and/or adding an input or an output.) Then rerun the application to
check that it still works properly.

5. Repeat the previous exercise, but now create a new text file called MyData.txt
(stored in the same folder as the Excel application), structured exactly as
DEA.txt, and add some data to it. Then rerun the application to check that it
still works properly. (Note that you will have to change the VBA code slightly,
so that it references the correct name of your new text file.)

6. The previous exercise indicates a “fix” that no business would ever tolerate—they
would never be willing to get into the VBA code to change a file name reference.
A much better alternative is to change the VBA code in the first place so that it
asks the user for the location and name of the database file. You could do this
with an input box (and risk having the user spell something wrong), but Excel
provides an easier way with the FileDialog object as illustrated in Chapter 13. Use
this to change the application so that it prompts the user for the name and loca-
tion of the data file. Actually, you should probably precede the above line with a
MsgBox statement so that the user knows he’s being asked to select the file with
the data. Then try the modified application with your own text file, stored in a
folder different from the folder containing the Excel application.

7. Put the ideas from Exercises 2 and 6 together to make the application fairly gen-
eral. First, create a user form that allows the user to choose the separator charac-
ter from a list of option buttons. (Make the choices reasonable, such as comma,
tab, and semicolon.) Then pass the user’s choice to the revised ParseLine sub dis-
cussed in Exercise 2 as the separator argument. Second, let the user select the text
file with the data, as discussed in Exercise 6. Now the application should work
with any text file with any separator in your list.

8. I mentioned in a footnote that VBA has a powerful String function called Split
that does practically everything the complex ParseLine sub does. Look up Split in
the Object Browser, and then modify the application to take advantage of this
function. You should no longer need the ParseLine sub.

A Data Envelopment Analysis Application 699

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An AHP Application for

Choosing a Job

34.1 Introduction

This application implements the analytical hierarchy process (AHP) in the context of
choosing a job. AHP is useful in many multiobjective decision problems. You list a
number of criteria and a number of possible decisions that meet the criteria to various
degrees. In this case, the criteria are salary, nearness to family, benefits, and possibly
others, and the decisions are your available job offers. The first step in AHP is to com-
pare the criteria—which are the most important to you? This is discovered through a
series of pairwise comparisons. The jobs are then compared with each other on each
criterion, again by making a series of pairwise comparisons. The final result is a score
for each job, and the job with the highest score is identified as your preferred job.

New Learning Objectives: VBA
● To learn how online help can be provided on a worksheet by taking advan-

tage of a worksheet’s BeforeDoubleClick event.
● To learn several new controls for user forms: scrollbars, combo boxes, and

command buttons other than the usual OK/Cancel combination.

New Learning Objectives: Non-VBA
● To learn the basic elements of AHP.

34.2 Functionality of the Application

The application first asks the user to specify the criteria that are relevant for mak-
ing the job decision. Several criteria, such as salary, location, and benefits, are
already in the list of possibilities, but the user can add other criteria to the list if
desired. Next, the user is asked to list the available job offers. The user is asked
to make a series of pairwise comparisons, first between pairs of criteria and then
between pairs of jobs on each criterion. After all pairwise comparisons have been
made, the application performs the necessary calculations for AHP and reports the
results on a Report worksheet, highlighting the job with the highest score. The
scores for the various jobs can also be viewed graphically. Finally, to check
whether the user was internally consistent when making the pairwise comparisons
(because it is easy to be inconsistent), consistency indexes are reported.

34

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After a given AHP analysis, the user can run another analysis with the same
criteria and jobs (by making new pairwise comparisons). Alternatively, the user
can run another analysis with entirely new inputs.

34.3 Running the Application

The application is stored in the file AHP.xlsm. When this file is opened, the
Explanation worksheet in Figure 34.1 appears. Because AHP is probably not
well known to most users, the application provides some help in a text box. This
text box is currently hidden, but it can be displayed by double-clicking anywhere
in row 1 of the Explanation worksheet. The help text box then appears, as shown
in Figure 34.2. It can be hidden by again double-clicking in row 1. The way this
online help is accomplished with VBA is explained later in the chapter.

Clicking the button in Figure 34.1 produces the dialog box in Figure 34.3. It
has a combo box with a dropdown list of criteria the user can choose from. Alter-
natively, the user can type a new criterion in the box. After a criterion is entered
in the box, the user should click the Add button to add the criterion to the list
that will be used in making the decision.

When all desired criteria have been added, the user should click the No More
button. The dialog box shown in Figure 34.4 then appears. It has the same func-
tionality as the first dialog box, except that there is no dropdown list; the user
must enter all available jobs, one at a time, in the text box.

After all criteria and jobs have been entered, several dialog boxes similar to
the one shown in Figure 34.5 appear. Each asks the user to make a pairwise com-
parison between two of the criteria. This can be done by clicking the button for

Figure 34.1 Explanation Worksheet

2 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the criterion that is considered more important and then using the scrollbar to
indicate how much more important it is. The scrollbar goes in discrete one-unit
steps, from 1 to 9. The labels below the scrollbar attach suggestive meanings to
the numbers. Note that there can be quite a few pairwise comparisons to make.
For example, if there are four criteria, there are six such pairwise comparisons
(the number of ways two things can be chosen from four things). The counter
on the dialog box reminds the user how many more pairwise comparisons
remain.

Figure 34.2 Help for AHP

Figure 34.3 Dialog for Choosing Criteria

An AHP Application for Choosing a Job 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The application then presents a series of dialog boxes similar to those in
Figures 34.6 and 34.7, where the user must make pairwise comparisons between
pairs of jobs on the various criteria. Again, if there are quite a few criteria and
jobs, the number of required pairwise comparisons will be large.

When all pairwise comparisons have been made, the application does the
AHP calculations and reports the results in a Report worksheet, as shown in
Figure 34.8. This report lists the weights for the criteria, the scores for the jobs
on each criterion, and the total scores for the jobs. The job with the highest
total score is boldfaced. (In this example, Microsoft is the winner.) The bottom
of the report lists consistency indexes. If the user has to make many pairwise com-
parisons, there is a good chance of being inconsistent. This bottom section alerts
the user to this possibility. Specifically, if it reports inadequate consistency, the
user should probably go through the process again and attempt to make more
consistent pairwise comparisons.

Figure 34.4 Dialog Box for Choosing Jobs

Figure 34.5 Pairwise Comparison Dialog Box for Criteria

4 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

By clicking the top button on the Report worksheet, the user can view the
chart in Figure 34.9, which indicates the total scores for the jobs. The other two
buttons on the Report worksheet allow the user to repeat the analysis with the
same criteria and jobs (by making new pairwise comparisons) or with entirely new
inputs.

Figure 34.6 Pairwise Comparison Between Jobs on Salary

Figure 34.7 Pairwise Comparison Between Jobs on Location

An AHP Application for Choosing a Job 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 34.8 Report Worksheet

Figure 34.9 Chart of Total Job Scores

0.29

0.569

Microsoft

0.14

MMMDeloitte

Total Scores for Jobs

6 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34.4 Setting Up the Excel Sheets

The AHP.xlsm file contains Explanation and Report worksheets and a Scores-
Chart sheet. (Unlike most of the other applications in the book, there is no
Model worksheet where most of the calculations take place. All calculations in
this application are done directly in memory with VBA—that is, they are not per-
formed through spreadsheet formulas.) The Report worksheet, shown earlier in
Figure 34.8, must be completed almost entirely at run time. The only template
that can be developed at run time appears in Figure 34.10. However, the chart
can be developed with the Excel’s chart tools at design time, using any set of
trial inputs, and then it can be tied to the actual job scores at run time.

34.5 Getting Started with the VBA

The application contains four user forms named frmCriteria, frmJobs, frmPairwise-
Criteria, and frmPairwiseJobs, and a single module. Once these are inserted, the
Project Explorer window will appear as in Figure 34.11.

Workbook_Open Code

To guarantee that the Explanation worksheet appears when the file is opened, the
following code is placed in the ThisWorkbook code window. This code hides the
Report and ScoresChart sheets.

Private Sub Workbook_Open()
With wsExplanation

.Activate

.Range("F5").Select
End With
wsReport.Visible = False
chtScores.Visible = False

End Sub

Figure 34.10 Report Worksheet Template

1

2

3

4

5

6

7

A B C D E F G H I

Results from AHP

Weights for Criteria

Scores for jobs on various criteria

View chart of job scores

Repeat with new pairwise comparisons

Repeat en�re analysis

An AHP Application for Choosing a Job 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Worksheet_BeforeDoubleClick Event Handler

The Workbook_Open sub has been used repeatedly in previous applications. It
responds to the Open event of the Workbook object. When the workbook opens,
this code runs. There are many other events that objects can respond to. In each
case, it is possible to write an event handler for the event. This can come in very
handy. In this application, the user can double-click in row 1 of the Explanation
worksheet to display or hide a help text box. This is accomplished by the follow-
ing event handler for the worksheet’s BeforeDoubleClick event. The built-in sub
for this event comes with an argument called Target. This argument is the cell
that is double-clicked. Therefore, an If statement checks whether Target.Row
equals 1. If it does, this means that the user double-clicked somewhere in row 1.
In this case, the Visible property of the HelpBox (the name of the text box that
contains the help) is toggled from True to False or vice versa. Note that the text
box is named HelpBox at design time. A text box can be named exactly like a
range—you select it and then type a name in the name box area in Excel.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
' This sub runs when the user double-clicks anywhere in row 1 of the
' Explanation sheet. It toggles a pre-formed text box between
' visible and not visible.
Dim helpBox As Shape
If Target.Row = 1 Then

Set helpBox = Worksheets("Explanation").Shapes("HelpBox")
helpBox.Visible = Not helpBox.Visible
Range("F5").Select

End If
End Sub

Figure 34.11 Project Explorer Window

8 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This code should be stored in the code window for the Explanation work-
sheet. To get to it, double-click the Explanation worksheet item in the Project
Explorer window of the VBE. (See Figure 34.11.) Then in the code window,
select Worksheet in the left dropdown list and double-click the BeforeDoubleClick
item in the right dropdown list. (See Figure 34.12.) This inserts a “stub” for the
event handler, as in the following two lines. You can then enter the code you
need in the middle. Note that the Target and Cancel arguments are built in—you
have no choice whether to include them in the first line. However, only the Target
argument is used in the code in this example; the Cancel argument is ignored.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
End Sub

How can you learn about events like this? Probably the best way is to use the
Object Browser in the VBE. Figure 34.13 shows where I discovered that a Work-
sheet object has a BeforeDoubleClick event. The online help then describes the
details, such as what the Target and Cancel arguments mean.

34.6 The User Forms

The user forms include some features not seen in previous chapters: frmCriteria has a
combo box control, frmPairwiseCriteria and frmPairwiseJobs each have a scrollbar con-
trol, and the buttons on frmCriteria and frmJobs are not the standard OK/Cancel pair.
However, this just illustrates the flexibility of the controls available in the Control
Toolbox. You can choose the ones that are most appropriate for your application.

frmCriteria

This form has three buttons named btnAdd, btnNoMore, and btnCancel, an explana-
tion label, and a combo box named cboCriteria. Its design appears in Figure 34.14.

Figure 34.12 Inserting Sub for BeforeDoubleClick Event

An AHP Application for Choosing a Job 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The UserForm_Initialize sub creates an array of criteria that is used to populate
the combo box.1 The btnAdd_Click sub does some error checking and then adds
the newly chosen criterion to the list of criteria in the publicly declared criterion
array. The btnNoMore_Click sub simply unloads the form. By this time, the user

1Unlike the applications in the previous chapters, the code involving forms is the “old” version used
in the previous edition of the book. This is partly for variety and partly because too much work
would have been required to change everything.

Figure 34.13 Object Browser Help for BeforeDoubleClick Worksheet Event

Figure 34.14 frmCriteria Design

10 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

has entered all desired criteria, so she just wants the dialog box to disappear. The
btnCancel_Click sub unloads the form and terminates the program.

Note that a ComboBox control is essentially a blend of a list box and a text
box. Specifically, its List property can be set equal to an array to populate the list,
and its Value property returns the item in the box.

Private Sub btnAdd_Click()
Dim newItem As String, isNew As Boolean

Dim i As Integer
' Check that a criterion has been entered and that it is not a criterion
' that was already entered. (If it is, set isNew to False.)
With cboCriteria

If .Value = "" Then
MsgBox "Please make a selection", vbExclamation, "No selection"
.SetFocus
Exit Sub

Else
newItem = .Value
isNew = True
If nCriteria > 0 Then

' This loop goes through criteria already entered to check
' whether the current criterion is new.
For i = 1 To nCriteria

If newItem = criterion(i) Then
MsgBox "You already chose this item.", _

vbExclamation, "Duplicate"
isNew = False
Exit For

End If
Next

End If

' Update the number of criteria only if isNew is True.
If isNew Then

nCriteria = nCriteria + 1
If nCriteria = 1 Then

ReDim criterion(nCriteria)
Else

ReDim Preserve criterion(nCriteria)
End If
criterion(nCriteria) = newItem

End If

' Get ready for the next criterion.
.Text = ""
.SetFocus

End If
End With

End Sub

Private Sub btnCancel_Click()
Unload Me
End

End Sub

An AHP Application for Choosing a Job 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Private Sub btnNoMore_Click()
Unload Me

End Sub

Private Sub UserForm_Initialize()
' Define an array of items that make up the "default" list in the combo box.
' The user can add a different item at run time if desired.
Dim criteriaArray As Variant
criteriaArray = Array("Salary", "Benefits", "Location", "Quality of life", _

"Nearness to family", "Interest of work")

' Fill the combo box, but don’t select any items by default.
With cboCriteria

.List = criteriaArray

.Value = ""
End With

End Sub

frmJobs

The frmJobs form, shown earlier in Figure 34.4, is analogous to frmCriteria, so its
design and event handlers are not repeated here. The only difference is that it
contains a text box for capturing the job name, not a combo box.

frmPairwiseCriteria

The design for the frmPairwiseCriteria form appears in Figure 34.15. It has 10 labels,
a command button named btnNext, a frame that contains two option buttons
named optChoice1 and optChoice2, and a scrollbar named scbCompareValue. Note
that the numbers and descriptions above and below the scrollbar are all labels, as is
the highlighted number in the figure. This latter label is named lblNLeft. A ScrollBar
control has several properties, Min, Max, LargeChange, and SmallChange, that can

Figure 34.15 Design of Pairwise Criteria Form

12 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

be set at design time. For this application, the SmallChange and LargeChange prop-
erties can be left at their default values of 1, but the Min and Max properties should
be changed to 1 and 9. (You can probably guess what these properties are all about.
See online help on the ScrollBar control for more details.)

The UserForm_Initialize sub uses three public variables, criterion1, criterion2, and
nPairsLeft, which have been declared publicly in the module, to initialize the user
form. The first two of these are used as captions for the option buttons, and the
third (an integer) is used as the caption for the lblNLeft label. By default, the scrollbar
is put at its leftmost position, and the first option button is checked. The btnNext_Click
sub then captures the option that has been checked and the value of the scrollbar in
the public variables choseFirst and pairwiseValue. Note that the Value property of a
ScrollBar control is its default property. It is an integer between the scrollbar’s Min
and Max, determined by the position of the “slider” on the scrollbar.

Private Sub btnNext_Click()
' Capture which of the two options is favored (choseFirst) and by how
' much (pairwiseValue).
choseFirst = optChoice1.Value
pairwiseValue = scbCompareValue.Value
Unload Me

End Sub

Private Sub UserForm_Initialize()
' Set up the dialog box. It uses the public variables criterion1,
' criterion2, and nPairsLeft, defined in the module.
With optChoice1

.Value = True

.Caption = criterion1
End With
optChoice2.Caption = criterion2
scbCompareValue.Value = 1
lblNLeft.Caption = nPairsLeft

End Sub

frmPairwiseJobs

The frmPairwiseJobs form, shown earlier in Figures 34.6 and 34.7, is very similar
to frmPairwiseCriteria, so its design and event handlers are not repeated here.

34.7 The Module

The bulk of the work is performed in the module. When the user clicks the button
in the Explanation worksheet, the Main sub runs. It “shows” frmCriteria and frmjobs
to get the lists of criteria and jobs, redimensions a number of arrays, and then calls
the DoCalculations sub to perform the AHP. For a change, I will not list all of the
VBA code here. Unless you understand the calculations that go into the AHP meth-
odology, this code won’t make much sense. Besides, from a VBA viewpoint, there is
nothing new. If you do happen to be familiar with the AHP methodology and want
to see how it is implemented with VBA, the code is available in the AHP.xlsm file.

An AHP Application for Choosing a Job 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34.8 Summary

This chapter has presented an application that should be useful for many readers
of this book—students who are looking for a job. It is easy to use, and it is realis-
tic. The VBA details are somewhat complex, and they will be mysterious to read-
ers who are not familiar with the inner workings of AHP. However, this is part of
the beauty of VBA applications. They can be used by people who are not familiar
with what is happening “under the hood.”

EXERCISES

1. Open a newworkbook and draw an oval on it, positioned and captioned approximately
as in Figure 34.16. (This was on the Drawing toolbar in Excel 2003 and earlier ver-
sions; it is on the Shapes dropdown on the Insert ribbon in Excel 2007 and
later versions.) Then insert a text box, positioned approximately as in the figure, and
type some text into it. (Make up anything.) Now write code so that when the user
clicks the oval, the text box appears (if it was invisible) or disappears (if it was visible).
(Hint: Once you create the oval, right-click it. You will see that you can attach a
macro to it. This macro, placed in a module, is where you will store your code. The
resulting macro isn’t really an event handler, because you can name it anything. How-
ever, it does illustrate how you can attach a macro to a shape object in Excel.)

2. The scrollbars used for the pairwise comparison are just one possibility. Another
possibility is to use a spinner and an accompanying text box, as illustrated in
Figure 34.17. Change the application so that it uses this approach instead of
scrollbars. Make sure that the resulting frmPairwiseCriteria and frmPairwiseJobs are
laid out nicely and are meaningful for the user. (Look up help for spinner controls
in the MSForms library in the Object Browser.)

Figure 34.16 Getting Online Help

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E

Click here to see
(or remove)
information about
this application.

The help goes in the box.

14 Chapter 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Most people who use the AHP method suggest a 1 to 9 scale for making the pair-
wise comparisons, and this was implemented here. Change the application so that
the scale is from 1 to 5. Now the index 5 means what the old index 9 meant. There
are simply fewer choices for the user. From a user’s standpoint, which of these two
scales would you rather use?

4. Change the application so that it pertains to deciding where to go on vacation. Change
the automatic entries in frmCriteria’s combo box to ones that might be used in
this type of decision. Also, replace the text box in frmJobs by a combo box.
Place two automatic entries in this combo box: Wife’s parents and Husband’s
parents. (You can assume that these are always possible vacation spots, even if
they aren’t necessarily the preferred ones.)

5. If you open the AHP.xlsm file and look at the code in the module, you will see
that the CreateReport sub is too long for the taste of many programmers. Rewrite
it so that it calls several smaller subs that perform the individual tasks. You can
choose the number of smaller subs, but they should make logical sense.

Figure 34.17 Spinner and Text Box Combination

An AHP Application for Choosing a Job 15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Poker Simulation Application

35.1 Introduction

This final application is possibly less serious than the other applications in the
book, but it should be interesting to poker players, and it contains some interest-
ing VBA code. In case you are not a poker player, a player is dealt five cards from
a 52-card deck. There are several types of hands the player can be dealt, as
described in the following list:

● A pair: two of some denomination and three of other distinct denominations
● Two pairs: two of one denomination, two of another denomination, and

another card
● Three of a kind: three of one denomination and two of other distinct

denominations
● A straight: five denominations in progression, such as 4, 5, 6, 7, 8
● A flush: five cards of the same suit, such as five hearts
● A full house: three of one denomination and two of another

denomination
● Four of a kind: four of one denomination and another card
● Straight flush: a straight, all of the same suit
● A bust: none of the above

Except for a bust, the hands in this list are shown in increasing value. For
example, three of a kind beats two pairs, and they all beat a bust.

The application simulates 100,000 five-card hands, all from a “well-
shuffled” 52-card deck, and counts the number of each type of hand in the
above list. It is interesting to see whether the probabilities of the various hands
go in the opposite order of their values. For example, is two pairs more likely
than three of a kind? The simulation will help answer this question.

New Learning Objectives: VBA

● To illustrate how VBA can perform a simulation completely with code—no
spreadsheet model.

● To illustrate how rather complex logic can be accomplished with the use of
appropriate If constructs, loops, and arrays.

35

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Learning Objectives: Non-VBA

● To show how simulation can be used to see how a game like poker works
and whether its rules are reasonable. (Do the values of the hands go along
with their likelihoods?)

35.2 Functionality of the Application

The purpose of this application is to repeatedly simulate five-card hands from a
52-card deck, tally the numbers of hands of each type, and display the relative fre-
quencies in a worksheet.

35.3 Running the Application

The application is stored in the file Poker.xlsm. This file contains a single work-
sheet named Report, shown in Figure 35.1, which the user sees upon opening the
file. Each time the user clicks the button, 100,000 new five-card hands are simu-
lated, all from a fresh 52-card deck, and the results are displayed in the worksheet,
as shown in Figure 35.2.

I say that 100,000 new hands are simulated because each run uses a new set
of random numbers for the simulation. Therefore, the results will be slightly

Figure 35.1 Report Worksheet Before Running Simulation

2 Chapter 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

different each time the application is run. Figure 35.3 shows results from a different
set of 100,000 hands. They are very similar to the results in Figure 35.2, but they
are not exactly the same. This is the nature of simulation. You will undoubtedly get
slightly different results each time you run it.

Each of these runs illustrates what can be shown from a formal probability
argument—the probabilities of the hands go in reverse order of the values of the
hands. A bust is most likely, a pair is next most likely, and so on.1 And if you are
counting on getting four of a kind or a straight flush, dream on!

Figure 35.2 Results from a Simulation Run

Figure 35.3 Results from Another Simulation Run

1Again, because of the nature of simulation, it is possible that you will get results where, for example,
there are more flushes than straights, but this is due to what statisticians call sampling error.

A Poker Simulation Application 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

35.4 Setting Up the Excel Sheets

There is really nothing to set up at design time other than to enter labels and for-
mat the Report worksheet, as shown in Figure 35.1. There is nothing “hidden”
here. Other than labels, the worksheet is blank, waiting for the simulated results.
Furthermore, the simulation occurs completely in VBA code. There is no work-
sheet for calculations.

35.5 Getting Started with the VBA

The application requires only a module—no user forms or references. After the
module is added, the Project Explorer window will appear as in Figure 35.4.

Workbook_Open Code

The following code is placed in the ThisWorkbook code window. It clears results
from any previous simulation run.

Private Sub Workbook_Open()
With wsReport

.Range("D10:D20").ClearContents

.Range("C6").Select
End With

End Sub

35.6 The Module

To this point, you might think this application is a fun little exercise for card
players. However, the VBA code is far from trivial. It requires some careful logic,
and it makes heavy use of arrays. It is an interesting illustration of how humans
can easily perceive patterns that computers can discover only with intricate

Figure 35.4 Project Explorer Window

4 Chapter 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

programming. For example, a poker player can look at his hand, without even
rearranging the cards, and immediately see that he has a pair, a straight, or what-
ever. As the code will show, however, it takes a considerable amount of code to
recognize these patterns.

The module-level variables are listed first. As in previous chapters, they are
declared with the keyword Dim, not with Public. These module-level variables
need to be declared at the top of the module, outside of the subs, so that all of
the subs in the module can recognize them.

Option Statement and Module-Level Variables

Option Explicit

' Definitions of module-level variables and constant:
' nBust - number of the 100,000 hands that results in a bust (with similar
' definitions for nPair, n2Pair, etc.
' denom - array that indicates which denomination (1 to 13) each card
' in the deck is
' card - array that indicates the cards in the hand - e.g., if card(3) = 37,
' this means the third card dealt is the 37th card in the deck
' nReps - number of simulated hands, in this case 100,000

Dim nBust As Long, nPair As Long, n2Pair As Long, n3ofKind As Long, _
nFullHouse As Integer, n4ofKind As Integer, nStraight As Integer, _
nFlush As Integer, nStraightFlush As Integer

Dim denom(1 To 52) As Integer
Dim card(1 To 5) As Integer

Const nReps = 100000

Main Code

The Main sub runs when the user clicks the button on the Report worksheet. It
first calls the InitializeStats sub to set all counters to 0. Next, it calls the SetupDeck
sub to “define” the cards in the deck. Then it uses a For loop to run the 100,000
replications of the simulation. In each replication it calls the Deal sub to deal the
cards and the EvaluateHand sub to check what type of hand is obtained. Finally, it
calls the Report sub to put the results in the Report worksheet. VBA’s Randomize
function is placed near the top of the Main sub to ensure that a new set of random
numbers is used each time the simulation is run.

Sub Main()
Dim iRep As Long ' replication index
Randomize

' Set counters to 0.
Call InitializeStats

' "Name" the cards in the deck.

A Poker Simulation Application 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Call SetupDeck

' Deal out nReps poker hands and evaluate each one.
For iRep = 1 To nReps

Call Deal
Call EvaluateHand

Next

' Report the summary stats from the nReps hands.
Call Report

wsReport.Range("C6").Select
End Sub

InitializeStats Code

The InitializeStats sets all counters (the number of busts, the number of pairs, and
so on) to 0.

Sub InitializeStats()
nBust = 0
nPair = 0
n2Pair = 0
n3ofKind = 0
nStraight = 0
nFlush = 0
nFullHouse = 0
n4ofKind = 0
nStraightFlush = 0

End Sub

SetupDeck Code

The SetupDeck sub “defines” the deck by filling the denom array. It does this with
two nested For loops. If you follow the logic closely, you will see that denom(1)
through denom(4) are set to 1 (corresponding to the Aces), denom(5) through
denom(8) are set to 2 (corresponding to the 2s), and so on. You can think of
denomination 11 as the Jacks, denomination 12 as the Queens, and denomina-
tion 13 as the Kings. Also, there are no explicit hearts, diamonds, clubs, and
spades, but you can think of cards 1, 5, 9, and so on as the hearts; cards 2, 6,
10, and so on as the diamonds; cards 3, 7,11, and so on as the clubs; and cards
4, 8,12, and so on as the spades.

Sub SetupDeck()
Dim iDenom As Integer ' denomination index
Dim iSuit As Integer ' suit index
' Give the first 4 cards denomination 1 (aces),
' the next 4 denomination 2 (deuces), and so on
For iDenom = 1 To 13

For iSuit = 1 To 4
denom(4 * (iDenom - 1) + iSuit) = iDenom

6 Chapter 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Next
Next

End Sub

Deal Code

The Deal sub randomly chooses five cards from the 52-card deck. It is the only
sub where any simulation takes place; that is, it is the only code that uses random
numbers. It uses VBA’s Rnd function (which is essentially equivalent to Excel’s
RAND function) to simulate a single random number uniformly distributed
between 0 and 1. The following line generates a uniformly distributed integer
from 1 to 52:

cardIndex = Int(Rnd * 52) + 1

Note how this works. The quantity Rnd * 52 is a uniformly distributed deci-
mal number between 0 and 52. Then VBA’s Int function chops off the decimal,
leaving an integer from 0 to 51. Finally, 1 is added to obtain an integer from
1 to 52.

The Boolean isUsed array keeps track of which of the 52 cards in the deck
have already been dealt in the current hand. Essentially, random integers are gen-
erated until five distinct integers have been obtained. When an integer is gener-
ated that is distinct from the previous integers, its isUsed value is set to True, so
that it cannot be used again (in this hand). By the end of this sub, the indexes of
the five cards dealt are stored in the card array. For example, if card(4) = 47, this
means that the fourth card in the hand is the 47th card in the deck (the Queen of
clubs).

Sub Deal()
Dim i As Integer ' index of cards in deck
Dim j As Integer ' index of cards in hand
Dim cardIndex As Integer
Dim used(1 To 52) As Boolean
Dim newCard As Boolean

' Initially, no cards have been dealt.
For i = 1 To 52

used(i) = False
Next

' For each of 5 cards, keep generating until a new card is dealt.
For j = 1 To 5

newCard = False
Do

cardIndex = Int(Rnd * 52) + 1
If Not used(cardIndex) Then

newCard = True
used(cardIndex) = True

End If

A Poker Simulation Application 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Loop Until newCard = True

' Records the card number this card in this hand.
card(j) = cardIndex

Next
End Sub

EvaluateHand Code

The most difficult part of the program is the EvaluateHand sub. By this time, the
card array has been generated. It might show that the hand contains the cards 2,
7, 19, 28, and 47. What kind of a hand is this? Is it a bust, a pair, or what? The
Evaluate sub goes through the necessary logic to check all possibilities.

The first check is for a straight. It finds the denominations of the five cards
and stores them in the cardDenom array. For example, the denomination of the
first card is denom(card(1)), which is stored in cardDenom(1). These denominations
might be out of order, such as 5, 3, 7, 6, 4, so it uses two nested For loops to sort
them in increasing order. It then checks whether the sorted denominations form
a progression, such as 3, 4, 5, 6, 7. (If this sounds overly complex, just try doing
it any other way.)

The second check is for a flush. For example, the hand with cards 3, 15, 23,
39, 51 is a flush. This is because cards 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43,
47, and 51 are the 13 cards of one suit (clubs, say). An easy way to check
whether any five cards are of the same suit is to divide each of them by 4 and
see whether the remainders are all equal. (This is the case for 3, 15, 23, 39, and
51; each has remainder 3.) This can be done with VBA’s Mod function. For exam-
ple, 51 Mod 4 is the remainder when 51 is divided by 4.

If the hand is a straight or a flush (or both), no further checks are necessary.
Otherwise, checks for a pair, two of a kind, and the others are necessary. All of
these involve the numbers of like denominations in a hand. For example, a hand
with two pairs contains two of some denomination, two of another, and one of
another. The groups array is used to collect this information. A full house has
groups(3) = 1 and groups(2) = 1, which says that it has one group of size 3 and one
group of size 2. Similarly, a bust has groups(1) = 5, three of a kind has groups(3) = 1
and groups(1) = 2, and so on. So by filling the groups array and checking its con-
tents, the program can discover which type of hand has been dealt.

Sub EvaluateHand()
Dim i As Integer, j As Integer
Dim count(1 To 13) As Integer, groups(1 To 4) As Integer
Dim hasStraight As Boolean, hasFlush As Boolean
Dim cardDenom(1 To 5) As Integer, temp As Integer

' First, check for a straight.
hasStraight = False
For i = 1 To 5

cardDenom(i) = denom(card(i))
Next

8 Chapter 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

' Sort the denominations in increasing order.
For i = 1 To 4

For j = i + 1 To 5
If cardDenom(j) < cardDenom(i) Then

temp = cardDenom(j)
cardDenom(j) = cardDenom(i)
cardDenom(i) = temp

End If
Next

Next

' Check if they are in a progression, like 4, 5, 6, 7, 8.
' If you consider Aces as denomination 13, then this code
' counts only "Ace high" straights.
If cardDenom(2) = cardDenom(1) + 1 And _

cardDenom(3) = cardDenom(2) + 1 And _
cardDenom(4) = cardDenom(3) + 1 And _
cardDenom(5) = cardDenom(4) + 1 Then
hasStraight = True
nStraight = nStraight + 1

End If

' Next, check for a flush.
hasFlush = False
If card(1) Mod 4 = card(2) Mod 4 And card(2) Mod 4 = card(3) Mod 4 _

And card(3) Mod 4 = card(4) Mod 4 And _
card(4) Mod 4 = card(5) Mod 4 Then

hasFlush = True
nFlush = nFlush + 1

End If

' Next, check for a straight flush.
If hasStraight And hasFlush Then

nStraightFlush = nStraightFlush + 1
' Don't count this a straight or a flush.
nStraight = nStraight - 1
nFlush = nFlush - 1

End If

' There's no need to check the rest if the hand is a straight
' or a flush (or both).
If hasStraight Or hasFlush Then Exit Sub

' Otherwise, check all the other possibilities.
' count(i) is the number of cards of denomination i in the hand.
For i = 1 To 13

count(i) = 0
Next
For i = 1 To 5

count(denom(card(i))) = count(denom(card(i))) + 1
Next

' groups(i) will be the number of "groups" of size i.
' For example, if groups(2) = 1, then there is one group of
' size 2, that is, one pair (of some denomination).
For i = 1 To 4

groups(i) = 0
Next
For i = 1 To 13

A Poker Simulation Application 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If count(i) > 0 Then groups(count(i)) = groups(count(i)) + 1
Next

' Now go through all of the possibilities.
If groups(1) = 5 Then

nBust = nBust + 1
ElseIf groups(1) = 3 And groups(2) = 1 Then

nPair = nPair + 1
ElseIf groups(1) = 1 And groups(2) = 2 Then

n2Pair = n2Pair + 1
ElseIf groups(1) = 2 And groups(3) = 1 Then

n3ofKind = n3ofKind + 1
ElseIf groups(2) = 1 And groups(3) = 1 Then

nFullHouse = nFullHouse + 1
Else

n4ofKind = n4ofKind + 1
End If

End Sub

Report Code

The Report sub lists the results in the Report worksheet. Note that it reports
the relative frequencies, such as the number of busts divided by the total number
of replications. The formula in cell D20 is not really necessary, but it provides
a comforting check that the relative frequencies sum to 1, as they should. If a
number other than 1 appeared in cell D20, this would indicate a bug in the
program.

Sub Report()
With wsReport

.Range("D10").Value = nBust / nReps

.Range("D11").Value = nPair / nReps

.Range("D12").Value = n2Pair / nReps

.Range("D13").Value = n3ofKind / nReps

.Range("D14").Value = nStraight / nReps

.Range("D15").Value = nFlush / nReps

.Range("D16").Value = nFullHouse / nReps

.Range("D17").Value = n4ofKind / nReps

.Range("D18").Value = nStraightFlush / nReps

' Check that they sum to 1.
.Range("D20").Formula = "=Sum(D10:D18)"

End With
End Sub

35.7 Summary

The application in this chapter is not earthshaking, except perhaps to avid poker
players, but it does illustrate an interesting and certainly nontrivial use of logic,
loops, and arrays. In addition, the results of the simulation agree with our
intuition about the game of poker itself. They show that as hands become more
valuable, they become less likely. And if you always thought you were unlucky

10 Chapter 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

because you got a lot of busts, you now realize that this happens about 50% of
the time.

EXERCISES

1. Change the application so that it contains a chart sheet displaying the frequencies
of the various types of hands, as in Figure 35.5. Put a button on the Report work-
sheet to navigate to this chart sheet. (Do you need to write any code to update
the chart after each run?)

2. There are many versions of poker. Change the application so that it works for a
version where the player is dealt six cards and then gets to discard any one of
them. Assume that the player will discard the card that makes the remaining
hand as valuable as possible. (Hint: Probably the simplest approach is to run the
EvaluateHand sub on each of the possible five-card hands with one of the six cards
omitted and take the best.)

3. A more realistic version of the previous exercise is where the player is dealt five
cards. He can discard as many as four of these and request replacements from the
remaining deck. The problem with simulating this version is that you have to
know the player’s strategy—depending on what he is dealt and what he will discard.
Simulate the following strategy.

Figure 35.5 Frequency Chart for Exercise 1

Distribution of Types of Hands

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

Bust Straight

View Report

One

pair

Two

pairs

Three of

a kind

Flush Full

house

Four of

a kind

Straight

flush

A Poker Simulation Application 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

● If dealt a bust, discard all but a single card. (Normally, a player would keep
the highest card, but it doesn’t make any difference here.)

● If dealt a pair, keep the pair and discard the other three cards.
● If dealt two pairs, keep the pairs and discard the other card.
● If dealt three of a kind, keep these three and discard the other two cards.
● If dealt any other type of hand, keep it and discard nothing.

4. (More difficult) In the preceding exercise, the player never tries to “fill in” partial
straights or flushes. For example, if he has a 4, 5, 6, 7, and 10, he doesn’t discard
the 10, hoping to fill the straight with a 3 or an 8. Similarly, if he has four hearts
and a spade, he doesn’t discard the spade, hoping to fill the flush with another
heart. Simulate such a strategy. Specifically, assume he first checks for a bust. If
he has a bust, he checks whether he has a partial straight that could be completed
on either end. (This means, for example, 4, 5, 6, 7, but not 1, 2, 3, 4. Trying to
complete this latter straight is too risky because only a 5 will do it.) If he has such
a partial “inside” straight, he discards the other card. Otherwise, still assuming he
has a bust, he checks whether he has four cards of one suit. If so, he discards the
other card. Otherwise, he discards any four cards from the bust. The rest of his
strategy is the same as the last four bulleted points in the previous exercise. In
other words, he tries to complete a straight or a flush only when he has a bust.
Based on your simulation results, is this strategy better or worse than the strategy
in the previous exercise?

5. In the game of bridge, each of four players is dealt 13 cards from a 52-card deck.
Concentrate for now on a particular player. Develop a simulation similar to the
poker simulation that finds the distribution of the number of aces the player is
dealt. (Note: Since you are concentrating on one player only, you need to simu-
late 13 cards only; you can ignore what the other three players get.)

6. Continuing the previous exercise, again concentrate on a single player and simu-
late the distribution of the maximum number of any suit the player is dealt. For
example, if the hand has five hearts, three diamonds, three clubs, and two spades,
this maximum number is 5. How likely is it that a player will get at least 11 cards
of some suit?

12 Chapter 35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index
A
Absolute references, 573
Access database, 516–519
ActiveSheet, 40, 70, 152
ActiveWorkbook, 38, 70, 99,

136, 152
ActiveX controls, 259, 261
ActiveX Data Objects (ADO),

295, 306–311, 513, 519
connections, opening,
308–309

importing from other databases,
310–311

Recordset, opening, 309–310
references, setting, 307
versions of, 307

Adding comments, 110
Add-Ins ribbon, 347
Additional controls, 236
Add key, 398
Addresses, 23, 91, 99
Adjectives, 10
Adverbs, 10
Alerts, displaying, 75
Aliases for tables, 305–306
Aligning controls, 238
AllStates, 158–159
AltþF11, 18
American call options, 409, 608.

See also Option-pricing
application

AmerModel code, 624
Amortization code, 433
Ampersand (&), 26, 28, 63, 66,

68, 661
Analysis ToolPak, 360
Analytical hierarchy process

(AHP) application, 409
And, 125–126
Application development, 4,

411–436
for car loan application,
416–435

guidelines for, 409, 411–416
objectives of, 412
software, 411
user forms and, 231

Application object
Cells property of, 95
Dialogs property of, 282
in Excel, 13
methods of, 277, 543, 546
properties of, 625

Applications. See also specific
applications

automating solver in, 383–389
batas of stocks, 634–652
blending, 437–453
capital budgeting, 548–561
comments in, 412–4l3
data envelopment analysis,
680–699

development of, 3
exponential utility, 576–589
goals of, 412
option-pricing, 608–633
portfolio optimization,
653–679

production-planning, 488–512
product mix, 454–474
queuing simulation, 405–406
regression, 562–575
spreadsheet, 5
stock-trading simulation,
534–547

transportation, 513–533
worker schedule, 475–487

Areas property, 109
Arguments, 50
of Add key, 398
ColumnSize, 97
DefaultVersion, 327
defined, 10
integer, 69, 94
lists as, 220
of methods, 10, 30, 71–72
multiple, 72
Operation, 40
optional, 60, 153, 155
passing, 213–218
RowSize, 97
Skip Blanks, 40
Transpose, 40
Version, 327

Array function, 199, 544
Arrays, 177–203
Boolean, 192, 255, 521
contents of, 182
exercise for, 177–179
functions of, 199
multidimensional, 182
need for, 179–180
passing, 217–218
rules for, 180–183
two-dimensional, 203
in VBA, examples of,
183–198

Arrival code, 602–603
Arrival sub, 595
@RISK, automating, 378–382
Autofilter in Excel, 338–339
Automatic calculation, 546
Automatic mode, 543
Automating solver, 360–392
@RISK with VBA, 378–382
exercise for, 361–363
in office applications,
383–389

problems with, 373–374
risk solver platform, 375–378
with VBA, 363–373

Autonumber field, 299
Auto Syntax Check, 22, 78
Available controls, 235–237
Average function, 339
Axes, 165, 171, 572, 587
AxisTitle property, 587

B
Batas of stocks application,

634–652
Excel sheets, setting up,
638–639

functionality of, 634–635
module, 644–651
running, 635–637
user form, 640–644
VBA, getting started with,
639–640

BeforeClose, 226
Bins, 540

700

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Black–Scholes formula, 608, 613.
See also Option-pricing
application

Blank list, 142
Blending application, 437–453
Excel sheets for, setting up, 445
functionality of, 437–438
module for, 451–452
running, 438–444
user forms in, 447–451
in VBA, getting started with,
445–447

Bold property, 92, 100–101
Boolean array, 192, 255, 521
Boolean property, 100
Boolean variable, 51, 57, 120,

131–132, 139, 221, 447
Borrowing code, 413
BoundColumn property, 263,

640, 664
Break mode, 81, 84
Breakpoints, 84, 200
Bugs. See Debugging
Built-in constants, 58–59, 94, 96,

395
Built-in objects, 54–56
Bulletproof code, 60
Business Week’s Guide to the

Best Business Schools, 344
ByRef, 217
By reference, 217
ByVal, 217
By value, 217

C
CalcFormulas code, 692–693
CalcFuturePrices code, 626–627
CalcMaxProduction code,

466–467
CalcMonetaryValues code, 468
CalcResourceUsages code,

467–468
Calculate method, 543, 546
Calculation, 546
CalcValues code, 627–629
Calendar control, 236–237, 272,

616
Call, 210

Call options, 608, 613, 618.
See also Option–pricing
application

Camel convention, 57, 239
Capital budgeting application,

548–561
Excel sheets in, setting up,
551–553

functionality of, 549
module in, 555–560
running, 549–551
user form in, 554–555
in VBA, getting started with,
553–554

Caption property, 239–241, 256,
426

Car loan application
application development for,
416–435

codes for, 429–435
design of, 417–420
event handlers in, 424–429
objectives of, 417
templates for, 420–424

Cars, 12
Case construction, 126–129
multiple statements after,
128–129

single statement after each, 128
Cells
formatting, 41–43
properties of, 95, 102

Characters object, 587
Charts
creating, 43–44, 171–173
location of, 163–165
methods of, 168–170
multiple series to, adding,
170–171

pivot, 325–326
properties of, 165–170

Chart sheet, 163
CheckSolverLimit code, 526
Classes, 399–406
Class methods, 404–405
Class Module, 22, 401
Class properties, 402–404
ClearOldData code, 669–670
ClearOldModel code, 464

ClearOldResults code, 598–599
CmdCancel_Click code, 253
CmdOK_Click code, 252
Code names, 54–56
Codes/coding. See also

Subroutines (subs)
AmerModel, 624
Arrival, 602–603
borrowing, 413
bulletproof, 60
CalcFormulas, 692–693
CalcFuturePrices, 626–627
CalcMaxProduction, 466–467
CalcMonetaryValues, 468
CalcResourceUsages, 467–468
CalcValues, 627–629
CheckSolverLimit, 526
ClearOldData, 669–670
ClearOldModel, 464
ClearOldResults, 598–599
CollectStats, 543–544
color, 30–31
CopyData, 648–649
CreateAmerReport, 630
CreateCompanyList, 646–647
CreateModel, 674–676,
690–691

CreateReport, 469–470,
484–485, 509, 558–560,
694–695

defined, 9
Departure, 603–604
DevelopAmerModel, 624–626
DoCalculations, 572–574
DoSensitivity, 586–587
DownPaymentSensitivity, 433
EfficientFrontier, 676–677
EnterForecasts, 506–507
EnterFormulas, 507–508,
528–529, 649–650

EnterInputs, 586, 623–624
EnterInputsOutputs, 691–692
EnterModelData, 526–528
EnterMonetaryResults,
470–471

EnterProductData, 464–465
EnterProductResults, 470–471
EnterResourceData, 465–466

Index 701

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Codes/coding (continued)
EnterResourceResults,
470–471

EnterUsageData, 466
ErasePrevious, 626
EraseRowCol, 629–630
EuroModel, 622–623
FindNextEvent, 600–601
FinishClosingPrices, 672–673
FirstSection, 695
format, 68
GetData, 687–689
GetInputs, 556–557
GetPlantsAndRetailers,
525–526

GetProducts, 463
GetResources, 463
GoToExplanation, 486
Heuristic, 558
Initialize, 599–600
InterestRateSensitivity, 433
main, 430–431, 541–542,
570–571, 597–598, 622

MainBlending, 451–452
MainCapitalBudgeting,
555–556

MainDEA, 686–687
MainExponentialUtility,
585–586

MainProductionPlanning,
504–505

MainProductMix, 462–463
MainScheduling, 484
MainStockBeta, 645–646
MainStockQuery, 668–669
MainTransportation, 523–524
ModifyCharts, 572
Module, 429
Navigational, 434–435, 511,
560, 588–589

NewData, 510
ParseLine, 689–690
PriceSensitivity, 431–432
ProdModel, 505
Report, 604–605
Returns, 673
RunGoalSeek, 629–630
RunQuery, 670–671
RunSimulation, 542–543

RunSolver, 468–469, 484,
508–509, 557–558, 650,
676, 693–694

SecondSection, 696
Sensitivity, 485–486
SetupAndRunSolver, 529–530
SetupModel, 463–464, 648
shared, 413
SmConstants, 511
SortProjects, 557
SummaryMeasures, 674
TermSensitivity, 433
ThirdSection, 697
TransferData, 571
TransferPrices, 671–672
UpdateAmortizationChart, 434
UpdateChart, 587–588, 651,
677–678

UpdateCharts, 511
UpdateHistograms, 544–545
UpdateSensitivityChart, 432
UpdateStatistics, 601–602
ViewChangelnputs, 545–546,
605

ViewExplanation, 631, 698
Workbook_Open, 459,
498–499, 521, 540–541,
553–554, 566, 582,
593–594, 615–616,
639–640, 662–663, 684–685

XML, 346, 349
Code window, 18
Collection object, 11–12
Collections, 396–399
loop through, 136
members of, 70, 151–153

CollectStats code, 543–544
Color coding, 30–31
Columns, 96, 104–105
ColumnSize argument, 97
CommandBar objects, 356–357
Comments, 64, 110, 412–413
Compound conditions, 125–126
Conditions, 120
compound, 125–126
false, 139
true, 139

Constants, built-
in, 58–59, 94, 96, 395

Constructions
Case, 126–129
If, 120–126
Nested If, 124–125

Constructor, 405
Control logic, 117–148.

See also Loops
Case construction, 126–129
exercise for, 117–119
If constructions, 120–126

Controls
ActiveX, 259–260, 261–262
additional, 236
aligning, 237
available, 235–237
Calendar, 236–237, 272, 616
in Excel, 258–262
properties of, setting, 238–242
RefEdit, 245, 567
resizing, 238
in user forms, 237–238,
254–255

Visible property of, 453
Control tab, 258
Conventions
camel, 57, 239
Hungarian, 57
Pascal, 57
variable naming, 57

CopyData code, 648–649
Copying, 39–40
CopyPaste, 39–40
Counts, 323–325
CreateAmerReport code, 630
CreateCompanyList code,

646–647
CreateModel code, 674–676,

690–691
CreateReport code, 469–470,

484–485, 509, 558–560,
694–695

CtrlþBreak, 140
Ctrlþg, 23
CtrlþSpace, 30, 57
Customer accounts, updating,

205–207
Customer stats, 595
Custom option, 68
CustomUI Editor, 349–350, 355

702 Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D
Data Access Objects (DAO), 306
Database, relational, 297–302
Data Envelopment Analysis

(DEA), 680
Data envelopment analysis

application, 680–699
Excel sheets, setting up,
682–684

functionality of, 680–681
module, 686–698
running, 681–682
text file in, 682–686
VBA, getting started with,
684–685

Data provider, 307
Data set, 98
Data sheets for histograms, 540
Data types, symbols for, 52–53
Debugging, 78–84
logic errors, 81–84
runtime errors, 78–81
syntax errors, 78
toolbar for, 20, 83

Decision support systems (DSSs),
7, 411

Default event, 244
DefaultVersion argument, 327
DELETE query, 302
Deleting comments, 110
Departure code, 603–604
Departure sub, 595
Design decision, 426
Designs
of car loan application,
418–420

frmlnputs, 426–428
frmSensitivity, 428–429
on user forms, 234–238

Design time, 414–415
Desktop systems, 297
Develop AmerModel code,

624–626
Dialogs property, 282
Do Calculations code, 572–574
Document work, 64
Do loop, 138–143
locating names in, 141–143

DoSensitivity code, 586–587
Do Until loop, 143

Do While loop, 143
DownPaymentSensitivity code,

433
Duration of option, 609

E
Edit toolbar, 20, 66
EfficientFrontier code,

676–677
Emails
grades in, 384–386
with Word attachments,
386–389

Encapsulating properties, 400
End of file (EOF), 289
End property, 103
EnterForecasts code, 506–507
EnterFormulas code, 507–508,

528–529, 649–650
EnterInputs code, 586, 623–624
EnterInputsOutputs code,

691–692
EnterModelData code, 526–528
EnterMonetaryResults code,

470–471
EnterProductData code,

464–465
EnterProductResults code,

470–471
EnterResourceData code,

465–466
EnterResourceResults code,

470–471
EnterUsageData code, 466
Enumeration’s, 58, 395–396
ErasePrevious code, 626
EraseRowCol code, 629–630
Error handling, 268–274
with error statement, 268–270
user inputs and, 270–272

Errors
logic, 78, 81–84
runtime, 78–81
syntax, 78

Error statement, 268–270
Esc, 140
EuroModel code, 622–623
European call options, 608, 618
Event handlers, 208, 243

of car loan application,
424–429

cmdcancel_click code, 253
cmdOK_click code, 252
defined, 11
extraneous, 254
initialize code, 250–252
main sub code, 248–249
on user forms, writing,
243–254

overview of procedure, 248
showinputsdialog function
code, 249–250

userform_queryclose code, 253
valid function code, 252
Workbook_Open, 480–481

Events, 10–11
Excel. See also Importing data into

Excel
Application object in, 13
Autofilter in, 338
controls in, 258–262
web queries in, 659–661

Excel object model, 10–17
events, 10–11
methods, 10–11
objects, 10–17
properties, 10–11

Excel objects, 149–176
in charts, 163–173
in collections, 151–153
exercise for, 149–151
in workbooks, 153–162

Excel sheets
batas of stocks application,
638–639

for blending application, 445
in capital budgeting application,
551–553

in data envelopment analysis
application, 682–684

in exponential utility
application, 578–581

in option-pricing application,
612–615

in portfolio optimization
application, 661–662

in production-planning
application, 496–498

in product mix application, 458

Index 703

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Excel sheets (continued)
in queuing simulation
application, 593

in regression application,
565–566

in stock-trading simulation
application, 538–540

in transportationapplication,
519

for worker schedule application,
479–480

Excel tables
expandability of, 339–340
filtering, 338–339
sorting, 337–338
summarizing, 339
in VBA, 340–344
working manually with,
337–340

Excel 2007
recording macros in, 37
VBA in, 4–5

Excel 2010
recording macros in, 37
ribbons in, 347–348
VBA in, 4–5

Exercise date, 608
Exercise price, 608
Exponential utility application,

576–589
Excel sheets in, setting up,
578–581

functionality of, 577
module in, 585–588
running, 577–578
user form in, 582–585
VBA in, getting startedwith,
582

Extraneous event handler,
254

Extremes, formatting, 215–216

F
False conditions, 139
F8, 83, 97
F5, 50
Fields, 297–299
File operations, 277–283

Files. See also Folders
end of, 289
flat, 298
renaming, 286–288
text, 289–292
zipped, 348

FileSearch object, 276
FindNextEvent code, 600–601
FindNextEvent sub, 594
FinishClosingPrices code,

672–673
Fires, 11
FirstSection code, 695
Fixed-size model, 437
Flat files, 298
Folders, 275–294. See also Files
exercise for, 275–276
FileSystemObject object,
283–286

For Each loop, 136–138
Foreign keys, 297–299
For loops, 129–136
Nested, 132–136
premature exiting of, 130–132

Format code, 68
Format/formatting
extremes, 215–216
ranges, 100–101, 105–106
strings, 68

Formulas
based on pivot tables, 326
Black-Scholes, 608, 613
entering, 38–39, 107–109

FrmDates, 665–667
FrmInputs, 500–503
FrmInputs design, 426–428
FrmInputTypes, 447–448
FrmNewData1, 503
FrmNewData2, 503
FrmOptions, 424–426, 499–500
FrmSensitivity design, 428–429
FrmSmConst, 504
FrmStocks, 663–665
Functions/functionality
Array, 199, 544
Average, 339
of batas of stocks application,
634–635

of blending application,
437–438

of capital budgeting application,
549

of data envelopment analysis
application, 680–681

of exponential utility
application, 577

LCase, 143
of option-pricing application,
609

of portfolio optimization
application, 654

of production-planning
application, 488–489

of product mix application,
455

of queuing simulation
application, 591

of regression application,
562–563

RiskSimtable, 379
solver, 365
SolverAdd, 366
SolverOk, 366
SolverReset, 366
SolverSolve, 367–368
of stock trading simulation
application, 535

string, 68–69
timer, 76
TradeDays, 631
of transportation application,
514

UCase, 143
of worker schedule application,
475

Function subroutine, 49

G
GetData code, 687–689
GetInputs code, 556–557
GetOpenFileName method,

280–281
GetPlantsAndRetailers code,

525–526
GetProducts code, 463
GetResources code, 463

704 Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GetSaveAsFileName method,
281–282

GoToExplanation code, 486
Grades/grading
in E-mails, 384–386
in programs, 357–358

H
Headquarters, 159–160
Heuristic code, 558
Histograms, data sheets for, 540
Hungarian convention, 57

I
Icons
inserting images for, 352–354
lightning, 245

If constructions, 120–126
If-Elself-Else-End, 124
If-Else-lf-End, 123–124
Nested, 124–125
single-line, 123

If-ElseIf-Else-End If
construction, 124

If-ElseIf-End If construction,
123–124

Immediate window, 23–24
Importing data into Excel,

295–316
ActiveX Data Objects,
306–311

exercise for, 295–297
relational databases, 297–302
sales order exercise, 311–315
Structured Query Language,
302–306

Indenting, 65–66
Infinite loop, 139
breaking out of, 140–141

Information, variable, 66
Initialize code, 250–252,

599–600
Input boxes, 59–60
Input data, 414
Insert Icons button, 352
INSERT query, 302
Instantiate objects, 400
Instantiates, 309
Integer argument, 69, 94

Integrated Development
Environment (IDE), 18

Intellisense, 29–30
with variable names, 57

InterestRateSensitivity code, 433

J
Joined tables, 305
Joins, 305–306

L
LCase function, 143
Linking table, 301
List boxes
multi, 255–256
single, 255
in user forms, 255–256

Local variable, 207
Logic errors, 78, 81–84
Long lines, 77
Long subs, 413
Loops. See also Control logic
For, 129–136
bottom of, 143
Do, 138–143
Do Until, 143
Do While, 143
For Each, 136–138

M
Macros, 49. See also Recording

macros; Subroutines (subs)
defined, 9

MainBlending code, 451–452
MainCapitalBudgeting code,

555–556
Main code, 430–431, 541–542,

570–571, 597–598, 622
MainDEA code, 686–687
MainExponentialUtility code,

585–586
MainProductionPlanning code,

504–505
MainProductMix code, 462–463
MainScheduling code, 484
MainStockBeta code, 645–646
MainStockQuerycode, 668–669
Main Sub code, 248–249

Main subroutines, 373
MainTransportation code,

523–524
Manual calculation, 546
Manual mode, 543
Many-to-many relationships, 301,

301–302
Many-to-one relationships,

299–300
Mean absolute percentage error

(MAPE), 562
Members of collection, 70,

151–153
Message boxes, 59–60
Messages, displaying, 63, 68
Methods, 59
of arguments, 10, 30, 71–72
Calculate, 543, 546
of charts, 168–170
class, 404–405
defined, 10–11
GetOpenFileName, 280–281
GetSaveAsFileName, 281–282
for module-level variables, 213
for passing arguments, 214–215
of ranges, 91–94
specifying, 69–73

Microsoft Scripting Runtime, 284
Minimum percentages, 453
Modal forms, 256–257
Modeless forms, 256–257
Model worksheet, 538–539
Modes
Automatic, 543
break, 81, 84
Manual, 543

Modify, 46
ModifyCharts code, 572
Module code, 572
Modular approach, 413
Modularizing programs,

209–213
Module-level variables, 51, 208,

213, 214, 215, 393, 395,
461, 462, 504, 523, 555,
570, 585, 596–597,
621–622, 645, 667–668, 686

Modules
for batas of stocks application,
644–651

Index 705

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Modules (continued)
for blending application,
451–452

in capital budgeting application,
555–560

Class, 401
in data envelopment analysis
application, 686–698

in exponential utility
application, 585–588

in option-pricing application,
621–631

in portfolio optimization
application, 667–678

in production-planning
application, 504–511

in product mix application,
461–471

in queueing simulation
application, 596–605

in regression application,
569–574

in stock-trading simulation
application, 541–546

for transportation application,
523–531

in VBA, 49
for worker schedule application,
484–486

Monthly sales, summarizing,
232–234

MSOffice object model, 346
Multidimensional arrays, 182
Multi list boxes, 255–256
Multiple arguments, 72
Multiple products, 459
Multiple queries, 305–306
Multiple short subs, 413
Multiple statements after case,

128–129
Multiple worksheets,

consolidating data from,
149–151

Murphy’s law, 272
MyData.mdb, 533

N
Names/naming. See also Range

names
code, 54–56

concatenating, 221–222
Do loop, locating in, 141–143
subs, 413
variable, 57, 413

Navigational code, 434–435,
511, 560, 588

Nested For loops, 132–136
Nested If constructions, 124–125
Net present value (NPV), 548
NewData code, 510
New states, adding, 160–161
No button, 61–63
Nonlinear model, 580
Nonzero value, 269
Nouns, 10

O
Object Browser, 11, 22–23
Object models, 8, 13–17. See also

Excel object model
MSOffice, 346

Object-oriented programming
(OOP), 399–400

Objects, 10–11
built-in, 54–56
Characters, 587
Collection, 12, 137
collections as, 11–12
CommandBar, 356–357
Excel, 149–176
FileSearch, 276
FileSystemObject, 276,
283–286

hierarchy of, 12–13, 70–71
instantiate, 400
loop through, 136
models for, 13–17
qualified, 70
range, 109
specifying, 69–73

Object variables, 53–54, 136
Offset property, 103
OLE DB standard, 306
One-to-one relationships, 301
Option statements, 555, 585,

596–597, 667–668
Operations
argument, 40
file, 277–283
range, 89

Optimal product mix, 368–373
Optional arguments, 60, 153,

155
Optional parentheses, 62
Option-pricing application,

608–633
Excel sheets in, setting up,
612–615

functionality of, 609
module in, 621–631
running, 609–612
user form in, 616–621
in VBA, getting started with,
615–616

Options
American, 409, 608
Custom, 68
duration of, 609
put, 605

Option statements, 462, 504,
523, 570, 621–622, 645,
686

Or, 125–126
Ordering costs, calculating,

72–73
Other Built-in Dialog boxes,

282–283
Outputs, 595–596

P
Parentheses, 62
ParseLine code, 689–690
Pascal convention, 57
Passing arguments, 213–218
on formatting extremes,
215–216

method for, 214–215
on module level variables
method, 213

on passing arrays, 217–218
by reference, 217
by value, 217

Passing arrays, 217–218
PasteSpecial, 40–41
PasteValues, 40–41
Pasting, 39–40
Pivot charts, 325–326
Pivot tables. See also Tables
formulas based on, 326
manipulating, 328–329

706 Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in VBA, 327–328
working manually with,
317–326

Portfolio optimization
application, 653–678

Excel, web queries in, 659–661
Excel sheets, setting up,
661–662

functionality of, 654
module, 667–678
running, 654–659
user forms, 663–667
VBA, getting started with,
662–663

Practical Management Science,
534, 580, 634

Price Sensitivity code, 431–432
Primary keys, 297–299
Print settings, recording, 46–47
ProdModel code, 505
Production-planning application,

488–512
Excel sheets in, setting up,
496–498

functionality of, 488–489
module in, 504–511
running, 489–496
user forms in, 499–504
in VBA, getting started with,
498–499

Production scheduling, 361–363
Product mix application,

454–474
Excel sheets in, setting up,
458

functionality of, 455
module in, 461–471
running, 455–458
user form in, 459–461
in VBA, 458–459

Programs/programming
defined, 9
grading, 357–358
modularizing, 209–213
in VBA, 7–8, 49

Project-level scope, 208
Properties
of Address, 99
of Application object, 625
AxisTitle, 587

Bold, 92, 100–101
Boolean, 100
BoundColumn, 262, 636, 660
Caption, 238–240, 255, 426
cell, 95, 102
of charts, 164–169
class, 402–404
of control, setting, 238–242
defined, 10–11
Dialogs, 282
encapsulating, 400
End, 103
Offset, 103
of ranges, 91–94
reading, 108, 109
reading only, 109
specifying, 69–73
of workbooks, 157
written, 108

Properties window, 20, 239
Protection tab, 22
Public scope, 209
Public variables, 208

Q
Qualified objects, 70
Queries
DELETE, 302
INSERT, 302
multiple, 305–306
SELECT, 302
single-table, 303–305
UPDATE, 302
web, in Excel, 659–661

Queuing simulation application,
405–406, 590–607

Excel sheets in, setting up,
593

functionality of, 591
module in, 596–605
running, 591–592
structure of, 594–596
in VBA, getting started with,
593–594

Quick Access Toolbar (QAT), 46
modifying, 46–47
RibbonX for customizing,
354–356

Quick watch button, 83

R
Random numbers, 222–225, 600
Range names
creating, 99–100
deleting, 99–100
scope of, 111–114
string variable for, 101–102

Range objects, 109
Range operations, 89
Ranges, 89–116
of Address, 23, 91, 99
Areas property of, 109
with For Each loop, 137–138
exercise for, 89–91
formatting, 100–101, 105–106
methods of, 91–94
properties of, 91–94
references to, 103–104
in VBA, 94–110

Reading only property, 109
Reading property, 108, 109
Record high stock prices,

118–119
Recording macros, 35–48
examples of, 37–47
in Excel 2007, 37
in Excel 2010, 37
process for, 35–37

Record low stock prices, 118–119
Records, 297, 297–299
Recordset, 308
Ref Edit control, 245, 567
References
by, 217
absolute, 573
setting, 363–365
solver, 373–374

Referential integrity, 300–301
Regression application,

562–575
Excel sheets in, setting up,
565–566

functionality of, 562–563
module in, 569–574
running, 563–565
user form in, 567–569
VBA in, getting started with,
566

Relational database management
systems (RDBMS), 297

Index 707

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Relational databases, 297–302, 298
fields, 297–299
foreign keys, 297–299
many to many relationships,
301–302

many to one relationships,
299–300

primary keys, 297–299
records, 297–299
referential integrity, 300–301
tables, 297–299

Relationships
many to many, 301–302
many to one, 299–300
one to one, 301

Replications worksheet, 539
Report code, 604–605
Required parentheses, 62
Require Variable Declarations,

22, 53
Reset button, 81
Resizing controls, 238
Returns code, 673
Ribbons
Add Ins, 347
customizing, 348–354
in Excel 2010, 347–348
RibbonX, 346, 349
QAT, for customizing, 354–356

RiskSimtable function, 379
Risk Solver Platform (RSP),

375–378
Root mean square error (RMSE),

512
Row offset, 95
Rows, 104–105
RowSize argument, 97
Run button, 50
RunGoalSeek code, 629–630
RunQuery code, 670–671
RunSimulation code, 542–543
RunSolver code, 484, 508–509,

557–558, 650, 676, 693–694
Run time, 414–415
Runtime errors, 78–81

S
Sales order exercise, 311–315
Save, 22

Screen updating, 75
SecondSection code, 696
Security settings, 5–6
SELECT query, 302
Sensitivity code, 485–486
Server based, 297
Setting references, 363–365
SetupAndRunSolver code,

529–530
SetupModel code, 463–464, 648
Shared code, 413
ShowInputsDialog function code,

249–250
Single line If constructions, 123
Single list boxes, 255
Single statement after each case,

128
Single table queries, 303–305
Skip Blanks argument, 40
SmConstants code, 511
Social Security Number (SSN),

299
SoftBed Sales Data, retrieving,

275–276
Software application

development, 411
SolverAdd function, 366
Solver functions, 365
SolverOk function, 366
SolverOptions function, 367
Solver references, 373–374
SolverReset function, 366
SolverSolve function, 367–368
Sorting, 44–46
Sorting worksheets, 161–162
SortProjects code, 557
Spreadsheet applications, 5
Standard toolbar, 20
States
adding, 160–161
displaying, 159–160

Stock prices, 118–119
Stock trading simulation

application, 534–547
Excel sheets in, setting up,
538–540

functionality of, 535
module in, 541–546
running, 535–537

in VBA, getting started with,
540–541

Stop Recording, 36
Strike price, 608
String concatenation, 66
String functions, 68–69
Strings, 66–69
String variables, 101–102
Structured Query Language

(SQL), 302–306
joins, 305–306
multiple queries, 305–306
single table queries, 303–305

Subroutines (subs), 49–50, 214.
See also Codes/coding,
Variables

Arrival, 595
defined, 9
Departure, 595
FindNextEvent, 594
function, 49, 219–225
long, 413
main, 373
multiple short, 413
naming, 413
Navigational, 651
running, 97–98
UpdateStatistics, 594–595
in VBE, 31–32

Sum, 83
SummaryMeasures code, 674
Syntax errors, 78

T
Tab, 65
Tables, 297–299, 317–345.

See alsoExcel tables, Pivot tables
aliases for, 305–306
example of, 329–335
joined, 305
linking, 301

Tab order, 241–242
Templates
for car loan application,
420–424

creating, 242–243
TermSensitivity code, 433
Text files, 289–292
data from, getting, 685–686

708 Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exporting, 291–292
importing, 289–291
setting up, 682–684

ThirdSection code, 697
ThisWorkbook, 19
Timer function, 76
Time stats, 595
Toggle breakpoint button, 84
Toolbars
Edit, 20, 66
Standard, 20

TopLeft, BottomRight
combination, 102

TradeDays function, 631
TransferData code, 571
TransferPrices code, 671–672
Transportation application,

513–533
Access database for, setting up,
516–519

Excel sheets in, setting up, 519
functionality of, 514
module for, 523–531
running, 514–516
user form in, 521–523
in VBA, 519–521

Transpose argument, 40
Traveling salesperson model,

211–213
Trend line, 562
True conditions, 139
Trusted locations, 5–6
Two dimensional arrays, 203

U
UCase function, 143
Underscore, 62
Unique identifier, 299
UpdateAmortizationChart code,

434
UpdateCharts code, 511,

587–588, 651, 677–678
UpdateHistograms code,

544–545
UPDATE query, 302
UpdateSensitivityChart code, 432
UpdateStatistics code, 601–602
UpdateStatistics sub, 594–595
User defined types, 393–395

UserForm_QueryClose code,
253

User forms, 231–267
application development and,
231

in batas of stocks application,
640–644

in blending application,
447–451

in capital budgeting application,
554–555

Caption property of, 239–241
controls in, 237–238, 254–255
defined, 22
designing, 234–238
event handlers, writing,
243–254

Excel controls, working with,
258–262

exercise for, 231–234
in exponential utility
application, 582–585

list boxes, working with,
255–256

modal forms, 256–257
modeless forms, 256–257
in option pricing application,
616–621

in portfolio optimization
application, 663–667

in production planning
application, 499–504

in product mix application,
459–461

properties of control, setting,
238–242

in regression application,
567–569

template, creating, 242–243
testing, 242
in transportation application,
521–523

in worker schedule application,
481–483

User inputs, 270–272

V
Valid function code, 252
Values, 10, 40–41

by, 217
nonzero, 269

Variable information, 66
Variable names/naming
conventions for, 57
Intellisense with, 57

Variables, 50–57, 204–230.
See also Subroutines (subs)

Boolean, 51, 57, 120, 131–132,
139, 221, 447

exercise for, 204–207
local, 207
in modularizing programs,
209–213

module level, 51, 523
naming, 413
object, 53–54, 136
in passing arguments, 213–218
private, 208
procedure level, 207
public, 208, 51, 208, 213, 214,
215, 393, 395, 461, 462,
504, 523, 555, 570, 585,
596–597, 621–622, 645,
667–668, 686

scope of, 207–209
string, 101–102
in Workbook_Open Event
Handler, 225–226

Variable string, 66
VBA See Visual Basic for

Applications (VBA)
VB NET, 8
Verbs, 10
Version argument, 327
ViewChangelnputs code,

545–546, 605
ViewExplanation code, 631, 698
Visible property of controls,

453
Visual Basic (VB), 8–9
Visual Basic Editor (VBE), 18–34
analysis of, 29
color coding in, 30–31
Immediate window in, 23–24
important features of, 18–22
Intellisense in, 29–30
subs in, 31–32
troubleshooting in, 28–29
Watch window in, 23–24

Index 709

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Visual Basic Editor (VBE)
(continued)

writing first program in, 24–29
Visual Basic for Applications

(VBA), 49–88
arrays in, 183–198
automating solver with,
363–373

batas of stocks application in,
639–640

blending application in,
445–447

capital budgeting application in,
553–554

comments in, 64
constants in, 57–59
With construction in, 73–74
data envelopment analysis
application in, 684–685

debugging in, 78–84
examples of, 5–9
Excel functions in, 63–64
Excel tables in, 340–344
in Excel 2007, 4–5
later versions, 4–5
exponential utility application
in, 582

features of, 74–76
good programming practices in,
76–77

indenting in, 65–66
input boxes in, 59–60
message boxes in, 59–63
methods in, 69–73
objects in, 69–73
option pricing application in,
615–616

pivot tables in, 327–329
portfolio optimization
application in, 662–663

production planning application
in, 498–499

product mix application in,
458–459

programming experience in,
7–8

properties in, 69–73
queuing simulation application
in, 593–594

ranges in, 94–110
regression application in, 566
security settings in, 5–6
stock trading simulation
application in, 540–541

strings in, 66–69
subroutines in, 31–32, 49–50
terminology for, 9
transportation application in,
519–521

trusted locations in, 5–6
variables in, 50–57
Visual Basic vs., 8–9
worker schedule application in,
480–481

W
Watch window, 23–24, 83
Web queries in Excel, 659–661
Windows
Code, 18
Immediate, 23–24
Properties, 20, 237
Watch, 23–24, 83

With construction, 73–74
using, 74

Word, emails with attachments
from, 386–389

Workbook_Open code, 459,
498–499, 521, 540–541,
553–554, 566, 582,
593–594, 615–616,
639–640, 662–663, 684–685

Workbook_Open Event Handler,
225–226, 480–481

Workbooks
path of, locating, 156
properties of, 157
saving, 155–156
working with, 153–155

Worker schedule application,
475–487

Excel sheets for, setting up,
479–480

functionality of, 475
module, 484–486
user form, 481–483
in VBA, 480–481

Worksheet level range names,
111

Worksheets
AllStates, displaying
information on, 158–159

headquarters, displaying,
159–160

Model, 538–539
multiple, consolidation data
from, 149–151

new states in, adding, 160–161
Replications, 539
sorting, 161–162
States, displaying, 159–160

Written property, 108

X
XML (extensible markup

language) code, 346, 349

Y
Yahoo, 653, 654, 658, 660, 661
Yes button, 61–63

Z
0-based indexing, 181
Zipped files, 348

710 Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Half Title�����������������
	Title������������
	Statement
	Copyright����������������
	Dedication�����������������
	About the Author�����������������������
	Contents���������������
	Preface��������������
	Part I: VBA Fundamentals

	Ch 1: Introduction to VBA Development in Excel���
	1.1: Introduction������������������������
	1.2: VBA in Excel 2007 and Later Versions��
	1.3: Example Applications��������������������������������
	1.4: Decision Support Systems������������������������������������
	1.5: Required Background�������������������������������
	1.6: Visual Basic Versus VBA�����������������������������������
	1.7: Some Basic Terminology����������������������������������
	1.8: Summary�������������������

	Ch 2: The Excel Object Model�����������������������������������
	2.1: Introduction������������������������
	2.2: Objects, Properties, Methods, and Events��
	2.3: Collections as Objects����������������������������������
	2.4: The Hierarchy of Objects������������������������������������
	2.5: Object Models in General������������������������������������
	2.6: Summary�������������������

	Ch 3: The Visual Basic Editor������������������������������������
	3.1: Introduction������������������������
	3.2: Important Features of the VBE���
	3.3: The Object Browser������������������������������
	3.4: The Immediate and Watch Windows���
	3.5: A First Program���������������������������
	3.6: Intellisense������������������������
	3.7: Color Coding and Case���������������������������������
	3.8: Finding Subs in the VBE�����������������������������������
	3.9: Summary�������������������
	Ch 3: Exercises

	Ch 4: Recording Macros�����������������������������
	4.1: Introduction������������������������
	4.2: How to Record a Macro���������������������������������
	4.3: Changes from Excel 2007 to Later Versions���
	4.4: Recorded Macro Examples�����������������������������������
	4.5: Summary�������������������
	Ch 4: Exercises

	Ch 5: Getting Started with VBA�������������������������������������
	5.1: Introduction������������������������
	5.2: Subroutines�����������������������
	5.3: Declaring Variables and Constants���
	5.4: Built-in Constants������������������������������
	5.5: Input Boxes and Message Boxes���
	5.6: Message Boxes with Yes and No Buttons���
	5.7: Using Excel Functions in VBA��
	5.8: Comments��������������������
	5.9: Indenting���������������������
	5.10: Strings��������������������
	5.11: Specifying Objects, Properties, and Methods��
	5.12: With Construction������������������������������
	5.13: Other Useful VBA Tips����������������������������������
	5.14: Good Programming Practices���������������������������������������
	5.15: Debugging����������������������
	5.16: Summary��������������������
	Ch 5: Exercises

	Ch 6: Working with Ranges��������������������������������
	6.1: Introduction������������������������
	6.2: Exercise��������������������
	6.3: Important Properties and Methods of Ranges��
	6.4: Referencing Ranges with VBA���������������������������������������
	6.5: Examples of Ranges with VBA���������������������������������������
	6.6: Range Names and Their Scope���������������������������������������
	6.7: Summary�������������������
	Ch 6: Exercises

	Ch 7: Control Logic and Loops������������������������������������
	7.1: Introduction������������������������
	7.2: Exercise��������������������
	7.3: If Constructions����������������������������
	7.4: Case Constructions������������������������������
	7.5: For Loops���������������������
	7.6: For Each Loops��������������������������
	7.7: Do Loops��������������������
	7.8: Summary�������������������
	Ch 7: Exercises

	Ch 8: Working with Other Excel Objects���
	8.1: Introduction������������������������
	8.2: Exercise��������������������
	8.3: Collections and Members of Collections��
	8.4: Examples of Workbooks in VBA��
	8.5: Examples of Worksheets in VBA���
	8.6: Examples of Charts in VBA�������������������������������������
	8.7: Summary�������������������
	Ch 8: Exercises

	Ch 9: Arrays�������������������
	9.1: Introduction������������������������
	9.2: Exercise��������������������
	9.3: The Need for Arrays�������������������������������
	9.4: Rules for Working with Arrays���
	9.5: Examples of Arrays in VBA�������������������������������������
	9.6: Array Functions���������������������������
	9.7: Summary�������������������
	Ch 9: Exercises

	Ch 10: More on Variables and Subroutines���
	10.1: Introduction�������������������������
	10.2: Exercise���������������������
	10.3: Scope of Variables and Subroutines���
	10.4: Modularizing Programs����������������������������������
	10.5: Passing Arguments������������������������������
	10.6: Function Subroutines���������������������������������
	10.7: The Workbook_Open Event Handler��
	10.8: Summary��������������������
	Ch 10: Exercises

	Ch 11: User Forms������������������������
	11.1: Introduction�������������������������
	11.2: Exercise���������������������
	11.3: Designing User Forms���������������������������������
	11.4: Setting Properties of Controls���
	11.5: Creating a User Form Template��
	11.6: Writing Event Handlers�����������������������������������
	11.7: Looping Through the Controls on a User Form��
	11.8: Working with List Boxes������������������������������������
	11.9: Modal and Modeless Forms�������������������������������������
	11.10: Working with Excel Controls���
	11.11: Summary���������������������
	Ch 11: Exercises

	Ch 12: Error Handling����������������������������
	12.1: Introduction�������������������������
	12.2: Error Handling with On Error Statement���
	12.3: Handling Inappropriate User Inputs���
	12.4: Summary��������������������
	Ch 12: Exercises

	Ch 13: Working with Files and Folders��
	13.1: Introduction�������������������������
	13.2: Exercise���������������������
	13.3: Dialog Boxes for File Operations���
	13.4: The FileSystemObject Object��
	13.5: A File Renaming Example
	13.6: Working with Text Files������������������������������������
	13.7: Summary��������������������
	Ch 13: Exercises

	Ch 14: Importing Data into Excel from a Database���
	14.1: Introduction�������������������������
	14.2: Exercise���������������������
	14.3: A Brief Introduction to Relational Databases���
	14.4: A Brief Introduction to SQL��
	14.5: ActiveX Data Objects (ADO)���������������������������������������
	14.6: Discussion of the Sales Orders Exercise��
	14.7: Summary��������������������
	Ch 14: Exercises

	Ch 15: Working with Pivot Tables and Tables��
	15.1: Introduction�������������������������
	15.2: Working with Pivot Tables Manually���
	15.3: Working with Pivot Tables Using VBA��
	15.4: An Example�����������������������
	15.5: PowerPivot and the Data Model��
	15.6: Working with Excel Tables Manually���
	15.7: Working with Excel Tables with VBA���
	15.8: Summary��������������������
	Ch 15: Exercises

	Ch 16: Working with Ribbons, Toolbars, and Menus���
	16.1: Introduction�������������������������
	16.2: Customizing Ribbons��������������������������������
	16.3: Using RibbonX and XML to Customize Ribbons
	16.4: Using RibbonX to Customize the QAT���
	16.5: CommandBar and Related Office Objects
	16.6: A Grading Program Example��������������������������������������
	16.7: Summary��������������������
	Ch 16: Exercises

	Ch 17: Automating Solver and Other Applications��
	17.1: Introduction�������������������������
	17.2: Exercise���������������������
	17.3: Automating Solver with VBA���������������������������������������
	17.4: Possible Solver Problems�������������������������������������
	17.5: Programming with Risk Solver Platform��
	17.6: Automating @RISK with VBA��������������������������������������
	17.7: Automating Other Office Applications with VBA��
	17.8: Summary��������������������
	Ch 17: Exercises

	Ch 18: User-Defined Types, Enumerations, Collections, and Classes��
	18.1: Introduction�������������������������
	18.2: User-Defined Types�������������������������������
	18.3: Enumerations�������������������������
	18.4: Collections������������������������
	18.5: Classes��������������������
	18.6: Summary��������������������
	Ch 18: Exercises

	Part II: VBA Management Science Applications
	Ch 19: Basic Ideas for Application Development with VBA��
	19.1: Introduction�������������������������
	19.2: Guidelines for Application Development���
	19.3: A Car Loan Application�����������������������������������
	19.4: Summary��������������������
	Ch 19: Exercises

	Ch 20: A Blending Application������������������������������������
	20.1: Introduction�������������������������
	20.2: Functionality of the Application���
	20.3: Running the Application������������������������������������
	20.4: Setting Up the Excel Sheets��
	20.5: Getting Started with the VBA���
	20.6: The User Forms���������������������������
	20.7: The Module�����������������������
	20.8: Summary��������������������
	Ch 20: Exercises

	Ch 21: A Product Mix Application���������������������������������������
	21.1: Introduction�������������������������
	21.2: Functionality of the Application���
	21.3: Running the Application������������������������������������
	21.4: Setting Up the Excel Sheets��
	21.5: Getting Started with the VBA���
	21.6: The User Form��������������������������
	21.7: The Module�����������������������
	21.8: Summary��������������������
	Ch 21: Exercises

	Ch 22: A Worker Scheduling Application���
	22.1: Introduction�������������������������
	22.2: Functionality of the Application���
	22.3: Running the Application������������������������������������
	22.4: Setting Up the Excel Sheets��
	22.5: Getting Started with the VBA���
	22.6: The User Form��������������������������
	22.7: The Module�����������������������
	22.8: Summary��������������������
	Ch 22: Exercises

	Ch 23: A Production-Planning Application���
	23.1: Introduction�������������������������
	23.2: Functionality of the Application���
	23.3: Running the Application������������������������������������
	23.4: Setting Up the Excel Sheets��
	23.5: Getting Started with the VBA���
	23.6: The User Forms���������������������������
	23.7: The Module�����������������������
	23.8: Summary��������������������
	Ch 23: Exercises

	Ch 24: A Transportation Application��
	24.1: Introduction�������������������������
	24.2: Functionality of the Application���
	24.3: Running the Application������������������������������������
	24.4: Setting Up the Access Database���
	24.5: Setting Up the Excel Sheets��
	24.6: Getting Started with the VBA���
	24.7: The User Form��������������������������
	24.8: The Module�����������������������
	24.9: Summary��������������������
	Ch 24: Exercises

	Ch 25: A Stock-Trading Simulation Application��
	25.1: Introduction�������������������������
	25.2: Functionality of the Application���
	25.3: Running the Application������������������������������������
	25.4: Setting Up the Excel Sheets��
	25.5: Getting Started with the VBA���
	25.6: The Module�����������������������
	25.7: Summary��������������������
	Ch 25: Exercises

	Ch 26: A Capital Budgeting Application���
	26.1: Introduction�������������������������
	26.2: Functionality of the Application���
	26.3: Running the Application������������������������������������
	26.4: Setting Up the Excel Sheets��
	26.5: Getting Started with the VBA���
	26.6: The User Form��������������������������
	26.7: The Module�����������������������
	26.8: Summary��������������������
	Ch 26: Exercises

	Ch 27: A Regression Application��������������������������������������
	27.1: Introduction�������������������������
	27.2: Functionality of the Application���
	27.3: Running the Application������������������������������������
	27.4: Setting Up the Excel Sheets��
	27.5: Getting Started with the VBA���
	27.6: The User Form��������������������������
	27.7: The Module�����������������������
	27.8: Summary��������������������
	Ch 27: Exercises

	Ch 28: An Exponential Utility Application��
	28.1: Introduction�������������������������
	28.2: Functionality of the Application���
	28.3: Running the Application������������������������������������
	28.4: Setting Up the Excel Sheets��
	28.5: Getting Started with the VBA���
	28.6: The User Form��������������������������
	28.7: The Module�����������������������
	28.8: Summary��������������������
	Ch 28: Exercises

	Ch 29: A Queueing Simulation Application���
	29.1: Introduction�������������������������
	29.2: Functionality of the Application���
	29.3: Running the Application������������������������������������
	29.4: Setting Up the Excel Sheets��
	29.5: Getting Started with the VBA���
	29.6: Structure of a Queueing Simulation���
	29.7: The Module�����������������������
	29.8: Summary��������������������
	Ch 29: Exercises

	Ch 30: An Option-Pricing Application���
	30.1: Introduction�������������������������
	30.2: Functionality of the Application���
	30.3: Running the Application������������������������������������
	30.4: Setting Up the Excel Sheets��
	30.5: Getting Started with the VBA���
	30.6: The User Form��������������������������
	30.7: The Module�����������������������
	30.8: Summary��������������������
	Ch 30: Exercises

	Ch 31: An Application for Finding Betas of Stocks��
	31.1: Introduction�������������������������
	31.2: Functionality of the Application���
	31.3: Running the Application������������������������������������
	31.4: Setting Up the Excel Sheets��
	31.5: Getting Started with the VBA���
	31.6: The User Form��������������������������
	31.7: The Module�����������������������
	31.8: Summary��������������������
	Ch 31: Exercises

	Ch 32: A Portfolio Optimization Application��
	32.1: Introduction�������������������������
	32.2: Functionality of the Application���
	32.3: Running the Application������������������������������������
	32.4: Web Queries in Excel���������������������������������
	32.5: Setting Up the Excel Sheets��
	32.6: Getting Started with the VBA���
	32.7: The User Forms���������������������������
	32.8: The Module�����������������������
	32.9: Summary��������������������
	Ch 32: Exercises

	Ch 33: A Data Envelopment Analysis Application���
	33.1: Introduction�������������������������
	33.2: Functionality of the Application���
	33.3: Running the Application������������������������������������
	33.4: Setting Up the Excel Sheets and the Text File��
	33.5: Getting Started with the VBA���
	33.6: Getting Data from a Text File��
	33.7: The Module�����������������������
	33.8: Summary��������������������
	Ch 33: Exercises

	Ch 34: An AHP Application for Choosing a Job���
	34.1: Introduction�������������������������
	34.2: Functionality of the Application���
	34.3: Running the Application������������������������������������
	34.4: Setting Up the Excel Sheets��
	34.5: Getting Started with the VBA���
	34.6: The User Forms���������������������������
	34.7: The Module�����������������������
	34.8: Summary��������������������
	Ch 34: Exercises

	Ch 35: A Poker Simulation Application��
	35.1: Introduction�������������������������
	35.2: Functionality of the Application���
	35.3: Running the Application������������������������������������
	35.4: Setting Up the Excel Sheets��
	35.5: Getting Started with the VBA���
	35.6: The Module�����������������������
	35.7: Summary��������������������
	Ch 35: Exercises

	Index

		2015-04-22T17:26:35+0000
	Preflight Ticket Signature

