
MicroPython for the
Internet of Things

A Beginner’s Guide to Programming with
Python on Microcontrollers
—
Breaking the C-like language barrier to
make device programming easy and fast
—
Charles Bell

MicroPython for the
Internet of Things

A Beginner’s Guide to Programming
with Python on Microcontrollers

Charles Bell

MicroPython for the Internet of Things

Charles Bell							
Warsaw, Virginia, USA						

ISBN-13 (pbk): 978-1-4842-3122-7		 ISBN-13 (electronic): 978-1-4842-3123-4
https://doi.org/10.1007/978-1-4842-3123-4

Library of Congress Control Number: 2017960889

Copyright © 2017 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Nelson Goncalves
Coordinating Editor: Jill Balzano
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484231227.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3123-4
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484231227
http://www.apress.com/source-code

I dedicate this book to my big sister for instilling in me the thirst for knowledge.

v

Contents

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: What Is the Internet of Things?�������������������������������������� 1

The Internet of Things and You��� 2

IOT Is More Than Just Connected to the Internet�� 3

IOT Services��� 4

A Brief Look at IOT Solutions��� 5

IOT and Security�� 15

Python and the IOT��� 19

Origins��� 19

Online Python Simulator�� 20

Summary�� 24

■■Chapter 2: Introducing MicroPython��� 27

Getting Started��� 27

Origins��� 29

MicroPython Features�� 30

MicroPython Limitations�� 31

What Does MicroPython Run On?�� 31

Experimenting with Python on Your PC��� 32

﻿ ■ Contents

vi

How MicroPython Works�� 38

The Run, Evaluate, Print Loop (REPL Console)��� 39

Off and Running with MicroPython��� 44

Additional Hardware�� 46

Example 1:��� 50

Example 2:��� 52

Example 3:��� 55

Summary�� 57

■■Chapter 3: MicroPython Hardware�� 59

Getting Started with MicroPython Boards�� 59

Firmware Updates��� 59

Networking Issues��� 60

One Step at a Time!��� 61

Programming Tools�� 61

Some Assembly Required�� 63

GPIO Pins��� 64

Other Tips�� 64

MicroPython-Ready Boards�� 69

Pyboard��� 69

WiPy��� 82

MicroPython-Compatible Boards�� 96

BBC micro:bit��� 96

Circuit Playground Express (Developer Edition)�� 99

Adafruit Feather Huzzah�� 104

Other Boards�� 108

Breakout Boards and Add-Ons��� 108

Breakout Boards�� 109

Board-Specific Shields/Skins�� 112

Board-Specific Accessories��� 116

﻿ ■ Contents

vii

Which Board Should I Buy?�� 121

Summary�� 123

■■Chapter 4: How to Program in MicroPython�������������������������������� 125

Basic Concepts��� 126

Code Blocks��� 126

Comments��� 127

Arithmetic�� 128

Output to Screen�� 129

Variables�� 130

Types��� 132

Basic Data Structures��� 133

Lists��� 133

Tuples�� 134

Dictionaries�� 134

Statements��� 136

Conditional Statements��� 136

Loops��� 137

Modularization; Modules, Functions, and Classes������������������������������� 138

Including Modules��� 138

Functions��� 139

Classes and Objects�� 140

Learning Python by Example�� 147

Example 1: Using Loops��� 147

Example 2: Using Complex Data and Files��� 150

Example 3: Using Functions�� 156

Example 4: Using Classes�� 162

For More Information��� 171

Summary�� 171

﻿ ■ Contents

viii

■■Chapter 5: MicroPython Libraries�� 173

Built-In and Standard Libraries�� 174

Overview�� 174

Common Standard Libraries�� 177

Built-In Functions and Classes�� 187

Exceptions��� 192

MicroPython Libraries�� 195

Overview�� 196

Common MicroPython Libraries�� 196

Custom Libraries�� 199

Summary�� 204

■■Chapter 6: Low-Level Hardware Support������������������������������������� 205

Board-Specific Libraries��� 206

Pyboard��� 206

WiPy��� 215

Low-Level Examples�� 220

Drivers and Libraries to the Rescue!��� 220

Real-Time Clock (RTC)��� 221

Callbacks��� 224

Using Breakout Boards��� 226

Inter-Integrated Circuit (I2C)�� 227

Serial Peripheral Interface (SPI)�� 233

Summary�� 237

■■Chapter 7: Electronics for Beginners��� 239

The Basics�� 240

Tools�� 240

Multimeter��� 241

Soldering Iron�� 242

﻿ ■ Contents

ix

Wire Strippers�� 244

Helping Hands��� 244

Using a Multimeter�� 246

Powering Your Electronics��� 254

Electronic Components�� 255

Button�� 255

Capacitor��� 256

Diode��� 257

Fuse��� 257

Light Emitting Diode (LED)��� 258

Relay�� 260

Resistor��� 260

Switch�� 261

Transistor��� 262

Voltage Regulator�� 263

Breakout Boards and Circuits�� 264

Using a Breadboard to Build Circuits ��� 265

What Are Sensors?��� 268

How Sensors Measure��� 269

Examples of Sensors��� 271

Summary�� 282

■■Chapter 8: Project 1: Hello, World! MicroPython Style���������������� 283

Overview�� 284

Required Components�� 285

Set Up the Hardware�� 288

WiPy��� 290

Pyboard��� 291

﻿ ■ Contents

x

Write the Code�� 293

Design�� 293

Libraries Needed��� 293

Planning the Code�� 299

Test the Parts of the Code��� 304

Completed Code�� 306

Execute!��� 309

Taking It Further��� 311

Summary�� 313

■■Chapter 9: Project 2: Stoplight Simulator�������������������������������������� 315

Overview�� 316

Required Components�� 316

Set Up the Hardware�� 319

WiPy��� 320

Pyboard��� 321

Write the Code�� 323

Part 1: Stoplight Simulator – Using a Pushbutton��� 323

Part 2: Stoplight Simulator – Remote Control with HTML�������������������������������������� 329

Completed Code�� 335

Execute!��� 341

Taking it Further��� 343

Summary�� 344

■■Chapter 10: Project 3: Plant Monitoring�������������������������������������� 345

Overview�� 345

Required Components�� 347

Set Up the Hardware�� 349

WiPy��� 350

Pyboard��� 351

﻿ ■ Contents

xi

Write the Code�� 351

Calibrating the Sensor��� 352

Part 1: Sensor Code Module�� 354

Part 2: Main Code�� 364

Execute!��� 375

Taking it Further��� 376

Summary�� 377

■■Chapter 11: Project 4: Using Weather Sensors���������������������������� 379

Overview�� 380

Message Queue Telemetry Transport��� 380

How It Works�� 381

Getting Started with Adafruit IO��� 382

Required Components�� 384

Set Up the Hardware�� 385

Configure Adafruit IO�� 387

Set Up Feeds��� 387

Set Up a Dashboard��� 388

Get Your Credentials�� 396

Write the Code�� 397

MQTT Driver��� 398

BME280 Library��� 398

Weather Class�� 399

Main Code�� 404

Execute!��� 407

Taking it Further��� 412

Summary�� 412

﻿ ■ Contents

xii

■■Chapter 12: Where to Go from Here��� 415

More Projects to Explore�� 415

MicroPython Project Samples�� 416

Forums�� 416

Documentation�� 417

Repositories��� 417

Community Project Sites: Hackster.io�� 418

Knowledge Repositories: learn.adafruit.io��� 420

Join the Community��� 421

Why Contribute?�� 422

Which License, Where?�� 422

How We Share��� 423

Keep Your Designs Original�� 424

Check the License��� 424

Keep It Appropriate�� 425

Annotate Your Work��� 426

Be a Good Citizen��� 427

Suggested Communities�� 427

Become a Maker�� 429

What’s a Maker?�� 429

Share Your Ideas�� 430

Attend an Event��� 430

Summary�� 431

Appendix��� 433

Required Components�� 433

Optional Components��� 435

Recommended Tools�� 436

Index��� 439

xiii

About the Author

Dr. Charles Bell conducts research in emerging
technologies. He is a member of the Oracle MySQL
Development Team as a Senior Developer assisting in
the development of MySQL high availability solutions.
He lives in a small town in rural Virginia with his
loving wife. He received his doctorate of philosophy in
engineering from Virginia Commonwealth University
in 2005. His research interests include database
systems, software engineering, sensor networks, and 3D
printing. He spends his limited free time as a practicing
Maker focusing on microcontroller and 3D printers and
printing projects.

xv

About the Technical
Reviewer

Nelson Goncalves is a member of the MySQL
Developer Team at Oracle, currently working with
the InnoDB cluster Team. He is based in Portugal
and working for MySQL since 2013. Before joining
MySQL, he was an MSc student at Universidade do
Minho where he specialized into Formal Methods and
Distributed Systems. He loves all things Python related.

xvii

Acknowledgments

I would like to thank all of the many talented and energetic professionals at Apress.
I appreciate the understanding and patience of my editor, Jonathan Gennick; and
managing editor, Jill Balzano. They were instrumental in the success of this project. I
would also like to thank the army of publishing professionals at Apress for making me
look so good in print with a special thank you to the reviewers for their wise counsel and
gentle nudges in the right direction. Thank you all very much!

Most importantly, I want to thank my wife, Annette, for her unending patience and
understanding while I spent so much time with my laptop.

xix

Introduction

Internet of Things (IOT) solutions are not nearly as complicated as the name may seem
to indicate. Indeed, the IOT is largely another name for what we have already been doing.
You may have heard of “connected devices” or “Internet-ready” or even “cloud-enabled.”
All of these refer to the same thing — be it a single device such as a toaster or a plant
monitor or a complex, multidevice product like home automation solutions. They all
share one thing in common: they can be accessed via the Internet to either display data
or interact with the devices directly. The trick is applying knowledge of technologies
to leverage them to the best advantages for your IOT solution. In this book, we explore
how to build IOT solutions using an easy-to-understand programming language named
MicroPython running on small, dedicated microcontroller boards.

Intended Audience
I wrote this book to share my passion for Python and IOT solutions. I especially wanted
to show how anyone can program their own IOT solutions in Python using MicroPython
on small microcontroller boards. The intended audience therefore includes anyone
interested in learning how to build IOT solutions, hobbyists, and enthusiasts who don’t
want to spend a lot of time learning a complicated programming language to control
hardware through software in IOT solutions.

How This Book Is Structured
The book was written to guide the reader from a general knowledge of microcontrollers
and MicroPython to expertise in developing MicroPython solutions for the IOT. The
first several chapters cover general topics including a short introduction to the Internet
of Things, what microcontroller boards are available as well as how MicroPython
works. Later chapters present a tutorial on programming in MicroPython as well as an
introduction to electronics. This is followed by four projects that you can implement to
learn how to build MicroPython IOT solutions. Throughout the book are examples of how
to implement many of the concepts presented. The following is a brief overview of each
chapter included in this book.

•	 Chapter 1, “What Is the Internet of Things?”: This chapter
presents and answers the questions of what the IOT is and how
IOT solutions are constructed. You are introduced to some
terminology to describe the architecture of IOT solutions as well
as some examples of well-known IOT solutions. The chapter
concludes with a demonstration of MicroPython.

http://dx.doi.org/10.1007/978-1-4842-3123-4_1

﻿ ■ Introduction

xx

•	 Chapter 2, “Introducing MicroPython”: This chapter presents an
overview of what MicroPython is and how you can get started
using MicroPython boards.

•	 Chapter 3, “MicroPython Hardware”: This chapter discusses
some of the hardware available for MicroPython including
the micropython.org (Pyboard) and Pycomm (WiPy) line of
microcontroller boards and several other alternative boards.
The chapter also presents some of the accessories available for
each board.

•	 Chapter 4, “How to Program in MicroPython”: This chapter
presents a tutorial on learning to program in MicroPython. It
covers all of the basics of the language you need to get started
writing your own MicroPython scripts.

•	 Chapter 5, “MicroPython Libraries”: This chapter presents an
overview of the various MicroPython libraries available for use
in your scripts. It includes many examples of how to get started
using the libraries to interface with hardware.

•	 Chapter 6, “Low-Level Hardware Support”: This chapter presents
an overview of the low-level hardware abstractions available for
the Pyboard and WiPy ports of MicroPython. The differences of
the libraries are presented along with several complete examples
to demonstrate the functionality.

•	 Chapter 7, “Electronics for Beginners”: This chapter presents
a short introduction to electronics including the types of
components you will be using in the book along with a list of
recommended tools. The chapter concludes with a survey of the
types of sensors available for IOT solutions.

•	 Chapter 8, “Project 1: Hello, World! MicroPython Style”: This
chapter presents a hands-on project to help get you started
programming hardware and building MicroPython solutions. The
project is a clock programmed in MicroPython using a real-time-
clock (RTC) module.

•	 Chapter 9, “Project 2: Stoplight Simulator”: This chapter
presents another hands-on project that interfaces with LEDs
and buttons to build a pedestrian stoplight simulation. The
project also demonstrates how to control your hardware
remotely via a web page.

•	 Chapter 10, “Project 3: Plant Monitoring”: This chapter presents
a more complex hands-on project that demonstrates how to
generate sensor data and view it over the Internet. The project
is a plant monitoring solution that you can expand from one to
many plants.

http://dx.doi.org/10.1007/978-1-4842-3123-4_2
http://dx.doi.org/10.1007/978-1-4842-3123-4_3
http://dx.doi.org/10.1007/978-1-4842-3123-4_4
http://dx.doi.org/10.1007/978-1-4842-3123-4_5
http://dx.doi.org/10.1007/978-1-4842-3123-4_6
http://dx.doi.org/10.1007/978-1-4842-3123-4_7
http://dx.doi.org/10.1007/978-1-4842-3123-4_8
http://dx.doi.org/10.1007/978-1-4842-3123-4_9
http://dx.doi.org/10.1007/978-1-4842-3123-4_10

﻿ ■ Introduction

xxi

•	 Chapter 11, “Project 4: Using Weather Sensors”: This chapter
presents the last hands-on project that combines all that you have
learned in the book to build a working IOT solution. The project is
a small weather sensor node that uses the new Adafruit IO cloud
services to store and visualize the data.

•	 Chapter 12, “Where to Go from Here”: This chapter concludes
the tour of MicroPython IOT solutions with suggestions for more
projects to explore and where to go to find new project ideas
including where to look to find answers to questions or problems
you may encounter when developing your own MicroPython
IOT projects. The chapter also discusses how you can join the
community of IOT, MicroPython, and electronics enthusiasts by
becoming a Maker.

How to Use This Book
This book is designed to guide you through learning more about what the Internet of
Things is, discovering the power of MicroPython, and seeing how to build your own IOT
solutions.

If you already have your own MicroPython board and are familiar with some of
the topics early in the book, I recommend you skim them so that you are familiar with
the context presented so that the later chapters, especially the examples, are easy to
understand and implement on your own. You may also want to read some of the chapters
out of order so that you can get your project moving, but I recommend going back to the
chapters you skip to ensure you get all of the data presented.

If you are just getting started with MicroPython and microcontrollers, I recommend
reading the book in its entirety before developing your own IOT solutions. That said,
many of the examples presented in the early chapters are building blocks for what follows
in the project chapters.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site,
www.apress.com. You can find a link on the book’s information page on the Source
Code/Downloads tab. This tab is located in the Related Titles section of the page.

Contacting the Author
Should you have any questions or comments — or even spot a mistake you think I should
know about — you can contact the author at drcharlesbell@gmail.com.

http://dx.doi.org/10.1007/978-1-4842-3123-4_11
http://dx.doi.org/10.1007/978-1-4842-3123-4_12
http://www.apress.com/

1© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_1

CHAPTER 1

What Is the Internet of
Things?

If you’ve been watching the technology world lately, chances are you have encountered
numerous mentions of the term, the Internet of Things. Most media references and
company advertisements label this or that as the Internet of Things but with little or no
explanation about what it means. Even when you do find some depth of what it means,
the text tends to focus on either the problems and challenges, or they focus on the
promise of making our lives better in the future. Some suggest the Internet of Things will
bring about the inevitable evolution of our society as we become more connected to the
world around us every day.

However, you need not dive into such heady concepts or recite rhetoric to get
started with the Internet of Things. In fact, through the efforts of many open source
developers and vendors, you can explore the Internet of Things without intensive training
or expensive hardware and software. Best of all, you can explore the Internet of Things
without learning a lot about programming or spending months learning how to code!

This book is intended to be a guide to help you understand the Internet of Things and
to begin building solutions that you can use to learn more about the Internet of Things.
Since this is a beginner’s book, we will start by examining the programming language
and environment followed by a detailed look at the hardware. We will also learn the basic
knowledge of electronics and then explore several projects to help us understand how
to work with the software. The final project will bring all the aspects together to help
understand what the Internet of Things is, and even how to write custom software for
building solutions for the Internet of Things. Best of all, we do so using one of the easiest to
use programming languages and easy to use open source microcontroller boards.

So, what is this Internet of Things, hence IOT?1 Let’s begin by explaining what it isn’t.
The IOT is not a new device or proprietary software or some new piece of hardware, nor
is it a new marketing scheme to sell you more of what you already have by renaming it
and pronouncing it “new and improved.”2 While it is true the IOT employs technology
and techniques that already exist, the way they are employed, coupled with the ability
to access the solution from anywhere in the world, makes the IOT an exciting concept to
explore. Now let’s discuss what the IOT is.

1https://en.wikipedia.org/wiki/Internet_of_Things
2For example, everything seems to be cloud-this, cloud-that when nothing was changed.

https://doi.org/10.1007/978-1-4842-3123-4_1
https://en.wikipedia.org/wiki/Internet_of_Things

Chapter 1 ■ What Is the Internet of Things?

2

The essence of the IOT is simply interconnected devices that generate and exchange
data from observations, facts, and other data making it available to anyone. While there
seems to be some marketing efforts attempting to make anything connected to the
Internet an IOT solution or device – not unlike the shameless labeling of everything ‘cloud’,
IOT solutions are designed to make our knowledge of the world around us more timely
and relevant by making it possible to get data about anything from anywhere at any time.

As you can imagine, if we were to connect every device around us to the Internet and
make sensory data available for those devices, it is clear there is potential for the number
of IOT devices to exceed the human population of the planet and for the data generated
to rapidly exceed the capabilities of all but the most sophisticated database systems.
These concepts are commonly known as addressability and big data and are two of the
most active and debated topics in IOT.

However, the IOT is all about understanding the world around us. That is, we can
leverage the data to make our world and our understanding of it better.

The Internet of Things and You
How do we observe the world around us? The human body is a marvel of ingenious
sensory apparatus that allows us to see, hear, taste, and even feel through touch anything
we encounter. Even our brains can store visual and auditory events recalling them at
will. IOT solutions mimic many of these sensory capabilities and therefore can become
an extension of our own abilities. While that may sound a bit grandiose (and it is), IOT
solutions can record observations in the form of data from one or more sensors and make
them available for viewing by anyone anywhere via the Internet.

Sensors are devices that produce either analog or digital values. We can then use the
data collected to draw conclusions about the subject matter. This could be as simple as
a sensor to detect when a door, window, or mailbox is opened. In the case of a switch on
a mailbox, the knowledge we gain from a simple switch opening or closing (depending
on how it is implemented and interpreted) may be used to predict when incoming mail
has arrived or when outgoing mail has been picked up. I use the term predict because the
sensor (switch) only tells us the door was opened or closed, not that anything was placed
in or removed from the mailbox itself – that would require additional sensors.

A more sophisticated example is using a series of sensors to record atmospheric data
such as temperature, humidity, barometric pressure, wind speed, ambient light, rainfall, etc.,
to monitor the weather that allows us to perform analysis on the data to predict trends in
weather. That is, we can predict within a reasonable certainty that precipitation is in the area.

Now, add the ability to see this data not only in real time (as it occurs), but also
remotely from anywhere in the world, and the solution becomes more than a simple
weather station. It becomes a way to observe the weather about one place from anywhere
in the world. This example may seem to be a bit commonplace since you can tune into
any number of television, web, and radio broadcasts to hear the weather from anywhere
in the world. But consider the implications of building such a solution in your home. Now
you can see data about the weather in your own home!

In the same way, but perhaps on a smaller scale, we can build solutions to monitor
plants to help us understand how often they need water and other nutrients. Or perhaps
we can monitor our pets while we are away at work. Further, we can record data about
wildlife in our area to better understand our effect on nature.

Chapter 1 ■ What Is the Internet of Things?

3

IOT Is More Than Just Connected to the Internet
If a device is connected to the Internet, does that make it an IOT solution? That depends
on whom you ask. Some believe the answer is yes. However, others (such as myself)
contend that the answer is not unless there is some benefit from doing so. For example,
if you connected your toaster to the Internet, what could be the benefit of doing so? It
would be pointless (or at least extremely eccentric) to get a text on your phone from your
toaster stating that your toast is ready. So, in this case, the answer is no.

However, if you have persons such as responsible teenagers or perhaps older adults
whom you would like to monitor, it may be helpful to be able to check to see how often
they use their toaster and when. That is, you can use the data to help you make decisions
about their care and safety.

To me, if there is no use for the data, whether it is something that is viewed in real
time or is stored for later processing, then simply connecting it to the Internet does not
make it an IOT solution. There must be some gain in the use of the device. Thus, being
connected to the Internet doesn’t make something IOT. Rather, IOT solutions must be
those things that provide some meaning – however small that has benefit to someone or
some other device or service.

More importantly, whatever we build IOT solutions to do, they allow us to sense the
world around us and learn from those observations. The real tricky part is in how the
data is collected, stored, and presented. We will see these in practice through examples in
later chapters. See the sidebar for an example of a controversial IOT device - a common
household appliance.

However, IOT solutions can often take advantage of companies that provide services
that can help enhance or provide features you can use in your IOT solutions. These
features are commonly called IOT Services and range from storage and presentation to
the infrastructure services such as hosting.

INTERNET-ENABLED APPLIANCES: IOT OR MARKETING
HYPE?

One of the ideas or concepts that seems to becoming popular is the connecting of
major household appliances to the Internet. While manufacturers may want you to
believe this is a new and exciting IOT device, the truth is it is neither a new idea nor
is it a world changing IOT solution.

I was fortunate to participate in a design workshop held on the Microsoft campus
in the late 1990s. During our tour of the campus, we were introduced to the world’s
first Internet-enabled refrigerator (also called a smart refrigerator or simply Internet
refrigerator).3 There were sensors in the shelves to detect the weight of food. It was
suggested that, with a little ingenuity, that one could use the sensors to notify your
grocer when your milk supply ran low, which would enable people to have their
grocery shopping not only online but also automatic.

3https://en.wikipedia.org/wiki/Internet_refrigerator

https://en.wikipedia.org/wiki/Internet_refrigerator

Chapter 1 ■ What Is the Internet of Things?

4

Now, 20 years later, we’re seeing manufacturers building refrigerators that connect
to the Internet. However, unlike the first smart refrigerator, these new devices are
positioned to be a social media focal point for the household. Many don’t provide
any meaningful data about the contents of the refrigerator outside of the gadget-like
ability to see a video image of the contents without opening the door, which could
have been solved by installing a glass door.

Suffice to say IOT enthusiasts like me scratch their heads at how something like this
could possibly be useful much less sell well. Sadly, these new Internet refrigerators
do indeed seem to be selling well, but I wonder if consumers have been sucked into
the hype. For an interesting commentary on why the Internet refrigerator isn’t for
you, do a Google search and you’ll find a lot of opinions – most negative (and yet,
people still buy these things).4

Let’s judge the Internet refrigerator with my definition of IOT: does it enhance your
life by providing you information about the world around you? Well, if you need to
check to see how much milk you have while 3000 miles away from home, then I
guess it may beneficial but for the multitude of us who prefer to just open the door
and look before we go to the store, it may not be an IOT device.

IOT Services
Sadly, there are companies that tout having IOT products and services that are nothing
more than marketing hype – much like what some companies have done by prepending
‘cloud’ or appending ‘for the cloud’ to the name. Fortunately, there are some good
products and services being built especially for IOT. These range from data storage and
hosting to specialized hardware.

Indeed, businesses are adding IOT services to their product offerings faster than
anyone can keep up with the latest. And it isn’t the usual suspects such as the Internet
giants. I have seen IOT solutions and services being offered by Cisco, AT&T, HP, and
countless startups and smaller businesses. I use the term IOT vendor to describe those
businesses that provide services for IOT solutions.

You may be wondering what these services and products are and why one would
consider using them. That is, what is an IOT service and why would you decide to buy it?
The biggest reason you may decide to buy a service concerns cost and time to market.

If your developers do not have the resources or expertise and obtaining them will
require more than the cost of the service, it may be more economical to purchase the
service. However, you should also consider any additional software or hardware changes
(sometimes called retooling) necessary in the decision. I once encountered a well-
meaning and well-documented contracted service that permitted a product to go to
market sooner than projected at a massive savings. Sadly, while the champions of that

4https://www.howtogeek.com/260896/why-buying-a-smart-fridge-is-a-dumb-idea/

https://www.howtogeek.com/260896/why-buying-a-smart-fridge-is-a-dumb-idea/

Chapter 1 ■ What Is the Internet of Things?

5

contract won awards for technical achievement, they failed to consider the fact that the
systems had to be retooled to use the new service. More specifically, it took longer to
adopt the new service than it would have to write one from scratch. So instead of saving
money, the organization spent nearly triple and were late to market. Clearly, one must
consider all factors.

Similarly, if your time is short or you have hard deadlines to make your solution
production ready, it may be quicker to purchase an IOT service rather than create or
adapt your own. This may require spending a bit more, but in this case the motivation is
time and not (necessarily) cost. Of course, it is a mixture of both cost and time.

So, what are some of the IOT services available? The following lists a few that have
emerged in the last few years. It is likely more will be offered as IOT solutions and services
mature.

•	 Enterprise IOT Data Hosting and Presentation – services that allow
your users to develop enterprise IOT solutions from connecting
to, managing, and customizing data presentation in a friendly
form such as graphs, charts, etc. Example: Xively (https://
xively.com/)

•	 IOT Data Storage – services that permit you to store your IOT data
and get simple reports. Example: Sparkfun’s IOT Data service
(https://data.sparkfun.com/)

•	 Networking – services that provide networking and similar
communication protocols or platforms for IOT. Most specialize in
machine-to-machine (M2M) services Example: AT&T’s cellular
global SIM service (business.att.com/enterprise/Family/
mobility-services/internet-of-things)

•	 IOT Hardware Platforms – vendors that permit you to rapidly
develop and prototype IOT devices using a hardware platform
and a host of supported modules and tools for building devices
ranging from a simple component to a complete device. Example:
Intel’s IOT gateway development kits (intel.com/content/www/
us/en/embedded/solutions/iot-gateway/development-kits.html)

Now that we know more about what IOT is, let’s look at a few examples of IOT
solutions to get a better idea of what IOT solutions can do and how they are employed.

A Brief Look at IOT Solutions
An IOT solution is simply a set of devices designed to produce, consume, or present
data about some event or series of events or observations. This can include devices that
generate data such as a sensor, devices that combine data to deduce something, devices
or services designed to tabulate and store the data, and devices or systems designed to
present the data. Any of these may be connected to the Internet.

https://xively.com/
https://xively.com/
https://data.sparkfun.com/

Chapter 1 ■ What Is the Internet of Things?

6

IOT solutions may include several of these qualities whether they are combined into
a single device such as a web camera, or into a sensor package and monitoring unit such
as a weather station, or into a complex system of dedicated sensors, aggregators, data
storage, and presentation such as complete home automation system. Figure 1-1 shows a
futuristic picture of all devices everywhere connected to the Internet either to databases,
data collectors or integrators, display services, and even other devices.

Figure 1-1.  The future of IOT – all devices, everywhere5

Let’s look at some example IOT solutions. The IOT solutions described in this section
are a mix of solutions that should give you an idea of the ranges of sizes and complexities
of IOT solutions. I also point out how some of these solutions leverage services from IOT
vendors.

Sensor Networks
Sensor networks are one of the most common forms of IOT solutions. Simply stated,
sensor networks allow you to observe the world around you and make sense of it. Sensor
networks could take the form of a pond monitoring system that alerts you to water level,
water purity (contamination), water temperature, detect predators, or even turn on
features automatically such as lighting or feeding the fish in your garden pond.

5https://pixabay.com/en/network-iot-internet-of-things-782707/

https://pixabay.com/en/network-iot-internet-of-things-782707/

Chapter 1 ■ What Is the Internet of Things?

7

If you, or someone you know, has spent any time in a medical facility, chances are a
sensor network was employed to monitor body functions such as your body temperature,
heart rate, respiratory capacity, or even movement range of your limbs. Modern
automobiles also contain sensor networks dedicated to monitoring the engine, climate,
and even in some cars road conditions. For example, the lane-warning feature uses
sensors (typically a camera, microprocessor, and software) to detect when you drift too far
toward lane or road demarcations. Manufacturing plants also employ sensor networks in
monitoring and controlling the machines, conveyors, and more. Shipping clearinghouses
also employ sensor networks to help route packages to the correct bins and ultimately to
the correct trucks or planes for transport.

Thus, sensor networks employ one or more sensors that take measurements
(observations) about an event or state and communicate that data to another component
or node in the network, which is then presented in some form or another for analysis.
Let’s look at an example of an important medical IOT solution.

Medical Applications
Medical applications including health monitoring and fitness are gaining a lot of
attention as consumer products. These solutions cover a wide range of capabilities such
as the fitness features built into the new Apple Watch to Fitness bands that keep track
of your workout and even medical applications that help you control life-threatening
conditions. For example, there are solutions that can help you manage diabetes.

Diabetes is a disease that affects millions of people worldwide (diabetes.org/).
There are several forms: the most serious being type 1 (diabetes.org/diabetes-basics/
type-1/?loc=db-slabnav). Those afflicted with type 1 diabetes do not produce enough
(or any) insulin due to genetic deficiencies, birth defects, or injuries to the pancreas.
Insulin is a hormone the body uses to extract a simple sugar called glucose, which is
created from sugars and starches, from blood for use in cells. Failure to monitor your
blood sugar can result in dangerously low or high blood sugar levels, both of which can
be life threatening and if not controlled can cause long-term damage to internal organs,
nerves, and other areas. It is a most serious condition.

ATHLETES AND DIABETES

Professional athletes are some of the most physically fit people in the world. Many
are examples of health and admired by fans and fellow athletes alike. In the past, if
a professional athlete contracted a disease like diabetes type 1, their career would
be over. Now, with modern medical technology, professional athletes are starting to
overcome their condition and continue to compete.

One shining example is Ryan Reed, a NASCAR Xfinity stock car racer and driver of
the number 16 Lily Diabetes Ford. In 2011, Reed was diagnosed with diabetes type
1 and told he would never race again. Since then, Reed has overcome his handicap
through careful monitoring of his condition and has returned to racing.

Chapter 1 ■ What Is the Internet of Things?

8

Not only has Reed returned to the sport he loves, he has won the season opening
premier series race at Daytona International Raceway not once, but twice. Reed is
proof that education, vigilance, and technology can make our lives better.

Type 1 diabetics must monitor their blood glucose to ensure they are using their
medications (primarily insulin) properly and balanced with a healthy lifestyle and diet.
If their blood glucose levels drop too low or too high, they can suffer from a host of
symptoms. Worse, extremely low blood glucose levels are very dangerous and can be fatal.

One of the newest versions of a blood glucose tester consists of a small sensor
that is left in the body for as much as a week along with a monitor that connects to the
sensor via Bluetooth. You wear the monitor on your body (or keep it within 20 feet at all
times). The solution is marketed by Dexcom (dexcom.com/) and is called a continuous
glucose monitor (CGM) that permits the patient to share their data to others via their
phone. Thus, the patient pairs their CGM with their phone and then shares the data over
the Internet to others. This could be loved ones, those that help with their care, or even
medical professionals.

Figure 1-2 shows an example of the Dexcom CGM monitor and sensor. The monitor
is on the left and the sensor and transmitter are on the right. The sensor is the size of a
small syringe needle and remains inserted in the body for up to a week.

Figure 1-2.  Dexcom Continuous Glucose Monitor with Sensor

A feature called Dexcom Share permits the patient to make their data available
to others via an app on their phone. That is, the patient’s phone transmits data to the
Dexcom cloud servers, which is then sent to anyone who has the Dexcom Share app and
has been given permission to see the data. Figure 1-3 shows an example of the Dexcom
Share CGM report from the Dexcom Share iOS app, which allows you to easily and
quickly check the blood glucose of a friend or loved one.

Chapter 1 ■ What Is the Internet of Things?

9

Not only does the app allow the visualization of the data, it can also relay alerts for
low or high blood glucose levels, which has profound implications for patients who suffer
from additional ailments or complications from diabetes. For example, if the patient’s
blood glucose level drops while they are alone, incapacitated, or unable to get treatment,
loved ones with the Dexcom Share app can respond by checking on the patient and
potentially avoiding a critical diabetic event.

While this solution is a single sensor connected to the Internet via a proprietary
application, it is an excellent example of a medical IOT device that can enhance the lives
of not only the patient but everyone who cares for them.

Dexcom also provides a free Windows application called Dexcom Studio
(http://dexcom.com/dexcom-studio) to allow patients to see the data their monitors
collect and generate a host of reports they can use to see their glucose levels over
time. Reports include averages, patterns, daily trends, and more. They can even share
their data with their doctor. Figure 1-4 shows an example of the Dexcom Studio with
typical data loaded.

Figure 1-3.  Dexcom Share App Report

http://dexcom.com/dexcom-studio

Chapter 1 ■ What Is the Internet of Things?

10

WHAT ABOUT BLOOD GLUCOSE TESTERS –
GLUCOMETERS?

Until solutions like the Dexcom CGM came about, diabetics had to use a manual
tester. Traditional blood glucose testers are single-use events that require the patient
to prick their finger or arm and draw a small amount of blood onto a test strip. While
this device has been used for many years, it is only recently that manufacturers have
started making blood glucose testers with memory features and even connectivity to
other devices such as laptops or phones. The ultimate evolution of these devices is
a solution like Dexcom, which has become a medical IOT device that improves the
quality of life for diabetics.

Combined with the programmable alerts, you and your loved ones can help manage
the effects of diabetes. If you have a loved one who suffers with diabetes, a CGM is worth
every penny for peace of mind alone. This is the true power of IOT materialized in a
potentially lifesaving solution.

Figure 1-4.  Dexcom Studio

Chapter 1 ■ What Is the Internet of Things?

11

Automotive IOT Solutions
Another personal IOT solution is the use of Internet-connected automotive features. One
of the oldest products is called OnStar (onstar.com) and is available on most late-model
and new General Motors (GM) vehicles. While OnStar is a satellite-based service that
has several levels and many fee-based options, it incorporates the Internet to permit
communication with vehicle owners. Indeed, the newest GM vehicles come with a WiFi
access point built into the car! Better still, there are some basic features that are free to
GM owners that, in my opinion, are very valuable.

The free, basic features include regular maintenance reports sent to you via email and
the ability to use an app on your phone to unlock, lock, remote start – all the features on your
key fob remotely. This is a cool feature if you have ever locked your keys in your car! Figure 1-5
shows an example of the remote key fob app on iOS. Of course, there are even more features
available for a fee including navigation, telephone, WiFi, and on-call support.

Figure 1-5.  OnStar App Key Fob Feature

The OnStar app works by connecting to the OnStar services in the cloud, requesting
the feature (e.g., unlock) that is sent to the vehicle via the OnStar satellite network. So, it is
an excellent example of how IOT solutions use multiple communication protocols.

Chapter 1 ■ What Is the Internet of Things?

12

The feature I like most is the maintenance reports. You will receive an email with an
overview of the maintenance status of your vehicle. The report includes such things as
oil life, tire pressure, engine and transmission warnings, emissions, air bag, and more.
Figure 1-6 shows an excerpt of a typical email you would receive.

Figure 1-6.  OnStar Maintenance Report

Chapter 1 ■ What Is the Internet of Things?

13

Notice the information displayed. Actual data is transmitted to OnStar from your
vehicle. For example, the odometer reading and tire pressure data are taken directly from
the vehicle’s onboard data storage. That is, data from the sensors is read, interpreted, and
the report generated for you. This feature demonstrates how automatic compilation of
data in an IOT solution can help us keep our vehicles in good mechanical condition with
early warning of needed maintenance. This serves us best by helping us keep our vehicles
in prime condition and thus in a state of high resell value.

I should note that GM isn’t the only automotive manufacturer offering such services.
Many others are working on their own solutions ranging from an OnStar-like feature set
to solutions that focus on entertainment and connectivity.

Fleet Management
Another example of an IOT solution is a fleet management system.6 While developed,
and deployed well before the coining of the phrase, IOT, fleet management systems allow
businesses to monitor their cars, trucks, ships – just about any mobile unit – to not only
track their current location but also to use the location data (GPS coordinates taken over
time) to plan more efficient routes, thereby reducing the cost of shipment.

Fleet management systems aren’t just for routing. Indeed, fleet management systems
also allow businesses to monitor each unit to conduct diagnostics. For example, it is
possible to know how much fuel is in each truck, when its last maintenance was performed
or, more importantly, when the next maintenance is due, and much more. The combination
of vehicle geographic tracking and diagnostics is called telematics. Figure 1-7 shows a
drawing of a fleet management system.

6https://en.wikipedia.org/wiki/Fleet_management

https://en.wikipedia.org/wiki/Fleet_management

Chapter 1 ■ What Is the Internet of Things?

14

Figure 1-7.  Fleet Management Example7

In the figure, you will see the application of GPS systems to track location as well as
satellite communication to transmit additional data such as diagnostics, payload states,
and more. All of these ultimately traverse the Internet and the data becomes accessible by
the business analysts.

You may think fleet management systems are only for large shipping companies, but
with the proliferation of GPS modules and even the microcontroller market, anyone can
create a fleet management system. That is, they don’t cost millions of dollars to develop.

For example, if you owned a bicycle delivery company, you could easily incorporate
GPS modules with either cellular or wireless connectivity on each delivery person to
track their location, average travel time, and more. More specifically, you can use such
a solution to minimize delivery times by allowing packages to be handed off from one
delivery person to another rather than having them return to the depot each time they
complete a set of deliveries.

7Éric Chassaing – via CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/).

http://creativecommons.org/licenses/by-sa/3.0/

Chapter 1 ■ What Is the Internet of Things?

15

CAMERA DRONES AND THE IOT

One possible use of the IOT is making data that drones generate available over the
Internet. Some may feel drones are an invasion of privacy, and I agree in situations
where they are misused or established laws are violated. Fortunately, the clear
majority of drone owners obey local laws, regulations, and property owners’ wishes.8

However, there are many legitimate uses of drones be they land-, air-, or sea-
based. For example, I can imagine home monitoring solutions where you can
check on your home remotely by viewing data from fixed cameras as well as
data from mobile drones. I for one would love to see a solution that allowed me to
program a predetermined sentry flight path to monitor my properties with a flying
camera drone.

While some vendors have WiFi-enabled drones, there aren’t many consumer-grade
options available that stream data real time over the Internet. However, there are
some options that allow you to post video and photos directly from the drone. One
of my drones is the Yuneec Breeze (www.yuneec.com/en_US/products/breeze/
overview.html), which allows me to post photos and video collected from the
drone to social media. Interestingly, these drones are being called “selfie drones”
since they have features that allow autonomous modes including a mode where the
drone follows you filming your antics, or circling your position, and other interesting
features.

While these new drones require a manual action to post data, it is just a matter
of time before we see real-time IOT solutions that include drones. Of course, the
current controversy and indeed the movement of the U.S. government to register
and track drones along with increasing restrictions on their use may limit the
expansion of drones and IOT solutions that include drone-acquired data.

IOT and Security
The recent rash of massive data breaches proves that basic security simply wasn’t good
enough. We’ve seen everything from outright theft to exploitation of the data stolen from
very well-known businesses like Target (over 40 million credit card numbers may have
been compromised) and government agencies like the United States Office of Personnel
Management (over 20 million social security numbers compromised).

IOT solutions are not immune to security threats. Indeed, as IOT solutions become
more and more integrated into our lives, so too will our personal data. Thus, security
must be taken extremely seriously and built into the solution from the start.

8As of December 21, 2015, drones in the United States that weigh more than 0.55 lbs. must be
registered before flying. See https://registermyuas.faa.gov/.

http://www.yuneec.com/en_US/products/breeze/overview.html
http://www.yuneec.com/en_US/products/breeze/overview.html
https://registermyuas.faa.gov/

Chapter 1 ■ What Is the Internet of Things?

16

This includes solutions we develop ourselves. More specifically, if you design a
weather station for your own use, you should take reasonable steps to ensure the data
is protected from both accidental and deliberate exploitation. You may think weather
data isn’t a high risk but consider the case where you include GPS coordinates for
your sensors (a reasonable feature) so that people can see where this weather is being
observed. If someone could see that information, and determine the solution uses an
Internet connection, it is possible they could gain physical access to the Internet device
and possibly use it to further penetrate and exploit your systems. Thus, security isn’t just
about the data; it should encompass all aspects of the solution from data to software to
hardware to physical access.

There are four areas where you may want to consider spending extra care ensuring
your IOT solution is protected with good security. As you will see, this includes several
things you should consider for your existing infrastructure, computers, and even safe
computing habits. By leveraging these areas, you will be building a layered approach to
security: often called a defense-in-depth method.

DO I REALLY NEED TO WORRY ABOUT SECURITY?

If you’re wondering why I’ve included this section in a beginner’s book on the
IOT and Python, consider for a moment what you ultimately want to do with the
knowledge you gain from this book. If you are only interested in learning how to
work with your new MicroPython board and have no aspirations for developing
anything more, then you may want to skim these sections. However, if your goals
include making MicroPython IOT solutions that you deploy – especially if you plan
to connect it to the Internet – you will want to consider security in your solution.
Either way, I strongly recommend reading and adhering to these tips for securing
your IOT solutions.

Security Begins at Home
Before introducing an IOT solution to your home network, you should consider taking
precautions to ensure the machines on your home network are protected. This is
important because if someone gets access to your home network, they can achieve all
manner of nefarious activities.

The most common mistake made is not securing a home WiFi network. Not only
does this mean your neighbors can jump onto your network and hog your bandwidth,
it also means they may be able to get to the systems on your home network leaving your
IOT devices, computers, appliances, etc., vulnerable to attack.

Chapter 1 ■ What Is the Internet of Things?

17

Fortunately, there are some best practices for securing your home networking to
help reduce these risks. These include the following. Passwords: This may seem like a
simple thing, but always make sure you use passwords on all your computers and devices.
Also, adopt good password habits such as requiring longer strings, mixed case, numbers,
and symbols to ensure the passwords are not easily guessed.9

•	 Secure your WiFi: If you have a WiFi network, make sure you add
a password and use the latest security protocols such as WPA2
or, even better, the built-in secure setup features of some wireless
routers.

•	 Use a firewall: You should also use a firewall to block all unused
ports (TCP or UDP). For example, lock down all ports except
those your solution uses such as port 80 for html.

•	 Restrict physical access: Lock your doors! Just because your
network has a great password and your computers use super
world espionage spy encrypted biometric access, these things
are meaningless if someone can gain access to your networking
hardware directly. For IOT solutions, this means any external
components should be installed in tamper-proof enclosures or
locked away so they cannot be discovered. This also includes any
network wiring.

Some of these you may know how to do it, but others may require help from a friend
who knows more about the devices and networking. For example, if you don’t know what
a firewall is, ask someone to help you. A little extra security is worth the effort to learn the
basics of how to set up a firewall.

Secure Your Devices
As mentioned above, your IOT devices also need to be secured. Some practices to
consider include the following.

•	 Use passwords: Always add passwords to the user accounts on
any device that has an operating system. This includes making
sure you rename any default passwords. For example, you may be
tempted to consider a wee Raspberry Pi too small of a device to
be a security concern but if you consider these devices run one of
the most powerful operating systems available (forms of Linux), a
Raspberry Pi can be a very powerful hacking tool.

9You also need to balance complexity of passwords with your ability to remember them. If you must
write it down, you’ve just defeated your own security! You may be surprised to learn that the first
rule of guessing someone’s password is to look under their keyboard. That’s where most people put
their post-it note with the password. Don’t do that.

Chapter 1 ■ What Is the Internet of Things?

18

•	 Keep your software up to date: You should try to use the latest
versions of any software you use. This includes the operating
system as well as any firmware or programming tools you may be
running. Newer versions often have improved security or fewer
security vulnerabilities.

•	 If your software offers security features, use them: If you have
servers or services running on your devices, and they offer
features such as automatic lockout for missed passwords, turn
them on. Not all software has these features, but if they are
available, they can be a great way to defeat repeated attacks.

Use Encryption
This is one area that is often overlooked. While it is an option normally used only by
solutions that transmit confidential data such as commercial IOT devices, if you plan to
send data you feel is sensitive, you can further protect yourself and your data if you encrypt
both your data as it is stored and the communication mechanism as it is being transmitted.
If you encrypt your data, even if someone were to gain physical access to the storage
device, the data is useless because they cannot easily decipher the encryption. Use the
same care with your encryption keys and passcodes as you do your computer passwords.

Security Doesn’t End at the Cloud
There are many considerations for connecting IOT devices to cloud services. Indeed,
Microsoft and others have made it very easy to use could services with your IOT solutions.
However, there are two important considerations for security and your IOT data.

•	 Do you need the cloud?: The first thing you should consider is
whether you need to put any of your data in the cloud. It is often
the case that cloud services make it very easy to store and view
your data, but is it necessary to do so? For example, you may be
very concerned and quite keenly eager to view logistical data for
where your dog spends his time while you are at work, but who
else would care to view this data? In this case, storing the data in
the cloud to make it available to everyone is not necessary.

•	 Don’t relax!: Many people seem to let their guard down when
working with cloud services. For whatever reason, they consider
the cloud more secure. The fact is, it isn’t! In fact, you must apply
the very same security best practices when working in the cloud
that you do for your own network, computers, and security
policies. Indeed, if anything, you need to be even more vigilant
because cloud services are not in your control with respect to
protecting against physical access (however remote and unlikely)
nor are you guaranteed your data isn’t on the same devices as
tens, hundreds, or even thousands of other users’ data.

Now that we have an idea of how we should include security in our projects, let’s take
a brief look at the programming language we will use in this book – Python.

Chapter 1 ■ What Is the Internet of Things?

19

10Monty Python refers to a group of comedians and not a single individual. However, the comedy is
undeniably brilliant. https://en.wikipedia.org/wiki/Monty_Python
11Pythonistas are expert Python developers and advocates for all things Python.
12http://mzonline.com/bin/view/Python/HolyGrailScene9/

Python and the IOT
Python is a high-level, interpreted, object-oriented scripting language. One of the biggest
tenants of Python is to have a clear, easy-to-understand syntax that reads as close to
English as possible. That is, you should be able to read a Python script and understand it
even if you haven’t learned Python. Python also has less punctuation (special symbols)
and fewer syntactical machinations than other languages.

Here are a few of the key features of Python.

•	 An interpreter processes Python at runtime. No compiler is used.

•	 Python supports object-oriented programming constructs by way
of classes and methods.

•	 Python is a great language for the beginner-level programmers
and supports the development of a wide range of applications.

•	 Python is a scripting language but can be used for a wide range of
applications.

•	 Python is very popular and used throughout the world giving it a
huge support base.

•	 Python has few keywords, simple structure, and a clearly defined
syntax. This allows the student to pick up the language quickly.

Origins
Python was developed by Guido van Rossum from the late 1980s to the early 1990s at the
National Research Institute for Mathematics and Computer Science in the Netherlands
and maintained by a core development team at the institute. It was derived from and
influenced by many languages including Modula-3, C, C++, and even Unix shell scripting
languages.

A fascinating fact about Python is it was named after the BBC show, “Monty Python's
Flying Circus” and has nothing to do with the reptile by the same name.10 Quoting
Monty Python in source code documentation (and even a humorous diversion for error
messages) is very common and while some professional developers may cringe at the
insinuation, it's considered by Pythonistas11 as showing your Python street cred. If you
like Monty Python, I encourage you to use snippets from the shows in your code. One
place I like to have fun with is printing messages. My favorite goes something like this:12

> DUPLICATE FILE ERROR: He says they've already got one!

https://en.wikipedia.org/wiki/Monty_Python
http://mzonline.com/bin/view/Python/HolyGrailScene9/

Chapter 1 ■ What Is the Internet of Things?

20

Some may wonder how a language like Python could possibly be helpful in
writing IOT solutions. The answer to that is a cool product called MicroPython. In
short, MicroPython is a condensed, optimized code of Python 3 that has been loaded
in hardware. This means rather than having to have an interpreter run on an operating
system to execute the Python code, the MicroPython chip can run the Python code
directly on the hardware. No operating system is needed. In fact, MicroPython has basic
file I/O built in.

We’ll learn more about MicroPython in the next chapter. It’s an exciting new option
for those who want to explore IOT but don’t want to learn a complex programming
language or spend a lot of time learning new operating systems, tools, and hardware. But
first, let’s look at how easy it is to use MicroPython.

Online Python Simulator
For those of you who are eager to get a taste of what it is like to use Python to control
hardware, the good folks over at micropython.org have an online, interactive
MicroPython simulator (http://micropython.org/live) using one of the most popular
MicroPython boards, the pyboard (www.adafruit.com/products/2390). When you visit
the site, you will see an interface that has a live video image of a pyboard connected to
several devices including a servo, LEDs, an LCD panel, and even an SD drive.

The simulator has several sample scripts (Python programs are called scripts) that
you can try out. There are scripts to turn LEDs on, print to the LCD, and even move the
servos. The simulator is designed to allow you to select a script and submit it to a queue
to run. If there are no other scripts in the queue, you will see the script you selected run
almost right away. Figure 1-8 shows an example of a simple script to turn an LED on. In
this case, it is the LED on the board itself.

http://micropython.org/live
http://www.adafruit.com/products/2390

Chapter 1 ■ What Is the Internet of Things?

21

Figure 1-8.  MicroPython Simulator - LED on (courtesy of micropython.org)

Notice in the image we see several sections or panels. Clockwise from top left we
see the current code (Current code) and current output from the code that is running
on the board (Current output), a video feed of the board in action, an area to display the
output of the script (using the print() function) for the code you executed (My output),
and a panel (My code) that allows you to scroll through the available example scripts and
execute them. The following buttons allow you to control the script.

•	 Run!: Executes the current code in the My Code panel

•	 clear: Clears the My Code panel

•	 left arrow: Cycle back through the list of example scripts

•	 right arrow: Cycle forward through the list of example scripts

One of the really cool things about the simulator is you can use the My code panel
and write your own code! Just click the clear button and position your cursor on line
number 2 (below the import statement) and start typing. When you’re ready, click the
Run! button. Figure 1-9 shows an example of a script that prints two lines showing code I
wrote to run on the board.

Chapter 1 ■ What Is the Internet of Things?

22

Figures 1-10 and 1-11 show two additional example scripts.

Figure 1-9.  MicroPython Simulator - Custom code (courtesy of micropython.org)

Chapter 1 ■ What Is the Internet of Things?

23

Figure 1-10.  MicroPython Simulator – LCD (courtesy of micropython.org)

Chapter 1 ■ What Is the Internet of Things?

24

While you may not fully understand the Python code in the examples, I suggest you
take a few moments to try out the scripts so you can see how much fun it is (and how little
code it requires) to control hardware with MicroPython. If nothing else, the simulator
should give you an appetite to learn more about MicroPython.

Summary
The Internet of Things is an exciting new world for us all. Those of us young in heart but
old enough to remember the Jetson’s TV series recall seeing a taste of what is possible in
make-believe land. Talking toasters, flying cars that spring from briefcases, and robots
with attitude notwithstanding, television fantasy of decades ago is coming true. We have
wristwatches that double as phones and video players, we can unlock our cars from
around the world, find out if our dog has gone outside, and even answer the door from
across the city. All of this is possible and working today with the advent of the IOT.

Figure 1-11.  MicroPython Simulator – UART Calculations (courtesy of micropython.org)

Chapter 1 ■ What Is the Internet of Things?

25

In this chapter, we discovered what the IOT is and saw some examples of well-known
IOT solutions. We also discovered how Microsoft is opening doors for Windows users by
expanding its Windows 10 operating system to the IOT via the Raspberry Pi hardware.
This is a very exciting opportunity for people who do not want to learn the nuances of a
Linux-based operating system to explore the world of hardware and IOT from a familiar
and well-understood platform.

In the next chapter, we will discover more about MicroPython including how to
program in MicroPython. As you will see, it is not difficult. We will then explore the
hardware we will use to run MicroPython in more detail in Chapter 3 to complete our tour
of getting started with MicroPython for the IOT.

http://dx.doi.org/10.1007/978-1-4842-3123-4_3

27© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_2

CHAPTER 2

Introducing MicroPython

Now that we have learned more about the Internet of Things and saw a few demonstrations
of MicroPython, it is time to learn more about MicroPython – how we can get started, how
it works, and examples of what you can do with your own MicroPython board.

Learning MicroPython is very easy even for those who have not had any
programming experience. Indeed, all you need to learn MicroPython is a bit of patience
and a little time to get used to the syntax and the mechanisms unique to working with
MicroPython, the boards, and the electronics. As we will see, there is a lot you can do with
just a little knowledge.

In this chapter, we will learn more about MicroPython including an overview of how
to get started with one of the most popular boards. Don’t worry if you don’t have a board
yet; the examples in this chapter are intended to give you a taste of what you can do rather
than a detailed tutorial. That being said, we will see a detailed tutorial for the board used
in this chapter as well as other boards in Chapter 3. We will also explore programming
Python in more detail in Chapter 4.

■■ Tip  I refer to the microprocessor boards that run MicroPython natively or can be loaded
with MicroPython binaries as “MicroPython-compatible boards,” or “MicroPython boards.”

Let’s start with a look at what MicroPython is, including why it was created and how
to get started.

Getting Started
The use of the Python language for controlling hardware has been around for some time.
Users of the Raspberry Pi, pcDuino, and other low-cost computers and similar boards
have had the advantage of using Python for controlling hardware. In this case, they used
full versions of the Python programming language on the native Linux-based operating
system.

However, this required special libraries built to communicate with the hardware.
These libraries were designed to interface with the general-purpose input output (GPIO)
pins. The GPIO pins normally appear on the board in one or more rows of male pins on
the board. Some boards used female header pins.

https://doi.org/10.1007/978-1-4842-3123-4_2
http://dx.doi.org/10.1007/978-1-4842-3123-4_3
http://dx.doi.org/10.1007/978-1-4842-3123-4_4

Chapter 2 ■ Introducing MicroPython

28

While these boards made it possible for those who wanted to develop electronics
projects, it required users to buy the board as well as peripherals like a keyboard, mouse,
and monitor. Not only that, but users also had to learn the operating system. For those not
used to Linux, this can be a challenge in and of itself.

You may be wondering about microcontrollers such as the wildly popular Arduino
(arduino.cc) or Espressif, also known as ESP boards (espressif.com). For those boards,
you must use a C-like language1 to program them, which may be more than some are
willing to learn.

The vision for MicroPython was to combine the simplicity of learning Python with
the low cost and ease of use of microcontroller boards, which would permit a lot more
people to work with electronics for art and science projects. Beginners would not have to
learn a new operating system or learn one of the more complex programming languages.
MicroPython was the answer. Figure 2-1 shows the MicroPython logo in the form of a skill
badge (an iron-on patch)2 from Adafruit.

Figure 2-1.  MicroPython Logo Skill Badge (courtesy of adafruit.com)

1Some may say C++ and I suppose there is some truth in that, but they’re more like C for general,
basic use.
2Yes, I have one.

That’s pretty cool, isn’t it? It’s a snake (a python) on an integrated circuit (chip). You
can order this skill badge from Adafruit at www.adafruit.com/products/3271. If you
don’t have anything to attach the patch to, Adafruit also stocks a nifty MicroPython sticker
(www.adafruit.com/products/3270). I recommend getting one of these and displaying it
proudly when you finish the book.

http://www.adafruit.com/products/3271
http://www.adafruit.com/products/3270

Chapter 2 ■ Introducing MicroPython

29

Origins
MicroPython3 was created and is maintained by Damien P. George, Paul Sokolovsky, and
other contributors. It was designed to be a lean, efficient version of the Python 3 language
and installed on a small microcontroller. Since Python is an interpreted language and
thus slower (in general) than compiled languages, MicroPython was designed to be as
efficient as possible so that it can run on microcontrollers that normally are slower and
have much less memory than a typical personal computer.

COMPILED VS. INTERPRETED

Compiled languages use a program, called a compiler, to convert the source code
from a human readable form to a binary executable form. There are a few steps
involved in this conversion but in general, we take source code and compile it into
a binary form. Since it is in binary form, the processor can execute the statements
generated directly without any additional steps (again, in general).

Interpreted languages on the other hand, are not compiled but instead are converted
to binary form (or an intermediate binary form) on-the-fly with a program called an
interpreter. Python 3 provides a Python executable that is both an interpreter as well
as a console that allows you to run your code as you type it in. Python programs run
one line of code at a time, starting at the top of the file.

Thus, compiled languages are faster than interpreted languages because the code
is prepared for execution and does not require an intermediate, real-time step to
process the code before execution.

Another aspect is that microcontroller boards like the Arduino require a compilation
step that you must perform on your computer and load the binary executable onto the
board first. In contrast, since MicroPython has its interpreter running directly on the
hardware, we do not need the intermediate step to prepare the code; we can run the
interpreted language directly on the hardware!

This permits hardware manufacturers to build small, inexpensive boards that
include MicroPython on the same chip as the microprocessor (typically). This gives you
the ability to connect to the board, write the code, and execute it without any extra work.

You may be thinking that to reduce Python 3 to a size that fits on a small chip with
limited memory that the language is stripped down and lacking features. That can’t be
further than the truth. In fact, MicroPython is a complete implementation of the core
features of Python 3 including a compact runtime and interactive interpreter. There is
support for reading and writing files, loading modules, interacting with hardware such as
GPIO pins, error handling, and much more. Best of all, the optimization of Python 3 code
allows it to be compiled into a binary requiring about 256K of memory to store the binary
and runs with as little as 16k of RAM.

3Copyright 2014–2017, Damien P. George, Paul Sokolovsky, and contributors. Last updated on
March 5, 2017.

Chapter 2 ■ Introducing MicroPython

30

However, there are a few things that MicroPython doesn’t implement from the
Python 3 language. The following sections give you an idea of what you can do with
MicroPython and what you cannot do with MicroPython.

MicroPython Features
The biggest feature of MicroPython is, of course, it runs Python. This permits you to
create simple, efficiently specified, and easy-to-understand programs. That alone,
I think, is its best advantage over other boards like the Arduino. The following lists a few
of the features that MicroPython supports. We will see these features in greater detail
throughout this book.

•	 Interactive Interpreter: MicroPython boards have built in a special
interactive console that you can access by connecting to the board
with a USB cable (or in some cases over WiFi). This console is
called a read-evaluate-print loop that allows you to type in your
code and execute it one line at a time. It is a great way to prototype
your code or just run a project as you develop it.

•	 Python Standard Libraries: MicroPython also supports many of
the standard Python libraries. In general, you can expect to find
MicroPython supports more than 80% of the most commonly
used libraries. These include parsing JavaScript Object Notation
(JSON),4 socket programming, string manipulation, file input/
output, and even regular expression support.

•	 Hardware-Level Libraries: MicroPython has libraries built in
that allow you to access hardware directly either to turn on or off
analog pins, read analog data, read digital data, and even control
hardware with pulse-width modulation (PWM) – a way to limit
power to a device by rapidly modulating the power to the device.
For example, making a fan spin slower than if it had full power.

•	 Extensible: MicroPython is also extensible. This is a great feature
for advanced users who need to implement some complex
library at a low level (in C or C++) and include the new library in
MicroPython. Yes, this means you can build in your own unique
code and make it part of the MicroPython feature set.

To answer your question, “What can I do with MicroPython?,” the answer is quite a
lot! You can control hardware connected to the MicroPython board, write code modules
to expand the features of your program storing them on an SD card for later retrieval
(just like you can in Python on a PC), and much more. The hardware you can connect
to include turning LEDs on and off, drive servos, read sensors, and even display text
on LCDs. Some boards also have networking support in the form of WiFi radios. Just
about anything you can do with the other microcontroller boards, you can do with a
MicroPython board.

4https://www.json.org/

https://www.json.org/

Chapter 2 ■ Introducing MicroPython

31

However, there are a few limitations to running MicroPython on the chip.

MicroPython Limitations
The biggest limitation of MicroPython is its ease of use. The ease of using Python means
the code is interpreted on-the-fly. And while MicroPython is highly optimized, there is
still a penalty for the interpreter. This means that projects that require a high degree of
precision such as sampling data at a high rate or communicating over a connection (USB,
hardware interface, etc.) may not run fast enough. For these areas, we can overcome the
problem by extending the MicroPython language with optimized libraries for handling
the low-level communication.

MicroPython also uses a bit more memory than other microcontroller platforms
such as the Arduino. Normally, this isn’t a problem but something you should consider if
your program starts to get large. Larger programs that use a lot of libraries could consume
more memory than you may expect. Once again, this is related to the ease of use of
Python – another price to pay.

Finally, as mentioned previously, MicroPython doesn’t implement all the features
of all the Python 3 libraries. However, you should find it has everything you need to build
IOT projects (and more).

ARE MY PYTHON SKILLS APPLICABLE TO
MICROPYTHON?

If you’ve already learned how to program with Python, you may be expecting to
see something that stands out as different or even odd about MicroPython. The
good news is, your Python skills are all you need to work with MicroPython. Indeed,
MicroPython and Python use the same syntax; there isn’t anything new to learn. As
you will see in the next few chapters, MicroPython implements a subset of Python
libraries but still is very much Python.

What Does MicroPython Run On?
Due to the increasing popularity of MicroPython, there are more options for boards to run
MicroPython being added regularly. Part of this is from developers building processor- and
platform-specific compiled versions of MicroPython that you can download and install
on the board. This is the fastest growing category.

There are two categories of boards you can use to run MicroPython. First are the
boards that have MicroPython loaded from the factory and run only MicroPython. These
include the Pyboard (the original MicroPython board) and WiPy. Next are the boards
that have available firmware options to install MicroPython on the board including the
ESP8266, Teensy, and more. We will see more about these boards in the next chapter.

Next, let’s explore Python from our PC in the next section to give you an idea
what the language is like and an opportunity to try it out yourself without needing a
MicroPython board.

Chapter 2 ■ Introducing MicroPython

32

Experimenting with Python on Your PC
Since MicroPython is Python (just a bit scaled down for optimization purposes), you
can run Python on your PC and experiment with the language. I recommend loading
Python on your PC even if you already have a MicroPython board. You may find it
more convenient to try out things with your PC since you can control the environment
better. However, your PC won’t be able to communicate with electronic components
or hardware like the MicroPython boards so while you can do a lot more on the PC,
you can’t test your code that communicates with hardware. But you can test the basic
constructs such as function calls, printing messages, and more.

So, why bother? Simply, using your PC to debug your Python code will allow you
to get much of your project complete and working before trying it on the MicroPython
board. More specifically, by developing the mundane things on your PC, you eliminate
a lot of potential problems debugging your code on the MicroPython board. This is the
number one mistake novice programmers make – writing an entire solution without
testing smaller parts. It is always better to start small and test a small part of the code at a
time adding only those parts that have been tested and shown to work correctly.

All you need to get started is to download and install Python 3 (for example, Python
3.6.2 is the latest but new versions become available periodically). The following sections
briefly describe how to install Python on various platforms. For specific information
about platforms not listed here, see the Python wiki at: https://wiki.python.org/moin/
BeginnersGuide/Download.

■■ Caution  There are two versions of Python available – Python 2 and Python 3. Since
MicroPython is based on Python 3, you will need to install Python version 3, not Python
version 2.

But first, check your system to see if Python is already installed. Open a terminal
window (command prompt) and type the following command.

python --version

If Python is installed, you should see something like the following.

$ python --version
Python 3.6.0

If you saw a version like Python 2.7.3, there is still a chance you have Python 3 on
your machine. Some systems have both Python 2 and Python 3 installed. To run Python 3,
use the following command.

python3

If Python 3 is not installed or it is an older version, use the following sections to
install Python on your system. You should always install the latest version. You can
download Python 3 from www.python.org/downloads/.

https://wiki.python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/Download
http://www.python.org/downloads/

Chapter 2 ■ Introducing MicroPython

33

Installing Python 3 on Windows 10
Most Windows machines do not include Python and you must install it. You can
download Python 3 for Windows from the official Python website (https://www.python.
org/downloads/windows/). You will find the usual Windows installer options for 32-bit
and 64-bit versions as well as a web-based installer and a .zip format. Most people will
use the Windows installer option, but if you must install Python manually, you can use
the other options.

Once you download Python, you can launch the installer. For example, on my
Windows 10 machine, I downloaded the file under the link named Latest Python 3 Release
– Python 3.6.0. If you scroll down, you can find the installer you want. For example, I
clicked on the installer for Windows 64-bit machines. This downloaded a file named
python-3.6.0-amd64.exe, which I located in my Downloads folder and executed by
double-clicking on the file.

Like most Windows installer installs, you can step through the various screens
agreeing to the license, specifying where you want to install it and finally initiating the
install. Figure 2-2 shows an example of the installer running.

Figure 2-2.  Installing Python on Windows 10

■■ Tip  If you get stuck or need more detailed instructions, see the excellent article at
How-To Geek www.howtogeek.com/197947/how-to-install-python-on-windows/.

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
http://www.howtogeek.com/197947/how-to-install-python-on-windows/

Chapter 2 ■ Introducing MicroPython

34

Once the installation is complete, you can try the test in the previous section to verify
the installation. If you do not modify your PATH variable, you may need to use the Python
console shortcut on the start menu to launch the console.

Installing Python 3 on macOS
If you are using macOS, you probably have Python installed since most releases of
macOS install Python by default. However, if you were not able to run the Python version
command above or it wasn’t the correct version, you can still download the latest Python
3 from the Python website (https://www.python.org/downloads/mac-osx/). You will
find several versions, but you should download the latest version available.

Once you download Python, you can launch the installer. For example, on my iMac,
I downloaded the latest Python 3 file under the link named Latest Python 3 Release –
Python 3.6.0. If you scroll down, you can find the installer you want. For example, I clicked
on the installer for 64-bit machines. This downloaded a file named python-3.6.0-
macosx10.6.pkg, which I located in my Downloads folder and executed.

Like most installers, you can step through the various screens agreeing to the license,
specifying where you want to install it, and finally initiating the install. Figure 2-3 shows
an example of the installer running.

Figure 2-3.  Installing Python on macOS

https://www.python.org/downloads/mac-osx/

Chapter 2 ■ Introducing MicroPython

35

■■ Note  Depending on which version of macOS you are running, and how your security
settings are set, you may need to change them to run the installer since it is not signed by
an identified developer. See the Security & Privacy panel in your System Preferences.

Once the installation is complete, you can try the test in the previous section to verify
the installation.

Installing Python 3 on Linux
If you are using Linux, the way you install Python will vary based on the platform.
For instance, Ubuntu uses apt-get commands while other distributions have different
package managers. Use the default package manager for your platform to install
Python 3.6 (or later).

For example, on Debian or Ubuntu, we install the Python 3.6 package using the
following commands. The first command updates the packages to ensure we have the
latest package references. The second command initiates a download of the necessary
files and installs Python.

sudo apt-get update
sudo apt-get install python3.6

■■ Tip  On Ubuntu releases prior to 16.10, you may need to add the apt repository
before running the update command. Use the command, sudo add-apt-repository
ppa:jonathonf/python-3.6, to add the repository and re-run the sudo apt-get update
command then install Python 3.6. Other platforms may have similar solutions.

Figure 2-4 shows an example of what the installation looks like on Kubuntu (a variant
of Ubuntu). Your platform may have slightly different output.

Chapter 2 ■ Introducing MicroPython

36

Notice in this install, I already had Python 2.7 and Python 3.4 installed. Once I
installed Python 3.6, I could run all three simply by using the right interpreter: python for
2.7, python3 for 3.4, and python3.6 for 3.6. Your platform may have similar constraints if
previous versions of Python are installed.

Once the installation is complete, you can try the test in the previous section to verify
the installation.

Running the Python Console
Now let’s run some tests on our PC. Recall we can open a Python console by opening a
terminal window (command prompt) and entering the command python (or python3 or
python3.6 depending on your installation). Once you see the prompt, enter the following
code at the prompt (>>>). This code will print a message to the screen. The \n at the end
is a special, non-printing character that issues a carriage return (like pressing Enter) to
move to a new line.

print ("Hello, World!")

When you enter this code, you will see the result right away. Recall the interpreter
works by executing one line of code at a time – each time you press Enter. However,
unlike running a program stored in a file, the code you enter in the console is not saved.
Figure 2-5 shows an example of running the Python console on macOS. Notice I typed in
a simple program – the quintessential “Hello, World!” example.

Figure 2-4.  Installing Python on Kubuntu (Linux)

Chapter 2 ■ Introducing MicroPython

37

To quit the console, enter the code, quit() as shown in the figure above.
While that demonstrates running Python from your PC, it is not that interesting. Let’s

see something a bit more complicated.

Running Python Programs with the Interpreter
Suppose your project required you to save data to a file or possibly read data from a
file. Rather than try and figure out how to do this on you MicroPython board, we can
experiment with files on our PC!

In the next example, I write data to a file and then read the data and print it out.
Don’t worry too much about understanding the code – just read through it – it’s very
intuitive. Listing 2-1 shows the code for this example. I used a text editor and saved the
file as file_io.py.

Listing 2-1.  File IO Example

Example code to demonstrate writing and reading data to/from files

Step 1: Create a file and write some data
new_file = open("log.txt", "w") # use "write" mode
new_file.write("1,apples,2.5\n") # write some data
new_file.write("2,oranges,1\n") # write some data
new_file.write("3,peaches,3\n") # write some data
new_file.write("4,grapes,21\n") # write some data
new_file.close() # close the file

Step 2: Open a file and read data
old_file = open("log.txt", "r") # use "read" mode
Use a loop to read all rows in the file
for row in old_file.readlines():
 columns = row.strip("\n").split(",") # split row by commas
 print(" : ".join(columns)) # print the row with colon separator
 old_file.close()

Figure 2-5.  Hello, World!

Chapter 2 ■ Introducing MicroPython

38

I saved the code to a file to show you how you can execute your Python scripts using
the Python interpreter using the following command. If you use Windows, you may need
to modify the command like “python.exe file_io.py”.

python ./file_io.py

Listing 2-2 shows the results of running the script.

Listing 2-2.  Output for the File IO Example

$ python ./file_io.py
1 : apples : 2.5
2 : oranges : 1
3 : peaches : 3
4 : grapes : 21

Notice the code changes the separator in the data by exchanging the comma as
originally written to a space, colon, and another space. The code does this by splitting
the line (string) read into parts by comma. Hence, the columns data contains three parts,
which we use the join() method to rejoin the string and print it. Take a moment to read
through the code and you will see these aspects. As you can see, Python is easy to read.

Now that we’ve experimented with Python on our PC, let’s see how to use
MicroPython on a typical MicroPython board.

How MicroPython Works
Recall that MicroPython is designed to work on small microcontroller platforms. Some of
these microcontroller platforms use a special chip that contains the MicroPython binaries
(libraries, basic disk IO, bootstrapping, etc.) as well as the microcontroller, memory, and
supporting components.

When you use a MicroPython board – like most microcontrollers – you must first
write your code and load it onto the board. Most MicroPython boards have a USB flash
drive that mounts when you connect it to your computer using a USB cable. This flash
drive stores a couple of files you can modify to change its behavior. You can also copy
your program (script file) to this drive for execution at boot time. We will see how to do
this in a later chapter.

You can also use the MicroPython console, which is very much like the Python
console we saw in the last section. The MicroPython console is called the run, evaluate,
print loop, or REPL console. The console makes it very easy to get started and to debug
(remove errors from) your program before loading it on the board for execution every
time the board is powered on.

Chapter 2 ■ Introducing MicroPython

39

The Run, Evaluate, Print Loop (REPL Console)
If you have used another microcontroller board like the Arduino, you are likely familiar
with some of the following. But if you haven’t used such or have not used a terminal
program, I provide all the steps you will need for each of the three major platforms:
Windows, macOS, and Linux. The following sections walk you through connecting to the
board for the first time.

I am using the Pyboard for these examples. You can use any other board that has
MicroPython loaded by default, but be sure to check the vendor’s documentation before
starting to use the board for the first time. Some boards may require loading firmware
before first use.

Connect the Board
To get started using the REPL console, connect the board to your computer using a USB
to micro USB cable (typically), which provides power over the USB as well as connectivity
for the console. Once the board boots (some boards can take up to 1-2 minutes to boot
the first time), you can connect to the board using a terminal program. From there, we
can use the REPL console in the same way we used the Python console.

■■ Tip  Some boards can take a few moments to boot so if you don’t get a connection,
wait a few moments and try again.

When the board finishes booting, you can browse the drive on the board using your
computer. Once the Pyboard is connected using a USB cable, you should see the USB
drive mount. For example, on Windows 10, you can use the file explorer to view the files
on the drive. Figure 2-6 shows an example of the files on the Pyboard.

Chapter 2 ■ Introducing MicroPython

40

Figure 2-6.  USB Drive (Pyboard)

Notice there are two files with a .py file extension: boot.py, which is executed on
boot (hence the name); and main.py, which you can replace with your own program
if you want to use the board independently. Again, we will see this in action in later
chapters. There are also additional files such as the README.txt that contains some
instructions to using the board; and the pybcdc.inf, which is a device driver installer for
Windows.

■■ Tip  To use the Pyboard with Windows versions other than Windows 10, you may need
to install the USB device driver. The device driver is included on the Pyboard’s onboard flash
drive in case you need it. If you have an older version of Windows or encounter problems
using the terminal application, you can install the device driver as described in the excellent
guide at http://micropython.org/resources/Micro-Python-Windows-setup.pdf.

Starting the REPL Console (Windows)
To connect to the REPL console using Windows, you will need a terminal program
like PuTTY, which was originally developed by Simon Tatham (http://www.chiark.
greenend.org.uk/~sgtatham/putty/latest.html). PuTTY is a simple terminal program
that is very easy to use and made for the Windows platform.

http://micropython.org/resources/Micro-Python-Windows-setup.pdf
http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Chapter 2 ■ Introducing MicroPython

41

Figure 2-7.  Finding the COM Port on Windows 10

To install PuTTY, select the appropriate .msi file (32- or 64-bit), download it, then
double-click on the file to launch the installer. Follow the prompts to complete the
installation. For example, I downloaded the file named putty-64bit-0.68-installer.msi.

Now that you have PuTTY installed, you must know the correct port to use. Open the
Device Manager and navigate down the tree until you find the Ports (COM & LPT) entry
and click to open it. Note that the Pyboard must be connected for this to work. You should
see one or more entries in the subtree that indicate the COM ports (and printer ports)
connected to your PC. The Pyboard will be listed as simply, USB Serial Device (COMn),
where n is a number like COM1, COM2, etc. For example, on my PC, it was listed as
COM3. Figure 2-7 shows an example from my PC.

Now we can open PuTTY and connect to the Pyboard. Use the shortcut on your
Start menu to launch PuTTY or type PuTTY into the search box and click the entry when
Cortana finds it. When PuTTY opens, you will see a dialog that you can use to connect via
a terminal over the network. Since the Pyboard is connected via the COM port, we must
click the small radio button marked Serial. We can then enter the COM port in the Serial
line text box and set the speed to 115200. Figure 2-8 shows a properly configured PuTTY
for connecting to the Pyboard on COM3 (as shown in the Device Manager).

Chapter 2 ■ Introducing MicroPython

42

When ready, click the Open button. This will open a new terminal that will launch
the REPL console as shown in Figure 2-9. I entered a simple statement to demonstrate
that the console is working.

Figure 2-8.  Connecting to Pyboard Using PuTTY

Chapter 2 ■ Introducing MicroPython

43

■■ Tip  If you don’t like the white (gray) on black color scheme, you can change them by
clicking on Colours in the tree control. Tread lightly as you must set the values separately
(there is no scheme concept).

Starting the REPL Console (macOS and Linux)
To connect using macOS or Linux, you can use the following command. The only
thing you may need to do is locate the correct device. I demonstrate this with the first
command that lists the devices on my macOS system. Do this after you’ve connected to
the MicroPython board (Pyboard).

$ ls /dev/tty.usb*
/dev/tty.usbmodem1422
$ screen /dev/tty.usbmodem1422

Go ahead and plug in your board and then open a console following the instructions
above. Once the console opens, enter the code shown below. Figure 2-10 shows an
example of the REPL console running on a Pyboard.

Figure 2-9.  The REPL Console (Windows 10)

Chapter 2 ■ Introducing MicroPython

44

Can you tell the difference from the Python console on your PC? Look closely. Except
for the version statement at the top of the output, they’re the same, which is very nice.

There is one oddity with the REPL console. The quit() doesn’t work. To exit the
console for some boards, you will need to reset the board or kill the connection. While
this seems odd, I am certain it will be improved in the future, and recall we don’t
normally use the REPL console for running our projects; rather, we use it to test code so a
little hiccup on quitting isn’t a big issue.

■■ Caution  You should refrain from simply unplugging your MicroPython board. Some
boards, like the Pyboard, present their base file system as a mountable USB drive.
Disconnecting without ejecting the board can lead to loss of data.

Now it’s time to take a tour of what we can do with MicroPython. The following
section uses several example projects to show you what you can do with a MicroPython
board. Once more, I introduce the examples with a minimal amount of explanation and
details about the hardware. We will learn much more about the hardware in the next
chapter.

Off and Running with MicroPython
If you’re like me when encountering new technologies, you most likely want to get started
as soon as you can. If you already have a Pyboard, you can follow along with the examples
in this section and see a few more examples of what you can do with MicroPython. To
keep things simple, we will see only those projects that run on the board without need of
additional components and do not use the Internet. Figure 2-11 shows the Pyboard 1.1
from MicroPython.org (https://store.micropython.org/).

Figure 2-10.  REPL Console (Pyboard)

https://store.micropython.org/

Chapter 2 ■ Introducing MicroPython

45

On the right side of the board is the micro USB connector and above that is a micro
SD card reader. If you look between those connectors, you will see four, small LEDs as
indicated with the square box. To the left of the LEDs is a button marked USR. These are
the components we will interact with in the following examples.

■■ Note  The Pyboard shown here has GPIO headers (the rows of sockets surrounding the
board) pre-soldered from MicroPython.org. If you order a Pyboard, I recommend getting this
version, especially if you do not know how or do not want to solder the headers yourself.

What I like most about this board is it has an array of light emitting diodes (LEDs)
and a button you can use to experiment with writing MicroPython projects. This makes
the Pyboard an excellent first choice for beginners.

Figure 2-11.  Pyboard with Headers

Chapter 2 ■ Introducing MicroPython

46

However, don’t worry if you don’t have a board yet. Again, I am including this section
to help you learn more about what is possible through examples. Once we’ve discussed
the details of the popular boards and how to program in MicroPython, we will dive into
more complex projects that you can experiment with as you learn.

Unfortunately, the Pyboard does not offer any form of networking so it may be rather
limited for use in IOT projects. Fortunately, there are ways to connect your Pyboard to the
Internet.

■■ Note  There are a growing number of MicroPython compatible boards you can use.
I chose the Pyboard to demonstrate MicroPython since the Pyboard is the easiest board to
use and is relatively inexpensive. We’ll learn more about the other choices in Chapter 3.
If you want to buy a Pyboard to run these examples, you can, but you may need either
a different board or a networking module for use with the more advanced projects that
connect to the Internet.

Additional Hardware
While the following examples don’t require any additional electronic components, I
would like to introduce several key components that you will need later in this book. If
you do not have these components, it is a good idea to order them now so that when you
get to the example projects, you will have what you need.

In addition to a MicroPython board, I consider these components as must-have
items for anyone wanting to learn how to work with electronics and MicroPython. These
include a basic electronics kit that contains the most common components you will need
when learning electronics, a breadboard, and jumper wires. I describe each of these in
the following sections.

Basic Electronics Kit
The example projects in this book use several common electronics components such
as LEDs, switches, buttons, resistors, etc. One of the biggest challenges when learning
to work with electronics at the hobby level is what to buy. I’ve talked to some who have
made numerous trips to the local electronics store to get what they need, seeming to
never have the right components no matter what they buy.

Fortunately, electronics retailers have caught on to this problem and now offer a
basic electronics kit that contains many of the more common components. Both Adafruit
(adafruit.com/products/2975) and Sparkfun (sparkfun.com/products/13973) offer
such kits. While you cannot go wrong with either kit, I like the Adafruit kit best since it has
more components (e.g., more LEDs).

The Adafruit Parts Pal comes packaged in a small plastic case with a host of
electronic components. Figure 2-12 shows the Parts Pal kit.

http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 2 ■ Introducing MicroPython

47

The kit includes the following components: prototyping tools, LEDs, capacitors,
resistors, some basic sensors, and more. In fact, there are more components in this kit
than what you will need for many experiments. Better still, the kit costs only $19.95,
making it a good deal (and the case is a great bonus).

•	 1x - Storage box with latch

•	 1x - Half-size breadboard

•	 20x - Male/male jumper wires - 3" (75mm)

•	 10x - Male/male jumper wires - 6" (150mm)

•	 5x - 5mm Diffused green LEDs

•	 5x - 5mm Diffused red LEDs

•	 1x - 10mm Diffused Common-Anode RGB LED

•	 10x - 1.0uF Ceramic capacitors

•	 10x - 0.1uF Ceramic capacitors

•	 10x - 0.01uF Ceramic capacitors

Figure 2-12.  Adafruit Parts Pal (courtesy of adafruit.com)

Chapter 2 ■ Introducing MicroPython

48

•	 5x - 10uF 50V Electrolytic capacitors

•	 5x - 100uF 16V Electrolytic capacitors

•	 10x - 560 ohm 5% axial resistors

•	 10x - 1K ohm 5% axial resistors

•	 10x - 10K ohm 5% axial resistors

•	 10x - 47K ohm 5% axial resistors

•	 5x - 1N4001 Diodes

•	 5x - 1N4148 Signal Diodes

•	 5x - NPN Transistor PN2222 TO-92

•	 5x - PNP Transistor PN2907 TO-92

•	 2x - 5V 1.5A Linear voltage regulator - 7805 TO-220

•	 1x - 3.3V 800mA Linear voltage regulator - LD1117-3.3 TO-220

•	 1x - TLC555 wide-voltage range, low-power 555 Timer

•	 1x - Photocell

•	 1x - Thermistor (Breadboard version)

•	 1x - Vibration sensor switch

•	 1x - 10K Breadboard trim potentiometer

•	 1x - 1K Breadboard trim potentiometer

•	 1x - Piezo buzzer

•	 5x - 6mm Tactile switches

•	 3x - SPDT slide switches

•	 1x - 40-pin Break-away male header strip

•	 1x - 40-pin female header strip

Breadboard and Jumper Wires
A breadboard is a special tool designed to allow you to plug in your electrical components
and provide interconnectivity in columns so that you can plug the leads of two
components into the same column and therefore make a connection. The board is split
into two rows, making it easy to use IC in the center of the board. Wires (called jumper
wires or simply jumpers) can be used to connect the circuit on the breadboard to the
MicroPython board. You will see an example of this later in this chapter.

Chapter 2 ■ Introducing MicroPython

49

Figure 2-13.  Half-sized Breadboard (courtesy of adafruit.com)

Fortunately, the Adafruit Parts Pal comes with a breadboard like the one shown in
Figure 2-13. This shows a half-sized breadboard from Adafruit. This breadboard is called
half since it is one-half the normal length of a standard breadboard. Best of all, it fits in
the Parts Pal box.

If already have some components or decide to buy a different basic electronics kit
that doesn’t come with a breadboard, you can buy a breadboard separately from Adafruit
(adafruit.com/products/64).

If your MicroPython board has male header pins instead of female header pins, you
will need to get a different set of jumper wires. Once again, Adafruit has what you need. If
you need male/female jumper wires, order the Premium Female/Male Extension Jumper
Wires – 20 x 6 (adafruit.com/products/1954). Figure 2-14 shows a set of male/female
jumper wires.

Chapter 2 ■ Introducing MicroPython

50

Now, let’s see some hardware in action!

Example 1:
In this example, we will write code to turn on one of the LEDs on the board. If you orient
the board as shown in Figure 2-11, the four LEDs are a different color arranged left to right
as red, green, yellow (orange), and blue. If you’re right-handed like me, you will probably
orient the board so that the USB connector is on the left. In that case, the blue LED is on
the far left.

Let’s write some code to turn the blue LED on. Rather than simply turning it on, let’s
use a construct called a loop to turn it on and off every 250 milliseconds. Thus, it will
flash rather quickly. Before I explain the code, let’s look at the completed code. Listing 2-3
shows how the code would look. Don’t worry; I’ll explain each of the lines of code after
the listing.

Figure 2-14.  Male/Female Jumper Wires (courtesy of adafruit.com)

Chapter 2 ■ Introducing MicroPython

51

Listing 2-3.  Blink the Blue LED

#
MicroPython for the IOT
#
Example 1
#
Turn on the blue LED (4 = Blue)
#
Dr. Charles Bell
#
import pyb # Import the Pyboard library

led = pyb.LED(4) # Get the LED instance
led.off() # Make sure it's off first

for i in range(0, 20): # Run the indented code 20 times
 led.on() # Turn LED on
 pyb.delay(250) # Wait for 250 milleseconds
 led.off() # Turn LED off
 pyb.delay(250) # Wait for 250 milleseconds

led.off() # Turn the LED off at the end
print("Done!") # Goodbye!

The first lines of code are comment lines. These are ignored by MicroPython and
are a way to communicate to others what your program is doing. Feel free to skip the
comment lines when entering the code into the REPL console.

Next is a line of code that is used to import the Pyboard hardware library (pyb). This
library is specific to the Pyboard and makes available all the components on the board.
The next two lines of code initialize a variable (led) by using the Pyboard library (pyb) to
get the fourth LED (the blue one). This creates an instance of that object that we can use.
In this case, we immediately turn the LED off by calling led.off().

Next is the main portion of the code – a loop! In this case, it is a for loop designed
to run the block of code below it as indicated by the indentation 20 times. The for loop
uses a counter, i, and the values 0 through 19 as returned by the range(0, 20) function.
Within the body of the loop (the indented portion), we first turn the LED on with led.on(),
wait 250 milliseconds using the Pyboard delay() method, then turn the LED off again
and wait another 250 milliseconds. Finally, we turn the LED off and print a message that
we’re done.

You can enter this code line by line into the REPL console. You can skip those that
start with #. Once you enter the for loop statement, you will be given a row without the
>>> prompt. This is normal. Type in the next line using two spaces (for indentation, which
establishes the block for the loop). After the second delay() call, press Enter on a blank like to
end the indentation block. Take a look at the Pyboard now. It should be blinking the blue LED.
Remember, the REPL console, like the Python console, runs the code as you enter it. Figure 2-
15 shows an example of the code running (I captured it with the blue LED on). If you want it to
blink slower, just adjust the delay() calls to increase the value to 500 or even 1000.

Chapter 2 ■ Introducing MicroPython

52

■■ Note  On some platforms, such as macOS and Linux, you can use a text editor to enter
the code then copy and paste it into the REPL console. However, this does not work for all
platforms or terminal programs. Try it yourself.

If you want to run the code again or you make a mistake, you must first close the
PuTTY window and then eject the USB drive. Once ejected, press the reset button
(marked RST on the board) to reinitialize the REPL console.

Example 2:
Now, let’s turn the LEDs on and off in sequence using a counting variable inside a
different loop (a while loop). In this case, we must cycle through the LEDs one at a time,
turning each on then off after a short delay. So, it is like the previous example but, as you
will see, demonstrates a bit more complexity. Since it is more complex, I will walk through
the code in sections before presenting the completed code.

Like all programs for the Pyboard, we begin by importing the Pyboard hardware
library.

import pyb # Import the Pyboard library

Figure 2-15.  Running Example 1

Chapter 2 ■ Introducing MicroPython

53

This example uses two loops. First, we loop through the LEDs turning them all off.
The following shows how to do this. Notice I use a counting variable in the range of 1 to 4.
Inside the body of the loop, I get the LED using the counting variable from the Pyboard
hardware library saving it in a variable named led (led = pyb.LED(j)), then turn it off
with led.off(). Turning the LEDs off at the start is a good habit and will take care of any
events where you leave code running or interrupt code running so that one or more of the
LEDs remains on. You can also fix this by resetting the board, but this method is preferred
(and good practice).

for j in range(1, 5): # Turn off all of the LEDs
 led = pyb.LED(j) # Get the LED
 led.off() # Turn the LED off

Next, we use another counting variable initialized to 1. We then start the while
loop with an endless condition. That is, the expression following the while is always
true. Inside the body of the loop, I do something similar to the last loop by getting the
LED from the Pyboard hardware library, turn it on, wait 500 milliseconds, turn it off,
and wait another 500 milliseconds. At the end of the body of the loop, I increment the
counting variable (while loops do not increment the counting variable like for loops).
If the counter gets to 5, I start over again with 1. Check the following code to see these
elements.

while True: # Loop forever
 led = pyb.LED(i) # Get next LED
 led.on() # Turn LED on
 pyb.delay(500) # Wait for 1/2 second
 led.off() # Turn LED off
 pyb.delay(500) # Wait for 1/2 second
 i = i + 1 # Increment the LED counter
 if i > 4: # If > 4, start over at 1
 i = 1

Listing 2-4 shows the completed code. Read through it a few times until you’re
convinced it will work.

Listing 2-4.  Example 2: Blinking the LEDs

#
MicroPython for the IOT
#
Example 2
#
Turn on the four LEDs on the board in order
#
1 = Red
2 = Green
3 = Orange

Chapter 2 ■ Introducing MicroPython

54

4 = Blue
#
Dr. Charles Bell
#
import pyb # Import the Pyboard library

for j in range(1, 5): # Turn off all of the LEDs
 led = pyb.LED(j) # Get the LED
 led.off() # Turn the LED off

i = 1 # LED counter
while True: # Loop forever
 led = pyb.LED(i) # Get next LED
 led.on() # Turn LED on
 pyb.delay(500) # Wait for 1/2 second
 led.off() # Turn LED off
 pyb.delay(500) # Wait for 1/2 second
 i = i + 1 # Increment the LED counter
 if i > 4: # If > 4, start over at 1
 i = 1

When you run the code, you will see the LEDs turn on in sequence starting with
the red, then green, yellow (orange), and blue. Since the loop does not end, it will
keep blinking the LEDs until you reset the board (remember to eject the drive first).
See Figure 2-16.

Chapter 2 ■ Introducing MicroPython

55

Figure 2-16.  Running Example 2

Example 3:
This example demonstrates how to use the button on the board. It also demonstrates how
to use an interrupt (called a callback function). That is, we create a function in our code
then tell MicroPython to execute that function when an interrupt occurs – in this case,
when the button is pressed. Since this example is also complex, I will walk you through
the code.

First, we import the Pyboard hardware library and set a variable for the green LED
(number 2 in the list) and turn it off.

import pyb # Import the Pyboard library
led = pyb.LED(2) # Get LED instance (2 = green)
led.off() # Make sure the LED if off

Next, we define a function. It’s rather easy. We just use the def directive and give the
function a name. Let’s call it flash_led. Inside this function we flash the LED quickly (100
millisecond delay) 25 times. We’ve already seen code to do this in the previous examples.

Chapter 2 ■ Introducing MicroPython

56

def flash_led():
 for i in range(0, 25):
 led.on()
 pyb.delay(100)
 led.off()
 pyb.delay(100)

Next, we create another variable by getting the user button (called a switch in
the library). We then use the method, callback() and pass in the name of the function
we created. These two statements will establish the connection to run the flash_led()
function when the button is pressed.

button = pyb.Switch() # Get the button (switch)
button.callback(flash_led) # Register the callback (ISR)

Finally, we print a message that the code is ready for testing.

print("Ready for testing!")

Listing 2-5 shows the completed code.

Listing 2-5.  Example 3: Using a Button

#
MicroPython for the IOT
#
Example 3
#
Flash the green LED when button is pushed
#
Dr. Charles Bell
#
import pyb # Import the Pyboard library
led = pyb.LED(2) # Get LED instance (2 = green)
led.off() # Make sure the LED if off

Setup a callback function to handle button pressed
using an interrupt service routine
def flash_led():
 for i in range(0, 25):
 led.on()
 pyb.delay(100)
 led.off()
 pyb.delay(100)

button = pyb.Switch() # Get the button (switch)
button.callback(flash_led) # Register the callback (ISR)

print("Ready for testing!")

Chapter 2 ■ Introducing MicroPython

57

Figure 2-17.  Running Example 3

Once you see, Ready for testing! in the REPL console, you can test it out. If you’re
timid or have an unusually high propensity for static electricity, use a non-conductive
probe and press the button marked USR. Figure 2-17 shows an example of the button
press calling the flash_led() method. Try it a few times until you’re satisfied it works.

Don’t forget to eject the drive before unplugging or resetting your Pyboard.

Summary
MicroPython is a very exciting addition to the microcontroller world. For the first time,
beginners do not need to learn a new operating system or a complex programming
language like C or C++ to program the microcontroller. MicroPython permits people
with some or even no programming experience to experiment with electronics and build
interesting projects. Thus, MicroPython provides opportunities for more hobbyists and
enthusiasts who just want to get their projects working without a steep learning curve.

In this chapter, we discovered the major features of MicroPython. We also discovered
that MicroPython is based on the Python that we find on our PCs. We even tested Python
on the PC to show the similarities. Best of all, we saw first-hand how MicroPython
works on a microcontroller board. In this case, we used the original MicroPython board,
the Pyboard, to demonstrate three examples of Python code written to exercise the
components on the Pyboard.

In the next chapter, we will discover a host of hardware we can use to run
MicroPython and build our IOT projects. As you will see, there are many options ranging
from boards that have MicroPython already loaded allowing you to build your projects
without extra setup, to common boards where you can load MicroPython yourself.

59© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_3

CHAPTER 3

MicroPython Hardware

Now that we’ve had a quick look at how MicroPython boards can be used, including
a presentation on several forms of MicroPython projects, it’s time to take a tour of the
available boards and related hardware. As we will see, there are several boards that you
can choose from, including those that have MicroPython already loaded so that they are
ready to use out of the box; those that allow you to load MicroPython on the board; and
those existing boards that, with a bit of work, can be worth investigating.

This chapter also includes how to get started using each of the boards discussed,
including how to connect the board, load firmware, and more. You should read through
the entire chapter because while many of the concepts are the same, the procedures
may be slightly different from one board to the next. Also, the focus of the chapter is the
MicroPython-ready boards. While I briefly discuss alternative boards that you can use,
the information in those sections can be useful for using boards not listed in this chapter.

Before we jump into looking at the available boards, let’s discuss a few best practices
and other practical advice for using MicroPython boards. These apply to all the boards
in this chapter and likely any emerging board, and thus you should have these in mind
when choosing your board.

Getting Started with MicroPython Boards
While you could just buy one of these boards and jump right into your IOT project, there
are some things you should consider and keep in mind when working with your board.
Specifically, some boards may require updates, some may require assembling hardware
(soldering), and others may have limitations to consider. I discuss these and more in this
section. I also include some tips for using the boards on your PC.

Firmware Updates
Those boards that include MicroPython on the chip may require firmware updates.
Firmware1 is the term used to describe software on a chip. Most boards have special chips
that allow you to update MicroPython (and other aspects) on your own, allowing you to
keep up with changes by the vendor, MicroPython, and more.

1https://en.wikipedia.org/wiki/Firmware

https://doi.org/10.1007/978-1-4842-3123-4_2
https://en.wikipedia.org/wiki/Firmware

Chapter 3 ■ MicroPython Hardware

60

Loading the firmware is board specific, and thus you should refer to your vendor’s
documentation for how to update the firmware. For example, Pycom documents
the update process for their WiPy board at https://docs.pycom.io/chapter/
gettingstarted/installation/firmwaretool.html.

You should consider updating the firmware when you first receive the board or at
any time you find you cannot access some library function, the operation fails, or when
new hardware (add-on boards) are released. However, you should avoid updating your
firmware too frequently.

My philosophy is simple: I only update firmware once when the board is new
and only when something no longer works. If your project is working and you’ve not
encountering any problems, there’s no need to update it. One risk to updating the
firmware too often is you could render your project useless if something changes in the
firmware such as old libraries or hardware no longer supported, changes to the library
that breaks your code, and other annoying issues. My only exception to this rule is if the
vendor has fixed a bug or improved the user experience, in which case I would update the
firmware. The bottom line is, if it works, don’t mess with it!

■■ Tip  Update your firmware when your board is new and only when needed later.

A special mention is of those boards where you must load MicroPython yourself.
Some of these boards may require you to update other parts of the system such as
a bootstrap mechanism, loading MicroPython in non-volatile memory, etc. If you
choose to use a board where you must load MicroPython, be sure to check the vendor’s
documentation for recommendations regarding updating the software on the board (may
not be limited to just the firmware). Finally, some boards are new so their firmware may
not be in beta or a release candidate and not production quality. In these cases, I like to
update the firmware more frequently until the production version is released.

Networking Issues
If your board has networking capabilities, you should take extra care when learning how
to use the board. Specifically, take your time to follow the vendor’s instructions for setting
up networking and connecting your board to your network. For example, some boards
have a very specific mechanism for connecting to WiFi networks. Failure to correctly
configure your network connection will lead to a lot of frustration, especially if your
project is intended to produce data that is accessed over the network.

If your board has networking capabilities, I recommend reading through the
documentation and running any examples that show you how to connect the board to
your network. The time spent learning how to do this (and repeating it), will eliminate a
lot of wasted time. Indeed, the number one mistake beginners make is hooking up their
board, writing their code to send data to another system on the network only to discover
it doesn’t work. In this case, they’ve failed to ensure the networking portion works before
using it for the first time.

https://docs.pycom.io/chapter/gettingstarted/installation/firmwaretool.html
https://docs.pycom.io/chapter/gettingstarted/installation/firmwaretool.html

Chapter 3 ■ MicroPython Hardware

61

This also applies to connecting the board to your PC. For those boards that allow you
to access the on-board memory as a file system, this may not be an issue, but for other
boards that require connecting over USB via special software, you should ensure you can
connect to the board before trying to write your first Python program.

One Step at a Time!
Another very common mistake beginners make is sitting down and writing all their
code in one pass without testing anything ahead of time. This creates a situation where
if something doesn’t work, it can be masked by a host of problems. For example, if there
is some logic error or data produced is incorrect, it may cause other parts of the project
to fail or produce incorrect results. This is made worse when the project doesn’t work
at all – there are too many parts to try and diagnose what went wrong. This often places
beginners in a desperate situation of confusion and frustration. You students out there
know exactly what I am talking about.

This can be avoided easily by building your project one step at a time. That is, build
your project one aspect at a time. For example, if you’re working with LEDs to signal
something, get that part working first. Similarly, if you’re reading data from a sensor,
ensure you can do that correctly in isolation before wiring it all together and hoping it
all works. Even the very experienced can make this mistake, but they are more equipped
to fix it if something goes wrong (and they know better but it’s a do as I say not as I do
situation). We will build the examples in this book one step at a time. Some are small
enough that there may be only one step, but the practice is one you should heed for any
project you undertake.

Programming Tools
Some microcontroller vendors offer software development (programming) tools.
Arguably one of the most successful is the Arduino Integrated Development Environment
(IDE). The Arduino IDE provides all the tools you need to work (program) the Arduino –
from writing your code to compiling to installing it on the board.

Some vendors offer software to use with their boards. The most promising includes
the tools from pycom.io including the PyMakr plugin for popular programming editors2
and the PyMate (https://pycom.io/pymate/) application for mobile devices. The
PyMakr plugin is a special editor and tools for writing Python programs and installing
them on the WiPy board. The PyMate application is an exciting new solution that allows
you to work with your WiPy remotely, including connecting it to your network and
reading devices displaying the data on your mobile device. We will see examples of these
when we examine the WiPy board.

2The PyMakr plugin replaces the stand-alone PyMakr application. See https://forum.pycom.io/
topic/635/pymakr-time-of-death-09-02 for more information.

https://pycom.io/pymate/
https://forum.pycom.io/topic/635/pymakr-time-of-death-09-02
https://forum.pycom.io/topic/635/pymakr-time-of-death-09-02

Chapter 3 ■ MicroPython Hardware

62

■■ Caution  The PyMakr plugins for Atom, Sublime, Visual Studio Code, and PyCharm
are still under development. The intention is to replace them with the PyMakr desktop
application. Currently, users are advised to use an FTP client such as FileZilla to upload
code/projects to their devices.

If the vendor of your board offers software for use with their board, you should
consider using it. However, most of what you will need to do for writing Python scripts
and loading them on your board can be done without special software. In fact, there
are several programming editors that support Python including Komodo Edit
(www.activestate.com/komodo-ide/downloads/edit), PyCharm (www.jetbrains.com/
pycharm/), and the PyDev IDE plugin for Eclipse (www.pydev.org/). The PyCharm IDE is
offered as a community editor (free) as well as a paid application. Komodo Edit is also a
free version of the more powerful, paid Komodo Edit IDE.

The editors I like most are Komodo Edit and PyCharm. Both have Python syntax
highlighting – the color of the text changes to indicate syntax, strings, etc., as well as
some can complete your statements and even automatically indent depending on what
construct you are using.

Both are excellent choices for writing Python. Komodo Edit is a simple editor but
it does its job very well. PyCharm is a Python IDE that does quite a bit more, including
interactive debugging. While you won’t be able to use some of the features with your
MicroPython board, if you want to work with Python on your PC, you should consider
using the IDE (or one like it). Figure 3-1 shows an example of using Komodo Edit to
edit a Python example from the next chapter. While you cannot see the colored text
highlights, notice that the editor provides link numbers, tabs for editing multiple files,
and more.

http://www.activestate.com/komodo-ide/downloads/edit
http://www.jetbrains.com/pycharm/
http://www.jetbrains.com/pycharm/
http://www.pydev.org/

Chapter 3 ■ MicroPython Hardware

63

While not required, it is highly recommended that you use an editor that includes
Python syntax highlighting. Not only will it help you write the code, it can be helpful to help
write more correct code. I find the code completion feature to be a real time saver. You don’t
have to choose any discussed here as none except PyMakr or PyMate are made for a specific
board. Remember, writing Python for a MicroPython board is not different than writing a
Python script for your PC – the syntax is the same.

Some Assembly Required
Some vendors such as Adafruit and George Robotics Limited/micropython.org (makers
of the original Pyboard) offer boards with and without headers soldered. Not soldering
the headers saves on production, and in some cases shipping costs, and makes the boards
a bit cheaper. If you know how to solder (or know someone who does), you may be able to
save a little by going with the boards without headers.

Another reason you may want a board without headers is if you want to install
your board in a project enclosure or some other form of embedded installation. In this
case, having the headers soldered may take up more space than you have or make the
completed project a bit bulkier.

You may also encounter some add-on boards, breakout boards, or other discrete
components that are not soldered with headers (or connectors). If you want to use
these, you may have to solder the header or connector yourself. For example, most of
the breakout boards from Adafruit (adafruit.com) and Sparkfun (sparkfun.com) do not
come with the headers soldered.

Figure 3-1.  Komodo Edit Example

Chapter 3 ■ MicroPython Hardware

64

GPIO Pins
We learned a bit about general purpose input output (GPIO) pins in the last chapter. One
of the things that differentiates the various boards is how the GPIO pins are arranged and
even how many pins are provided. While most boards support a list of pins including
analog and digital pins, some boards provide fewer pins than others. Figure 3-2 shows
a drawing that illustrates the GPIO pins available on the WiPy. You can find similar
drawings (also called datasheets, mappings, or pinouts) from the manufacturer or vendor
of your board.

If your project requires several pins – analog or digital – you should plan to choose a
board that can support the number of pins you will need. Fortunately, most will; however,
some of the newer boards that you can load MicroPython on may not. For example, some
versions of the ubiquitous ESP82663 (a low-cost WiFi chip) may support only a few pins,
making it less than ideal for projects that have many components.

Other Tips
This section includes several tips for things you may encounter when working with your
MicroPython board. Consider these tips as things you should do before or during your
experiments. Let’s begin with the basics.

Visit the Community Forums
The very first thing you should do (even before buying a board) is to visit the community
forums for the board(s) of your choice. Many of the vendors host and manage an online
message forum for people to ask questions and for people in the community to provide
their insights, answers, suggestions, and even help for those who get stuck.

Aside from reading this book, visiting the community forum is an absolute must.
In fact, you should consider visiting the forum any time you have a question or problem
with your board. You are most likely going to encounter someone who has been there

Figure 3-2.  WiPy GPIO Pins (courtesy of pycom.io)

3https://en.wikipedia.org/wiki/ESP8266

https://en.wikipedia.org/wiki/ESP8266

Chapter 3 ■ MicroPython Hardware

65

before, struggling through the same (or very similar) issue as well as their (and others’)
suggestions for how to fix it.

The following lists forums for the more popular MicroPython boards. If you do not
see your board here, Google for it next time you are online; then, if you like the forum,
bookmark it for faster access.

•	 Pyboard (and MicroPython) Forum: https://forum.
micropython.org/

•	 Pycom (WiPy) Forum: https://forum.pycom.io/

•	 CircuitPython Forum: https://forum.micropython.org/
viewtopic.php?f=16&t=2894

•	 General Python Forum (not specific to MicroPython): https://
www.python.org/community/

■■ Note  I include more tips for interacting with community forums in Chapter 12.

Handle with Care!
You should consider your MicroPython board as a very sensitive device susceptible to
electrostatic discharge (ESD). Unless you place your board in a case, you should handle
your board carefully always placing it on a non-conductive surface before powering it on.
ESD can be caused by many things (think back to when you were a child with sneakers on
carpet). This discharge can harm the board. Always ensure you handle your board so that
ESD is controlled and minimized.

Figure 3-3 shows an example of the Pyboard in a protective case as shipped from
the vendor. This clamshell case is just a little larger than the board itself and closes with a
snap to keep the board safe while it rattles around in the bottom of your kit.

https://forum.micropython.org/
https://forum.micropython.org/
https://forum.pycom.io/
https://forum.micropython.org/viewtopic.php?f=16&t=2894
https://forum.micropython.org/viewtopic.php?f=16&t=2894
https://www.python.org/community/
https://www.python.org/community/
http://dx.doi.org/10.1007/978-1-4842-3123-4_12

Chapter 3 ■ MicroPython Hardware

66

You should also never move the board when it is powered on. Why? The
MicroPython boards have components soldered on with many pins exposed on both
sides. Should any two or more of those pins touch something that conducts electricity,
you can risk damaging the board.

Also, always store your board in an ESD safe container – one that is expressly made
to store electronics. Your average, everyday, inexpensive plastic box should be avoided.
However, if you do not have a container made for electronics, you can use static free bags
to place the board in while it is being stored. Many of the boards and components you
buy come in such packaging. So, don’t throw it away!

You should take care to make sure your body, your workspace, and your project is
grounded to avoid electrostatic discharge (ESD). The best way to avoid this is to use a
grounding strap that loops around your wrist and attaches to an anti-static mat like these
uline.com/BL_7403/Anti-Static-Table-Mats.

Finally, be extra careful when connecting your USB cable to your board. Most boards
come with a micro USB connector, which is prone to breakage (more so than other
connectors). In most cases, it is not the cable that breaks but the connector on the board
itself. When this happens, it can be very difficult to repair (or may not be repairable). It is
also possible that the cable itself will stop working or only work when you hold the cable
in place. If this happens, try a new cable and if that fixes the problem, throw the old one
away. If it does not fix the problem, it may be the connector on the board. Fortunately,
extra care when plugging and unplugging the cable can avoid these issues. For example,

Figure 3-3.  The Pyboard v1.1with Headers in its Protective Case

Chapter 3 ■ MicroPython Hardware

67

always plug the micro USB side first and use the full-size USB end to plug and unplug
from your PC. The fewer number of times you use the micro USB connector, the less
chance you have of damaging it.

PC Doesn’t Recognize the SD Drive
One of the things that people most often struggle with when using their board for the first
time with a micro SD card/drive is when the operating system does not recognize the
on-board USB drive. Should your board come with a USB-ready drive (internal or external),
and you cannot see it in your file explorer (or finder), there are several things you can
do to fix the problem. First, if the board has a removable micro SD drive, make sure it is
inserted properly and that it is formatted as FAT. If you supplied your own micro SD card,
this is usually the problem. Reformat it as FAT and it should work.

On the other hand, if the board has a removable micro SD drive as well as an on-board
drive, remove the micro SD card, and then try to connect the board to your PC again.
Sometimes the external micro SD card takes precedence over the on-board drive.

If your board doesn’t show at all or you are having problems connecting to it over
USB, there are several possible causes. First, ensure your USB cable is the one the vendor
recommends. If you’re like me and have accumulated a veritable snake pit of USB cables,
it is likely one or more of your “favorite” cables is a charging cable and not a data cable.
That is, the cable can be used to charge devices but the pins (wires) for transmitting data
are missing or not connected. Check your cable first.

The next likely situation is that your PC does not have the proper driver installed.
Be sure to check the vendor’s website for which drivers you need to install. Some require
special drivers for certain operating systems. For example, you will need a driver for most
boards if you use Windows 10.

Another possible issue is the board needs external power. I have seen this on some
early prototype boards and in some cases for production boards (but none listed in this
chapter). In this case, you need to power the board on first before connecting it to your PC.

Loose or Missing Jumpers
One of the things that can happen when using a board that has jumpers (small plastic
connectors designed to complete a circuit) is the loss of one or more jumpers. Jumpers
are used to enable or disable certain features. Figure 3-4 shows an example of a pinout for
the jumpers on the WiPy Expansion Board.

Chapter 3 ■ MicroPython Hardware

68

Jumpers are so small and that they can be easily lost or misplaced. If you lose your
jumpers and need replacements, you can usually get some from a computer repair
shop in your area. If there aren’t any computer repair shops in your area, if you find a
PC enthusiast who builds his own PCS, you should be able to get a few jumpers from
them. Why? Because those guys normally have a ton of them on hand. When I managed
a computer business, I couldn’t give the things away. I still have hundreds lying around
somewhere. The bottom line is you shouldn’t have to buy them – someone around you,
I am certain, has a few spares.

If one or more jumpers fall off, you can tighten them to make them harder to remove.
To tighten the jumpers, use a pair of needle-nose pliers and gently (did I mention gently?)
compress the female sockets. There’s a bit of a trick to doing that. You can also gently
bend the jumper pins slightly out at the top of the pin to make the jumpers fit more
snugly. Of course, you can find that computer enthusiast and get a new one if it is still too
loose or you damage it.

Some boards, such as the WiPy Expansion Board,4 have several jumpers that do not
affect operation if they are removed. For instance, if you aren’t using a lithium polymer
(LIPO)5 battery, connecting via USB, etc., then you’re fine if some of the jumpers are
removed and you can use the unused one in place for one that is lost.

Now that we’ve had a look at some considerations for getting started with
MicroPython boards, let’s start our tour of the available boards starting with those that
have MicroPython loaded and ready to use. Each section includes a brief overview of the
board as well as notes on how to get started using the board and where you can buy the
board.

Figure 3-4.  Jumpers on the WiPy Expansion Board

4https://docs.pycom.io/pycom_esp32/_downloads/exp_v03_pinout_v13.pdf
5https://en.wikipedia.org/wiki/Lithium_polymer_battery

https://docs.pycom.io/pycom_esp32/_downloads/exp_v03_pinout_v13.pdf
https://en.wikipedia.org/wiki/Lithium_polymer_battery

Chapter 3 ■ MicroPython Hardware

69

MicroPython-Ready Boards
The first category of boards we will explore are those boards that come with MicroPython
installed and ready to use. These boards are those that you do not need to install any
software to use (though you may need to update the firmware periodically or install a
driver on your PC). Thus, these boards are the best choices for those new to MicroPython
and electronics in general. However, that doesn’t mean the boards are not powerful – they
are! In fact, the projects in this book are demonstrated using these boards and you will
find they are more than adequate for most small- to medium-sized IOT projects.

The MicroPython-ready boards at the time of this writing are the Pyboard and WiPy.
Both are good choices, but as we will see one is a bit easier to use for IOT projects.

Pyboard
The Pyboard MicroPython board was one of the first boards produced to host
MicroPython. In some ways, it has set the standard for how MicroPython boards
should be configured and how it operates. It was created by Damien George and
began life in 2013 as a Kickstarter campaign to implement Python on a chip to host on
microcontrollers. Pyboard and its accessory boards are produced and sold by George
Robotics Limited (micropython.org).

Overview
The most noticeable feature of the board is its small size. The board measures
approximately 40mm x 40mm and has two breakaway “ears” for mounting the board.
Without the ears, the board is about 32mm by 40mm. That is, if you do not want to mount
the board, you can break off the ears and reduce the size even more. The board has
space for headers on three sides. One side contains a connector for a micro USB cable
for connecting to your PC (or powering the board) as well as a micro SD drive. Figure 3-5
shows a close-up view of the Pyboard v1.1.

Figure 3-5.  The Pyboard v1.1 without Headers (courtesy of adafruit.com)

Chapter 3 ■ MicroPython Hardware

70

Notice the small ears in the upper-left and lower-right corners of the board. These
are perforated for easy removal. So far, they do not get in the way; so unless you have a
smaller, tight fitting case, you can leave them attached.

You can also see two small buttons on the board near the micro USB connector.
One is a user-defined button that you can program (USR) and the other is the reset
button (RST) for resetting the board. The center of the board is dominated by the ARM
processor chip.

Finally, there are four LEDs on the board located next to the micro SD card slot.
These are used to communicate errors, power on, and can be turned on or off from your
code!

More About the Hardware
Now let’s learn a bit more about the hardware – more specifically, some of the details and
specifications that you may not know but might be handy to know.

When you use the board with a micro SD card inserted (and the card is formatted as
FAT), the board will boot with that drive mounted instead of the internal drive and it will
show up when you connect your Pyboard to your PC. You will not see the internal drive,
however. This is a source of confusion for many. If you want to use the internal drive to
boot, you must create a folder on the micro SD named flash and an empty file inside that
named SKIPSD. Do this and then disconnect and reconnect your board. After that, you
can access the micro SD card from your script.

Recall the boot drive is used to hold the boot.py and main.py files; the boot.py file
executes on boot and the main.py is called once the board is running. Changing these to
add your custom programs is how you make the board boot into your project by default.

However, both drives are accessible from Python regardless of which one is used
to boot. The internal drive is under the folder /flash and the micro SD card (when the
SKIPSD trick is issued) is under the folder /sd (older versions of the board used 0:/
and 1:/ respectfully). Use these paths in your Python code to access the correct drive.

The board also supports alternative boot modes, which are initiated by using the
USR button. To change the mode, press and hold the USR button when you plug in
(or power on) your board. As you hold the button down, the LEDs on the board will
illuminate as follows. Release the USR button when the board cycles to the mode you
want.

•	 When the green LED is illuminated, the board boots normally.

•	 When the orange LED is illuminated, the board skips running the
boot.py and main.py files on boot.

•	 When the green and orange LEDs are illuminated, the board
resets the filesystem on the internal drive returning the boot.py
and main.py to the factory content.

The last mode is very useful if you manage to brick your board. More specifically, if
your board becomes unusable or won’t start correctly, try this mode first to see if it fixes
the problem.

Chapter 3 ■ MicroPython Hardware

71

Another use for the LEDs is indicating there is a Python error. If the red and green
LEDs flash, it indicates there is an error in one of your Python scripts called from main.py.
If all the LEDs are cycling on, it indicates there may be a hardware fault. Try powering off
the board and resetting the filesystem. If that doesn’t work, your board may be damaged.

The Pyboard is made up of several major components. I list them here for those
interested in seeing what capabilities are supported. I begin with the microcontroller and
memory specifications.

•	 STM32F405RG microcontroller

•	 168 MHz Cortex M4 CPU with hardware floating point

•	 1024KiB flash ROM and 192KiB RAM

•	 3-axis accelerometer (MMA7660)

•	 Real-time clock with optional battery backup

•	 24 GPIO pins

•	 (2) 12-bit digital to analog (DAC) converters, available on pins X5
and X6

•	 (3) 12-bit analog to digital converters, available on 16 pins, 4 with
shielding

•	 4 LEDs

•	 (1) micro SD slot

•	 (1) micro USB connector for communicating with your PC

•	 1 reset (RST) and 1 user (USR) switch

•	 3.3V LDO voltage regulator, capable of supplying up to 300mA to
components with an input voltage range 3.6V to 10V

•	 DFU bootloader in ROM for easy upgrading of firmware

If you’re interested in learning more about some of these components, the following
are links to additional data and datasheets for the major components.

•	 Microcontroller (STM32F405RGT6): http://www.st.com/en/
microcontrollers/stm32f405rg.html

•	 Accelerometer (Freescale MMA7660): http://micropython.org/
resources/datasheets/MMA7660FC.pdf

•	 LDO Voltage Regulator (Microchip MCP1802): http://
micropython.org/resources/datasheets/MCP1802-22053C.pdf

As mentioned previously, the Pyboard is available in several versions included with
and without headers soldered, and earlier versions of the board (v1.0) that are somewhat
slower and may have less hardware features. I recommend using the v1.1 boards for all
your projects.

http://www.st.com/en/microcontrollers/stm32f405rg.html
http://www.st.com/en/microcontrollers/stm32f405rg.html
http://micropython.org/resources/datasheets/MMA7660FC.pdf
http://micropython.org/resources/datasheets/MMA7660FC.pdf
http://micropython.org/resources/datasheets/MCP1802-22053C.pdf
http://micropython.org/resources/datasheets/MCP1802-22053C.pdf

Chapter 3 ■ MicroPython Hardware

72

WHAT, NO INTERNET?

One of the features that you may expect to find is missing from the Pyboard. There
is no networking capability. While it is true the latest firmware includes provisions for
using two networking hardware (CC3000 and WizNet5000), you must buy modules
(breakout boards) that support one of those chipsets/libraries to connect your
Pyboard to the Internet (or your local network). Some may find using the Pyboard
without networking is fine for most projects, but the projects later in this book will
require connecting to the network. After all, this is an IOT book! So, if you intend
to build an IOT project, you may want to consider a different board or check out
the networking example in a later section for how to connect your Pyboard to your
network.

If you want to power your board using an external power source or battery, you must
ensure the power source is set to 3.6-10V. Connecting higher power can damage the
board. Lower power can make the board unstable (it may fail to run correctly). You can
connect power to (positive) to VIN and ground (negative) to GND. Figure 3-6 shows a
close-up of where these pins are located near the micro USB connector.

■■ Tip  Always eject your drive before unplugging it or resetting the board.

Now, let’s see the Pyboard in action starting with a simple walkthrough of connecting
to our PC and running a simple Python program.

Getting Started with Pyboard
We discussed the REPL console in Chapter 2 including how to connect the board to
your PC. Let’s run through that again so we can be sure we understand how it works.
To connect to your board, use a USB to micro USB cable connecting one end to your

Figure 3-6.  Pins for connecting external power (Pyboard)

http://dx.doi.org/10.1007/978-1-4842-3123-4_2

Chapter 3 ■ MicroPython Hardware

73

Pyboard and the other end to your PC. What you should see after a few moments is a
drive mounted named PYBFLASH (or on Windows, a new drive letter appears in the file
explorer tree).

■■ Tip  If you use Windows 10 and the Pyboard takes a very long time (more than 5
minutes) to show up as a USB drive, you need to update your firmware. In fact, this is a
known issue and has been fixed in a recent firmware release.

You can then open the USB drive and modify the files there by editing them on the
drive or by copying files to the drive. For example, if you want to modify the main.py
script to include your own code or load your own script file, you can make the changes
and then eject the drive and reset the board. Once you’ve done this, the code you added
or script you’ve set to call will fire when the board boots. We will see how to do this in a
later chapter.

You can also start the REPL console as we saw in Chapter 2. Figure 3-7 shows an
example of the REPL console connected to the Pyboard. In this case, the code is simply
printing a statement – the now cliché Hello, World! message.

Loading the Firmware
Recall that we discussed the need to load firmware periodically. This applies to all
boards regardless of whether they are MicroPython ready. This is because the version of
MicroPython continues to be refined and defects are being repaired. Thus, to ensure you
have the very latest updates, you should update your firmware at least once when you
get the board and only when needed later such as when you discover a defect or a new
hardware component is added to the library. Loading firmware on each board is a little
different, but we will start with the Pyboard in this section in some detail then mention
the differences in the procedure for the other boards in this chapter.

Before you get started, you should check the version of the firmware loaded. You
can do that with the following Python statements. In this case, the code is being run on a
Pyboard connected via the REPL console.

Figure 3-7.  The REPL Console (Pyboard)

http://dx.doi.org/10.1007/978-1-4842-3123-4_2

Chapter 3 ■ MicroPython Hardware

74

>>> import os
>>> os.uname()
(sysname='pyboard', nodename='pyboard', release='1.9.1', version='v1.9.1-
80-g3e82bedf on 2017-06-27', machine='PYBv1.1 with STM32F405RG')

Here we see the firmware version is 1.9.1, which at the time of this writing was the
latest available. It also shows the date the firmware was loaded as well as the name of the
firmware file. Finally, we also see the board name.

You can download the firmware modules from http://micropython.org/
download/. By way of example, the file used to update the Pyboard to the latest version
now6 is named pybv10-network-20170629-v1.9.1-95-g1942f0ce.dfu (latest) and
contains the networking hardware support. Figure 3-8 shows an excerpt of the website
showing the file and its description. When you visit the site, you will find firmware for
a wide variety of boards. Be sure to mark this page as you will need it if you want to use
other boards.

Figure 3-8.  Excerpt of Firmware Available for the Pyboard

6The version number may not change, but the date or build number may change frequently.

http://micropython.org/download/
http://micropython.org/download/

Chapter 3 ■ MicroPython Hardware

75

Notice the files are named with a file extension of .dfu, which stands for Device
Firmware Update7 – a special binary format for firmware. You should download the latest
version of the firmware. Be sure to choose the one that matches your board! For example,
I chose the file under the heading Suitable for PYBv1.1 boards, with network drivers for
CC30000 and WIZ820io included because I want to use my Pyboard with a networking
module. You should choose the firmware that has the minimal set of support needed to
help save on space (memory), but, so far, this has not been an issue.

Next, you will need a DFU programmer. If you use Windows, download the
programmer from http://www.st.com/en/development-tools/stsw-stm32080.html.
Choose the version that matches your system (32- or 64-bit) and install it. You may need
to first register your request via email first.

If you use macOS or Linux, you can download a pure Python version of the DFU
loaded from https://github.com/micropython/micropython. Click the Clone or
download button then Download Zip button and save the file to your PC. This will
download all the tools and utilities for use with MicroPython. Once downloaded, unzip
the file and locate the file named pydfu.py in the tools folder. See https://github.com/
micropython/micropython/wiki/Pyboard-Firmware-Update for more information about
how to use this DFU programmer on Linux or macOS.

The next thing you must do is place the Pyboard in DFU mode. This is done using a
jumper wire placed between the DFU and 3.3V pins as shown in Figure 3-9. The 3.3V pin
is marked on the edge of the board and the DFU pin is the one next to it (not marked but
located on the second row). Do this before you connect your board to your PC.

7https://en.wikipedia.org/wiki/USB#Device_Firmware_Upgrade

Figure 3-9.  DFU Mode Jumper (Pyboard)

http://www.st.com/en/development-tools/stsw-stm32080.html
https://github.com/micropython/micropython
https://github.com/micropython/micropython/wiki/Pyboard-Firmware-Update
https://github.com/micropython/micropython/wiki/Pyboard-Firmware-Update
https://en.wikipedia.org/wiki/USB#Device_Firmware_Upgrade

Chapter 3 ■ MicroPython Hardware

76

■■ Note  The first time you connect your board in DFU mode to your PC, Windows 10 may
install a driver. If the driver install starts, select the automatic option and allow Windows to
search for the driver. When that process is complete, you are ready to load the firmware.

Now let’s see how to update the firmware using Windows 10. Once you’ve
downloaded the firmware you want to load and have installed the DFU programmer,
you can start it and then click the Choose button in the Update or Verify Action section
(see below) and search for the file you downloaded and then open it. Once the file is read,
click the Upgrade button to start the update. The process will begin to update the board
and display a complete message as shown in Figure 3-10.

Figure 3-10.  DFU Programmer (Windows 10)

Chapter 3 ■ MicroPython Hardware

77

When the process is complete, click Quit to close the DFU programmer, disconnect
your board from your PC, and remove the jumper. The board will now boot with the
newest firmware.

Networking with the Pyboard
This section will show you what you need to do to make your Pyboard a network enabled
device. We will go through this briefly as only those who own a Pyboard will need to do
this step as part of their setup and getting started and only when we get to the example
projects that use the Internet.

First, you must purchase a network module. This is the hard part as the only two
chipsets/libraries supported to date are the CC3000 (CC3K) for WiFi and WIZNET5000
(WIZNET5K) for Ethernet. Sadly, finding one of the CC3K modules can prove to be a
challenge because those retailers that made them have updated to newer chips.

Fortunately, Adafruit made a CC3K module (and Arduino shield) that works.
Unfortunately, they no longer make this board having replaced it with a better one that
uses a different chipset (and thus is not compatible). You can find similar boards on
popular Internet auction sites, but most vendors are in Asia so shipping will take a bit
longer. Other places to look for these modules include DigiKey (digikey.com), Mouser
(mouser.com), and Amazon (amazon.com), but stock is limited.

Whichever you buy, be sure it has the breakout pins available so you can connect it
to your Pyboard. Look for pins labeled MISO, MOSI, CLK/SCK, IRQ, and VBAT_EN/VBEN.
They should appear in a row on the module. Even if it isn’t exactly like the one I will show
you, it should work.

■■ Caution  Be sure you have loaded the firmware with networking support. Standard
firmware does not include the networking modules.

To demonstrate that you can indeed connect your Pyboard to the Internet (you may
find some posts that suggest it isn’t possible), let’s repurpose a CC3000 Arduino shield
from Adafruit. Yes, this means we can use an Arduino shield without an Arduino! Many
of the shields and modules for the Arduino can be used with other microprocessors. You
just need to know how to connect the pins to the Pyboard. Don’t worry, I will show you
exactly how to do this. Figure 3-11 shows the shield without headers installed.

Chapter 3 ■ MicroPython Hardware

78

One of the reasons Adafruit is such a fantastic resource is they include datasheets
and how-to guides for all their products. They even maintain the links for discontinued
products. After a brief review of their documentation, the pins needed to use the shield
with the Pyboard are labeled on the shield itself and in the document.

The MicroPython documentation (https://docs.micropython.org/en/latest/
pyboard/library/network.html) has an excellent guide for how to use the libraries
supported. In this case, an examination of the sections for the CC3000 revealed the pins
needed to connect the CC3000 module to the Pyboard. Fortunately, since the CC3000
shield was used with an Arduino, the shield had the Arduino headers added. We will use
those to connect to the Pyboard.

Table 3-1 shows the correct pins on both boards. Simply use a male-to-female
jumper to connect the pins on the Pyboard to the correct pin on the CC3000 shield.
Connect the male side to the pin on the shield (which would normally plug into the
Arduino) and the female side to the Pyboard pin. You will need a total of eight jumpers.
Note that other modules may have a similar arrangement. The pins are labeled the same
as shown in the table but may be numbered differently or arranged in a dedicated header.

Figure 3-11.  Adafruit CC3000 Arduino Shield (courtesy of adafruit.com)

Table 3-1.  Mapping Pins from the Pyboard to the CC3000 Shield

Pyboard CC3000 Shield

Pin Name Pin Number Pin Name Pin Number

V+ 5V

GND GND

Y3 Y3 IRQ Digital 3

Y4 Y4 VBAT_EN Digital 5

Y5 Y5 WCS Digital 10

Y6 Y6 SCK Digital 13

Y7 Y7 MISO Digital 12

Y8 Y8 MOSI Digital 11

https://docs.micropython.org/en/latest/pyboard/library/network.html
https://docs.micropython.org/en/latest/pyboard/library/network.html

Chapter 3 ■ MicroPython Hardware

79

Figure 3-12 shows a connection diagram for all the connections and Figure 3-13
shows what the connections will look like when you’re done. It’s a bit messy, but it works.
Just be sure to place the shield and board on a non-conducting work surface.

Figure 3-12.  Connecting the CC3000 to the Pyboard

Figure 3-13.  Pyboard with Adafruit CC3000 Arduino Shield

Chapter 3 ■ MicroPython Hardware

80

■■ Note  If you examine the CC3000 shield carefully, you will see there are holes for a
separate header that you could use if you’d rather not use the Arduino headers.

If you have a Pyboard and a CC3000 shield, go ahead and make the connections.
Just be sure your Pyboard is not connected to your PC first. Once all the connections are
made, you can connect your Pyboard to your PC.

Now, let’s write some code to test the module and connect our Pyboard to the
Internet. Since this is a WiFi shield, we will need to know the name of your WiFi access
point (router) and the password. The code we need to use is shown in Listing 3-1.

Listing 3-1.  Using the CC3000 Module on a Pyboard

connect/ show IP config a specific network interface
import network
import pyb

def test_connect():
 nic = network.CC3K(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.
Pin.board.Y3)
 nic.connect('YOUR_ROUTER_HERE', 'YOUR_ROUTER_PASSWORD_HERE')
 while not nic.isconnected():
 pyb.delay(50)
 print(nic.ifconfig())

 # now use usocket as usual
 import usocket as socket
 addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
 s = socket.socket()
 s.connect(addr)
 s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
 data = s.recv(1000)
 print(data)
 s.close()

Take a moment to read through the code. The code is designed to connect to the
micropython.org website and return the header data. Notice besides the networking
code, there are statements to print the network information and data returned from the
website. Also, notice the code is implemented as a function named test_connect(). We
will call that function from the REPL console. Don’t worry, it’s very easy.

Go ahead and edit the code to include your router and password and then save it to
your Pyboard USB drive with the name CC3K.py. Next, connect to your Pyboard with the
REPL console and then issue the following commands. This will load the module and
then run the code and test the connection.

>>> from CC3K import test_connect
>>> test_connect()

Chapter 3 ■ MicroPython Hardware

81

The connection may take a few moments to execute but when it completes, you
should see a line that prints out the connection information and, following that, notice
that the data returned from connecting to the website. If you see connection errors, be
sure to verify your router name and password.

('10.0.1.123', '255.255.255.0', '10.0.1.1', '10.0.1.1', '10.0.1.1',
'08:00:28:59:23:cb', 'MY_ROUTER')
b'HTTP/1.1 200 OK\r\nServer: nginx/1.8.1\r\nDate: Thu, 29 Jun 2017
02:21:50 GMT\r\nContent-Type: text/html; charset=utf-8\r\nTransfer-
Encoding: chunked\r\nConnection: keep-alive\r\nVary: Accept-Encoding\r\
nX-Frame-Options: SAMEORIGIN\r\n\r\n3dc3\r\n<!DOCTYPE html>\n\n\n\
n<html lang="en">\n <head>\n <meta charset="utf-8">\n <meta http-
equiv="X-UA-Compatible" content="IE=edge">\n <meta name="viewport"
content="width=device-width, initial-scale=1">\n <!-- The above 3
meta tags *must* come first in the head -->\n\n <link rel="icon"
href="/static/img/favicon.ico">\n\n <title>MicroPython - Python for
microcontrollers</title>\n\n <link href="/static/bootstrap-3.3.7-dist/
css/bootstrap.min.css" rel="stylesheet">\n\n <link href="/static/css/sty'

If that seemed like a lot of work, don’t worry as this is as complicated as it gets for
connecting your Pyboard to the Internet. Don’t worry too much about understanding all
the code now. We will explore Python and the MicroPython libraries in more depth in the
next few chapters.

Now let’s discover where you can purchase our own Pyboard.

Where to Buy
You can find the Pyboard online from micropython.org (https://store.micropython.
org/store/#/store). The boards ship from the European Union but shipping costs
are reasonable. If you are in North America, you can also buy the boards and related
accessories from Adafruit (https://www.adafruit.com/?q=pyboard&). Depending on
currency exchange and shipping (how quickly you want the board delivered), you may
find the boards are slightly cheaper to order from the European Union. You can also find
the board on various auction sites and other retail sites like Amazon. You can expect to
pay about $35-$40 USD for your Pyboard.

You can buy the Pyboard with or without headers installed. Older versions of the
board can be purchased the same way and there is a version without the accelerometer,
which makes it a bit cheaper. However, I recommend buying the latest, v1.1 board.

As for the networking module, your best bet is to either wait until more hardware
support is added to the MicroPython library (and upload the firmware) or find one of the
older Adafruit CC3000 modules. Check online auction sites for vendors still offering these
or someone who has a used one for sale.8

8I feel it is only a matter of time before a networking board (skin) or similar is offered by micropy-
thon.org. Check their site for updates.

https://store.micropython.org/store/#/store
https://store.micropython.org/store/#/store
https://www.adafruit.com/?q=pyboard

Chapter 3 ■ MicroPython Hardware

82

WiPy
The WiPy MicroPython board is another of the first MicroPython-ready boards. As the
name suggests, the WiPy has WiFi networking built in that acts as a host (think router
or access point). In fact, the default way your work with the WiPy is over WiFi. So, you
don’t have to use another module to make your project Internet ready. This feature alone
makes the WiPy a better choice for the projects in this book. As a bonus, the board also
has Bluetooth, making it even easier to adapt to your projects.

Overview
The most noticeable feature of the board is its small size. The board measures
approximately 40mm x 40mm and has two. The WiPy comes as a small module not much
bigger than a pack of gum, measuring a mere 42mm x 20mm and only 3.5mm thick
(without headers).

The board comes with or without headers (get the one with the headers or install
them yourself). You can use the board on a breadboard or you can also purchase a special
board that operates like a dock. Pycom calls it the expansion board and provides a micro
SD drive, micro USB connector, LEDs, replicates all the header pins, and includes a
battery connector. The expansion board makes using the WiPy considerably easier and
there is only one trick to using it as we will see. Figure 3-14 shows the WiPy board from
Pycom.

The expansion board allows you to connect to your WiPy over USB and power the
board with a LIPO battery or via USB. I like the expansion board for its convenience. Plus,
it has holes in each corner, making it possible to mount it on risers for easier access to
the pins or to mount it permanently to a case or tool holder. It even has a user-accessible
(programmable) button and LED. Figure 3-15 shows the Pycom Expansion Board.

Figure 3-14.  Pycom WiPy (courtesy of pycom.io)

Chapter 3 ■ MicroPython Hardware

83

■■ Tip  The current release of the WiPy is version 2.0. If you purchase a WiPy and want the
Expansion Board, make sure you also purchase the 2.0 version of the Expansion Board.

Of course, the Expansion Board is quite a bit larger, measuring about 50mm x 65mm
and with the WiPy installed about 14mm thick. Still small, but not as small as the WiPy itself.

The micro SD drive and micro USB connector are features you will likely want to
have when working with your WiPy. Another feature of the Expansion Board that may
make it worth the extra cost is that the LIPO battery connector is also a charger so while
your board is plugged into a USB power supply, it charges the LIPO battery.

More About the Hardware
Now let’s learn a bit more about the hardware – more specifically, some of the details and
specifications that you may not know but might be handy to know.

First, the micro SD card on the Expansion Board (the WiPy does not have an SD drive)
does not work the same way as the Pyboard. The WiPy cannot boot from the micro SD
drive, but it is still possible to store your files and access them from your programs. We
will see more about how to work with the micro SD drive in the next section.

The next thing we should discuss is the boot modes. You can change the boot mode
like the Pyboard, which can be helpful if something goes wrong but unlike the Pyboard,
the boot modes work with the configuration (firmware) changes rather than how the
board boots. More specifically, you can set the board to safe boot, which skips off the
boot.py and main.py scripts. The safe boot modes include the following.

•	 Safe boot with the latest firmware

•	 Safe boot with the previous user updates

•	 Safe boot with factory settings

Figure 3-15.  Pycom Expansion Board (courtesy of pycom.io)

Chapter 3 ■ MicroPython Hardware

84

To activate and select the save boot mode, place a jumper wire between the P12 pin
(GPIO20) and 3.3V. This effectively “pulls up” the pin so that the firmware can detect the
selection. When holding the board so that the USB connector is on top, the P12 pin is
the last pin on the left, and the 3.3V pin is the third from the top on the right. Figure 3-16
shows a properly installed jumper on the WiPy Expansion Board.

When you power on the board, the LED will turn orange and start flashing slowly.
If you leave the jumper in place after 3 seconds, the LED will start blinking a bit faster and
the board will boot with the latest firmware. If you leave the jumper in place for 3 more
seconds, the board will boot with the previous user update select. Finally, if you leave the
jumper in place 3 more seconds, the LED will flash faster, indicating the board will boot
with the factory settings. Remove the jumper at any point during this sequence to select
the desired safe boot mode.

The WiPy board supports both WiFi and Bluetooth communication mechanisms
making it an excellent choice for an IOT project. It features an Espressif ESP32 chipset
and dual processor. Additional features include the following.

•	 Powerful CPU, BLE and latest WiFi radio

•	 1KM WiFi Range

•	 Fits in a standard breadboard (with headers)

•	 Ultra-low power usage: a fraction compared to other connected
micro controllers

•	 Hash / encryption: SHA, MD5, DES, AES

Figure 3-16.  Jumper Installed for Safe Boot Selection (WiPy Expansion Board)

Chapter 3 ■ MicroPython Hardware

85

•	 WiFi

•	 802.11b/g/n 16mbps

•	 Security: SSL/TLS support and WPA Enterprise security

•	 Bluetooth: Low energy and classic

•	 RTC: Running at 32KHz

•	 Power: 3.3V to 5.5V, 3V3 output capable of sourcing up to 500mA

•	 Memory

•	 RAM: 512KB

•	 External flash 4MB

•	 Hardware floating-point acceleration

•	 Python multi-threading

What is interesting is that Pycom makes several other MicroPython boards that
you can use for more advanced projects. Each board is designed to support a different
communication mechanism (WiFi, radio, cellular, and Bluetooth) and advanced features
for embedded solutions. They all have the same form factor as the WiPy. These include
the following boards. See the product description pages for more information.

•	 SiPy: supports Sigfox, WiFi, and BLE (https://www.pycom.io/
product/sipy/)

•	 LoPy: supports LoRa, WiFi and BLE (https://www.pycom.io/
product/lopy/)

•	 GPy: supports WiFi, BLE and cellular LTE-CAT M1/NB1
(https://www.pycom.io/product/gpy/)

•	 FiPy: Sigfox, LoRa, WiFi, BLE and cellular LTE-CAT M1/NB1
(https://www.pycom.io/product/fipy/)

Best of all, the Pycom Expansion Board works with these boards. Clearly, Pycom is
in the business to supply the IOT world a host of powerful microprocessors – all running
MicroPython!

If you want to power your board using an external power source or battery, you must
ensure the power source is set to 3.3-5V. Connecting higher power can damage the board.
Lower power can make the board unstable (program may fail). You can connect power to
(positive) to VIN and ground (negative) to GND. Figure 3-17 shows a close-up of where
these pins are located near the large LED.

https://www.pycom.io/product/sipy/
https://www.pycom.io/product/sipy/
https://www.pycom.io/product/lopy/
https://www.pycom.io/product/lopy/
https://www.pycom.io/product/gpy/
https://www.pycom.io/product/fipy/

Chapter 3 ■ MicroPython Hardware

86

Now, let’s see the WiPy in action, starting with a simple walkthrough of connecting to
our PC and running a simple Python program.

Getting Started with WiPy
Let’s start with the basics again – the REPL console. Since the WiPy is a WiFi device, the
easiest way to connect to it is over WiFi. If you’re using the Expansion Board, you need
only power on the board with either a USB cable connected to your PC or a USB power
supply. If you are using the WiPy without the Expansion Board, you can power the board
as shown above.

After the WiPy is powered on, it will set up a WiFi network that defaults to
192.168.4.XXX with the WiPy having the IP address of 192.168.4.1. This process can take a
few minutes and during that time the LED on the WiPy will be off. When it starts blinking
blue, your WiPy network is ready for connections.

To connect to the board over WiFi, you must connect your PC to the WiPy WiFi
network. The network SSID should be like wipy-wlan-b454. The password is www.pycom.io.
Follow the normal procedure for your operating system to connect to the network. If your
PC uses WiFi only, you won’t be able to access the Internet at the same time, but you won’t
need to while experimenting with the board.

Once connected to the WiPy WiFi network, you can use telnet to connect to the REPL
console as shown below.

$ telnet 192.168.4.1

Be advised the connection could take a few moments before the REPL console
appears. This is normal. Once the connection is made, you will be asked for the user
and password. Use micro for the user and python for the password. Once you’ve entered
the password, you should see the console and can interact with the WiPy as shown in
Figure 3-18.

Figure 3-17.  Pins for connecting external power (WiPy - courtesy of pycom.io)

http://www.pycom.io/

Chapter 3 ■ MicroPython Hardware

87

You can also connect to your WiPy over USB if using the Expansion Board. However,
you must duplicate the UART communication on the WiPy first. This is a common
oversight and some have complained that their WiPy doesn’t connect over USB. What
they’ve failed to do (besides read the online documentation) is run the following code
on their WiPy when connected over the network. This code duplicates the UART on the
Expansion Board so that you can connect over USB. However, you do not need to do this
if you plan to use your WiPy over the network.

from machine import UART
import os
uart = UART(0, 115200)
os.dupterm(uart)

■■ Note  Newer WiPy boards should already have this code.

If your WiPy does not have this code in the boot.py file, you should consider
adding it.

Connecting to Your WiFi Network
If you want to connect your WiPy to your WiFi network, you will need to make some
small changes to the boot.py script. The easiest way to do that is to copy it from the WiPy,
modify it, and copy the new version to the WiPy. The best way to do this is with file transfer
protocol (ftp). Most operating systems include an ftp client, but if yours does not, you can
find several options for download. Use the user micro and password python to connect.
Listing 3-2 shows how to connect to the WiPy and copy the boot.py file to your PC.

Figure 3-18.  The REPL Console (WiPy)

Chapter 3 ■ MicroPython Hardware

88

Listing 3-2.  Copying Files From the WiPy

$ mkdir wipy_files
$ cd wipy_files/
$ ftp 192.168.4.1
Connected to 192.168.4.1.
220 Micropython FTP Server
Name (192.168.4.1:cbell): micro
Password:
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd flash
ftp> get boot.py
local: boot.py remote: boot.py
227 (192,168,4,1,7,232)
 108 6.33 KiB/s
108 bytes received in 00:00 (6.23 KiB/s)
ftp> get main.py
local: main.py remote: main.py
227 (192,168,4,1,7,232)
 34 2.53 KiB/s
34 bytes received in 00:00 (2.47 KiB/s)
ftp> quit
MacBook-Pro:wipy_files cbell$ ls
boot.py main.py

Notice I created a directory on my local PC and then connected to the WiPy with the
command ftp 192.168.4.1. I then changed to the flash directory and copied the files with
the get command. Once I copied the files, I quit the ftp application and now I have the
files on my local machine.

■■ Tip  Make a backup of your original WiPy files so you can revert to factory settings if
you need to do so.

Now we can modify the boot.py file to connect to our local network. What we need
to do is use the WLAN class from the network module to configure it to scan for networks
and connect to your WiFi network by name (SSID) and password. Listing 3-3 shows the
code you need to add to your boot.py file (new lines shown in bold). Be sure to substitute
your SSID and password in the code before you save it to your WiPy (shown in bold).

■■ Caution  I recommend waiting to do this change to your boot.py file until you’re ready
to run your IOT project. Keep using the WiPy in the default mode until you’ve perfected your
project.

Chapter 3 ■ MicroPython Hardware

89

Listing 3-3.  Enabling WiFi Connection on Boot (WiPy)

boot.py -- run on boot-up
from machine import UART
from network import WLAN
import os
uart = UART(0, 115200)
os.dupterm(uart)
wlan = WLAN(mode=WLAN.STA)
wlan.scan()
wlan.connect(ssid='Your Network SSID', auth=(WLAN.WPA2, 'Your Network
Password'))
while not wlan.isconnected():
 pass
print(wlan.ifconfig()) # prints out local IP

Notice the code for duplicating the UART is also included. Also, note the print at the
end. Before saving the file to your WiPy, you should test the code using the REPL console
over USB and paste it to ensure it works. We must use USB because the WiFi will be reset
during execution. The following shows the results of running the code from the REPL
console.

>>> from network import WLAN
>>> wlan = WLAN(mode=WLAN.STA)
>>> wlan.scan()
[(ssid='SSIDHERE1', bssid=b' \xc9\xd0\x18W\x11', sec=3, channel=1,
rssi=-70), (ssid='SSIDHERE2', bssid=b'\x88\x1f\xa16X\x1c', sec=3,
channel=6, rssi=-78), (ssid='SSIDHERE3', bssid=b'\xb8\x8d\x12bX\xd3',
sec=3, channel=1, rssi=-90)]
>>> wlan.connect(ssid="SSIDHERE1", auth=(WLAN.WPA2, "SSIDPASSWORD"))
>>> while not wlan.isconnected():
... pass
>>> print(wlan.ifconfig())
('10.0.1.128', '255.255.255.0', '10.0.1.1', '10.0.1.1')

Notice the IP address returned (the first one in the print statement) is 10.0.1.128.
Now you can connect to your WiPy using telnet as shown below.

$ telnet 10.0.1.128
Trying 10.0.1.128...
Connected to 10.0.1.128.
Escape character is '^]'.
MicroPython v1.8.6-689-g095792e0 on 2017-06-27; WiPy with ESP32
Login as: micro
Password:
Login succeeded!
Type "help()" for more information.

Chapter 3 ■ MicroPython Hardware

90

Once you’re satisfied it worked (you have the correct SSID and password), you can
make the changes and can copy the file to your WiPy as shown in Listing 3-4.

Listing 3-4.  Copying Files To the WiPy

$ ftp 192.168.4.1
Connected to 192.168.4.1.
220 Micropython FTP Server
Name (192.168.4.1:cbell): micro
Password:
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd flash
ftp> put boot.py
local: boot.py remote: boot.py
227 (192,168,4,1,7,232)
100% |***********************************| 336 1.84 MiB/s 00:00 ETA
336 bytes sent in 00:00 (0.86 KiB/s)
ftp> quit

Now you can reboot your WiPy and wait until the blue LED flashes; then you should
be able to see it on your WiFi network. Cool, eh?

Using the SD Drive
Like the Pyboard, the WiPy, when used with the Expansion Board, has a micro SD drive.
You can use the SD card to store data, scripts, and more. However, unlike the Pyboard, SD
drive is not used when the board is booted (you cannot boot from it) nor is it mountable
when connected to your PC via a USB cable.

Neither the internal drive nor the SD card (if connected to the Expansion Board
and a card is inserted and formatted as FAT) are mounted on your PC. You must use a
file transfer protocol (FTP) application to access your files like we saw in the last section.
However, you can mount the SD card through the REPL console. If you always want to
access the SD drive, you can add this code to your boot.py file on the flash drive.

What we need to do is run some MicroPython code to enable the SD card and mount
it. The following shows how to mount the SD card.

from machine import SD
try:
 sd = SD()
 os.mount(sd, '/sd')
 print('Card mounted at /sd')
except:
 sd = None
 print('ERROR: Card not mounted. ')

Chapter 3 ■ MicroPython Hardware

91

Now when you access your files, you will see the SD card.

$ ftp 192.168.4.1
Connected to 192.168.4.1.
Micropython FTP Server
Name (192.168.4.1:cbell): micro
Password:
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
drw-rw-r-- 1 root root 0 Jan 1 1985 flash
drw-rw-r-- 1 root root 0 Jan 1 1985 sd

Loading the Firmware
Loading the firmware on the WiPy is a bit easier than the Pyboard. Pycom has supplied
very easy-to-use firmware upgrade tools for Windows, macOS, and Linux that step you
through the process automatically selecting the latest version. You can download them
from https://docs.pycom.io/chapter/gettingstarted/installation/firmwaretool.
html. The firmware upgrade process is best done with the Expansion Board.

■■ Tip  If you plan to use a WiPy, be sure to buy the Expansion Board. It is well worth
the cost.

You simply download the upgrade tool for your platform, install it, then run the
application. For example, on macOS, you can click on the link, download the tool, open
the archive, and install it.

Like the Pyboard, you must also jumper one of the pins. In this case, we will pull
pin G23 low by connecting a jumper to GND. When holding the board so that the USB
connector is on top, the G23 pin is the fourth pin from the top on the left, and the GND
pin is the second pin from the top on the right. Figure 3-19 shows a properly installed
jumper on the WiPy Expansion Board.

https://docs.pycom.io/chapter/gettingstarted/installation/firmwaretool.html
https://docs.pycom.io/chapter/gettingstarted/installation/firmwaretool.html

Chapter 3 ■ MicroPython Hardware

92

Now, let’s briefly see how the Pycom firmware upgrade tool runs on macOS. There
are four main panels to the dialog: welcome, setup, communication, and result. You click
the Continue button to advance each panel. On the setup panel, you are reminded of
the connections you need to make and how to set the jumper. On the communication
panel, you select the communication (USB) port where your WiPy is connected. After the
upgrade is complete, the result panel will tell you when you can disconnect the board.
Figure 3-20 shows the dialogs in order, clockwise from the upper left.

Figure 3-19.  Jumper Installed for Firmware Upgrade Tool (WiPy Expansion Board)

Chapter 3 ■ MicroPython Hardware

93

Special Applications
There is one more thing that is unique to the WiPy (and all Pycom boards). Pycom also
supplies a special editor plugin for some popular editors that allow you to connect to and
work with your files on the WiPy. The plugin is named PyMakr and is currently available
for the Atom editor (but will soon be available for other editors). Pycom also provides an
app for your mobile device name PyMate, which allows you to interact with your WiPy on
your mobile device.

The PyMakr plugin is a nice addition to the WiPy experience. The plugin is a
replacement for the original PyMakr editor that Pycom originally released, but they
realized that developing a new editor was less productive than developing it as a plugin
that would allow users to use their existing favorite editor.

The plugin allows you to open a REPL console inside the editor, move (synchronize)
files, open Python scripts and run them, configure the console to connect to your WiPy
on other networks (settings), and get information about your WiPy such as the firmware
version, SSID, and more. Figure 3-21 shows an example of the plugin running in the Atom
editor.

Figure 3-20.  Upgrading the Firmware (WiPy)

Chapter 3 ■ MicroPython Hardware

94

If you like the example of the early release here, you can visit the following URL
and check on future releases for the other editors: https://docs.pycom.io/chapter/
gettingstarted/installation/pymakr.html.

The PyMate app for mobile devices also allows you to interact with your WiPy and is
like the PyMakr plugin for working with the WiPy, but it can provide widgets you can use
to read data from your WiPy and display the data. Widgets can be used to display the data
from your script on your mobile device. Widgets include line and bar charts, buttons to
control LEDs, and much more.

The setup of PyMate requires downloading it from the Apple or Google application
store and configuring it on your mobile device. It also requires registration of the app with
Pycom. Setting up your WiPy requires first connecting to your WiFi (or cellular) network
to download the correct files and then selecting your device and finally connecting to the
WiPy WiFi to upload the files. The process modifies the boot.py file so be sure to make
a backup of that file first. If you get stuck or you can no longer access your WiPy, you can
boot into one of the safe boot modes and copy the original boot.py file to the WiPy (or edit
the one the PyMate created for you). Once you have set up your device in PyMate, you can
connect to it and execute your scripts, configuring the widgets you want to interact with.

The PyMate app is currently very new, and there is very little documentation on how
to use it. For that reason, you may want to wait to use the PyMate app until after you’ve
completed the projects in this book. This is mainly due to the modifications to the boot.py
file but also because you must first learn how to use MicroPython to access hardware so
that you can use the widgets. Figure 3-22 shows the PyMate application.

Figure 3-21.  PyMakr Plugin (Atom)

https://docs.pycom.io/chapter/gettingstarted/installation/pymakr.html
https://docs.pycom.io/chapter/gettingstarted/installation/pymakr.html

Chapter 3 ■ MicroPython Hardware

95

If you have decided to buy the WiPy (and Expansion Board), I encourage you to
check out these applications.

DEEP SLEEP ISSUE RESOLVED

Pycom recently announced a minor issue with their boards regarding a deep sleep
mode, which is a state you can place the board in programmatically to go into a
low-power mode and wake up later. Using deep sleep modes allows the board to
conserve power and can be especially handy for projects that run off solar or battery
power. The issue was found to be a hardware issue and Pycom is building a special
add-on board (called a shield) that you can use to correct the deep sleep issue for
older boards. Visit pycom.io for the latest information on the deep sleep shield. The
projects in this book do not require deep sleep mode, but your own IOT projects may.

Figure 3-22.  PyMate Application (courtesy of pycom.io)

Chapter 3 ■ MicroPython Hardware

96

Where to Buy
You can buy the WiPy and other boards directly from Pycom (https://www.pycom.io/
webshop/). Adafruit also carries the boards but may not have all the latest accessories
(https://www.adafruit.com/?q=pycom&). Pycom also has a handy link of retailers that
you can use to find a reseller closer to you (https://www.pycom.io/where-to-buy/). The
WiPy costs about $25 USD and the Expansion Board about $20 USD. You should consider
buying one Expansion Board to make working with your WiPy easier.

You can buy the board with or without headers. For use in this book, it would be best
to have the headers installed. This allows you to plug the board into a breadboard.

MicroPython-Compatible Boards
The next group of hardware to explore is those boards that do not come with MicroPython
but can be either loaded with MicroPython firmware or can execute MicroPython using
special software.

The boards in this category require some effort to configure and may not be for
the very beginner (except for the BBC micro:bit). They also may not support the same
hardware features such as GPIO pins, have additional hardware that isn’t (currently)
supported by MicroPython, or in one case may require a special variant of MicroPython
to work properly. As such, I will not spend as much time describing the boards or their
hardware. Rather, I present the boards with a brief overview and then describe how to get
started, including the process needed to load MicroPython. If you decide to use one of
these boards, check out the vendor’s website for the very latest information on using the
board with MicroPython.

The boards covered here are the wildly popular BBC micro:bit boards, which
are seeing a growing trend of use in schools, the latest Circuit Playground board from
Adafruit called the Circuit Playground Express, and the Adafruit Feather Huzzah. The
boards are presented in order of complexity required to get MicroPython working on the
board.

BBC micro:bit
The BBC micro:bit board is specially designed to be very easy to use. In fact, it is designed
to help teach children more about hardware and software. In that, the BBC micro:bit is
a huge success. Part of that success is in how easy the board is to use – its form factor
measures only approximately 52mm x 42mm with components on both sides.

On one side is an array of programmable LEDs and two buttons. On the other side
are the components including the processor, micro USB connector, reset button, and
battery connector. The board has its GPIO header arranged along the bottom edge and
is also two sided. A set of large-holed pins (called alligator pins) are spaced evenly that
allow you to ground, power (3V), and (3) GPIO pins. This makes using the board with an
edge connector simple. Figure 3-23 shows the front and back of the BBC micro:bit board.

https://www.pycom.io/webshop/
https://www.pycom.io/webshop/
https://www.adafruit.com/?q=pycom&
https://www.pycom.io/where-to-buy/

Chapter 3 ■ MicroPython Hardware

97

Another reason for the success of this board is the software created to support it.
The developers have created an easy-to-use software for working with the board. Since
the board is intended to be used like an Arduino coding in a C-like language, the software
available is beyond the scope of this book, but you can read more about it at http://
microbit.org/. However, we will see shortly a special application that enables us to
create, edit, and run MicroPython on the BBC micro:bit. Cool.

The BBC micro:bit does not have networking but does have Bluetooth, which you
can use to connect to another device to forward data on to the Internet. So, it can be used
for IOT projects but it is not quite as easy as the WiPy or Pyboard with a WiFi module, and
may require an intermediate node such as a PC or small computer like a Raspberry Pi or
even an Arduino.

The following lists an overview of some of the hardware features of the BBC micro:bit
board. You can also access the on-board USB drive when the board is connected to your
PC via a USB cable.

•	 32-bit ARM Cortex processor

•	 16K RAM

•	 Compass for detecting orientation

•	 Accelerometer for detecting changes in movement (speed)

•	 Low-energy Bluetooth (BLE)

•	 (2) Programmable buttons

•	 A 5x5 array of programmable LEDs

•	 (3) Alligator digital/analog pins

•	 (20) GPIO pins on edge connector

•	 Battery connector

Figure 3-23.  The BBC micro:bit Board (front and back)

http://microbit.org/
http://microbit.org/

Chapter 3 ■ MicroPython Hardware

98

Now that we’ve had a brief tour of the hardware, let’s look at how to use the board
with MicroPython.

Up and Running with MicroPython
The BBC micro:bit board is the easiest alternative board to use with MicroPython. This is
due to two software applications – a desktop application named Mu, and a command-line
tool named uFlash. Mu is a full editor that you can use on your PC and, when connected
to your BBC micro:bit via a USB cable, can save and execute the scripts. The uFlash tool
can be used to manually transfer Python scripts to the board. Both options are available
for use on Windows, macOS, and Linux. Figure 3-24 shows an example of using Mu to
write a short MicroPython script to use the LEDs to scroll a message across them.

Unlike the other boards where we must first install the firmware to use MicroPython,
the BBC micro:bit can be used to run MicroPython scripts using one of these tools.
For example, we can use Mu to write our MicroPython script and then “flash” the BBC
micro:bit board with a compiled version of the script (called a hex file). Yes, this means
you can write your script, compile it, and flash (load the hex file) directly to the board! We
simply write the code in the editor and click Flash to load it on the board. Best of all, the
board is programmed to always run the script on each boot. So, that means we can load
our own code directly to the board without extra work. Cool.

You can still access the board with the REPL console through the Mu application
by clicking the REPL button. Figure 3-25 shows the REPL console for the BBC micro:bit
running in Mu on Windows 10.

Figure 3-24.  The Mu Editor for MicroPython on the BBC micro:bit

Chapter 3 ■ MicroPython Hardware

99

■■ Tip  You can read the very latest on using MicroPython on the BBC micro:bit at
https://microbit-micropython.readthedocs.io/en/latest/.

Where to Buy
You can purchase the BBC micro:bit as well as several accessories from a few retailers
including Adafruit (https://www.adafruit.com/?q=micro%3Abit&), Sparkfun (https://
www.sparkfun.com/categories/284), The Pi Hut (https://thepihut.com/collections/
micro-bit-store), and Kitronik (https://www.kitronik.co.uk/microbit.html). You
can also buy the boards from the developer in a special “buy one, give one” promotion
that gives free BBC micro:bit boards to schools all over the world at https://give.
microbit.org/. The board costs about $25 USD.

If you plan to use the board for IOT projects or with the projects in this book,
I recommend also purchasing an edge connector breakout board such as the one from
Sparkfun (https://www.sparkfun.com/products/13989).

Circuit Playground Express (Developer Edition)
The next easiest alternative board to use is the Circuit Playground Express board
from Adafruit. In fact, the Circuit Playground Express (Developer Edition) is a curious
alternative board. It’s patterned after several other Adafruit wearable boards where the
board is designed so that it can be incorporated into clothing.9 As such, it is circular and
about 50mm in diameter.

Figure 3-25.  REPL Console via Mu on Windows 10 (BBC micro:bit)

9See https://www.adafruit.com/category/65 for the latest Adafruit wearable products.

https://microbit-micropython.readthedocs.io/en/latest/
https://www.adafruit.com/?q=micro:bit&
https://www.sparkfun.com/categories/284
https://www.sparkfun.com/categories/284
https://thepihut.com/collections/micro-bit-store
https://thepihut.com/collections/micro-bit-store
https://www.kitronik.co.uk/microbit.html
https://give.microbit.org/
https://give.microbit.org/
https://www.sparkfun.com/products/13989
https://www.adafruit.com/category/65

Chapter 3 ■ MicroPython Hardware

100

■■ Note  The current board has the name Developer Edition appended because it is still in
early release. I suspect there will be a more production-complete form of the board in the
future.

Around the outside of the board are 10 pins with large holes (called alligator pads) that
can be used with alligator clips or used to sew with conductive thread. Adafruit also sells
alligator to male jumpers that you may find essential to using the board with a breadboard.
See the Small Alligator Clip to Male Jumper Wire Bundle at https://www.adafruit.com/
product/3255. Another interesting feature is a set of 10 RGB NeoPixels, which are bright
LEDs that you can change the color through code. The board is also loaded with sensors
making a good alternative to experiment with IOT projects. Figure 3-26 shows the Circuit
Playground Express board.

The following lists an overview of some of the hardware features of the Circuit
Playground Express board. You can also access the onboard USB drive when the board is
connected to your PC via a USB cable.

•	 ATSAMD21 ARM Cortex M0 Processor, running at 3.3V and
48MHz

•	 2 MB of SPI Flash storage, used primarily with CircuitPython to
store code and libraries

•	 Micro USB port for programming and debugging. The USB port
can act like serial port, keyboard, mouse, joystick, or MIDI

•	 10 x mini RGB NeoPixels

Figure 3-26.  Circuit Playground Express, Developer Edition (courtesy of adafruit.com)

https://www.adafruit.com/product/3255
https://www.adafruit.com/product/3255

Chapter 3 ■ MicroPython Hardware

101

•	 Motion sensor

•	 Temperature sensor (thermistor)

•	 Light sensor (phototransistor). Can also act as a color sensor and
pulse sensor.

•	 Sound sensor (MEMS microphone)

•	 A mini speaker!

•	 (2) Pushbuttons

•	 (1) Slide switch

•	 Infrared receiver and transmitter. Can also act as a proximity
sensor.

•	 (8) Alligator-clip friendly input/output pins

•	 I2C, UART, 8 pins that can do analog inputs, multiple PWM output

•	 (7) pads can act as capacitive touch inputs and the 1 remaining is
a true analog output

•	 A red “#13” programmable LED

•	 Reset button

■■ Note  There is also a Circuit Playground Classic board from Adafruit. Do not confuse it
with the Circuit Playground Express. The boards are not the same; only the Express board
can run MicroPython.

However, like the Pyboard, the Circuit Playground Express (Developer Edition) does
not have any networking capability. So, you must use an external module to connect to
your network. The best option I’ve found is a Bluetooth module but other modules like
the CC3000 may be alternatives.

The board also does not run MicroPython. Instead, it runs a special version of
MicroPython called CircuitPython. CircuitPython is a derivative of MicroPython designed
and maintained by Adafruit, built especially for the Circuit Playground Express and a host
of other boards. CircuitPython is designed to run on a wide array of boards including the
Circuit Playground Express, Feather, and other popular boards. CircuitPython is currently
compatible with MicroPython version 1.8.4, but it is being updated regularly.

While CircuitPython is compatible with MicroPython, you may need to use
different hardware libraries for some features. There are some differences and these are
documented at https://github.com/adafruit/circuitpython#differences-from-
micropython. But for our uses, it will work nearly exactly like what we would expect from
MicroPython.

https://github.com/adafruit/circuitpython#differences-from-micropython
https://github.com/adafruit/circuitpython#differences-from-micropython

Chapter 3 ■ MicroPython Hardware

102

Adafruit has an excellent set of tutorials and blogs to help you out. For more
information about CircuitPython, see https://github.com/adafruit/circuitpython
and https://learn.adafruit.com/search?q=circuitpython&.

Now that we’ve had a brief tour of the hardware, let’s look at how to use the board
with MicroPython.

Up and Running with CircuitPython
While the Circuit Playground Express board doesn’t have a fancy application like the BBC
micro:bit, once you install the correct driver, loading CircuitPython binaries (firmware)
on the board is surprisingly easy. In fact, all you need to do is download the current
binary and copy it to the board’s drive. The steps involved are summarized below.

If you use Windows 10, you will need to download Adafruit’s special device driver
first. You can get the driver at https://github.com/adafruit/Adafruit_Windows_
Drivers/releases/download/1.0.0.0/adafruit_drivers.exe. Simply download and
run the installer. The driver supports many of the Adafruit boards. When you get the
installation options page, you can select which boards you want to support. I recommend
selecting all the boards so that you can use any of the Adafruit boards that support
CircuitPython. As you will see, there are many such options. Figure 3-27 shows an
example of the installation options.

Figure 3-27.  Adafruit Boards Driver – Installation Options

https://github.com/adafruit/circuitpython
https://learn.adafruit.com/search?q=circuitpython&
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/1.0.0.0/adafruit_drivers.exe
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/1.0.0.0/adafruit_drivers.exe

Chapter 3 ■ MicroPython Hardware

103

Next, we need to download the firmware. Adafruit built the firmware in a special
format called USB Flashing Format (UF2).10 Go to https://github.com/adafruit/
circuitpython/releases and download the latest version. For example, the file I
downloaded was named adafruit-circuitpython-circuitplayground_express-
2.0.0-beta.1.uf2.

■■ Note  When you go to that page, you will find there are two options for each of the
boards: a .bin file and a .uf2 file. The .bin file is used with a command-line tool called
bossac,11 but we will not use that tool since the UF2 format is so much easier to use.

Now you can connect your Circuit Playground Express to your PC. When the USB drive
mounts (it should be named CIRCUITPY), copy the old UF2 file named CURRENT.UF2 to your
PC. We will use this as a backup. Next, drag the new UF2 to the CIRCUITPY folder. When
the file copy completes, the board will reboot and run CircuitPython. That’s it! You’ve just
loaded CircuitPython! See, that was much easier than any of the other boards, eh?

■■ Caution  You must save the original UF2 file so that you can reverse the Circuit Python
install.

You should now see the drive return but without the UF2 file. For example, my
board shows only one file named boot_out.txt. Now you can connect to your board using
screen or, on Windows, PUTTY. But first, check to see which COM port the board is using.
Figure 3-28 shows running the REPL console using PUTTY on Windows.

Figure 3-28.  REPL Console on Windows (Circuit Playground Express)

10https://github.com/Microsoft/uf2
11https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-
circuit-python-circuitpython/circuitpython#flashing-with-bossac

https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython/releases
https://github.com/Microsoft/uf2
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/circuitpython#flashing-with-bossac
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/circuitpython#flashing-with-bossac

Chapter 3 ■ MicroPython Hardware

104

Fortunately, returning the board to the default configuration is also easy. You can do
so by placing the board into bootloader mode by clicking the reset button twice. When in
bootloader mode, the LEDs will turn red, during which time you can copy the original file
we saved named CURRENT.UF2 to the drive that pops up (named CIRCUITPY). Once the
copy completes, the board will reboot and run the original firmware.

Where to Buy
The Circuit Playground Express (Developer Edition) board is available from Adafruit and
resellers of Adafruit products. You can find the board at https://www.adafruit.com/
product/3333. The cost is approximately $25 USD.

If you decide to try the Circuit Playground Express board, I recommend getting
some alligator clips so you can use the board with a breadboard or connect it to other
components. See the Adafruit store for more ideas and accessories for connecting the
board to your components.

Adafruit Feather Huzzah
The Adafruit Feather Huzzah w/ESP8266 WiFi is another very popular board but loading
MicroPython on it is limited to using a command-line tool and is a bit quirky to use
on Windows. Thus, I consider it the hardest to use of the MicroPython-compatible
boards. Fortunately, it does use MicroPython rather than CircuitPython like the Circuit
Playground Express.

In fact, the board has a lot of features that makes it a great alternative board for
MicroPython IOT projects. Chief among these is it has networking and works quite well
on a WiFi network, putting it on par with the WiPy.

One of the reasons this board is so popular is because it is based on ESP826612 WiFi
microcontroller clocked at 80 MHz and is combined with a rich set of features in a small,
lightweight package (hence the feather in the name). The board is also very small – about
the size of a pack of gum measuring 51mm x 23mm x 8mm and fits on a breadboard
also making it an excellent prototyping tool. The board has two rows of GPIO headers
including communication (RX, TX), I2C, and SPI protocols. Figure 3-29 shows the
Adafruit Feather Huzzah board.

Figure 3-29.  Adafruit Feather Huzzah (courtesy of adafruit.com)

12A most ubiquitous chip indeed!

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333

Chapter 3 ■ MicroPython Hardware

105

The following lists an overview of some of the hardware features of the Circuit
Playground Express board. You can also access the onboard USB drive when the board is
connected to your PC via a USB cable.

•	 ESP8266 @ 80MHz with 3.3V logic/power

•	 4MB of FLASH

•	 Built-in WiFi 802.11 b/g/n

•	 3.3V regulator with 500mA peak current output

•	 Micro USB connector

•	 (9) GPIO pins - can also be used as I2C and SPI

•	 (1) Analog input @ 1.0V max

•	 100mA LiPoly charger with charging status indicator LED

•	 Red programmable LED (#0)

•	 Blue programmable LED (#2)

•	 Power/enable pin

•	 4 mounting holes

•	 Reset button

Now that we’ve had a brief tour of the hardware, let’s look at how to use the board
with MicroPython.

Up and Running with MicroPython
The process to use MicroPython on the Feather Huzzah (or any ESP8266 board) requires
making sure you have the correct drivers loaded, using a Python-based serial bootloader
utility in two steps to first erase the flash and then write the new firmware.

First, ensure your PC has the correct drivers loaded to recognize the board. Once
again, Adafruit has a driver we can use and can be found at https://www.silabs.com/
products/development-tools/software/usb-to-uart-bridge-vcp-drivers. Simply
download and install the driver, then reconnect your board to your PC. You should be
able to find the COM port (or /dev/ file) on your PC.

One of the nice things about the Feather Huzzah is that it features an auto-reset
support for getting into bootloader mode before firmware upload. The feature
automatically detects when we attempt to access the bootloader and puts itself in the
correct mode. Cool!

■■ Tip  Loading MicroPython on other ESP8266 boards may require setting the board in
bootloader mode. Check your documentation for how to do this.

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Chapter 3 ■ MicroPython Hardware

106

The only other thing we need is the correct firmware file. You can download the
latest firmware from http://micropython.org/download/#esp8266. I chose the latest
version supporting debugging but with the Web-based REPL turned off – a file named
esp8266-ota-20170613-v1.9.1-4-g6ed4581f.bin. Download the file, and remember
where you put it (and its name) as we will need it soon.

To begin the firmware load, we will need the ESP8266 and ESP32 serial bootloader
utility from https://github.com/espressif/esptool. Download the tool using the
Clone or Download button, then unzip the files. You don’t have to install the tool. We will
run it from the directory using the Python interpreter.

Once the driver is installed, have opened a console (terminal) and changed to the
directory where you unzipped the esptool.py utility, and your board is connected to
your PC with a USB cable, we can begin by erasing the flash drive on the board using the
esptool.py script and the erase_flash command as shown in Listing 3-5.

Listing 3-5.  Erasing Firmware (Feather Huzzah)

$ python ./esptool.py --port /dev/tty.SLAB_USBtoUART erase_flash
esptool.py v2.0.1
Connecting........_
Detecting chip type... ESP8266
Chip is ESP8266
Uploading stub...
Running stub...
Stub running...
Erasing flash (this may take a while)...
Chip erase completed successfully in 8.8s
Hard resetting...

This process takes only a few moments. When it is done, we can upload the firmware
using the esptool.py script and the write_flash command as shown in Listing 3-6.

Listing 3-6.  Uploading Firmware (Feather Huzzah)

$ python ./esptool.py --port /dev/tty.SLAB_USBtoUART --baud 460800 write_
flash --flash_size=detect 0 ~/Downloads/esp8266-ota-20170613-v1.9.1-4-
g6ed4581f.bin
esptool.py v2.0.1
Connecting........_
Detecting chip type... ESP8266
Chip is ESP8266
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 460800
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Flash params set to 0x0040

http://micropython.org/download/#esp8266
https://github.com/espressif/esptool

Chapter 3 ■ MicroPython Hardware

107

Compressed 819888 bytes to 545209...
Wrote 819888 bytes (545209 compressed) at 0x00000000 in 12.7 seconds
(effective 514.6 kbit/s)...
Hash of data verified.
Leaving...
Hard resetting...

This process takes a bit longer but once complete, you can reset the board or
disconnect and reconnect; you can connect to the board with the REPL console as shown
in Figure 3-30.

I should note that I encountered some minor communication issues with the
latest firmware so there may be some instability in that release. Be sure to use the latest
firmware available to avoid issues.

WHAT ABOUT OTHER ESP8266 BOARDS?

If you’re wondering if you can load MicroPython on other ESP8266 and similar
boards, the answer is yes, you can! See “Firmware for ESP8266 boards” at
http://micropython.org/download/#esp8266 for the latest firmware available.

Where to Buy
The Feather Huzzah board is available from Adafruit and resellers of Adafruit products.
You can find the board at https://www.adafruit.com/product/2821. You can buy the
board without headers, with pin headers, or with stacked headers. I recommend buying it
with stacked headers so that you can use male/male jumpers with a breadboard, but the
normal pin headers are fine too since you can plug the board directly into a breadboard.
The cost is approximately $20 USD with stacked headers.

Figure 3-30.  REPL Console (Feather Huzzah)

http://micropython.org/download/#esp8266
https://www.adafruit.com/product/2821

Chapter 3 ■ MicroPython Hardware

108

Now let’s briefly discuss some of the other boards that you could use. As you may
suspect, this category of boards is the hardest to use and may not be for everyone.

Other Boards
As the popularity of MicroPython grows, you are likely to see more boards available.
In fact, currently there are several efforts underway to make MicroPython available
on several boards including the Teensy, Arduino, and several variables of the ESP8266
(Espressif) chipset boards. There are some early, limited versions available, like those for
the Teensy 3.X version boards, which can be loaded with MicroPython, but the process
requires experience in cross-compilation and thus is not for the beginner to tackle (but
you’re welcome to try!).13

However, keep in mind third-party boards may lag somewhat in capability and
documentation is usually spotty at best. But now that you’ve read about the production
boards, you should have the knowledge needed to work with newer boards.

We are also starting to see several variants of the Pyboard appear. To date, I’ve seen
two additional boards out of Asia that appear to be clones of the Pyboard. I have tried one
of these clone boards and while the GPIO pin layout differs, it behaves exactly like the
Pyboard. If you find you want to use several boards in a large project or one project done
many times (like in a teaching setting), you may want to consider the clone boards as they
could present a considerable savings.

If the board you want to use is not described in this chapter, you can monitor
the MicroPython website (http://micropython.org/download) for the very latest on
availability of a MicroPython firmware install for your board.

Now that we’ve seen a few of the MicroPython boards that are available, let’s dive
into the accessories available for you to use to build your projects.

Breakout Boards and Add-Ons
The last bit of hardware we will explore is those boards available for use with the
MicroPython board. These can be special, separate modules (called breakout boards),
and boards that are specifically designed to be used with a MicroPython board
(depending on the board, called shields or skins). The following sections briefly describe
some of the breakout boards, shields/skins, and some accessories you may want to
consider depending on which board you choose. The list is neither comprehensive nor
is it a list of things you must buy. We will see the recommended hardware in each of the
example chapters following the discussion on MicroPython.

13If you’re adventurous and have a Teensy 3.X board, see https://github.com/micropython/
micropython/wiki/Board-Teensy-3.1-3.5-3.6 for how to load MicroPython, but be forewarned
it is not a simple affair.

http://micropython.org/download
https://github.com/micropython/micropython/wiki/Board-Teensy-3.1-3.5-3.6
https://github.com/micropython/micropython/wiki/Board-Teensy-3.1-3.5-3.6

Chapter 3 ■ MicroPython Hardware

109

Breakout Boards
Breakout boards are one of the key elements hobbyists and enthusiasts will use in
creating a MicroPython (or any microcontroller-based) IOT solution. This is because
breakout boards are small circuit boards that contain all the components needed to
support a function such as a sensor, network interface, or even a display. Breakout boards
also support one of several communication protocols that require only a few pins to be
wired, making them very easy to use. In general, they save the developer a lot of time
trying to figure out how to design circuits to support a sensor or chip.

To use breakout boards in our projects, we need only to know which interface
to use and how to wire it. Fortunately, most vendors provide a datasheet and
other documentation to help you wire your board to it. Even if the vendor only has
documentation for an Arduino, it is still helpful to learn how to make the connections.
The trick is learning how to write the MicroPython code. We will learn more about the
MicroPython libraries and hardware support in Chapters 5 and 6. For now, let’s explore
some of the breakout boards available. Again, what is shown here is only a very small
sample.

In fact, Sparkfun has a huge selection of breakout boards. You can find all
manner of boards you may find useful. For a full list, see https://www.sparkfun.com/
categories/20. Adafruit also has a large selection of breakout boards. You can see their
products at https://www.adafruit.com/category/42. Either vendor has boards that are
known to work well and have ample documentation to support them. But, as noted, you
may need to adapt them for use with the MicroPython hardware libraries.

Recall from an earlier discussion that there are breakout boards for providing
network connections. Also, recall that MicroPython currently supports breakout boards
that use the CC3K WiFi chipset as well as breakout boards that use the WIZNET5K
Ethernet chipset. We saw an interesting way to use an Arduino CC3K shield earlier, but
Figure 3-31 shows the Adafruit CC3000 WiFi breakout board. I show you this for two
reasons: first, that you can see how much smaller it is than the Arduino shield; and
second, so you can see the row of pins (currently without a header). Notice there are only
a few pins here and (from experience if not from reading the documentation), we can see
that is supports the same SPI protocol/interface as the shield.14 Just like the repurposed
Arduino shield, we can use this breakout board to add networking to MicroPython boards
that don’t have that feature.

14Notice the presence of MOSI and MISO pins – that’s an SPI interface.

http://dx.doi.org/10.1007/978-1-4842-3123-4_5
http://dx.doi.org/10.1007/978-1-4842-3123-4_6
https://www.sparkfun.com/categories/20
https://www.sparkfun.com/categories/20
https://www.adafruit.com/category/42

Chapter 3 ■ MicroPython Hardware

110

The next breakout board is one we will use in a later chapter to read weather
data. There are many breakout boards that include sensors for weather data. The most
common and easiest to use are those that read temperature, humidity, and barometric
pressure. Figure 3-32 shows an example of two such breakout boards: one from Adafruit
(https://www.adafruit.com/product/992), and another from Sparkfun (https://www.
sparkfun.com/products/13676). The Adafruit MPL115A2 reads barometric pressure and
temperature while the Sparkfun BME 280 measures barometric pressure, humidity, and
temperature. Both use the I2C interface/protocol.15

Figure 3-31.  Adafruit CC3000 Module (courtesy of adafruit.com)

Figure 3-32.  Weather Breakout Boards (courtesy of adafruit.com and sparkfun.com)

15Notice the presence of SDA and SLA pins – that’s a I2C interface.

https://www.adafruit.com/product/992
https://www.sparkfun.com/products/13676
https://www.sparkfun.com/products/13676

Chapter 3 ■ MicroPython Hardware

111

The next breakout board is often considered a sensor in and of itself because it
performs one and only one function, but it is still a breakout board. Many sensors
are packaged this way and are often called sensors when they’re breakout boards.
Fortunately, most people will know what you mean if you use the wrong term. The way
you can tell if it is a breakout board is if the board the sensor is mounted on contains
other discrete components and a row of header pins.

In this case, the breakout board measures soil moisture and can be handy in creating
a plant monitoring solution as we will do in a later chapter. Figure 3-33 shows a soil
moisture breakout board from Sparkfun (https://www.sparkfun.com/products/13322).

Notice the unique shape of the board. The two arms or long prongs are part of the
sensor apparatus that measures moisture. Notice at the top is a set of pins (no headers
installed) that are used to connect to your board. This breakout board does not use a
special interface; rather, the sensor produces voltage that you can measure on one of the
analog pins on our MicroPython board. In fact, all we need are three wires: 5V, GND, and
signal (which connects to an analog pin on our board). Again, we will see how to use this
breakout board in a later chapter.

The last breakout board is a special accessory for the BBC micro:bit board. It is an
edge connector that you can use to plug in your BBC micro:bit board to a breadboard,
making it easier to wire the pins to other components. You can find this breakout board
at Sparkfun (https://www.sparkfun.com/products/13989). I highly recommend this or
one like it if you choose to use the BBC micro:bit board to run MicroPython.

Figure 3-33.  Soil Moisture Sensor (courtesy of sparkfun.com)

https://www.sparkfun.com/products/13322
https://www.sparkfun.com/products/13989

Chapter 3 ■ MicroPython Hardware

112

Board-Specific Shields/Skins
MicroPython board vendors and indeed vendors of a wide array of microcontroller and
similar boards package their components so that they can be used for add-on boards
called shields or skins or something similar. For example, the Beaglebone add-on boards
are called capes and the Raspberry Pi add-on boards are called hats. These are boards
that have matching headers and are used to plug into (or stack on top of) the main
MicroPython board to add functionality. Many shields or skins have pass-through or
stacking headers that enable adding more than one shield at a time. For example, the
Arduino and its shield format can be configured with two, three, or more shields added.

In this section, we will see a few of the add-on boards available for the Pyboard and
WiPy MicroPython boards. If you decide to use another board for the projects in this
book, see the vendor or retailer for availability of add-on boards. Since several of the
boards are relatively new, you should check back every few weeks or so to see if any new
ones are added.

Pyboard
Pyboard add-on boards are called skins.16 You can purchase Pyboard skins (and other
accessories) from micropython.org (https://store.micropython.org/store/#/store).
Other retailers may carry them but Adafruit currently does not carry the skins. The skins
are normally packaged and sold as unassembled kits so if you want to use one but do
not know how to solder, you may need to learn or find someone who can solder the
components for you. Fortunately, the small surface-mounted components are already
assembled so the most you would have to do is solder larger components like headers.

Figure 3-34.  BBC micro:bit Edge Breakout Board (courtesy of sparkfun.com)

16It’s just a name. Everyone is trying to be unique but I still call them shields – a habit from my
Arduino tinkering.

https://store.micropython.org/store/#/store

Chapter 3 ■ MicroPython Hardware

113

The first skin is a prototype board that allows you to build a circuit on the skin so that
you can use it with your Pyboard. It comes with a complete set of headers. I like it because
while it is slightly larger than the Pyboard, there is enough room on there that if you
wanted to assemble a circuit you can. Plus, it allows you to remove the skin so that you
can use your Pyboard in other projects. Figure 3-35 shows the Protoskin Through-hole
XY-Size skin from micropython.org

The next skin is a curious and intriguing feature that adds audio to the Pyboard. It’s
called simply the Audio Skin and allows you to play and record short sounds as well as
play certain waveforms (sounds). I’ve shown this one to whet your appetite for projects
beyond this book. Figure 3-36 shows the Audio Skin from micropython.org.

Figure 3-35.  Pyboard Protoskin Through-hole XY-Size

Chapter 3 ■ MicroPython Hardware

114

The next skin is another very intriguing feature that allows you to add a visual
element to your Pyboard in the form of a touch LCD. The Color LCD skin with resistive
touch and headers adds the ability to add an interactive interface using a 160x128 pixel
graphical LCD display with backlight as well as a resistive touch sensor that covers the
entire screen. This means you can build small graphical interfaces for your MicroPython
projects. Cool! Figure 3-37 shows the front and back of the Color LCD skin with resistive
touch and headers skin from micropython.org. Fortunately, you can purchase this skin as
a fully assembled kit.

WiPy and Related
WiPy and Related add-on boards are called shields. Pycom packages and sells their
shields fully assembled and ready to use. You can purchase the shields from Pycom
(pycom.io) or from other retailers such as Adafruit (adafruit.com). All their shields
provide a battery connector with LIPO charger, micro USB for communicating with the
board, and a set of headers that fits all Pycom boards (WiPy, SiPy, LoPy, GPy, and FiPy),
and a micro SD card reader.

Figure 3-36.  Pyboard Audio Skin

Figure 3-37.  Pyboard LCD Skin

Chapter 3 ■ MicroPython Hardware

115

The first shield we saw was the Expansion Board, which I consider a required accessory
for the WiPy and related boards. The next is a shield designed to host several sensors called
the PySense Shield (https://www.pycom.io/product/pysense/). Figure 3-38 shows the
PySense Shield.

The list of features for this shield is impressive and includes the following (courtesy
of pycom.io). Clearly, there is a lot here that you can use to build upon so if you’re
considering using the WiPy, this shield and the next may tip the scales. In fact, I will show
you how to use this shield in a later chapter to read weather data.

•	 Ambient light sensor

•	 Barometric pressure sensor

•	 Humidity sensor

•	 3-axis 12-bit accelerometer

•	 Temperature sensor

•	 USB port with serial access

•	 LiPo battery charger

•	 MicroSD card compatibility

•	 Ultra-low power operation (~1uA in deep sleep)

The next (and currently only other) shield available for the WiPy and related boards
is the PyTrack Shield (https://www.pycom.io/product/pytrack/). This shield is like the
PySense shield but instead of a host of sensors (it does have an accelerometer), it has a
GPS chip that you can use to record location. Figure 3-39 shows the PyTrack Shield.

Figure 3-38.  PySense Shield (courtesy of pycom.io)

https://www.pycom.io/product/pysense/
https://www.pycom.io/product/pytrack/

Chapter 3 ■ MicroPython Hardware

116

The list of features for this shield is impressive and includes the following (courtesy
of pycom.io). Clearly, there is a lot here that you can use to build upon so if you’re
considering using the WiPy, this shield and the previous shield may tip the scales.

•	 Super accurate GNSS + Glonass GPS

•	 3 axis 12-bit accelerometer

•	 USB port with serial access

•	 LiPo battery charger

•	 Micro SD card compatibility

•	 Ultra-low power operation (~1uA in deep sleep)

Board-Specific Accessories
The last category of hardware we will discuss is the accessories available for several of
the boards discussed in this chapter. Like almost everything in life, we can accessorize
our boards to profound (and costly) ends. While the list of accessories available for
MicroPython boards hasn’t reached the nerd-like proportions of the Raspberry Pi or
Arduino, there are still a few accessories that you should consider.

In this section, I present some of the accessories for each of the Pyboard, WiPy, and
BBC micro:bit that I find are essential. That doesn’t mean you should rush out and buy
them or that they are required for this book; rather, I think you should consider them if
you plan to carry on developing with the boards after you complete the examples in this
book.

Figure 3-39.  PyTrack Shield (courtesy of pycom.io)

Chapter 3 ■ MicroPython Hardware

117

For example, I feel every project should be placed in a case so that the board and any
additional components are protected from accidental touches, drops, and other events
that can damage the electronics. This is especially true if you plan to mount your board
some place for extended operating. Thus, I list a case for each of the boards.

Pyboard
There are not a lot of accessories for the Pyboard other than the essentials such as a USB
cable and, of course, the skins. But there is one accessory I find a must for the Pyboard –
the case from micropython.org.

■■ Tip  The best source for accessories for the Pyboard is micropython.org (https://
store.micropython.org/store/#/store). They are based in the European Union and do
ship to the United States and other countries.

You can buy a milled aluminum case (called a housing) from micropython.org that
is one of the best cases I have ever seen. There are some like it for other boards, but they
are typically way overpriced for what you get. That simply doesn’t apply to this example.
The case is available in three variations: one with an open lid that allows access to the
headers, another with a closed lid, and one that allows you to mount the touch-sensitive
LCD screen. All of them accommodate the board with the ears so you need not break
them off to use this case. Figure 3-40 shows the Pyboard case with the open lid.

I cannot say enough about the quality of this case. It is simply the best I’ve seen
anywhere. The open and closed lid variants have lettering on it, labeling all the pins on
the header. You won’t be disappointed by this case. It is a bit pricey at about $35 USD, but
well worth the price. They are frequently out of stock so check back often for new orders.

Figure 3-40.  PyBoard Case

https://store.micropython.org/store/#/store
https://store.micropython.org/store/#/store

Chapter 3 ■ MicroPython Hardware

118

WiPy and Related Boards
The list of accessories for the WiPy is growing. You can get the usual essentials such as a
USB cable, but Pycom also sells items such as antennas and a wide variety of cases.

■■ Tip  The best source for WiPy accessories is from Pycom (https://www.pycom.io/
webshop#accessories-). While they are based in the European Union, they do ship to the
United States with impressive delivery schedules.

Cases for the WiPy vary in color and shape. There are light-duty cases that are sized
for the WiPy and shield, cases that are sealed for use outdoors including one large enough
to house the WiPy, shield, and LIPO battery. Figure 3-41 shows a smoke-colored case for
the WiPy that can accommodate the WiPy and shield.

Next is a battery case with the correct connector for attaching to your board. You can
get a battery case to contain the correct number of batteries for the correct voltage (check
your board specifications first) as well as cases with the correct connectors. I chose to buy
a generic case that holds four 1.5V AA batteries and added the correct connector myself.
Figure 3-42 shows the battery case I used often in my projects. I’ve listed the battery case
in the WiPy section, but it can be used for other boards such as the BBC micro:bit.

Figure 3-41.  WiPy Case (courtesy of pycom.io)

https://www.pycom.io/webshop#accessories
https://www.pycom.io/webshop#accessories

Chapter 3 ■ MicroPython Hardware

119

■■ Caution  Be sure you get a battery case that contains the right size and power rating
for your board.

BBC micro:bit
The board with the most impressive list of accessories available is the BBC micro:bit. I am
sure this is due to its popularity, but it favors our efforts too. You can find kits for building
robots, power accessories, cases, and much more!

■■ Tip  Two excellent sources for BBC micro:bit accessories are Kitronik (https://www.
kitronik.co.uk/microbit.html) and The Pi Hut (https://thepihut.com/collections/
micro-bit-store). Both are in the European Union but ship to the United States with
impressive delivery schedules.

One of the power options available for the BBC micro:bit that I like is the MI:power
board available from Kitronik (https://www.kitronik.co.uk/5610-mipower-board-for-
the-bbc-microbit.html). This board is nice because it mounts to your BBC micro:bit board
using the large alligator pins (0, 3V, and GND) using only one small 3V coin cell battery for
power. It doesn’t take up a lot of space when mounted. It includes a switch that allows you

Figure 3-42.  Battery Case

https://www.kitronik.co.uk/microbit.html
https://www.kitronik.co.uk/microbit.html
https://thepihut.com/collections/micro-bit-store
https://thepihut.com/collections/micro-bit-store
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html

Chapter 3 ■ MicroPython Hardware

120

to turn the board off and provides a small speaker (hence the connection via the #0 pin) so
you can add sound to your project. Figure 3-43 shows the Power Shield from Kitronik.

If you decide to use this battery board, and I highly recommend it over an external
battery - especially for the BBC micro:bit, and you decide to use a case, you should know
that most cases are not designed to support the MI:power board. However, I did find at
least one. As you may surmise, it is made by the same people that made the MI:power!

There are many cases available for the BBC micro:bit with seemingly yet another
appearing every day (including those you can print on a 3D printer). However, the one I’ve
found that I like is like others I’ve used for other boards. It is made from acrylic and uses
nylon bolts to join several layers together. It is a clean assembly that allows a clear view of
the board, which is nice considering the BBC micro:bit has a lot of LEDs! Figure 3-44 shows
the MI:pro case for the BBC micro:bit.

Figure 3-44.  BBC micro:bit MI:pro Case Kit

Figure 3-43.  MI:power Board for the BBC micro:bit

Chapter 3 ■ MicroPython Hardware

121

Finally, if you are going to be using the BBC micro:bit a lot to run experiments
including those examples in this book as well as the dozens available on the Internet,
you should consider the Prototyping System from Kitronik (https://www.kitronik.
co.uk/5609-prototyping-system-for-the-bbc-microbit.html). This kit comes with a
board that you can mount an included edge connector breakout and breadboard making
the kit a nice and tidy package. Figure 3-45 shows the Prototyping System from Kitronik.
This kit is included in the larger Inventor’s Kit as described in the sidebar below.

Figure 3-45.  Prototyping System for the BBC micro:bit (courtesy of kitronik.uk.co)

Now, let’s briefly discuss which board you should buy for use in your MicroPython
for the IOT journey.

Which Board Should I Buy?
So, you want to buy a MicroPython board but don’t know which to choose. Fortunately,
all the boards in this chapter can be an ideal choice. The characteristics that may make
some a better fit for some than others include the following.

•	 No assembly required – if you don’t know how to solder or don’t
want to take time to load software, bootstrapping, and firmware,
then you should consider a board that is ready-to-go such as the
Pyboard or WiPy.

https://www.kitronik.co.uk/5609-prototyping-system-for-the-bbc-microbit.html
https://www.kitronik.co.uk/5609-prototyping-system-for-the-bbc-microbit.html

Chapter 3 ■ MicroPython Hardware

122

•	 Connectivity – if you plan to make your IOT solution public (as
opposed to an academic exercise), you should consider boards
that have built-in WiFi or similar networking capabilities such as
the WiPy or Feather.

•	 Existing Hardware – if you have already invested money and have
a platform and devices (add-on boards, breakout boards, etc.),
you may want to consider staying with the board. For example, if
you have a lot invested in Arduino, you should consider loading
MicroPython on an Arduino board.

Clearly, the choice as to which board to buy requires a bit of forethought. Then again,
if you’re a true enthusiast, you may decide to buy several of these boards,17 experimenting
for yourself as to which fits your project best. Regardless, the boards I feel are best for
learning MicroPython for the IOT are those that have networking such as the WiPy and
Feather Huzzah. However, the Pyboard and BBC micro:bit boards are also great boards to
learn MicroPython but require an external module to add networking capabilities.

CONSIDER BUYING A KIT

Many of the boards come packaged with a kit containing an assortment of
accessories including a getting started kit that includes the board and power
adapter. Other kits may include breadboards, and often sensors or add-on boards.
For example, you can purchase several kits for the BBC micro:bit board, including
two nice options from Sparkfun.

•	 BBC micro:bit Go Bundle – contains the board and battery pack
(https://www.sparkfun.com/products/14336)

•	 Sparkfun Inventor’s Kit for BBC micro:bit – a version of their
wildly popular inventor’s kit for the BBC micro:bit that includes
all the basic electronic components you will need for at least 14
different experiments as well as an easy-to-read instruction booklet
(https://www.sparkfun.com/products/14300)

•	 micro:climate Kit – contains the board, a weather station add-on
board, as well as weather sensors! (https://www.sparkfun.com/
products/14217)

Other vendors may have additional or similar kits for other boards. For example,
Kitronik has an excellent Inventor’s Kit for the BBC micro:bit (shown below –
courtesy of kitronik.co.uk) that has many of the parts you will need.

17Yes, I own the boards listed here (some multiple) as well as a growing, shameless horde of other
boards.

https://www.sparkfun.com/products/14336
https://www.sparkfun.com/products/14300
https://www.sparkfun.com/products/14217
https://www.sparkfun.com/products/14217

Chapter 3 ■ MicroPython Hardware

123

If you are just starting out and don’t have any boards or components, a getting
started kit may be the most economical option.

Summary
Wow, that was a lot of information. As you can see, there are several MicroPython
boards available. Some like the Pyboard and WiPy come ready to use and do not require
anything more than plugging it in and writing your first Python program. Others may
require you to load MicroPython first, and others still have a bit of magic needed to make
them work. However, all the boards presented here are excellent choices for using in the
experiments in this book.

Chapter 3 ■ MicroPython Hardware

124

In this chapter, we explored some best practices and tips for using your MicroPython
board. We covered the usual things that can go wrong as well as where to go to look for
solutions to other problems you may encounter. Finally, we looked at several popular
add-ons and breakout boards that you can use to develop your project, including those
used later in this book.

In the next chapter, we will dive into a programming tutorial on using Python and
MicroPython. The chapter is very much a lightning tour and intended to help guide you
to the point where you can write (and understand) the examples in this book.

125© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_4

CHAPTER 4

How to Program in
MicroPython

Now that we have a basic understanding of the various MicroPython boards, we can learn
more about programming in MicroPython – a very robust and powerful language that
you can use to write very powerful applications. Mastering MicroPython is very easy and
some may suggest it doesn’t require any formal training to use. This is largely true and
thus you should be able to write MicroPython scripts with only a little bit of knowledge
about the language.

Given that MicroPython is Python, we can learn the basics of the Python language
first through examples on our PC. Thus, this chapter presents a crash course on the basics
of Python programming including an explanation about some of the most commonly
used language features. As such, this chapter will provide you with the skills you need to
understand the Python IOT project examples available on the Internet. The chapter also
demonstrates how to program in Python through examples that you can run on your PC
or your MicroPython board. So, let’s get started!

■■ Note  I use the term Python to describe programming concepts in this chapter that
apply to both MicroPython and Python. Concepts unique to MicroPython use the term
MicroPython.

Now let’s learn some of the basic concepts of Python programming. We will
begin with the building blocks of the language such as variables, modules, and basic
statements, then move into the more complex concepts of flow control and data
structures. While the material may seem to come at you in a rush, this tutorial on Python
covers only the most fundamental knowledge of the language and how to use it on
your PC and MicroPython board. It is intended to get you started writing Python IOT
applications.

If you know the basics of Python programming, feel free to skim through this chapter.
However, I recommend working through the example projects at the end of the chapter,
especially if you’ve not written many Python applications.

https://doi.org/10.1007/978-1-4842-3123-4_4

Chapter 4 ■ How to Program in MicroPython

126

The following sections present many of the basic features of Python programming
that you will need to know to understand the example projects in this book.

Basic Concepts
Python is a high-level, interpreted, object-oriented scripting language. One of the biggest
goals of Python is to have a clear, easy-to-understand syntax that reads as close to English
as possible. That is, you should be able to read a Python script and understand it even if
you haven’t learned the language. Python also has less punctuation (special symbols) and
fewer syntactical machinations than other languages. The following lists a few of the key
features of Python.

•	 An interpreter processes Python at runtime. No external
(separate) compiler is used.

•	 Python supports object-oriented programming constructs by way
of a class.

•	 Python is a great language for the beginner-level programmers
and supports the development of a wide range of applications.

•	 Python is a scripting language but can be used for a wide range of
applications.

•	 Python is very popular and used throughout the world, giving it a
huge support base.

•	 Python has few keywords, simple structure, and a clearly defined
syntax. This allows the student to pick up the language quickly.

•	 Python code is more clearly defined and visible to the eyes.

Python is available for download (python.org/downloads) for just about every
platform that you may encounter or use – even Windows! Python is a very easy language
to learn with very few constructs that are even mildly difficult to learn. Rather than toss
out a sample application, let’s approach learning the basics of Python in a Python-like
way: one step at a time.

■■ Note  If you do not have a MicroPython board and have not installed Python on your PC,
you should do so now so that you can run the examples in this chapter.

Code Blocks
The first thing you should learn is that Python does not use a code block demarcated with
symbols like other languages. More specifically, code that is local to a construct such as a
function or conditional or loop is designated using indentation. Thus, the lines below are
indented (by spaces or, gag, tabs) so that the starting characters align for the code body of
the construct.

Chapter 4 ■ How to Program in MicroPython

127

■■ Tip  The following shows this concept in action. Python interpreters will complain and
could produce strange results if the indentation is not uniform.

if (expr1):
 print("inside expr1")
 print("still inside expr1")
else:
 print("inside else")
 print("still inside else")
print("in outer level")

Here we see a conditional or if statement. Notice the function call print() is
indented. This signals the interpreter that the lines belong to the construct above it.
For example, the two print statements that mention expr1 form the code block for the if
condition (and executes when the expression evaluates to true). Similarly, the next two
print statements form the code block for the else condition. Finally, the non-indented
lines are not part of the conditional and thus are executed after either the if or else
depending on the expression evaluation.

As you can see, indentation is a key concept to learn when writing Python. Even
though it is very simple, making mistakes in indentation can result in code executing that
you did not expect or worse errors from the interpreter.

■■ Note  I use ‘program’ and ‘application’ interchangeably with ‘script’ when discussing
Python. While technically, Python code saved in a file is a script, we often use it in contexts
where ‘program’ or ‘application’ are more appropriate.

There is one special symbol that you will encounter frequently. Notice the use of the
colon (:) in the code above. This symbol is used to terminate a construct and signals the
interpreter that the declaration is complete and the body of the code block follows. We
use this for conditionals, loops, classes, and functions.

Comments
One of the most fundamental concepts in any programming language is the ability to
annotate your source code with non-executable text that not only allows you to make
notes among the lines of code but also forms a way to document your source code.

To add comments to your source code, use the pound sign (#). Place at least one at
the start of the line to create a comment for that line, repeating the # symbols for each
subsequent line. This creates what is known as a block comment as shown. Notice I used
a comment without any text to create whitespace. This helps with readability and is a
common practice for block comments.

Chapter 4 ■ How to Program in MicroPython

128

Table 4-1.  Arithmetic, Logical, and Comparison Operators in Python

Type Operator Description Example

Arithmetic + Addition int_var + 1

- Subtraction int_var - 1

* Multiplication int_var * 2

/ Division int_var / 3

% Modulus int_var % 4

- Unary subtraction -int_var

+ Unary addition +int_var

Logical & Bitwise and var1&var2

| Bitwise or var1|var2

^ Bitwise exclusive or var1^var2

~ Bitwise complement ~var1

and Logical and var1and var2

or Logical or var1or var2

#
MicroPython for the IOT
#
Example Python application.
#
Created by Dr. Charles Bell
#

You can also place comments on the same line as the source code. The compiler will
ignore anything from the pound sign to the end of the line. For example, the following
shows a common style of documenting variables.

zip = 35012 # Zip or postal code
address1= "123 Main St." # Store the street address

Arithmetic
You can perform many mathematical operations in Python including the usual primitives
but also logical operations and operations used to compare values. Rather than discuss
these in detail, I provide a quick reference in Table 4-1 that shows the operation and
example of how to use the operation.

(continued)

Chapter 4 ■ How to Program in MicroPython

129

Bitwise operations produce a result on the values performed on each bit. Logical
operators (and, or) produce a value that is either true or false and are often used with
expressions or conditions.

Output to Screen
We’ve already seen a few examples of how to print messages to the screen but without
any explanation about the statements shown. While it is unlikely that you would print
output from your MicroPython board for projects that you deploy, learning Python is
much easier when you can display messages to the screen.

Some of the things you may want to print – as we have seen in previous examples – is
to communicate what is going on inside your program. This can include simple messages
(strings), but can also include the values of variables, expressions, and more.

As we have seen, the built-in print() function is the most common way to display
output text contained within single or double quotes. We have also seen some interesting
examples using another function named format(). The format() function generates
a string for each argument passed. These arguments can be other strings, expressions,
variables, etc. The function is used with a special string that contains replacement keys
delimited by curly braces { } (called string interpolation1). Each replacement key
contains either an index (starting at 0) or a named keyword. The special string is called
a format string. Let’s see a few examples to illustrate the concept. You can run these
yourself either on your PC or your MicroPython board. I include the output so you can
see what each statement does.

>>> a = 42
>>> b = 1.5
>>> c = "seventy"
>>> print("{0} {1} {2} {3}".format(a,b,c,(2+3)))
42 1.5 seventy 5
>>> print("{a_var} {b_var} {c_var} {0}".format((3*3),c_var=c,b_var=b,a_var=a))
42 1.5 seventy 9

Type Operator Description Example

Comparison == Equal expr1==expr2

!= Not equal expr1!=expr2

< Less than expr1<expr2

> Greater than expr1>expr2

<= Less than or equal expr1<=expr2

>= Greater than or equal expr1>=expr2

Table 4-1.  (continued)

1https://en.wikipedia.org/wiki/String_interpolation

https://en.wikipedia.org/wiki/String_interpolation

Chapter 4 ■ How to Program in MicroPython

130

Notice I created three variables (we will talk about variables in the next section)
assigning them different values with the equal symbol (=). I then printed a message using
a format string with four replacement keys labeled using an index. Notice the output
of that print statement. Notice I included an expression at the end to show how the
format() function evaluates expressions.

The last line is more interesting. Here, I use three named parameters (a_var, b_var,
c_var) and used a special argument option in the format() function where I assign the
parameter a value. Notice I listed them in a different order. This is the greatest advantage
of using named parameters; they can appear in any order but are placed in the format
string in the position indicated.

As you can see, it’s just a case of replacing the { } keys with those from the format()
function, which converts the arguments to strings. We use this technique anywhere we
need a string that contains data gathered from more than one area or type. We can see
this in the examples above.

■■ Tip  See https://docs.python.org/3/library/string.html#formatstrings for
more information about format strings.

Now let’s look at how we can use variables in our programs (scripts).

■■ Tip  For those who have learned to program in another language like C or C++, Python
allows you to terminate a statement with the semicolon (;); however, it is not needed and
considered bad form to include it.

Variables
Python is a dynamically typed language, which means the type of the variable (the type
of data it can store) is determined by context as it is encountered or used. This contrasts
with other language such as C and C++ where you must declare the type before you use
the variable.

Variables in Python are simply named memory locations that you can use to store
values during execution. We store values by using the equal sign to assign the value.
Python variable names can be anything you want, but there are rules and conventions
most Python most developers follow. The rules are listed in the Python coding standard.2

However, the general, overriding rule requires variable names that are descriptive, have
meaning in context, and can be easily read. That is, you should avoid names with random
characters, forced abbreviations, acronyms, and similar obscure names. By convention, your
variable names should be longer than a single character (with some acceptable exceptions
for loop counting variables) and short enough to avoid overly long code lines.

2https://www.python.org/dev/peps/pep-0008/

https://docs.python.org/3/library/string.html#formatstrings
https://www.python.org/dev/peps/pep-0008/

Chapter 4 ■ How to Program in MicroPython

131

WHAT IS A LONG CODE LINE?

Most will say a code line should not exceed 80 characters, but this harkens from
the darker days of programming when we used punched cards that permitted
a maximum of 80 characters per card and later display devices with the same
limitation. With modern, widescreen displays this is not as big a deal, but I still
recommend keeping lines short to ensure better readability. No one likes to scroll
down (or right) to read!

Thus, there is a lot of flexibility in what you can name your variables. There are
additional rules and guidelines in the PEP8 standard and should you wish to bring your
project source code up to date with the standards, you should review the PEP8 naming
standards for functions, classes, and more. See the PEP8 coding guidelines for Python
coding at https://www.python.org/dev/peps/pep-0008 for a complete list of the rules
and standards.

The following shows some examples of simple variables and their dynamically
determined types.

floating point number
length = 10.0
integer
width = 4
string
box_label = "Tools"
list
car_makers = ['Ford', 'Chevrolet', 'Dodge']
tuple
porsche_cars = ('911', 'Cayman', 'Boxster')
dictionary
address = {"name": "Joe Smith", "Street": "123 Main", "City": "Anytown",
"State": "New Happyville"}

So, how did we know the variable width is an integer? Simply because the number 4
is an integer. Likewise, Python will interpret “Tools” as a string. We’ll see more about the
last three types and other types supported by Python in the next section.

■■ Tip  For more information about naming conventions governed by the Python
coding standard (PEP8), see https://www.python.org/dev/peps/pep-0008/#naming-
conventions.

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008/#naming-conventions
https://www.python.org/dev/peps/pep-0008/#naming-conventions

Chapter 4 ■ How to Program in MicroPython

132

Types
As mentioned, Python does not have a formal type specification mechanism like other
languages. However, you can still define variables to store anything you want. In fact,
Python permits you to create and use variables based on context and you can use
initialization to “set” the data type for the variable. The following shows several examples.

Numbers
float_value = 9.75
integer_value = 5

Strings
my_string = "He says, he's already got one."

print("Floating number: {0}".format(float_value))
print("Integer number: {0}".format(integer_value))
print(my_string)

For situations where you need to convert types or want to be sure values are typed
a certain way, there are many functions for converting data. Table 4-2 shows a few of the
more commonly used type conversion functions. I discuss some of the data structures in
a later section.

Table 4-2.  Type Conversion in Python

Function Description

int(x [,base]) Converts x to an integer. Base is optional (e.g., 16 for hex).

long(x [,base]) Converts x to a long integer.

float(x) Converts x to a floating point.

str(x) Converts object x to a string.

tuple(t) Converts t to a tuple.

list(l) Converts l to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary.

chr(x) Converts an integer to a character.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

However, you should use these conversion functions with care to avoid data loss or
rounding. For example, converting a float to an integer can result in truncation. Likewise,
printing floating-point numbers can result in rounding.

Now let’s look at some commonly used data structures including this strange thing
called a dictionary.

Chapter 4 ■ How to Program in MicroPython

133

Basic Data Structures
What you have learned so far about Python is enough to write the most basic programs
and indeed more than enough to tackle the example projects later in this chapter.
However, when you start needing to operate on data – either from the user or from
sensors and similar sources – you will need a way to organize and store data as well
as perform operations on the data in memory. The following introduces three data
structures in order of complexity: lists, tuples, and dictionary.

Lists
Lists are a way to organize data in Python. It is a free-form way to build a collection. That
is, the items (or elements) need not be the same data type. Lists also allow you to do some
interesting operations such as adding things at the end, beginning, or at a special index.
The following demonstrates how to create a list.

List
my_list = ["abacab", 575, "rex, the wonder dog", 24, 5, 6]
my_list.append("end")
my_list.insert(0,"begin")
for item in my_list:
 print("{0}".format(item))

Here we see I created the list using square brackets ([]). The items in the list
definition are separated by commas. Note that you can create an empty list simply by
setting a variable equal to []. Since lists, like other data structures, are objects, there are
several operations available for lists such as the following.

•	 append(x): add x to the end of the list

•	 extend(l): add all items to the end of the list

•	 insert(pos,item): insert item at a position pos

•	 remove(value): remove the first item that matches (==) the value

•	 pop([i]): remove and return the item at position i or end of list

•	 index(value): return index of first item that matches

•	 count(value): count occurrences of value

•	 sort(): sort the list (ascending)

•	 reverse(): reverse sort the list

Lists are like arrays in other languages and very useful for building dynamic
collections of data.

Chapter 4 ■ How to Program in MicroPython

134

Tuples
Tuples, on the other hand, are a more restrictive type of collection. That is, they are built
from a specific set of data and do not allow manipulation like a list. In fact, you cannot
change the elements in the tuple. Thus, we can use tuples for data that should not change.
The following shows an example of a tuple and how to use it.

Tuple
my_tuple = (0,1,2,3,4,5,6,7,8,"nine")
for item in my_tuple:
 print("{0}".format(item))
if 7 in my_tuple:
 print("7 is in the list")

Here we see I created the tuple using parenthesis (). The items in the tuple definition
are separated by commas. Note that you can create an empty tuple simply by setting a
variable equal to (). Since tuples, like other data structures, are objects, there are several
operations available such as the following, including operations for sequences such as
inclusion, location, etc.

•	 x in t: determine if t contains x

•	 x not in t: determine if t does not contain x

•	 s + t: concatenate tuples

•	 s[i]: get element i

•	 len(t): length of t (number of elements)

•	 min(t): minimal (smallest value)

•	 max(t): maximal (largest value)

If you want even more structure with storing data in memory, you can use a special
construct (object) called a dictionary.

Dictionaries
A dictionary is a data structure that allows you to store key, value pairs where the data is
assessed via the keys. Dictionaries are a very structured way of working with data and the
most logical form we will want to use when collecting complex data. The following shows
an example of a dictionary.

Dictionary
my_dictionary = {
 'first_name': "Chuck",
 'last_name': "Bell",
 'age': 36,
 'my_ip': (192,168,1,225),
 42: “What is the meaning of life?”,
}

Chapter 4 ■ How to Program in MicroPython

135

Access the keys:
print(my_dictionary.keys())
Access the items (key, value) pairs
print(my_dictionary.items())
Access the values
print(my_dictionary.values())
Create a list of dictionaries
my_addresses = [my_dictionary]

There is a lot going on here! We see a basic dictionary declaration that uses curly
braces to create a dictionary. Inside that, we can create as many key, value pairs we want
separated by commas. Keys are defined using strings (I use single quotes by convention
but double quotes will work) or integers, and values can be any data type we want. For the
my_ip attribute, we are also storing a tuple.

Following the dictionary, we see several operations performed on the dictionary
from printing the keys, printing all the values, and printing only the values. The following
shows the output of executing this code snippet from the Python interpreter.

[42, 'first_name', 'last_name', 'age', 'my_ip']
[(42, 'what is the meaning of life?'), ('first_name', 'Chuck'), ('last_
name', 'Bell'), ('age', 36), ('my_ip', (192, 168, 1, 225))]
['what is the meaning of life?', 'Chuck', 'Bell', 36, (192, 168, 1, 225)]
'42': what is the meaning of life?
'first_name': Chuck
'last_name': Bell
'age': 36
'my_ip': (192, 168, 1, 225)

As we have seen in this example, there are several operations (functions or methods)
available for dictionaries including the following. Together this list of operations makes
dictionaries a very powerful programming tool.

•	 len(d): number of items in d

•	 d[k]: item of d with key k

•	 d[k] = x: assign key k with value x

•	 del d[k]: delete item with key k

•	 k in d: determine if d has an item with key k

•	 d.items(): return a list (view) of the (key, value) pairs in d

•	 d.keys(): return a list (view) of the keys in d

•	 d.values(): return a list (view) of the values in d

Best of all, objects can be placed inside other objects. For example, you can create
a list of dictionaries like I did above, a dictionary that contains lists and tuples, and any

Chapter 4 ■ How to Program in MicroPython

136

combination you need. Thus, lists, tuples, and dictionaries are a powerful way to manage
data for your program.

In the next section, we learn how we can control the flow of our programs.

Statements
Now that we know more about the basics of Python, we can discover some of the more
complex code concepts you will need to complete your project such as conditional
statements and loops.

Conditional Statements
We have also seen some simple conditional statements: statements designed to alter the
flow of execution depending on the evaluation of one or more expressions. Conditional
statements allow us to direct execution of our programs to sections (blocks) of code based
on the evaluation of one or more expressions. The conditional statement in Python is the
if statement.

We have seen the if statement in action in our example code. Notice in the example,
we can have one or more (optional) else phrases that we execute once the expression
for the if conditions evaluate to false. We can chain if / else statements to encompass
multiple conditions where the code executed depends on the evaluation of several
conditions. The following shows the general structure of the if statement. Notice in the
comments how I explain how execution reaches the body of each condition.

if (expr1):
 # execute only if expr1 is true
elif ((expr2) or (expr3)):
 # execute only if expr1 is false *and* either expr2 or expr3 is true
else:
 # execute if both sets of if conditions evaluate to false

While you can chain the statement as much as you want, use some care here because
the more elif sections you have, the harder it will become to understand, maintain, and
avoid logic errors in your expressions.

There is another form of conditional statement called a ternary operator. Ternary
operators are more commonly known as conditional expressions in Python. These
operators evaluate something based on a condition being true or not. They became a part
of Python in version 2.4. Conditional expressions are a shorthand notation for an if-then-
else construct used (typically) in an assignment statement as shown below.

variable = value_if_true if condition else value_if_false

Chapter 4 ■ How to Program in MicroPython

137

Here we see if the condition is evaluated to true, the value preceding the if is used
but if the condition evaluates to false, the value following the else is used. The following
shows a short example.

>>> numbers = [1,2,3,4]
>>> for n in numbers:
... x = 'odd' if n % 2 else 'even'
... print("{0} is {1}.".format(n, x))
...
1 is odd.
2 is even.
3 is odd.
4 is even.
>>>

Conditional expressions allow you to quickly test a condition instead of a using a
multiline conditional statement, which can help make your code a bit easier to read (and
shorter).

Loops
Loops are used to control the repetitive execution of a block of code. There are three
forms of loops that have slightly different behaviors. All loops use conditional statements
to determine whether to repeat execution or not. That is, they repeat as long as the
condition is true. The two types of loops are while and for. I explain each with an example.

The while loop has its condition at the “top” or start of the block of code. Thus, while
loops only execute the body if and only if the condition evaluates to true on the first
pass. The following illustrates the syntax for a while loop. This form of loop is best used
when you need to execute code only if some expression(s) evaluate to true. For example,
iterating through a collection of things whose number of elements is unknown (loop until
we run out of things in the collection).

while (expression):
 # do something here

For loops are sometimes called counting loops because of their unique form. For
loops allow you to define a counting variable and a range or list to iterate over. The
following illustrates the structure of the for loop. This form of loop is best used for
performing an operation in a collection. In this case, Python will automatically place each
item in the collection in the variable for each pass of the loop until no more items are
available.

for variable_name in list:
 # do something here

Chapter 4 ■ How to Program in MicroPython

138

You can also do range loops or counting loops. This uses a special function called
range() that takes up to three parameters, range([start], stop[, step]), where start is
the starting number (an integer), stop is the last number in the series, and step is the
increment. So, you can count by 1, 2, 3, etc., through a range of numbers. The following
shows a simple example.

for i in range(2,9):
 # do something here

There are other uses for range() that you may encounter. See the documentation
on this function and other built-in functions at https://docs.python.org/3/library/
functions.html for more information.

Python also provides a mechanism for controlling the flow of the loop (e.g., duration
or termination) using a few special keywords as follows.

•	 break: exit the loop body immediately

•	 continue: skip to next iteration of the loop

•	 else: execute code when loop ends (not executed if the loop was
stopped with a break statement)

There are some uses for these keywords, particularly break, but it is not the
preferred method of terminating and controlling loops. That is, professionals believe the
conditional expression or error handling code should behave well enough to not need
these options.

Modularization; Modules, Functions, and Classes
The last groups of topics are the most advanced and include modularization (code
organization). As we will see, we can use functions to group code, eliminate duplication,
and to encapsulate functionality into objects.

Including Modules
Python applications can be built from reusable libraries that are provided by the Python
environment. They can also be built from custom modules or libraries that you create
yourself or download from a third party. These are often distributed as a set of Python
code files (for example, files that have a file extension of .py). When we want to use a
library (function, class, etc.) that is included in a module, we use the import keyword and
list the name of the module. The following shows some examples.

import os
import sys

The first two lines demonstrate how to import a base or common module provided
by Python. In this case, we are using or importing modules for the os and sys modules
(operating system and Python system functions).

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

Chapter 4 ■ How to Program in MicroPython

139

■■ Tip  It is customary (but not required) to list your imports in alphabetical order with
built-in modules first then third-party modules listed next, and finally your own modules.

Functions
Python allows you to use modularization in your code. While it supports object-oriented
programming by way of classes (a more advanced feature that you are unlikely to
encounter for most Python GPIO examples), on a more fundamental level you can break
your code into smaller chunks using functions.

Functions use a special keyword construct (rare in Python) to define a function.
We simply use def followed by a name for the function and a comma-separated list of
parameters in parentheses. The colon is used to terminate the declaration. The following
shows an example.

def print_dictionary(the_dictionary):
 for key, value in the_dictionary.items():
 print("'{0}': {1}".format(key, value))

define some data
my_dictionary = {
 'name': "Chuck",
 ‘age’: 37,
}

You may be wondering what this strange code does. Notice the loop is assigning
two values from the result of the items() function. This is a special function available
from the dictionary object.3 The items() function returns the key, value pairs: hence the
names of the variables.

The next line prints out the values. The use of formatting strings where the curly
braces define the parameter number starting at 0 is common for Python 3 applications.
See the Python documentation for more information about formatting strings
(https://docs.python.org/3/library/string.html#format-string-syntax).

The body of the function is indented. All statements indented under this function
declaration belong to the function and are executed when the function is called. We can
call functions by name providing any parameters as follows. Notice how I referenced the
values in the dictionary by using the key names.

print_dictionary(my_dictionary)
print(my_dictionary['age'])
print(my_dictionary['name'])

3Yes, dictionaries are objects! So are tuples and lists and many other data structures.

https://docs.python.org/3/library/string.html#format-string-syntax

Chapter 4 ■ How to Program in MicroPython

140

This example together with the code above, when executed, generates the following.

$ python3
Python 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> def print_dictionary(the_dictionary):
... for key, value in the_dictionary.items():
... print("'{0}': {1}".format(key, value))
...
>>> # define some data
... my_dictionary = {
... 'name': "Chuck",
... 'age': 41,
... }
>>> print_dictionary(my_dictionary)
'name': Chuck
'age': 41
>>> print(my_dictionary['age'])
41
>>> print(my_dictionary['name'])
Chuck

Now let’s look at the most complex concept in Python – object-oriented
programming.

Classes and Objects
You may have heard that Python is an object-oriented programming language. But what
does that mean? Simply, Python is a programming language that provides facilities for
describing objects (things) and what you can do with the object (operations). Objects are
an advanced form of data abstraction where the data is hidden from the caller and only
manipulated by the operations (methods) the object provides.

The syntax we use in Python is the class statement, which you can use to help
make your projects modular. By modular, we mean the source code is arranged to make
it easier to develop and maintain. Typically, we place classes in separate modules (code
files), which helps organize the code better. While it is not required, I recommend using
this technique of placing a class in its own source file. This makes modifying the class or
fixing problems (bugs) easier.

So, what are Python classes? Let’s begin by considering the construct as an
organization technique. We can use the class to group data and methods together. The
name of the class immediately follows the keyword class followed by a colon. You declare
other class methods like any other method except the first argument must be self, which
ties the method to the class instance when executed.

Chapter 4 ■ How to Program in MicroPython

141

■■ Note  I prefer to use terms that have been adopted by the language designers or
community of developers. For example, some use ‘function’ but others may use ‘method’.
Still others may use subroutine, routine, procedure, etc. It doesn’t matter which term you
use, but you should strive to use terms consistently. One example, which can be confusing
to some, is I use the term method when discussing object-oriented examples. That is, a
class has methods not functions. However, you can use function in place of method and
you’d still be correct (mostly).

Accessing the data is done using one or more methods by using the class (creating
an instance) and using dot notation to reference the data member or function. Let’s look
at an example. Listing 4-1 shows a complete class that describes (models) the most basic
characteristics of a vehicle used for transportation. I created a file named vehicle.py to
contain this code.

Listing 4-1.  Vehicle class

#
MicroPython for the IOT
#
Class Example: A generic vehicle
#
Dr. Charles Bell
#
class Vehicle:
 """Base class for defining vehicles"""
 axles = 0
 doors = 0
 occupants = 0

 def __init__(self, num_axles, num_doors):
 self.axles = num_axles
 self.doors = num_doors

 def get_axles(self):
 return self.axles

 def get_doors(self):
 return self.doors

 def add_occupant(self):
 self.occupants += 1

 def num_occupants(self):
 return self.occupants

Chapter 4 ■ How to Program in MicroPython

142

Notice a couple of things here. First, there is a method with the name __init__().
This is the constructor and is called when the class instance is created. You place all
your initialization code like setting variables in this method. We also have methods for
returning the number of axles, doors, and occupants. We have one method in this class:
to add occupants.

Also notice we address each of the class attributes (data) using self.<name>. This is
how we can ensure we always access the data that is associated with the instance created
and not a global variable or other local variable.

Let’s see how this class can be used to define a family sedan. Listing 4-2 shows code
that uses this class. We can place this code in a file named sedan.py.

Listing 4-2.  Using the Vehicle class

#
MicroPython for the IOT
#
Class Example: Using the generic Vehicle class
#
Dr. Charles Bell
#
from vehicle import Vehicle

sedan = Vehicle(2, 4)
sedan.add_occupant()
sedan.add_occupant()
sedan.add_occupant()
print("The car has {0} occupants.".format(sedan.num_occupants()))

Notice the first line imports the Vehicle class from the vehicle module. Notice I
capitalized the class name but not the file name. This is a very common naming scheme.
Next in the code, we create an instance of the class. Notice I passed in 2, 4 to the class
name. This will cause the __init__() method to be called when the class is instantiated.
The variable, sedan, becomes the class instance variable (object) that we can manipulate,
and I do so by adding three occupants then printing out the number of occupants using
the method in the Vehicle class.

We can run the code on our PC using the following command. As we can see, it tells
us there are three occupants in the vehicle when the code is run. Nice.

$ python ./sedan.py
The car has 3 occupants.

Chapter 4 ■ How to Program in MicroPython

143

OBJECT-ORIENTED PROGRAMMING (OOP)
TERMINOLOGY

Like any technology or concept, there comes a certain number of terms that you
must learn to be able to understand and communicate with others about the
technology. The following briefly describes some of the terms you will need to know
to learn more about object-oriented programming.

Attribute: A data element in a class.

Class: A code construct used to define an object in the form of attributes (data) and
methods (functions) that operate on the data. Methods and attributes in Python can
be accessed using dot notation.

Class instance variable: A variable that is used to store an instance of an object.
They are used like any other variable and, combined with dot notation, allow us to
manipulate objects.

Instance: An executable form of a class created by assigning a class to a variable
initializing the code as an object.

Inheritance: The inclusion of attributes and methods from one class in another.

Instantiation: The creation of an instance of a class.

Method overloading: The creation of two or more methods with the same name but
with a different set of parameters. This allows us to create methods that have the
same name but may operate differently depending on the parameters passed.

Polymorphism: Inheriting attributes and methods from a base class adding additional
methods or overriding (changing) methods.

There are many more OOP terms, but these are the ones you will encounter most
often.

Now, let’s see how we can use the vehicle class to demonstrate inheritance. In this
case, we will create a new class named PickupTruck that uses the vehicle class but adds
specialization to the resulting class. Listing 4-3 shows the new class. I placed this code in
a file named pickup_truck.py. As you will see, a pickup truck is a type of vehicle.

Listing 4-3.  Pickup Truck class

#
MicroPython for the IOT
#
Class Example: Inheriting the Vehicle class to form a
model of a pickup truck with maximum occupants and maximum
payload.

Chapter 4 ■ How to Program in MicroPython

144

#
Dr. Charles Bell
#
from vehicle import Vehicle

class PickupTruck(Vehicle):
 """This is a pickup truck that has:
 axles = 2,
 doors = 2,
 __max occupants = 3
 The maximum payload is set on instantiation.
 """
 occupants = 0
 payload = 0
 max_payload = 0

 def __init__(self, max_weight):
 super().__init__(2,2)
 self.max_payload = max_weight
 self.__max_occupants = 3

 def add_occupant(self):
 if (self.occupants < self.__max_occupants):
 super().add_occupant()
 else:
 print("Sorry, only 3 occupants are permitted in the truck.")

 def add_payload(self, num_pounds):
 if ((self.payload + num_pounds) < self.max_payload):
 self.payload += num_pounds
 else:
 print("Overloaded!")

 def remove_payload(self, num_pounds):
 if ((self.payload - num_pounds) >= 0):
 self.payload -= num_pounds
 else:
 print("Nothing in the truck.")

 def get_payload(self):
 return self.payload

Notice a few things here. First, notice the class statement: class
PickupTruck(Vehicle) :. When we want to inherit from another class, we add the
parentheses with the name of the base class. This ensures Python will use the base class
allowing the derived class to use all its accessible data and memory. If you want to inherit
from more than one class, you can (called multiple inheritance), just list the base (parent)
classes with a comma-separated list.

Chapter 4 ■ How to Program in MicroPython

145

Next, notice the __max_occupants variable. Using two underscores in a class for
an attribute or a method makes that, through convention, the item private to the class.4
That is, it should only be accessed from within the class. No caller of the class (via a class
variable/instance) can access the private items nor can any class derived from the class. It
is always a good practice to hide the attributes (data).

You may be wondering what happened to the occupant methods. Why aren’t they in
the new class? They aren’t there because our new class inherited all that behavior from
the base class. Not only that, but the code has been modified to limit occupants to exactly
three occupants.

I also want to point out the documentation I added to the class. We use
documentation strings (strings that use a set of three double quotes before and after)
to document the class. You can put documentation here to explain the class and its
methods. We’ll see a good use of this a bit later.

Finally, notice the code in the constructor. This demonstrates how to call the base
class method, which I do to set the number of axles and doors. We can do the same in
other methods if we wanted to call the base class method’s version.

Now, let’s write some code to use this class. Listing 4-4 shows the code we used
to test this class. Here, we create a file named pickup.py that creates an instance of the
pickup truck, adds occupants, and payload, then prints out the contents of the truck.

Listing 4-4.  Using the PickupTruck class

#
MicroPython for the IOT
#
Class Example: Exercising the PickupTruck class.
#
Dr. Charles Bell
#
from pickup_truck import PickupTruck

pickup = PickupTruck(500)
pickup.add_occupant()
pickup.add_occupant()
pickup.add_occupant()
pickup.add_occupant()
pickup.add_payload(100)
pickup.add_payload(300)
print("Number of occupants in truck = {0}.".format(pickup.num_occupants()))
print("Weight in truck = {0}.".format(pickup.get_payload()))
pickup.add_payload(200)
pickup.remove_payload(400)
pickup.remove_payload(10)

4Technically, it is called name mangling, which simulates making something private, but can
still be accessed if you provide the correct number of underscores. For more information, see
https://en.wikipedia.org/wiki/Name_mangling.

https://en.wikipedia.org/wiki/Name_mangling

Chapter 4 ■ How to Program in MicroPython

146

Notice I add a couple of calls to the add_occupant() method, which the new class
inherits and overrides. I also add calls so that we can test the code in the methods that
check for excessive occupants and maximum payload capacity. When we run this code,
we will see the results as shown below.

$ python ./pickup.py
Sorry, only 3 occupants are permitted in the truck.
Number of occupants in truck = 3.
Weight in truck = 400.
Overloaded!
Nothing in the truck.

Once again, I ran this code on my PC, but I can run all this code on the MicroPython
board and will see the same results.

There is one more thing we should learn about classes: built-in attributes. Recall
the __init__() method. Python automatically provides several built-in attributes each
starting with __ that you can use to learn more about objects. The following lists a few of
the operators available for classes.

•	 __dict__: Dictionary containing the class namespace

•	 __doc__: Class documentation string

•	 __name__: Class name

•	 __module__: Module name where the class is defined

•	 __bases__: The base class(es) in order of inheritance

The following shows what each of these attributes returns for the PickupTruck class
above. I added this code to the pickup.py file.

print("PickupTruck.__doc__:", PickupTruck.__doc__)
print("PickupTruck.__name__:", PickupTruck.__name__)
print("PickupTruck.__module__:", PickupTruck.__module__)
print("PickupTruck.__bases__:", PickupTruck.__bases__)
print("PickupTruck.__dict__:", PickupTruck.__dict__)

When this code is run, we see the following output.

PickupTruck.__doc__: This is a pickup truck that has:
 axles = 2,
 doors = 2,
 max occupants = 3
 The maximum payload is set on instantiation.

PickupTruck.__name__: PickupTruck
PickupTruck.__module__: pickup_truck
PickupTruck.__bases__: (<class 'vehicle.Vehicle'>,)

Chapter 4 ■ How to Program in MicroPython

147

PickupTruck.__dict__: {'__module__': 'pickup_truck', '__doc__': 'This is a
pickup truck that has:\n axles = 2,\n doors = 2,\n max occupants
= 3\n The maximum payload is set on instantiation.\n ', 'occupants':
0, 'payload': 0, 'max_payload': 0, ' _PickupTruck__max_occupants': 3,
'__init__': <function PickupTruck.__init__ at 0x1018a1488>, 'add_occupant':
<function PickupTruck.add_occupant at 0x1018a17b8>, 'add_payload': <function
PickupTruck.add_payload at 0x1018a1840>, 'remove_payload': <function
PickupTruck.remove_payload at 0x1018a18c8>, 'get_payload': <function
PickupTruck.get_payload at 0x1018a1950>}

You can use the built-in attributes whenever you need more information about a
class. Notice the _PickupTruck__max_occupants entry in the dictionary. Recall that we
made a pseudo-private variable, __max_occupants. Here, we see how Python refers to
the variable by prepending the class name to the variable. Remember, variables that start
with two underscores (not one) indicates it should be considered private to the class and
only usable from within the class.

■■ Tip  For more information about classes in Python, see https://docs.python.org/3/
tutorial/classes.html.

Now, let’s see a few examples of Python programs that we can use to practice. Like
the previous examples, you can write and execute these either on your PC or on your
MicroPython board.

Learning Python by Example
The best way to learn how to program in any language is practicing with examples. In
this section, I present several examples that you can use to practice coding in Python.
You can use either your MicroPython board or your PC to run these examples. I present
the first two examples using my PC via the Python console and the second two using the
MicroPython board via the REPL console.

I explain the code in detail for each example and show example output when you
execute the code as well as a challenge for you to try a modification or two of each
example on your own. I encourage you to implement these examples and figure out the
challenge yourself as practice for the projects later in this book.

Example 1: Using Loops
This example demonstrates how to write loops in Python using the for loop. The problem
we are trying to solve is converting integers from decimal to binary, hexadecimal, and
octal. Often with IOT projects, we need to see values in one or more of these formats and
in some cases the sensors we use (and the associated documentation) uses hexadecimal
rather than decimal. Thus, this example can be helpful in the future not only for how to
use the for loop but also how to convert integers into different formats.

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

Chapter 4 ■ How to Program in MicroPython

148

Write the Code
The example begins with a tuple of integers to convert. Tuples and lists can be iterated
through (values read in order) using a for loop. Recall a tuple is read only so in this case
since it is input, it is fine but in other cases where you may need to change values, you will
want to use a list. Recall, the syntactical difference between a tuple and a list is the tuple
uses parentheses and a list uses square brackets.

The for loop demonstrated here is called a “for each” loop. Notice I used the syntax
“for value in values,” which tells Python to iterate over the tuple named values
fetching (storing) each item into the value variable each iteration through the tuple.

Finally, I use the print() and format() functions to replace two placeholders {0}
and {1}, to print out a different format of the integer using the methods bin() for binary,
oct() for octal, and hex() for hexadecimal that do the conversion for us. Listing 4-5
shows examples of converting integers to different forms.

Listing 4-5.  Converting Integers

#
MicroPython for the IOT
#
Example: Convert integer to binary, hex, and octal
#
Dr. Charles Bell
#

Create a tuple of integer values
values = (12, 450, 1, 89, 2017, 90125)

Loop through the values and convert each to binary, hex, and octal
for value in values:
 print("{0} in binary is {1}".format(value, bin(value)))
 print("{0} in octal is {1}".format(value, oct(value)))
 print("{0} in hexadecimal is {1}".format(value, hex(value)))

Execute the Code
You can save this code in a file named conversions.py on your PC and then open a
terminal (console window) and run the code with the command, python ./conversions.
py (or python3 if you have multiple versions of Python installed). Listing 4-6 shows the
output.

Listing 4-6.  Conversions Example Output

$ python3 ./conversions.py
12 in binary is 0b1100
12 in octal is 0o14
12 in hexadecimal is 0xc

Chapter 4 ■ How to Program in MicroPython

149

450 in binary is 0b111000010
450 in octal is 0o702
450 in hexadecimal is 0x1c2
1 in binary is 0b1
1 in octal is 0o1
1 in hexadecimal is 0x1
89 in binary is 0b1011001
89 in octal is 0o131
89 in hexadecimal is 0x59
2017 in binary is 0b11111100001
2017 in octal is 0o3741
2017 in hexadecimal is 0x7e1
90125 in binary is 0b10110000000001101
90125 in octal is 0o260015
90125 in hexadecimal is 0x1600d

Notice all the values in the tuple where converted.

Your Challenge
To make this example better, instead of using a static tuple to contain hard-coded
integers, rewrite the example to read the integer from arguments on the command line
along with the format. For example, the code would be executed like the following.

$ python3 ./conversions.py 123 hex
123 in hexadecimal is 0x7b

To read arguments from the command line, use the argument parser, argparse
(https://docs.python.org/3/howto/argparse.html). If you want to read the integer
from the command line, you can use the argparse module to add an argument by name
as follows.

import argparse

Setup the argument parser
parser = argparse.ArgumentParser()

We need two arguments: integer, and conversion
parser.add_argument("original_val")
parser.add_argument("conversion")

Get the arguments
args = parser.parse_args()

When you use the argument parser (argparse) module, the values of the arguments
are all strings, so you will need to convert the value to an integer before you use the bin(),
hex(), or oct() method.

https://docs.python.org/3/howto/argparse.html

Chapter 4 ■ How to Program in MicroPython

150

You will also need to determine which conversion is requested. I suggest use only
hex, bin, and oct for the conversion and use a set of conditions to check the conversion
requested. Something like the following would work.

if args.conversion == 'bin':
 # do conversion to binary
elif args.conversion == 'oct':
 # do conversion to octal
elif args.conversion == 'hex':
 # do conversion to hexadecimal
else:
 print("Sorry, I don't understand, {0}.".format(args.conversion))

Notice the last else communicates that the argument was not recognized. This helps
to manage user error.

There is one more thing about the argument parser you should know. You can pass
in a help string when adding arguments. The argument parser also gets you the help
argument (-h) for free. Observe the following. Notice I added a couple of strings using the
help= parameter.

We need two arguments: integer, and conversion
parser.add_argument("original_val", help="Value to convert.")
parser.add_argument("conversion", help="Conversion options:
hex, bin, or oct.")

Now when we complete the code and run it with the -h option, we get the following
output. Cool, eh?

$ python3 ./conversions.py -h
usage: conversions.py [-h] original_val conversion

positional arguments:
 original_val Value to convert.
 conversion Conversion options: hex, bin, or oct.

optional arguments:
 -h, --help show this help message and exit

Example 2: Using Complex Data and Files
This example demonstrates how to work with the JavaScript Object Notation5 (JSON) in
Python. In short, JSON is a markup language used to exchange data. Not only is it human
readable, it can be used directly in your applications to store and retrieve data to and from
other applications, servers, and even MySQL. In fact, JSON looks familiar to programmers

5http://www.json.org/

http://www.json.org/

Chapter 4 ■ How to Program in MicroPython

151

because it resembles other markup schemes. JSON is also very simple in that it supports
only two types of structures: 1) a collection containing (name, value) pairs, and 2) an
ordered list (or array). Of course, you can also mix and match the structures in an object.
When we create a JSON object, we call it a JSON document.

The problem we are trying to solve is writing and reading data to/from files. In this
case, we will use a special JSON encoder and decoder module named json that allows
us to easily convert data in files (or other streams) to and from JSON. As you will see,
accessing JSON data is easy by simply using the key (sometimes called fields) names to
access the data. Thus, this example can be helpful in the future not only for how to use
read and write files but also how to work with JSON documents.

Write the Code
This example stores and retrieves data in files. The data is basic information about pets
including the name, age, breed, and type. The type is used to determine broad categories
like fish, dog, or cat.

We begin by importing the JSON module (named json), which is built into the
MicroPython platform. Next, we prepare some initial data by building JSON documents
and storing them in a Python list. We use the json.loads() method to pass in a JSON
formatted string. The result is a JSON document that we can add to our list. The examples
use a very simple form of JSON documents – a collection of (name, value) pairs. The
following shows an example of one of the JSON formatted strings used.

{"name":"Violet", "age": 6, "breed":"dachshund", "type":"dog"}

Notice we enclose the string inside curly braces and use a series of key names, a
colon, and a value separated by commas. If this looks familiar, it’s because is the same
format as a Python dictionary. This demonstrates my comment that JSON syntax looks
familiar to programmers.

The JSON method, json.loads(), takes the JSON formatted string then parses the
string checking for validity and returns a JSON document. We then store that document
in a variable and add it to the list as shown below.

parsed_json = json.loads('{"name":"Violet", "age": 6, "breed":"dachshund",
"type":"dog"}')
pets.append(parsed_json)

Once the data is added to the list, we then write the data to a file named my_data.
json. To work with files, we first open the file with the open() function, which takes a file
name (including a path if you want to put the file in a directory) and an access mode. We
use “r” for read, and “w” for write. You can also use “a” for append if you want to open a
file and add to the end. Note that the “w” access will overwrite the file when you write to
it. If the open() function succeeds, you get a file object that permits you to call additional
functions to read or write data. The open() will fail if the file is not present (and you have
requested read access) or you do not have permissions to write to the file.

Chapter 4 ■ How to Program in MicroPython

152

Table 4-3.  Python File Access Modes

Mode Description

r Opens a file for reading only. The file pointer is placed at the beginning of the
file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer is placed at the
beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer is
placed at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does
not exist, it creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file
exists. If the file does not exist, it creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file
exists. If the file does not exist, it creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the
existing file if the file exists. If the file does not exist, it creates a new file for
reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the
file exists. That is, the file is in the append mode. If the file does not exist, it
creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of
the file if the file exists. That is, the file is in the append mode. If the file does
not exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of
the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer
is at the end of the file if the file exists. The file opens in the append mode. If
the file does not exist, it creates a new file for reading and writing.

In case you’re curious what other access modes, Table 4-3 shows the list of modes
available for the open() function.

Once the file is open, we can write the JSON documents to the file by iterating over
the list. Iteration means to start at the first element and access the elements in the list
one at a time in order (the order they appear in the list). Recall, iteration in Python is very
easy. We simply say, “for each item in the list” with the for loop as follows.

for pet in pets:
 // do something with the pet data

Chapter 4 ■ How to Program in MicroPython

153

To write the JSON document to the file, we use the json.dumps() method, which
will produce a JSON formatted string writing that to the file using the file variable and the
write() method. Thus, we now see how to build JSON documents from strings and then
decode (dump) them to a string.

Once we’ve written data to the file, we then close the file with the close()
function then reopen it and read data from the file. In this case, we use another special
implementation of the for loop. We use the file variable to read all of the lines in the file
with the readlines() method then iterate over them with the following code.

json_file = open("my_data.json", "r")
for pet in json_file.readlines():
 // do something with the pet string

We use the json.loads() method again to read the JSON formatted string as read
from the file to convert it to a JSON document, which we add to another list. We then
close the file. Now the data has been read back into our program and we can use it.
Finally, we iterate over the new list and print out data from the JSON documents using
the key names to retrieve the data we want. Listing 4-7 shows the completed code for this
example.

Listing 4-7.  Writing and Reading JSON Objects to/from Files

#
MicroPython for the IOT
#
Example: Storing and retrieving JSON objects in files
#
Dr. Charles Bell
#

import json

Prepare a list of JSON documents for pets by converting JSON to a dictionary
pets = []
parsed_json = json.loads('{"name":"Violet", "age": 6, "breed":"dachshund",
"type":"dog"}')
pets.append(parsed_json)
parsed_json = json.loads('{"name": "JonJon", "age": 15, "breed":"poodle",
"type":"dog"}')
pets.append(parsed_json)
parsed_json = json.loads('{"name": "Mister", "age": 4, "breed":"siberian
khatru", "type":"cat"}')
pets.append(parsed_json)
parsed_json = json.loads('{"name": "Spot", "age": 7, "breed":"koi",
"type":"fish"}')
pets.append(parsed_json)

Chapter 4 ■ How to Program in MicroPython

154

parsed_json = json.loads('{"name": "Charlie", "age": 6, "breed":"dachshund",
"type":"dog"}')
pets.append(parsed_json)

Now, write these entries to a file. Note: overwrites the file
json_file = open("my_data.json", "w")
for pet in pets:
 json_file.write(json.dumps(pet))
 json_file.write("\n")
json_file.close()

Now, let's read the JSON documents then print the name and age for all of
the dogs in the list
my_pets = []
json_file = open("my_data.json", "r")
for pet in json_file.readlines():
 parsed_json = json.loads(pet)
 my_pets.append(parsed_json)
json_file.close()

print("Name, Age")
for pet in my_pets:
 if pet['type'] == 'dog':
 print("{0}, {1}".format(pet['name'], pet['age']))

Notice the loop for writing data. We added a second write() method passing in a
strange string (it is actually an escaped character). The \n is a special character called the
newline character. This forces the JSON formatted strings to be on separate lines in the
file and helps with readability.

■■ Tip  For a more in-depth look at how to work with files in Python, see https://docs.
python.org/3/tutorial/inputoutput.html#reading-and-writing-files.

So, what does the file look like? The following is a dump of the file using the more
utility, which shows the contents of the file. Notice the file contains the JSON formatted
strings just like we had in our code.

$ more my_data.json
{"age": 6, "breed": "dachshund", "type": "dog", "name": "Violet"}
{"age": 15, "breed": "poodle", "type": "dog", "name": "JonJon"}
{"age": 4, "breed": "siberian khatru", "type": "cat", "name": "Mister"}
{"age": 7, "breed": "koi", "type": "fish", "name": "Spot"}
{"age": 6, "breed": "dachshund", "type": "dog", "name": "Charlie"}

Now, let’s see what happens when we run this script.

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

Chapter 4 ■ How to Program in MicroPython

155

Execute the Code
You can save this code in a file named rw_json.py on your PC then open a terminal
(console window) and run the code with the command, python ./rw_json.py (or
python3 if you have multiple versions of Python installed). The following shows the
output.

$ python ./rw_json.py
Name, Age
Violet, 6
JonJon, 15
Charlie, 6

While the output may not be very impressive, by completing the example, you’ve
learned a great deal about working with files and structured data using JSON documents.

Your Challenge
To make this example more of a challenge, you could modify it to include more
information about your pets. I suggest you start with a simple text file and type in the
JSON formatted strings for your pets. To increase the complexity, try adding information
that is pertinent to the type of pet. For example, you could add some keys for one or more
pets, other keys for other pets, and so on. Doing so will show one of the powers of JSON
documents; collections of JSON documents do not have to have the same format.

Once you have this file, modify the code to read from the file and print out all the
information for each pet by printing the key name and value. Hint: you will need to use
special code to print out the key name and the value called “pretty printing.” For example,
the following code will print out the JSON document in an easily readable format. Notice
we use the sort_keys option to print the keys (fields) and we can control the number of
spaces to indent.

for pet in my_pets:
 print(json.dumps(pet, sort_keys=True, indent=4))

When run, the output will look like the following.

{
 "age": 6,
 "breed": "dachshund",
 "name": "Violet",
 "type": "dog"
}
{
 "age": 15,
 "breed": "poodle",
 "name": "JonJon",
 "type": "dog"
}

Chapter 4 ■ How to Program in MicroPython

156

Example 3: Using Functions
This example demonstrates how to create and use functions. Recall functions are used
to help make our code more modular. Functions can also be a key tool in avoiding
duplication of code. That is, we can reuse portions of code repeatedly by placing them
in a function. Functions are also used to help isolate code for special operations such as
mathematical formulae.

The problem we’re exploring in this example is how to create functions to perform
calculations. We will also explore a common computer science technique called
recursion6 where a function calls itself repeatedly. I will also show you the same function
implemented in an iterative manner (typically using a loop). While some would advise
avoiding recursion, recursive functions are a bit shorter to write but can be more difficult
to debug if something goes wrong. The best advice I can offer is that almost every
recursive functions can be written as iterative functions and novice programmers should
stick to iterative solutions until they gain confidence using functions.

Write the Code
This example is designed to calculate a Fibonacci series.7 A Fibonacci series is calculated
as the sum of the two preceding values in the series. The series begins with 1 followed by
1 (nothing plus 1), then 1 + 1 = 2, and so on. For this example, we will ask the user for an
integer then calculate the number of values in the Fibonacci series. If the input is 5, the
series is 1, 1, 2, 3, 5.

We will create two functions: one to calculate the Fibonacci series using code that
iteratively calculates the series and one to calculate the nth Fibonacci number using a
recursive function. Let’s look at the iterative function first.

To define a function, we use the syntax def func_name(<parameters>): where we
supply a function name and a list of zero or more parameters followed by a colon. These
parameters are then usable inside the function. We pass in data to the function using the
parameters. The following shows the iterative version of the Fibonacci series code. We
name this function, fibonacci_iterative.

def fibonacci_iterative(count):
 i = 1
 if count == 0:
 fib = []
 elif count == 1:
 fib = [1]
 elif count == 2:
 fib = [1,1]
 elif count > 2:
 fib = [1,1]

6https://en.wikipedia.org/wiki/Recursion_(computer_science)
7https://en.wikipedia.org/wiki/Fibonacci_number

https://en.wikipedia.org/wiki/Recursion_(computer_science
https://en.wikipedia.org/wiki/Fibonacci_number

Chapter 4 ■ How to Program in MicroPython

157

 while i < (count - 1):
 fib.append(fib[i] + fib[i-1])
 i += 1
 return fib

This code simply calculates the first N values in the series and returns them in a
list. The parameter count is the number of values in the series. The function begins by
checking to see if the trivial values are requested: 0, 1, or 2 whose values are known. If
the count value is greater than 2, we begin with the know series [1, 1] then use a loop to
calculate the next value by adding the two previous values together. Take a moment to
notice how I use the list index to get the two previous values in the list (i and i-1). We will
use this function and the list returned directly in our code to find a specific value in the
series and print it.

Now let’s look at the recursive version of the function. The following shows the code.
We name this function fibonacci_recursive.

def fibonacci_recursive(number):
 if number == 0:
 return 0
 elif number == 1:
 return 1
 else:
 # Call our self counting down.
 �value = fibonacci_recursive(number-1) + fibonacci_

recursive(number-2)
 return value

In this case, we don’t return the entire series; rather, we return the specific value in
the series – the nth value. Like the iterative example, we do the same thing regarding the
trivial values returning the number requested. Otherwise, we call the same function again
for each number. It may take some time to get your mind around how this works, but it
does calculate the nth value.

Now, you may be wondering where you place functions in the code. We need to
place them at the top of the code. Python will parse the functions and continue to execute
statements following the definitions. Thus, we place our “main” code after our functions.

The main code for this example begins with requesting the nth value for the Fibonacci
series then uses the recursive function first to calculate the value. We then ask the user
if they want to see the entire series and if so, we use the iterative version of the function
to get the list and print it out. We print out the nth value and give the option again to see
the entire series to show the result is the same using both functions. Listing 4-8 shows the
completed code for the example. We will name this code fibonacci.py.

Chapter 4 ■ How to Program in MicroPython

158

Listing 4-8.  Calculating Fibonacci Series

#
MicroPython for the IOT
#
Example: Fibonacci series using recursion
#
Calculate the Fibonacci series based on user input
#
Dr. Charles Bell
#

Create a function to calculate Fibonacci series (iterative)
Returns a list.
def fibonacci_iterative(count):
 i = 1
 if count == 0:
 fib = []
 elif count == 1:
 fib = [1]
 elif count == 2:
 fib = [1,1]
 elif count > 2:
 fib = [1,1]
 while i < (count - 1):
 fib.append(fib[i] + fib[i-1])
 i += 1
 return fib

Create a function to calculate the nth Fibonacci number (recursive)
Returns an integer.
def fibonacci_recursive(number):
 if number == 0:
 return 0
 elif number == 1:
 return 1
 else:
 # Call our self counting down.
 value = fibonacci_recursive(number-1) + fibonacci_recursive(number-2)
 return value

Main code
print("Welcome to my Fibonacci calculator!")
index = int(input("Please enter the number of integers in the series: "))

Chapter 4 ■ How to Program in MicroPython

159

Recursive example
print("We calculate the value using a recursive algoritm.")
nth_fibonacci = fibonacci_recursive(index)
print("The {0}{1} fibonacci number is {2}."
 "".format(index, "th" if index > 1 else "st", nth_fibonacci))
see_series = str(input("Do you want to see all of the values in the series? "))
if see_series in ["Y","y"]:
 series = []
 for i in range(1,index+1):
 series.append(fibonacci_recursive(i))
 print("Series: {0}: ".format(series))

Iterative example
print("We calculate the value using an iterative algoritm.")
series = fibonacci_iterative(index)
print("The {0}{1} fibonacci number is {2}."
 "".format(index, "th" if index > 1 else "st", series[index-1]))
see_series = str(input("Do you want to see all of the values in the series? "))
if see_series in ["Y","y"]:
 print("Series: {0}: ".format(series))

print("bye!")

Take a few moments to read through the code. While the problem being solved is a
bit simpler than the previous example, there is a lot more code to read through. When
you’re ready, connect your MicroPython board and create the file. You create the file on
your PC for this example and name it fibonacci.py. We’ll copy it to our MicroPython
board in the next section.

■■ Tip  For a more in-depth look at how to create and use your own functions (methods)
in Python, see https://docs.python.org/3/tutorial/controlflow.html#defining-
functions.

Now, let’s see what happens when we run this script. Recall, we will be running this
code on our MicroPython board so if you’re following along, be sure to set up your board
and connect it to your PC.

Execute the Code
Recall from Chapter 3, when we want to move code to our MicroPython board, we need to
create the file and then copy it to the MicroPython board and then execute it. I will show
you how to do this on macOS in this section. An example of how to do it on Windows 10 is
shown in example 4.

When you plug your MicroPython board into a USB port on your PC, the flash drive
will appear in your Finder and on your desktop. Figure 4-1 shows an example on macOS.

https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 4 ■ How to Program in MicroPython

160

Figure 4-1.  MicroPython board Flash Drive Mounted

Figure 4-2.  Files Copied to the MicroPython board Flash Drive

We now need to copy the fibonacci.py file to the flash drive. On macOS, open the
flash drive and then drag the files onto the drive. You should see something like Figure 4-2
when you’ve copied the file.

Notice I annotated the image to show the file. Notice also we see the MicroPython
files boot.py and main.py. We will not modify the main.py file to run our example
because we don’t want the program to run every time we boot the device. Instead, we will
run the code from the REPL console.

Open a REPL console using a terminal window. You should see the welcome
message from MicroPython followed by the RELP prompt (>>>). From the REPL prompt,
issue the following code statement.

import fibonnaci

Chapter 4 ■ How to Program in MicroPython

161

Notice I responded to the query to show the entire series. Notice also that we see the
code has exercised both versions of the function we wrote: iterative and recursive. Finally,
we see that the values or output of both functions is the same data.

■■ Note  If you do not yet have a MicroPython board, you can run the code from your PC with
the command, python ./fibonacci.py. You will see similar output as shown in the figure.

If you run the code again, just press CTRL-D to do a soft reset then issue the
import statement again. This will rerun the entire code. Or, if you want to run one of the
functions, you can call it again by importing it using the code below. Figure 4-4 shows
how this would look when executed on the MicroPython board.

from fibonacci import fibonacci_iterative
fibonacci_iterative(6)
from fibonacci import fibonacci_recursive
fibonacci_recursive(6)

This code imports the fibonnaci.py file we just copied and when it does, it executes
the code. So, it’s like we ran it on our PC from the Python console. Go ahead and test the
program by requesting the twelfth value in the Fibonacci series. You should see output
shown in Figure 4-3.

Figure 4-3.  Output of Fibonacci Example (MicroPython board)

Chapter 4 ■ How to Program in MicroPython

162

Once imported this way, you can run the functions again. Go ahead and try them
with different values to show how they behave. Recall, the functions were implemented
differently – the iterative version returns the list and the recursive version returns only the
last or nth value.

When you’re done experimenting with the example, remember to close the terminal
and eject the drive for the flash before you unplug it.

Your Challenge
To make this example a bit more useful, modify the code to search a Fibonacci series for a
specific integer. Ask the user to provide and integer then determine if the value is a valid
Fibonacci value. For example, if the user enters 144, the code should tell the user that
value is valid and is the twelfth value in the series. While this challenge will require you to
rewrite most of the code for the “main” functionality, you must figure out how to use the
functions in a new way.

Example 4: Using Classes
This example ramps up the complexity considerably by introducing an object-oriented
programming concept: classes. Recall from earlier that classes are another way to
modularize our code. Classes are used to model data and behavior on that data. Further,
classes are typically placed in their own code module (file) that further modularizes the
code. If you need to modify a class, you may need only change the code in the class module.

The problem we’re exploring in this example is how to develop solutions using
classes and code modules. We will be creating two files: one for the class and another for
the main code.

Figure 4-4.  Experimenting with the Fibonacci Functions

Chapter 4 ■ How to Program in MicroPython

163

Write the Code
This example is designed to convert Roman numerals8 to integers. That is, we will
enter a value like VIII, which is eight, and expect to see the integer 8. To make things
more interesting, we will also take the integer we derive and convert it back to Roman
numerals. Roman numerals are formed as a string using the characters I for 1, V for 5, X
for 10, L for 50, C for 100, D for 500, and M for 1000. Combinations of other numbers are
done by adding the character numerical value together (e.g., 3 = III), or a single, lower
character before another character to indicate the representative minus that character
(e.g., 4 = IV). The following show some examples of how this works.

3 = III
15 = XV
12 = XII
24 = XXIV
96 = LXLVI
107 = CVII

This may sound like a lot of extra work, but consider this: if we can convert from one
format to another, we should be able to convert back without errors. More specifically, we
can use the code for one conversion to validate the other. If we get a different value when
converting it back, we know we have a problem that needs to be fixed.

To solve the problem, we will place the code for converting Roman numerals into
a separate file (code module) and build a class called Roman_Numerals to contain the
methods. In this case, the data is a mapping of integers to Roman numerals.

Private dictionary of roman numerals
__roman_dict = {
 'I': 1,
 'IV': 4,
 'V': 5,
 'IX': 9,
 'X': 10,
 'XL': 40,
 'L': 50,
 'XC': 90,
 'C': 100,
 'CD': 400,
 'D': 500,
 'CM': 900,
 'M': 1000,
}

8https://en.wikipedia.org/wiki/Roman_numerals

https://en.wikipedia.org/wiki/Roman_numerals

Chapter 4 ■ How to Program in MicroPython

164

Notice the two underscores before the name of the dictionary. This is a special
notation that marks the dictionary as a private variable in the class. This is a Python
aspect for information hiding, which is a recommended technique to use when designing
objects; always strive to hide data that is used inside the class.

Notice also that instead of using the basic characters and their values, I used several
other values too. I did this to help make the conversion easier (and cheat a bit). In this
case, I added the entries that represent the one value previous conversions such as 4 (IV),
9 (IX), etc. This makes the conversion a bit easier (and more accurate).

We will also add two methods; convert_to_int(), which takes a Roman numeral
string and converts it to an integer; and convert_to_roman(), which takes an integer and
converts it to a Roman numeral. Rather than explain every line of code in the methods, I
leave it to you to read the code to see how it works.

Simply, the convert to integer method takes each character and gets its value from
the dictionary summing the values. There is a trick there that requires special handling
for the lower value characters appearing before higher values (e.g., IX). The convert to
Roman method is a bit easier since we simply divide the value by the highest value in the
dictionary until we reach zero. Listing 4-9 shows the code for the class module, which is
saved in a file named roman_numerals.py.

Listing 4-9.  Roman Numeral Class

#
MicroPython for the IOT
#
Example: Roman numerals class
#
Convert integers to roman numerals
Convert roman numerals to integers
#
Dr. Charles Bell
#

class Roman_Numerals:

 # Private dictionary of roman numerals
 __roman_dict = {
 'I': 1,
 'IV': 4,
 'V': 5,
 'IX': 9,
 'X': 10,
 'XL': 40,
 'L': 50,
 'XC': 90,
 'C': 100,
 'CD': 400,

Chapter 4 ■ How to Program in MicroPython

165

 'D': 500,
 'CM': 900,
 'M': 1000,
 }

 def convert_to_int(self, roman_num):
 value = 0
 for i in range(len(roman_num)):
 �if i > 0 and self.__roman_dict[roman_num[i]] > self.__roman_

dict[roman_num[i - 1]]:
 �value += self.__roman_dict[roman_num[i]] - 2 * self.__roman_

dict[roman_num[i - 1]]
 else:
 value += self.__roman_dict[roman_num[i]]
 return value

 def convert_to_roman(self, int_value):
 # First, get the values of all of entries in the dictionary
 roman_values = list(self.__roman_dict.values())
 roman_keys = list(self.__roman_dict.keys())
 # Prepare the string
 roman_str = ""
 remainder = int_value
 # Loop through the values in reverse
 for i in range(len(roman_values)-1, -1, -1):
 count = int(remainder / roman_values[i])
 if count > 0:
 for j in range(0,count):
 roman_str += roman_keys[i]
 remainder -= count * roman_values[i]
 return roman_str

If you’re following along with the chapter, go ahead and create a file on your PC for
this code and name it roman_numerals.py. We’ll copy it to our MicroPython board in the
next section.

Now let’s look at the main code. For this, we simply need to import the new class
from the code module as follows. This is a slightly different form of the import directive.
In this case, we’re telling Python to include the roman_numerals class from the file named
Roman_Numerals.

from roman_numerals import Roman_Numerals

■■ Note  If the code module were in a subfolder, say roman, we would have written the
import statement as from roman import Roman_Numerals where we list the folders using
dot notation instead of slashes.

Chapter 4 ■ How to Program in MicroPython

166

The rest of the code is straightforward. We first ask the user for a valid Roman
numeral string then convert it to an integer and use that value to convert back to Roman
numerals, printing the result. So, you see having the class in a separate module has
simplified our code making it shorter and easier to maintain. Listing 4-10 shows the
complete main code saved in a file named simply roman.py.

Listing 4-10.  Converting Roman Numerals

#
MicroPython for the IOT
#
Example: Convert roman numerals using a class
#
Convert integers to roman numerals
Convert roman numerals to integers
#
Dr. Charles Bell
#

from roman_numerals import Roman_Numerals

roman_str = input("Enter a valid roman numeral: ")
roman_num = Roman_Numerals()

Convert to roman numberals
value = roman_num.convert_to_int(roman_str)
print("Convert to integer: {0} = {1}".format(roman_str, value))

Convert to integer
new_str = roman_num.convert_to_roman(value)
print("Convert to Roman Numerals: {0} = {1}".format(value, new_str))

print("bye!")

If you’re following along with the chapter, go ahead and create a file on your PC
for this code and name it roman.py. We’ll copy it to our MicroPython board in the next
section.

■■ Tip  For a more in-depth look at how to work with classes in Python, see
https://docs.python.org/3/tutorial/classes.html.

Now, let’s see what happens when we run this script. Recall, we will be running this
code on our MicroPython board so if you’re following along, be sure to set up your board
and connect it to your PC.

https://docs.python.org/3/tutorial/classes.html

Chapter 4 ■ How to Program in MicroPython

167

Execute the Code
In this example, we will see how to copy the code to our MicroPython board on Windows 10.
Like the last example, we will first create the files on our PC, connect the MicroPython board,
copy the files, and then execute them.

When you connect your MicroPython board on Windows 10, the drive will show in
the file explorer as shown in Figure 4-5.

If you haven’t created the files, do that now. When ready, we’ll copy them to the
MicroPython board. Rather than use the file explorer, I chose to demonstrate how to copy
the files from a console (command prompt). Open a console and then change to the drive
letter shows in your file explorer. Next, copy the files roman_numerals.py and roman.py to
the drive. Figure 4-6 shows an example of copying the files.

Figure 4-5.  MicroPython board Flash Drive Mounted (Windows 10)

Chapter 4 ■ How to Program in MicroPython

168

Now, we’re ready to connect to the MicroPython board and run the code. Recall
one of the ways to connect to the board is to use PuTTY on Windows. Figure 4-7 shows
the PuTTY console. Notice I chose COM3 and serial connection. Recall, you can find the
COM port from the Device Manager. When ready, click Open.

Figure 4-6.  Copying the File to the MicroPython board Flash Drive (Console)

Chapter 4 ■ How to Program in MicroPython

169

PuTTY will open the REPL console when the connection is made. You should see the
welcome message from MicroPython followed by the RELP prompt (>>>). From the REPL
prompt, issue the following code statement.

import roman

This code imports the roman.py file we just copied and when it does, it executes the
code, which if you recall will call the code in the roman_numerals.py code module. Once
again, issuing the import is like how we ran it on our PC from the Python console.

Once you issue the import statement, the code will execute. Go ahead and try it out.
Start with the value LXLIV, which is SSS in Roman numerals. Figure 4-8 shows what the
output will look like.

Figure 4-7.  Connecting with PuTTy (Windows 10)

Chapter 4 ■ How to Program in MicroPython

170

You can also experiment with importing the code and executing it again from the
terminal or just eject the drive, reset the board, and reconnect to run it again with other
values.

When you’re done executing the example, remember to close the terminal and eject
the drive for the flash before you unplug it.

Your Challenge
There isn’t much to add for this example to improve it other than perhaps some user
friendliness (nicer to use). If you want to improve the code or the class itself, I suggest
adding a new method named validate() used to validate a Roman numeral string. This
method can take a string and determine if it contains a valid series of characters. Hint: to
start, check the string has only the characters in the dictionary.

However, you can use this template to build other classes for converting formats. For
example, as an exercise, you could create a new class to convert integers to hexadecimal
or even octal. Yes, there are functions that will do this for us, but it can be enlightening
and satisfying to build it yourself. Go ahead, give it a go – create a new class to convert
integers to other formats. I would suggest doing a hexadecimal to integer function
first and when that is working correctly, create the reciprocal to convert integers to
hexadecimal.

A more advanced challenge would be to rewrite the class to accept a string in the
constructor (when the class variable is created) and use that string to do the conversions
instead of passing the string or integer using the convert_to* methods. For example, the
class could have a constructor and private member as follows.

__roman_str = ""
...
def __init__(self, name):
 self.name = name

When you create the instance, you will need to pass the string or else you will get an
error that a required parameter is missing.

roman_str = input("Enter a valid roman numeral: ")
roman_num = Roman_Numerals(roman_str)

Figure 4-8.  Executing the Roman Numerals Example

Chapter 4 ■ How to Program in MicroPython

171

For More Information
Should you require more in-depth knowledge of Python, there are several excellent books
on the topic. I list a few of my favorites below. A great resource is the documentation on
the Python site: python.org/doc/.

•	 Pro Python, 2nd Edition (Apress, 2014) J. Burton Browning, Marty
Alchin

•	 Learning Python, 5th Edition (O’Reilly Media, 2013) Mark Lutz

•	 Automate the Boring Stuff with Python: Practical Programming for
Total Beginners (No Starch Press, 2015), Al Sweigart

Summary
Wow! That was a wild ride, wasn’t it? I hope that this short crash course in Python has
explained enough about the sample programs shown so far that you now know how
they work. This crash course also forms the basis for understanding the other Python
examples in this book.

If you are learning how to work with IOT projects and don’t know how to program
with Python, learning Python can be fun given its easy-to-understand syntax. While there
are many examples on the Internet you can use, very few are documented in such a way
as to provide enough information for someone new to Python to understand or much less
get started and deploy the sample! But at least the code is easy to read.

This chapter has provided a crash course in Python that covers the basics of the
things you will encounter when examining most of the smaller example projects.
We discovered the basic syntax and constructs of a Python application including a
walkthrough of building a real Python application that blinks an LED. Through that
example, we learned how to work with headless applications including how to manage a
startup background application.

In the next chapter, we’ll dive deeper into MicroPython programming. We will see
more about the special libraries available for use in your IOT projects written for running
on MicroPython boards.

173© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_5

CHAPTER 5

MicroPython Libraries

Now that we have a good grasp on how to write our code in Python and MicroPython,
it is time to look at the supporting libraries that make up the firmware. As you will see,
the libraries available in MicroPython mirror those in Python. In fact, the libraries in the
firmware (sometimes called the application programming interface or API or firmware
API) comprise a great deal of the same libraries in Python.

There are some notable exceptions for standard libraries where there is an
equivalent library in MicroPython, but it has been renamed to distinguish it from the
Python library. In this case, the library has either been reduced in scope by removing the
less-frequently used features or modified in some ways to fit the MicroPython platform -
all to save space (memory).

There are also libraries that are specific to MicroPython, and the hardware that
provides functionality that may or may not be in some general Python releases. These
libraries are designed to make working with the microcontroller and hardware easier.

Thus, there are three types of libraries in the firmware: those that are standard and
mostly the same as those in Python, those that are specific to MicroPython, and those
that are specific to the hardware. There is another type of library sometimes called user-
supplied or simply custom libraries. These are libraries (APIs) we create ourselves that we
can deploy to our board and thereby make functionality available to all our projects. We
will see an overview of all types of libraries in this chapter.

■■ Note  The word module, or code module, is sometimes used to refer to a library;
however, module is commonly a single code file while a library may consist of many code
files. Thus, it is ok to interchange the names if the library is a single file (code module).
Another word sometimes used for library is package, which implies multiple files. You may
encounter that term too.

Rather than simply paraphrase or (gasp) copy the existing documentation, we will
see overviews of the libraries in the form of quick reference tables you can use to become
familiar with what is available. Simply knowing what is available can often speed up
development and make your programs stronger by not having to reinvent something or
spend lots of time trying to find a library that you may (or may not) need. However, there
are several libraries that are crucial to learning how to develop MicroPython IOT projects.

https://doi.org/10.1007/978-1-4842-3123-4_5

Chapter 5 ■ MicroPython Libraries

174

We will discover those in more detail with code snippets to help you learn them. So,
while this chapter is intended to teach you about the more common libraries, it is also a
reference guide to a deeper understanding of the MicroPython firmware with links to the
official documentation.

Let’s begin with a look at those libraries in MicroPython that are “standard” Python
libraries.

Built-In and Standard Libraries
As you know, MicroPython is built on Python. Much work was done to trim things down
so that most the Python libraries can fit on a chip. The resulting MicroPython firmware is
considerably smaller than Python on your PC but in no way crippled. That is, MicroPython
is Python, and as such MicroPython has many of the same libraries as Python.

Some may call these libraries “built-in,” but it is more correct to name them
“standard” libraries since these libraries are the same as those in Python. More
specifically, they have the same classes with the same functions as those in Python. So,
you can write a script on your PC and execute it there and then execute the same script
unaltered on your MicroPython board. Nice! As you can surmise, this helps greatly when
developing a complex project.

Recall we saw this technique demonstrated in the last chapter. There we saw it is
possible to develop part of your script - those parts using standard libraries - and debug
them on your PC. That is, once you have them working correctly, you can move on to the
next part that requires MicroPython libraries or the hardware libraries. This is because
developing on our PC is so much easier. We don’t need to power the board on, connect it
to our WiFi, etc., to get it to work. Plus, the PC is a lot faster. It’s just easier all around. By
exercising this practice, we can potentially save ourselves some frustration by ensuring
the “standard” parts of our project are working correctly.

In this section, we will explore the standard Python libraries beginning with a
short overview of what is available, followed by details on how to use some of the more
common libraries.

■■ Tip S ee http://docs.micropython.org/en/latest/pyboard/library/index.
html#python-standard-libraries-and-micro-libraries for more details about any of
the standard libraries.

Overview
The standard libraries in MicroPython contain objects that you can use to perform
mathematical functions, operate on programming structures, work with transportable
documents (a document store) through JSON, interact with the operating system and
other system functions, and even perform calculations on time. Table 5-1 contains a list
of the current standard MicroPython libraries. The first column is the name we use in our
import statement, the second is a short description, and the third contains a link to the
online documentation.

http://docs.micropython.org/en/latest/pyboard/library/index.html#python-standard-libraries-and-micro-libraries
http://docs.micropython.org/en/latest/pyboard/library/index.html#python-standard-libraries-and-micro-libraries

Chapter 5 ■ MicroPython Libraries

175

Table 5-1.  Standard Python Libraries in MicroPython

Name Description Documentation

array Working with arrays http://docs.micropython.org/en/
latest/pyboard/library/array.html

cmath Complex mathematics http://docs.micropython.org/en/
latest/pyboard/library/cmath.html

gc Garbage collector http://docs.micropython.org/en/
latest/pyboard/library/gc.html

math Math functions http://docs.micropython.org/en/
latest/pyboard/library/math.html

sys System-level functions http://docs.micropython.org/en/
latest/pyboard/library/sys.html

ubinascii Conversions binary/ASCII http://docs.micropython.org/en/
latest/pyboard/library/ubinascii.html

ucollections Containers http://docs.micropython.org/en/latest/
pyboard/library/ucollections.html

uerrno Error codes http://docs.micropython.org/en/
latest/pyboard/library/uerrno.html

uhashlib Hash algorithms http://docs.micropython.org/en/
latest/pyboard/library/uhashlib.html

uheapq Heap queue http://docs.micropython.org/en/
latest/pyboard/library/uheapq.html

uio Streams for input/output http://docs.micropython.org/en/
latest/pyboard/library/uio.html

ujson JSON documents http://docs.micropython.org/en/
latest/pyboard/library/ujson.html

uos Operating system http://docs.micropython.org/en/
latest/pyboard/library/uos.html

ure Regular expressions http://docs.micropython.org/en/
latest/pyboard/library/ure.html

uselect Stream events http://docs.micropython.org/en/
latest/pyboard/library/uselect.html

usocket Sockets (networking) http://docs.micropython.org/en/
latest/pyboard/library/usocket.html

ustruct Pack and unpack structs http://docs.micropython.org/en/
latest/pyboard/library/ustruct.html

utime Time and date functions http://docs.micropython.org/en/
latest/pyboard/library/utime.html

uzlib Compression algorithms http://docs.micropython.org/en/
latest/pyboard/library/uzlib.html

http://docs.micropython.org/en/latest/pyboard/library/array.html
http://docs.micropython.org/en/latest/pyboard/library/array.html
http://docs.micropython.org/en/latest/pyboard/library/cmath.html
http://docs.micropython.org/en/latest/pyboard/library/cmath.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/math.html
http://docs.micropython.org/en/latest/pyboard/library/math.html
http://docs.micropython.org/en/latest/pyboard/library/sys.html
http://docs.micropython.org/en/latest/pyboard/library/sys.html
http://docs.micropython.org/en/latest/pyboard/library/ubinascii.html
http://docs.micropython.org/en/latest/pyboard/library/ubinascii.html
http://docs.micropython.org/en/latest/pyboard/library/ucollections.html
http://docs.micropython.org/en/latest/pyboard/library/ucollections.html
http://docs.micropython.org/en/latest/pyboard/library/uerrno.html
http://docs.micropython.org/en/latest/pyboard/library/uerrno.html
http://docs.micropython.org/en/latest/pyboard/library/uhashlib.html
http://docs.micropython.org/en/latest/pyboard/library/uhashlib.html
http://docs.micropython.org/en/latest/pyboard/library/uheapq.html
http://docs.micropython.org/en/latest/pyboard/library/uheapq.html
http://docs.micropython.org/en/latest/pyboard/library/uio.html
http://docs.micropython.org/en/latest/pyboard/library/uio.html
http://docs.micropython.org/en/latest/pyboard/library/ujson.html
http://docs.micropython.org/en/latest/pyboard/library/ujson.html
http://docs.micropython.org/en/latest/pyboard/library/uos.html
http://docs.micropython.org/en/latest/pyboard/library/uos.html
http://docs.micropython.org/en/latest/pyboard/library/ure.html
http://docs.micropython.org/en/latest/pyboard/library/ure.html
http://docs.micropython.org/en/latest/pyboard/library/uselect.html
http://docs.micropython.org/en/latest/pyboard/library/uselect.html
http://docs.micropython.org/en/latest/pyboard/library/usocket.html
http://docs.micropython.org/en/latest/pyboard/library/usocket.html
http://docs.micropython.org/en/latest/pyboard/library/ustruct.html
http://docs.micropython.org/en/latest/pyboard/library/ustruct.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html
http://docs.micropython.org/en/latest/pyboard/library/uzlib.html
http://docs.micropython.org/en/latest/pyboard/library/uzlib.html

Chapter 5 ■ MicroPython Libraries

176

Notice the links are for the Pyboard documentation and most of these apply to the
other boards too. If in doubt, always visit the MicroPython documentation for your board.

■■ Tip  Most of the libraries presented here are common to the Pyboard and WiPy. We will
also see some of the differences in the next chapter.

As you can see, there are many libraries that begin with a u to signify they are special
versions of the Python equivalent libraries. What is interesting is some platforms may
include the original Python library. That is, if you need access to the original Python
version - if it exists - you can still access it by using the original name (without the
u prefix). In this case, MicroPython will attempt to find the module by the original name
and if not there, default to the MicroPython version. For example, if we wanted to use the
original io library, we could use import io. However, if there is no module named io on
the platform, MicroPython will use the MicroPython version named uio.

■■ Caution  The format of the import statement allows us to specify directories. So, if we
use import mylibs.io, MicroPython will attempt to find the library (code module) named
io.py in the mylibs folder. This can affect how one uses modules without the u prefix. If we
used import io and io.py is not a code module, it will use io as the name of a folder and
if it exits, look modules in that folder. Thus, you can get yourself in trouble if you use folder
names that are the same as the Python library names. Don’t do that.

Next, we will look at some of the more commonly used standard libraries and see
some code examples for each. But first, there are two categories of standard functions we
should discuss.

INTERACTIVE HELP FOR LIBRARIES

A little-known function named help() can be, well, very helpful when learning about the
libraries in MicroPython. You can use this function in a REPL session to get information
about a library. The following shows an excerpt of the output for the uos library.

>>> help(uos)
<module 'uos'>object is of type module
 __name__ -- uos
 uname -- <function>
 chdir -- <function>
 getcwd -- <function>
 listdir -- <function>
 mkdir -- <function>

Notice we see the names of all the functions and, if present, constants. This can be a
real help when learning the libraries and what they contain. Try it!

Chapter 5 ■ MicroPython Libraries

177

Common Standard Libraries
Now let’s look at examples of some of the more commonly used standard libraries. What
follows is just a sampling of what you can do with each of the libraries. See the online
documentation for a full description of all the capabilities. Like most MicroPython
libraries, the common standard libraries may be subsets of the full Python3 (CPython)
implementation.

■■ Note  The examples in this chapter are intended to be run on the MicroPython board.
You may need to make some changes to run it on your PC.

sys
The sys library provides access to the execution system such as constants, variables,
command-line options, streams (stdout, stdin, stderr), and more. Most of the features of
the library are constants or lists. The streams can be accessed directly but typically we use
the print() function, which sends data to the stdout stream by default.

The most commonly used functions in this library include the following. Listing 5-1
demonstrates these variables and the exit() function.

•	 sys.argv: list of arguments passed to the script from the
command line

•	 sys.exit(r): exit the program returning the value r to the caller

•	 sys.modules: list of modules loaded (imported)

•	 sys.path: list of paths to search for modules – can be modified

•	 sys.platform: display the platform information such as Linux,
MicroPython, etc.

•	 sys.stderr: standard error stream

•	 sys.stdin: standard input stream

•	 sys.stdout: standard output stream

•	 sys.version: the version of Python currently executing

Listing 5-1.  Demonstration of the sys library features

MicroPython for the IOT - Chapter 5
Example use of the sys library
import sys
print("Modules loaded: " , sys.modules)
sys.path.append("/sd")
print("Path: ", sys.path)
sys.stdout.write("Platform: ")

Chapter 5 ■ MicroPython Libraries

178

sys.stdout.write(sys.platform)
sys.stdout.write("\n")
sys.stdout.write("Version: ")
sys.stdout.write(sys.version)
sys.stdout.write("\n")
sys.exit(1)

Notice we start with the import statement and after that, we can print the constants
and variables in the sys library using the print() function. We also see how to append a
path to our search path with the sys.path.append() function. This is very helpful if we
create our own directories on the boot drive (SD drive) to place our code. Without this
addition, the import statement will fail unless the code module is in the lib directory.

At the end of the example, we see how to use the stdout stream to write things to the
screen. Note that you must provide the carriage return (newline) command to advance
the output to a new line (\n). The print() function takes care of that for us. The following
shows the output of running this script on a MicroPython board.

>>> import examples.sys_example
Modules loaded: {'examples': <module 'examples'>, 'examples.sys_example':
<module 'examples.sys_example' from 'examples/sys_example.py'>}
Path: ['', '/flash', '/flash/lib', '/sd']
Platform: WiPy
Version: 3.4.0

Notice we see the data as we expect and that this example is running on a WiPy
module. Do you see something strange in the import statement? Here, the code is placed
in a new directory named examples and then copied the code module to that directory
on my boot drive. Thus, we can use the directory name in the statement to find the code
module and import it (examples/sys_examples.py). If you want to run this code on your
own MicroPython board, you can write the code to a file such as sys_example.py, then
copy the file to your boot drive or use ftp to copy the file. This allows you to keep your
boot (flash) drive tidy and place you code in a common location.

Finally, notice that there are no command-line arguments. This is because we
used an import statement. However, if we were to run the code on our PC providing
command-line arguments, we would see them. The following shows the output of
running this script on a PC.

$ python ./sys_example.py
Modules loaded: {'builtins': <module 'builtins' (built-in)>, 'sys': <module
'sys' (built-in)>, ... '/sd']
darwin
Version: 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)]

Chapter 5 ■ MicroPython Libraries

179

uio
The uio library contains additional functions to work with streams and stream-like
objects. There is a single function named uio.open() that you can use to open files (but
most people use the built-in function named open()) as well as classes for byte and string
streams. In fact, the classes have similar file functions such as read(), write(), seek(),
flush(), close(), as well as a getvalue() function, which returns the contents of the
stream buffer that contains the data. Let’s look at an example.

In this example, we first open a new file for writing and write an array of bytes to the
file. The technique used is passing the hex values for each bye to the write() function.
When you read data from sensors, they are typically in binary for (a byte or string of
bytes). You signify a byte with the escape, \x as shown.

After writing the data to the file, we then read the file one byte at a time by passing 1
to the read() function. We then print the values read in their raw for (the value returned
from the read(1) call), decimal value, and hex value. Listing 5-2 shows how to read a file
in binary mode using the uio.FileIo() class. The bytes written contain a secret word (one
obscured by using hex values) – can you see it?

Listing 5-2.  Demonstration of the uio library features

MicroPython for the IOT - Chapter 5
Example use of the uio library
Note: change uio to io to run this on your PC!
import uio
Create the binary file
fio_out = uio.FileIO('data.bin', 'wb')
fio_out.write("\x5F\x9E\xAE\x09\x3E\x96\x68\x65\x6C\x6C\x6F")
fio_out.write("\x00")
fio_out.close()
Read the binary file and print out the results in hex and char.
fio_in = uio.FileIO('data.bin', 'rb')
print("Raw,Dec,Hex from file:")
byte_val = fio_in.read(1) # read a byte
while byte_val:
 print(byte_val, ",", ord(byte_val), hex(ord(byte_val)))
 byte_val = fio_in.read(1) # read a byte
fio_in.close()

This is like how you would use the normal built-in functions, which we saw in the
last chapter. Listing 5-3 shows the output when run on the WiPy.

Chapter 5 ■ MicroPython Libraries

180

Listing 5-3.  Demonstration of the uio library features (Pyboard)

>>> import examples.uio_example
Raw,Dec,Hex from file:
b'_' , 95 0x5f
b'\xc2' , 194 0xc2
b'\x9e' , 158 0x9e
b'\xc2' , 194 0xc2
b'\xae' , 174 0xae
b'\t' , 9 0x9
b'>' , 62 0x3e
b'\xc2' , 194 0xc2
b'\x96' , 150 0x96
b'h' , 104 0x68
b'e' , 101 0x65
b'l' , 108 0x6c
b'l' , 108 0x6c
b'o' , 111 0x6f
b'\x00' , 0 0x0

If you’re curious what the file looks like, you can use a utility like hexdump to print
the contents as shown below. Can you see the hidden message?

$ hexdump -C data.bin
00000000 5f 9e ae 09 3e 96 68 65 6c 6c 6f 00 |_...>.hello.|
0000000c

ujson
The ujson library is one of those libraries you are likely to use frequently when working
with data in an IOT project. It provides encoding and decoding of JavaScript Object
Notation (JSON) documents. This is because many of the IOT services available either
require or can process JSON documents. Thus, you should consider getting into the
habit of formatting your data in JSON to make it easier to integrate with other systems.
The library implements the following functions that you can use to work with JSON
documents.

•	 ujson.dumps(obj): return a string decoded from a JSON object.

•	 ujson.loads(str): parses the JSON string and returns a JSON
object. Will raise an error if not formatted correctly.

•	 ujson.load(fp): parse the contents of a file pointer (a file string
containing a JSON document). Will raise an error if not formatted
correctly.

Chapter 5 ■ MicroPython Libraries

181

Recall we saw a brief example of JSON documents in the last chapter. That example
was written exclusively for the PC but a small change makes it possible to run it on a
MicroPython board. Let’s look at a similar example. Listing 5-4 shows an example of using
the ujson library.

Listing 5-4.  Demonstration of the ujson library features

MicroPython for the IOT - Chapter 5
Example use of the ujson library
Note: change ujson to json to run it on your PC!
import ujson

Prepare a list of JSON documents for pets by converting JSON to a
dictionary
vehicles = []
vehicles.append(ujson.loads('{"make":"Chevrolet", "year":2015,
"model":"Silverado", "color":"Pull me over red", "type":"pickup"}'))
vehicles.append(ujson.loads('{"make":"Yamaha", "year":2009, "model":"R1",
"color":"Blue/Silver", "type":"motorcycle"}'))
vehicles.append(ujson.loads('{"make":"SeaDoo", "year":1997,
"model":"Speedster", "color":"White", "type":"boat"}'))
vehicles.append(ujson.loads('{"make":"TaoJen", "year":2013,
"model":"Sicily", "color":"Black", "type":"Scooter"}'))

Now, write these entries to a file. Note: overwrites the file
json_file = open("my_vehicles.json", "w")
for vehicle in vehicles:
 json_file.write(ujson.dumps(vehicle))
 json_file.write("\n")
json_file.close()

Now, let's read the list of vehicles and print out their data
my_vehicles = []
json_file = open("my_vehicles.json", "r")
for vehicle in json_file.readlines():
 parsed_json = ujson.loads(vehicle)
 my_vehicles.append(parsed_json)
json_file.close()

Finally, print a summary of the vehicles
print("Year Make Model Color")
for vehicle in my_vehicles:
 print(vehicle['year'],vehicle['make'],vehicle['model'],vehicle['color'])

Chapter 5 ■ MicroPython Libraries

182

The following shows the output of the script running on the WiPy.

>>> import examples.ujson_example
Year Make Model Color
2015 Chevrolet Silverado Pull me over red
2009 Yamaha R1 Blue/Silver
1997 SeaDoo Speedster White
2013 TaoJen Sicily Black

uos
The uos library implements a set of functions for working with the base operating system.
Some of the functions may be familiar if you have written programs for your PC. Most
functions allow you to work with file and directory operations. The following lists several
of the more commonly used functions.

•	 uos.chdir(path): change the current directory

•	 uos.getcwd(): return the current working directory

•	 uos.listdir([dir]): list the current directory if dir is missing or
list the directory specified

•	 uos.mkdir(path): create a new directory

•	 uos.remove(path): delete a file

•	 uos.rmdir(path): delete a directory

•	 uos.rename(old_path, new_path): rename a file

•	 uos.stat(path): get status of a file or directory

In this example, we see how to change the working directory so that we can simplify
our import statements. We also see how to create a new directory, rename it, create a file in
the new directory, list the directory, and finally clean up (delete) the changes. Listing 5-5
shows the example for working with the uos library functions.

Listing 5-5.  Demonstration of the uos library features

MicroPython for the IOT - Chapter 5
Example use of the uos library
Note: change uos to os to run it on your PC!
import sys
import uos

Create a function to display files in directory
def show_files():
 files = uos.listdir()
 sys.stdout.write("\nShow Files Output:\n")

Chapter 5 ■ MicroPython Libraries

183

 sys.stdout.write("\tname\tsize\n")
 for file in files:
 stats = uos.stat(file)
 # Print a directory with a "d" prefix and the size
 is_dir = True
 if stats[0] > 16384:
 is_dir = False
 if is_dir:
 sys.stdout.write("d\t")
 else:
 sys.stdout.write("\t")
 sys.stdout.write(file)
 if not is_dir:
 sys.stdout.write("\t")
 sys.stdout.write(str(stats[6]))
 sys.stdout.write("\n")

List the current directory
show_files()
Change to the examples directory
uos.chdir('examples')
show_files()

Show how you can now use the import statement with the current dir
print("\nRun the ujson_example with import ujson_example after chdir()")
import ujson_example

Create a directory
uos.mkdir("test")
show_files()

While this example is a little long, it shows some interesting tricks. Notice we
created a function to print out the directory list rather than printing out the list of files
returned. We also checked the status of the file to determine if the file was a directory
or not and if it was, we printed a d to signal the name refers to a directory. We also used
the stdout stream to control formatting with tabs (\t) and newline (\n) characters.

You will also see how to use change directory to improve how we use the import
statement. Since we changed the directory to examples, the import ujson_example
will attempt to find that module (library) in the current directory first. This is a nice
trick you can use in your own projects to deploy your code to your board in a separate
directory, which means you can use this to deploy multiple projects to your board
placing each in its own directory.

Now let’s see the output. Listing 5-6 shows the output when run on the WiPy. Take
a few moments and look through the output to see how the functions worked. Also,
note the output from the JSON example is shown since we imported that code in the
middle of the script. Nice.

Chapter 5 ■ MicroPython Libraries

184

Listing 5-6.  Demonstration of the uos library features (output)

>>> import examples.uos_example

Show Files Output:
 name size
 main.py 34
d sys
d lib
d cert
 boot.py 336
d examples
 data.bin 15
 my_vehicles.json 377

Show Files Output:
 name size
 sys_example.py 395
 uio_example.py 609
 ujson_example.py 1370
 uos_example.py 1163
 data.bin 15

Run the ujson_example with import ujson_example after chdir()
Year Make Model Color
2015 Chevrolet Silverado Pull me over red
2009 Yamaha R1 Blue/Silver
1997 SeaDoo Speedster White
2013 TaoJen Sicily Black

Show Files Output:
 name size
 sys_example.py 395
 uio_example.py 609
 ujson_example.py 1370
 uos_example.py 1163
 data.bin 15
 my_vehicles.json 377
d test

utime
The utime library is another popular library used in many projects. The library is used
to get the current time, date, and working with time data such as calculating time
differentials. Note that some of the functions only work with a real-time clock (RTC)
installed either as a hardware extension or through a network time server. See Chapter 6
for more details. The following lists several of the more commonly used functions related

http://dx.doi.org/10.1007/978-1-4842-3123-4_6

Chapter 5 ■ MicroPython Libraries

185

to inserting delays in our scripts. Delays are helpful when we need to pause processing to
allow a sensor to read or to wait for data from/to other sources. Another common use of
this library is recording the date and time of an event or sensor data read.

•	 utime.sleep(seconds): put the board in a sleep mode for the
number of seconds specified

•	 utime.sleep_ms(ms): put the board in a sleep mode for the
number of milliseconds specified

•	 utime.sleep_us(us): put the board in a sleep mode for the
number of microseconds specified

Let’s see a short example of how to use time delays. Here, we use a random function
to sleep for a random period and to provide random values. Don’t worry about the RTC
code; we will see more about that in Chapter 6.

Listing 5-7.  Demonstration of the utime library sleep features

MicroPython for the IOT - Chapter 5
Example use of the utime library
Note: This example only works on the WiPy
Note: This example will not on your PC.
import machine
import sys
import utime

Since we don't have a RTC, we have to set the current time
initialized the RTC in the WiPy machine library
from machine import RTC

Init with default time and date
rtc = RTC()
Init with a specific time and date. We use a specific
datetime, but we could get this from a network time
service.
rtc = RTC(datetime=(2017, 7, 15, 21, 32, 11, 0, None))

Get a random number from 0-1 from a 2^24 bit random value
def get_rand():
 return machine.rng() / (2 ** 24 - 1)

Format the time (epoch) for a better view
def format_time(tm_data):
 # Use a special shortcut to unpack tuple: *tm_data
 return "{0}-{1:0>2}-{2:0>2} {3:0>2}:{4:0>2}:{5:0>2}".format(*tm_data)

http://dx.doi.org/10.1007/978-1-4842-3123-4_6

Chapter 5 ■ MicroPython Libraries

186

Generate a random number of rows from 0-25
num_rows = get_rand() * 25

Print a row using random seconds, milleseconds, or microseconds
to simulate time.
print("Datetime Value")
print("------------------- --------")
for i in range(0,num_rows):
 # Generate random value for our sensor
 value = get_rand() * 100
 # Wait a random number of seconds for time
 utime.sleep(int(get_rand() * 15)) # sleep up to 15 seconds
 print("{0} {1:0>{width}.4f}".format(format_time(rtc.now()), value, width=8))

■■ Note  This example also demonstrates how the firmware can differ among the boards
available. This example only works on the WiPy and similar Pycom boards.

Notice there is a lot going on in this example than simply waiting a random number
of seconds. This example shows you how to do that but also how to work with time data
and formatting data. You typically must do this when logging data. Let’s walk through
this a bit.

Aside from the RTC code, we create two functions: one to generate a random
number using the machine library of the WiPy (this function is not available in the
Pyboard firmware), and another to format the datetime in a user-friendly format.

Since the function creates a random number of 24 bits, we divide by the max value
for 24 bits to give a value between 0 and 1. We can then multiply that by an integer to
get a value for a range. For example, if we wanted a value between 0 and 6, we can use
get_rand() * 6.

The format_time() function returns a string representing the datetime. Here we
see some advanced formatting options to format the date with the correct digits per part.
Specifically, 4 digits for year and 2 for month, day, hour, minute, and second. The :0>2
option tells the format() function to space the value over 2 positions (digits) with leading
zeros. Cool, eh? Notice the last print() statement. Notice we use another trick to pass the
width with a named parameter (width).

Finally, we get to the example code where we generate a random number of lines
from 0 to 25, then loop for those iterations generating a random value (0-100) and then
wait (sleep) for a random number of seconds (0-15) then print the new datetime and
the value. This simulates a typical loop we would use to read data from sensors. As most
sensors need time to read the value, the sleep function allows us to wait for that period.1

1Also, keep in mind this interval - called a sampling rate - must also make sense for the project.
Sampling the ambient temperature in a controlled climate 30 times a second may generate a
considerable amount of data that is useless because it rarely changes.

Chapter 5 ■ MicroPython Libraries

187

Now that we know more about what this code is doing, let’s see an example of how it
works. The following shows the output from running this code on the WiPy.

>>> import examples.utime_example
Datetime Value
------------------- --------
2017-07-15 21:32:12 014.1520
2017-07-15 21:32:25 003.5380
2017-07-15 21:32:28 044.8298
2017-07-15 21:32:35 099.0981
2017-07-15 21:32:41 086.8839
2017-07-15 21:32:47 083.8304
2017-07-15 21:32:55 083.0670
2017-07-15 21:32:59 064.3214

■■ Note  As mentioned in earlier chapters, there are some elements of MicroPython that
are specific to a single MicroPython board or hardware. We will discuss those in the next
chapter.

There are also built-in functions that are not part of any specific library and there
are exceptions that allow us to capture error conditions. Let’s look at those before we dive
into some of the more commonly used standard libraries.

Built-In Functions and Classes
Python comes with many built-in functions: functions you can call directly from your
script without importing them. There are many classes that you can use to define
variables, work with data, and more. They’re objects so you can use them to contain
data and perform operations (functions) on the data. We’ve seen a few of these in the
examples so far.

Let us see some of the major built-in functions and classes. Table 5-2 includes a short
description of each. You can find more information about each at https://docs.python.
org/3/library/functions.html. While this is the Python documentation, it applies to
MicroPython too. Classes are designated with “class”; the remainder are functions.

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

Chapter 5 ■ MicroPython Libraries

188

Table 5-2.  MicroPython Built-in Functions and Classes

Name Description

abs(x) Return the absolute value of a number.

all(iterable) Return True if all elements of the iterable are true
(or if the iterable is empty).

any(iterable) Return True if any element of the iterable is true.

bin(x) Convert an integer number to a binary string.

class bool([x]) Return a Boolean value, that is, one of True or False.

class bytearray([source[,
encoding[, errors]]])

Return a new array of bytes.

class bytes([source[,
encoding[, errors]]])

Return a new “bytes” object, which is an immutable
sequence of integers in the range 0 <= x < 256

callable(object) Return True if the object argument appears
callable, False if not.

chr(i) Return the string representing a character whose
Unicode code point is the integer i.

classmethod(function) Return a class method for function.

class complex([real[, imag]]) Return a complex number with the value real
+ imag*1j or convert a string or number to a
complex number.

delattr(obj, name) This is a relative of setattr(). The arguments
are an object and a string. The string must be the
name of one of the object’s attributes.

class dict() Create a new dictionary.

dir([object]) Without arguments, return the list of names in the
current local scope. With an argument, attempt to
return a list of valid attributes for that object.

divmod(a,b) Take two (non-complex) numbers as arguments
and return a pair of numbers consisting of their
quotient and remainder when using integer
division.

enumerate(iterable, start=0) Return an enumerate object. Iterable must be a
sequence, an iterator, or some other object that
supports iteration.

eval(expression, globals=None,
locals=None)

Evaluate and expression using globals and locals
as dictionaries in a local namespace.

exec(object[, globals[,
locals]])

Execute a set of Python statements or object
using globals and locals as dictionaries in a local
namespace.

(continued)

Chapter 5 ■ MicroPython Libraries

189

Table 5-2.  (continued)

Name Description

filter(function, iterable) Construct an iterator from those elements of
iterable for which function returns true.

class float([x]) Return a floating-point number constructed from
a number or string.

class frozenset([iterable]) Return a new frozenset object, optionally with
elements taken from iterable.

getattr(object, name[, default]) Return the value of the named attribute of object.
Name must be a string.

globals() Return a dictionary representing the current
global symbol table.

hasattr(object, name) The arguments are an object and a string. The
result is True if the string is the name of one of the
object’s attributes, False if not.

hash(object) Return the hash value of the object (if it has one).
Hash values are integers.

hex(x) Convert an integer number to a lowercase
hexadecimal string prefixed with “0x”.

id(object) Return the “identity” of an object.

input([prompt]) If the prompt argument is present, it is written to
standard output without a trailing newline. The
function then reads a line from input, converts
it to a string (stripping a trailing newline), and
returns that.

class int(x) Return an integer object constructed from a
number or string x, or return 0 if no arguments
are given.

isinstance(object, classinfo) Return true if the object argument is an instance
of the classinfo argument, or of a (direct,
indirect, or virtual) subclass thereof.

issubclass(class, classinfo) Return true if class is a subclass (direct, indirect,
or virtual) of classinfo.

iter(object[, sentinel]) Return an iterator object.

len(s) Return the length (the number of items) of an object.

class list([iterable]) List sequence.

locals() Update and return a dictionary representing the
current local symbol table.

(continued)

Chapter 5 ■ MicroPython Libraries

190

Table 5-2.  (continued)

Name Description

map(function, iterable, …) Return an iterator that applies function to every
item of iterable, yielding the results.

max([iterable|arg*]) Return the largest item in an iterable or the largest
of two or more arguments.

class memoryview(obj) Return a “memory view” object created from the
given argument.

min([iterable|arg*]) Return the smallest item in an iterable or the
smallest of two or more arguments.

next(iterator[, default]) Retrieve the next item from the iterator by calling
its __next__() method.

class objectO Return a new featureless object. Object is a base
for all classes.

oct(x) Convert an integer number to an octal string.

open(file, mode='r',
buffering=-1, encoding=None,
errors=None, newline=None,
closefd=True, opener=None)

Open file and return a corresponding file object.
Use close() to close the file.

ord(c) Given a string representing one Unicode
character, return an integer representing the
Unicode code point of that character.

pow(x, y[, z]) Return x to the power y; if z is present, return x to
the power y, modulo z (computed more efficiently
than pow(x, y) % z).

print(*objects, sep=' ',
end='\n', file=sys.stdout,
flush=False)

Print objects to the text stream file, separated by
sep and followed by end. sep, end, file and flush;
if present, must be given as keyword arguments.

class property(fget=None,
fset=None, fdel=None, doc=None)

Return a property attribute.

range([stop|[start, stop[,
step]]])

Range sequence.

repr(object) Return a string containing a printable
representation of an object.

reversed(seq) Return a reverse iterator.

round(number[, ndigits]) Return number rounded to ndigits precision
after the decimal point.

class set([iterable]) Return a new set object, optionally with elements
taken from iterable.

(continued)

Chapter 5 ■ MicroPython Libraries

191

You should look through this list and explore the links for those you find interesting
and refer to the list when developing your projects so that you can use the most
appropriate function or class. You may be surprised how much is “built-in.” However,
once again, always check the documentation for your chosen MicroPython board for the
latest functions and classes available in your firmware.

■■ Tip  See https://docs.python.org/3/library/functions.html for more
information about the built-in functions and classes. See http://docs.micropython.org/
en/latest/pyboard/library/builtins.html for the latest list of built-in functions and
classes in MicroPython.

Let’s see an example of using one of the classes - the dictionary. The following shows
how we can use the built-in class to create a variable of type dict() and later use it. Since
the class is part of the built-in functionality, it will work on both Python and MicroPython.

>>> my_addr = dict()
>>> print(my_addr)
{}
>>> my_addr['street'] = '123 Main St'
>>> my_addr['city'] = 'Anywhere'
>>> my_addr['zip'] = 90125
>>> print(my_addr)

Table 5-2.  (continued)

Name Description

setattr(object, name, value) This is the counterpart of getattr(). The arguments
are an object, a string, and an arbitrary value.

class slice(start, stop[, step]) Return a slice object representing the set of
indices specified by range(start, stop, step).

sorted(iterable[, key][, reverse]) Return a new sorted list from the items in iterable.

staticmethod(function) Return a static method for function.

class str(object) Return a str version of object.

sum(terable[, start]) Sums start and the items of an iterable from left to
right and returns the total.

super([type[, object-or-type]]) Return a proxy object that delegates function calls
to a parent or sibling class of type.

class tuple([iterable]) Tuple sequence.

type(object) Return the type of an object.

zip(*iterables) Make an iterator that aggregates elements from
each of the iterables.

https://docs.python.org/3/library/functions.html
http://docs.micropython.org/en/latest/pyboard/library/builtins.html
http://docs.micropython.org/en/latest/pyboard/library/builtins.html

Chapter 5 ■ MicroPython Libraries

192

{'city': 'Anywhere', 'street': '123 Main St', 'zip': 90125}
>>> my_addr = {'street':'201 Cherry Tree Road', 'city':'Gobye', 'zip':12345}
>>> print(my_addr)
{'city': 'Gobye', 'street': '201 Cherry Tree Road', 'zip': 12345}

Here we see we can use the dictionary class to create a variable of that type. We can
see this in the first print() call. Recall that the syntax for defining a dictionary is a set of
curly braces. Next, we add values to the dictionary using the special syntax for accessing
elements. Finally, we reassign the variable a new set of data using the more familiar
dictionary syntax.

Now let’s talk about a topic we haven’t talked a lot about - exceptions. Exceptions
are part of the built-in module for Python and can be a very important programming
technique you will want to use. Perhaps not right away, but eventually you will appreciate
the power and convenience of using exceptions in your code.

Exceptions
There is also a powerful mechanism we can use in Python (and MicroPython) to help
manage or capture events when errors occur and execute code for a specific error. This
construct is called exceptions and the exceptions (errors) we can capture are called
exception classes. It uses a special syntax called the try statement (also called a clause
since it requires at least one other clause to form a valid statement) to help us capture
errors as they are generated. Exceptions can be generated anywhere in code with the
raise() function. That is, if something goes wrong, a programmer can “raise” a specific,
named exception and the try statement can be used to capture it via an except clause.
Table 5-3 shows the list of exception classes available in MicroPython along with a short
description of when (how) the exception could be raised.

Chapter 5 ■ MicroPython Libraries

193

The syntax for the try statement is shown below. Each part of the construct is called
a clause.

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= "try" ":" code block
 ("except" [expression ["as" identifier]] ":" code block)+
 ["else" ":" code block]
 ["finally" ":" code block]
try2_stmt ::= "try" ":" code block
 "finally" ":" code block

Notice there are four clauses: try, except, else, and finally. The try clause is
where we put our code (code block) - one or more lines of code that will be included in
the exception capture. There can be only one try, else, and finally but you can have
any number of except clauses naming an exception class. In fact, the except and else go
together such that if an exception is detected running any of the lines of code in the try

Table 5-3.  MicroPython Exception Classes

Exception Class Description of Use

AssertionError an assert() statement fails

AttributeError an attribute reference fails

Exception base exception class

ImportError one or more modules failed to import

IndexError subscript is out of range

KeyboardInterrupt keyboard CTRL-C was issued or simulated

KeyError key mapping in dictionary is not present in the list of keys

MemoryError out of memory condition

NameError a local or global name (variable, function, etc.) is not found

NotImplementedError an abstract function has been encountered (it is incomplete)

OSError any system-related error from the operating system

RuntimeError possibly fatal error encountered on execution

StopIteration an iterator’s next function signaled no more values in
iterable object

SyntaxError code syntax error encountered

SystemExit the sys.exit() function was called or simulated

TypeError a function or operation is applied to an inappropriate type
(like type mismatch)

ValueError the right type but wrong value found (like out of bounds)

ZeroDivisionError mathematical function results in a / 0

Chapter 5 ■ MicroPython Libraries

194

clause, it will search the except clauses and if and only if no except clause is met, it will
execute the else clause. The finally clause is used to execute after all exceptions are
processed and executed. Notice also that there are two versions of the statement: one that
contains one or more except and optionally an else and finally, and another that has
only the try and finally clauses.

Let’s look at one of the ways we can use the statement to capture errors in our code.
Suppose you are reading data from a batch of sensors and the libraries (modules) for
those sensors raise ValueError if the value read is out of range or invalid. It may also
be the case that you don’t want the data from any other sensors if one or more fail. So,
we can use code like the following to “try” to read each of the sensors and if there is a
ValueError, issue a warning and keep going or if some other error is encountered, flag
it as an error during the read. Note that typically we would not stop the program at that
point; rather, we would normally log it and keep going. Study the following until you’re
convinced exceptions are cool.

values = []
print("Start sensor read.")
try:
 values.append(read_sensor(pin11))
 values.append(read_sensor(pin12))
 values.append(read_sensor(pin13))
 values.append(read_sensor(pin17))
 values.append(read_sensor(pin18))
except ValueError as err:
 print("WARNING: One or more sensors valued to read a correct value.", err)
except:
 print("ERROR: fatal error reading sensors.")
finally:
 print("Sensor read complete.")

Another way we can use exceptions is when we want to import a module (library)
but we’re not sure if it is present. For example, suppose there was a module named piano.
py that has a function named keys() that you want to import but the module may or may
not be on the system. In this case, we may have other code we can use instead creating
our own version of keys(). To test if the module can be imported, we can place our
import inside a try block as shown below. We can then detect if the import fails and take
appropriate steps.

Try to import the keys() function from piano. If not present,
use a simulated version of the keys() function.
try:
 from piano import keys
except ImportError as err:
 print("WARNING:", err)
 def keys():
 return(['A','B','C','D','E','F','G'])
print("Keys:", keys())

Chapter 5 ■ MicroPython Libraries

195

If we added code like this and the module were not present, not only can we respond
with a warning message, but we can also define our own function to use if the module
isn’t present.

Finally, you can raise any exception you want including creating your own
exceptions. Creating custom exceptions is an advanced topic, but let’s see how we can
raise exceptions since we may want to do that if we write our own custom libraries.
Suppose you have a block of code that is reading values but it is possible that a value may
be out of range. That is, too large for an integer, too small for the valid range of values
expected, etc. You can simply raise the ValueError passing in your custom error message
as follows with the raise statement and a valid exception class declaration.

raise ValueError("ERROR: the value read from the sensor ({0}) is not in
range.".format(val_read))

You can then use the try statement to capture this condition since you know it is
possible and work your code around it. For example, if you were reading data, you could
elect to skip the read and move on - continue the loop. However, if this exception was to
be encountered when running your code and there were no try statements, you could get
an error like the following, which even though is fatal, is still informative.

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: ERROR: the value read from the sensor (-12) is not in range.

You can use similar techniques as shown here to make your MicroPython code more
robust and tolerant of errors. Better still, you can write you code to anticipate errors and
react to them in a graceful, controlled manner.

■■ Tip  For a more in-depth look at Python exceptions, see https://docs.python.org/3/
tutorial/errors.html.

MicroPython Libraries
There are also libraries that are built expressly for the MicroPython system. These are
libraries designed to help facilitate using MicroPython on the hardware. Like the built-in
libraries, there are some MicroPython libraries that apply to one board or another and
those that differ from one board to another. That is, there are subtle differences in the
libraries that prevent them from working on more than one board. Always consult the
documentation for the firmware for your board for a complete list of the MicroPython
libraries available.

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/errors.html

Chapter 5 ■ MicroPython Libraries

196

Overview
The MicroPython libraries provide functionality that is specific to the MicroPython
implementation of Python. There are libraries with functions for working with the
hardware directly, the MicroPython system, and networking. We will see examples of
some of the features of each of these libraries in the following sections. Table 5-4 contains
a list of the current MicroPython libraries that are common to most boards. The first
column is the name we use in our import statement, the second is a short description,
and the third contains a link to the online documentation.

Table 5-4.  MicroPython-Specific Libraries

Name Description Documentation

framebuf Frame buffer http://docs.micropython.org/en/
latest/pyboard/library/framebuf.html

machine Hardware-related functions http://docs.micropython.org/en/
latest/pyboard/library/machine.html

micropython MicroPython internals http://docs.micropython.org/en/latest/
pyboard/library/micropython.html

network Networking http://docs.micropython.org/en/
latest/pyboard/library/network.html

uctypes Access binary data http://docs.micropython.org/en/
latest/pyboard/library/uctypes.html

■■ Tip  See http://docs.micropython.org/en/latest/pyboard/library/index.
html#micropython-specific-libraries for more details about any of the MicroPython
libraries.

Next, we will look at a few of the more common MicroPython libraries and see some
code examples for each.

Common MicroPython Libraries
Now let’s look at examples of some of the more commonly used MicroPython libraries.
What follows is just a sampling of what you can do with each of the libraries. See the
online documentation for a full description of all the capabilities. Once again, the
MicroPython libraries may vary slightly from one board (firmware) to another. In fact,
the Pycom documentation states this quite clearly (https://docs.pycom.io/chapter/
firmwareapi/pycom/).

http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
http://docs.micropython.org/en/latest/pyboard/library/machine.html
http://docs.micropython.org/en/latest/pyboard/library/machine.html
http://docs.micropython.org/en/latest/pyboard/library/micropython.html
http://docs.micropython.org/en/latest/pyboard/library/micropython.html
http://docs.micropython.org/en/latest/pyboard/library/network.html
http://docs.micropython.org/en/latest/pyboard/library/network.html
http://docs.micropython.org/en/latest/pyboard/library/uctypes.html
http://docs.micropython.org/en/latest/pyboard/library/uctypes.html
http://docs.micropython.org/en/latest/pyboard/library/index.html#micropython-specific-libraries
http://docs.micropython.org/en/latest/pyboard/library/index.html#micropython-specific-libraries
https://docs.pycom.io/chapter/firmwareapi/pycom/
https://docs.pycom.io/chapter/firmwareapi/pycom/

Chapter 5 ■ MicroPython Libraries

197

These modules are specific to the Pycom devices and may have slightly
different implementations to other variations of MicroPython (i.e. for
Non-Pycom devices). Modules include those which support access to
underlying hardware, e.g. I2C, SPI, WLAN, Bluetooth, etc.

machine
The machine library contains functions related to the hardware, providing an abstraction
layer that you can write code to interact with the hardware. Thus, this library is the main
library you will use to access features like timers, communication protocols, CPU, and
more. Since this functionality is communicating directly with the hardware, you should
take care when experimenting to avoid changing or even potentially damaging the
performance or configuration of your board. For example, using the library incorrectly
could lead to lockups, reboots, or crashes.

■■ Caution  Take care when working with the low-level machine library to avoid changing
or even potentially damaging the performance or configuration of your board.

Since the machine library is a low-level hardware abstraction, we will not cover
it in-depth in this chapter. Rather, we will see more of the hardware features in the
next chapter. In the meantime, let’s explore another interesting gem of MicroPython
knowledge by showing you how to discover what a library contains through the help
function. For example, Listing 5-8 shows an excerpt of what is reported through the REPL
console when we issue the statement help(machine) on the WiPy when connected to the
Expansion Board. The help() function will display all the functions and constants that
are available for use in the library. While it doesn’t replace a detailed explanation or even
a complete example, it can be useful when encountering a library for the first time.

Listing 5-8.  The machine Library Help

>>> import machine
>>> help(machine)
<module 'umachine'>object is of type module
 __name__ -- umachine
 mem8 -- <8-bit memory>
 mem16 -- <16-bit memory>
 mem32 -- <32-bit memory>
 reset -- <function>
...
 Pin -- <class 'Pin'>
 UART -- <class 'UART'>
 SPI -- <class 'SPI'>
 I2C -- <class 'I2C'>
 PWM -- <class 'PWM'>

Chapter 5 ■ MicroPython Libraries

198

 ADC -- <class 'ADC'>
 DAC -- <class 'DAC'>
 SD -- <class 'SD'>
 Timer -- <class 'Timer'>
 RTC -- <class 'RTC'>
 WDT -- <class 'WDT'>
 PWRON_RESET -- 0
 HARD_RESET -- 1
 WDT_RESET -- 2
...

Notice there is a lot of information there! What this gives us most is the list of classes
we can use to interact with the hardware. Here we see there are classes for UART, SPI, I2C,
PWM, and more. Let’s contrast that to the same output from the Pyboard. The following
shows the same excerpt of classes for the Pyboard.

 Pin -- <class 'Pin'>
 Signal -- <class 'Signal'>
 I2C -- <class 'I2C'>
 SPI -- <class 'SPI'>
 UART -- <class 'UART'>
 WDT -- <class 'WDT'>

Notice there are a few missing. We will explore some of these differences in the
next chapter. It is always a good idea to check the output of help(machine) on a board
you’re using for the first time. It may save you a lot of headaches trying to find support for
hardware that doesn’t exist!

network
The network library on the Pyboard is used to install network drivers (classes for
interacting with the networking abstraction) and configuring the settings. While the other
libraries discussed are a little different from one board to another, this library is one that
is quite different among the Pyboard and WiPy (and other) boards. In fact, the WiPy has
the same library but contains different classes.

This is largely since the WiPy has built-in WiFi, it has its own mechanisms for
working with networks. Recall we saw the network library for the Pyboard demonstrated
briefly in Chapter 3 and we will see it used again later in the example chapters. That is, we
learned there are only two network drivers for the Pyboard (and similar) boards: CC3K and
WINNET5K. The WiPy network library contains three classes: WLAN, Bluetooth, and Server.
Recall also we saw an example of the WLAN class in Chapter 3.

We will see more about the networking classes and the intriguing Bluetooth class in
the next chapter.

http://dx.doi.org/10.1007/978-1-4842-3123-4_3
http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 5 ■ MicroPython Libraries

199

Custom Libraries
Building your own custom libraries may seem like a daunting task, but it isn’t. What is
possibly a bit of a challenge is figuring out what you want the library to do and making
the library abstract (enough) to be used by any script. The rules and best practices for
programming come to play here such as data abstraction, API immutability, etc.

We discussed creating your own modules in the last chapter. In this section, we will
look at how to organize our code modules into a library (package) that we can deploy
(copy) to our MicroPython board and use in all our programs. This example, though
trivial, is a complete example that you can use as a template should you decide to make
your own custom libraries.

For this example, we will create a library with two modules: one that contains code
to perform value conversions for a sensor, and another that contains helper functions
for our projects - general functions that we want to reuse. We will name the library my_
helper. It will contain two code modules: sensor_convert.py and helper_functions.
py. Recall we will also need a __init__.py file to help MicroPython import the functions
correctly but we will get back to that in a moment. Let’s look at the first code module.

We will place the files in a directory named my_helper (same as the library name).
This is typical convention and you can put whatever name you want, but you must
remember it since we will use that name when importing the library in our code. Figure 5-1
shows an example layout of the files. This image was taken of my Pyboard flash drive.

Figure 5-1.  Directory/File Layout for the my_helper Sample Library on Pyboard

Notice we moved (copied) the directory containing the three files to my Pyboard.
If you are copying the files to the WiPy, you will need to use ftp using the commands in
Listing 5-9. Notice also we created the directory while connected to the WiPy and that we
are in the directory containing the files we want to copy.

■■ Note I f you use Linux, you may need to add the -p option (passive) for the ftp command.

Chapter 5 ■ MicroPython Libraries

200

Listing 5-9.  Using ftp to copy files to the WiPy

$ ftp 192.168.4.1
Connected to 192.168.4.1.
220 Micropython FTP Server
Name (192.168.4.1:cbell): micro
Password:
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd flash
250
ftp> ls
227 (192,168,4,1,7,232)
150
-rw-rw-r-- 1 root root 34 Jan 1 1980 main.py
drw-rw-r-- 1 root root 0 Jan 1 1980 sys
drw-rw-r-- 1 root root 0 Jan 1 1980 lib
drw-rw-r-- 1 root root 0 Jan 1 1980 cert
-rw-rw-r-- 1 root root 336 Jan 1 2098 boot.py
drw-rw-r-- 1 root root 0 Jan 1 2098 examples
-rw-rw-r-- 1 root root 15 Jan 1 2098 data.bin
-rw-rw-r-- 1 root root 377 Jan 1 2098 my_vehicles.json
226
ftp> mkdir my_helper
250
ftp> cd my_helper
250
ftp> put __init__.py
local: __init__.py remote: __init__.py
227 (192,168,4,1,7,232)
150
100% |***********************************| 255 1.24 MiB/s 00:00 ETA
226
255 bytes sent in 00:00 (0.61 KiB/s)
ftp> put helper_functions.py
local: helper_functions.py remote: helper_functions.py
227 (192,168,4,1,7,232)
150
100% |***********************************| 703 5.49 MiB/s 00:00 ETA
226
703 bytes sent in 00:00 (1.34 KiB/s)
ftp> put sensor_convert.py
local: sensor_convert.py remote: sensor_convert.py
227 (192,168,4,1,7,232)
150
100% |***********************************| 448 4.10 MiB/s 00:00 ETA
226
448 bytes sent in 00:00 (1.27 KiB/s)

Chapter 5 ■ MicroPython Libraries

201

Now let’s look at the code. The first module is named helper_functions.py and
contains the two helper functions from a previous example. Since these are generic, we
placed them in this code module. However, we want to use this code on all my boards.
The problem is, the machine.rng() function returns a different size for the random
number. On the Pyboard, it’s 30 bits but on the WiPy it’s only 24 bits. So, we use a try
statement to detect if that library function is available setting a global variable that can be
used in the get_rand() to return the correct value. Listing 5-10 shows the complete code
for the module.

Listing 5-10.  The helper_functions.py module

MicroPython for the IOT - Chapter 5
Example module for the my_helper library
This module contains helper functions for general use.

try:
 import pyb
 _PYBOARD = True
except ImportError:
 import machine
 _PYBOARD = False

Get a random number from 0-1 from a 2^24 bit random value
if run on the WiPy, return 0-1 from a 2^30 bit random
value if the Pyboard is used.
def get_rand():
 if _PYBOARD:
 return pyb.rng() / (2 ** 30 - 1)
 return machine.rng() / (2 ** 24 - 1)

Format the time (epoch) for a better view
def format_time(tm_data):
 # Use a special shortcut to unpack tuple: *tm_data
 return "{0}-{1:0>2}-{2:0>2} {3:0>2}:{4:0>2}:{5:0>2}".format(*tm_data)

The second code module is named sensor_convert.py and contains functions that
are helpful in converting sensor raw values into a string for qualitative comparisons. For
example, the function get_moisture_level() returns a string based on the threshold of
the raw value. The datasheet for the sensor will define such values and you should use
those in your code until and unless you can calibrate the sensor. In this case, if the value is
less than the lower bound, the soil is dry; if greater than the upper bound, the soil is wet.
Listing 5-11 shows the complete code for the module.

Chapter 5 ■ MicroPython Libraries

202

Listing 5-11.  The sensor_convert.py module

MicroPython for the IOT - Chapter 5
Example module for the my_helper library

This function converts values read from the sensor to a
string for use in qualifying the moisture level read.

Constants - adjust to "tune" your sensor

_UPPER_BOUND = 400
_LOWER_BOUND = 250

def get_moisture_level(raw_value):
 if raw_value <= _LOWER_BOUND:
 return("dry")
 elif raw_value >= _UPPER_BOUND:
 return("wet")
 return("ok")

Now let’s go over the __init__.py file. This is a very mysterious file that developers
often get very confused about. If you do not include one in your library directory, you
should import what you want to use manually. That is, with something like import.
my_helper.helper_functions. But with the file, you can do your imports at one time
allowing a simple import my_helper statement, which will import all the files. Let’s look
at the __init__.py file. The following shows the contents of the file.

Metadata
__name__ = "Chuck's Python Helper Library"
__all__ = ['format_time', 'get_rand', 'get_moisture_level']
Library-level imports
from my_helper.helper_functions import format_time, get_rand
from my_helper.sensor_convert import get_moisture_level

Notice on the first line we use a special constant to set the name of the library. The
next constant limits what will be imported by the * (all) option for the import statement.
Since it lists all the methods, it’s just an exercise but a good habit to use especially if
your library and modules contain many internal functions that you do not want to make
usable to others. The last two lines show the import statements used to import the
functions from the modules making them available to anyone who imports the library.
The following shows a short example of how to do that along with how to use an alias.
Here, we use myh as the alias for my_helper.

>>> import my_helper as myh
>>> myh.get_rand()
0.2830396

Chapter 5 ■ MicroPython Libraries

203

We can now access (use) all three functions by that alias as shown below.

r_int = myh.get_rand() * 10
print(myh.format_time(value))
print(myh.get_moisture_level(sensor_raw))

In case you’re wondering, the help function works on this custom library too!

>>> import my_helper
>>> help(my_helper)
object <module 'Chuck's Python Helper Library' from 'my_helper/__init__.py'>
is of type module
 __path__ -- my_helper
 �helper_functions -- <module 'my_helper.helper_functions' from 'my_helper/
helper_functions.py'>

 __name__ -- Chuck's Python Helper Library
 �sensor_convert -- <module 'my_helper.sensor_convert' from 'my_helper/
sensor_convert.py'>

 get_rand -- <function get_rand at 0x20004270>
 format_time -- <function format_time at 0x20004300>
 __file__ -- my_helper/__init__.py
 __all__ -- ['format_time', 'get_rand', 'get_moisture_level']
 get_moisture_level -- <function get_moisture_level at 0x20004920>

Once you have started experimenting with MicroPython and have completed several
projects, you may start to build up a set of functions that you reuse from time to time.
These are perfect candidates to place into a library. It is perfectly fine if the functions
are not part of a larger class or object. So long as you organize them into modules of like
functionality, you may not need to worry about making them classes. On the other hand,
if data is involved or the set of functions works on a set of data, you should consider
making that set of functions a class for easier use and better quality code.

WAIT, WHAT ABOUT CIRCUITPYTHON?

Recall from Chapter 3 we discussed CircuitPython when we looked at the Circuit
Playground board from Adafruit. This chapter does not cover CircuitPython in more
detail because it is a port of MicroPython and thus what we learn about MicroPython
libraries applies. What is different is some of the board-specific libraries and
functions, and CircuitPython has some advanced libraries specific to the Adafruit
boards. For more information about CircuitPython, see https://circuitpython.
readthedocs.io/en/stable/.

http://dx.doi.org/10.1007/978-1-4842-3123-4_3
https://circuitpython.readthedocs.io/en/stable/
https://circuitpython.readthedocs.io/en/stable/

Chapter 5 ■ MicroPython Libraries

204

Summary
The MicroPython firmware has a lot of capability for IOT projects. Indeed, there are a lot
of different classes we can use to write robust and complex MicroPython programs from
built-in functions that give the language a breadth of capability to working with data,
performing calculations, and even working with time values to interfacing directly with
the hardware.

Working with the hardware is one area that differs the most about MicroPython
from one board to another. This is because the boards are quite different. Some have
networking, some do not. Some have more on-board features than others, and some have
less memory and even fewer GPIO pins. It is no surprise then that the firmware differs
from one board to the next when it comes to the hardware abstraction layers.

In this chapter, we explored some of the more commonly used built-in and
MicroPython libraries that generally apply to all boards. In the next chapter, we will dive a
bit deeper into the lower-level libraries and hardware support in MicroPython including
those board-specific libraries we can use such as those for the Pyboard, WiPy, and more.

205© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_6

CHAPTER 6

Low-Level Hardware Support

The MicroPython firmware, at the most basic of functionality, is the same from board to
board for all the general Python language supported and many of the built-in functions.
However, some of the libraries in the MicroPython firmware have a few minor differences
from one board to another. In some cases, there are more libraries or classes available
than others or perhaps the classes are organized differently, but most implement the
same core libraries in one form or another. The same cannot be said to be true at the
lower-level hardware abstraction layers. This is simply because one board vendor may
implement different hardware than others. In some cases, the board has features that
are not present on other boards. For example, the WiPy has WiFi and Bluetooth but the
Pyboard has neither.

In this chapter, we will look at several examples of the low-level hardware support
in MicroPython. We will learn about the board-specific libraries as well as some of
the lower-level specialized libraries such as those for Bluetooth, SPI, I2C, and more.
We will also see short code examples to illustrate the capabilities of the board-specific
libraries. Some of these will be short snippets of code rather than actual projects you can
implement yourself.

However, there are a few that are complete projects, which you may want to explore,
but most are explained without a lot of depth and are intended to be examples rather
than detailed walkthroughs. Also, keep in mind they will likely require a specific breakout
board and MicroPython board as well as other accessories to implement. Again, these are
for demonstration purposes. We will see more complete, step-by-step examples in later
chapters, including how to assemble the hardware.

To keep things brief, we will explore the board-specific libraries that differ on the
Pyboard and WiPy. Other boards may be different further still, but you will need to check
the vendor documentation to know how they differ. This chapter should provide you with
the insight to find those differences. We will also revisit working with breakout boards to
demonstrate some of the libraries and hardware protocols and techniques discussed in
previous chapters.

Let’s begin with a look at the board-specific libraries for the Pyboard and WiPy.

https://doi.org/10.1007/978-1-4842-3123-4_6

Chapter 6 ■ Low-Level Hardware Support

206

Board-Specific Libraries
We have already seen that there are differences in the machine library between the
Pyboard and WiPy. But there are other differences: libraries that are specific to each
board and thus can only be used with another of the same board. These include libraries
with functions and classes to work with low-level hardware, board-specific functions, and
constants, etc.

Perhaps the one thing you should remember when working with a new MicroPython
board for the first time is the firmware at the hardware level is very likely to be different
from the last MicroPython board you used. This is especially true when you look at the
firmware ports for boards like the BBC micro:bit, Circuit Playground, ESP8266, etc.

■■ Tip  Be sure to visit the documentation for your board for a complete list of functions,
uses, and more examples of the board-specific libraries.

Pyboard
The Pyboard-specific libraries are unique in that they contain support for their vendor-
specific skins. As we learned in Chapter 3, there are several skins available for the
Pyboard. Fortunately, all the skins are supported directly in the firmware with Pyboard-
specific classes. This includes the audio skin, LCD, and more.

There are also libraries specific to the Pyboard itself in the form of the pyb library,
which includes support for several board-specific functions including time, power,
interrupt, and more. We will also take a brief tour of that library and then look at one of
the libraries for the LCD skin: the lcd160cr class.

The following sections briefly describe the libraries in more detail and include a few
commonly found examples of some of the features. See the indicated documentation for
complete details of the contents and features of each library.

pyb
The pyb library is the catch-all library for the Pyboard-related functions and classes.
If you’re looking for a function or library related to the Pyboard or any of its on-board
hardware, this library is the place you should look first. The following lists the function
groups and classes available.

•	 Time: time-related functions for delays by millisecond or
microsecond and calculating the number of milliseconds or
microseconds since an event (saved variable)

•	 Reset: functions that permit you to turn on debug, initiate
bootloader mode, or reset the board

•	 Interrupt: enable or disable interrupts

http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 6 ■ Low-Level Hardware Support

207

•	 Power: functions to put the board into sleep or deep sleep mode
and change the performance characteristics (tread lightly)

•	 Miscellaneous: various functions for information, controlling
UART, USB, and mounting block devices

Now let’s see a few short examples. The first two show examples of the reset
functions, the second two are miscellaneous functions, and the last shows how to use one
of the classes to interact with the hardware on the board.

You can use the pyb.hard_reset() function to perform a hard reset as follows. If you
enter this statement in a REPL console, the board will reset in the same manner as if you
pressed the reset button. This could be handy if you need to abort from a serious error or
hardware fault.

MicroPython v1.9.1-154-g4d55d880 on 2017-07-11; PYBv1.1 with STM32F405RG
Type "help()" for more information.
>>> import pyb
>>> pyb.hard_reset()

■■ Note  The hard_reset() function can cause your PC to complain that the SD card was
ejected without stopping the file system, so use this function sparingly.

The pyb.bootloader() function places the board in bootloader mode. Recall from
Chapter 3, to install firmware, hard to power off the board, install a jumper wire, and
power the board on before we can load firmware. With this function, you can do so from
the REPL console. That is, if you can get to a REPL console. If your board is damaged or
the firmware is corrupt, you can still perform the jumper wire process to place the board
in bootloader mode to load new firmware.

The pyb.info() function is used as an informational dump. It prints out lots of
low-level information about the board including hardware addresses and more. Most of it
is not useful unless you’re writing low-level drivers or something similar, but you can pass
True to the function and get more information in the form of a dump of the GC memory
layout as shown in the excerpt below. If you’re curious about this data, see the Pyboard
hardware specification section in the online reference manual or the forums at
forum.micropython.org.

>>> pyb.info(True)
...
LFS free: 52224 bytes
GC memory layout; from 20003e40:
00000: h=hhhhhBShh==Sh=hhhh==h==Bh=hBh=hBhThShh=h==hh=BhhhBhBh=hh=hBh=h
00400: =hTh==Shhhh==B........h=....................................h===
00800: ====h===
00c00: ==============..
 (92 lines all free)
18000:

http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 6 ■ Low-Level Hardware Support

208

The pyb.main(filename) function is one the most useful functions. It sets the
filename of the main script to run after boot.py is finished. You can use this function in
conjunction with several alternative main.py code modules. This can be a useful tool if
you wanted to implement a few projects that launch and run automatically. Rather than
going into the boot.py manually and changing it, you can use this function to tell the
Pyboard to start with an alternative file. That way, you can have “profiles” you can use to
change the behavior of the board. Cool. Simply call the function with a valid code module
path and name (as a string). This setting remains in effect until you change it.

■■ Note  You should only call this function from within boot.py.

The pyb library also has low-level hardware classes for a host of hardware supported.
Note that we saw a similar set of classes for the WiPy in the machine library. On the
Pyboard, they’re in the pyb library. Table 6-1 shows a list of the available hardware
classes. As you can see, there is support for the LEDs, LCD (we’ll see this one in a later
section), GPIO pins, and much more. Keep in mind the class names are case sensitive.

Table 6-1.  Pyboard Low-Level Hardware Classes (pyb library)

Class Description

Accel accelerometer control

ADC analog to digital conversion

CAN controller area network communication bus

DAC digital to analog conversion

ExtInt configure I/O pins to interrupt on external events

I2C a two-wire serial protocol

LCD LCD control for the LCD touch-sensor pyskin

LED LED object

Pin control I/O pins

PinAF Pin Alternate Functions

RTC real-time clock

Servo 3-wire hobby servo driver

SPI a master-driven serial protocol

Switch switch object

Timer control internal timers

TimerChannel set up a channel for a timer

UART duplex serial communication bus

USB_HID USB Human Interface Device (HID)

USB_VCP USB virtual comm port

Chapter 6 ■ Low-Level Hardware Support

209

Now, let’s see one of these in action. We will use the accelerometer to do a simple test
of the board. That is, we will write some code that you can use to run and detect when the
Pyboard has been physically moved in any of the three directions. The following shows
the methods available for the Accel class.

•	 Accel.filtered_xyz(): get a 3-tuple of filtered x, y and z values

•	 Accel.tilt(): get the tilt register

•	 Accel.x(): get the x-axis value

•	 Accel.y(): get the y-axis value

•	 Accel.z(): get the z-axis value

An accelerometer is a device used to measure the change in velocity over time:
in other words, how an object has moved and how fast. While the accelerometer on
the Pyboard is not a precision instrument capable of super-fine detection of minute
movement, you can use it to detect when the board has been moved and even to a limited
degree which direction (axis of movement). Thus, you can incorporate the accelerometer
in your project if you want to know when the project has been moved either for security
or to detect or change behavior based on orientation. There are a lot of cool ways you can
use an accelerometer!

Now, let’s see some code! The following shows how you can use the accelerometer
to get its raw values for each of the X, Y, and Z axes. Values range from -32 to 32. With
a little observation, we can deduce what values indicate how far the board is moved in
each direction. Try the code below and gently pick up the board and move it around in
three dimensions by rotating it different directions. Do it slowly, then a bit more quickly
and notice how the values change. Then, place the board back in its original position and
observe. You can press CTRL-C to stop the loop.

import pyb
from pyb import Accel
acc = Accel()
print("Press CTRL-C to stop.")
while True:
 pyb.delay(500) # Short delay before sampling
 print("X = {0:03} Y = {1:03} Z = {2:03}".format(acc.x(), acc.y(), acc.z()))

USE SOFT RESET TO REFRESH IMPORT

If you’re like me and like to write your MicroPython code on your PC and test it there,
then move it to the board for more development and testing, chances are you will be
perplexed by having to reset the board each time you copy a new version of a code
module or library you want to include and test. Instead of powering off the board or
doing a hard reset, you can do a soft reset using the CTRL+D key when connected in
the REPL console. This does a soft reboot that allows you to run the import again. In
fact, you must issue the import again - it just rebooted! The best part is you won’t
have to reconnect your board or the REPL console! Try it.

Chapter 6 ■ Low-Level Hardware Support

210

The following shows an excerpt of the output when run in the REPL console.

X = 002 Y = 000 Z = 021
X = 000 Y = -01 Z = 023
X = 005 Y = 020 Z = 000
X = -05 Y = 016 Z = -11
X = -11 Y = -13 Z = 014
X = 022 Y = -04 Z = -05
X = -03 Y = 019 Z = 012
...

If you’d like a challenge, you can try writing a script to use the accelerometer to
detect when the board has been turned upside down. Hint: observe the X, Y, and Z raw
values as you experiment and write your code to look for specific ranges.

■■ Caution O n the Pyboard, the accelerometer uses I2C(1) so you cannot use the
accelerometer and I2C(1) at the same time. You must use different pins for I2C to use the
accelerometer and an I2C device at the same time.

These examples are only a very small portion of what is available in this library. If
you’re working with the Pyboard, you should look at this library first for all your low-level
hardware and board-specific control needs. We will see examples of some of the classes
available and their use in a later section.

■■ Tip  See http://docs.micropython.org/en/latest/pyboard/library/pyb.html
for a complete list of the functions and classes available in the pyb library.

lcd160cr
The makers of the Pyboard have made an interesting skin that is, so far, unique among the
vendors offering MicroPython boards. This skin is called the lcd160cr; hence LCD, which
is a touch-sensitive LCD screen that you can connect directly to your Pyboard giving you
a very nice touch screen that you can use to make a modern user interface. Think about
it – you can build a MicroPython wristwatch, weather sensor, or anything that needs a
user interface.

The library that is built in to the Pyboard firmware (named lcd160cr), allows you to
sense when the screen is touched (and where), and you can send text or draw shapes. This
means, with a little imagination, you can build simple graphical user interfaces. Very nice.

The LCD can be mounted in one of two locations, which are referred to as positions
X and Y. These values are then used in the constructor. Figure 6-1 shows the positions for
connecting the LCD to the Pyboard in the X and Y positions (shown left to right).

http://docs.micropython.org/en/latest/pyboard/library/pyb.html

Chapter 6 ■ Low-Level Hardware Support

211

The difference in the position refers to with how the LCD is oriented on the Pyboard.
In the X position, the LCD is mounted on X range of GPIO pins and in the Y position, it
is mounted on the Y range of GPIO pins. Note that in the Y position, the LCD must be
rotated 180 degrees as shown.

Now, let’s see an example of using the LCD. In this example, we will create a simple
user interface that detects touch in the four corners of the screen. To make it interesting,
we will also turn on a different LED with each touch. This will give you visual feedback
that you’ve touched the screen.

This example is one of the longer examples in this book but it is not difficult to
follow. Let’s begin with a high-level walkthrough of the code.

The first thing we should do is write the import statements so that we can detect
when the code is run on a Pyboard (or another board). If it isn’t a Pyboard, we should
abort since other boards do not have the library we will need (lcd160cr). If you adopt
this technique in your own code, you can avoid strange import exceptions and other
issues that may not be clear as to why the program fails. Plus, it’s good programming. The
following shows the code for detecting the presence of the libraries needed and how to
exit the program if one of them fails to import.

First, make sure this is running on a Pyboard
try:
 import pyb
except ImportError:
 print("ERROR: not on a Pyboard!")
 sys.exit(-1)

Figure 6-1.  Positions for Mounting the LCD (Pyboard)

Chapter 6 ■ Low-Level Hardware Support

212

Next, make sure the LCD skin library in the firmware
try:
 import lcd160cr
except ImportError:
 print("ERROR: LCD160CR library missing!")
 sys.exit(-1)

Next, we will write a function to turn the LED on. This is an example of how to write
code to be reusable. That is, we don’t want to repeat the same code repeatedly. In this
case, we can turn on a specific LED by color. To help us with that, we can write a function
to retrieve the LED based on color (1=red, 2=green, etc.). The following shows the helper
function.

def led_color(num):
 if num == 1: return "red"
 elif num == 2: return "green"
 elif num == 3: return "orange"
 else: return "blue"

The following shows the reusable function for turning on the LED. As you can see, we
first turn off the old LED then turn the new (selected) one on.

def turn_on_led(num, led_last):
 # turn last LED off
 led = pyb.LED(led_last)
 led.off()
 led = pyb.LED(num)
 led.on()
 sys.stdout.write("Turning off ")
 sys.stdout.write(led_color(led_last))
 sys.stdout.write(" - Turning on ")
 sys.stdout.write(led_color(num))
 sys.stdout.write("\n")

Next, we can write the code to read the position on the LCD that was touched and,
depending on where the touch occurred, turn on the LED for that corner. We will use
red for the upper-left, green for upper-right, orange for lower-right, and blue for
lower-right.

The code is simplified by using numbers for the LEDs since the pyb.LED() refers to
LEDs by numbers. Savvy readers may spot a way to improve the code with enumeration
or even the use of constants. If you see these potential improvements, feel free to make
those improvements as an exercise. Listing 6-1 shows the completed code for the
example.

Chapter 6 ■ Low-Level Hardware Support

213

Listing 6-1.  Using the Pyboard LCD (lcd160cr)

MicroPython for the IOT - Chapter 6
Example module for the LCD skin on a Pyboard
#
Note: The LCD is positioned in the "X" position.
#
import sys

First, make sure this is running on a Pyboard
try:
 import pyb
except ImportError:
 print("ERROR: not on a Pyboard!")
 sys.exit(-1)

Next, make sure the LCD skin library in the firmware
try:
 import lcd160cr
except ImportError:
 print("ERROR: LCD160CR library missing!")
 sys.exit(-1)

Return color of LED
def led_color(num):
 if num == 1: return "red"
 elif num == 2: return "green"
 elif num == 3: return "orange"
 else: return "blue"

Use a method to turn off last LED and the next one on
def turn_on_led(num, led_last):
 # turn last LED off
 led = pyb.LED(led_last)
 led.off()
 led = pyb.LED(num)
 led.on()
 sys.stdout.write("Turning off ")
 sys.stdout.write(led_color(led_last))
 sys.stdout.write(" - Turning on ")
 sys.stdout.write(led_color(num))
 sys.stdout.write("\n")

Setup the LCD in the "X" position
lcd = lcd160cr.LCD160CR('X')

Chapter 6 ■ Low-Level Hardware Support

214

for j in range(1, 4): # Turn off all of the LEDs
 led = pyb.LED(j) # Get the LED
 led.off() # Turn the LED off

Now, let's play a game. Let's change the LEDs to
different colors depending on where the user touches
the screen.
print("Welcome to the touch screen demo!")
print("Touch the screen in the corners to change the LED lit.")
print("Touch the center to exit.")
center = False
last_led = 1
while not center:
 pyb.delay(50)
 if lcd.is_touched:
 touch = lcd.get_touch()
 if (touch[0] == 0):
 continue
 # Upper-left corner
 if ((touch[1] <= 60) and (touch[2] <= 60)):
 turn_on_led(1, last_led)
 last_led = 1
 # Upper-right corner
 elif ((touch[1] >= 100) and (touch[2] <= 60)):
 turn_on_led(2, last_led)
 last_led = 2
 # Lower-right corner
 elif ((touch[1] >= 100) and (touch[2] >= 100)):
 turn_on_led(3, last_led)
 last_led = 3
 # Lower-left corner
 elif ((touch[1] <= 60) and (touch[2] >= 100)):
 turn_on_led(4, last_led)
 last_led = 4
 # Center
 �elif ((touch[1] > 60) and (touch[1] < 100) and (touch[2] > 60) and

(touch[2] < 100)):
 led = pyb.LED(last_led)
 led.off()
 center = True

print("Thanks for playing!")
sys.exit(0)

Chapter 6 ■ Low-Level Hardware Support

215

If you have an LCD, go ahead and try this example. Once you do, you should see the
LEDs light as you touch each corner and you will see in your REPL console output like the
following.

>>> import pyboard_lcd
Welcome to the touch screen demo!
Touch the screen in the corners to change the LED lit.
Touch the center to exit.
Turning off red - Turning on green
Turning off green - Turning on red
Turning off red - Turning on red
Turning off red - Turning on orange
Turning off orange - Turning on green
Turning off green - Turning on green
Turning off green - Turning on orange
Turning off orange - Turning on blue
Turning off blue - Turning on red
Thanks for playing!

■■ Tip  The LCD comes with a thin protector on it. You will want to remove that and use a
stylus or similar soft pointer to test the script. If your fingers are large, you may have some
difficulty touching the small area designated.

If you decide to try out the example yourself, you should find it gives you a few
moments of satisfaction of achieving an interesting doodad. If you like this example
and want to get an LCD for your own projects, see the MicroPython store to order one
(https://store.micropython.org/store/#/products/LCD160CRv1_0H). You will find
you can purchase one with headers or without. You may choose one without if you decide
to get the nifty (optional) aluminum case, which requires mounting a different, angled
header (you must order and solder them yourself). However, you can use the LCD with
headers as shown in this example.

■■ Tip  See http://micropython.org/resources/LCD160CRv10-refmanual.pdf for the
reference manual for the lcd160cr, which includes the low-level specification for working
with the skin.

WiPy
The WiPy-specific libraries are unique in that they contain support for a complete range
of Pycom boards including the Expansion Board, PySense, and PyTrack shields.

https://store.micropython.org/store/#/products/LCD160CRv1_0H
http://micropython.org/resources/LCD160CRv10-refmanual.pdf

Chapter 6 ■ Low-Level Hardware Support

216

There are also libraries specific to the Pyboard itself in the form of the pycom library,
which includes support for changing the heartbeat LED including changing the color.
The AES library contains an interesting feature for securing data – AES encryption. We will
explore this library in more detail. Also, recall that the WiPy firmware contains the low-
level hardware for I2C, SPI, etc., in the machine library as opposed to the Pyboard, which
has these in the pyb library.

The following sections briefly describe the libraries in more detail including a few
commonly found examples of some of the features. See the indicated documentation for
complete details of the contents and features of each library.

pycom
The pycom library has functions to control specific features of the Pycom devices, such
as the heartbeat RGB LED. In fact, you can change the color of the LED, turn it on or off,
and get the current state of the LED. While this seems very rudimentary, you can use the
heartbeat LED to communicate status information. For example, you can change the
color to indicate different actions (or states) such as reading from sensors, saving data,
communicating errors, etc.

Let’s look at a short example of using the heartbeat LED to set state. Note that the
LED color is defined by a 24-bit value representing red, green, and blue (RGB), where the
red color is represented by the most significant 8 bits, green the next 8 bits, and blue the
least significant 8 bits. We normally represent these values in hexadecimal.1 For example,
bright white is 0xFFFFFF, 0xFFFF00 is yellow, and 0x00FFFF is a sea green.

In this example, we will use a set of helper functions and a test loop to work with the
heartbeat LED. Note that to turn on (use) the heartbeat LED, you must first turn off the
heartbeat internal feature with heartbeat(False). Listing 6-2 shows the example code
for working with the heartbeat LED to show status/state.

Listing 6-2.  Using the Heartbeat LED for Status/State (WiPy)

MicroPython for the IOT - Chapter 6
Example for working with the hearbeat LED as a
status/state indicator
#
import utime

First, make sure this is running on a Pyboard
try:
 import pycom
except ImportError:
 print("ERROR: not on a WiPy (or Pycom) board!")
 sys.exit(-1)

1https://en.wikipedia.org/wiki/Hexadecimal

https://en.wikipedia.org/wiki/Hexadecimal

Chapter 6 ■ Low-Level Hardware Support

217

State/status enumeration
_STATES = {
 'ERROR' : 0xFF0000, # Bright red
 'READING' : 0x00FF00, # Green
 'WRITING' : 0x0000FF, # Blue
 'OK' : 0xFF33FF, # Pinkish
}

Clear the state (return to normal operation)
def clear_status():
 pycom.heartbeat(True)

Show state/status with the heatbeat LED
def show_status(state):
 pycom.heartbeat(False)
 pycom.rgbled(state)

Now, demonstrate the state changes
for state in _STATES.keys():
 show_status(_STATES[state])
 utime.sleep(3)

Return heartbeat to normal
clear_status()

If you run this code, you will notice the LED will present some very bright colors. So,
don’t stare directly at the LED! You can try reducing the brightness as an exercise using
some more subtle color values.

■■ Tip  See the online calculator at http://www.rapidtables.com/web/color/RGB_
Color.htm to determine the desired color.

AES
WiPy has a special library named crypto, which has the AES library with support for AES
(Advanced Encryption Standard) - a symmetric block cipher standardized by NIST. While
you may not need this feature, for those of us concerned about protecting sensitive data,
this could be a nifty feature worthy of consideration.

For example, you may want to transmit data over the Internet to another system.
If you do not protect the data with encryption, it is not too difficult to decipher the data
should it be exploited in some manner. If you encrypt the data (and protect the keys!), you
can make it much more difficult for people to see the data.

http://www.rapidtables.com/web/color/RGB_Color.htm
http://www.rapidtables.com/web/color/RGB_Color.htm

Chapter 6 ■ Low-Level Hardware Support

218

■■ Note  Encryption is an advanced feature that most beginners will not use. Thus, this
section is brief. If you want to learn more about this library, see https://docs.pycom.io/
chapter/firmwareapi/pycom/aes.html.

The AES library offers several constants to control the encryption mode and two
functions: one to encrypt and another to decrypt. You will need to provide a key to use
in the encryption algorithm for the simplest form of encryption defined by the constant,
AES.MODE_ECB, which means Electronic Code Book. Other forms may need additional
parameters.

There is one caveat. The data you encrypt must be in multiples of 16 byte blocks.
Notice how we use spaces to make the strings 16 bytes. So, if you’re encrypting data
that you’ve created or read from a sensor or another node on your network, will need to
ensure you encrypt with blocks in multiple of 16 bytes.

Let’s look at an example. In this example, we will create a file with encrypted data to
show how to protect your data for saving or sending to another node (computer). We will
then open the file and read the data decrypting it so that we can show how to decipher
encrypted data. We will use strings to make it easier but you can encrypt binary data too.
Listing 6-3 shows the example code to use AES encryption to protect data.

Listing 6-3.  Using Encryption to Protect Data (WiPy)

MicroPython for the IOT - Chapter 6
Simple example for working with encrypting data
#
import sys

First, make sure this is running on a WiPy (pycom)
try:
 import pycom
 from crypto import AES
except ImportError:
 print("ERROR: not on a WiPy (or Pycom) board!")
 sys.exit(-1)

Setup encryption using simple, basic encryption
NOTICE: you normally would protect this key!
my_key = b'monkeybreadyummy' # 128 bit (16 bytes) key
cipher = AES(my_key, AES.MODE_ECB)

Create the file and encrypt the data
new_file = open("secret_log.txt", "w") # use "write" mode
new_file.write(cipher.encrypt("1,apples,2.5 \n")) # write some data
new_file.write(cipher.encrypt("2,oranges,1 \n")) # write some data
new_file.write(cipher.encrypt("3,peaches,3 \n")) # write some data
new_file.write(cipher.encrypt("4,grapes,21 \n")) # write some data
new_file.close() # close the file

https://docs.pycom.io/chapter/firmwareapi/pycom/aes.html
https://docs.pycom.io/chapter/firmwareapi/pycom/aes.html

Chapter 6 ■ Low-Level Hardware Support

219

Step 2: Open the file and read data
old_file = open("secret_log.txt", "r") # use "read" mode
Use a loop to read all rows in the file
for row in old_file.readlines():
 data = cipher.decrypt(row).decode('ascii')
 columns = data.strip("\n").split(",") # split row by commas
 print(" : ".join(columns)) # print the row with colon separator

old_file.close()

The code is straightforward and you should have no problem following it.
Notice, however, that we combine the write method and the encrypt call to make
things a bit shorter. You can do it in two statements using an intermediate variable if
you’d like.

When this program runs, it creates a file named secret_log.txt on the flash drive
on your WiPy. If we examine this file with a hex dumping utility, we can see it is indeed
encrypted (we cannot read the data since it was scrambled). The following shows what
the file looks like in a hex dump.

$ hexdump -C secret_log.txt
00000000 c1 02 97 87 74 28 4f 4e de 83 8d 8d 49 4a f8 93 |....t(ON....IJ..|
00000010 c9 e7 f8 00 f3 ba e2 f8 7c 6e ca 41 13 0c 09 35 |........|n.A...5|
00000020 a6 83 f6 fc 2c de ba eb f6 3a af fe c0 b5 c6 ee |....,....:......|
00000030 7a 3b 3a 36 90 da dc 36 3d 61 7e 31 75 a3 ca 96 |z;:6...6=a~1u...|
00000040

The code also prints out the strings read from the file to confirm it works. If you run
the program via a REPL console, you should see the following output.

>>> import wipy_encryption
1 : apples : 2.5
2 : oranges : 1
3 : peaches : 3
4 : grapes : 21

Now that we’ve seen a few examples of the board-specific libraries, let us examine a
few examples of working with the hardware features directly. We have seen some of these
in previous examples but they were not explained in detail. The following sections take a
deeper look at some of the more common low-level hardware access using the Pyboard
and WiPy.

Chapter 6 ■ Low-Level Hardware Support

220

Low-Level Examples
Working with the low-level hardware (some would just say, ‘hardware’ or ‘device’) is
where all the action and indeed the focus (and relative difficulty) of using MicroPython
takes place. MicroPython and the breakout board vendors have done an excellent job of
making things easier for us, but there is room for improvement in the explanations.

That is, the documentation online is a bit terse when it comes to offering examples
of using the low-level hardware. Part of this is because the examples often require
additional, specific hardware. For example, to work with the I2C interface, you will need
an I2C capable breakout board. Thus, the online examples provide only the most basic of
examples and explanations.

However, that doesn’t mean the rest of the documentation on the low-level hardware
is lacking. In fact, the documentation provides an excellent overview of all the classes and
functions at your disposal. The challenge then is taking that overview and applying it to
solve your programming needs, which is one of the aims of this book!

Except for the on-board sensors that may exist or other components like LEDs, RTC,
buttons, etc., most low-level communication will be through I2C, one-wire, analog or
digital pins, or even SPI interfaces. The I2C and SPI interfaces are those where you will
likely encounter the most difficulty working with hardware. This is because each device
(breakout board) you use will require a very specific protocol. That is, the device may
require a special sequence to trigger the sensor or features of the device that differs from
other breakout boards. Thus, working with I2C or SPI (and some other) type devices can
be a challenge to figure out exactly how to “talk” to them.

Drivers and Libraries to the Rescue!
Fortunately, there is a small but growing number of people making classes and sets of
functions to help us work with those devices. These are called libraries or more commonly
drivers and come in the form of one or more code modules that you can download, copy to
your board, and import the functionality into your program. The developers of the drivers
have done all the heavy lifting for you making it very easy to use the device.

Thus, for most just starting out with MicroPython wanting to work with certain
sensors, devices, breakout boards, etc., you should limit what you plan to use to those
that you can find a driver that works with it. So, how do you find a driver for your device?
There are several places to look.

First and foremost, you should look to the forums and documentation on
MicroPython. In this case, don’t limit yourself to only those forums that cater to your
board of choice. Rather, look at all of them! Chances are, you can find a library that you
can adapt with only minor modifications. Most of them can be used with very little or
even no effort beyond downloading it and copying it to the board. The following lists the
top set of forums and documentation you should frequent when looking for drivers.

•	 MicroPython Forums: https://forum.micropython.org/

•	 MicroPython Documentation: https://docs.micropython.org/
en/latest/pyboard/

•	 Pycom (WiPy) Forums: https://forum.pycom.io/

https://forum.micropython.org/
https://docs.micropython.org/en/latest/pyboard/
https://docs.micropython.org/en/latest/pyboard/
https://forum.pycom.io/

Chapter 6 ■ Low-Level Hardware Support

221

•	 Pycom (WiPy) Documentation: https://docs.pycom.io/

•	 BBC micro:bit MicroPython Forums: https://forum.
micropython.org/viewtopic.php?t=1042

•	 BBC micro:bit MicroPython Documentation: https://microbit-
micropython.readthedocs.io/en/latest/

•	 MicroPython Wiki (External docs): http://wiki.micropython.org/
Home

•	 Adafruit Learning: https://learn.adafruit.com/

Notice the last entry. If you search for MicroPython, you will find many excellently
presented (and complete) tutorials including a growing number of hardware topics.

Second, use your favorite Internet search engine and search for examples of the
hardware. Use the name of the hardware device and “MicroPython” in your search. If
the device is new, you may not find any hits on the search terms. Be sure to explore other
search terms too.

Once you find a driver, the fun begins! You should download the driver and copy it to
your board for testing. Be sure to follow the example that comes with the driver to avoid
using the driver in an unexpected way.

Which calls to mind one important thing you should consider when deciding if you
want to use the driver. If the driver is documented well and has examples – especially if
the example includes your board – you should feel safe using it. However, if the driver
isn’t documented at all or there is no or little sample code, don’t use it! There is a good
chance it is half-baked, old, a work in progress, or just poorly coded. Not all those that
share can share and communicate well.

Let’s look at two low-level examples: working with the real-time clock and callbacks
through interrupts. We will begin with the real-time clock (RTC). These are only a small
sample of what is available and represents the most common things you will need to work
with for this book and most small IOT projects.

Real-Time Clock (RTC)
Most boards have a real-time clock (RTC). The RTC is a special circuit (sometimes
an integrated circuit or chip) that keeps time. This is because most processors
(microcontroller, microprocessor, etc.) operate in synchronization with a crystal or clock
chip that keeps the processor running at a certain speed (e.g., Mhz). Sadly, this is often
not divisible easily into a time variable (value). The RTC is used to keep time so that we
can use the time to record events.

To use an RTC, we first initialize the starting value with the current date and time
(like setting a new desktop clock) and we can read the current date and time whenever
we want. However, a RTC without a battery backup will lose its values when the board
is powered off. Thus, we must set it every time we start the board. Fortunately, there is a
time service on the Internet that we can use to get the current date and time. It’s called
the network time protocol (NTP).2

2https://en.wikipedia.org/wiki/Network_Time_Protocol

https://docs.pycom.io/
https://forum.micropython.org/viewtopic.php?t=1042
https://forum.micropython.org/viewtopic.php?t=1042
https://microbit-micropython.readthedocs.io/en/latest/
https://microbit-micropython.readthedocs.io/en/latest/
http://wiki.micropython.org/Home
http://wiki.micropython.org/Home
https://learn.adafruit.com/
https://en.wikipedia.org/wiki/Network_Time_Protocol

Chapter 6 ■ Low-Level Hardware Support

222

Let’s see an example of how to use this service. We will create a program on the
WiPy that connects the board to our local WiFi, which is connected to the Internet. Once
connected, we will use the NTP to set the current time and then perform a test to see what
the current date and time are. We should see the exact date and time when we run the
code! Listing 6-4 shows the completed example.

Listing 6-4.  Using an NTP Time Server to set the RTC (WiPy)

MicroPython for the IOT - Chapter 6
Example module for using the ntptime server to set the datetime
Note: only works on WiPy!

from network import WLAN
from machine import RTC
import machine
import sys
import utime

wlan = WLAN(mode=WLAN.STA)

def connect():
 wifi_networks = wlan.scan()
 for wifi in wifi_networks:
 if wifi.ssid == "YOUR_SSID":
 �wlan.connect(wifi.ssid, auth=(wifi.sec, "YOUR_SSID_PASSWORD"),

timeout=5000)
 while not wlan.isconnected():
 machine.idle() # save power while waiting
 print("Connected!")
 return True
 if not wlan.isconnected():
 print("ERROR: Cannot connect! Exiting...")
 return False

if not connect():
 sys.exit(-1)

Now, setup the RTC with the NTP service.
rtc = RTC()
print("Time before sync:", rtc.now())
rtc.ntp_sync("pool.ntp.org")
while not rtc.synced():
 utime.sleep(1)
 print("waiting for NTP server...")
print("Time after sync:", rtc.now())

Chapter 6 ■ Low-Level Hardware Support

223

Most of this code should be familiar since we’ve seen WiFi connect in a previous
chapter. In this example, we place the code in a method to make it a bit easier to use.3
However, the use of the RTC() class is new. Notice all we need to do is, once the network
connection is made, is to call the ntp_sync() method passing in the name of the NTP
service. Yes, it’s built into the library! Cool. After that, we need only wait until the RTC
synchronizes with the NTP and we’re good to go.

■■ Note  The Pyboard provides the RTC() class in the machine library but it is a bit
different than the one in the WiPy firmware. You could modify this example as an exercise
for use on your Pyboard.

When you run this on your WiPy, you will see output like the following. Notice we
print the value of the time – which is the starting epoch – then print the time again once
the RTC has synched with the NTP.

>>> import wipy_ntp
Connected!
Time before sync: (1970, 1, 1, 0, 0, 36, 560190, None)
waiting for NTP server...
waiting for NTP server...
waiting for NTP server...
Time after sync: (2017, 7, 13, 16, 19, 51, 402976, None)

This example can be very helpful and in some cases a must when reading data for
later analysis. It is often crucial to know when the data was saved or sensor was read. You
may want to earmark this code for later use in your IOT projects.

■■ Note  We can use a dedicated RTC module that has an on-board clock that keeps the
clock synchronized when operating offline or during periods when the board is powered off.
We will see how to do this in Chapter 8.

Now, let’s look at callbacks, which are programming mechanisms you can use to
work with hardware interrupts.

3Whenever you find yourself making functions for commonly used code, it is time to consider
adding it to a library of your favorite functions to make the code available for all your programs as
we discussed in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-3123-4_8
http://dx.doi.org/10.1007/978-1-4842-3123-4_5

Chapter 6 ■ Low-Level Hardware Support

224

Callbacks
What do you do if you want to have some bit of code execute in reaction to a sensor or
user input? Using what we’ve learned thus far, we could write our program with a loop to
poll the sensor or user actionable device (such as a button) and when triggered, execute
the code. This polling technique will work, but there is a better construct called callbacks.

Callbacks are functions we define and associate with the firmware to execute when
a certain event occurs. If a hardware abstraction permits the use of a callback, we can
use that. Fortunately, the Switch class in the Pyboard firmware (pyb.Switch) has such
a mechanism. We could also use hardware interrupts in much the same way. However,
hardware interrupts are an advanced topic. Let’s work with the Switch class to keep
things easier.

The use of callbacks allows us to continue executing code to do work such as reading
sensors, displaying data, etc., and when the event (interrupt) occurs, MicroPython will
execute the callback function and then return to executing our code. This works by tying
the callback function to interrupts. The switch class has an interrupt defined for the
button press. That is, when the button is pressed, the callback fires (executes).

There are some caveats to using the switch callback. First, the switch callback
function cannot take parameters so you cannot define a callback function and pass it any
data. In fact, callback functions are not permitted to create data. For example, you cannot
create a dictionary, tuple, etc., inside the function. While callback functions can access
global variables, they may throw an exception if you use state variables. Finally, you can
turn off (disconnect) the callback. For example, you can disconnect the callback for the
switch with switch.callback(none).

Now, let’s see an example. In this example, we want to create a callback to cycle
through the LEDs on the board. With each press of the button, another LED is lit until
we cycle through all the LEDs then start over. This means we need to save the last LED lit
or the state of the LEDs. To do this, we can use a class that has a local variable, which we
access within the callback function.

Setting up the callback is easy. We just call the callback function for the switch and
pass in the name of the function. We do this through the constructor of the class. That is,
when we create a new instance of the class, we pass in the pyb.Switch object and then
call the callback on that object passing in the name of the class function.

Let’s see the code and you’ll see how this works. Listing 6-5 shows the completed
code for the callback example for the Pyboard.

Listing 6-5.  Callback Example (Pyboard)

MicroPython for the IOT - Chapter 6
Simple example for working with interrupts using a class
to store state.
#
import sys

Chapter 6 ■ Low-Level Hardware Support

225

First, make sure this is running on a Pyboard
try:
 import pyb
except ImportError:
 print("ERROR: not on a Pyboard!")
 sys.exit(-1)

Initiate the switch class
switch = pyb.Switch()

class Cycle_LED(object):
 # Constructor
 def __init__(self, sw):
 self.cur_led = 0
 sw.callback(self.do_switch_press)

 # Switch callback function
 def do_switch_press(self):#
 # Turn off the last led unless this is the first time through the cycle
 if self.cur_led > 0:
 pyb.LED(self.cur_led).off()
 if self.cur_led < 4:
 self.cur_led = self.cur_led + 1
 else:
 self.cur_led = 1
 # Turn on the next led
 pyb.LED(self.cur_led).on()

Initiate the Cycle_LED class and setup the callback
cycle = Cycle_LED(switch)

Now, simulate doing something else
print("Testing the switch callback. Press CTRL-C to quit.")
while True:
 sys.stdout.write(".") # Print something to show we're still in the loop
 pyb.delay(1000) # Wait a second...

Notice the class we created and how it sets up the callback function for the switch.
Notice also how we instantiate the class passing in the switch instance. After that, we
set up a simple loop to print out dots until the program is stopped with CTRL-C. This
demonstrates that the program continues to run even when the button is pressed.

If you’re using the Pyboard, give this example a test. As you will see, using callbacks
are quite powerful.

■■ Tip  See https://docs.micropython.org/en/latest/pyboard/reference/isr_
rules.html if you want to learn how to write your own interrupt handlers.

https://docs.micropython.org/en/latest/pyboard/reference/isr_rules.html
https://docs.micropython.org/en/latest/pyboard/reference/isr_rules.html

Chapter 6 ■ Low-Level Hardware Support

226

COMMUNICATION VIA BLUETOOTH LOW ENERGY (BLE)

Another feature of the WiPy that is interesting is that it comes with Bluetooth Low
Energy (BLE) and the firmware supports it as a network class. While you can use
a BLE module with other boards via UART (serial communication) – see
https://github.com/dmazzella/uble for an advanced and complete example,
the BLE feature of the WiPy makes it possible to create read/write services that you
can use to communicate small packets of data: for example, to sample a sensor and
send the data over BLE.

Sadly, the Bluetooth support in the firmware is still very new and is not complete
enough for those new to MicroPython (and BLE). Thus, it is too advanced for a
beginning book. In fact, the documentation is currently very terse and the examples
are difficult to follow. As more people use it and find inventive ways to apply it,
you will likely see the documentation enhanced as new features are added and
existing features are added. Check the Pycom online documentation for updates to
the Bluetooth support (https://docs.pycom.io/chapter/firmwareapi/pycom/
network/bluetooth/).

Now, let’s look at how to communicate with breakout boards using the I2C and SPI
protocols.

Using Breakout Boards
We looked at breakout boards briefly in Chapter 3 where we saw an interesting example
of using an Arduino shield to connect a Pyboard to a wireless network. That is just one
example of a breakout board. You will also find breakout boards that host sensors and
other devices that can make your IOT project easier. The trick in using those breakout
boards is finding the correct, working driver.

Recall there are two methods for working with breakout boards: finding a driver you
can use, or building your own driver. Building your own driver is not recommended for
those new to MicroPython and I2C or SPI. It is much easier to take the time to search for
a driver that you can use (or adapt) than to try to write one yourself. This is because you
must be able to obtain, read, and understand how the breakout board communicates
(understand its protocol). Each board will communicate differently based on the sensor
or devices supported. That is, a driver for a BMP180 sensor will not look or necessarily
work the same as one for a BME280 sensor. You must be very specific when locating and
using a driver.

Searching for a driver can be a tedious endeavor, which requires some patience
and perhaps several searches on the forums using different search terms such as
“micropython BME280.” Once you find a driver, you can tell quickly whether it is a viable
option by looking at the example included. As mentioned before, if there is no example
or the example doesn’t resemble anything you’ve seen in this book or in the online
documentation, don’t use it.

https://github.com/dmazzella/uble
http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 6 ■ Low-Level Hardware Support

227

■■ Tip T o find a driver, visit https://forum.micropython.org/viewforum.php?f=14
and search for your board. For example, if you have a BME280 breakout board, use that as
the search term. Using precise terms like “Vendor XYZ Model#40113” may be too specific.
Try using the general name of the sensor/device first.

Let’s look at two examples of breakout boards: one that uses the I2C protocol, and
another that uses the SPI protocol.

ONLINE EXAMPLES

If you want to use a breakout board in your IOT project, be sure to spend some time
not only in the forums but also looking at various blogs and tutorials such as those
on hackaday.com, learn.sparkfun.com, or learn.adafruit.com. The best blogs
and tutorials are those that explain not only how to write the code but also what the
breakout board does and how to use it. These online references are few but the ones
from these three sites are among the very best. Also, look at some of the videos on
the topic too. Some of those are worth the time to watch – especially if they’re from
the nice folks at Adafruit or Sparkfun.4

Inter-Integrated Circuit (I2C)
The I2C protocol is perhaps the most common protocol that you will find on breakout
boards. We’ve encountered this term a few times in previous chapters and thus we only
know it is a communication protocol. I2C is a fast-digital protocol using two wires (plus
power and ground) to read data from circuits (or devices). The protocol is designed to
allow the use of multiple devices (slaves) with a single master (the MicroPython board).
Thus, each I2C breakout board will have its own address or identity that you will use in
the driver to connect to and communicate with the device.

Let’s look at an example of how to use an I2C breakout board. In this example, we
want to use an RGB sensor from Adafruit (https://www.adafruit.com/product/1334) to
read the color of objects. Yes, you can make your MicroPython board see in color! We will
use this breakout board with a WiPy.

Don’t worry if you do not have or do not want to purchase the Adafruit RGB Sensor
breakout board (although it is not expensive). This example is provided as a tutorial for
working with I2C breakout boards. We will use another I2C breakout board in one of the
example projects later in the book. Figure 6-2 shows the Adafruit RGB Sensor.

4No, I am not affiliated with either of these – merely a devoted fan and frequent return customer.
Check them out!

https://forum.micropython.org/viewforum.php?f=14
https://www.adafruit.com/product/1334

Chapter 6 ■ Low-Level Hardware Support

228

Wiring the breakout board is also very easy since we need only power, ground, SCL
and SDA connections. SCL is the clock signal, and SDA is the data signal. These pins are
labeled on your MicroPython board (or in the documentation) as well as the breakout
board. When you connect your breakout board, make sure the power requirements
match. That is, some breakout boards can take 5V but many are limited to 3 or 3.3V.
Check the vendor’s website if you have any doubts.

We need only to connect the 3V, ground, SDA, SCL, and LED pins. The LED pin is
used to turn on the bright LED on the breakout board to signal it is ready to read. We will
leave it on for 10 seconds so that there is time to read the color value then display it. We
will then wait another 5 seconds to take the next reading.

To connect the wires, you can use five male-to-female jumper wires to plug into the
WiPy (or Expansion Board) and the breakout board. Figure 6-3 shows the connections
you need to make. Notice the wires are plugged into pins marked as “GXX” rather than
“PinXX.” This can be a source of confusion when working with boards. It is always best to
refer to the pinout drawings to ensure you’re using the right pins. In this case, we need P9
and P10 for the I2C connection and we will use P8 for the LED.

Figure 6-2.  Adafruit RGB Sensor (courtesy of adafruit.com)

Figure 6-3.  Wiring the RBG Sensor (WiPy)

Chapter 6 ■ Low-Level Hardware Support

229

■■ Tip  See https://docs.pycom.io/chapter/datasheets/development/wipy2.html
for the pinouts for the WiPy board and https://docs.pycom.io/chapter/datasheets/
boards/expansion.html for the Expansion Board. Note that the Expansion board “mirrors”
the WiPy, but its labels are completely different.

Once you have the hardware connected, set it aside. We need to download the
driver and copy it to the board before we can experiment further. You can find the
driver at https://github.com/adafruit/micropython-adafruit-tcs34725. This is
a fully working, tested driver that demonstrates how easy it is to use an I2C breakout
board. Don’t worry about the internals of the library.5 The code to which I’m referring
is shown below. Notice the default address is 0x29 but since address is a parameter, you
can override it if you have another breakout board for the same RGB sensor that is at a
different address. This means you can use more than one with the same driver.

class TCS34725:
 def __init__(self, i2c, address=0x29):
 self.i2c = i2c
 self.address = address
 self._active = False
 self.integration_time(2.4)
 sensor_id = self.sensor_id()
 if sensor_id not in (0x44, 0x10):
raise RuntimeError("wrong sensor id 0x{:x}".format(sensor_id))
...

To download the driver, you first navigate to https://github.com/adafruit/
micropython-adafruit-tcs34725 and then click the Download button and then the
Download Zip button. Once the file has downloaded, unzip it. In the resulting folder, you
should find the file named tcs34725.py. This is the driver code module. When ready, we
will copy it to our WiPy using FTP as shown below. Be sure to connect to your WiPy Wi-Fi
network first and open a terminal in the same directory as the file.

$ ftp 192.168.4.1
Connected to 192.168.4.1.
220 Micropython FTP Server
Name (192.168.4.1:cbell): micro
Password:
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd flash
ftp> put tcs34725.py

5But feel free if you are curious. If you do, you will see an interesting bit of code that demonstrates
the addressability of I2C devices.

https://docs.pycom.io/chapter/datasheets/development/wipy2.html
https://docs.pycom.io/chapter/datasheets/boards/expansion.html
https://docs.pycom.io/chapter/datasheets/boards/expansion.html
https://github.com/adafruit/micropython-adafruit-tcs34725
https://github.com/adafruit/micropython-adafruit-tcs34725
https://github.com/adafruit/micropython-adafruit-tcs34725

Chapter 6 ■ Low-Level Hardware Support

230

local: tcs34725.py remote: tcs34725.py
227 (192,168,4,1,7,232)
100% |***********************************| 5222 23.05 MiB/s 00:00 ETA
5222 bytes sent in 00:00 (6.57 KiB/s)
ftp> quit

Now that the driver is copied to our board, we can write the code. In this example,
we will set up the I2C connection to the breakout board and run a loop to read values
from the sensor. Sounds simple, but there is a bit of a trick to it. We will forego a lengthy
discussion of the code and instead offer some key aspects allowing you to read the code
yourself to see how it works.

The key components are setting up the I2C, sensor, a pin for controlling the LED, and
reading from the sensor. The LED on the board can be turned on and off by setting a pin
high (on) or low (off). First, the I2C code is as follows. Here, we initiate an object, then
call the init() function setting the bus to master mode. The scan() function prints out
the devices on the bus. If you see an empty set displayed, your I2C wiring is not correct.
Check it and try the code again. Note that you can run this code manually once you’ve
done the imports.

i2c = I2C(0, I2C.MASTER) # create and init as a master
i2c.init(I2C.MASTER, baudrate=20000) # init as a master
i2c.scan()

The next part is the sensor itself. The driver makes this easy. All we need to do is pass
in the I2C constructor function as shown.

Setup the sensor
sensor = tcs34725.TCS34725(i2c)

Setting up the LED pin is also easy. All we need to do is call the Pin() class
constructor passing in the pin name (P8) and setting it for output mode as follows.

Setup the LED pin
led_pin = Pin("P8", Pin.OUT)
led_pin.value(0)

Finally, we read from the sensor with the sensor.read() function passing in True,
which tells the driver to return the RGBC values. We will then print these out in order.
Listing 6-6 shows the completed code. Take a few moments to read through it so that you
understand how it works.

Listing 6-6.  Using the Adafruit RGB Sensor (WiPy)

MicroPython for the IOT - Chapter 6
Example of using the I2C interface via a driver
for the Adafruit RGB Sensor tcs34725
#

Chapter 6 ■ Low-Level Hardware Support

231

Requires library:
https://github.com/adafruit/micropython-adafruit-tcs34725
#
from machine import I2C, Pin
import sys
import tcs34725
import utime

Method to read sensor and display results
def read_sensor(rgb_sense, led):
 sys.stdout.write("Place object in front of sensor now...")
 led.value(1) # Turn on the LED
 utime.sleep(5) # Wait 5 seconds
 data = rgb_sense.read(True) # Get the RGBC values
 print("color detected: {")
 print(" Red: {0:03}".format(data[0]))
 print(" Green: {0:03}".format(data[1]))
 print(" Blue: {0:03}".format(data[2]))
 print(" Clear: {0:03}".format(data[3]))
 print("}")
 led.value(0)

Setup the I2C - easy, yes?
i2c = I2C(0, I2C.MASTER) # create and init as a master
i2c.init(I2C.MASTER, baudrate=20000) # init as a master
i2c.scan()

Setup the sensor
sensor = tcs34725.TCS34725(i2c)

Setup the LED pin
led_pin = Pin("P8", Pin.OUT)
led_pin.value(0)

print("Reading Colors every 10 seconds. When LED is on, place object in
front of sensor.")
print("Press CTRL-C to quit. (wait for it)")
while True:
 utime.sleep(10) # Sleep for 10 seconds
 read_sensor(sensor, led_pin) # Read sensor and display values

Once you have the code, you can copy it to your board in the similar manner we did
for the driver with the ftp utility as shown below.

$ ftp 192.168.4.1
Connected to 192.168.4.1.
220 Micropython FTP Server
Name (192.168.4.1:cbell): micro

Chapter 6 ■ Low-Level Hardware Support

232

Password:
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd flash
ftp> put wipy_RGB.py
local: wipy_RGB.py remote: wipy_RGB.py
227 (192,168,4,1,7,232)
100% |***********************************| 1202 4.51 MiB/s 00:00 ETA
1202 bytes sent in 00:00 (2.17 KiB/s)
ftp> quit

All that is left is running the example and testing it. Listing 6-7 shows how you can run
the example on the WiPy as well as a sample of the output. If you are running this example
on your WiPy, you can place whatever object you want in front of the sensor, and it will read
the color returning it as a tuple representing the RGB value plus clear values as shown.

Listing 6-7.  Output from using the Adafruit RGB Sensor (WiPy)

>>> import wipy_RGB
Reading Colors every 10 seconds. When LED is on, place object in front of sensor.
Press CTRL-C to quit. (wait for it)
Place object in front of sensor now...color detected: {
 Red: 057
 Green: 034
 Blue: 032
 Clear: 123
}
Place object in front of sensor now...color detected: {
 Red: 054
 Green: 069
 Blue: 064
 Clear: 195
}
Place object in front of sensor now...color detected: {
 Red: 012
 Green: 013
 Blue: 011
 Clear: 036
}
...

If you wanted another exercise, you could take these values from the sensor and map
them to an RGB LED. Yes, you can do that! Go ahead, try it. See https://github.com/
JanBednarik/micropython-ws2812 for inspiration. Tackle it after you’ve read the next
section on SPI.

■■ Tip  See https://learn.sparkfun.com/tutorials/i2c for an in-depth discussion of I2C.

https://github.com/JanBednarik/micropython-ws2812
https://github.com/JanBednarik/micropython-ws2812
https://learn.sparkfun.com/tutorials/i2c

Chapter 6 ■ Low-Level Hardware Support

233

Serial Peripheral Interface (SPI)
The Serial Peripheral Interface (SPI) is designed to allow sending and receiving data
between two devices using a dedicated line for each direction. That is, it uses two data
lines along with a clock and a slave select pin. Thus, it requires six connections for
bidirectional communication or only five for reading or writing only. Some SPI devices
may require a seventh pin called a reset line.

Let’s look at an example of how to use a SPI breakout board. In this example, we
want to use the Adafruit Thermocouple Amplifier MAX31855 breakout board (https://
www.adafruit.com/product/269) and a Thermocouple Type-K sensor (https://www.
adafruit.com/product/270) to read high temperatures. We will use this breakout board
with a Pyboard.

Don’t worry if you do not have or do not want to purchase the Adafruit
Thermocouple Amplifier MAX31855 breakout board (although it is not expensive).
This example is provided as a tutorial for working with SPI breakout boards. We will use
another I2C breakout board in one of the example projects later in the book. Figure 6-4
shows the Adafruit Thermocouple Amplifier and Type-H sensor from Adafruit.

Figure 6-4.  Adafruit Thermocouple Breakout Board and Type-K Sensor (courtesy of
adafruit.com)

https://www.adafruit.com/product/269
https://www.adafruit.com/product/269
https://www.adafruit.com/product/270
https://www.adafruit.com/product/270

Chapter 6 ■ Low-Level Hardware Support

234

The sensor can be used to measure high temperatures either through proximity or
touch. The sensor can read temperature in the range -200°C to +1350°C output in 0.25
degree increments. One possibly use of this sensor is to read the temperature of nozzles
on 3D printers or any similar high heat output. It should noted that the breakout board
comes unassembled so you will need to solder the header and terminal posts.

Now, let’s see how to wire the breakout board to our Pyboard. We will use only five
wires since we are only reading data from the sensor on the breakout board. This requires
a connection to power (ground (GND), the master input (MOSI), clock (CLK), and slave
select (SS). Figure 6-5 shows the connections.

Figure 6-5.  Wiring the Adafruit Thermocouple Module (Pyboard)

The correct pins to use on the Pyboard are shown in Table 6-2. You can find these
pins on the Pyboard pinout found at https://docs.micropython.org/en/latest/
pyboard/pyboard/quickref.html. Refer to Figure 6-5 for confirmation.

Table 6-2.  Connecting the Thermocouple Breakout Board (Pyboard)

Pyboard Location on Pyboard Breakout board

VIN upper rightmost pin 3V0

GND on right side, third pin down from the top GND

Y5 on left side of the board, fifth pin from top CS (slave select)

Y6 on left side of the board, sixth pin from top CLK

Y7 on left side of the board, seventh pin from top D0

https://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
https://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html

Chapter 6 ■ Low-Level Hardware Support

235

Now, let’s look at the code! In this example, we are not going to use a driver; rather,
we’re going to see how to read directly from the breakout board using SPI. To do so, we
first set up an object instance of the SPI interface then choose a pin to use for slave select
(also called chip or even code select). From there, all we need to do is read the data and
interpret it. We will read the sensor in a loop and write a function to convert the data.

This is the tricky part. This example shows you what driver authors must do to make
using the device easier. In this case, we must read the data from the breakout board and
interpret it. We could just read the raw data, but that would not make any sense since it is
in binary form. Thus, we can borrow some code from Adafruit that reads the raw data and
makes sense of it.

The function is named normalize_data() and it does some bit shifting and
arithmetic to transform the raw data to a value in Celsius. This information comes from
the datasheet for the breakout board but the nice folks at Adafruit made it easy for us.

Setting up the SPI class is easy. We initiate an SPI object using the class constructor
passing in the SPI option. This is unique to the Pyboard and can be values of 1 – use the
X position, or 2 – use the Y position. Notice in the connections above we use the Y-pins
so we will use a value of 2 for the first parameter. The other parameters tell the SPI class
to set up as a master, set the baudrate, polarity, and phase (which can be found on the
datasheet). Next, we need only select the pin for reading data and then set the pin high.
The following shows the code we need to activate the SPI interface.

spi = SPI(2, SPI.MASTER, baudrate=5000000, polarity=0, phase=0)
cs = machine.Pin("Y5", machine.Pin.OUT)
cs.high()

Now, let’s look at the completed code. Listing 6-8 shows the complete code to use the
Thermocouple Amplifier Breakout board from Adafruit.

Listing 6-8.  The Adafruit Thermocouple Module Example (Pyboard)

MicroPython for the IOT - Chapter 6
Simple example for working with the SPI interface
using the Adafruit Thermocouple Amplifier. See
https://www.adafruit.com/product/269.
#
Note: this only runs on the Pyboard
#
import machine
import ubinascii

First, make sure this is running on a Pyboard
try:
 import pyb
 from pyb import SPI
except ImportError:
 print("ERROR: not on a Pyboard!")
 sys.exit(-1)

Chapter 6 ■ Low-Level Hardware Support

236

Create a method to normalize the data into degrees Celsius
def normalize_data(data):
 temp = data[0] << 8 | data[1]
 if temp & 0x0001:
 return float('NaN')
 temp >>= 2
 if temp & 0x2000:
 temp -= 16384
 return (temp * 0.25)

Setup the SPI interfaceon the "Y" interface
spi = SPI(2, SPI.MASTER, baudrate=5000000, polarity=0, phase=0)
cs = machine.Pin("Y5", machine.Pin.OUT)
cs.high()

read from the chip
print("Reading temperature every second.")
print("Press CTRL-C to stop.")
while True:
 pyb.delay(1000)
 cs.low()
 print("Temperature is {0} Celsius.".format(normalize_data(spi.recv(4))))
 cs.high()

At this point, you can make the hardware connections and power on your Pyboard.
Then, you can copy the file to your Pyboard and execute it as shown below.

>>> import pyboard_SPI
Reading temperature every second.
Press CTRL-C to stop.
Temperature is 32.0 Celsius.
Temperature is 31.75 Celsius.
Temperature is 32.0 Celsius.
Temperature is 32.5 Celsius.
Temperature is 33.5 Celsius.
Temperature is 34.0 Celsius.
Temperature is 34.25 Celsius.
Temperature is 34.5 Celsius.
Temperature is 34.5 Celsius.
...

Once you run the example, you should see it produce values in degrees Celsius. If
you see 0.00, you likely do not have the SPI interface connected properly. Check your
wiring against the figure above. If you see values but they go down when you expose the
thermocouple tip to heat, you need to reverse the wires. Be sure to power off the board
first to avoid damaging the sensor, breakout board, or your Pyboard!

Chapter 6 ■ Low-Level Hardware Support

237

If you would like to run this example with the WiPy, you can! Simply alter the code to
use the WiPy SPI class and its initialization sequence as shown at https://docs.pycom.
io/chapter/firmwareapi/pycom/machine/SPI.html. You will also have to change the
includes a bit, but this is good practice for the example project chapters.

■■ Tip  See https://learn.sparkfun.com/tutorials/serial-peripheral-interface-
spi for an in-depth discussion of SPI.

Summary
Accessing the low-level hardware through the firmware is where the true elegance and
in some cases complexity of using MicroPython begins. Given that the available boards
differ, it should be no surprise that the low-level support in the firmware also differs.
Thus, when planning MicroPython IOT projects, we must consider what we want to do
and whether our board (and firmware) supports it. We also need to know what breakout
boards and devices we want to connect to and if there are drivers or other libraries we
can use to access them. In this case, most breakout boards with I2C or SPI interfaces will
require some form of driver.

In this chapter, we explored some of the low-level support in the firmware and
specialized support for the Pyboard and WiPy. As we discovered, this is where the code
becomes very specialized. As we saw, it sometimes is a matter of choosing a different
library to import, but sometimes the classes, functions, and even how to use the functions
differs from one board to another.

We also saw a lot of code in this chapter – more than any previous chapter. The
examples in this chapter are meant to be examples for you to see how things are
done rather than projects to implement on your own (although you’re welcome and
encouraged to do so). We will see more hands-on projects with a greater level of detail in
later chapters.

In the next chapter, we take a short detour in the form of a short tutorial on
electronics. If you’ve never worked with electronics before, the next chapter will give you
the information you need to complete the projects in this book and prepare you for an
exciting new hobby – building MicroPython IOT projects!

https://docs.pycom.io/chapter/firmwareapi/pycom/machine/SPI.html
https://docs.pycom.io/chapter/firmwareapi/pycom/machine/SPI.html
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

239© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_7

CHAPTER 7

Electronics for Beginners

If you are new to working with hardware and have little or no experience with electronics,
you may be curious as to how you can complete the projects in this book. Fortunately,
the projects in this book walk you through how to connect the various electronic parts
together with your MicroPython board. That is, you can complete the projects without
additional skill or experience.

However, if you want to know what the components do, you will need a bit more
information than “plug this end in here.” This is especially so if something goes wrong.
Furthermore, if you want to create projects on your own, you need to know enough
about how the components work to successfully complete your project – whether that is
completing the examples in this book or examples found elsewhere on the Internet.

Fortunately, you don’t need formal training or even a college degree in theory
to learn how to work with electronics. You can learn quite a lot about working with
electronics at the hobbyist level without devoting months or years of research.1 To ensure
success even at a basic level, you will need to know more than simply how to plug the
components together.

Rather than attempt to present a comprehensive tutorial on electronics, which would
take several volumes, this chapter presents an overview of electronics for those who
want to work with the types of electronic components commonly found in IOT projects.
I include an overview of some of the basics, descriptions of common components, and a
look at sensors. If you are new to electronics, this chapter will give you the extra boost you
need to understand the components used in the projects in this book.

If you have experience with electronics either at the hobbyist or enthusiast level or
have experience or formal training in electronics, you may want to skim this chapter or
read the sections with topics on which you may want a refresher.

Let’s begin with a look at the basics of electronics. Once again, this is in no way a
tutorial that covers all there is to know, but it will get you to the point where the projects
make sense in how they connect and use components.

1However, there is no substitute for formal training! If you want to explore electronics beyond the
tutorial in this chapter, you may want to consider formal training or even a self-paced course as
described in the sidebar, “I Want to Learn More!”

https://doi.org/10.1007/978-1-4842-3123-4_7

Chapter 7 ■ Electronics for Beginners

240

The Basics
This section presents a short overview of some of the most common tools and techniques
you will need to use when working with electronics. As you will see, you only need the
most basic of tools and the skills or techniques are not difficult to learn. However, before
we get into those, let’s look at some of the tools you will need to work on your IOT projects.

Tools
The clear majority of tools you will need to construct your IOT projects are common
hand tools (screwdrivers, small wrenches, pliers, etc.). For larger projects or for creating
enclosures you may need additional tools such as power tools, but I will concentrate only
on those tools for building the projects. The following is a list of tools I recommend to get
you started.

•	 Breadboard

•	 Breadboard wires (also called jumpers)

•	 Electrostatic discharge (ESD) safe tweezers

•	 Helping hands or printed circuit board (PCB) holder

•	 Multimeter

•	 Needle-nose pliers

•	 Screwdrivers – assorted sizes (micro, small)

•	 Solder

•	 Soldering iron

•	 Solder remover (solder sucker)

•	 Tool case, roll, or box for storage

•	 Wire strippers

However, you cannot go wrong if you prefer to buy a complete electronics toolset
such as those from Sparkfun (sparkfun.com/categories/47) or Adafruit (adafruit.com/
categories/83). You can often find electronics kits at major brand electronics stores and
home improvement centers. If you are fortunate enough to live near a Fry’s Electronics,
you can find just about any electronics tool made. Most electronics kits will have all the
hand tools you will need. Some even come with a multimeter but more often you must
buy them separately.

Most of the tools in the list do not need any explanation except to say you should
purchase the best tools that your budget permits. The following paragraphs describe
some of the tools that are used for special tasks such as stripping wires, soldering, and
measuring voltage and current.

Chapter 7 ■ Electronics for Beginners

241

Multimeter
A multimeter is one of those tools that you will need when building IOT solutions.
You will also need it to do almost any electrical repair on your circuits. There are many
different multimeters available with prices ranging from inexpensive, basic units; to
complex, feature-rich, incredibly expensive units. For most IOT projects, including most
IOT kits, a basic unit is all you will need. However, if you plan to build more than one IOT
solution or want to assemble your own electronics, you may want to invest a bit more in a
more sophisticated multimeter. Figure 7-1 shows a basic digital multimeter (costing about
$10) on the left and a professional multimeter from BK Precision on the right.

Figure 7-1.  Digital multimeters

Notice the better meter has more granular settings and more features. Again, you
probably won’t need more than the basic unit. You will need to measure voltage, current,
and resistance at a minimum. Whichever meter you buy, make sure it has modes for
measuring AC and DC voltage, continuity testing (with an audible alert), and checking
resistance. I will explain how to use a multimeter in a later section.

■■ Tip  Most multimeters including the inexpensive ones come with a small instruction
booklet that shows you how to measure voltage, resistance, and other functions of the unit.

Chapter 7 ■ Electronics for Beginners

242

Soldering Iron
A soldering iron is not required for any of the projects in this book because we will use
a breadboard to lay out and connect the components. However, if you plan to build
a simple IOT solution where you will need to solder wires together, or maybe a few
connectors, a basic soldering iron from an electronics store such as Radio Shack is all you
will need. On the other hand, if you plan to assemble your own electronics, you may want
to consider getting a good, professional soldering iron such as a Hakko. The professional
models include features that allow you to set the temperature of the wand, have a wider
array of tips available, and tend to last a lot longer. Figure 7-2 shows a well-used entry-
level one from Radio Shack. Figure 7-3 shows a professional model Hakko soldering iron.

Figure 7-2.  Entry-level soldering iron

Chapter 7 ■ Electronics for Beginners

243

■■ Tip  For best results, choose a solder with a low lead content in the 37%–40% range.
If you use a professional soldering iron, adjust the temperature to match the melting point of
the solder (listed on the label).

DO I NEED TO LEARN TO SOLDER?

If you do not know how to solder or it has been a while since you’ve used a
soldering iron, you may want to check out the book Learn to Solder by Brian Jepson,
Tyler Moskowite, and Gregory Hayes (O’Reilly Media, 2012) or Google how-to videos
on soldering. Or you could buy the Getting Started Soldering Kit from Maker Shed
(makershed.com/products/make-getting-started-kit-soldering), which
comes with a soldering iron, wire cutters, supplies, and more – everything you need
to learn how to solder.

Figure 7-3.  Professional soldering iron

Chapter 7 ■ Electronics for Beginners

244

Wire Strippers
There are several types of wire strippers. In fact, there are probably a dozen or more
designs out there. But there are two kinds: ones that only grip and cut the insulation
as you pull it off the wire; and those that grip, cut, and remove the insulation. The first
type is more common and, with some practice, does just fine for most small jobs (like
repairing a broken wire); but the second type makes a larger job — such as wiring
electronics from bare wire (no prefab connectors) — much faster. As you can imagine,
the first type is considerably cheaper. Figure 7-4 shows both types of wire strippers.
Either is a good choice.

Figure 7-4.  Wire strippers

Helping Hands
There is one other tool that you may want to get, especially if you need to do any
soldering: it’s called helping hands or third hand tool. Most have a pair of alligator clips to
hold wires, printed circuit boards, or components while you solder. Figure 7-5 shows an
example of a simple helping hands tool.

Chapter 7 ■ Electronics for Beginners

245

Now let’s look at some of the skills you are likely to need when working with
advanced IOT projects.

ESD IS THE ENEMY

You should take care to make sure your body, your workspace, and your project is
grounded to avoid electrostatic discharge (ESD). ESD can damage your electronics
– permanently. The best way to avoid this is to use a grounding strap that loops
around your wrist and attaches to an anti-static mat like these at uline.com/
BL_7403/Anti-Static-Table-Mats.

Let’s look at how to use the one tool you will likely use more than any other when
learning electronics - the multimeter.

Figure 7-5.  Helping hands tool

Chapter 7 ■ Electronics for Beginners

246

Using a Multimeter
The electrical skills needed for IOT projects can vary from plugging in wires on a
breadboard — as we saw with the projects so far — to needing to solder components
together or to printed circuit boards (PCBs). Regardless of whether you need to solder the
electronics, you will need to be able to use a basic multimeter to measure resistance and
check voltage and current.

A multimeter is a very useful and essential tool for any electronics hobbyist and
downright required for any enthusiast of worth. A typical multimeter has a digital display2
(typically an LCD or similar numeric display), a dial, and two or more posts or ports for
plugging in test leads with probe ends. Most multimeters have ports for lower current
(that you will use most) and ports for larger current. Test leads use red for positive and
black for negative (ground). The ground port is where you plug in the black test lead and
is often marked with a dash or COM for common. Which of the other ports you use will
depend on what you are testing.

One thing to note on the dial is that there are many settings (with some values
repeated) or those that look similar. For example, you will see a set of values (sometimes
called a scale) for ohms, one or two set of values for amperage, and one or two set of
values for volts. The set of values for voltages that has a V with a solid and dashed line is
for DC whereas the range that has a V with a wavy line is for AC. Amperage ranges are
marked in the same manner. Figure 7-6 shows a close-up of a multimeter dial labeled
with the sets of values I’ve mentioned.

Figure 7-6.  Multimeter Dial (typical)

2Older multimeters have an analog gauge. You can still find them if you want a bit of old school feel.

Chapter 7 ■ Electronics for Beginners

247

■■ Tip  When not in use, be sure to turn your multimeter dial to off or one of the voltage
ranges if it has a separate off button.

There is a lot you can do with a multimeter. You can check voltage, measure
resistance, and even check continuity. Most basic multimeters will do these functions.
However, some multimeters have a great many more features such as testing capacitors
and the ability to test AC as well as DC.

Let’s see how we can use a multimeter to perform the most common tasks we will
need for IOT projects: testing continuity, measuring voltage in a DC circuit, measuring
resistance, and measuring current.

Testing Continuity
We test for continuity to determine if there is a path for the charged particles to flow: that
is, our wires and components are connected properly. For example, you may want to
check to ensure a wire has been spliced correctly.

To test for continuity, turn your multimeter dial to the position marked with an
audible symbol, bell, or triangle with an arrow through it. Plug the black test lead into
the COM port and the red test lead in the port marked with Hz VΩ or similar. Now you
can touch the probe end of the test leads together to hear an audible tone or beep. Some
multimeters don’t have an audible tone but instead may display “1” or the like to indicate
continuity. Check your manual for how your multimeter indicates continuity. Figure 7-7
shows how to set a multimeter to check for continuity including which ports to plug in the
test leads.

Chapter 7 ■ Electronics for Beginners

248

Notice in the photo I simply touched the probes together to demonstrate how to
check for continuity. I like to do this just to ensure my multimeter is turned on and on the
correct setting.3

Another excellent use for the continuity test is when diagnosing or discovering
how cables are wired. For example, you can use the continuity test to discover which
connector is connected on each end of the cable (sometimes called wire sorting or
ringing out from the old telephone days).

Figure 7-7.  Settings for checking continuity

3Yes, a bit of OCD there. Check, double-check, check again.

Chapter 7 ■ Electronics for Beginners

249

Measuring Voltage
Our IOT projects use DC. To measure voltage in the circuit, we will use the DC range on
the multimeter. Notice the DC range has several stops. This is a scale selection. Choose
the scale that closely matches the voltage range you want to test. For example, for our IOT
projects we will often measure 3.3-12V so we choose 20 on the dial. Next, plug the black test
lead into the COM port and the red test lead into the port labeled Hz VΩ.

Now we need something to measure! Take any battery you have in the house and
touch the black probe to the negative side and the red probe to the positive side. You
should see a value appear on the display that is close to the range for the battery. For
example, if we used a 1.5V battery, we should see close to 1.5V. It may not be exactly
1.5-1.6V if the battery is depleted. So now you know how to test batteries for freshness!
Figure 7-8 shows how to measure voltage of a battery.

Figure 7-8.  Measuring voltage of a battery

Chapter 7 ■ Electronics for Beginners

250

Notice the readout displays 1.50, which is the correct voltage for this AA battery.
If I had reversed the probes – the red one on negative and the black on positive, the
display would have read -1.50. This is Ok because it shows the current is flowing in the
opposite direction of how the probes are oriented.

■■ Note I f you use the wrong probe when measuring voltage in a DC circuit, most
multimeters will display the voltage as a negative number. Try that with your battery. It won’t
hurt the multimeter (or the battery)!

We can use this technique to measure voltage in our projects. Just be careful to place
the probes on the appropriate positions and try not to cross or short by touching more
than one component at a time with a single probe tip.

Measuring Current
Current is measured as amperage (milliamps - mA). Thus, we will use the range marked
with an A with a straight and dashed line (not the wavy one - that’s AC). We measure
current in series. That is, we must place the multimeter in the circuit. This can be a little
tricky because we must interrupt the flow of current and put the meter inline.

If you are familiar with how to use a breadboard, you can follow along with
this experiment. However, if you haven’t used a breadboard, you may want to read
through this experiment, then return to it once you finish reading this chapter. For this
experiment, we will use a breadboard power supply, an LED, and a resistor. We will wire
the circuit such that we will use the multimeter to complete the circuit. Figure 7-9 shows
how to set up the circuit with the multimeter inline.

Figure 7-9.  Measuring current

Chapter 7 ■ Electronics for Beginners

251

Before powering on your breadboard power supply, plug the black test lead into the
COM port and the other test leads into the port labeled mA. Some multimeters use the
same port for measuring voltage as well as current. Turn the dial on the multimeter to the
200mA setting. Then power on the breadboard power supply and touch the leads to the
places indicated. Be careful to touch only the VCC pin on the breadboard power supply.
Once the circuit is powered on, you should see a value on the multimeter. Figure 7-10
shows how to use a multimeter to measure current in a circuit

Figure 7-10.  Measuring current

Chapter 7 ■ Electronics for Beginners

252

There is one other tricky thing about measuring current. If you attempt to measure
current that is greater than the maximum for the port (for example, the meter in the
photo has a maximum of 20mA on the one port). If I exceeded that by, say 5A, I would
likely blow a fuse in the multimeter. This is not desirable but at least there is a fuse that we
can replace should we make a mistake and choose the wrong port.

Measuring Resistance
Resistance is measured in ohms (Ω). The most common component we will use to
introduce resistance in a circuit is a resistor. We can test the resistance of the charge
through the resistor with our multimeter. To test resistance, choose the ohm scale that is
closest to the rating of the resistor. For example, I am going to test a resistor that I believe
is about 200 ohms but since I am not sure, I will choose the 2k setting.

Next, plug the black test lead into the COM port and the red test lead into the port
labeled HzVΩ. Now, touch one probe to one side of a resistor and the other probe to the
other side. It doesn’t matter which side you choose – a resistor works in both directions.
Notice the readout. The meter will read one of three things: 0.00, 1, or the actual resistor
value.

In this case, the meter reads 0.219, meaning this resistor has a value of 220Ω. Recall,
I used the 2k scale, which means a resistor of 1k would read 1.0. Since the value is a
decimal, I can move the decimal point to the left to get a whole number.

If the multimeter displays another value such as 0 or 1, it indicates the scale is wrong
and you should try a higher scale. This isn’t a problem. It just means you need to choose
a larger scale. On the other hand, if the display shows 0 or a small number, you need
to choose a lower scale. I like to go one tick of the knob either way when I am testing
resistance in an unknown component or circuit.

Figure 7-11 shows an example of measuring resistance for a resistor. Notice the
display reads 219. I am testing a resistor rated at 220 ohms. The reason it is 219 instead of
220 is because the resistor I am using is rated at 220 +/- 5%. Thus, the acceptable range for
this resistor is 209-231 ohms.

Chapter 7 ■ Electronics for Beginners

253

Now we know how to test a resistor to discover its rating. As we will see, those rings
around the body of the resistor are the primary way we know its rating but we can always
test it if we’re unsure, someone has painted over it (hey, it happens), or we’re too lazy to
look it up.

Now, let’s discuss the most fundamental concept you must understand when
working with electronics – powering your project!

Figure 7-11.  Measuring resistance of a resistor

Chapter 7 ■ Electronics for Beginners

254

4https://learn.sparkfun.com/tutorials/what-is-electricity

Powering Your Electronics
Electricity4 is briefly defined as the flow of electric charge and when used provides power
for our electronics – from a common light bulb or ceiling fan to our high definition
television or our new tablet. Whether you are powering your electronics with batteries or
a power supply, you are initiating a circuit where electrons flow in specific patterns. There
are two forms (or kinds) of power you will be using. Your home is powered by alternating
current and your electronics are powered by direct current.

The term alternating current (AC) is used to describe the flow of charged particles
that changes direction periodically at a specific rate (or cycle) reversing the voltage along
with the current. Thus, AC systems are designed to work with a specific range of cycles as
well as voltage. Typically, AC systems use higher voltages than direct current systems.

The term direct current (DC) is used to describe the flow of charged particles that
do not change direction and thus always flow in a specific “direction.” Most electronics
systems are powered with DC voltages and are typically at lower voltages than AC
systems. For example, IOT projects typically run on lower direct current (DC) voltages in
the range 3.3-24V.

■■ Tip  For more information about AC and DC current and the differences, see https://
learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc.

Since DC flows in a single direction, components that operate on DC have a positive
and negative “side” where current flows from positive to negative. The orientation of
these sides – one to positive and one to negative is called polarity. Some components
such as resistors can operate in either “direction” but you should always be sure to
connect your components per its polarity. Most components are clearly marked but those
that are not have a well-known arrangement. For example, the positive pole (side) of
an LED is the longer of the two legs (called anode whereas the negative or shorter leg is
called the cathode).

Despite the lower voltages, we mustn’t think that they are completely harmless
or safe. Incorrectly wiring electronics (reversing polarity) or shorting (connecting
positive and negative together) can damage your electronics and in some cases cause
overheating, which, in extreme cases, causes electronics to catch fire.

■■ Caution  Don’t be tempted to think working with 3.3 or 5.5 volts is “safe.” Even a small
amount of voltage improperly connected can lead to potentially devastating results. Don’t
assume low DC voltage is harmless.

https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc
https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc

Chapter 7 ■ Electronics for Beginners

255

I had a lesson in just how real this scenario can be a couple of years ago. I was
changing the batteries in our smoke detectors. I took the old batteries out and placed
them in my pocket. I had forgotten I had a small penknife in the same pocket. One of
the batteries shorted on the knife and within about ten minutes, the battery heated to
an alarming temperature. It wasn’t enough to burn but had I left something like that
unattended, it could have been bad.

That’s a scary thought, isn’t it? Consider it an admonishment as well as a warning;
we should never relax our safe handling practices even for lower voltage projects.

Finally, DC components are often rated for a specific voltage range. Recall from our
discussion on the various low-cost computing boards and GPIO headers, some boards
operate at 5V whereas others operate at 3.3V (or less). Fortunately, there are several ways
we can adapt components that work at different voltages – by using other components!

■■ Note  I have deliberately kept the discussion on power simple. There is far more to
electrical current – even DC – than what I’ve described here. Once you understand these
basics, you’ll be able to work with the projects in this book and more.

Electronic Components
Aside from learning how to use a multimeter and possibly learning to solder, you also
need to know something about the electronic components available to build your
projects. In this section, I provide a short list and description of some of the common
components in alphabetical order by name that you will encounter when building IOT
solutions. I also cover breakout boards and logic circuits, which are small circuits built
with a set of components that provide a feature or solve a problem. For example, you can
get breakout boards for USB host connections, Ethernet modules, logic shifters, real-time
clocks, and more.

Button
A button (sometimes called a momentary button) is a mechanism that makes a
connection when pressed. More specifically, a button connects two or more poles
together while it is pressed. A common (and perhaps overused) example of a button is a
home doorbell. When pressed, it completes a circuit that triggers a chime, bell, tone, or
music to play. Some older doorbells continue to sound while the button is pressed.

In IOT projects, we will use buttons to trigger events, start and stop actions, and
similar operations. A button is a simple form of a switch but unlike a switch, you must
continue to press the button to make the electrical connections. Most buttons have at
least two legs (or pins) that are connected when the button is pressed. Some have more
than two legs connected in pairs and some of those can permit multiple connections.
Figure 7-12 shows several buttons.

Chapter 7 ■ Electronics for Beginners

256

There is a special variant of a momentary button called a latching momentary
button. This version uses a notch or detent to keep the poles connected until it is pushed
again. If you’ve seen a button on a stereo or in your car that remains depressed until
pressed again, it is likely a latching momentary button.

There are all kinds of buttons from those that can be used with breadboards
(the spacing of the pins allow it to be plugged into a breadboard), can be mounted to a
panel, or those made for soldering to printed circuit boards.

Capacitor
A capacitor is designed to store charges. As current flows through the capacitor,
it accumulates charge and can discharge after the current is disconnected. In this way,
it is like a battery but unlike a battery, a capacitor charges and discharges very fast. We
use capacitors for all manner of current storage from blocking current, reducing noise in
power supplies, in audio circuits, and more. Figure 7-13 shows several capacitors.

Figure 7-13.  Capacitors

Figure 7-12.  Momentary buttons

Chapter 7 ■ Electronics for Beginners

257

There are several types of capacitors but we will most often encounter capacitors
when building power supplies for IOT projects. Most capacitors have two legs (pins)
that are polarized. That is, one is positive and the other negative. Be sure to connect the
capacitor with the correct polarity in your circuit.

Diode
A diode is designed to allow current to flow in only one direction. Most are marked with
an arrow pointing to a line, which indicates the direction of flow. A diode is often used
as rectifiers in AC-to-DC converters (devices that convert AC to DC voltage), used in
conjunction with other components to suppress voltage spikes, or protect components
from reversed voltage. They are often used to protect against current flowing into a
device.

Most diodes are shaped like a small cylinder, and they are usually black with silver
writing and have two legs. They look a little like resistors. We use a special variant called a
Zener diode in power supplies to help regulate voltages. Figure 7-14 shows several Zener
diodes.

Figure 7-14.  Diodes

Fuse
A fuse is designed to protect a device (the entire circuit) from current greater than what
the components can safely operate. Fuses are placed inline on the positive pole. When
too much current flows through the fuse, the internal parts trigger a break in the flow of
current.

Some fuses use a special wire inside that melts or breaks (thereby rendering it
useless but protecting your equipment) while other fuses use a mechanism that operates
like a switch (many of these are resettable). When this happens, we say the fuse has
“blown” or “tripped.” Fuses are rated at a certain current in amperage indicating the
maximum amps that the fuse will permit to flow without tripping.

Fuses come in many shapes and varieties and can work with AC or DC voltage.
Those we will use are of the disposable variety. Figure 7-15 shows an example of two
fuses: an automotive-style blade fuse on the left and a glass cartridge fuse on the right.

Chapter 7 ■ Electronics for Beginners

258

If you are familiar with the electrical panel in your home that house the circuit
breakers, they are resettable fuses. So, the next time one of them goes “click” and the
lights go out, you can say, “Hey, a fuse has tripped!” Better still, now you know why - you
have exceeded the maximum rating of the circuit breaker.

This is probably fine in situations where you accidentally left that infrared heater
on when you dropped the toast and started the microwave (it happens), but if you are
tripping breakers frequently without any load, you should call an electrician to have the
circuit checked.

Light Emitting Diode (LED)
As we learned in Chapter 3, an LED has two legs where the longer leg is positive and the
shorter negative. LEDs also have a flat edge that indicates the negative leg. They come in a
variety of sizes ranging from as small as 3mm to 10mm. Figure 7-16 shows an example of
some smaller LEDs.

Figure 7-15.  Fuses

Figure 7-16.  Light emitting diodes

http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 7 ■ Electronics for Beginners

259

5A variant of Ohm’s law (https://en.wikipedia.org/wiki/Ohm's_law).

Recall we also needed to use a resistor with an LED. We need this to help reduce the
flow of the circuit to lower the current flowing through the LED. LEDs can be used with
lower current (they will burn a bit dimmer than normal) but should not be used with a
higher current.

To determine what size resistor we need, we need to know several things about the
LED. This data is available from the manufacturer who provides the data in the form of a
datasheet or in the case of commercially packaged products, lists the data on the package.
The data we need includes the maximum voltage, the supply voltage (how many volts are
coming to the LED), and the current rating of the LED.

For example, if I have an LED like the one we used in the last chapter, in this case a
5mm red LED, we find on Adafruit’s website (adafruit.com/products/297) that the LED
operates at 1.8-2.2V and 20mA of current. Let’s say we want to use this with a 5V supply
voltage. We can then take these values and plug them into this formula5:

R = (Vcc-Vf)/I

Using more descriptive names for the variable, we get the following.

Resistor = (Volts_supply - Volts_forward) / Desired_current

Plugging our data in, we get this result. Note that we have mA so we must use the
correct decimal value (divide by 1000). In this case, it is 0.020 and we will pick a voltage in
the middle.

Resistor = (5 - 2.0) / 0.020
 = 3.0 / 0.020
 = 150

Thus, we need a resistor of 150 ohms. Cool. Sometimes the formula will produce
a value that does not match any existing resistors. In that case, choose one closest to
the value but a bit larger. Remember, we want to limit and thus err on the side of more
restrictive than less restrictive. For example, if you found you need a resistor of 95 ohms,
you can use one rated at 100 ohms, which is safer than using one rated at 90 ohms.

■■ Tip A lways err on the side of the more restrictive resistor when the formula produces a
value for which there is no resistor available.

Also, if you use LEDs in serial or parallel, the formula is a little different. See
https://learn.adafruit.com/all-about-leds for more information about using LEDs
in your projects and calculating the size of resistors to use with LEDs.

https://en.wikipedia.org/wiki/Ohm's_law
https://learn.adafruit.com/all-about-leds

Chapter 7 ■ Electronics for Beginners

260

Relay
A relay is an interesting component that helps us control higher voltages with lower
voltage circuits. For example, suppose you wanted to control a device that is powered by
12V from your MicroPython board, which only produces a maximum of 3V. A relay can be
used with a 3V circuit to turn on (or relay) power from that higher source. In this example,
we would use the MicroPython board output to trigger the relay to switch on the 12V
power. Thus, relays are a form of switch. Figure 7-17 shows a typical relay and how the
pins are arranged.

Figure 7-17.  Relay

Relays can take a lot of different forms and typically have slightly different wiring
options such as where the supply voltage is attached and where the trigger voltage
attaches as well as whether the initial state is open (no flow) or close (flow) and thus the
behavior of how it controls voltage. Some relays come mounted on a PCB with clearly
marked terminals for changing its switching feature and where everything plugs in.
If you want to use relays in your projects, always check the datasheet to make sure you are
wiring it correctly based on its configuration.

You can also use relays to allow your DC circuit to turn AC appliances on and off like
those from Adafruit (https://www.adafruit.com/product/2935).

Resistor
A resistor is one of the standard building blocks of electronics. Its job is to impede
current and impose a reduction in voltage (which is converted to heat). Its effect, known
as resistance, is measured in ohms. A resistor can be used to reduce voltage to other
components, limiting frequency response, or protect sensitive components from over
voltage. Figure 7-18 shows several resistors.

https://www.adafruit.com/product/2935

Chapter 7 ■ Electronics for Beginners

261

Figure 7-18.  Resistors

When a resistor is used to pull up voltage (by attaching one end to positive voltage)
or pull down voltage (by attaching one end to ground) (resistors are bidirectional), it
eliminates the possibility of the voltage floating in an indeterminate state. Thus, a pull-up
resistor ensures that the stable state is positive voltage, and a pull-down resistor ensures
that the stable state is zero voltage (ground).

Switch
A switch is designed to control the flow of current between two or more pins. Switches
come in all manner of shapes, sizes, and packaging. Some are designed as a simple on/off
while others can be used to change current from one set of pins to another. Like buttons,
switches come in a variety of mounting options from PCB (also called through hole) to
panel mount for mounting in enclosures. Figure 7-19 shows a variety of switches.

Figure 7-19.  Various switches

Chapter 7 ■ Electronics for Beginners

262

Switches that have only one pole (leg or side) are called single-pole switches.
Switches that can divert current from one set of poles to another set are called two-pole
switches. Switches where there is only one secondary connection per pole are called
single-throw switches. Switches that disconnect from one set of poles and connect to
another while maintaining a common input are called double-throw switches. These are
often combined and form the switch type (or kind) as follows.

•	 SPST: single pole, single throw

•	 DPST: double pole, single throw

•	 SPDT: single pole, double throw

•	 DPDT: double pole, double throw

•	 3PDT: three pole, double throw

There may be other variants that you could encounter. I like to keep it straight like
this; if I have just and on/off situation, I want a single throw switch. How many poles
depends on how many wires or circuits I want to turn on or off at the same time. For
double-throw switches, I use these when I have an “A” condition and "B” condition that I
want A on when B is off and vice versa. I sometimes use multiple throw switches when I
want an “A,” “B,” and off situations where I use the center position (throw) as off. You can
be very creative with switches!

Transistor
A transistor (a bipolar transistor) is designed to switch current on/off in a cycle or amplify
fluctuations in current. Interestingly, transistors used to amplify current replaced vacuum
tubes. If you are an audiophile, you likely know a great deal about vacuum tubes. When
a resistor operates in switching mode, it behaves like a relay but its “off” position still
allows a small amount of current to flow. Transistors are used in audio equipment, signal
processing, and switching power supplies. Figure 7-20 shows two varieties of transistors.

Figure 7-20.  Transistors

Transistors come in all manner of varieties, packaging, and ratings that make it
suitable for one solution or another.

Chapter 7 ■ Electronics for Beginners

263

Figure 7-21.  Voltage regulators

Voltage Regulator
A voltage regulator (linear voltage regulator) is designed to keep the flow of current
constant. Voltage regulators often appear in electronics when we need to condition or
lower current from a source. For example, we want to supply 5V to a circuit but only have
a 9V power supply. Voltage regulators accomplish this (roughly) by taking current in and
dissipating the excess current through a heat sink. Thus, voltage regulators have three
legs: positive current in, negative, and positive current out. They are typically shaped like
those shown in Figure 7-21 but other varieties exist.

The small hole in the plate that extends out of the voltage regulator is where the
heat sink is mounted. Voltage regulators are often numbered to match their rating. For
example, a LM7805 produces 5V whereas a LM7833 produces 3.3V.

An example of using a voltage regulator to supply power to a 3.3V circuit on a
breadboard is shown in Figure 7-22. This circuit was designed with capacitors to help
smooth or condition the power. Notice the capacitors are rated with uF, which means
microfarad.

Chapter 7 ■ Electronics for Beginners

264

Figure 7-22.  Power supply circuit on a breadboard with voltage regulator

Breakout Boards and Circuits
Breakout boards are our modular building blocks for IOT solutions. They typically
combine several components together to form a function such as measuring temperature,
enabling reading GPS data, communicating via cellular services, and more. Figure 7-23
shows two breakout boards. On the left is an Adafruit analog to digital converter (adafruit.
com/products/1083), and on the right is an Adafruit Barometric Pressure Sensor breakout
board (https://www.adafruit.com/product/1603).

Figure 7-23.  Breakout boards

https://www.adafruit.com/product/1603

Chapter 7 ■ Electronics for Beginners

265

Whenever you design a circuit or IOT solution, you should consider using breakout
boards as much as possible because they simplify the use of the components. Take the
Barometric Pressure Sensor, for example. Adafruit has designed this board so that all we
need to do to use it is attach power and connect it to our IOT Device on its I2C bus. An
I2C bus is a fast digital protocol that uses two wires (plus power and ground) to read data
from circuits (or devices).

Thus, there is no need to worry about how to connect the sensor to other
components to use it - just connect it up like any I2C device and start reading data! We
will use several breakout boards in the projects later in this book.

Using a Breadboard to Build Circuits
If you have been following along with the projects thus far in the book, you have already
encountered a breadboard to make a very simple circuit. Recall from Chapter 3 that a
breadboard is a tool we use to plug components into to form circuits. Technically, we’re
using a solderless breadboard. A solder breadboard has the same layout only it has only
through-hole solder points on a PCB.

WHY ARE THEY CALLED BREADBOARDS?

In the grand old days of microelectronics and discrete components became widely
available for experimentation, when we wanted to prototype a circuit, some would
use a piece of wood with nails driven into it (sometimes in a grid pattern) where
connections were made (called “runs”) by wrapping wire around the nails. Some
used a breadboard from the kitchen to build their wire wrap prototypes. The name
has stuck ever since.

A breadboard allows us to create prototypes for our circuits or simply temporary
circuits without having to spend the time (and cost) to make the printed circuit board.
Prototyping is the process of experimenting with a circuit by building and testing your
ideas. In fact, once we’ve got our circuit to work correctly, we can use the breadboard
layout to help us design a PCB. Figure 7-24 shows several breadboards.

http://dx.doi.org/10.1007/978-1-4842-3123-4_3

Chapter 7 ■ Electronics for Beginners

266

Recall that most breadboards (there are several varieties) have a center groove
(called a ravine) or a printed line down the center of the board. This signifies the terminal
strips that run perpendicular to the channel are not connected. That is, the terminal
strip on one side is not connected to the other side. This allows us to plug integrated
circuits (IC) or chips that are packaged as two rows of pins. Thus, we can plug the IC into
the breadboard with one set of pins on each side of the breadboard. We see this in the
example below.

Most breadboards also have one or more sets of power rails that are connected
together parallel to the ravine. If there are two sets, the sets are not connected together.
The power rails may have a colored reference line but this is only for reference; you can
make either one positive with the other negative. Finally, some breadboards number the
terminal strip rows. These are for reference only and have no other meaning. However,
they can be handy for making notes in your engineering notebook. Figure 7-25 shows the
nomenclature of a breadboard and how the terminal strips and power rails are connected
together.

Figure 7-24.  Assorted breadboards

Chapter 7 ■ Electronics for Beginners

267

Figure 7-25.  Breadboard layout

■■ Note  The sets of power rails are not connected together. If you want to have power on
both sides of the breadboard, you must use jumpers to connect them.

FRITZING: A BREADBOARDING SOFTWARE APPLICATION

The drawings of breadboards in this book were made with a program named Fritzing
(http://fritzing.org/home/). This open source application allows you to create
a digital representation of a circuit on a breadboard. It is quite handy to use. If you
find yourself wanting to design a prototype circuit, using Fritzing can help save you
a lot of trial and error. As a bonus, Fritzing allows you to see the same circuit in an
electronic schematic or PCB layout view. I recommend downloading and trying this
application out.

It is sometimes desirable to test a circuit out separately from code. For example,
if we want to make sure all our devices are connected together properly, we can use
a breadboard power supply to power the circuit. This way, if something goes horribly
wrong, we don’t risk damaging our IOT device. Most breadboard power supplies are built
on a small PCB with a barrel jack for a wall wart power supply, two sets of pins to plug into
the power rails on the breadboard, an off switch (very handy), and some can generate
different voltages. Figure 7-26 shows one of my favorite breadboard power supplies from
Sparkfun (sparkfun.com/products/13157).

http://fritzing.org/home/

Chapter 7 ■ Electronics for Beginners

268

Should our circuits require more room than what is available on a single breadboard,
you can use multiple breadboards by simply jumping the power rails and continuing the
circuit. To facilitate this, some breadboards can be connected using small nubs and slots
on the side. Finally, most breadboards also come with an adhesive backing that you can
use to mount on a plate or inside an enclosure or similar workspace. If you decide to use
the adhesive backing, be forewarned that they cannot be unstuck easily - they stay put
quite nicely.

Now that we know more about how breadboards work, let’s discuss the component
our IOT solutions we will employ to collect data: sensors.

What Are Sensors?
A sensor is a device that measures phenomena of the physical world. These phenomena
can be things you see, like light, gases, water vapor, and so on. They can also be things
you feel, like temperature, electricity, water, wind, and so on. Humans have senses
that act like sensors, allowing us to experience the world around us. However, there
are some things your sensors can’t see or feel, such as radiation, radio waves, voltage,
and amperage. Upon measuring these phenomena, it’s the sensor’s job to convey a
measurement in the form of either a voltage representation or a number.

There are many forms of sensors. They’re typically low-cost devices designed for
a single purpose and with a limited capability for processing. Most simple sensors are
discrete components; even those that have more sophisticated parts can be treated as
separate components. Sensors are either analog or digital and are typically designed to
measure only one thing. But an increasing number of sensor modules are designed to
measure a set of related phenomena, such as the USB Weather Board from SparkFun
Electronics (www.sparkfun.com/products/10586).

The following sections examine how sensors measure data, how to store that data,
and examples of some common sensors.

Figure 7-26.  Breadboard power supply

http://www.sparkfun.com/products/10586

Chapter 7 ■ Electronics for Beginners

269

Figure 7-27.  DHT-22 Humidity Sensor

How Sensors Measure
Sensors are electronic devices that generate a voltage based on the unique properties of
their chemical and mechanical construction. One of the common misconceptions some
have about sensors is they do not manipulate the phenomena (change the event or data)
they’re designed to measure. Rather, sensors sample some physical variable and turn it
into a proportional electric signal (voltage, current, digital, and so on).

For example, a humidity sensor measures the concentration of water (moisture)
in the air. Humidity sensors react to these phenomena and generate a voltage that the
microcontroller or similar device can then read and use to calculate a value on a scale.
A basic, low-cost humidity sensor is the DHT-22 available from most electronic stores
(https://www.adafruit.com/product/385). Figure 7-27 shows a typical DHT-22 sensor.

The DHT-22 is designed to measure temperature as well as humidity. It generates a
digital signal on the output (data pin). Although simple to use, it’s a bit slow and should
be used to track data at a reasonably slow rate (no more frequently than about once every
3 or 4 seconds).

When this sensor generates data, that data is transmitted as a series of high
(interpreted as a 1) and low (interpreted as a 0) voltages that the microcontroller can
read and use to form a value. In this case, the microcontroller reads a value 40 bits in
length (40 pulses of high or low voltage) — that is, 5 bytes — from the sensor and places
it in a program variable. The first two bytes are the value for humidity, the second two
are for temperature, and the fifth byte is the checksum value to ensure an accurate read.
Fortunately, all this hard work is done for you in the form of a special library designed for
the DHT-22 and similar sensors.

The DHT-22 produces a digital value. Not all sensors do this; some generate a voltage
range instead. These are called analog sensors. Let’s take a moment to understand the
differences. This will become essential information as you plan and build your sensor nodes.

https://www.adafruit.com/product/385

Chapter 7 ■ Electronics for Beginners

270

Analog Sensors
Analog sensors are devices that generate a voltage range, typically between 0 and 5 volts.
An analog-to-digital circuit is needed to convert the voltage to a number. But it isn’t that
simple (is it ever?). Analog sensors work like resistors and, when connected to GPIO pins,
often require another resistor to “pull up” or “pull down” the voltage to avoid spurious
changes in voltage known as floating. This is because voltage flowing through resistors is
continuous in both time and amplitude.

Thus, even when the sensor isn’t generating a value or measurement, there is still a
flow of voltage through the sensor that can cause spurious readings. Your projects require
a clear distinction between OFF (zero voltage) or ON (positive voltage). Pull-up and pull-
down resistors ensure that you have one of these two states. It’s the responsibility of the
A/D converter to take the voltage read from the sensor and convert it to a value that can
be interpreted as data.

When sampled (when a value is read from a sensor), the voltage read must be
interpreted as a value in the range specified for the given sensor. Remember that a value
of, say, 2 volts from one analog sensor may not mean the same thing as 2 volts from
another analog sensor. Each sensor’s data sheet shows you how to interpret these values.

As you can see, working with analog sensors is a lot more complicated than using the
DHT-22 digital sensor. With a little practice, you will find that most analog sensors aren’t
difficult to use once you understand how to attach them to a microcontroller and how to
interpret their voltage on the scale in which the sensor is calibrated to work.

Digital Sensors
Digital sensors like the DHT-22 are designed to produce a string of bits using serial
transmission (one bit at a time). However, some digital sensors produce data via parallel
transmission (one or more bytes6 at a time). As described previously, the bits are
represented as voltage, where high voltage (say, 5 volts) or ON is 1 and low voltage
(0 or even -5 volts) or OFF is 0. These sequences of ON and OFF values are called discrete
values because the sensor is producing one or the other in pulses — it’s either ON or OFF.

Digital sensors can be sampled more frequently than analog signals because they
generate the data more quickly and because no additional circuitry is needed to read the
values (such as A/D converters and logic or software to convert the values to a scale).
Thus, digital sensors are generally more accurate and reliable than analog sensors. But
the accuracy of a digital sensor is directly proportional to the number of bits it uses for
sampling data.

The most common form of digital sensor is the pushbutton or switch. What, a button
is a sensor? Why, yes, it’s a sensor. Consider for a moment the sensor attached to a window
in a home security system. It’s a simple switch that is closed when the window is closed and
open when the window is open. When the switch is wired into a circuit, the flow of current
is constant and unbroken (measuring positive volts using a pull-up resistor) when the
window is closed and the switch is closed, but the current is broken (measuring zero volts)
when the window and switch is open. This is the most basic of ON and OFF sensors.

6This depends on the width of the parallel buffer. An 8-bit buffer can communicate 1 byte at a time,
a 16-bit buffer can communicate 2 bytes at a time, and so on.

Chapter 7 ■ Electronics for Beginners

271

Most digital sensors are small circuits of several components designed to generate
digital data. Unlike analog sensors, reading their data is easy because the values can be
used directly without conversion (except to other scales or units of measure). Some may
suggest this is more difficult than using analog sensors, but that depends on your point of
view. An electronics enthusiast would see working with analog sensors as easier, whereas
a programmer would think digital sensors are simpler to use.

Now let’s look at some of the sensors available and the types of phenomena they
measure.

Examples of Sensors
An IOT solution that observes something may use at least one sensor and a means to
read and interpret the data. You may be thinking of all manner of useful things you can
measure in your home or office, or even in your yard or surroundings. You may want to
measure the temperature changes in your new sunroom, detect when the mail carrier
has tossed the latest circular in your mailbox, or perhaps keep a log of how many times
your dog uses his doggy door. I hope that by now you can see these are just the tip of the
iceberg when it comes to imagining what you can measure.

What types of sensors are available? The following sections describe some of the
more popular sensors and what they measure. I also provide a few hints on how you
might want to use the sensor in an IOT project. However, this is just a sampling of the
growing array of sensors available. Perusing the catalogs of online electronics vendors like
Mouser Electronics (www.mouser.com), SparkFun Electronics (www.sparkfun.com), and
Adafruit Industries (www.adafruit.com) will reveal many more examples.

I also include photos of popular examples for some of the sensor types.

Accelerometers
These sensors measure motion or movement of the sensor or whatever it’s attached to.
They’re designed to sense motion (velocity, inclination, vibration, and so on) on several
axes. Some include gyroscopic features. Most are digital sensors. A Wii Nunchuck (or
WiiChuck) contains a sophisticated accelerometer for tracking movement. Aha: now you
know the secret of those funny little thingamabobs that came with your Wii! You may
want to add accelerometers if your IOT project involves something in motion and the
observation of that motion provides useful information.

Audio Sensors
Perhaps this is obvious, but microphones are used to measure sound. Most are analog,
but some of the better security and surveillance sensors have digital variants for higher
compression of transmitted data. IOT projects such as home security, child monitoring,
ghost hunting, or auditory health can all benefit from integrating audio sensors.

http://www.mouser.com/
http://www.sparkfun.com/
http://www.adafruit.com/

Chapter 7 ■ Electronics for Beginners

272

Barcode Readers
These sensors are designed to read barcodes. Most often, barcode readers generate digital
data representing the numeric equivalent of a barcode. Such sensors are often used
in inventory-tracking systems to track equipment through a plant or during transport.
They’re plentiful, and many are economically priced, enabling you to incorporate them
into your own projects. If your IOT project requires capturing data from an object, you
may want to consider barcodes.

For example, if you want to sense when parking lot subscribers enter or exit an
unattended parking lot, you could position a barcode reader at the gates that read
barcodes that you design and distribute to your subscribers. When the car pulls up to the
gate, the barcode reader can read the barcode, log the entry, and raise the gate. If you’ve
ever lived in a large city, worked in a controlled office complex, or were a commuter
student, you may have encountered parking solutions like this.

Biometric Sensors
A sensor that reads fingerprints, irises, or palm prints contains a special sensor designed
to recognize patterns. Given the uniqueness inherit in patterns such as fingerprints and
palm prints, they make excellent components for a secure access system. Most biometric
sensors produce a block of digital data that represents the fingerprint or palm print. IOT
projects that require a greater level of security may want to include a biometric sensor to
help identify the user of the system.

Capacitive Sensors
A special application of capacitive sensors, pulse sensors are designed to measure your
pulse rate and typically use a fingertip for the sensing site. Special devices known as pulse
oximeters (called pulse-ox by some medical professionals) measure pulse rate with a
capacitive sensor and determine the oxygen content of blood with a light sensor.

If you own modern electronic devices, you may have encountered touch-sensitive
buttons that use special capacitive sensors to detect touch and pressure. If your IOT
project needs to measure any sort of movement, or respond to touch, capacitive sensors
can help provide a futuristic non-tactile interface. The Touch Bar on the latest MacBook
Pro is an example of such a solution.

Figure 7-28 shows two examples of touch-sensitive modules that you can buy from
Adafruit. In this case, we see breakout boards for a momentary switch (www.adafruit.
com/products/1374) and a toggle switch (www.adafruit.com/products/1375).

http://www.adafruit.com/products/1374
http://www.adafruit.com/products/1374
http://www.adafruit.com/products/1375

Chapter 7 ■ Electronics for Beginners

273

Figure 7-28.  Touch Capacitive Sensor Breakout Boards

Coin Sensors
This is one of the most unusual types of sensors. These devices7 are like the coin slots on
a typical vending machine. Like their commercial equivalent, they can be calibrated to
sense when a certain size of coin is inserted. Although not as sophisticated as commercial
units that can distinguish fake coins from real ones, coin sensors can be used to add a
new dimension to your projects. A great, practical IOT project for parents would be a
coin-operated WiFi station where the children have to buy their own Internet time. Not
only will this keep them from using the Internet too much, it may also help teach them
how to budget their allowance. Now, that should keep the kids from spending too much
time on the Internet!

Current Sensors
These are designed to measure voltage and amperage. Some are designed to measure
change, whereas others measure load. IOT projects that integrate circuits or need to
monitor the flow of electricity will need a current sensor. These may be some of the
more esoteric projects, but you can use these sensors to monitor the behavior of existing
solutions without modifying them.

For example, if you wanted to adapt sensors to observe a manufacturing machine,
you could add sensors that monitor the current to the various components. That is, you
may be able to record when voltage is applied to motors, actuators, or even warning lights
to determine when (or how much) the devices are activated. However, as a hobbyist, you
are more likely interested in building your own multimeter or similar tool.

Flex/Force Sensors
Resistance sensors measure flexes in a piece of material or the force or impact of pressure
on the sensor. Flex sensors may be useful for measuring torsional effects or to measure

7www.sparkfun.com/products/11719

http://www.sparkfun.com/products/11719

Chapter 7 ■ Electronics for Beginners

274

finger movements (like in a Nintendo Power Glove). Flex-sensor resistance increases
when the sensor is flexed. For example, if you want to create an IOT solution that reports
your fishing experience in real time, you might want to use a flex sensor on your fishing
rod to report every time you cast or got a hit on your lure.

Gas Sensors
There are a great many types of gas sensors. Some measure potentially harmful gases
such as LPG and methane and other gases such as hydrogen, oxygen, and so on. Other
gas sensors are combined with light sensors to sense smoke or pollutants in the air. The
next time you hear that telltale and often annoying low-battery warning beep8 from your
smoke detector, think about what that device contains. Why, it’s a sensor node! If your
IOT project needs to observe or detect any form of gas, especially if it involves reacting to
certain gases or levels thereof, you will need to use the appropriate gas sensors.

Light Sensors
Sensors that measure the intensity or lack of light are special types of resistors: light-
dependent resistors (LDRs), sometimes called photo resistors or photocells. Thus, they’re
analog by nature.

If you own a Mac laptop, chances are you’ve seen a photo resistor in action when
your illuminated keyboard turns itself on in low light. Special forms of light sensors can
detect other light spectrums such as infrared (as in older TV remotes). For example, if you
want your IOT project to automatically adjust the brightness of its display, a light sensor is
the component you need.

Figure 7-29.  Mini Photocell

8I subscribe to the more is better theory and have many detectors in our home, which is great but
when the batteries run down, I can never tell which detector is beeping! This becomes maddeningly
frustrating when they beep only once or twice then go silent. Fortunately, I’ve replaced nearly all of
them with the newest 10-year battery variants. No more wild beep goose chases!

Chapter 7 ■ Electronics for Beginners

275

Figure 7-30.  Color Sensor Breakout Board

The following show two examples of light sensors. Figure 7-29 shows a typical mini
photocell (www.sparkfun.com/products/9088) and Figure 7-30 shows a color sensor
(www.adafruit.com/products/1334).

Liquid-Flow Sensors
These sensors resemble valves and are placed inline in plumbing systems. They measure
the flow of liquid as it passes through. Basic flow sensors use a spinning wheel and a
magnet to generate a Hall effect (rapid ON/OFF sequences whose frequency equates
to how much water has passed). If your IOT project involves any form of liquid such
as a garden pond or irrigation system, knowing the flow of the water may be helpful in
learning or observing something.

Liquid-Level Sensors
A special resistive solid-state device can be used to measure the relative height of a body
of water. One example generates low resistance when the water level is high and higher
resistance when the level is low. Like liquid-flow sensors, liquid-level sensors are typically
used in the same solution. Figure 7-31 shows a typical liquid-level sensor that operates as
a switch where the float closes the switch when the water level rises.

http://www.sparkfun.com/products/9088
http://www.adafruit.com/products/1334

Chapter 7 ■ Electronics for Beginners

276

Figure 7-31.  Water-Level Sensor

Location Sensors
Modern smartphones have GPS sensors for sensing location, and of course GPS devices
use the GPS technology to help you navigate. Fortunately, GPS sensors are available
in low-cost forms, enabling you to add location sensing to your project. GPS sensors
generate digital data in the form of longitude and latitude, and most can also sense
altitude. If your IOT project needs to report its location, a GPS sensor can give you
very accurate readings. However, like most sensors, GPS sensors can have a degree of
inaccuracy. Depending on how close you need to locate something, you may need to
spend a bit more on a more accurate GPS sensor.

Magnetic-Stripe Readers
These sensors read data from magnetic stripes (like that on a credit card) and return
the digital form of the alphanumeric data (the actual strings). IOT projects that include
a security component may want to use a magnetic-stripe reader to help identify a user.
When combined with a password and a biometric sensor, security can be increased
considerably. That is, someone would have to know something (a password or pin),
possess something (security card with a magnetic-stripe encoded with a key phrase,
number, user id, etc.), and be validated as someone (fingerprint) before gaining access.

Chapter 7 ■ Electronics for Beginners

277

Magnetometers
These sensors measure orientation via the strength of magnetic fields. A compass is a
sensor for finding magnetic north. Some magnetometers offer multiple axes to allow even
finer detection of magnetic fields. This is another sensor that you may not encounter
very often, but if your IOT project needs to measure magnetic fields from motors or
atmospheric phenomena, you may want to look at magnetometers.

Moisture Sensors
Moisture sensors measure the amount of moisture in a substance (such as soil) or in the
air. They typically send data in the form of a voltage reading where low values indicate
less moisture. You often find moisture sensors in atmospheric projects or even plant
monitoring solutions. Figure 7-32 shows a typical soil moisture sensor (). Notice the
prongs are the portion of the sensor inserted into the soil.

Figure 7-32.  Soil Moisture Sensor

Proximity Sensors
Often thought of as distance sensors, proximity sensors use infrared or sound waves to
detect distance, movement, or the range to/from an object. Made popular by low-cost
robotics kits, the Parallax Ultrasonic Sensor uses sound waves to measure distance
by sensing the amount of time between pulse sent and pulse received (the echo). For
approximate distance measuring,9 it’s a simple math problem to convert the time to
distance. If you’re building an IOT project that detects movement or proximity such as a
motion sensing camera, you may want to use proximity sensors.

9Accuracy may depend on environmental variables such as elevation, temperature, and so on.

Chapter 7 ■ Electronics for Beginners

278

The following figures show two types of proximity sensors. Figure 7-33 shows a popular
passive infrared sensor (PIR) motion sensor (www.sparkfun.com/products/13285).

Figure 7-34.  Ultrasonic Proximity Sensor

Figure 7-34 shows an ultrasonic sensor (www.sparkfun.com/products/13959) used
in many projects from robots to drones.

Figure 7-33.  PIR Motion Sensor

Radiation Sensors
Among the more serious sensors are those that detect radiation. This can also be
electromagnetic radiation (there are sensors for that too), but a Geiger counter uses
radiation sensors to detect harmful ionizing. In fact, it’s possible to build your very own
Geiger counter using a sensor and an Arduino (and a few electronic components). This
is one sensor that you may not encounter as a hobbyist. However, there are several kits
for building your own Geiger counter such as those from Adafruit (www.adafruit.com/
products/483).

http://www.sparkfun.com/products/13285
http://www.sparkfun.com/products/13959
http://www.adafruit.com/products/483
http://www.adafruit.com/products/483

Chapter 7 ■ Electronics for Beginners

279

Figure 7-35.  RFID Reader

RFID Sensors
Radio frequency identification uses a passive device (sometimes called an RFID tag)
to communicate data using radio frequencies through electromagnetic induction. For
example, an RFID tag can be a credit-card-sized plastic card, a label, or something similar
that contains a special antenna, typically in the form of a coil, thin wire, or foil layer that is
tuned to a specific frequency.

When the tag is placed near the reader, the reader emits a radio signal; the tag
can use the electromagnet energy to transmit a nonvolatile message embedded in the
antenna, in the form of radio signals which is then converted to an alphanumeric string.10
RFID sensors are another good choice for security systems. If you have pets, you may
want to visit your veterinarian to inquire about RFID sensors that act as hidden owner
identification tags. If you know the frequency, you can even use it to help detect when
your pet goes through a pet door. Figure 7-35 shows an RFID reader (sensor) that you can
use to read RFID tags via USB (www.sparkfun.com/products/9963).

Speed Sensors
Like flow sensors, simple speed sensors like those found on many bicycles use a
magnet and a reed switch to generate a Hall effect. The frequency combined with the
circumference of the wheel can be used to calculate speed and, over time, distance
traveled. If your IOT solution needs to read movement, you can use a magnetic switch
and a magnet to detect rotation. For example, bicycle speedometers often use a magnet
and magnetic switch to detect the number of rotations, circumference of the wheel, and
frequency of the actions to calculate speed.

10http://en.wikipedia.org/wiki/Radio-frequency_identification

http://www.sparkfun.com/products/9963
http://en.wikipedia.org/wiki/Radio-frequency_identification

Chapter 7 ■ Electronics for Beginners

280

11Have you ever thought it would be great if you could catch a photo of whatever critter is eating
your garden? Build your own critter camera with a proximity sensors and an infrared camera!

Switches and Pushbuttons
These are the most basic of digital sensors used to detect if something is set (ON) or reset
(OFF). Even so, you can use switches and buttons to build a user interface, for controlling
other devices, or even turning the thing on!

Tilt Switches
These sensors can detect when a device is tilted one way or another. Although very
simple, they can be useful for low-cost motion-detection sensors. They are digital and
are essentially switches. If your IOT solution needs to detect when the device is leaning,
you can use tilt sensors to trigger at a certain lean angle. For example, some modern
motorcycles use tilt sensors to turn on cornering lights – headlamps angled to improve
vision around a turn at night.

Touch Sensors
The touch-sensitive membranes formed into keypads, keyboards, pointing devices, and
the like are an interesting form of sensor. You can use touch-sensitive devices like these
for collecting data from humans. Touch sensors can help you build a user interface for
your IOT project that can be presented in a low-profile form or to save space in a console,
project box, etc.

Video Sensors
As mentioned previously, it’s possible to obtain very small video sensors that use
cameras and circuitry to capture images and transmit them as digital data. If you want to
incorporate a video element to your IOT project such as a security solution, you can add a
camera or video sensor to capture a visual component that can help provide information
beyond the incident measurements. That is, you can review a photo and learn more
than simply something moved or approached the device. For example, you can build an
IOT project that detects movement and takes a photo if something gets close enough or,
perhaps, moves faster than a certain threshold.11

Weather Sensors
Sensors for temperature, barometric pressure, rain fall, humidity, wind speed, and so
on are all classified as weather sensors. Most generate digital data and can be combined
to create comprehensive environmental solutions. Figure 7-36 shows a common
breakout board for the BMP280 pressure and temperature sensor (www.adafruit.com/
products/2651).

http://www.adafruit.com/products/2651
http://www.adafruit.com/products/2651

Chapter 7 ■ Electronics for Beginners

281

Figure 7-36.  BMP280 Pressure and Temperature Sensor

With this and other easy-to-use sensors, it’s possible to build your own weather
station from about a dozen inexpensive sensors, your MicroPython board, and a bit of
programming to interpret and combine the data. In fact, we’ll do that in Chapter 10!

Tip – If you want to see more sensors, you can purchase any number of sensors
from Adafruit (www.adafruit.com/category/35) or Sparkfun (www.sparkfun.com/
categories/23).

I WANT TO LEARN MORE!

If you find you need or want to learn more about electronics than what I’ve
presented in this chapter or you want to learn more about the electronics you will
need for a more advanced IOT project, you may want to consider taking a course at
a community college or try a self-paced course on electronics.

One of the best self-paced courses I’ve found include the set of electronics books
by Charles Platt. I’ve found these books to be very well written, opening the door for
many to learn electronics without having to spend years learning the tedious (but
no less important) theory and mathematics of electronics. Best of all, they are not
written in the dreary textbook fact-fact-fact-question pace. They are written by a
world-renown expert with a gift of presenting the material in an easy-to-read and
comprehend style. I recommend the following books for anyone wanting to learn
more about electronics.

•	 Make: Electronics, Second Edition (O’Reilly, 2015), Charles Platt

•	 Make: More Electronics (O’Reilly, 2014), Charles Platt

•	 Encyclopedia of Electronic Components Volume 1 (O’Reilly, 2012),
Charles Platt

http://dx.doi.org/10.1007/978-1-4842-3123-4_10
http://www.adafruit.com/category/35
http://www.sparkfun.com/categories/23
http://www.sparkfun.com/categories/23

Chapter 7 ■ Electronics for Beginners

282

•	 Encyclopedia of Electronic Components Volume 2 (O’Reilly, 2014),
Charles Platt

•	 Encyclopedia of Electronic Components Volume 3 (O’Reilly, 2016),
Charles Platt

The third volume in his encyclopedia series includes an in-depth study of sensors: a
must for advanced IOT projects.

Makershed (makershed.com/collections/electronics) sells companion kits that
contain all the parts you need to complete the experiments in the Make: Electronics
and Make: More Electronics books. The books together with the kits make for an
excellent self-paced learning experience.

Summary
Learning how to work with electronics as a hobby or to create an IOT solution does not
require a lifetime of study or a change of vocation. Indeed, learning how to work with
electronics is all part of the fun of experimenting with the IOT! I have met many people
who have learned electronics on their own and while most will admit formal study is
essential for mastering the topic, you can learn quite a lot on your own - enough to
become proficient working with the basic electronic components typically found in IOT
projects.

This chapter presented the basics of electronics components including the use
of breadboards, common components, and example circuits. This and a bit of key
knowledge of how to use a multimeter will get you a long way toward becoming proficient
with electronics. We also learned about one of the key components of an IOT solution –
sensors. We discovered two ways they communicate (digital and analog) and a bit of what
types of sensors are available.

In the next chapter, we will dive into our first electronics project – the equivalent of a
“hello, world!” project for hardware. We’ll see how to connect our MicroPython board to a
few components and write a Python program to control them. Cool!

283© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_8

CHAPTER 8

Project 1: Hello, World!
MicroPython Style

Here we are at the most fun part of this book - working on MicroPython projects! It is at
this point that we have learned how to write in MicroPython and now know a lot more
about the hardware and even how to use discrete electronics and breakout boards.

This chapter represents an introduction to building MicroPython projects. As such,
there are a few more things we need to learn including techniques and procedures
for installing and running our projects on our MicroPython boards. This chapter will
introduce those things you need to make your MicroPython projects successful. Thus, the
chapter is a bit longer and should be considered required reading even if you do not plan
to implement the project.

To help achieve these goals and make things a bit easier (since this is your first real
MicroPython project), we will forego connecting this project to the Internet so that we
can keep the project easier to implement. Later chapters will have less introductory
information and will focus on the project more as they will become more complex as we
progress.

As you will see, the format for all the project chapters is the same: an overview of the
project is presented followed by a list of the required components and how to assemble
the hardware. Once we have a grasp of how to connect the hardware, we then see how
to connect everything and begin writing the code. Each chapter will close with how to
execute the project along with a sample of it running and suggestions for embellishing
the project.

If you’re wondering by now which board you need to complete these projects - don’t
worry as we will see how to implement the project in this chapter on both the WiPy and
Pyboard along with demonstrations of the differences.

So, let’s get started on our very first MicroPython project!

https://doi.org/10.1007/978-1-4842-3123-4_8

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

284

Overview
In this chapter, we will design and build a MicroPython clock. We will use both an SPI and
I2C breakout board. We will use a small organic light-emitting diode (OLED)1 display that
uses an SPI interface and a hardware-based real-time clock (RTC) that uses the DS1307
chip and a battery for keeping time while the project is turned off. Rather than simply
connecting to a network time protocol (NTP) server on the Internet, we will use the
hardware-based RTC and display the current date and time on the small OLED display.
This not only keeps the project a bit smaller but also demonstrates how to use a RTC for
projects that may not be connected to the Internet.

While the Pyboard has a RTC circuit that you can connect an external battery to keep
the RTC powered while the board is turned off (see the VBAT pin reference at http://docs.
micropython.org/en/latest/pyboard/pyboard/quickref.html), most systems on a chip
(SOC) boards, like the WiPy and other Espressif-based boards, do not support such a feature.
Thus, we will use an external RTC so that you can use this project on other boards.

As you will see, there is a fair amount of wiring needed and understanding of the
hardware capabilities is imperative to write the code, which is why we spent time in
previous chapters talking about the firmware and various low-level hardware controls.
You will need those skills and knowledge to complete this project.

While a clock may sound rather simple, this project will walk you through all the
steps needed to assemble the hardware and write the code. As you will see, there are
some distinct differences between the WiPy and Pyboard beyond the hardware layout
and pin numbers. In fact, we will see there are some differences in how we write the
code for each.

Further, the project is small and simplistic so we can focus on the process, which
we can then apply to more advanced projects. In fact, we will see that even a relatively
simple project can have an unexpected level of difficulty. But don’t worry, as this chapter
documents all the things you need to do to complete the project.

The sources for this project are many. The following links include background
data used for this project. Learning how to apply knowledge from sites like these isn’t
something that is easily explained or learned; however, by looking at these sources
(should you desire to do so), it should help you understand how to research and plan
your own projects.

•	 Source of project ideas and drivers: http://micropython-urtc.
readthedocs.io/en/latest/examples.html

•	 OLED display information: https://learn.adafruit.com/
monochrome-oled-breakouts/wiring-128x32-spi-oled-display

•	 OLED display driver: https://github.com/adafruit/
micropython-adafruit-ssd1306

•	 RTC driver documentation: https://github.com/adafruit/
Adafruit-uRTC/tree/master/docs

•	 RTC driver: https://github.com/adafruit/Adafruit-uRTC

1https://en.wikipedia.org/wiki/OLED

http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://docs.micropython.org/en/latest/pyboard/pyboard/quickref.html
http://micropython-urtc.readthedocs.io/en/latest/examples.html
http://micropython-urtc.readthedocs.io/en/latest/examples.html
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display
https://github.com/adafruit/micropython-adafruit-ssd1306
https://github.com/adafruit/micropython-adafruit-ssd1306
https://github.com/adafruit/Adafruit-uRTC/tree/master/docs
https://github.com/adafruit/Adafruit-uRTC/tree/master/docs
https://github.com/adafruit/Adafruit-uRTC
https://en.wikipedia.org/wiki/OLED

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

285

Notice the sites used. A good practice is to start with the Adafruit and MicroPython
learning, blobs, and forums. Then check out the drivers. That is, do the research first
and find all the references you can. If you find nice tutorials like those from Adafruit
or Sparkfun, you may want to download them to your tablet or print them out for later
reading.2 More importantly, take the time to read the references so that you understand
as much as you can before you start working with the hardware or writing your code. You
can save yourself a lot of time by understanding simple things like how to wire your board
to the device and how the driver is expected to be used.3

WHICH DRIVER DO I USE?

You may encounter a situation where you find more than one driver for the hardware
you want to use. In fact, I found three drivers for the OLED display. The differences
among them are subtle, and it appears at least one is written for a specific platform.

In fact, the one listed above is the best one to use. Even so, it needs some minor
changes for use with the WiPy and Pyboard. I will show you those changes and, as
you will see, they are not too difficult to spot and fix (for example, when MicroPython
throws exceptions, it will show you the source of the issue).

If you encounter a similar situation – having more than one driver to choose from,
you may want to try each until you find one that works best for your hardware
and project. Sometimes, and in this case it is true, one driver may not be viable or
another may be lacking features you need. For example, one of the drivers I found
does not support text so it is not usable for this project and another needed major
modification for use with the Pyboard. The trick is to find the driver that works best
with the least amount of modification.

Now let’s see what components are needed for this project, and then we will see how
to wire everything together.

Required Components
Table 8-1 lists the components you will need. You can purchase the components
separately from Adafruit (adafruit.com), Sparkfun (sparkfun.com), or any electronics
store that carries electronic components. Links to vendors are provided should you want
to purchase the components. When listing multiple rows of the same object, you can

2Yes, I am one of those that prefer the tactile sensor impressions of printed materials. Besides, you
can fit a small stack of papers in almost any bag or pocket.
3Which is why I use only those references that are well written and have complete examples. Trying
to guess the mind of a driver author is not worth the time or effort.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

286

choose one or the other – you do not need both. Also, you may find other vendors that sell
the components. You should shop around to find the best deal. Costs shown are estimates
and do not include any shipping costs.

Table 8-1.  Required Components

Component Qty Description Cost Links

MicroPython board 1 Pyboard v1.1 with
headers

$45-50 https://www.adafruit.
com/product/2390
https://www.adafruit.
com/product/3499

https://www.sparkfun.
com/products/14413

https://store.
micropython.org/store

WiPy $25 https://www.adafruit.
com/product/3338

https://www.pycom.io/
product/wipy/

OLED display 1 ssd1306-based SPI
display

$18 https://www.adafruit.
com/product/661

RTC breakout board 1 RTC module with
battery backup

$15 https://www.sparkfun.
com/products/12708

Breadboard 1 Prototyping board,
half-sized

$5 https://www.sparkfun.
com/products/12002

Jumper wires 12 M/M jumper wires,
6” (cost is for a set of
10 jumper wires)

$4 https://www.sparkfun.
com/products/8431

Power 1 USB cable to get
power from PC

Use from your spares

1 USB 5V power
source and cable

Use from your spares

Coin cell battery 1 See RTC breakout
board datasheet

$3-5 Commonly available

Notice in the source, “use from your spares” for the last two items. This refers to
the fact that most of us have these things on hand and in some cases in abundance. For
example, if you buy a MicroPython board, you will need to also buy a cable if you don’t
already have one. Further, with the proliferation of USB charged devices, it is hard to
imagine anyone owning more than one smart device not having an extra USB charger or
power supply lying around somewhere.

https://www.adafruit.com/product/2390
https://www.adafruit.com/product/2390
﻿https://www.adafruit.com/product/3499﻿
﻿https://www.adafruit.com/product/3499﻿
﻿https://www.sparkfun.com/products/14413﻿
﻿https://www.sparkfun.com/products/14413﻿
﻿https://store.micropython.org/store﻿
﻿https://store.micropython.org/store﻿
﻿https://www.adafruit.com/product/3338﻿
﻿https://www.adafruit.com/product/3338﻿
﻿https://www.pycom.io/product/wipy/﻿
﻿https://www.pycom.io/product/wipy/﻿
﻿https://www.adafruit.com/product/661﻿
﻿https://www.adafruit.com/product/661﻿
﻿https://www.sparkfun.com/products/12708﻿
﻿https://www.sparkfun.com/products/12708﻿
﻿https://www.sparkfun.com/products/12002﻿
﻿https://www.sparkfun.com/products/12002﻿
﻿https://www.sparkfun.com/products/8431﻿
﻿https://www.sparkfun.com/products/8431﻿

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

287

If you choose to use the WiPy, it is recommended you also purchase the Expansion
Board from Adafruit (https://www.adafruit.com/product/3344) or Pycom
(https://www.pycom.io/product/wipy-expansion-board/).

The OLED breakout board used in this project is a small module from Adafruit. It
has a tiny but bright display that you can mount on the breadboard. The resolution is 128
pixels wide by 32 pixels high. The OLED breakout board comes without headers installed,
but they are easy to add if you know how to solder (now might a good time to practice) or
you can get a friend to help you. Figure 8-1 shows the Adafruit OLED SPI breakout board.

Figure 8-1.  Monochrome 128x32 SPI OLED Graphic Display (courtesy of adafruit.com)

There are several OLED breakout boards available and so long as they have the SPI
interface and use the ssd1306 controller chip (the description will tell you this), you can
use an alternate OLED display. The reason we need to use one with that controller chip
is because the driver is written for that controller. Other controller chips will require a
different driver.

The RTC breakout board used in this project is a DS1307 breakout board from
Adafruit. The board also comes without headers installed (but includes them), nor does
it come with a battery so you must purchase a CR1220 coin cell battery. Adafruit has
those as well if you want to save yourself a trip to the store. Figure 8-2 shows the RTC
breakout board.

https://www.adafruit.com/product/3344
https://www.pycom.io/product/wipy-expansion-board/

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

288

There are several DS1307 RTC clocks available. In fact, Sparkfun has one or you
can build your own! See the sidebar, “Building Your Own RTC Module” for more details.
Fortunately, the library we will use supports breakout boards with DS1307, DS3231, or
PCF8523 RTC chips.

■■ Tip  Small, discrete components like LEDs, resistors, etc., and even jumper wires
and breadboards can be found in the kits mentioned in Chapter 2 - the Adafruit Parts Pal
(https://www.adafruit.com/product/2975) or the Sparkfun Beginner Parts Kit
(https://www.sparkfun.com/products/13973). I recommend one of these kits.

Now, let’s see how to wire the components together.

Set Up the Hardware
This project has a lot of connections. There are seven needed for the OLED and four
needed for the RTC as well as a few additional jumpers for power and ground. To help
keep things easier, we will plan for how things should connect. We will use a breadboard
to mount the breakout boards making the connections easier. More specifically, we
will learn what connections are needed for each component and where they need to
be connected to our board, writing them down to keep things straight. Doing this small
amount of homework will save you time later (and no small bit of frustration).

In this section and the next, we will see how to implement the project for both the
WiPy and Pyboard. In the case of the hardware, the connections on the breakout board
side are all the same but the pin numbers differ from one board to another. Both boards are
shown in the table, which shows the MicroPython board on the left with the pin label and
the breakout board on the right with the pin label on that board. We will use male/male
jumper wires to make these connections via a breadboard.

Figure 8-2.  DS1307 Real-Time Clock Assembled Breakout Board (courtesy of adafrui.com)

http://dx.doi.org/10.1007/978-1-4842-3123-4_2
https://www.adafruit.com/product/2975
https://www.sparkfun.com/products/13973

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

289

As you will see, mapping out the connections like this makes it easy to check the
connections. This table along with a wiring drawing are the tools you will see in this book
and other example projects on the Internet or elsewhere. Thus, learning how to read
maps and wiring drawings is a skill you should have to make your project successful.

Table 8-2 shows the connections needed for this project. Notice the wire color
column. Use this column to record the color of the jumper wire to help manage the
connections. It doesn’t matter what color wire you use, but using a different color for each
connection helps manage the many wires you will have connected. It also makes double-
checking your connections easier if you write down which color wire you used for each
connection. Traditionally, we use black for ground (negative), red for power (positive) at
a minimum.

Table 8-2.  Connections for the MicroPython Clock (WiPy and Pyboard)

MicroPython Board Breakout Board Wire Color

WiPy Pyboard Board Pin Name

P9 X9 RTC SCL

P8 X10 RTC SDA

5V V+ RTC 5V

GND GND RTC GND

P6 Y3 OLED RST

P5 Y4 OLED D/C

P7 Y5 OLED CS

P10 Y6 OLED CLK

P11 Y8 OLED DATA

3V3 3V3 OLED VIN

GND GND OLED GND

Wow, that’s a lot of connections! Let’s review some tips for wiring components.
The best way to wire components to your board is to use a breadboard. As we saw in
Chapter 7, a breadboard allows us to plug our components in and use jumper wires to
make the connections. This simplifies wiring the project and allows you to move things
around if you need to make more room. A breadboard also helps with wiring power and
ground connections since the breadboard has power rails on either side that we can use
as a common connection. That is, use one jumper to connect power and ground to the
breadboard and the other jumper wires to the breakout boards.

When plugging in components, always make sure the pins are mounted parallel
to the center channel. Recall breadboards have the pins wired together in rows
perpendicular to the center channel. This allows you to make more than one connection
to the component (or pin on the board).

http://dx.doi.org/10.1007/978-1-4842-3123-4_7

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

290

■■ Caution N ever plug or unplug jumper wires when the project is powered on.

Finally, always make sure you wire your project carefully double-checking all the
connections – especially power, ground, and any pins used for signaling (will be set to
“high” or “on”) such as those pins used for SPI interfaces. Most importantly, never plug or
unplug jumper wires when the project (or your board) is powered on. This will very likely
damage your board or components.4

To get started, get out your breadboard and plug the components in first; then, using
a different color jumper wire, plug all the needed wires into the breadboard and note the
color you used in the chart. This will help you greatly when you begin plugging the other
end of the jumpers into your MicroPython board.

For this project, I mounted the OLED on the left side of a half-sized breadboard
just below the center channel and the RTC module on the right also below the channel.
Notice the boards use a different power connection. The OLED board uses 3.3V and
the RTC board 5V. Always check the power requirements of your components before
powering on the project. Double-check and triple-check your connections.

Now, let us see how to make the connections shown in the chart for the WiPy and
Pyboard.

WiPy
Wiring for the WiPy is best done orienting the board with the USB connector on the
expansion board to the left. This will allow you to read the pin numbers on the board even
after the wires are plugged into the board. However, this is only a suggestion. Orientation
will not matter so long as the wires are connected correctly. Figure 8-3 shows the wiring
drawing for the WiPy and the OLED and RTC breakout boards.

4Guess how I know this. Sometimes breaking things is the best way to learn.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

291

Figure 8-3.  Wiring the Clock Project (WiPy)

Pyboard
Wiring for the Pyboard is best done orienting the board with the USB connector to the
left. This will allow you to read the pin numbers on the board even after the wires are
plugged into the board. Figure 8-4 shows the wiring drawing for the Pyboard and the
OLED and RTC breakout boards.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

292

■■ Caution A lways double- and triple-check your connections, especially all power and
ground connections. Be sure to examine the power connections to ensure the correct power
(3V or 5V) is being connected to the components correctly. Connecting the wrong voltage
can damage the component.

If you chose a different RTC board than the one shown in the drawing, be sure to
adjust the connections as needed. For example, the Sparkfun DS1307 breakout board
has the pins in a different order, so don’t go by this drawing alone – especially if you use
alternative components!

Once again, always make sure to double-check your connections before powering the
board on. Now, let’s talk about the code we need to write. Don’t power on your board just
yet – there is a fair amount of discussion needed before we’re ready to test the project.

Figure 8-4.  Wiring the Clock Project (Pyboard)

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

293

5I suppose other engineers may say you should write the code first, but I see it the other way around.

Write the Code
Now it’s time to write the code for our project. Since we are working with several new
components, I will introduce the code for each in turn. The code isn’t overly complicated
but may not be as clear as some of the code from previous projects. Let’s begin with a look
at the design of the project.

Design
Once you have the hardware sorted out and how to connect the components to your
board, it is time to start designing the code.5 Fortunately, this project is small enough to
make the design simple. In short, we want to display the time on our OLED once every
second. Thus, the “work” of the code is to read the date and time from the RTC and then
display it on the OLED. The following lists the steps that summarize how to design and
implement the code for this project or any project for that matter.

	 1.	 Libraries: we will need to select and import libraries for the
RTC and OLED

	 2.	 Set Up: we will need to set up the interfaces for I2C and SPI

	 3.	 Initialize: we will need to initialize object instances for the
classes in the libraries

	 4.	 Function: we will need a new function to allow our project to
be started and run on boot

	 5.	 Main: modify the main.py file on our MicroPython board to
run our code

These five elements are what we will use for all the projects in this book and indeed,
it is a good pattern to follow for all your MicroPython projects. The new function step is a
new step that we haven’t seen yet. In short, we wrap the operational portion of the code
in a separate function to make it easy to call from the main.py file on boot. We’ll see more
about this later when we execute and test the project.

Now that we know how the project code will be implemented, let’s review the
libraries needed.

Libraries Needed
Recall from earlier we need two drivers: one for the OLED display, and another for the
RTC. The driver for the OLED display can be found at https://github.com/adafruit/
micropython-adafruit-ssd1306 and the driver for the RTC can be found at
https://github.com/adafruit/Adafruit-uRTC.

https://github.com/adafruit/micropython-adafruit-ssd1306
https://github.com/adafruit/micropython-adafruit-ssd1306
https://github.com/adafruit/Adafruit-uRTC

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

294

6https://en.wikipedia.org/wiki/Diff_utility

Go ahead and download both drivers now. You should be able to go to the sites and
click on the Clone or Download link, then the Download Zip button to download the files
to your PC. Then, open the location of the downloaded files and unzip them. You should
find the following files. Copy these to a location on your PC. We copy them because we
will need to modify them and copying them allows us to return to the original if we make
a mistake or things don’t work.

•	 ssd1306.py: the OLED display driver

•	 urtc.py: the RTC driver

There are two primary reasons we would have to modify a library; and in this case,
we see examples of both. First, there are differences in the target platform for which the
Adafruit driver was written. More specifically, it was written for a different MicroPython
board, but we can easily adapt it to our needs. Second, there are differences between
the firmware on the boards. This will require changing the driver code to use the correct
classes and functions related to the specific MicroPython board.

Again, do not worry because the changes to the libraries are minor. But again, this is
a common enough occurrence that you should get used to having to make minor changes
like these – especially if you use a board other than a WiPy or Pyboard!

There is one other consideration when using drivers. You should check the driver
documentation for any restrictions. For example, drivers may require a newer version
of the firmware. In some cases, it may also require an older version of the firmware (but
this is rare). If your driver doesn’t work with your board and the document claims it
does work with your board, check your firmware version in the documentation for any
incompatibilities.

We will look at the general changes needed for the drivers for use on the WiPy and
Pyboard in the next sections.

Changes to ssd1306.py for the WiPy
The OLED driver needs a small set of changes for the WiPy firmware. The Pin class on
the WiPy does not have a high() or low() function. Instead, the WiPy firmware uses
one function, value(), which we pass as value of 1 for high and 0 for low as a parameter.
Fortunately, it is just a matter of changing all occurrences of .high() to .value(1) and
.low() to .value(0). For those of you who know how to read a difference file (the output
of the diff command6), the difference file is shown in Listing 8-1.

Listing 8-1.  Changes for the ssd1306.py code module for the WiPy (difference file)

--- ./Pyboard/ssd1306.py 2016-10-30 14:06:02.000000000 -0400
+++ ./WiPy/ssd1306.py 2017-07-20 21:39:31.000000000 -0400
@@ -146,23 +146,23 @@

https://en.wikipedia.org/wiki/Diff_utility

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

295

 def write_cmd(self, cmd):
 self.spi.init(baudrate=self.rate, polarity=0, phase=0)
- self.cs.high()
- self.dc.low()
- self.cs.low()
+ self.cs.value(1)
+ self.dc.value(0)
+ self.cs.value(0)
 self.spi.write(bytearray([cmd]))
- self.cs.high()
+ self.cs.value(1)

 def write_framebuf(self):
 self.spi.init(baudrate=self.rate, polarity=0, phase=0)
- self.cs.high()
- self.dc.high()
- self.cs.low()
+ self.cs.value(1)
+ self.dc.value(1)
+ self.cs.value(0)
 self.spi.write(self.buffer)
- self.cs.high()
+ self.cs.value(1)

 def poweron(self):
- self.res.high()
+ self.res.value(1)
 time.sleep_ms(1)
- self.res.low()
+ self.res.value(0)
 time.sleep_ms(10)
- self.res.high()
+ self.res.value(1)

WHAT’S A DIFFERENCE FILE?

A difference file is the output of the diff command. It shows the line-by-line
changes or differences between two versions of the same file. In a unified difference
file, lines prefaced with a minus sign are those to be removed and those with a plus
sign are those to be added. Lines from the file that have no preface (symbol) are
used as context to locate the changes (along with a special header). The difference
file can be used with the patch command to apply the changes to a file. Thus, the
difference file is sometimes called a “patch” or “diff” file.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

296

Changes to uRTC.py for the Pyboard
The RTC driver will not run correctly on the Pyboard (but works fine without changes
on the WiPy). The changes needed are due to the differences in the functions for the I2C
class. The driver uses the following methods to read and write data.

i2c.readfrom_mem(address, register, num_to_read)
i2c.writeto_mem(address, register, buffer)

However, the Pyboard firmware has different function names with a different order
of parameters as shown below. Notice the order of parameters is different for the read
function.

i2c.mem_read(num_read, address, register)
i2c.mem_write(buffer, address, register)

Thus, we need to change all the read and write functions in the library to match
the firmware of our boards. All you need to do is open the file and make the changes – it
is just a matter of renaming the functions and reordering the parameters for the read
function. Listing 8-2 shows the changes you need to make.

Listing 8-2.  Changes for the urtc.py code module for the Pyboard (difference file)

--- ./Pyboard/urtc.py 2017-07-20 19:20:38.000000000 -0400
+++ ./WiPy/urtc.py 2017-04-21 16:52:32.000000000 -0400
@@ -40,8 +40,8 @@

 def _register(self, register, buffer=None):
 if buffer is None:
- return self.i2c.mem_read(1, self.address, register)[0]
- self.i2c.mem_write(buffer, self.address, register)
+ return self.i2c.readfrom_mem(self.address, register, 1)[0]
+ self.i2c.writeto_mem(self.address, register, buffer)

 def _flag(self, register, mask, value=None):
 data = self._register(register)
@@ -56,8 +56,8 @@

 def datetime(self, datetime=None):
 if datetime is None:
- buffer = self.i2c.mem_read(7, self.address,
- self._DATETIME_REGISTER)
+ buffer = self.i2c.readfrom_mem(self.address,
+ self._DATETIME_REGISTER, 7)
 if self._SWAP_DAY_WEEKDAY:
 day = buffer[3]
 weekday = buffer[4]

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

297

@@ -128,8 +128,8 @@

 def alarm_time(self, datetime=None, alarm=0):
 if datetime is None:
- buffer = self.i2c.mem_read(3, self.address,
- self._ALARM_REGISTERS[alarm])
+ buffer = self.i2c.readfrom_mem(self.address,
+ self._ALARM_REGISTERS[alarm], 3)
 day = None
 weekday = None
 second = None
@@ -145,8 +145,8 @@
 if not buffer[1] & 0x80 else None)
 if alarm == 0:
 # handle seconds
- buffer = self.i2c.mem_read(1,
- self.address, self._ALARM_REGISTERS[alarm] - 1)
+ buffer = self.i2c.readfrom_mem(
+ self.address, self._ALARM_REGISTERS[alarm] - 1, 1)
 second = (_bcd2bin(buffer[0] & 0x7f)
 if not buffer[0] & 0x80 else None)
 return datetime_tuple(
@@ -219,8 +219,8 @@

 def alarm_time(self, datetime=None):
 if datetime is None:
- buffer = self.i2c.mem_read(4, self.address,
- self._ALARM_REGISTER)
+ buffer = self.i2c.readfrom_mem(self.address,
+ self._ALARM_REGISTER, 4)
 return datetime_tuple(
 weekday=_bcd2bin(buffer[3] &
 0x7f) if not buffer[3] & 0x80 else None,

Fortunately, there are not that many changes you need to make so it is easy and
quick to make the changes. If you know how to apply the difference file with patch,7 you
can do that and all the changes will be made for you. Hint: you will need to use the patch
command. Otherwise, just open the file and make the changes by hand. Just find all the
rows marked with a minus sign (-) and change them to match the rows with the plus sign
(+). If you copy and paste, don’t forget to remove the plus sign.

Changes to ssd1306.py for the Pyboard
The OLED driver will also not run correctly on the Pyboard. The changes needed are due
to the same differences in the functions for the I2C class as we saw in the RTC driver. You
may be wondering why we need to make these changes if we’re using the SPI interface.

7https://en.wikipedia.org/wiki/Patch_(Unix)

https://en.wikipedia.org/wiki/Patch_(Unix

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

298

As it turns out, the driver will work for either the I2C or SPI interfaces and since the I2C
interface is different, the changes still must be made. If we do not, MicroPython will
complain and we won’t be able to use the driver. Yes, even if we don’t use that part of the
code. This is because MicroPython will check syntax of the entire code module that is
imported.

Like the RTC driver, it is simply a matter of opening the file and making the changes.
Listing 8-3 shows the difference file to making the RTC driver compatible for the WiPy
and Pyboard.

Listing 8-3.  Changes for the ssd1306.py code module for the Pyboard (difference file)

--- /Users/cbell/Downloads/Adafruit-uRTC-master_orig/urtc.py 2017-04-21
16:52:32.000000000 -0400
+++ /Users/cbell/Downloads/Adafruit-uRTC-master/urtc.py 2017-07-20
19:20:38.000000000 -0400
@@ -40,8 +40,8 @@

 def _register(self, register, buffer=None):
 if buffer is None:
- return self.i2c.readfrom_mem(self.address, register, 1)[0]
- self.i2c.writeto_mem(self.address, register, buffer)
+ return self.i2c.mem_read(1, self.address, register)[0]
+ self.i2c.mem_write(buffer, self.address, register)

 def _flag(self, register, mask, value=None):
 data = self._register(register)
@@ -56,8 +56,8 @@

 def datetime(self, datetime=None):
 if datetime is None:
- buffer = self.i2c.readfrom_mem(self.address,
- self._DATETIME_REGISTER, 7)
+ buffer = self.i2c.mem_read(7, self.address,
+ self._DATETIME_REGISTER)
 if self._SWAP_DAY_WEEKDAY:
 day = buffer[3]
 weekday = buffer[4]
@@ -128,8 +128,8 @@

 def alarm_time(self, datetime=None, alarm=0):
 if datetime is None:
- buffer = self.i2c.readfrom_mem(self.address,
- self._ALARM_REGISTERS[alarm], 3)
+ buffer = self.i2c.mem_read(3, self.address,
+ self._ALARM_REGISTERS[alarm])
 day = None
 weekday = None
 second = None

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

299

@@ -145,8 +145,8 @@
 if not buffer[1] & 0x80 else None)
 if alarm == 0:
 # handle seconds
- buffer = self.i2c.readfrom_mem(
- self.address, self._ALARM_REGISTERS[alarm] - 1, 1)
+ buffer = self.i2c.mem_read(1,
+ self.address, self._ALARM_REGISTERS[alarm] - 1)
 second = (_bcd2bin(buffer[0] & 0x7f)
 if not buffer[0] & 0x80 else None)
 return datetime_tuple(
@@ -219,8 +219,8 @@

 def alarm_time(self, datetime=None):
 if datetime is None:
- buffer = self.i2c.readfrom_mem(self.address,
- self._ALARM_REGISTER, 4)
+ buffer = self.i2c.mem_read(4, self.address,
+ self._ALARM_REGISTER)
 return datetime_tuple(
 weekday=_bcd2bin(buffer[3] &
 0x7f) if not buffer[3] & 0x80 else None,

Now that we have the libraries modified to work on our boards, let’s look at the code
we will need to write.

Planning the Code
Now that we have our design and have downloaded and modified the libraries, we can
begin writing the code. Rather than show you a long listing and say “comprehend or perish,”
let’s walk through all the parts of the code first so that we understand each part. As we walk
through the code, feel free to test the parts yourself, but if you prefer to wait until the end to
test the code, you can. Also, as we walk through the code, we will see the differences needed
for the WiPy and Pyboard. Let’s begin with a look at the imports section.

Imports
The imports section for the project comes before all other statements but after the comment
block at the top of the file. As you have seen in previous examples and in Chapter 4, you
should include some level of documentation at the top of the file to explain what the code
does. You don’t have to write a lengthy tutorial – just a short statement or so that describes
the program including your name and other information. This is important if you want to
share your code with others and if you ever go back to the code later to reuse it.8

8I sometimes find myself wondering who wrote a piece of code only to realize it was me!
Documenting or “signing” the code may help you remember what you wrote and why.

http://dx.doi.org/10.1007/978-1-4842-3123-4_4

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

300

If you want to type in the code as we go along, you can open a new file named clock.
py with your favorite code (or text) editor. Recall the best editors are those that feature
Python syntax checking like Komodo Edit.

The imports for the WiPy are different than what we need for the Pyboard; however
we need the same libraries – we just import them from different places. The following
shows the imports for the WiPy. This is one of three areas that are different for the two
boards.

import urtc
import utime
from machine import SPI, I2C, RTC as rtc, Pin as pin
from ssd1306 import SSD1306_SPI as ssd

The imports we need for the Pyboard include the following. Notice we need a lot of
libraries. You will see we import the Pyboard library, the RTC library, ssd1306 library, and
the I2C and SPI classes. Notice also I use an alias (the “as XXXX” phrase) for some of the
libraries to make typing a bit easier (fewer characters to type).

Imports for the project
import pyb
import urtc
from machine import SPI, Pin as pin
from pyb import I2C
from ssd1306 import SSD1306_SPI as ssd

Set Up
Next, we need to set up the interfaces for I2C and SPI for use in the RTC and ssd1306
libraries. That is, the classes in those libraries need object instances of the interfaces
passed to the constructor. The code we will use is like the code we saw in previous
examples.

This is another major area of difference between the WiPy and Pyboard. The
following shows the interface setup code for the WiPy.

Setup SPI and I2C
spi = SPI(0, SPI.MASTER, baudrate=2000000, polarity=0, phase=0)

i2c = I2C(0, I2C.MASTER, baudrate=100000, pins=("P9", "P8")) The following
shows the setup for I2C and SPI for the Pyboard.

spi = SPI(2, baudrate=8000000, polarity=0, phase=0)
i2c = I2C(1, I2C.MASTER)
i2c.init(I2C.MASTER, baudrate=500000)

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

301

Notice we use different parameters for the SPI and we specify pins for the I2C.
The reason we must specify pins for the I2C interface is because the clock pin is shared
between SPI and I2C on the WiPy. Thus, we must manually specify the pins to use for the
I2C interface. You can use other pins if you’d like, but just remember to use the correct
pins when you wire the components together. Finally, notice we do not need the init()
function on the WiPy.

Initialize
Next, we initialize object instances for the classes in the libraries. This is the point where
you need to read the documentation for each library to understand what is needed to
initialize the objects. For the ssd1306 driver, the class constructor requires the number
pixels (resolution is number of pixels in rows, columns) for the display, the interface
instance (SPI from the last section), and the pins we will use for the D/C, RST, and CS
pins. For the RTC driver, we need only pass in interface instance (I2C from the last
section). The following shows how to do both steps for the WiPy.

Setup the OLED : D/C, RST, CS
oled_module = ssd(128,32,spi,pin('P5'),pin('P6'),pin('P7'))

Setup the RTC
rtc_module = urtc.DS1307(i2c)

The initialize code is very similar for the Pyboard. The only difference are the pins we
specify.

Setup the OLED : D/C, RST, CS
oled_module = ssd(128,32,spi,pin("Y4"),pin("Y3"),pin("Y5"))

Setup the RTC
rtc_module = urtc.DS1307(i2c)

There is one other thing we need to consider. When we first use the RTC or when we
replace the battery, we must initialize the date and time. We can use the driver features
to do this. In this case, we simply call the datetime() function for the RTC instance
passing in a tuple containing the new start date and time – the order of the tuple elements
are shown below. Once set, we do not need to run it again. In fact, running it again will
reset the RTC and we don’t need to do that. Thus, we leave this code commented out
for normal operation and uncomment it when we need to reset the RTC. The following
shows the code needed. When you run your project for the first time, uncomment this
code supplying the correct current date and time but later comment it out.

(year, month, day, weekday, hour, minute, second, millisecond)
#start_datetime = (2017,07,20,4,9,0,0,0)
#rtc_module.datetime(start_datetime)

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

302

New Function
Now that all the setup or boiler plate work is done, we can create a new function to allow
our project to be started and run on boot. That is, a function we can call once we import
the code module. For example, we named the file clock.py and if we create a function
named run(), we can start the code with the following statements. We will see more
about how to use these statements when we deploy the project to the board.

import clock
clock.run()

Recall we want the project to read the date and time from the RTC and display it
on the OLED once every second. Thus, we expect to see some sort of loop that performs
these two steps. However, we must again refer to the driver documentation where we find
that the RTC returns data as a tuple (year, month, day, weekday, hour, minute, second,
millisecond). This means we must format the date and time to make it easier for humans
to read and to fit on the small OLED screen.

This is a perfect candidate for a helper function or three. Fortunately, these functions
are the same for both boards so there is no need to anticipate any changes.

Let’s create a function named write_time() that takes an instance of the OLED
display and the RTC and then read the date and time with the datetime() function (with
no parameters) and print it to the OLED screen using the text() function, which takes a
starting column (called the X position in the documentation) and row (Y position) for the
location on the screen to print the message when the show() function is called. This is the
essence of the project. Placing it in a separate function allows you to isolate the behavior
and make it easier to maintain or modify the code – because the “core” is in one place.

Display the date and time
def write_time(oled, rtc):
 # Get datetime
 dt = rtc.datetime()
 # Print the date
 oled.text("Date: {0:02}/{1:02}/{2:04}".format(dt[1], dt[2], dt[0]), 0, 0)
 # Print the time
 oled.text("Time: {0:02}:{1:02}:{2:02}".format(dt[4], dt[5], dt[6]), 0, 10)
 # Print the day of the week
 oled.text("Day: {0}".format(get_weekday(dt[3])), 0, 20)
 # Update the OLED
 oled.show()

Notice we use the print() function and the format() function to take the data from
the RTC and format it in an expected format that most clocks use: HH:MM::SS and MM/DD/
YYYY. Notice there is an additional function here named get_weekday(). This function
takes the number of the day of the week as returned from the RTC and returns a string for
the name of the day. The following shows the code for this function.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

303

Return a string to print the day of the week
def get_weekday(day):
 if day == 1: return "Sunday"
 elif day == 2: return "Monday"
 elif day == 3: return "Tuesday"
 elif day == 4: return "Wednesday"
 elif day == 5: return "Thursday"
 elif day == 6: return "Friday"
 else: return "Saturday"

There is one more function added – a function to clear the screen. This function
simply blanks the screen to allow us to overwrite the screen with new data. Normally this
is not needed, but it is a good practice to clear the screen in case the driver doesn’t do it
for you. In this case, it does now. This function is named clear_screen() and is shown
below. It simply uses the fill() and show() functions from the ssd1306 driver. Passing in
o for the fill() function tells the driver to fill the screen with no data (blank or off).

Clear the screen
def clear_screen(oled):
 oled.fill(0)
 oled.show()

Now we are ready to code the new run() function for the project. We have our helper
functions developed so we need only call them and wait for a second on each pass. The
following shows the run() function for our project. This is the last area that differs from
the Pyboard to the WiPy. The following is code for the Pyboard. Can you spot the one line
that needs to be changed for the WiPy?

Here, we make a "run" function to be used from the main.py
code module. This is preferable to direct "main" execution.
def run():
 # Display the deate and time every second
 while True:
 clear_screen(oled_module)
 write_time(oled_module, rtc_module)
 pyb.delay(1000)

Notice how “clean” this function is – we can see only three statements: clear the
screen, show the time, and wait for one second. That one line of code that needs to be
changed for the WiPy is the last. On the WiPy, we use a different class as shown below.

utime.sleep(1)

Now that we’ve seen a complete walkthrough of the parts of the code, let’s talk about
testing the code.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

304

Test the Parts of the Code
Now that we have planned the code and know how to code each of the parts, we have one
more thing to do – test the breakout boards separately. We do this by wiring one breakout
board and testing it, then powering off and unwiring that breakout board, then wiring the
other breakout board and testing it.

This is a good practice to get into the habit of doing for one primary reason. You
will save yourself a lot of grief by testing the individual parts of the project – especially
the hardware – one at a time. This not only makes it easier to narrow down any issues,
it also ensures you can identify the source of the problem. That is, if you plugged all the
hardware in and wired everything and wrote the code, deployed it, then powered it on
and nothing works, how do you know which part is to blame? This is one of my mantras:
build and test one piece at a time.

■■ Tip  Testing code one part at a time is a familiar pattern to me and it is highly
recommended you adopt the process yourself. That is, coding a part of the project at a time
and testing each individually.

For this project, there are two parts – the RTC and the OLED. Let’s see how to test
them individually. We will see code to test the components for the Pyboard. You can
modify the code as needed using the information above to work on your own board. The
code presented is intended to be run via a REPL console. I show the code for the Pyboard
and leave changing it to run on the WiPy as an exercise. Hint: look back at the previous
sections to see the changes needed.

Test the RTC Breakout Board
To test the RTC, use the following code. This is a condensed form of the code we saw in
the walkthrough for the Pyboard.

import urtc
from pyb import I2C
from machine import Pin as pin
i2c = I2C(1, I2C.MASTER)
i2c.init(I2C.MASTER, baudrate=500000)
i2c.scan()
rtc = urtc.DS1307(i2c)
year, month, day, weekday, hour, minute, second, millisecond)
start_datetime = (2017,07,20,4,7,25,0,0)
rtc.datetime(start_datetime)
print(rtc.datetime())

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

305

Notice we set the date and time in this test. When you run this for yourself, you
should change the date and time tuple to include the current date and time when you
run the test. What you should see in the REPL console is a tuple representing the date and
time. It should be the same as what you set since the code will execute much less than a
second from the time you set it to the time you query the RTC. Go ahead and reenter that
last statement several times to ensure the time changes as you’d expect. That is, wait a few
seconds and try it again – several seconds should have elapsed.

If any of the statements fail, be sure to check your wiring and look for any typos.
Also, ensure you are using the correct, modified version of the drivers (and that you have
copied them to the board).

Test the OLED Breakout Board
To test the OLED, use the following code. This is a condensed form of the code we saw in
the walkthrough.

import machine
from machine import Pin as pin
from ssd1306 import SSD1306_SPI as ssd
spi = machine.SPI(2, baudrate=8000000, polarity=0, phase=0)
oled = ssd(128,32,spi,pin("Y4"),pin("Y3"),pin("Y5"))
oled.fill(0)
oled.show()
oled.fill(1)
oled.show()
oled.fill(0)
oled.show()
oled.text("Hello, World!", 0, 0)
oled.show()

When you run this code, you should see the screen blank (it should be blank from
the start), then fill with white – see fill(1) – then blank the screen and finally display
the text message. If you do not see any output, power off your board, check all the
connections, verifying the correct pins are used, and that you have the correct modified
version of the driver copied to your board.

■■ Tip  The OLED breakout boards from Adafruit (and presumably others) comes with a
protective cover over the lens. You can and should leave that in place to ensure the lens
does not get damaged. Plus, the OLED is bright enough to see through the protective cover.

Now, let’s look at the completed code for both boards before we deploy it to our
MicroPython board.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

306

Completed Code
In this section, we will see the completed code for the WiPy and Pyboard. These listings
are provided as a reference for you to ensure you have the correct code for your board.
Later projects will show the final code for one of the boards and notes on how to modify
it for use on other boards. Listing 8-4 shows the complete code for running the project on
the WiPy.

Listing 8-4.  MicroPython Clock Code Module clock.py (WiPy)

MicroPython for the IOT - Chapter 8
#
Project 1: A MicroPython Clock!
#
Required Components:
- Pyboard
- OLED SPI display
- RTC I2C module
#
Note: this only runs on the WiPy. See chapter text
for how to modify this to run on the Pyboard
#

Imports for the project
import urtc
import utime
from machine import SPI, I2C, RTC as rtc, Pin as pin
from ssd1306 import SSD1306_SPI as ssd

Setup SPI and I2C
spi = SPI(0, SPI.MASTER, baudrate=2000000, polarity=0, phase=0)
i2c = I2C(0, I2C.MASTER, baudrate=100000,pins=("P9", "P8"))

Setup the OLED : D/C, RST, CS
oled_module = ssd(128,32,spi,pin('P5'),pin('P6'),pin('P7'))

Setup the RTC
rtc_module = urtc.DS1307(i2c)
#
NOTE: We only need to set the datetime once. Uncomment these
lines only on the first run of a new RTC module or
whenever you change the battery.
(year, month, day, weekday, hour, minute, second, millisecond)
#start_datetime = (2017,07,20,4,9,0,0,0)
#rtc_module.datetime(start_datetime)

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

307

Clear the screen
def clear_screen(oled):
 oled.fill(0)
 oled.show()

Return a string to print the day of the week
def get_weekday(day):
 if day == 1: return "Sunday"
 elif day == 2: return "Monday"
 elif day == 3: return "Tuesday"
 elif day == 4: return "Wednesday"
 elif day == 5: return "Thursday"
 elif day == 6: return "Friday"
 else: return "Saturday"

Display the date and time
def write_time(oled, rtc):
 # Get datetime
 dt = rtc.datetime()
 # Print the date
 oled.text("Date: {0:02}/{1:02}/{2:04}".format(dt[1], dt[2], dt[0]), 0, 0)
 # Print the time
 oled.text("Time: {0:02}:{1:02}:{2:02}".format(dt[4], dt[5], dt[6]), 0, 10)
 # Print the day of the week
 oled.text("Day: {0}".format(get_weekday(dt[3])), 0, 20)
 # Update the OLED
 oled.show()

Here, we make a "run" function to be used from the main.py
code module. This is preferable to direct "main" execution.
def run():
 # Display the deate and time every second
 while True:
 clear_screen(oled_module)
 write_time(oled_module, rtc_module)
 utime.sleep(1)

Now, let’s see the completed code for the Pyboard. As mentioned, the changes are
mostly in the imports and set up with one minor change in the run function. Listing 8-5
shows the complete code for running the project on the Pyboard.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

308

Listing 8-5.  MicroPython Clock Code Module clock.py (Pyboard)

MicroPython for the IOT - Chapter 8
#
Project 1: A MicroPython Clock!
#
Required Components:
- Pyboard
- OLED SPI display
- RTC I2C module
#
Note: this only runs on the Pyboard. See chapter text
for how to modify this to run on the WiPy
#

Imports for the project
import pyb
import urtc
from machine import SPI, Pin as pin
from pyb import I2C
from ssd1306 import SSD1306_SPI as ssd

Setup SPI and I2C
spi = SPI(2, baudrate=8000000, polarity=0, phase=0)
i2c = I2C(1, I2C.MASTER)
i2c.init(I2C.MASTER, baudrate=500000)

Setup the OLED : D/C, RST, CS
oled_module = ssd(128,32,spi,pin("Y4"),pin("Y3"),pin("Y5"))

Setup the RTC
rtc_module = urtc.DS1307(i2c)
#
NOTE: We only need to set the datetime once. Uncomment these
lines only on the first run of a new RTC module or
whenever you change the battery.
(year, month, day, weekday, hour, minute, second, millisecond)
#start_datetime = (2017,07,20,4,9,0,0,0)
#rtc_module.datetime(start_datetime)

Clear the screen
def clear_screen(oled):
 oled.fill(0)
 oled.show()

Return a string to print the day of the week
def get_weekday(day):
 if day == 1: return "Sunday"

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

309

 elif day == 2: return "Monday"
 elif day == 3: return "Tuesday"
 elif day == 4: return "Wednesday"
 elif day == 5: return "Thursday"
 elif day == 6: return "Friday"
 else: return "Saturday"

Display the date and time
def write_time(oled, rtc):
 # Get datetime
 dt = rtc.datetime()
 # Print the date
 oled.text("Date: {0:02}/{1:02}/{2:04}".format(dt[1], dt[2], dt[0]), 0, 0)
 # Print the time
 oled.text("Time: {0:02}:{1:02}:{2:02}".format(dt[4], dt[5], dt[6]), 0, 10)
 # Print the day of the week
 oled.text("Day: {0}".format(get_weekday(dt[3])), 0, 20)
 # Update the OLED
 oled.show()

Here, we make a "run" function to be used from the main.py
code module. This is preferable to direct "main" execution.
def run():
 # Display the deate and time every second
 while True:
 clear_screen(oled_module)
 write_time(oled_module, rtc_module)
 pyb.delay(1000)

Ok, now we’re ready to execute the project.

Execute!
We are finally at the point where we can copy all the files to our board and execute the
project code. There are several recommended steps in this process as shown below.
You should follow this process each time you want to deploy and test a project.

	 1.	 Connections: Double-check all hardware connections

	 2.	 Power: Power on the board

	 3.	 Copy Files: Copy the drivers and code files to the board

	 4.	 Test: Use a REPL console to test the code, fix any issues, and
recopy the file(s)

	 5.	 Execute: When satisfied, modify main.py and then reboot
the board

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

310

The first step cannot be overstated. Always check your connections every time you
power on the board. This is in case curious hands have wandered by and “examined”
your project or you’ve moved it or some other event has occurred to unplug wires. It
never hurts to be extra careful.

Next, we power on the board and check for any issues. Yes, this is the smoke test!
Simply make sure all LEDs that are supposed to illuminate do (like those on the board)
and that things that should not be on are off. For example, if you see a solid bar on the
OLED when you power it on, that’s not a good sign. If ever in doubt, pull the power and
check your connections. If things still aren’t right, disconnect everything and test your
board. Sometimes a damaged component can cause strange behavior.

Next, we copy all the drivers and code we want to use to the board. When that is
done, we can test the code. Since we used a run() function to contain the main code, we
can simply import the code and call that function as follows.

>>> import clock
>>> clock.run()

Go ahead and power on your board now and run the code as shown. You should see
something like Figure 8-5, which shows the project running in all its glory.

Figure 8-5.  A MicroPython Clock!

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

311

It is at this point that you should basking in the wonder of your first successful
MicroPython hardware project. Take some time to bask in your delight of a job well done.

The final step in the process is to make your project run by default when you power
on your board. This is an optional step and one that you only need to take if you want to
make your project run every time you power on the board. That is, you will dedicate the
board for use in the project for some time. Recall the main.py code module on the board
will execute on boot, and thus your project will execute when the board is powered on. All
you need to do is add the code to that file to start your project as follows. Go ahead and
make the changes now (you can always undo the changes later).

main.py -- put your code here!
import clock
clock.run()

And now for the ultimate test: if you’ve modified the main.py file, power off your
board then power it on again. If the date and time show up after a few seconds, you’ve
done it! You have successfully created a project you can package and run anywhere you
want and, so long as the coin cell battery has a charge, it won’t lose time.

Taking It Further
This project has a lot of potential for embellishment. If you liked the project, you should
consider taking time to explore some embellishments. Here are a few you may want to
consider. Some are easy and some may be a challenge.

•	 Use a different RTC

•	 Calculate AM/PM and display it

•	 Connect your board to the Internet and use an NTP service
instead of the RTC

•	 Use a larger display and display the Julian date

•	 Use a light sensor to turn off or dim the display in direct sunlight

•	 Add a speaker and implement an alarm feature (hint: some RTCs
have this feature)

•	 Format the date and time using different world standards such as
YYYY/MM/DD

Of course, if you want to press on to the next project, you’re welcome to do so but
take some time to explore these potential embellishments – it will be good practice.

If you’re thinking this project is rudimentary now that we have solved the problems
with the libraries, consider this: most sensor-based projects and indeed most projects
that generate data must be associated with a date and time when the events are sampled.
Thus, using a RTC to read the date and time will be a consideration for many IOT projects.

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

312

BUILDING YOUR OWN RTC MODULE

If you’re like me and like to tinker, you can build your own RTC module using a
RTC DS1307 chip, two resistors, a crystal, and a coin cell battery breakout board.
You can find these components at most online electronics stores such as Adafruit
(www.adafruit.com), Sparkfun (www.sparkfun.com), and Mouser (www.mouser.com).
The component list is as follows.

•	 DS1307 chip

•	 Coin cell battery breakout board

•	 3v coin cell battery

•	 32.768kHz Crystal

•	 (2) 1K Resistor

That’s it! The following shows how to connect the components on a breadboard. If you
want to implement this side project, see http://www.learningaboutelectronics.
com/Articles/DS1307-real-time-clock-RTC-circuit.php for an example
walkthrough.

If you plan to build a lot of projects that use a RTC, buying these components in bulk
and wiring up your own RTC 1307 module may be more cost effective. Plus, it ups
the cool factor of your kit.

http://www.adafruit.com/
http://www.sparkfun.com/
http://www.mouser.com/
http://www.learningaboutelectronics.com/Articles/DS1307-real-time-clock-RTC-circuit.php
http://www.learningaboutelectronics.com/Articles/DS1307-real-time-clock-RTC-circuit.php

Chapter 8 ■ Project 1: Hello, World! MicroPython Style

313

Summary
Working with hardware such as breakout boards and the drivers we need to talk to them
over specialized interfaces such as I2C and SPI can be a challenge. Sometimes, like we
saw in this chapter, you need to adapt a driver for use with your MicroPython board. The
reason for this is because of the growing array of boards, vendors are creating specialized
versions of the MicroPython firmware for use on those boards. In some cases, like the
ssd1306 driver, we only need to make some minor changes to use the driver on our
boards. The trick, then, is understanding why the changes are necessary and taking the
time to make the changes yourself. It is so easy to just give up when something doesn’t
work – don’t do that! Take your time and understand the problem, and then solve it
systematically.

In this chapter, we saw a detailed walkthrough of a MicroPython clock. We used an
OLED display to display time we read from a RTC. Along the way, we learned how to plan
our projects, make hardware connections, and write code for use in deploying on our
MicroPython boards.

In the next chapter, we will explore a project that uses more low-level hardware
in the form of discrete components such as LEDs, resistors, and buttons. These are the
building blocks you will need to form more complex solutions.

315© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_9

CHAPTER 9

Project 2: Stoplight Simulator

Now that we’ve had a tutorial of how to design, wire, and implement a MicroPython
project, let’s now look at a more advanced project. In this case, we will use some very
basic components to learn further how to work with hardware. The hardware of choice
for this project will be LEDs, resistors, and a button. A button is the most basic of sensors.
That is, when the button is pressed, we can make our MicroPython code respond to that
action.

Working with LEDs is perhaps more of a “Hello, World!” style project for hardware
because turning LEDs on and off is easy and except for figuring out what size of current
limiting resistor is needed, wiring LEDs is also easy. Like most LED-based projects, we
will be implementing a simulation. More specifically, we will implement a traffic light and
a pedestrian walk button. The walk button is a button that pedestrians can use to trigger
the traffic signal to change and stop traffic so they can cross the street.

Simulation projects can be a lot of fun because we already have an idea of how it
should work and we are simulating something we have encountered. For example, unless
you’ve lived in a very rural area, you most likely have encountered a traffic signal at an
intersection that included walk/don’t walk signs with a button. If you live in the city, you
will have encountered these in various configurations. When a pedestrian (or bicyclist)
presses the walk button, the traffic lights all cycle to red and the walk sign is illuminated.
After some time (30 seconds or so), the walk sign flashes and then about 15 seconds later,
the walk signal cycles to don’t walk and the traffic signals resume their normal cycle.

■■ Note  The word “cycle” refers to a set of states that are linear in action. Thus, cycle
refers to the changing of one state to another.

We will also add a new twist to the traffic light simulation concept. We will use a web
page to trigger the walk request. But first, we will learn how to wire and code the LED
lights and add the web interface in a second step.

https://doi.org/10.1007/978-1-4842-3123-4_9

Chapter 9 ■ Project 2: Stoplight Simulator

316

Overview
In this chapter, we will implement a traffic signal with a pedestrian walk button. This
project works with LEDs, which allows us to see the state of our code as it executes. For
the traffic light (also called a stoplight), we will use a red, yellow, and green LED to match
the same colored lights on the traffic light. We will also use a red and yellow LED to
correspond to the don’t walk (red) and walk (yellow) lights.

We will use a pushbutton (also called a momentary button) because it triggers (is on)
only when pushed. When released, it is no longer triggered (is off). Trigger is the word
used to describe the state of the button where triggered means the connections from
one side of the button to another are connected (on). A button that remains triggered
(latched) is called a latching button, which typically must be pressed again to turn off.

We will simulate the traffic light and walk signal by first turning on only the green
traffic light LED and the red walk LED signal. This is the normal state we will use. When
the button is pressed, the traffic light will cycle to yellow for a few seconds then cycle to
red. After a few seconds, the walk signal will cycle to yellow and after a few seconds will
begin flashing. After a few more seconds, the walk signal will cycle back to red and the
traffic light to green.

To make things even more interesting, we will also see how to modify this project
to use a button simulated from a web page. Yes, we will see how to remotely control
the hardware and our code over the network. If you are using the Pyboard or another
MicroPython board that does not have any networking capabilities, you will need a
network module. We will revisit networking for the Pyboard as we develop the project.

Now let’s see what components are needed for this project and then we will see how
to wire everything together.

Required Components
Table 9-1 lists the components you will need. You can purchase the components
separately from Adafruit (adafruit.com), Sparkfun (sparkfun.com), or any electronics
store that carries electronic components. Links to vendors are provided should you want
to purchase the components. When listing multiple rows of the same object, you can
choose one or the other - you do not need both. Also, you may find other vendors that sell
the components. You should shop around to find the best deal. Costs shown are estimates
and do not include any shipping costs.

Chapter 9 ■ Project 2: Stoplight Simulator

317

Table 9-1.  Required Components

Component Qty Description Cost Links

MicroPython
board

1 Pyboard v1.1 with
headers

$45-50 https://www.adafruit.com/
product/2390 https://www.
adafruit.com/product/3499

https://www.sparkfun.com/
products/14413

https://store.micropython.org/store

WiPy $25 https://www.adafruit.com/
product/3338

https://www.pycom.io/product/wipy/

LED 2 Red LEDs kit https://www.adafruit.com/
product/2975

LED 2 Yellow LEDs kit https://www.adafruit.com/
product/2975

LED 1 Green LEDs kit https://www.adafruit.com/
product/2975

Resistor 5 220 or 330 ohm
resistors

$8-12 https://www.sparkfun.com/
products/10969

Button 1 Momentary
button, breadboard
friendly

kit https://www.sparkfun.com/
products/12708

Breadboard 1 Prototyping board,
half-sized

$5 https://www.sparkfun.com/
products/12002

Networking
Module
(Pyboard)

1 CC3000 breakout
board (or
equivalent)

$15+ various

Jumper wires
(WiPy)

9 M/M jumper
wires, 6” (cost
is for a set of 10
jumper wires)

$4 https://www.sparkfun.com/
products/8431

Jumper wires
(Pyboard)

17 M/M jumper
wires, 6” (cost
is for a set of 10
jumper wires)

$4 https://www.sparkfun.com/
products/8431

Power 1 USB cable to get
power from PC

Use from your spares

1 USB 5V power
source and cable

Use from your spares

https://www.adafruit.com/product/2390
https://www.adafruit.com/product/2390
https://www.adafruit.com/product/3499
https://www.adafruit.com/product/3499
https://www.sparkfun.com/products/14413
https://www.sparkfun.com/products/14413
https://store.micropython.org/store
https://www.adafruit.com/product/3338
https://www.adafruit.com/product/3338
https://www.pycom.io/product/wipy/
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.sparkfun.com/products/10969
https://www.sparkfun.com/products/10969
https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431

Chapter 9 ■ Project 2: Stoplight Simulator

318

Notice in the cost, “kit” for the LEDs and button. This refers to the fact that these
components can be found in the Parts Pal kit from Adafruit that we saw in Chapter 2.
Other vendors may have similar kits. Buying basic components like LEDs, buttons, and
resistors are much cheaper when bought in a kit.

Similarly, you can pick up a set of resistors of various sizes much cheaper than if
you bought a few at a time. In fact, you most likely will find buying a small set of 5 or 10
of each size resistor that you will eventually need will be far more expensive than if you
purchased a set. The set from Sparkfun will provide you all the resistors you need for
most projects.

Also, notice we need far fewer jumper wires for the WiPy. This is because we will
be using a networking breakout board (in this example, a CC3000 module) to allow the
Pyboard to connect to our network.

Finally, notice we need a Pyboard friendly networking module for the Pyboard. Once
again, currently this must be a CC3000-based board or a WIZNET5K-based board. Refer
to the previous chapters for samples of the networking breakout boards that work with
the Pyboard.

Recall from Chapter 7 that LEDs require a current limiting resistor that reduces the
current to safe levels for the LED. To determine what size resistor we need, we need to know
several things about the LED. This data is available from the manufacturer who provides the
data in the form of a datasheet or in the case of commercially packaged products, lists the
data on the package. The data we need includes the maximum voltage, the supply voltage
(how many volts are coming to the LED), and the current rating of the LED.

For example, if I have an LED like the ones in the Adafruit Parts Pal, in this case a
5mm red LED, we find on Adafruit's website (adafruit.com/products/297) that the LED
operates at 1.8-2.2V and 20mA of current. Let's say we want to use this with a 5V supply
voltage. We can then take these values and plug them into this formula:

R = (Vcc-Vf)/I

Using more descriptive names for the variable, we get the following.

Resistor = (Volts_supply - Volts_forward) / Desired_current

Plugging our data in, we get this result. Note that we have mA so we must use the
correct decimal value (divide by 1000). In this case, it is 0.020 and we will pick a voltage in
the middle.

Resistor = (5 – 1.8) / 0.020
 = 3.2 / 0.020
 = 160

Thus, we need a resistor of 160 ohms. However, there is no resistor with that rating.
When this happens, we use the next size up. For example, if you have only 220 or even
330 ohm resistors, you can use those. The result will be the LEDs will not be as bright but
having a higher resistor is much safer than using one that is too small. Too much current
and an LED will burn out.

Now, let’s see how to wire the components together.

http://dx.doi.org/10.1007/978-1-4842-3123-4_2
http://dx.doi.org/10.1007/978-1-4842-3123-4_7

Chapter 9 ■ Project 2: Stoplight Simulator

319

Set Up the Hardware
While there are a lot of wires you will need to connect for this project using a WiPy
and even more for the Pyboard, the components we will use are easy to plug into a
breadboard. Table 9-2 shows the connections needed for this project.

Table 9-2.  Connections for the MicroPython (Pyboard and WiPy)

MicroPython Board

WiPy Pyboard Component Wire Color

P3 X7 Stoplight: Red LED

P4 X6 Stoplight: Yellow LED

P5 X5 Stoplight: Green LED

P6 X4 Walk signal: Red LED

P7 X3 Walk signal: Yellow LED

P23 X1 Button

GND GND Breadboard

Let’s review some tips for wiring components. The best way to wire components to
your board is to use a breadboard. As we saw in Chapter 7, a breadboard allows us to plug
our components in and use jumper wires to make the connections. In this project, we will
use one jumper wire for ground from the MicroPython board to the breadboard and then
jumpers on the breadboard to connect to the button. In fact, we will use the ground rail
on one side of the breadboard to plug in to one side of the LEDs.

The button works in either position so long as the pins are oriented as shown – with
two legs on one side of the center trough. If you orient the button with the legs that can
reach either side of the trough, it will be oriented correctly. If you get it off by 90 degrees,
the button either will not work or will always be triggered. If you have any doubts,
use a multimeter to test the continuity of the button connections. You should find the
connections open when not pressed and closed when pressed.

The only component that is polarized is the LED (it has a positive and negative leg).
When you look at the LED, you will see one leg (pin) of the LED is longer than the other.
This longer side is the positive side. We will plug the LEDs in so that the negative leg is
plugged into the ground rail and the positive side is plugged into the main area of the
breadboard. We then plug the resistor in to jump over the center trough, connecting the
resistor to the GPIO pin on the MicroPython board. It doesn’t matter which direction you
plug the resistor in – they will work both directions.

If this sounds confusing, don’t worry as the wiring diagrams makes the connections
more obvious. Let us see how to make the connections shown in the chart for the WiPy
and Pyboard.

http://dx.doi.org/10.1007/978-1-4842-3123-4_7

Chapter 9 ■ Project 2: Stoplight Simulator

320

WiPy
Wiring for the WiPy is also best done orienting the expansion board with the USB
connector to the right. Figure 9-1 shows the wiring diagram for the WiPy. Notice how the
LEDs, resistors, and button are oriented. You should be able to use the drawing and the
wiring plan to wire your own components. Also, notice the orientation of the WiPy. This
should help you align the pins with the wires to the breadboard easier, but the physical
orientation doesn’t matter so long as you are using the correct GPIO pins.

Figure 9-1.  Wiring the Stoplight Simulation (WiPy)

Now, let’s look at the wiring diagram for the Pyboard. It is made a bit more complex
due to the need for adding a networking breakout board.

Chapter 9 ■ Project 2: Stoplight Simulator

321

Pyboard
Wiring for the Pyboard is best done orienting the board with the USB connector to the
left. This will allow you to read the pin numbers on the board even after the wires are
plugged into the board. There are additional connections needed here for the network
module. Recall that the CC3000 breakout board requires additional wiring to connect the
SPI interface to the Pyboard. Like we did for the LEDs, resistors, and button, we should
plan for how to connect the breakout board. Table 9-3 shows the connections needed
for the Pyboard when used with the CC3000 breakout board. If you are using a different
breakout board, be sure to annotate this plan with your connections.

Table 9-3.  Additional Connections for the
Pyboard and CC3000 Breakout Board

Pyboard CC3000 Wire Color

Y3 IRQ

Y4 VBEN

Y5 CS

Y6 CLK

Y7 MISO

Y8 MOSI

V+ VIN

GND GND

With these additional wires needed, the Pyboard wiring diagram is a bit more
complicated. Figure 9-2 shows the wiring diagram for the Pyboard with the CC3000
breakout board.

Chapter 9 ■ Project 2: Stoplight Simulator

322

Wow, that is a lot of wires! You can see the advantage of using a MicroPython board
that has built-in WiFi – you don’t have to dedicate additional wires that can sometimes
make a simple project more complex or when you look at your project all wired up – it
looks like a nest of wiring.

■■ Note I f you are using the Pyboard, you may be able to use the onboard LEDs instead of
separate LEDs.

Finally, always make sure you wire your project carefully, double-checking all the
connections – especially power, ground, and any pins used for signaling (will be set to
“high” or “on”) such as those pins used for SPI interfaces. Most importantly, never plug or
unplug jumper wires when the project (or your board) is powered on. This will very likely
damage your board or components.

■■ Caution  Never plug or unplug jumper wires when the project is powered on. You risk
damaging your board or the components.

Once again, always make sure to double-check your connections before powering
the board on. Now, let’s talk about the code we need to write. Don’t power on your board
just yet – there is a fair amount of discussion needed before we’re ready to test the project.

Figure 9-2.  Wiring the Stoplight Simulation (WiPy)

Chapter 9 ■ Project 2: Stoplight Simulator

323

Write the Code
Now it’s time to write the code for our project. The code isn’t overly complicated but it is
a bit longer than the examples thus far. So, we are going to write the code in two parts. In
the first part, we will see how to write code to simulate the pedestrian crosswalk button
and traffic light. In the second part, we will forgo the use of a hardware button and instead
use a web browser to control the button action remotely.

■■ Note  These sections demonstrate the code for the WiPy and describe the differences
for the Pyboard. See the complete code listing at the end of the chapter for the code for
each board.

As you will see, part 2 will reuse most of the code from the first part but will be a bit
more complicated with the HTML server code. Let’s begin with a look at part 1 of the
project.

Part 1: Stoplight Simulator – Using a Pushbutton
The code for part 1 of the project will need to monitor the button and when pressed, cycle
the lights as described above. We also need code to initialize the LEDs setting them to off
initially. We can write functions for monitoring the button and cycling the LEDs. We will
use an interrupt to tie the function for the button to the hardware so that we can avoid
using a polling loop.

Imports
The imports for the project will require the Pin class from the machine library and the
utime library. The following shows the imports for the WiPy.

from machine import Pin
import utime

The imports for the Pyboard also require the Pin class from the pyb library as well as
the delay function and ExtInt class. The ExtInt class is used to set up an interrupt for
the button to fire when the button is pressed.

from pyb import Pin, delay, ExtInt

Setup
The setup code for this project will need to initialize the button and LED instances and
then turn off all the LEDs (as a precaution) and turn on the green stoplight LED and the
red walk signal LED. Listing 9-1 shows the code for setup and initialization.

Chapter 9 ■ Project 2: Stoplight Simulator

324

Listing 9-1.  Setup and Initialization of the Button and LEDs (WiPy)

Setup the button and LEDs
button = Pin('P23', Pin.IN, Pin.PULL_UP)
led1 = Pin('P3', Pin.OUT)
led2 = Pin('P4', Pin.OUT)
led3 = Pin('P5', Pin.OUT)
led4 = Pin('P6', Pin.OUT)
led5 = Pin('P7', Pin.OUT)

Setup lists for the LEDs
stoplight = [led1, led2, led3]
walklight = [led4, led5]

Turn off the LEDs
for led in stoplight:
 led.value(0)
for led in walklight:
 led.value(0)

Start with green stoplight and red walklight
stoplight[2].value(1)
walklight[0].value(1)

One thing to notice is how the button is initialized. This is a Pin object instance that
is set up as an input (read) and the pull-up resistors are turned on. This allows the board
to detect when the button is pressed because the value of the pin will be a positive value
when the connection is made (the button is pressed).

Notice also I create a list that contains the LEDs for the stoplight and walk signal
(named walklight in the code). This is mostly for demonstration so you can see how to
manage lists of class objects. As you can see, it makes it easier to call the same function
for all the objects in the list using a loop. Take note of this technique as you will need it
from time to time in other projects.

The code for the Pyboard is largely the same. The differences include different
pin numbers for the LEDs and buttons (see wiring diagram), different options for the
initialization of the pins (Pin.OUT_PP instead of Pin.OUT), and the use of different
functions for the Pin class: high() for value(1) and low() for value(0).

Functions
There are two functions needed for this part of the project. First, we need a function to
cycle through the lights. Second, we need a function to monitor the button press. Let’s
look at the cycle light function.

We will name the cycle lights function cycle_lights(). Recall we need to control
how the lights change state. We do this with a specific cycle as described earlier. To recap,
we call this function when we want to simulate changing the stoplight when the walk
request button is pressed. Thus, this function will be called from the code for the button.

Chapter 9 ■ Project 2: Stoplight Simulator

325

Listing 9-2 shows the code for the cycle_lights() button. As you will see, the code is
rather straightforward. The only tricky part may be the loop used to flash the yellow walk
LED. Be sure to read through it so that you understand how it works.

Listing 9-2.  The cycle_lights() Function (WiPy)

We need a method to cycle the stoplight and walklight
#
We toggle from green to yellow for 2 seconds
then red for 20 seconds.
def cycle_lights():
 # Go yellow.
 stoplight[2].value(0)
 stoplight[1].value(1)
 # Wait 2 seconds
 utime.sleep(2)
 # Go red and turn on walk light
 stoplight[1].value(0)
 stoplight[0].value(1)
 utime.sleep_ms(500) # Give the pedestrian a chance to see it
 walklight[0].value(0)
 walklight[1].value(1)
 # After 10 seconds, start blinking the walk light
 utime.sleep(1)
 for i in range(0,10):
 walklight[1].value(0)
 utime.sleep_ms(500)
 walklight[1].value(1)
 utime.sleep_ms(500)

 # Stop=green, walk=red
 walklight[1].value(0)
 walklight[0].value(1)
 utime.sleep_ms(500) # Give the pedestrian a chance to see it
 stoplight[0].value(0)
 stoplight[2].value(1)

The code for the Pyboard is very similar with the changes as noted previously for
controlling the LEDs and use of the delay() function instead of the utime class sleep
functions.

We will name the button function button_pressed(). This function is used as a
callback for the button press interrupt. Technically, we tell MicroPython to associate this
method with the pin interrupt but we will see that in a moment. However, there is another
element to this function that requires explanation.

When we use a component like a button and the user (you) press the button, the
contacts in the button do not go from an off state to and on state instantaneously. There is
a very small period where the value read is erratic. Thus, we cannot simply say, “when the
pin goes high” because the value read on the pin may “bounce” from low to high (or high

Chapter 9 ■ Project 2: Stoplight Simulator

326

to low) rapidly. This is called bouncing. We can overcome this artificially with code (as
well as other techniques) – called debouncing.

In this case, we can check the value of the pin (button) over time and only “trigger”
the button press if and only if the value remains stable during that time. Code for
debouncing the pin is shown in Listing 9-3. Notice in the loop we wait for a value of 50.
This is 50 milliseconds. If the trigger is long enough, we call the cycle_lights() function.

Listing 9-3.  The button_pressed() Function (WiPy)

def button_pressed(line):
 cur_value = button.value()
 active = 0
 while (active < 50):
 if button.value() != cur_value:
 active += 1
 else:
 active = 0
 utime.sleep_ms(1)
 print("")
 if active:
 cycle_lights()
 else:
 print("False press")

■■ Tip  For more information about debouncing and the techniques available to avoid it,
see http://www.eng.utah.edu/~cs5780/debouncing.pdf.

Finally, we need to set up the button to call the button_pressed() function when the
board detects the interrupt. The following sets the callback function on the WiPy.

Create an interrupt for the button
button.callback(Pin.IRQ_FALLING, button_pressed)

The code on the Pyboard is also a single line of code but in this case, we must use the
ExtInt class to set up the interrupt handler as shown below.

Create an interrupt for the button
e = ExtInt('X1', ExtInt.IRQ_FALLING, Pin.PULL_UP, button_pressed)

■■ Tip  See the online MicroPython documentation for more information about using the
Pin callback for the WiPy and the interrupt for the Pyboard.

http://www.eng.utah.edu/~cs5780/debouncing.pdf

Chapter 9 ■ Project 2: Stoplight Simulator

327

Now we’re all set to test the code. Go ahead and open a new file named ped_part1_
wipy.py (or ped_part1_pyb.py for the Pyboard) and enter the code above. Listing 9-4
shows the complete code for part 1 of the project. If you’re using the Pyboard, it’s OK to
cheat by looking at the complete listing at the end of the chapter.

Listing 9-4.  Stoplight Simulation – Part 1 (WiPy)

MicroPython for the IOT - Chapter 9
#
Project 2: A MicroPython Pedestrian Crosswalk Simulator
Part 1 - controlling LEDs and button as input
#
Required Components:
- WiPy
- (2) Red LEDs
- (2) Yellow LEDs
- (1) Green LED
- (5) 220 Ohm resistors
- (1) breadboard friendly momentary button
#
Note: this only runs on the WiPy.
#
Imports for the project
from machine import Pin
import utime

Setup the button and LEDs
button = Pin('P23', Pin.IN, Pin.PULL_UP)
led1 = Pin('P3', Pin.OUT)
led2 = Pin('P4', Pin.OUT)
led3 = Pin('P5', Pin.OUT)
led4 = Pin('P6', Pin.OUT)
led5 = Pin('P7', Pin.OUT)

Setup lists for the LEDs
stoplight = [led1, led2, led3]
walklight = [led4, led5]

Turn off the LEDs
for led in stoplight:
 led.value(0)
for led in walklight:
 led.value(0)

Start with green stoplight and red walklight
stoplight[2].value(1)
walklight[0].value(1)

Chapter 9 ■ Project 2: Stoplight Simulator

328

We need a method to cycle the stoplight and walklight
#
We toggle from green to yellow for 2 seconds
then red for 20 seconds.
def cycle_lights():
 # Go yellow.
 stoplight[2].value(0)
 stoplight[1].value(1)
 # Wait 2 seconds
 utime.sleep(2)
 # Go red and turn on walk light
 stoplight[1].value(0)
 stoplight[0].value(1)
 utime.sleep_ms(500) # Give the pedestrian a chance to see it
 walklight[0].value(0)
 walklight[1].value(1)
 # After 10 seconds, start blinking the walk light
 utime.sleep(1)
 for i in range(0,10):
 walklight[1].value(0)
 utime.sleep_ms(500)
 walklight[1].value(1)
 utime.sleep_ms(500)

 # Stop=green, walk=red
 walklight[1].value(0)
 walklight[0].value(1)
 utime.sleep_ms(500) # Give the pedestrian a chance to see it
 stoplight[0].value(0)
 stoplight[2].value(1)

Create callback for the button
def button_pressed(line):
 cur_value = button.value()
 active = 0
 while (active < 50):
 if button.value() != cur_value:
 active += 1
 else:
 active = 0
 utime.sleep_ms(1)
 print("")
 if active:
 cycle_lights()

Chapter 9 ■ Project 2: Stoplight Simulator

329

 else:
 print("False press")

Create an interrupt for the button
button.callback(Pin.IRQ_FALLING, button_pressed)

Test and Debug the Code
Testing this part of the project requires copying the source code file to the board and then
executing it. Since the code was written without a run() function, simply importing it is
all you need to do to run the code. Be sure to check all connections before powering on
the board. Recall, the command we use to import and run the code once we connect to
the board is shown below.

>>> import ped_part1_wipy

Once imported, the code will run and you can press the button to see the lights cycle
through the stages. If you do not see any of the lights on (the green stoplight and red walk
signal should be on), check the setup and initialization code. If the lights do not cycle
when the button is pressed, check the code for the button to ensure you have it correct. If
they do not illuminate in order, you may have the pins wired incorrectly. Be sure to check
all wiring connections when encountering problems, always powering off the board
before disconnecting or reconnecting any wires or components.

When the project is working, try it out a few times to ensure it works as expected.
Then you should congratulate yourself! You’ve just wired together several discrete
electronic components and made a working simulation of a pedestrian walk button and
stoplight. Cool!

Now, let’s kick this project up a notch and make it accessible over the Internet. After
all, that is what IOT is all about!

Part 2: Stoplight Simulator – Remote Control with HTML
The code for this part will use all the code from the first part but we will not need the code for
the button. Instead, we will use the Socket class to create a listener to listen for a connection
from a web browser. The code will send a short HTML-based response (a simple web page) to
the client that includes a form containing two buttons – one for the walk request and another
for shutting down the server code. The listener will listen on port 80.

■■ Note  If you’re using the WiPy, you don’t need to add any networking code, but I’ll show
you how to do so in case you want to run the project on your own network or connect it to
the Internet.

Chapter 9 ■ Project 2: Stoplight Simulator

330

The concept of the HTML server is quite simple. The code listens for a connection on
the socket port then receives the request (in this case in the form of HTML GET method)
and sends an HTML response (the web page). The code then checks to see if the request
contains the form data from one of the two buttons: a button to request the walk cycle
and another to shut down the server. As you will see, shutting down the server forces us to
write the code a bit tidier.

If you’ve never used HTML code before, don’t worry as the example code will
provide everything you need. You don’t have to learn HTML to use the project in this
chapter (or the next), but a basic knowledge would be helpful if you want to elaborate
on the project or use the HTML server concept for your own projects. A good source of
information about HTML can be found at https://www.w3schools.com/html/.

Let’s look at the changes needed for the imports section.

Imports
We need a few more libraries in the import section. We need the socket library (renamed
with an alias for clarity), the machine library, and the WLAN class from the network library. It is
perfectly normal to write the imports this way, but with a little imagination you can simplify
them. Do you see how? The following shows the complete import section for the WiPy.

from machine import Pin
import usocket as socket
import utime
import machine
from network import WLAN

The imports for the Pyboard are a bit shorter. We need to add the SPI library for the
network board and the network library as well as the socket library. The following shows
the complete import section for the Pyboard.

from pyb import Pin, delay, ExtInt, SPI
import network
import usocket as socket

Now, let’s look at the changes in the setup section.

Setup
For this part of the project, we need to add the code to connect our board to our network
(or the Internet) via a wireless connection. We also need to place the HTML code here in
the form of a string. This is typically where (and how) one defines a large string for use in
Python. Using triple quotes on either side makes the string a documentation string (also
called a docstring). See https://www.python.org/dev/peps/pep-0257/ for more details.

The networking code for the WiPy is the same code we saw earlier in the book. In this
case, it sets up the wireless networking feature to connect to an existing wireless network
rather than the default access point behavior of the WiPy. Listing 9-5 shows the network
code for the WiPy.

https://www.w3schools.com/html/
https://www.python.org/dev/peps/pep-0257/

Chapter 9 ■ Project 2: Stoplight Simulator

331

Listing 9-5.  Wireless Network Setup (WiPy)

Setup the board to connect to our network.
wlan = WLAN(mode=WLAN.STA)
nets = wlan.scan()
for net in nets:
 if net.ssid == 'YOUR_SSID':
 print('Network found!')
 wlan.connect(net.ssid, auth=(net.sec, 'YOUR_PASSWORD'), timeout=5000)
 while not wlan.isconnected():
 machine.idle() # save power while waiting
 print('WLAN connection succeeded!')
 print("My IP address is: {0}".format(wlan.ifconfig()[0]))
 break

The networking code for the Pyboard is the same code we saw earlier in the book. In
this case, it first sets up the SPI interface to a networking board (in this example a CC3000
breakout board), then initiates a wireless connection to an existing wireless network
rather than the default access point behavior of the WiPy. Listing 9-6 shows the network
code for the Pyboard.

Listing 9-6.  Wireless Network Setup (Pyboard)

Setup network connection
nic = network.CC3K(SPI(2), Pin.board.Y5, Pin.board.Y4, Pin.board.Y3)
Replace the following with yout SSID and password
nic.connect("YOUR_SSID", "YOUR_PASSWORD")
print("Connecting...")
while not nic.isconnected():
 delay(50)
print("Connected!")
print("My IP address is: {0}".format(nic.ifconfig()[0]))

■■ Tip  You must change the SSID and password in the code to match your network.

Another part of the setup is the HTML response code. This may seem like a difficult
part of the code, but it is simple. We are constructing a string that we will send back to the
client through the socket. This string contains HTML code starting with a header. Then,
we supply a title (which appears in the title bar of your browser), some text to display
on the page, and a form that contains the two buttons. These buttons are in a form that,
when each is pressed, will send a HTML GET request through the socket to the server.
Simple! Listing 9-7 shows the HTML string for the project. Again, don’t worry about the
details. You can work on improving the web page later.

Chapter 9 ■ Project 2: Stoplight Simulator

332

Listing 9-7.  HTML Response String

HTML web page for the project
HTML_RESPONSE = """<!DOCTYPE html>
<html>
 <head>
 <title>MicroPython for the IOT - Project 2</title>
 </head>
 <center><h2>MicroPython for the IOT - Project 2</h2></center>

 <�center>A simple project to demonstrate how to control hardware over the

Internet.</center>

 <form>
 <center>
 <�button name="WALK" value="PLEASE" type="submit" style="height:

50px; width: 100px">REQUEST WALK</button>

 <�button name="shutdown" value="now" type="submit" style="height:

50px; width: 100px">Stop Server</button>
 </center>
 </form>
</html>
"""

Notice the buttons in the code (<button></button> tags). The name and value will
be sent in the request to the server. The type of the button is defined as submit and when
placed on a form, causes the client to post the form data to the server when the button
is pressed. Finally, the string before the end tag is the label that will be displayed on the
button.

If you’re concerned about this being a huge string that takes up memory, you’re right
it is and it does. If you are planning a project that uses a large HTML response or perhaps
several responses, you may want to consider storing those in a file (one response per file)
and reading the data from a file before sending it to the client. This will save some data
space and could make the difference for larger projects that use more memory.

Don’t be concerned about the number of lines used here. The whitespace is used
for decoration (mostly) so if you wanted to reduce its overall visual size, you can remove
the whitespace but it is common practice to indent the HTML code like this for easier
reading.

■■ Tip I f you are concerned about security (who isn’t?), you can use secure socket layer
connections to make your connection to your MicroPython board more secure. MicroPython
provides a class named ussl that you can use. See the ussl class documentation for
more information or you can look at the example at https://github.com/micropython/
micropython/blob/master/examples/network/http_server_ssl.py.

https://github.com/micropython/micropython/blob/master/examples/network/http_server_ssl.py
https://github.com/micropython/micropython/blob/master/examples/network/http_server_ssl.py

Chapter 9 ■ Project 2: Stoplight Simulator

333

There is one other important thing about using HTML on your MicroPython board
that should be made clear: this example and many others you may find on the Internet
should not be confused with a robust web server. More specifically, this example merely
sends HTML back to the client once it detects a HTML GET method (request) from the
client while listening on a network socket. So, this example is merely a simple HTML
server and not a web server in the sense that it can do all manner of things a web server
can do – it doesn’t. Thus, you should take care to code your projects to restrict operation
to specific GET (or POST) requests and return the appropriate HTML response.

USING WEB PAGES WITH IMAGES

Since there isn’t a web server built into MicroPython (yet), serving web pages
with images or any other media is problematic. However, you can use a little trick
and your PC to use images in your projects. We can use the SimpleHTTPServer
in Python on our PC to provide a rudimentary web server. In our HTML from our
MicroPython board, we can use the img tag for the images that uses a URL to point
to the file on our PC. For example, the following HTML will reference an image in the
same folder as the HTTP server on our PC.

<html>
 <head>
 <title>MicroPython for the IOT - Project 2</title>
 <meta http-equiv="refresh" content="10">
 </head>
 <body>
 <p>Pedestrian Stoplight Simulation</p>
 <form>

 </form>
 </body>
</html>

Notice the img tag uses a URL to the localhost on port 8000. We establish that
when we run the SimpleHTTPServer in Python on our PC as shown below. Run this
command in the same folder as the images you want to use.

$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...
127.0.0.1 - - [07/Aug/2017 14:42:30] "GET /red.png HTTP/1.1" 200 -

This creates a hybrid solution that will allow you to use images in your MicroPython
web-based projects albeit with a little help from our PC (or any other PC on you network).

Now let’s look at how to make the run() function.

Chapter 9 ■ Project 2: Stoplight Simulator

334

Functions
All that remains to do in the code is to change the code for the hardware button and make
a run() function to contain the main portion of the code. In this project, that includes
the code for setting up the socket and the listen and respond code. You can leave the
button_pressed() function, but it is not needed. Listing 9-8 shows the code for the run()
function.

Listing 9-8.  The run() Function (WiPy)

Setup the socket and respond to HTML requests
def run():
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('', 80))
 sock.listen(5)
 server_on = True
 while server_on:
 client, address = sock.accept()
 print("Got a connection from a client at: %s" % str(address))
 request = client.recv(1024)
 # Process the request from the client. Payload should appear in pos 6.
 # Check for walk button click
 walk_clicked = (request[:17] == b'GET /?WALK=PLEASE')
 # Check for stop server button click
 stop_clicked = (request[:18] == b'GET /?shutdown=now')
 if walk_clicked:
 print('Requesting walk now!')
 cycle_lights()
 elif stop_clicked:
 server_on = False
 print("Goodbye!")
 client.send(HTML_RESPONSE)
 client.close()

Notice we begin the function with setting up the socket and binding it to port 80.
The bind() function uses an empty string to instruct the socket to use the current IP
address. Next, we tell the socket to listen on the socket with a five-second timeout using
the listen(5) function. Then, we set a Boolean variable to loop over the listen and
respond code while it is true. In this case, we use the Boolean and set it to False when the
shutdown button is pressed.

Inside the loop is where things get interesting. The first thing we do is accept a
connection from the socket using sock.accept(), which returns two items: the client
object instance and the address of the client. We can print the address of the client for
debugging purpose.

Next, we tell the client to receive up to 1024 bytes with the client.recv(1024)
call. This will wait until there is a response from the client, so be aware this is not a
preemptive loop – it will wait until the client responds. When the client does send data
(like first connect or when a button is pressed), we can then search the string sent for the
command.

Chapter 9 ■ Project 2: Stoplight Simulator

335

Notice in the code we check for either the walk request searching for b'GET
/?WALK=PLEASE' or the shutdown event searching for b'GET /?shutdown=now'. There is
a bit of trickery going on here that warrants explanation. We use the request string as an
array starting our search from the start for the number of characters in the string (17 or 18),
which is represented with [:17] or [:18].

If the walk request is detected, we call the cycle_lights() function, which is
unmodified from part 1. If the shutdown event is detected, we set the loop to terminate
and then exit the run() function.

Take some time to read through the code until you understand how it works. When
ready, go ahead and open a new file named ped_part2_wipy.py (or ped_part2_pyb.py
for the Pyboard) and enter the code above.

Finally, you must remove the line of code that sets up the button callback (or on the
Pyboard the ExtInt() call). It won’t hurt the code to leave it in, but since we’re not using
the button, it is not needed and all unnecessary code should be removed.

Now, let’s look at the complete code for both the WiPy and Pyboard.

Completed Code
In this section, we will see the final, completed code for the WiPy and Pyboard. These
listings are provided as a reference for you to ensure you have the correct code for your
board. Listing 9-9 shows the complete code for running the project on the WiPy.

Listing 9-9.  Complete Code for the Stoplight Simulation (WiPy)

MicroPython for the IOT - Chapter 9
#
Project 2: A MicroPython Pedestrian Crosswalk Simulator
Part 3 - controlling LEDs over the Internet
#
Required Components:
- WiPy
- (2) Red LEDs
- (2) Yellow LEDs
- (1) Green LED
- (5) 220 Ohm resistors
#
Note: this only runs on the WiPy.
#
Imports for the project
from machine import Pin
import usocket as socket
import utime
import machine
from network import WLAN

Setup the board to connect to our network.
wlan = WLAN(mode=WLAN.STA)
nets = wlan.scan()

Chapter 9 ■ Project 2: Stoplight Simulator

336

for net in nets:
 if net.ssid == 'YOUR_SSID':
 print('Network found!')
 wlan.connect(net.ssid, auth=(net.sec, 'YOUR_PASSWORD'), timeout=5000)
 while not wlan.isconnected():
 machine.idle() # save power while waiting
 print('WLAN connection succeeded!')
 print("My IP address is: {0}".format(wlan.ifconfig()[0]))
 break

HTML web page for the project
HTML_RESPONSE = """<!DOCTYPE html>
<html>
 <head>
 <title>MicroPython for the IOT - Project 2</title>
 </head>
 <center><h2>MicroPython for the IOT - Project 2</h2></center>

 <�center>A simple project to demonstrate how to control hardware over the

Internet.</center>

 <form>
 <center>
 <�button name="WALK" value="PLEASE" type="submit" style="height:

50px; width: 100px">REQUEST WALK</button>

 <�button name="shutdown" value="now" type="submit" style="height:

50px; width: 100px">Stop Server</button>
 </center>
 </form>
</html>
"""

Setup the LEDs (button no longer needed)
led1 = Pin('P3', Pin.OUT)
led2 = Pin('P4', Pin.OUT)
led3 = Pin('P5', Pin.OUT)
led4 = Pin('P6', Pin.OUT)
led5 = Pin('P7', Pin.OUT)

Setup lists for the LEDs
stoplight = [led1, led2, led3]
walklight = [led4, led5]

Turn off the LEDs
for led in stoplight:
 led.value(0)
for led in walklight:
 led.value(0)

Chapter 9 ■ Project 2: Stoplight Simulator

337

Start with green stoplight and red walklight
stoplight[2].value(1)
walklight[0].value(1)

We need a method to cycle the stoplight and walklight
#
We toggle from green to yellow for 2 seconds
then red for 20 seconds.
def cycle_lights():
 # Go yellow.
 stoplight[2].value(0)
 stoplight[1].value(1)
 # Wait 2 seconds
 utime.sleep(2)
 # Go red and turn on walk light
 stoplight[1].value(0)
 stoplight[0].value(1)
 utime.sleep_ms(500) # Give the pedestrian a chance to see it
 walklight[0].value(0)
 walklight[1].value(1)
 # After 10 seconds, start blinking the walk light
 utime.sleep(1)
 for i in range(0,10):
 walklight[1].value(0)
 utime.sleep_ms(500)
 walklight[1].value(1)
 utime.sleep_ms(500)

 # Stop=green, walk=red
 walklight[1].value(0)
 walklight[0].value(1)
 utime.sleep_ms(500) # Give the pedestrian a chance to see it
 stoplight[0].value(0)
 stoplight[2].value(1)

Setup the socket and respond to HTML requests
def run():
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('', 80))
 sock.listen(5)
 server_on = True
 while server_on:
 client, address = sock.accept()
 print("Got a connection from a client at: %s" % str(address))
 request = client.recv(1024)
 # Process the request from the client. Payload should appear in pos 6.
 # Check for walk button click
 walk_clicked = (request[:17] == b'GET /?WALK=PLEASE')

Chapter 9 ■ Project 2: Stoplight Simulator

338

 # Check for stop server button click
 stop_clicked = (request[:18] == b'GET /?shutdown=now')
 if walk_clicked:
 print('Requesting walk now!')
 cycle_lights()
 elif stop_clicked:
 server_on = False
 print("Goodbye!")
 client.send(HTML_RESPONSE)
 client.close()
 sock.close()

Now, let’s see the code for the Pyboard. As you will see, it is largely the same except
for the networking code, imports, and pin function calls. Listing 9-10 shows the complete
code for running the project on the Pyboard.

Listing 9-10.  Complete Code for the Stoplight Simulation (Pyboard)

MicroPython for the IOT - Chapter 9
#
Project 2: A MicroPython Pedestrian Crosswalk Simulator
Part 2 - Controlling the walklight remotely
#
Required Components:
- Pyboard
- (2) Red LEDs
- (2) Yellow LEDs
- (1) Green LED
- (5) 220 Ohm resistors
- (1) breadboard friendly momentary button
- (1) CC3000 breakout board
#
Note: this only runs on the Pyboard.
#
Imports for the project
from pyb import Pin, delay, ExtInt, SPI
import network
import usocket as socket

Setup network connection
nic = network.CC3K(SPI(2), Pin.board.Y5, Pin.board.Y4, Pin.board.Y3)
Replace the following with yout SSID and password
nic.connect("YOUR_SSID", "YOUR_PASSWORD")
print("Connecting...")
while not nic.isconnected():
 delay(50)
print("Connected!")
print("My IP address is: {0}".format(nic.ifconfig()[0]))

Chapter 9 ■ Project 2: Stoplight Simulator

339

HTML web page for the project
HTML_RESPONSE = """<!DOCTYPE html>
<html>
 <head>
 <title>MicroPython for the IOT - Project 2</title>
 </head>
 <center><h2>MicroPython for the IOT - Project 2</h2></center>

 <�center>A simple project to demonstrate how to control hardware over the

Internet.</center>

 <form>
 <center>
 <�button name="WALK" value="PLEASE" type="submit" style="height:

50px; width: 100px">REQUEST WALK</button>

 <�button name="shutdown" value="now" type="submit" style="height:

50px; width: 100px">Stop Server</button>
 </center>
 </form>
</html>
"""

Setup the LEDs
led1 = Pin('X7', Pin.OUT_PP)
led2 = Pin('X6', Pin.OUT_PP)
led3 = Pin('X5', Pin.OUT_PP)
led4 = Pin('X4', Pin.OUT_PP)
led5 = Pin('X3', Pin.OUT_PP)

Setup lists for the LEDs
stoplight = [led1, led2, led3]
walklight = [led4, led5]

Turn off the LEDs
for led in stoplight:
 led.low()
for led in walklight:
 led.low()

Start with green stoplight and red walklight
stoplight[2].high()
walklight[0].high()

We need a method to cycle the stoplight and walklight
#
We toggle from green to yellow for 2 seconds
then red for 20 seconds.
def cycle_lights():

Chapter 9 ■ Project 2: Stoplight Simulator

340

 # Go yellow.
 stoplight[2].low()
 stoplight[1].high()
 # Wait 2 seconds
 delay(2000)
 # Go red and turn on walk light
 stoplight[1].low()
 stoplight[0].high()
 delay(500) # Give the pedestrian a chance to see it
 walklight[0].low()
 walklight[1].high()
 # After 10 seconds, start blinking the walk light
 delay(10000)
 for i in range(0,10):
 walklight[1].low()
 delay(500)
 walklight[1].high()
 delay(500)

 # Stop=green, walk=red
 walklight[1].low()
 walklight[0].high()
 delay(500) # Give the pedestrian a chance to see it
 stoplight[0].low()
 stoplight[2].high()

Setup the socket and respond to HTML requests
def run():
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('', 80))
 sock.listen(5)
 server_on = True
 while server_on:
 client, address = sock.accept()
 print("Got a connection from a client at: %s" % str(address))
 request = client.recv(1024)
 # Process the request from the client. Payload should appear in pos 6.
 # Check for walk button click
 walk_clicked = (request[:17] == b'GET /?WALK=PLEASE')
 # Check for stop server button click
 stop_clicked = (request[:18] == b'GET /?shutdown=now')
 if walk_clicked:
 print('Requesting walk now!')
 cycle_lights()
 elif stop_clicked:
 server_on = False

Chapter 9 ■ Project 2: Stoplight Simulator

341

 print("Goodbye!")
 client.send(HTML_RESPONSE)
 client.close()
 sock.close()

Ok, now we’re ready to execute the project.

Execute!
Now is the fun part! We’ve got the code all set up to control our LEDs and we know it
works from part 1. We also have code to set up a socket listener to accept connections
over port 80 on our MicroPython board. All we need now is the IP address of that board
to point our web browser. We can get that from our debug statements by running the
code. Listing 9-11 shows the initial run for the project on a WiPy (results for the Pyboard
are similar).

Listing 9-11.  Running the Stoplight Simulation (WiPy)

MicroPython v1.8.6-694-g25826866 on 2017-06-29; WiPy with ESP32
Type "help()" for more information.
>>> import ped_part3_wipy as w
Network found!
WLAN connection succeeded!
My IP address is: 192.168.42.128
>>> w.run()
Got a connection from a client at: ('192.168.42.127', 49236)
Got a connection from a client at: ('192.168.42.127', 49237)
Got a connection from a client at: ('192.168.42.127', 49243)
Requesting walk now!
Got a connection from a client at: ('192.168.42.127', 49254)
Goodbye!
>>>

Notice in this case the IP address is 192.168.42.127. All we need to do is put that in
our browser and shown in Figure 9-3.

Chapter 9 ■ Project 2: Stoplight Simulator

342

■■ Caution I f you’re using the WiPy and telnet to open a REPL console, be advised that as
soon as you run the networking portion of the code, your REPL console will disconnect. This
is because the IP address will change! So, when working with the WiPy connecting it to your
network, it is best to use the screen or another terminal program over USB to get a REPL
console.

Once you enter the URL, you should see a web page like the image shown. If you
don’t, be sure to check the HTML in your code to ensure it is exactly like what is shown;
otherwise, the page may not display properly. You should also ensure the network your
PC is connected to can reach the network to which your board is connected. If your home
office is set up like mine, there may be several WiFi networks you can use. It is best if your
board and your PC are on the same network (and same subnet).

Once you get that sorted out, go ahead and play with the buttons. Remember, the
walk button will engage and you will see the lights cycle but you won’t be able to do
anything until the walk cycle is complete. This is because we don’t return the response
HTML until after the cycle is complete (see the code to convince yourself). Also, when
you click the shutdown button, you will need to restart the code to rerun it. Simply call
the run() function again.

Figure 9-3.  Stoplight Simulation Project

Chapter 9 ■ Project 2: Stoplight Simulator

343

Take another look at the listing above. Notice there are debug messages printed for
each time the client connects (the code accepts the connection and GET request) as well as
a statement about what it is doing. You should see something similar in your REPL console.

It is at this point that you should be basking in the wonder of your first successful
MicroPython IOT remote control hardware project. Take some time to enjoy a job well done.

The final step in the process is optional for this project since you are unlikely to want
it to run more than to just test it. However, if you do want to make it run every time you
boot your board, you can modify the main.py code module on the board to import your
code and call the run() function.

WHEN THINGS GO WONKY1

Sometimes when working with larger scripts or more complicated logic, many
libraries (drivers), or even when you use a lot of strings (memory), you can
sometimes encounter strange, terse errors. The following is an example.

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "ped_part2_wipy.py", line 97, in run
OSError: [Errno 12] ENOMEM

In this case, the error is an out of memory error meaning your MicroPython board
has allocated all (or nearly all) memory to your code and it cannot continue. The only
thing you can do at this point is reboot the board. You can try a soft boot (CTRL-D),
but that usually doesn’t fix the problem, but a hard reboot will.

At this point, you’ve completed your first real MicroPython IOT project. We can call it
an IOT project because it uses the Internet, but it is only a simulation and doesn’t actually
control a real traffic light, but the techniques we saw in this project permit us to connect our
MicroPython board to the Internet and interact with it - which is what the IOT is all about!

Taking it Further
This project shows excellent prospects for reusing the techniques in other projects.
This is especially true for the HTML server aspect. If you liked controlling your
MicroPython board over the Internet, you should consider taking time to explore some
embellishments. Here are a few you may want to consider. Some are easy and some may
be a challenge or require more research.2

1A highly technical term that describes a state of extreme chaos and general failure to execute.
Not to be confused with hinky, which indicates a slightly less severe case when something works
but isn’t quite right.
2I include these so you can grow your knowledge beyond the confines of this book. Try these when
you’ve finished the other projects in the book.

Chapter 9 ■ Project 2: Stoplight Simulator

344

•	 Use NeoPixels (https://www.adafruit.com/category/168)
instead of LEDs. These are RGB LEDs so you need only two - one
for the stoplight and one for the walk light. See https://github.
com/JanBednarik/micropython-ws2812 for more information
and examples.

•	 Modify the HTML response to show the state of the lights.

•	 Explore the HTML code to change the web page to your liking.
Consider using cascading style sheets to change the background
of the button when pressed.

•	 Connect your board to the Internet and call a friend to connect to
your board and try it out.

•	 Use a display in place of the LEDs for the walk sign to show
“WALK” or “DON’T WALK.”

Of course, if you want to press on to the next project, you’re welcome to do so but
take some time to explore these potential embellishments – it will be good practice.

If you’re up for a real challenge, you can reuse the code for this project and replace
the button logic with a relay board that allows you to use a low-voltage device like the
MicroPython board to turn on or off a higher voltage circuit. In this case, you can use the
HTML button to turn the relay on or off over the Internet.

Summary
Working with discrete electronic components can be a lot of fun. Just making the circuit
work is a real thrill when you’re just starting out with electronics. Now that we know a
lot more about MicroPython, we can see how powerful it is to have an easy-to-program
language like Python at our disposal to work with directly with hardware – even over the
Internet.

In this chapter, we implemented a simulation of a pedestrian crosswalk button and
stoplight. We used a series of LEDs to represent the stoplight and walk signal. We also
added a hardware button to simulate pressing the real walk button and then turned that
into a remote-control button we hosted via simple HTML right from our MicroPython
board. If you liked this project, you will enjoy the next two projects even more.

In the next chapter, we will explore a project that uses a sensor to read values and
then archive the data and display it on a web page when requested. This is the next-to-last
step in our journey of building a true MicroPython IOT project. This chapter and the next
one show you how to make data available over the Internet and the final project chapter
will show you how to make your sensor data available through cloud services.

https://www.adafruit.com/category/168
https://github.com/JanBednarik/micropython-ws2812
https://github.com/JanBednarik/micropython-ws2812

345© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_10

CHAPTER 10

Project 3: Plant Monitoring

One of the most common forms of IOT projects are those that monitor events using
sensors providing the data either to another machine, cloud service, or local server (like
an HTML server). One way to do that is to wire your MicroPython board up to a set of
sensors and then log the data. You can find several examples of general data loggers on
the Internet, but few combine the logging of data with a visualization component. Indeed,
making sense of the data is the key to making a successful IOT solution.

In this project, we will explore combining data logging with data visualization.
We will use the same HTML server technique from the last chapter as well as several
techniques from previous chapters. We will also see how to use an analog sensor - a
sensor that produces analog data that we will then have to interpret. In fact, we will
rely on the analog-to-digital conversion (ADC) capabilities of our boards to change the
voltage read to a value we can use. We will also see a bit more sophistication in the code
as we leverage what we learned about classes and modules from Chapter 4.

The added complexity for this project isn’t new hardware or interfaces although
we will see how to use the analog-to-digital converter class; the complexity is in the
sophistication of the code. As you will see, the code used in this chapter is more modular
and uses more functions than previous projects. For that reason alone, it is more
complex. But, as you will see, the code isn’t difficult to learn and uses concepts we have
seen in previous chapters.

Overview
In this chapter, we will implement a plant soil moisture monitoring solution (plant
monitor for brevity). This will involve using one or more soil moisture sensors connected
to our MicroPython board. We will set up a timer alarm (an interrupt) to run periodically
to read the data from the sensors and store it in a comma-separated value (CSV) file.

Figure 10-1 depicts a conceptual drawing of the project. The MicroPython board will
read the data from the soil moisture sensors and then display it via a HTML web page
upon request.

https://doi.org/10.1007/978-1-4842-3123-4_10
http://dx.doi.org/10.1007/978-1-4842-3123-4_4

Chapter 10 ■ Project 3: Plant Monitoring

346

The user interface for this project is a web page that consists of a table that includes
all the data read from the log file. This is how we can overcome potential issues of running
the HTML server in a loop. That is, we do not have to interrupt the loop to read the
sensors - that’s done via the timer alarm callback. Sadly, this technique only works for the
WiPy and similar boards. We will have to use a different technique for the Pyboard.

By separating the sensor reading from the display, we can reuse or modify either
without confusing ourselves as we dig into the code. For example, so long as the
visualization component reads the sensor data from the file, it doesn’t matter to the
sensor reading code how it is used. The only interface or connection between these two
parts is the format of the file and since we’re using a CSV file, it is very easy to read and
use in our code.

To make things more interesting and to make it easier to code, we will place all the
sensor code in a separate code module. Recall, this is a technique used to help reduce the
amount of code in any one module thereby making it easier to write and maintain.

Now let’s see what components are needed for this project and then we will see how
to wire everything together.

■■ Note  Since we are well into our third project and have seen many of the techniques
employed in this project, the discussion on the required components, wiring, and setup of
the hardware shall be brief.

Figure 10-1.  Plant Monitoring Project Concept

Chapter 10 ■ Project 3: Plant Monitoring

347

Required Components
Table 10-1 lists the components you will need. You can purchase the components
separately from Adafruit (adafruit.com), Sparkfun (sparkfun.com), or any electronics
store that carries electronic components. Links to vendors are provided should you want
to purchase the components. When listing multiple rows of the same object, you can
choose one or the other - you do not need both. Also, you may find other vendors that sell
the components. You should shop around to find the best deal. Costs shown are estimates
and do not include any shipping costs.

Table 10-1.  Required Components

Component Qty Description Cost Links

MicroPython
board

1 Pyboard v1.1
with headers

$45-50 https://www.adafruit.com/
product/2390
https://www.adafruit.com/
product/3499

https://www.sparkfun.com/products/14413

https://store.micropython.org/store

WiPy $25 https://www.adafruit.com/
product/3338

https://www.pycom.io/product/wipy/

Soil Moisture
Sensor

1+ Soil
Moisture
Sensor

$6 https://www.sparkfun.com/
products/13637

Networking
Module
(Pyboard)

1 CC3000
breakout
board (or
equivalent)

$15+ various

Real-Time
Clock

1 RTC
optional for
Pyboard and
other boards
without NTP
support

$10+ https://www.sparkfun.com/
products/12708

Jumper wires
(WiPy)

3* M/M
jumper
wires, 6”
(cost is for
a set of 10
jumper
wires)

$4 https://www.sparkfun.com/
products/8431

(continued)

https://www.adafruit.com/product/2390
https://www.adafruit.com/product/2390
https://www.adafruit.com/product/3499
https://www.adafruit.com/product/3499
https://www.adafruit.com/product/3499
https://www.sparkfun.com/products/14413
https://store.micropython.org/store
https://www.adafruit.com/product/3338
https://www.adafruit.com/product/3338
https://www.pycom.io/product/wipy/
https://www.sparkfun.com/products/13637
https://www.sparkfun.com/products/13637
https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431

Chapter 10 ■ Project 3: Plant Monitoring

348

The number of jumper wires needed will vary depending on how many sensors
you are using and whether you are using a MicroPython board that needs a networking
module. You will need three jumpers for each sensor and, if you are using the CC3000 SPI
breakout board, eight additional wires. If you plan to use the Pyboard, you will also want
to add a real-time clock to keep time while powered off.

The Pyboard firmware has no network time protocol (NTP) server support. Thus,
you must either initialize the onboard RTC each time you power on the board, attach a
backup battery to the board (see the underside of the board – you will see the pins you
will need to solder), or add a real-time clock module.

Soil moisture sensors come in a variety of formats but most have two prongs that
are inserted into the soil and using a small electrical charge, measure the resistance
between the prongs. The higher the value read, the more moisture is in the soil. However,
there is a bit of configuration needed to obtain reliable or realistic thresholds. While the
manufacturer will have threshold recommendations, some experimentation may be
needed to find the right values.

These sensors can also be affected by environmental factors including the type of
pot the plant is in, the soil composition, and other factors. Thus, experimenting with a
known overwatered soil, dry soil, and properly tended soil will help you narrow down the
thresholds for your environment.

Figure 10-2 shows a soil moisture sensor from Sparkfun that has a terminal mount
instead of pins. You can find several varieties of these sensors. Just pick the one you want
to use, keeping in mind you may need different jumpers to connect it to your board.

Component Qty Description Cost Links

Jumper wires
(Pyboard)

15+ M/M
jumper
wires, 6”
(cost is for
a set of 10
jumper
wires)

$4 https://www.sparkfun.com/
products/8431

Power 1 USB cable
to get power
from PC

Use from your spares

1 USB 5V
power
source and
cable

Use from your spares

Table 10-1.  (continued)

https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431

Chapter 10 ■ Project 3: Plant Monitoring

349

Of special note is how these soil moisture sensors work. If you were to leave the
sensors powered on, they can degrade over time. The metal on the prongs can become
degraded due to electrolysis thereby dramatically reducing its lifespan. You can use a
technique of a GPIO pin to power the sensor by turning the pin on when you want to read
a value. Keep in mind there will be a small delay while the sensor settles, but we can use
a simple delay to wait and then read the value and turn the sensor off. In this way, we can
extend the life of the sensor greatly.

Fortunately, the wiring for this project is less complex than the last two projects.
Now, let’s see how to wire the components together.

Set Up the Hardware
Table 10-2 shows the connections needed for this project. This shows only two sensors,
but you can add several more if you’d like. However, it is recommended you start with
one sensor until you get the project working and then add additional sensors. If it is
easier, you can use a breadboard to connect the sensors to the MicroPython board, but
depending on where you plan to place the board, you may not need it. It is your choice.

Table 10-2.  Connections for the MicroPython (Pyboard and WiPy)

MicroPython Board

WiPy Pyboard Component Wire Color

P13 X19 Sensor 1: VCC

GND GND Sensor 1: GND

P19 X20 Sensor 1: SIG

P14 X21 Sensor 2: VCC

GND GND Sensor 2: GND

P20 X22 Sensor 2: SIG

Figure 10-2.  Soil Moisture Sensor (courtesy of sparkfun.com)

Chapter 10 ■ Project 3: Plant Monitoring

350

Of course, you must insert the soil moisture sensors into the soil of your plants. If your
plants are located further away from your power source, you may need to use longer wires
to connect the sensors. You should start with a single, small plant and one sensor (or for
testing, two sensors in one plant) that you can place close to your PC (or power source).

■■ Caution  You will need soil moisture sensors that can operate at 3.3–5V. Some MicroPython
boards may limit output on the pins to 3.3V. The sensors from Sparkfun are compatible.

Let us see how to make the connections shown in the chart for the WiPy and Pyboard.

WiPy
Wiring for the WiPy is best done orienting the board with the USB connector to the left.
Figure 10-3 shows the wiring diagram for the WiPy. Notice the use of a small breadboard
to help with the ground connections. Notice also Sensor 1 is on the left and Sensor 2 is on
the right.

Figure 10-3.  Wiring the Plant Monitor (WiPy)

Chapter 10 ■ Project 3: Plant Monitoring

351

Pyboard
Wiring for the Pyboard is best done orienting the board with the USB connector to the
left. Figure 10-4 shows the wiring diagram for the Pyboard. You will likely want to use a
breadboard so you can connect your networking module like the one shown. Notice also
Sensor 1 is on the left and Sensor 2 is on the right.

Figure 10-4.  Wiring the Plant Monitor (Pyboard)

Once again, always make sure to double-check your connections before powering
the board on. Now, let’s talk about the code we need to write. Don’t power on your board
just yet – there is a fair amount of discussion needed before we’re ready to test the project.

Write the Code
Now it’s time to write the code for our project. The code is longer than what we’ve seen
thus far, and due to all the bits and bobs we’re working with, it is best to divide the project
into parts. So, we are going to write the code in two stages. We won’t have a working
project until the end, so most of the discussion will be about the individual parts. We will
put it all together before testing the project.

Recall from the overview, we will have two major components: the main code and a
code module that encapsulates the soil sensors. We will place the HTML server code and
supporting functions in the main code module. However, before we embark on the code
for the project, we should calibrate our sensors. Let’s do that now.

Chapter 10 ■ Project 3: Plant Monitoring

352

■■ Note  These sections demonstrate the code for the WiPy. This project is best suited for
the WiPy and boards with similar capabilities: namely, WiFi and NTP support. Differences for
implementing the project on Pyboard and Pyboard clone boards are given at the end of the
chapter. As you will see, it is a bit more work to get the project working on those boards.

Calibrating the Sensor
Calibration of sensors is very important. This is especially true for soil moisture sensors
because there are so many different versions available. These sensors are also very
sensitive to the soil composition, temperature, and even the type of pot in which the plant
lives. Thus, we should experiment with known soil moisture so we know what ranges to
use in our code.

More specifically, we want to classify the observation from the sensor so that we
can determine if the plant needs watering. We will use the values “dry”, “Ok”, and “wet”
to classify the value read from the sensor. Seeing these labels is much easier for us to
determine – at a glance – whether the plant needs watering. In this case, the raw data
such as a value of 1756 may not mean much, but if we see “dry”, we know it needs water.

Since the sensors are analog sensors, we will use the analog-to-digital conversion on
the board. When we read the data from the pin, we will get a value in the range of 0-4096.
This value is related to the resistance the sensor reads in the soil. Low values indicate dry
soil and high values indicate wet soil.

However, the sensors from different vendors can vary widely in the values read. For
example, sensors from Sparkfun tend to read values in the range 0-1024 but sensors from
other vendors can read as high as 4096. Fortunately, they all seem to be consistent in that
the lower the value, the drier the soil.

So, we must determine thresholds for the three classifications. Again, there are
several factors that can influence the values read from the sensor. Thus, you should
select several pots of soil including one that you feel is dry, another that is correctly
watered, and a third that is overwatered. The best thing to do is select one that is dry, take
measurements, then water it until the soil moisture is correct, measure that, then water it
again until there is too much water.1

To determine the threshold, we must first write a short bit of code to set up our board
for reading values from the sensor. This includes choosing a GPIO pin that supports ADC.
Check the reference drawing for your board to be certain which GPIO pins are included.
For example, on the WiPy, there are several ADC GPIO sections including those in the
range P13-P18.

We also need to choose a pin to use to power the board. This is also an analog output
pin. Finally, we will write a loop to read several values every 5 seconds and then average
them. Five seconds is an arbitrary value and it was derived from reading the datasheet for
the sensor. Check your sensors to see how much time is needed for the read to settle (may

1Be sure to choose a plant hearty enough to withstand overwatering.

Chapter 10 ■ Project 3: Plant Monitoring

353

be under the heading of frequency of reads). Listing 10-1 shows the code needed to setup
the analog-to-digital channel, a pin to use for powering the sensor, and a loop for reading
10 values and averaging them.

Listing 10-1.  Calibrating the Soil Moisture Threshold (WiPy)

MicroPython for the IOT - Chapter 10
#
Project 3: MicroPython Plant Monitoring
#
Threshold calibration for soil moisture sensors
#
Note: this only runs on the WiPy.
from machine import ADC, Pin
import utime

Setup the ADC channel for the read (signal)
Here we choose pin P13 and set attn to 3 to stabilize voltage
adc = ADC(0)
sensor = adc.channel(pin='P13', attn=3)

Setup the GPIO pin for powering the sensor. We use Pin 19
power = Pin('P19', Pin.OUT)
Turn sensor off
power.value(0)

Loop 10 times and average the values read
print("Reading 10 values.")
total = 0
for i in range (0,10):
 # Turn power on
 power.value(1)
 # Wait for sensor to power on and settle
 utime.sleep(5)
 # Read the value
 value = sensor.value()
 print("Value read: {0}".format(value))
 total += value
 # Turn sensor off
 power.value(0)

Now average the values
print("The average value read is: {0}".format(total/10))

If you enter this code in a file named threshold.py, you can copy it to your WiPy and
execute it. Listing 10-2 shows the output of running this calibration code in a plant that is
correctly watered.

Chapter 10 ■ Project 3: Plant Monitoring

354

Listing 10-2.  Running the Calibration Code (WiPy)

>>> import threshold
Reading 10 values.
Value read: 1724
Value read: 1983
Value read: 1587
Value read: 1702
Value read: 1634
Value read: 1525
Value read: 1874
Value read: 1707
Value read: 1793
Value read: 1745
The average value read is: 1727.4
>>>

Here we see an average value of 1727 (always round the number – you need integers).
Further tests running the code on dry soil resulted in a value of 425 and for a wet plant, 3100.
Thus, the thresholds for this example are 500 for dry, 2500 for wet. However, your results may
vary greatly so make sure to run this code with your sensors, board, and plant of choice.

■■ Tip  To make things easier for calibrating the thresholds, use sensors from the same
vendor. Otherwise, you may have to use a different set of thresholds for each sensor supported.

Notice the values read. As you can see, the values can vary from one moment to
another. This is normal for these sensors. They are known for producing some jumpy
values. Thus, you should consider sampling the sensor more than once to get an average
over a short period rather than a single value. Even taking an average can be skewed
slightly if one or more of the samples is off by a large margin. However, sampling even 10
values and averaging will help reduce the possibility of getting an anomalous reading. We
will do this in our project code.

Now that we have our threshold values for our sensors, we can begin with the code
module for the sensors.

Part 1: Sensor Code Module
The first part of the project will be to create a code module to contain a new class named
PlantMonitor that contains all the functionality to read data from the sensors and save
the data to a file. In this section, we will see how to write the code for the module. If you
want to follow along writing the code, you can open a new file and name it
plant_monitor.py. Let’s start by looking at the high-level design.

Chapter 10 ■ Project 3: Plant Monitoring

355

High-Level Design
As we learned earlier, it is a good idea to create a design for each code module (class) we
want to use. We will use the code module from the main code. Thus, we need functions to
tell the class to read the sensors and a way to get the filename the class uses for the data.

Typically, one would design a code module to completely hide a file and all
operations on it, but in this case the class is only concerned with reading the sensors
and writing the data. Plus, since the main code needs to read the data and format it with
HTML tags, it is more appropriate to place the read function in the main code. That is,
you should strive to keep like code functions together, which helps maintaining the code.
For example, keeping all the HTML code in one file makes modifying the HTML code (or
reusing it) easier.

We will use a timer interrupt to read the sensors. This allows us to set up a function
to be called periodically without the need to monitor or poll the time and call the function
directly. We provide the clear log function as a convenience. Thus, we will only need
two public functions: one to clear the log and another to fetch the filename. Aside from
initializing the class, we only need to get the filename when we want to refresh the data
(send it to the client). Table 10-3 shows the functions for the Plant Monitoring class.

Table 10-3.  High-Level Design (Functions) Plant Monitor Class

Function Parameters Description

__init__() rtc Initialization for the class (the constructor)

clear_log() Clear the log

get_filename() Get the filename we're using after the check for
SD card

_get_value() sensor, power Read the sensor 10 times and average the values read

_read_sensors() line Monitor the sensors, read the values, and save them

_convert_value() value Convert the raw sensor value to an enumeration

Notice the first function named __init__(). This is the constructor for the class and
will be called when the class is instantiated from our main code. Notice also the private
methods are named with a single underscore.

The following sections explain the initialization code and the functions needed. We
will see the complete code in a later section.

Setup and Initialization
In this section, we discuss the code we need to set up and initialize the code module.
First, there are a few imports we need including those for the analog-to-digital converter,
pin, secure disk (SD), timer, and the operating system libraries.

Chapter 10 ■ Project 3: Plant Monitoring

356

We will also need some constants defined for the class. Recall we want to classify
the soil moisture read with an enumeration. To do so, we will need to use the thresholds
we determined for the classification. We can use constants at the top of the file to make it
easier to change them later should we need to adjust the code for use with other sensors
or the conditions of our plants changes (different pot, soil, environment, etc.). We can use
the same philosophy to set the name of the file to contain the data.

We also use a constant to define the frequency for reading the sensors. Since we will
use a loop to read the sensor waiting 5 seconds for each read, we will need a minimum
of 50-55 seconds to read 10 values. Thus, we cannot set the update frequency to anything
less than about one minute. The frequency is in seconds. While you may want to set this
to a low value for testing, you certainly do not want to check the soil moisture of your
plants every minute. That is, how often to you check your plants normally? Once every
few days or once a day? Why check it sooner than normal?

SAMPLING FREQUENCY

How often you sample data from a sensor (also called sampling rate) is often
overlooked when designing sensor networks. The tendency is to store as many
values as you can; thinking more data is better. But that is not applicable in the
general case. Consider the plant monitoring project. If you normally check your
plants once per day, how can sampling the sensors once every 5 minutes benefit
you? It won’t and it only results in excess data!

Sampling rate must be calculated carefully to deliver the data you need to draw
conclusions without creating too much data. While more data is always better than
too little data, saving data too often at unrealistic frequencies can generate so much
data that it could exceed the storage capacity of your device.

You should carefully consider sampling rate when designing projects that sample
sensors. Choose a sampling rate that is based on realistic expectations. Generally,
if you are sampling data that can change very slowly, the sampling rate should be
low. Sampling data that can change more quickly should have a higher (shorter time
between samples) sampling rate.

Finally, we need a function that converts a time structure to a string. Recall from an
earlier example, we can use a simple format specification. We will use a module-level
private function for that feature.

Listing 10-3 shows the code for the setup and initialization section. Place this at the
top of the file.

Chapter 10 ■ Project 3: Plant Monitoring

357

Listing 10-3.  Plant Monitor Class Setup and Initialization (WiPy)

from machine import ADC, Pin, SD, Timer
import os
import utime

Thresholds for the sensors
LOWER_THRESHOLD = 500
UPPER_THRESHOLD = 2500
UPDATE_FREQ = 120 # seconds

File name for the data
SENSOR_DATA = "plant_data.csv"

Format the time (epoch) for a better view
def _format_time(tm_data):
 # Use a special shortcut to unpack tuple: *tm_data
 return "{0}-{1:0>2}-{2:0>2} {3:0>2}:{4:0>2}:{5:0>2}".format(*tm_data)

Constructor
The constructor for the class is where all the major work takes place. There are several
things we need to do including the following.

•	 Normalize the location (path) of the data file

•	 Set up the sensors in a dictionary stored in a list

•	 Set up the timer interrupt to read the sensors periodically

We normalize the path to the data file by attempting to use the SD card. If the SD
card cannot be found, we default to the flash drive. However, you should avoid writing
data to the flash drive since the driver is smaller and can fill up, and writing to the flash
drive increases the risk of corrupting the drive or causing problems during execution.

We use a dictionary for each sensor so we can define the pin for the sensor, pin for
powering the sensor, sensor number (an arbitrary identification), and the location of the
sensor. We then place the dictionaries in a list to make it easy to read all the sensors at the
same time using a loop.

Finally, we set up an interrupt via the timer alarm class to read the sensors
periodically. Listing 10-4 shows the code for the class constructor.

Listing 10-4.  Plant Monitor Class Constructor (WiPy)

def __init__(self, rtc):
 self.rtc = rtc

 # Try to access the SD card and make the new path
 try:
 sd = SD()
 os.mount(sd, '/sd')

Chapter 10 ■ Project 3: Plant Monitoring

358

 self.sensor_file = "/sd/{0}".format(SENSOR_DATA)
 print("INFO: Using SD card for data.")
 except:
 print("ERROR: cannot mount SD card, reverting to flash!")
 self.sensor_file = SENSOR_DATA
 print("Data filename = {0}".format(self.sensor_file))

 # Setup the dictionary for each soil moisture sensor
 adc = ADC(0)
 soil_moisture1 = {
 'sensor': adc.channel(pin='P13', attn=3),
 'power': Pin('P19', Pin.OUT),
 'location': 'Green ceramic pot on top shelf',
 'num': 1,
 }
 soil_moisture2 = {
 'sensor': adc.channel(pin='P14', attn=3),
 'power': Pin('P20', Pin.OUT),
 'location': 'Fern on bottom shelf',
 'num': 2,
 }
 # Setup a list for each sensor dictionary
 self.sensors = [soil_moisture1, soil_moisture2]
 # Setup the alarm to read the sensors
 a = Timer.Alarm(handler=self._read_sensors, s=UPDATE_FREQ,
 periodic=True)
 print("Plant Monitor class is ready...")

Notice the code for the timer alarm. Here we define the handler (callback) for the
interrupt, the frequency using the constant we defined at the top of the tile, and set it to
fire every N seconds (periodically).

Public Functions
There are only two public functions. The first, clear_log(), simply opens the file for
writing and closes it. This effectively empties the file. The function is provided for
convenience. The second function, get_filename(), simply returns the name of the file
used to store data. This name is not the same as the name in the constant SENSOR_DATA
because we normalized the path in the constructor as shown in the previous section.

Private Functions
There are three private functions. The _get_value() function is the same code from our
threshold calibration code where we sample the sensor 10 times and average the value.
The _read_sensors() function is the callback for the timer alarm interrupt that reads
all the sensors we have defined and saves the data to the file. The _convert_value()

Chapter 10 ■ Project 3: Plant Monitoring

359

function is a helper function to determine the classification of the soil based on the
sensor data. This function returns a string or “dry”, “Ok”, or “wet”.

Complete Code
Now that we have seen all the parts of the code module, let’s look at the completed code.
Listing 10-5 shows the complete code for the Plant Monitor code module. Once again, we
can save this file as plant_monitor.py.

Listing 10-5.  Plant Monitor Code Module Complete Code (WiPy)

MicroPython for the IOT - Chapter 10
#
Project 3: MicroPython Plant Monitoring
#
Plant monitor class
#
Note: this only runs on the WiPy.
from machine import ADC, Pin, SD, Timer
import os
import utime

Thresholds for the sensors
LOWER_THRESHOLD = 500
UPPER_THRESHOLD = 2500
UPDATE_FREQ = 120 # seconds

File name for the data
SENSOR_DATA = "plant_data.csv"

Format the time (epoch) for a better view
def _format_time(tm_data):
 # Use a special shortcut to unpack tuple: *tm_data
 return "{0}-{1:0>2}-{2:0>2} {3:0>2}:{4:0>2}:{5:0>2}".format(*tm_data)

class PlantMonitor:
 """
 This class reads soil moisture from one or more sensors and writes the
 data to a comma-separated value (csv) file as specified in the constructor.
 """

 # Initialization for the class (the constructor)
 def __init__(self, rtc):
 self.rtc = rtc

Chapter 10 ■ Project 3: Plant Monitoring

360

 # Try to access the SD card and make the new path
 try:
 sd = SD()
 os.mount(sd, '/sd')
 self.sensor_file = "/sd/{0}".format(SENSOR_DATA)
 print("INFO: Using SD card for data.")
 except:
 print("ERROR: cannot mount SD card, reverting to flash!")
 self.sensor_file = SENSOR_DATA
 print("Data filename = {0}".format(self.sensor_file))

 # Setup the dictionary for each soil moisture sensor
 adc = ADC(0)
 soil_moisture1 = {
 'sensor': adc.channel(pin='P13', attn=3),
 'power': Pin('P19', Pin.OUT),
 'location': 'Green ceramic pot on top shelf',
 'num': 1,
 }
 soil_moisture2 = {
 'sensor': adc.channel(pin='P14', attn=3),
 'power': Pin('P20', Pin.OUT),
 'location': 'Fern on bottom shelf',
 'num': 2,
 }
 # Setup a list for each sensor dictionary
 self.sensors = [soil_moisture1, soil_moisture2]
 # Setup the alarm to read the sensors
 a = Timer.Alarm(handler=self._read_sensors, s=UPDATE_FREQ,
 periodic=True)
 print("Plant Monitor class is ready...")

 # Clear the log
 def clear_log(self):
 log_file = open(self.sensor_file, 'w')
 log_file.close()

 # Get the filename we're using after the check for SD card
 def get_filename(self):
 return self.sensor_file

 # Read the sensor 10 times and average the values read
 def _get_value(self, sensor, power):
 total = 0
 # Turn power on
 power.value(1)

Chapter 10 ■ Project 3: Plant Monitoring

361

 for i in range (0,10):
 # Wait for sensor to power on and settle
 utime.sleep(5)
 # Read the value
 value = sensor.value()
 total += value
 # Turn sensor off
 power.value(0)
 return int(total/10)

 # Monitor the sensors, read the values and save them
 def _read_sensors(self, line):
 log_file = open(self.sensor_file, 'a')
 for sensor in self.sensors:
 # Read the data from the sensor and convert the value
 value = self._get_value(sensor['sensor'], sensor['power'])
 print("Value read: {0}".format(value))
 time_data = self.rtc.now()
 # datetime,num,value,enum,location
 log_file.write(
 "{0},{1},{2},{3},{4}\n".format(_format_time(time_data),
 sensor['num'], value,
 self._convert_value(value),
 sensor['location']))
 log_file.close()

 # Convert the raw sensor value to an enumeration
 def _convert_value(self, value):
 # If value is less than lower threshold, soil is dry else if it
 # is greater than upper threshold, it is wet, else all is well.
 if (value <= LOWER_THRESHOLD):
 return "dry"
 elif (value >= UPPER_THRESHOLD):
 return "wet"
 return "ok"

Wow, that’s a lot of code! Take some time to read through it until you understand all
the parts of the code.

Changes for the Pyboard
There are considerably more changes needed for this project to run on the Pyboard. The
main reasons for this include the usual changes we need for the imports, the pin class
high/low versus value, and differences in how we use the real-time clock. Finally, the
Pyboard does not support timer alarm class interrupts so we must use a polling technique
to read the sensors. This last change means we must make the read_sensors() function a
public function so we can call it from the main code.

Chapter 10 ■ Project 3: Plant Monitoring

362

Since the changes are numerous, a difference file is nearly the same length as the
actual code.2 Thus, we will see the complete code for the Pyboard. Listing 10-6 shows
the complete code for the code module with the differences needed to adapt the code
module to the Pyboard (in bold). While most changes are minimal, if you are using the
Pyboard or a Pyboard clone, take note of the pins used for the sensor.

Listing 10-6.  Plant Monitor Code Module Complete Code (Pyboard)

MicroPython for the IOT - Chapter 10
#
Project 3: MicroPython Plant Monitoring
#
Plant monitor class
#
Note: this only runs on the Pyboard.
from pyb import ADC, delay, Pin, SD
import os
import pyb

Thresholds for the sensors
LOWER_THRESHOLD = 500
UPPER_THRESHOLD = 2500
UPDATE_FREQ = 120 # seconds

File name for the data
SENSOR_DATA = "plant_data.csv"

Format the time (epoch) for a better view
def _format_time(tm_data):
 # Use a special shortcut to unpack tuple: *tm_data
 return "{0}-{1:0>2}-{2:0>2} {3:0>2}:{4:0>2}:{5:0>2}".format(*tm_data)

class PlantMonitor:
 """
 This class reads soil moisture from one or more sensors and writes the
 data to a comma-separated value (csv) file as specified in the constructor.
 """

 # Initialization for the class (the constructor)
 def __init__(self, rtc):
 self.rtc = rtc

2This happens quite often. When it does, it is better to view the actual code as the difference file
may be harder to read.

Chapter 10 ■ Project 3: Plant Monitoring

363

 # Try to access the SD card and make the new path
 try:
 self.sensor_file = "/sd/{0}".format(filename)
 f = open(self.sensor_file, 'r')
 f.close()
 print("INFO: Using SD card for data.")
 except:
 print("ERROR: cannot mount SD card, reverting to flash!")
 self.sensor_file = SENSOR_DATA
 print("Data filename = {0}".format(self.sensor_file))

 # Setup the dictionary for each soil moisture sensor
 soil_moisture1 = {
 'sensor': ADC(Pin('X19')),
 'power': Pin('X20', Pin.OUT_PP),
 'location': 'Green ceramic pot on top shelf',
 'num': 1,
 }
 soil_moisture2 = {
 'sensor': ADC(Pin('X20')),
 'power': Pin('X21', Pin.OUT_PP),
 'location': 'Fern on bottom shelf',
 'num': 2,
 }
 # Setup a list for each sensor dictionary
 self.sensors = [soil_moisture1, soil_moisture2]
 # Setup the alarm to read the sensors
 self.alarm = pyb.millis()
 print("Plant Monitor class is ready...")

 # Clear the log
 def clear_log(self):
 log_file = open(self.sensor_file, 'w')
 log_file.close()

 # Get the filename we're using after the check for SD card
 def get_filename(self):
 return self.sensor_file

 # Read the sensor 10 times and average the values read
 def _get_value(self, sensor, power):
 total = 0
 # Turn power on
 power.high()
 for i in range (0,10):
 # Wait for sensor to power on and settle
 delay(5000)
 # Read the value

Chapter 10 ■ Project 3: Plant Monitoring

364

 value = sensor.read()
 total += value
 # Turn sensor off
 power.low()
 return int(total/10)

 # Monitor the sensors, read the values and save them
 def read_sensors(self):
 if pyb.elapsed_millis(self.alarm) < (UPDATE_FREQ * 1000):
 return
 self.alarm = pyb.millis()
 log_file = open(self.sensor_file, 'a')
 for sensor in self.sensors:
 # Read the data from the sensor and convert the value
 value = self._get_value(sensor['sensor'], sensor['power'])
 print("Value read: {0}".format(value))
 time_data = self.rtc.datetime()
 # datetime,num,value,enum,location
 log_file.write(
 "{0},{1},{2},{3},{4}\n".format(_format_time(time_data),
 sensor['num'], value,
 self._convert_value(value),
 sensor['location']))
 log_file.close()

 # Convert the raw sensor value to an enumeration
 def _convert_value(self, value):
 # If value is less than lower threshold, soil is dry else if it
 # is greater than upper threshold, it is wet, else all is well.
 if (value <= LOWER_THRESHOLD):
 return "dry"
 elif (value >= UPPER_THRESHOLD):
 return "wet"
 return "ok"

Ok, now we’re ready to look at the main code.

Part 2: Main Code
The main code is like the code for the last project. However, this time we will use a file to
store the HTML code (since it doesn’t change) and a single HTML string for populating
a HTML table with the data from the file. We will also add code to read the date and time
from a network time protocol (NTP) server.

Unlike the last project, the HTML code does not include a button but we can
format a command manually on the URL. We can use this technique to allow access to
commands without using buttons or other user interface features. It also helps to make
these commands harder to use to prevent overuse. For example, we can provide a clear

Chapter 10 ■ Project 3: Plant Monitoring

365

logs command. We would use a URL like http://192.168.42.140/CLEAR_LOG, which
submits a GET request to the HTML server. We can capture that command and clear the
log when it is issued.

■■ Caution  If you build commands like this, be sure to use them carefully. That is, setting
your URL to http://192.168.42.140/CLEAR_LOG and pressing enter issues the command.
Refreshing the page will reissue the command! When you use the command, be sure to
clear your URL before refreshing or, better, use it once and close the page/tab.

The following sections explain the initialization code and the functions needed. We
will see the complete code in a later section. Let’s start with the HTML code.

HTML Code (Files)
We will store the HTML code needed in files to save memory. Recall by reading a row at a
time – we do not have to take up space with the strings in our code. As your projects grow
in complexity, this could become an issue. Thus, this project demonstrates a way to save
some memory.

The HTML for this project creates a web page with a simple table that includes all
the data in the file at the time of the request. To make things easier, we will use three files.
The first file (named part1.html) will contain the HTML code up to the table rows; the
second file (named plant_data.csv), which is populated by the PlantMonitor class; and
the third (named part2.html) will contain the remaining HTML code.

The first file, part1.html, is shown in Listing 10-7. This file establishes the table
HTML code. It also establishes characteristics for the table including text alignment,
border size, and padding – all through cascading style (<style> tag). Don’t worry if this
looks strange or alien. You can google for W3C standards to see how we use the tag to
control the style of the web page.

Listing 10-7.  HTML Code (part1.html)

<!DOCTYPE html>
<html>
 <head>
 <title>MicroPython for the IOT - Project 3</title>
 <meta http-equiv="refresh" content="30">
 <style>
 table, th, td {
 border: 1px solid black;
 border-collapse: collapse;
 }
 th, td {
 padding: 5px;
 }

Chapter 10 ■ Project 3: Plant Monitoring

366

 th {
 text-align: left;
 }
 </style>
 </head>
 <center><h2>MicroPython for the IOT - Project 3</h2></center>

 �<center>A simple project to demonstrate how to retrieve sensor data over
the Internet.</center>

 <center>
Plant Monitoring Data

 <table style="width:75%">
 <col width="180">
 <col width="120">
 <col width="100">
 <col width="100">
 �<tr><th>Datetime</th><th>Sensor Number</th><th>Raw Value</

th><th>Moisture</th><th>Location</th></tr>

Notice the table code. Again, don’t worry if this seems strange. It works and it is very
basic. Those familiar with HTML may want to embellish and improve the code. The last
line establishes the header for the table.

The second file, plant_data.csv, contains the data. We will use a constant to populate
a properly formatted HTML table row. The following shows an example of what a row of
data would look like in the file and how that data is transformed to HTML. We will see the
HTML for the table row in the next section.

Raw data
2017-08-08 20:26:17,1,78,dry,Small fern on bottom shelf
HTML table row
<tr><td>2017-08-08 20:26:17</td><td>1</td><td>78</td><td>dry</td><td>Small
fern on bottom shelf </td></tr>

The last file, part2.html, contains the closing tags so it isn’t very large. But since we’re
reading from files, we include this file. The following shows the code in the second file.

 </table>
 </center>
</html>

So, how do we use these files? When we send a response back to the client (the web
page), we read the first file sending one row at a time, then read the data file sending
one row at a time, then read the last file sending one row at a time. We will use a helper
function to read the data file. Listing 10-8 shows the code used to do this.

Listing 10-8.  Reading the HTML and Data File (WiPy)

Read HTML from file and send to client a row at a time.
def send_html_file(filename, client):
 html = open(filename, 'r')

Chapter 10 ■ Project 3: Plant Monitoring

367

 for row in html:
 client.send(row)
 html.close()

Send the sensor data to the client.
def send_sensor_data(client, filename):
 send_html_file("part1.html", client)
 log_file = open(filename, 'r')
 for row in log_file:
 cols = row.strip("\n").split(",") # split row by commas
 # build the table string if all parts are there
 if len(cols) >= 5:
 html = HTML_TABLE_ROW.format(cols[0], cols[1], cols[2],
 cols[3], cols[4])
 # send the row to the client
 client.send(html)
 log_file.close()
 send_html_file("part2.html", client)

Imports
The imports we need for the project include those for the real-time clock, sys, usocket,
utime, machine, and WLAN. These are now quite familiar. The last line imports the
PlantMonitor class from the plant_monitor code module. The complete list of imports is
shown below. If you want to follow along, open a new file and name it plant_wipy.py.

Imports for the project
from machine import RTC
import sys
import usocket as socket
import utime
import machine
from network import WLAN
from plant_monitor import PlantMonitor

We also need a string we can use to create the rows for the table. The HTML code
that occurs before this line is saved in files as described above. The following shows the
string used. Notice we use replacement syntax so that we can use the format() function
to fill in the details.

HTML web page for the project
HTML_TABLE_ROW = "<tr><td>{0}</td><td>{1}</td><td>{2}</td><td>{3}</
td><td>{4}</td></tr>"

Chapter 10 ■ Project 3: Plant Monitoring

368

Imports
We also want to connect the project to our network. We use the same code as we used in
previous projects and examples but instead make it a function named connect(), which
we will call from the main run() function. Be sure to change the SSID and password to
match your network.

Network Time Protocol
Since we are saving data that has a time element (you want to know when you sampled
the soil moisture), we need to store the date and time with the data. The easiest way
to do this is to use a network time protocol (NPT) server: that is, provided the board
is connected to the Internet. If it is not connected to the Internet, we must use a RTC
module or initialize the onboard RTC at startup. We saw how to use a NTP server in
Chapter 5. We repeat it in this project as a function named get_ntp(), which we will call
from the main run() function.

The run() Function
The HTML server portion of the run() function is like the last project but instead of
processing form requests, we send the web page back to the client by default. The only
command supported is the CLEAR_LOG command, which requires specifying it on the URL
on the client as described above.

Another difference is instead of placing code in the global section of the code file
(so that it executes when we import the file in our REPL console or main.py file), we use
functions to connect to the network, set up the NTP, and send the HTML code to the
client. This is an escalation of complexity that you should start using as general practice.
We did not see this in earlier projects so that we could concentrate on getting the code
complete. When writing your own projects, be sure to use functions to contain code and
call the functions from your other code.

Since this is different from the last project, we will look at the code. Listing 10-9
shows the code for the run() function.

Listing 10-9.  Plant Monitor Run() Function (WiPy)

Setup the socket and respond to HTML requests
def run():
 # Connect to the network
 if not connect():
 sys.exit(-1)

 # Setup the real time clock
 rtc = get_ntp()

 # Setup the plant monitoring object instance from the plant_monitoring class
 plants = PlantMonitor(rtc)
 filename = plants.get_filename()

http://dx.doi.org/10.1007/978-1-4842-3123-4_5

Chapter 10 ■ Project 3: Plant Monitoring

369

 # Setup the HTML server
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('', 80))
 sock.listen(5)
 print("Ready for connections...")
 server_on = True
 while server_on:
 client, address = sock.accept()
 print("Got a connection from a client at: %s" % str(address))
 request = client.recv(1024)

 # Allow for clearing of the log, but be careful! The auto refresh
 # will resend this command if you do not clear it from your URL
 # line.

 if (request[:14] == b'GET /CLEAR_LOG'):
 print('Requesting clear log.')
 plants.clear_log()
 send_sensor_data(client, filename)
 client.close()
 sock.close()

Take a moment to read through this code. Notice how we implement the function
in a more modular way. Not only does placing common code in functions help with how
you break a problem down into parts, it also makes your main code (the run() function)
shorter.

Let’s look at the completed code.

Complete Code
Now that we have seen all the parts of the code module, let’s look at the completed code.
Listing 10-10 shows the complete code for the Plant Monitor code module. Once again,
we can save this file as plant_wipy.py or plant_pyboard.py for the Pyboard).

Listing 10-10.  Plant Monitor Main Code (WiPy)

MicroPython for the IOT - Chapter 10
#
Project 3: MicroPython Plant Monitoring
#
Required Components:
- WiPy
- (N) Soil moisture sensors (one for each plant)
#
Note: this only runs on the WiPy.
#
Imports for the project

Chapter 10 ■ Project 3: Plant Monitoring

370

from machine import RTC
import sys
import usocket as socket
import utime
import machine
from network import WLAN
from plant_monitor import PlantMonitor

HTML web page for the project
HTML_TABLE_ROW = "<tr><td>{0}</td><td>{1}</td><td>{2}</td><td>{3}</
td><td>{4}</td></tr>"

Setup the board to connect to our network.
def connect():
 wlan = WLAN(mode=WLAN.STA)
 nets = wlan.scan()
 for net in nets:
 if net.ssid == 'YOUR_SSID':
 print('Network found!')
 wlan.connect(net.ssid, auth=(net.sec, 'YOUR_PASSWORD'), timeout=5000)
 while not wlan.isconnected():
 machine.idle() # save power while waiting
 print('WLAN connection succeeded!')
 print("My IP address is: {0}".format(wlan.ifconfig()[0]))
 return True
 return False

Setup the real time clock with the NTP service
def get_ntp():
 rtc = RTC()
 print("Time before sync:", rtc.now())
 rtc.ntp_sync("pool.ntp.org")
 while not rtc.synced():
 utime.sleep(3)
 print("Waiting for NTP server...")
 print("Time after sync:", rtc.now())
 return rtc

Read HTML from file and send to client a row at a time.
def send_html_file(filename, client):
 html = open(filename, 'r')
 for row in html:
 client.send(row)
 html.close()

Send the sensor data to the client.
def send_sensor_data(client, filename):

Chapter 10 ■ Project 3: Plant Monitoring

371

 send_html_file("part1.html", client)
 log_file = open(filename, 'r')
 for row in log_file:
 cols = row.strip("\n").split(",") # split row by commas
 # build the table string if all parts are there
 if len(cols) >= 5:
 html = HTML_TABLE_ROW.format(cols[0], cols[1], cols[2],
 cols[3], cols[4])
 # send the row to the client
 client.send(html)
 log_file.close()
 send_html_file("part2.html", client)

Setup the socket and respond to HTML requests
def run():
 # Connect to the network
 if not connect():
 sys.exit(-1)

 # Setup the real time clock
 rtc = get_ntp()

 # Setup the plant monitoring object instance from the plant_monitoring class
 plants = PlantMonitor(rtc)
 filename = plants.get_filename()

 # Setup the HTML server
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('', 80))
 sock.listen(5)
 print("Ready for connections...")
 server_on = True
 while server_on:
 client, address = sock.accept()
 print("Got a connection from a client at: %s" % str(address))
 request = client.recv(1024)

 # Allow for clearing of the log, but be careful! The auto refresh
 # will resend this command if you do not clear it from your URL
 # line.

 if (request[:14] == b'GET /CLEAR_LOG'):
 print('Requesting clear log.')
 plants.clear_log()
 send_sensor_data(client, filename)
 client.close()
 sock.close()

Chapter 10 ■ Project 3: Plant Monitoring

372

Changes for the Pyboard
Like the code module previously, the changes needed to run the code on the Pyboard are
numerous. The main reasons for this include the usual changes but also the code is quite
different because we must use a polling method since there is no (easy) way to set up a
timer interrupt like we did on the WiPy.

Since the changes are numerous, a difference file is nearly the same length as the
actual code.3 Thus, we will see the complete code for the Pyboard. Listing 10-11 shows
the complete code for the code module with the differences needed to adapt the code
module to the Pyboard (in bold). While most changes are minimal, if you are using the
Pyboard or a Pyboard clone, take note of the pins used for the sensor.

There are two major changes needed in the run() function. First, there is not NTP
support in the Pyboard firmware so we must use an RTC module or initialize the onboard
RTC each time we start the project. Second, since there is no way to set up a timer
interrupt that permits access to files, we must change the HTML server to use a non-
blocking socket technique. These changes are highlighted in bold.

Listing 10-11.  Plant Monitor Main Code (Pyboard)

MicroPython for the IOT - Chapter 10
#
Project 3: MicroPython Plant Monitoring
#
Required Components:
- Pyboard
- (N) Soil moisture sensors (one for each plant)
#
Note: this only runs on the Pyboard.
#
Imports for the project
from pyb import delay, SPI
from pyb import I2C
import network
import urtc
import usocket as socket
from plant_monitor import PlantMonitor

Setup the I2C interface for the rtc
i2c = I2C(1, I2C.MASTER)
i2c.init(I2C.MASTER, baudrate=500000)

HTML web page for the project
HTML_TABLE_ROW = "<tr><td>{0}</td><td>{1}</td><td>{2}</td><td>{3}</
td><td>{4}</td></tr>"

3This happens quite often. When it does, it is better to view the actual code as the difference file
may be harder to read.

Chapter 10 ■ Project 3: Plant Monitoring

373

Setup the board to connect to our network.
def connect():
 nic = network.CC3K(SPI(2), Pin.board.Y5, Pin.board.Y4, Pin.board.Y3)
 # Replace the following with yout SSID and password
 print("Connecting...")
 nic.connect("YOUR_SSID", "YOUR_PASSWORD")
 while not nic.isconnected():
 delay(50)
 print("Connected!")
 print("My IP address is: {0}".format(nic.ifconfig()[0]))
 return True

Read HTML from file and send to client a row at a time.
def send_html_file(filename, client):
 html = open(filename, 'r')
 for row in html:
 client.send(row)
 html.close()

Send the sensor data to the client.
def send_sensor_data(client, filename):
 send_html_file("part1.html", client)
 log_file = open(filename, 'r')
 for row in log_file:
 cols = row.strip("\n").split(",") # split row by commas
 # build the table string if all parts are there
 if len(cols) >= 5:
 html = HTML_TABLE_ROW.format(cols[0], cols[1], cols[2],
 cols[3], cols[4])
 # send the row to the client
 client.send(html)
 delay(50)
 log_file.close()
 send_html_file("part2.html", client)

Setup the socket and respond to HTML requests
def run():
 # Connect to the network
 if not connect():
 sys.exit(-1)

 # Setup the real time clock
 rtc = urtc.DS1307(i2c)
 #
 # NOTE: We only need to set the datetime once. Uncomment these
 # lines only on the first run of a new RTC module or
 # whenever you change the battery.
 # (year, month, day, weekday, hour, minute, second, millisecond)

Chapter 10 ■ Project 3: Plant Monitoring

374

 #start_datetime = (2017,07,20,4,9,0,0,0)
 #rtc.datetime(start_datetime)

 # Setup the plant monitoring object instance from the plant_monitoring class
 plants = PlantMonitor(rtc)
 filename = plants.get_filename()

 # Setup the HTML server
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('', 80))
 sock.setblocking(False) # We must use polling for Pyboard.
 sock.listen(5)
 print("Ready for connections...")
 server_on = True
 while server_on:
 try:
 client, address = sock.accept()
 except OSError as err:
 # Do check for reading sensors here
 plants.read_sensors()
 delay(50)
 continue
 print("Got a connection from a client at: %s" % str(address))
 request = client.recv(1024)

 # Allow for clearing of the log, but be careful! The auto refresh
 # will resend this command if you do not clear it from your URL
 # line.

 if (request[:14] == b'GET /CLEAR_LOG'):
 print('Requesting clear log.')
 plants.clear_log()
 send_sensor_data(client, filename)
 client.close()
 sock.close()

Notice the try block in the run() function. The sock.accept() function will throw
an exception when there is no client connected. This is different than how a blocking call
works. A blocking call will simply wait until a client connects. Here, we must attempt to
accept a connection and if it fails, continue waiting for a connection. That is, we cannot
send the HTML to the client as there is not client!

These changes highlight the added difficulty in using the Pyboard and other
MicroPython boards without networking support, those that require RTC modules, and
those with limited support for timer alarm interrupts to permit quasi-asynchronous
execution (it’s not really asynchronous). In other words, we can disconnect some of our
code to be called (triggered) by interrupts.

Now, let’s run this project!

Chapter 10 ■ Project 3: Plant Monitoring

375

WAIT, WHAT ABOUT THE DATA FILE?

If you are wondering about the data file, you need not worry. The code is designed to
create the file even if it doesn’t exist. The following shows a mockup of data you can
use in your tests.

2017-08-08 20:26:17,1,78,dry,Small fern on bottom shelf on porch
2017-08-08 20:26:32,2,136,dry,Green pot creeper thing on floor in living room
2017-08-08 20:26:47,1,128,dry,Small fern on bottom shelf on porch
2017-08-08 20:27:02,2,112,dry,Green pot creeper thing on floor in living room

If you want to start with some sample data, you can do so but just make sure it is
comma separated with no spaces and one line of data per row.

Execute!
Now is the fun part! We’ve got the code all set up to read soil moisture from our plants and
send all the sensor data collected to the client. Recall, we need to copy the code to our
board. We can ftp the two code files (plant_monitor.py and plant_wipy.py) as well as
the two HTML files (part1.html and part2.html). Do that now and you are ready to test
the project.

All we need now is the IP address of that board to point our web browser. We can get
that from our debug statements by running the code. Listing 10-12 shows the initial run
for the project on a WiPy (results for the Pyboard are similar).

Listing 10-12.  Running the Plant Monitor (WiPy)

MicroPython v1.8.6-694-g25826866 on 2017-06-29; WiPy with ESP32
Type "help()" for more information.
>>> import plant_wipy as p
>>> p.run()
Network found!
WLAN connection succeeded!
My IP address is: 192.168.42.128
Time before sync: (1970, 1, 1, 0, 1, 44, 382593, None)
Waiting for NTP server...
Time after sync: (2017, 8, 9, 14, 26, 1, 92051, None)
INFO: Using SD card for data.
Data filename = /sd/plant_data.csv
Plant Monitor class is ready...
Ready for connections...
Got a connection from a client at: ('192.168.42.110', 50395)

Chapter 10 ■ Project 3: Plant Monitoring

376

Notice in this case the IP address is 192.168.42.128. All we need to do is put that in
our browser and shown in Figure 10-5.

Figure 10-5.  Plant Monitor Project

Once you enter the URL, you should see a web page like the image shown. If you
don’t, be sure to check the HTML in your code to ensure it is exactly like what is shown;
otherwise, the page may not display properly. You should also ensure the network your
PC is connected to can reach the network to which your board is connected. If your home
office is set up like mine, there may be several WiFi networks you can use. It is best if your
board and your PC are on the same network (and same subnet).

At this point, you’ve completed another real MicroPython IOT project. In this case,
we saw an IOT project that collects and displays data. Cool!

Taking it Further
This project, like the last one, shows excellent prospects for reusing the techniques in
other projects. This is especially true for the HTML server aspect. If you liked seeing
your sensor data over the Internet, you should consider taking time to explore some
embellishments. Here are a few you may want to consider. Some are easy and some may
be a challenge or require more research.

•	 Add more sensors to expand your project to more plants.

•	 Add a temperature sensor to record ambient temperature and
display it on the web page.

•	 Rewrite the HTML code to produce JSON strings.

•	 Rewrite the HTML code to produce XML.

Chapter 10 ■ Project 3: Plant Monitoring

377

•	 Explore the HTML code to change the web page to your liking.
Consider using cascading style sheets to change the background
of the button when pressed.

•	 Connect your board to the Internet and call a friend to connect to
your board and try it out.

•	 Add LEDs to your board to illuminate when the plants need
watering.

Of course, if you want to press on to the next project, you’re welcome to do so but
take some time to explore these potential embellishments – it will be good practice.

Summary
IOT solutions can take many forms. One of the more common forms is those that
generate data that we can view over the Internet (sometimes called data collectors). The
implementation of data collectors can vary greatly, but they generally store the data in
some location and provide a way to view the data. The simplest forms are those that log
the data (sometimes called data loggers) locally, one a remote server, in a database, or in
a cloud service. The visualization of the data can also vary with the most basic providing
the data via a web page.

In this chapter, we saw a MicroPython IOT project that logs data read from a series
of soil moisture sensors. We created a plant monitoring solution that saved the data to
the local SD card. The project also served the data via a HTML server so that we can see
the data at any time. This project can be used as a template for a host of data collection
projects. You can simply follow the pattern established in this chapter and build your own
HTML-based data logger.

In the next chapter, we will close out our tour of MicroPython IOT projects by making
our MicroPython board send data to a cloud-based4 storage and visualization service. Cool!

4Sadly, some would argue it isn’t IOT unless it involves cloud services of one form or another.

379© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_11

CHAPTER 11

Project 4: Using Weather
Sensors

Building a full-fledged IOT project requires using technologies that permit your small
MicroPython board to collect and send data to services on the Internet that can store,
retrieve, and visualize the data. These Internet services are often cloud-based services.
Chances are, you’ve used some of these technologies without knowing. We’ve already
seen an early, simple form of this in the last chapter – using an HTML server to send data
to a client over the Internet.

Sending data via HTML may be fine for some projects, but projects where you
may need to visualize the data in some other form or if you want to perform analysis
on the data, will require a more advanced mechanism to transmit and store the data.
Fortunately, there are many technologies we can use, including those that permit the
controlled transmission of data.

Such technologies have a defined protocol (a way to communicate) and often
are supported by specialized programming interfaces. One of the easiest to use with
microcontrollers defines a protocol with publish and subscribe roles. That is, you can
publish data (write) or you can subscribe to data (read) and even be notified when new
data is available. One of the easiest-to-use publish/subscribe protocols is called message
queue telemetry transport (MQTT).

We will use MQTT in this chapter to see an example of a complete IOT project that
reads data from sensors and sends the data to a server, which can then be accessed by
clients that use MQTT to subscribe to the data. Best of all, some MQTT services like the
one we will use in this chapter also provide visualization tools that allow you to see the
data as it is being generated.

Fortunately, the sensor used in this chapter is easier to use than those from other
chapters. The complexity in this project comes from using cloud services to host the data
and MQTT to publish the data. As you will see, it isn’t that difficult to build. Let’s find out
more about the project for this chapter.

https://doi.org/10.1007/978-1-4842-3123-4_11

Chapter 11 ■ Project 4: Using Weather Sensors

380

Overview
In this chapter, we will implement a simplified weather station IOT solution. We will
record temperature, barometric pressure, and humidity using a small sensor on a
breakout board. While those three data points aren’t exactly a complete, professional
(much less hobbyists) grade weather solution, it shows you precisely how easy it is to
send data from the sensor to the cloud.

We will send the data to the cloud using MQTT to publish the data. We will also use
a subscription to monitor another data element (called a feed) that is connected to a
switch. The idea is borrowed from previous projects where we used a button on a web
page to trigger an event. In this case, we will use the switch and a subscription to the data
to turn our sensor on and off where on means no data is published. In this sense, our
MicroPython solution becomes a sensor node.

The user interface for this project will be built using a feature of the MQTT service
that permits you to create a site that displays the data using a variety of modular
components (called blocks) such as graphs and dials. As you will see, creating the user
interface is a lot easier than the HTML we wrote in previous projects.1 But it has one
limitation – it only displays data saved since it was launched. We will learn more about
that later when we test the project.

Before we look at the hardware for the project, let’s take a short detour to learn about
MQTT and the service we will use in the chapter.

Message Queue Telemetry Transport
The publish/subscribe model has been around for some time at least in theory and
concept. There are also programming constructs that implement the roles. A publisher
publishes data to a location (a server, database, or repository of structured data) that
permits subscribers to get the data. Thus, publishers are writers and subscribers are
readers.

In the case of IOT projects and sensor networks, we have one or more sensor nodes
or data providers sending data to the repository. Rather than use a structured storage
mechanism such as SQL, we can use a message queue that records messages that contain
the data. When subscribers subscribe to the data, they get the messages in the order that
they were received and parse the message for the data. Thus, they do not have to add a
data abstraction layer like those we would use with a database server. In this case, the
MQTT protocol is all you need.

MQTT is a simple and very lightweight protocol (meaning it doesn’t require a huge
library with a complex set of steps to use) that you can use with your MicroPython (and
other microcontroller platforms). Since MQTT is based on a message queue, the protocol
is very tolerant of unreliable delivery of data. And since it doesn’t require a lot of memory
to use, it can be used on small devices. What this means is MQTT is a way to ensure your
small IOT devices can send data to a server (called a broker) with a reasonable assurance

1Some savvy HTML programmers may beg to differ.

Chapter 11 ■ Project 4: Using Weather Sensors

381

of delivery – both for publishers and subscribers. This makes MQTT a perfect tool for use
in IOT projects.

Interestingly, MQTT has been around since 1999. It was invented by Dr. Andy
Stanford-Clark of IBM and Alren Nipper of Arcom (Eurotech). It has changed very
little since then and has been adapted to a growing number of platforms. For more
information about MQTT, see http://mqtt.org/faq.

Let’s see how MQTT works in a bit more detail.

How It Works
There are three components to a basic MQTT service: sensor nodes or publishers that
produce messages containing data, clients or subscribers that read the messages, and a
broker or server that stores the messages distributing them to subscribers. Figure 11-1
shows a concept of how the three components work.

Notice we have sensor nodes on the left that can publish data (depicted by solid
lines), clients on the right that can subscribe to messages (depicted by dotted lines), and
a visualization component provided by the broker (depicted as dashed lines). Notice
also there are sensor nodes that can publish and subscribe as well as a client that can
visualize data and subscribe to messages. In fact, you can have any combination of
publish and subscribe. We will see how to both publish and subscribe to messages from
our MicroPython project.

Figure 11-1.  MQTT Concept

http://mqtt.org/faq

Chapter 11 ■ Project 4: Using Weather Sensors

382

Clients
A MQTT client is simply a device (or computer) that has a MQTT library that you can use
to program your device to send messages (publish) to or read messages (subscribe) from
a broker. Fortunately, the WiPy and some of the other ESP-based microcontroller ports
of MicroPython include a MQTT library. Unfortunately, there isn’t one for the Pyboard.
Thus, we will only look at the WiPy MicroPython board in this chapter.

Brokers
There are several brokers you can use including those that are cloud based as well as
one you can use on your own server. Most brokers have their own implementation of
the MQTT client (some require specific drivers or libraries) and may run on a specific
platform or require other components. Regardless, they support the same MQTT protocol
from the sensor nodes and clients. Thus, you can choose to use on MQTT broker and later
move to another without having to rewrite your code from scratch.

For IOT projects, you will want to choose a broker that is cloud based so that you can
connect your board to the cloud and access the data from anywhere. The broker of choice
for this project is Adafruit IO (io.adafruit.com). Adafruit IO is currently in public beta,
which means it is available to anyone who wants to use it. There are some restrictions
– none of which will affect experiments like the project in this chapter. If you plan to
base a commercial product on Adafruit IO, you may want to wait until it is out of beta or
consider an alternative broker service.

ALTERNATIVE MQTT BROKERS

The website https://github.com/mqtt/mqtt.github.io/wiki/servers contains
a list of MQTT brokers. You will find some that cater to a specific platform or
programming language such as Java. You will also find some commercial MQTT
services you can use for larger projects or projects you want to monetize.

However, if you want to set up your own MQTT server on your network, you can
use Mosquito (http://mosquitto.org/), which is open source and very popular
among hobbyists. There is even a public test server you can use. Better still, you
won’t have to change the code in this project much to use it. You should consider
Mosquito as a stepping stone from a free MQTT broker like Adafruit IO to a
commercial MQTT broker.

Getting Started with Adafruit IO
Adafruit IO (io.adafruit.com) is a cloud-based data visualization system that is easy
to use, requiring very little programming knowledge to use. This is accomplished with
support for representational state transfer (REST) and MQTT APIs. We will be using the
MQTT API for this project.

https://io.adafruit.com
https://github.com/mqtt/mqtt.github.io/wiki/servers
http://mosquitto.org/

Chapter 11 ■ Project 4: Using Weather Sensors

383

REST is a protocol used by many cloud-based services such as those provided by
Amazon Web Services (AWS) as well as many commercial cloud-based solutions. It
is best known for use with web-based solutions via HTML operations. See https://
en.wikipedia.org/wiki/Representational_state_transfer for more information
about REST. We will only use MQTT in this chapter.

The goal of Adafruit IO was to cut out all the complexity of the current data loggers
and cloud-based data services solutions and make it easy to use and Adafruit has done so
very well. Briefly, we use a MQTT client driver (library), write our code to connect to, and
subscribe to data or publish data. The visualization part takes place on the Adafruit IO
server itself where we create our own use interface to see the data. There are four steps to
getting started with Adafruit IO.

	 1.	 Create an account.

	 2.	 Set up feeds (message queues) for your data.

	 3.	 Set up a dashboard to visualize the data.

	 4.	 Connect your devices and start publishing and subscribing.

All you need to get started with Adafruit IO is a user account. To create an account
for Adafruit IO, just head over to https://io.adafruit.com/. If you already have an
account on Adafruit’s server, you can use that one and just register for access to Adafruit
IO. The process is simple and easy to follow. Once you are logged in, you will see the
administrative interface where you can create feeds and dashboards.

A feed is the core component of Adafruit IO. A feed is where you place your data in
the form of messages from your devices. Feeds can store data (via publish), and devices
(clients) can read the data by subscribing to the feed. You can have more than one feed
and each is defined by its name and referenced via your user id.

Dashboards are the views of the data in the feeds. Adafruit IO provides a drag-and-drop
interface for building simple views of the data very quickly using predefined user-interface
controls called “blocks”. Each dashboard can have one or more blocks, which can be connected
to your feeds. Data is then shown in the blocks automatically updating when new data arrives.

Once we have our feeds and dashboard set up, we can write our code to use the
MQTT library and send (or receive) data. We can then return to our dashboard and view
the data. We will see a detailed walkthrough for setting up the feeds and a dashboard for
the project in this chapter in a later section.

If you want to learn more about io.adafruit.com, check out these excellent tutorials
from Adafruit. You can also find some interesting project ideas for using Adafruit IO at
https://learn.adafruit.com/search?q=io.adafruit.com&.

•	 Adafruit IO: https://learn.adafruit.com/adafruit-io/rest-
api?view=all

•	 Adafruit IO Basics – Feeds: https://learn.adafruit.com/
adafruit-io-basics-feeds/resources?view=all

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://io.adafruit.com/
https://learn.adafruit.com/search?q=io.adafruit.com
https://learn.adafruit.com/adafruit-io/rest-api?view=all
https://learn.adafruit.com/adafruit-io/rest-api?view=all
https://learn.adafruit.com/adafruit-io-basics-feeds/resources?view=all
https://learn.adafruit.com/adafruit-io-basics-feeds/resources?view=all

Chapter 11 ■ Project 4: Using Weather Sensors

384

•	 Adafruit IO Basics – Dashboards: https://learn.adafruit.
com/adafruit-io-basics-dashboards/creating-a-
dashboard?view=all

•	 MQTT, Adafruit IO & You: https://learn.adafruit.com/mqtt-
adafruit-io-and-you/arduino-plus-library-setup?view=all

Now, let’s see what components we need for this project.

Required Components
Table 11-1 lists the components you will need. You can purchase the components
separately from Adafruit (adafruit.com), Sparkfun (sparkfun.com), or any electronics
store that carries electronic components. Links to vendors are provide should you want to
purchase the components. When listing multiple rows of the same object, you can choose
one or the other - you do not need both. Also, you may find other vendors that sell the
components. You should shop around to find the best deal. Costs shown are estimates
and does not include any shipping costs.

Table 11-1.  Required Components

Component Qty Description Cost Links

MicroPython
board

1 WiPy $25 https://www.adafruit.com/
product/3338

https://www.pycom.io/product/
wipy/

Weather
Sensor

1 BME280 (I2C
interface)

$20 https://www.sparkfun.com/
products/13676

Jumper wires 4 M/M jumper wires,
6" (cost is for a set
of 10 jumper wires)

$4 https://www.sparkfun.com/
products/8431

Breadboard 1 Prototyping board,
half-sized

$5 https://www.sparkfun.com/
products/12002

Power 1 USB cable to get
power from PC

Use from your spares

1 USB 5V power
source and cable

Use from your spares

https://learn.adafruit.com/adafruit-io-basics-dashboards/creating-a-dashboard?view=all
https://learn.adafruit.com/adafruit-io-basics-dashboards/creating-a-dashboard?view=all
https://learn.adafruit.com/adafruit-io-basics-dashboards/creating-a-dashboard?view=all
https://learn.adafruit.com/mqtt-adafruit-io-and-you/arduino-plus-library-setup?view=all
https://learn.adafruit.com/mqtt-adafruit-io-and-you/arduino-plus-library-setup?view=all
https://www.adafruit.com/product/3338
https://www.adafruit.com/product/3338
https://www.pycom.io/product/wipy/
https://www.pycom.io/product/wipy/
https://www.sparkfun.com/products/13676
https://www.sparkfun.com/products/13676
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/12002

Chapter 11 ■ Project 4: Using Weather Sensors

385

Figure 11-2.  Atmospheric Sensor Breakout (courtesy of sparkfun.com)

BME280 breakout board atmospheric sensors can support either I2C or SPI
interfaces. The BME280 from Sparkfun supports both, which makes it ideal for an IOT
parts kit. Figure 11-2 shows the BME280 weather sensor from Sparkfun. If you have one
from another vendor, make sure it supports I2C (or adjust the code in this project and
the wiring diagram accordingly). It does not come with headers so you can add those
yourself. Just order a set when you order the sensor and solder them yourself (or get a
friend to help you).

Fortunately, the wiring for this project is less complex than the last two projects.
Now, let’s see how to wire the components together.

Set Up the Hardware
The simplicity of this project is that we’re using the one sensor and the I2C interface so we
do not need many connections. Figure 11-3 shows the wiring diagram for the WiPy.

Chapter 11 ■ Project 4: Using Weather Sensors

386

■■ Caution  The Sparkfun BME280 is limited to 3.3V. Be sure to connect it only to the 3.3V
pin on the WiPy.

Figure 11-3.  Wiring the Weather Sensor (WiPy)

Chapter 11 ■ Project 4: Using Weather Sensors

387

Once again, always make sure to double-check your connections before powering
the board on. Don’t power on your board just yet – we need to set up our Adafruit IO
feeds and dashboard then write the code before we’re ready to test the project.

Configure Adafruit IO
Now we are ready to configure Adafruit IO. Recall our project will read three types of data
from the BME280 sensor: temperature, humidity, and barometric pressure. Thus, we
will create one feed for each of these. We will also use a fourth feed so we can control our
MicroPython board via the dashboard. The dashboard will have several blocks to show
each of the feeds. Let’s see how to create the feeds and dashboard for our project.

Set Up Feeds
To set up a feed, log in to Adafruit IO and select Feeds from the list of links on the left of
the screen, then click the Actions drop-down list and choose Create a New Feed as shown
in Figure 11-4.

Figure 11-4.  Create a new Feed

Next, you can provide a name and description (optional) for the feed. Name the first
feed Temperature as shown in Figure 11-5. When you’re satisfied with the data entered,
click Create to create the feed.

Chapter 11 ■ Project 4: Using Weather Sensors

388

Repeat the process and create feeds for storing humidity (named Humidity),
barometric pressure (named Pressure), and one for controlling the sensors (named
Sensors). When complete, you should see the new feeds as shown in Figure 11-6.

Notice at this point there is no data in the feeds. We won’t see any data until we’ve set
up and connected our MicroPython board. Now that the feeds are set up, we can create a
dashboard to see the data once we publish it.

Set Up a Dashboard
You can create as many dashboards as you want to view the data in your feeds. In fact,
you can make one dashboard for each feed or several dashboards that connect to one
or more of your feeds. For this project, we will create one dashboard that connects to all
four feeds.

Figure 11-5.  Create a New Feed dialog

Figure 11-6.  Feeds for the Weather Project

Chapter 11 ■ Project 4: Using Weather Sensors

389

To set up a dashboard, select Dashboards from the list of links on the left of the
screen, then click the Actions drop-down list and choose Create a New Dashboard as
shown in Figure 11-7.

Next, you can provide a name and description (optional) for the dashboard. Name
the dashboard WeatherData and provide a description (optional) as shown in Figure 11-8.
When you’re satisfied with the data entered, click Create to create the dashboard.

Figure 11-7.  Create a new Dashboard

Figure 11-8.  Create a New Dashboard dialog

Chapter 11 ■ Project 4: Using Weather Sensors

390

Once you’ve created the dashboard, we must edit it to add blocks. To add blocks,
click your dashboard. At this point, you have a blank dashboard where we can add one or
more blocks. The available blocks and their uses are shown in Table 11-2. As you will see,
there are blocks that can be used to display data in a variety of ways (called outputs in the
Adafruit documentation) and those that can be used to generate data (called inputs) in
a feed. Some blocks can be connected to one and only one feed, and other blocks can be
connected to multiple feeds.

Table 11-2.  Adafruit IO Blocks

Name Type Description

Toggle Button input Choose between two values either text or
numeric. Think of it like a switch.

Momentary Button input Send a single value to a feed much like a
hardware momentary button.

Number Slider input Select a number from a specified range that you
define.

Gauge output Display the current value of a feed. Can show
percentage if you set a min and max value.

Text Box both Display static text or text from a feed.

Stream output Display messages from one or more feeds.

Image output Display images in a feed.

Line Graph output Display data in a line graph from a feed.

Color Picker input Select a RGB value and send it to a feed.

Map output Track the locations of your feed data (if geo data
is available).

Remote Control input Mimics the Mini Remote Control sold by Adafruit.

For our project, we will add the following blocks.

•	 Line Graph: one block each to connect the Temperature,
Humidity, and Pressure feeds.

•	 Toggle Button: connect the Sensors feed.

•	 Stream: connect all four feeds.

To add a block, click on the plus sign icon in the upper-right area of the dashboard
edit screen as shown in Figure 11-9.

Chapter 11 ■ Project 4: Using Weather Sensors

391

When you click the plus sign, you will be shown a list of blocks available. The blocks
listed in Table 11-2 are shown in Figure 11-10, listed in order from the top left. To add the
block of your choice to your dashboard, click on the block.

When you select the block, you must select the feed(s) for the block. Figure 11-11
shows an example of selecting the feeds for the line graph for the Temperature feed. As
you can see, you could select any number of feeds. However, be sure to consider the scale
of each data before using a line graph for multiple feeds. In this project, we have different

Figure 11-9.  Add a Block

Figure 11-10.  Available Blocks

Chapter 11 ■ Project 4: Using Weather Sensors

392

scales for the three types of data. If we used one line graph, the feed with the lowest range
would appear at the bottom of the graph and may obscure data variation over time (it
may appear as a flat line).

Once you’ve selected the feeds by ticking the box next to the feed name, click on Next
step to configure the block. The dialog will look different for each block type. Figure 11-12
shows the settings for the Temperature line graph block.

Figure 11-11.  Selecting the feeds for a block

Chapter 11 ■ Project 4: Using Weather Sensors

393

Figure 11-12.  Block Settings (Temperature)

Notice I chose to set the name for the block to the same name as the feed and I
changed the labels for the X- and Y-axes. I also set the minimum and maximum values for
the Y-axis. When you are satisfied with the settings, click Create block to add the block to
the dashboard.

Go ahead and create two more line graphs for the Humidity and Pressure feeds. You
can name the blocks in a similar manner but use the range 0,100 for Humidity and range
80000,120000 for pressure. You may want or need to adjust those if the elevation of your
geographic location differs, resulting in slightly different ranges.

Next, we add a block for logging all the data. For this, we will use a Stream block. Add
the stream block and select all four feeds. You can name it however you want and the
default settings are OK. Figure 11-13 shows the settings I used. This block is a nice block to
use when setting up a new dashboard as it lets you see the data as it arrives in each field.

Chapter 11 ■ Project 4: Using Weather Sensors

394

Finally, we add a block for our switch to turn the recording of data on and off. Add a
toggle button block and use the settings shown in Figure 11-14.

Figure 11-13.  Block Settings (Stream Block)

Chapter 11 ■ Project 4: Using Weather Sensors

395

There is one more step. Adding blocks to your dashboard places them on the screen
in the order they appear and at default sizes. If you look at your dashboard, you will see
each block has edges that you can use to resize each block. You can also click on a block,
hold down the mouse button, and drag the blocks around to your liking. Go ahead and do
this now. You can use a layout like the one shown in Figure 11-15.

Figure 11-14.  Block Settings (Sensors)

Chapter 11 ■ Project 4: Using Weather Sensors

396

When you are finished editing your dashboard, click on DONE EDITING. You can
always edit your dashboard later if you want to change scales on one of the blocks or
move the blocks around. To edit a block that you’ve already added, click on the small gear
icon on the dashboard edit screen for the block you want to edit.

Get Your Credentials
There is one more thing you need to do. Connection to Adafruit IO is done through your
user account and a special key generated by the system. We use this data instead of a user
id and password. To retrieve your key, go to the main page and click Settings, then the VIEW

Figure 11-15.  Rearranging Blocks on the Dashboard

Chapter 11 ■ Project 4: Using Weather Sensors

397

AIO KEY button. You will see a dialog appear like the one shown in Figure 11-16. Notice I
have obscured the data. You should treat this data like you would any other password. If you
want to see samples of how to use the values, click on Show Code Samples.

Figure 11-16.  AIO Key

You will need both your user name and your IO Key in the source code so it is best
to get these values now and save them some place safe. You can always refer to this page
in the future if you do not want to save these values in a file. Also, if you ever need to
regenerate your key, you can do so by clicking on REGENERATE AIO KEY, but don’t do
that unless you need a new key!

Ok, now we’re ready to start sending some data. But first, we will need to write the code.

Write the Code
The code for this project is relatively easy to write once you understand the MQTT library.
As you will see, it pairs well with Adafruit IO in ease of use. To make this project more
interesting and more applicable to how you would write IOT projects for the MicroPython
platform, we will place all the code for reading the sensors and publishing the data in
a class. We will then use that class in a code module that we can call from our main.py

Chapter 11 ■ Project 4: Using Weather Sensors

398

code module on boot. Since the code doesn’t use any constructs that we haven’t already
seen, the description of the code will be brief and focus only on the new concepts and the
MQTT code specifically.

However, we first need to download a MQTT library and a BME280 driver for the WiPy.

MQTT Driver
The MQTT library for the WiPy is available for download at https://github.com/pycom/
pycom-libraries. I recommend downloading the entire repository. To do so, click on the
Clone or download button, then click Download Zip and save the file on your PC. Once
downloaded, you can unzip the file and then locate the MQTT library in the /lib/mqtt
folder. The file we want is named mqtt.py. You will need to copy this file to your WiPy in a
later step.

BME280 Library
The driver for the BME280 is available for download from https://bitbucket.org/
oscarBravo/wipy_bme280. To download the driver, click on the download icon on the
left side of the screen (looks like a cloud with an arrow pointing down), then click on
Download repository on the list of downloads available. Once downloaded, unzip the file
and find the driver named bme280.py.

While the driver will work with the WiPy, the address for the sensor may need to be
changed. Be sure to check the address of the BME280 sensor you chose and ensure the
address in the driver file (bme280.py) is set correctly. Failure to use the correct address
will result in strange, fatal errors when you run the code. The following shows the line of
code that specifies the address in hexadecimal.

BME280 default address.
BME280_I2CADDR = 0x77

Recall, you can find the address of the I2C devices connected to your board using
the scan() function for the I2C class as shown below. The function returns a decimal
value, but you can convert it to hexadecimal as shown below. Be sure to connect your I2C
sensor first!

MicroPython v1.8.6-694-g25826866 on 2017-06-29; WiPy with ESP32
Type "help()" for more information.
>>> from machine import I2C
>>> i2c = I2C(0, I2C.MASTER, baudrate=100000)
>>> devices = i2c.scan()
>>> for device in devices:
... print("Address: {0}".format(hex(device)))
Address: 0x77

Here we see the address is 0x77. If you look in the bme280.py file, you will see the
default is 0x76. Just change that to match your sensor and it will work correctly.

https://github.com/pycom/pycom-libraries
https://github.com/pycom/pycom-libraries
https://bitbucket.org/oscarBravo/wipy_bme280
https://bitbucket.org/oscarBravo/wipy_bme280

Chapter 11 ■ Project 4: Using Weather Sensors

399

Weather Class
We learned about classes in Chapter 4. There, we learned that we can package our code
in such a way as to make a set of operations on data easier to use. We will do that here. We
will wrap our code around the BME280 sensor and Adafruit IO to make an easy-to-use
class or library for reading weather data and publishing it to the cloud.

However, we aren’t going to just throw code that we would normally use in functions
into a class willy-nilly. We will design the class to be reusable and easily configured. The
best way to do that is to make the constructor – the function called when the class is
instantiated – accept parameters.

For example, we will pass in the credentials for our Adafruit IO connection (device
id, user name, AIO key) as well as the frequency for how often we want to publish data
(recall, this is also called a sampling rate). By passing the information into the class via
the constructor, we can make that data available to all the functions in the class and thus
we can eliminate the use of global variables!2

Essentially, we will be packaging all the heavy lifting code for initializing the BME280
library, the MQTT library, reading data from the sensor and publishing the data, and
subscribing to the Sensors feed.

If you want to follow along, we will name the class WeatherNode since it encapsulates
the sensor and publishes data. We will name the code module weathernode.py. Let’s
consider the design for the class.

Design
Let’s talk a moment about the design of the class. This is a very important step that you
should always consider. Having a good design (or at least a plan) for your class in the form
of what features you want to implement and making functions to implement them can
make a big difference in quality of your code.

For this class, we will create a function that we can call from our main code. This
function will be responsible for implementing a loop to read data from the sensors,
publish the data, and monitor any messages from the Sensors feed. If a message appears
for the Sensors feed, the function will also act on it. Recall, this means turning the publish
data and on and off based on the switch position message in the feed.

Thus, we will need one function to initiate the read loop, another to be used for
reading the data, and a function we can use as a callback for responding to messages
in the feed. The following sections describe each of these areas and the functions that
perform the operations. Let’s begin with a look at the imports section.

2A pet peeve of many computer science and programming teachers. Perfectly legal to use but
considered bad form by many.

http://dx.doi.org/10.1007/978-1-4842-3123-4_4

Chapter 11 ■ Project 4: Using Weather Sensors

400

Imports
The imports section requires several libraries. We need the I2C and MQTT libraries, the
BME280 driver, and the time library for delays. The following shows the imports needed
for the class.

from machine import I2C
from mqtt import MQTTClient
import bme280
import utime

Constructor
The constructor needs to accept the Adafruit IO identification tag or device id, user name,
AIO key, and frequency (sample rate). The device id can be any string you want to use
but it is suggested you use a short name for the device. We will also use a parameter for
the port of the MQTT server in case you want to change it, but we will use a default value
of 1883, which is the port for Adafruit IO. Listing 11-1 shows the code for the constructor.
Constructor functions are always named __init__().

Listing 11-1.  Constructor (WeatherNode class)

Constructor
def __init__(self, io_id, io_user, io_key, frequency, port=1883):
 # Turn sensors on/off
 self.sensor_on = False

 # Save variables passed for use in other methods
 self.io_id = io_id
 self.io_user = io_user
 self.io_key = io_key
 self.update_frequency = frequency
 self.port = port

 # Now, setup the sensor
 i2c = I2C(0, I2C.MASTER, baudrate=100000)
 self.sensor = bme280.BME280(i2c=i2c)
 utime.sleep_ms(100)
 print("Weather MQTT client is ready.")

Notice this function simply initializes several class variables (designated with self.)
for storing the connection values and frequency. The constructor also initializes the I2C
interface and the BME280 sensor class instance.

Chapter 11 ■ Project 4: Using Weather Sensors

401

Read Data Function
The read data function, which we will name read_data(), takes as a parameter a pointer
to the BME280 sensor object instance, reads the data from the sensor, and returns it in a
tuple. The following shows the read_data() function.

Reads the sensor. Returns a tuple of (temperature, humidity, pressure)
def read_data(self):
 utime.sleep_ms(50)
 temperature = self.sensor.read_temperature() / 100.00
 humidity = self.sensor.read_humidity() / 1024.00
 pressure = self.sensor.read_pressure() / 256.00
 return (temperature, humidity, pressure)

Notice we perform some scale manipulation on the values read. These calculations
were taken from the website that documents the BME280 driver (https://bitbucket.
org/oscarBravo/wipy_bme280).

Message Callback Function
The next function we need is a function we can use as a callback for the MQTT messages
from the feeds. We will name the function message_function(). In this case, we need
only the topic and message parameters. The following shows the code for the
message_callback() function.

A simple callback to print the message from the server
def message_callback(self, topic, msg):
 print("[{0}]: {1}".format(topic, msg))
 self.sensor_on = (msg == b'ON')

Notice we print the messages received and if a message to turn the sensors on
appears, we set the Boolean class variable to True. We will see how we use this feature in
the run function.

Run Function
The last function we need is the one that is going to do all the work for collecting data
from the sensor and publishing it on our feeds on Adafruit IO. This is where the core of
using the MQTT library occurs so we will go through this bit a little slower.

The first thing we do is get an instance of the MQTTClient class. We pass in the device
id, the host name of the server (in this case, io.adafruit.com), the user ide, AIO key,
and port.

Once we have an instance of the client, we can set the callback for getting any
messages from our subscribed feeds associated with our device id, we use the
set_callback() function passing in the name of our method to handle the messages.
Recall, this is message_callback().

https://bitbucket.org/oscarBravo/wipy_bme280
https://bitbucket.org/oscarBravo/wipy_bme280

Chapter 11 ■ Project 4: Using Weather Sensors

402

Next, we subscribe to the sensors feed named <user id>/feeds/sensors using the
client.subscribe() function as shown below.

client.subscribe(topic="{0}/feeds/sensors".format(self.io_user))

We specify the feed using the topic parameter. Feed names are always formed using
the user id and the feed name. You can think of this like a path. Be sure to check the feed
names carefully to ensure you’ve got the right one. You can always check your Adafruit IO
page to double-check.

That completes the setup code for using MQTT. Easy, wasn’t it?
Now we write the while loop to read data from the sensors. To make this easy, we will

loop indefinitely (but you may want to change that if you plan to make this project more
than an experiment). Inside the loop, we will check to see if it is OK to read data from the
sensors. Recall, we are using a toggle button on the dashboard to control our board. If the
toggle button is “ON”, we read, else we do not read data.

If we are reading data (the toggle button is ON), we read the data using our
read_data() function, then publish each data element to the appropriate feed using
the client.publish() function. For example, to send data to the temperature feed, we
use specify the user id and feed using the topic parameter and send the data via the msg
parameter as shown below.

client.publish(topic="{0}/feeds/temperature".format(self.io_user),
msg=str(data[0]))

At the end of the loop, we do several things. We sleep for the number of seconds
specified in the update frequency parameter. This is how we can avoid sending too much
data too frequently and match our data collection to what is a realistic interval. Next, we
check for messages using the client.check_msg() function. This function simply checks
to see if any new messages have arrived. If there are, since we specified a callback function,
the callback function will be called for each new message. See, no polling needed! Finally,
we merely sleep for one second to allow time for the callback function to fire.

Listing 11-2 shows the completed run function for the WeatherNode class.

Listing 11-2.  Run Function (WeatherNode)

def run(self):
 # Now we setup our MQTT client
 client = MQTTClient(self.io_id, "io.adafruit.com", user=self.io_user,
 password=self.io_key, port=self.port)
 client.set_callback(self.message_callback)
 client.connect()
 client.subscribe(topic="{0}/feeds/sensors".format(self.io_user))

 while True:
 if self.sensor_on:
 data = self.read_data()
 print(" >", data)

Chapter 11 ■ Project 4: Using Weather Sensors

403

 client.publish(topic="{0}/feeds/temperature".format(self.io_user),
 msg=str(data[0]))
 client.publish(topic="{0}/feeds/humidity".format(self.io_user),
 msg=str(data[1]))
 client.publish(topic="{0}/feeds/pressure".format(self.io_user),
 msg=str(data[2]))
 utime.sleep(self.update_frequency)
 client.check_msg()
 utime.sleep(1) # Check messages only once per second

Now let’s look at the completed code for the class.

Completed Code
Listing 11-3 shows the completed code for the WeatherNode class code module
(weather_node.py).

Listing 11-3.  WeatherNode Class (weather_node.py)

MicroPython for the IOT - Chapter 11
#
Project 4: MicroPython Weather Node - BME280 MQTT Client class
#
Note: this only runs on the WiPy.
#
Imports for the project
from machine import I2C
from mqtt import MQTTClient
import bme280
import utime

class WeatherNode:
 """Sensor node using a BME280 sensor to send temperature, humidity, and
 barometric pressure to io.adafruit.com MQTT broker."""

 # Constructor
 def __init__(self, io_id, io_user, io_key, frequency, port=1883):
 # Turn sensors on/off
 self.sensor_on = False

 # Save variables passed for use in other methods
 self.io_id = io_id
 self.io_user = io_user
 self.io_key = io_key
 self.update_frequency = frequency
 self.port = port

Chapter 11 ■ Project 4: Using Weather Sensors

404

 # Now, setup the sensor
 i2c = I2C(0, I2C.MASTER, baudrate=100000)
 self.sensor = bme280.BME280(i2c=i2c)
 utime.sleep_ms(100)
 print("Weather MQTT client is ready.")

 # Reads the sensor. Returns a tuple of (temperature, humidity, pressure)
 def read_data(self):
 utime.sleep_ms(50)
 temperature = self.sensor.read_temperature() / 100.00
 humidity = self.sensor.read_humidity() / 1024.00
 pressure = self.sensor.read_pressure() / 256.00
 return (temperature, humidity, pressure)

 # A simple callback to print the message from the server
 def message_callback(self, topic, msg):
 print("[{0}]: {1}".format(topic, msg))
 self.sensor_on = (msg == b'ON')

 def run(self):
 # Now we setup our MQTT client
 client = MQTTClient(self.io_id, "io.adafruit.com", user=self.io_user,
 password=self.io_key, port=self.port)
 client.set_callback(self.message_callback)
 client.connect()
 client.subscribe(topic="{0}/feeds/sensors".format(self.io_user))

 while True:
 if self.sensor_on:
 data = self.read_data()
 print(" >", data)
 client.publish(topic="{0}/feeds/temperature".format(self.io_user),
 msg=str(data[0]))
 client.publish(topic="{0}/feeds/humidity".format(self.io_user),
 msg=str(data[1]))
 client.publish(topic="{0}/feeds/pressure".format(self.io_user),
 msg=str(data[2]))
 utime.sleep(self.update_frequency)
 client.check_msg()
 utime.sleep(1) # Check messages only once per second

Now, let’s look at the main code.

Main Code
The main code file is named weather.py. As you will see, it is very short and simple. This
is because all the work is being done in our class module! The following sections briefly
describe the major parts of the main code starting with the imports.

Chapter 11 ■ Project 4: Using Weather Sensors

405

Imports
Since all the work is being done in the WeatherNode class, we only need to import that
code module (weather_node) and those libraries we need for connecting our board to our
WiFi network as shown below.

from network import WLAN
from weather_node import WeatherNode
import machine

Global Definitions
The WeatherNode class requires the connection data for our Adafruit IO account. To
make it easier to change, we can use some definitions in the main code to contain these
variables. The following shows one way to do this. Here, we see definitions for the device
id, user id, AIO key, and frequency (for updating the data). Be sure to change these to
match your Adafruit IO credentials and set the frequency accordingly.

Define out user id and key
_IO_ID = "YOUR_DEVICE_ID"
_IO_USERNAME ="YOUR_USER_ID"
_IO_KEY = "YOUR_AIO_KEY"
_FREQUENCY = 5 # seconds

You may want to keep the frequency at the example 5 seconds so you don’t have to
wait a long time to see results, but be sure to change this once you deploy the project for
any longer-term runs.

Connect Function
The connect() function is the same function we’ve seen in previous chapters. Listing 11-4
shows the code for completeness. As you will see, you must provide your SSID and SSID
password.

Listing 11-4.  Connection Function (weather.py)

Setup the board to connect to our network.
def connect():
 wlan = WLAN(mode=WLAN.STA)
 nets = wlan.scan()
 for net in nets:
 if net.ssid == 'YOUR_SSID_HERE':
 print('Network found!')
 �wlan.connect(net.ssid, auth=(net.sec, 'YOUR_WIFI_PASSWORD'),

timeout=5000)
 while not wlan.isconnected():
 machine.idle() # save power while waiting

Chapter 11 ■ Project 4: Using Weather Sensors

406

 print('WLAN connection succeeded!')
 print("My IP address is: {0}".format(wlan.ifconfig()[0]))
 return True
 return False

Now, let’s look at the run function.

Run Function
The run() function is very simple. All we need to do is call the connect() function to
connect our WiPy to our WiFi network, then instantiate the WeatherNode class, and then
call the run() function for the class as shown below.

connect()
Run the weather MQTT client
weather_mqtt_client = WeatherNode(_IO_ID, _IO_USERNAME, _IO_KEY, _FREQUENCY)
weather_mqtt_client.run()

That’s it! Can you see how much easier it makes our code if we use classes to contain
the core of our project? Hopefully, you will see the benefits and start constructing your
own projects in a similar manner. Now, let’s look at the completed code for the weather.
py code module.

Completed Code
Listing 11-5 shows the completed code for the Weather main code module (weather.
py). Notice you must provide the device id, your AIO user name, AIO key, frequency of
updates, SSID name, and SSID password before running this code.

Listing 11-5.  Main Code (weather.py)

MicroPython for the IOT - Chapter 11
#
Project 4: MicroPython Weather Node
#
Required Components:
- WiPy
- (1) BME280 Weather Sensor
#
Note: this only runs on the WiPy.
#
Imports for the project
from network import WLAN
from weather_node import WeatherNode
import machine

Chapter 11 ■ Project 4: Using Weather Sensors

407

Define out user id and key
_IO_ID = "YOUR_DEVICE_ID"
_IO_USERNAME ="YOUR_USER_ID"
_IO_KEY = "YOUR_AIO_KEY"
_FREQUENCY = 5 # seconds

Setup the board to connect to our network.
def connect():
 wlan = WLAN(mode=WLAN.STA)
 nets = wlan.scan()
 for net in nets:
 if net.ssid == 'YOUR_SSID':
 print('Network found!')
 �wlan.connect(net.ssid, auth=(net.sec, 'YOUR_SSID_PASSWORD'),

timeout=5000)
 while not wlan.isconnected():
 machine.idle() # save power while waiting
 print('WLAN connection succeeded!')
 print("My IP address is: {0}".format(wlan.ifconfig()[0]))
 return True
 return False

def run():
 # Setup our Internet connection
 connect()

 # Run the weather MQTT client
 �weather_mqtt_client = WeatherNode(_IO_ID, _IO_USERNAME, _IO_KEY, _

FREQUENCY)
 weather_mqtt_client.run()

Now, let’s run this project!

Execute!
Now is the fun part! We’ve got the code all set up to read weather data from the sensor
and publish the data in Adafruit IO. You can now copy the two files (weather.py and
weather_node.py) to your WiPy and start the code as follows. Remember, use a USB
connection to your WiPy because once the WiFi connection is made, a TCP or WebREPL
connection will disconnect.

>>> import weather
>>> weather.run()

You should see the print messages for connecting to your network and after a few
seconds, data read from the sensors. Since we also print out the messages from the
feed we’ve subscribed to, we will see those as well. If you get errors from the MQTT

Chapter 11 ■ Project 4: Using Weather Sensors

408

connection, be sure to double-check your Adafruit IO credentials, make any changes,
then reboot your board and try again.

■■ Note  You must provide the device id, your AIO user name, AIO key, frequency of
updates, SSID name, and SSID password in the code. See those lines marked in bold.

There is one other thing you must do before you start seeing any data in your
dashboard. Recall we wrote the class to only publish data when the toggle button on the
dashboard is set to “ON”. The mechanism for doing this is reading the messages in the
sensors feed looking for a change of status for the toggle button. When you first connect,
there may be no such messages in that feed. Thus, you must open your dashboard and
turn the toggle button on. If it is already on, turn it off and back on again. You should then
see the message appear in the debug messages in your REPL console. Figure 11-17 shows
the toggle button in the correct position.

Figure 11-17.  Turn Sensors ON (toggle button)

Once you turn on the toggle button, you should start seeing debug messages where
data is being published. Listing 11-6 shows an example of running the project on a WiPy.
Notice the messages appearing for the sensors feed.

Listing 11-6.  Running the Weather Project (WiPy)

>>> import weather
>>> weather.run()
Network found!
WLAN connection succeeded!
My IP address is: 192.168.42.128
Weather MQTT client is ready.
 [b'my_user_id/feeds/sensors']: b'OFF'
 [b'my_user_id/feeds/sensors']: b'ON'
 > ['23.09', '41.92773', '101964.1']
 > ['23.09', '42.0166', '101972.2']
 [b'my_user_id/feeds/sensors']: b'OFF'
 [b'my_user_id/feeds/sensors']: b'ON'
 > ['23.08', '41.93848', '101974.9']
 [b'my_user_id/feeds/sensors']: b'OFF'

Chapter 11 ■ Project 4: Using Weather Sensors

409

 [b'my_user_id/feeds/sensors']: b'ON'
 > ['23.07', '41.90332', '101974.9']
 > ['23.07', '41.92578', '101980.3']
 > ['21.07', '41.90332', '101974.9']
 > ['20.97', '41.92578', '101980.3']
 > ['20.07', '40.13824', '101974.9']
 > ['19.96', '39.32481', '101972.1']
 > ['20.06', '40.62481', '101974.8']
 > ['21.05', '40.95801', '101974.8']
 > ['22.05', '41.93555', '101982.9']
 > ['23.05', '41.91308', '101977.5']
...

OK, once your project is running and publishing data, you can start to see it in your
dashboard. Go ahead and log back into Adafruit IO and select your dashboard. You should
now see data in all the line graphs and the stream block. Figure 11-18 shows an example of
what your dashboard would look like if you sampled data at the 5 second default frequency.

Figure 11-18.  Data Visualization via Adafruit IO Dashboard (Weather Project)

Chapter 11 ■ Project 4: Using Weather Sensors

410

Notice the pressure and humidity lines don’t change much. This is expected since
this example was run indoors during a very short time. However, you may notice a rise
and dip or two in the data for temperature. This was due to artificial changes to the
temperature. That is, I moved a heat source close to the sensor to make the area warmer
and thus record higher values. Similarly, I used a cool air source to cool the area causing a
dip in the values. When I did so, it caused a slight change in the humidity values. Can you
think of why that happened?3

You can try this out yourself, but be careful! Don’t touch the sensor lest you damage
it and don’t use any open flame or other heat sources that could cause burns (or worse).

■■ Caution  Resist the temptation to touch the sensor. You could damage the sensor.

You may notice something odd if you exit your dashboard and reopen it. The
Adafruit IO dashboard currently only shows the messages (data) in the feeds from the
moment the dashboard is opened. Most likely, you ran your project for some time,
stopped it, then went back to your dashboard later to proudly show your friend the fruits
of your handiwork only to discover there’s no data in your dashboard. While this may be a
feature of the dashboard, your feeds and the history therein is still there.

This is because when you create a new feed, the default is to store the history (data).
You can change that so that only the last value is stored, but most IOT projects will want
the data to be around for some time. Thus, using the dashboard to see historical data
doesn’t work. However, you can still view the data in your feeds and see it graphically by
opening the feed directly. Simply click on your feed and you will see the data like that
shown in Figure 11-19.

3I used a can of air, which was much drier than the ambient environment.

Chapter 11 ■ Project 4: Using Weather Sensors

411

Figure 11-19.  Displaying Historical Data in Feeds

Notice the Actions drop-down box near the bottom. Notice also there are checkboxes
you can tick to select messages and a checkbox at the top to select all messages. Once you
select messages, you can use the Actions drop-down list to remove the selected data or
download the selected data. You can even add data (one message at a time). This makes
it easy to get to your data and modify it. The ability to download the data means you can
use it in other projects or tools for analyzing data. Figure 11-20 shows the possible actions
available for modifying the data in a feed.

Figure 11-20.  Modifying Data in Feeds

Chapter 11 ■ Project 4: Using Weather Sensors

412

If you like this project, you can consider making it run over a longer time span,
reducing the sampling frequency to every few hours. You will still see the data but
perhaps if the temperature in your environment changes, you’ll see the actual variation in
data rather than simulated changes.

At this point, you’ve completed another real MicroPython IOT project. In this case,
we saw an IOT project that collects and displays data in the cloud. How cool is that?

Taking it Further
This project, like the last one, shows excellent prospects for reusing the techniques in
other projects. This is especially true now that you know how to use MQTT. If you liked
seeing your sensor data over the Internet, you should consider taking time to explore
some embellishments. Here are a few you may want to consider. Some are easy and some
may be a challenge or require more research.

•	 Add more sensors to expand your project to more weather
observations.

•	 Modify the dashboard to display the data using different blocks.

•	 Add more sensor nodes to gather data observations from other
places, creating new feeds for each.

•	 Set up your own MQTT broker and attach your sensor nodes.
Hint: change the host name in the MQTTClient() call in
weather_node.py.

•	 Use MQTT to build a home automation project allowing you to
turn lights on and off via the cloud.

•	 Add another button that you can use to shut down the project.
Hint: you can add a check in the run() function to terminate the
loop when the switch is turned off.

Summary
Taking a small microcontroller like the WiPy, adding sensors, and writing relatively short
MicroPython code to connect to the Internet and produce data that you can view from
anywhere in the world demonstrates the concepts of the Internet of Things in a working
project. We have now learned how we can leverage our new knowledge of MicroPython
and the small MicroPython boards to achieve true IOT solutions.

In this chapter, we demonstrated this by building a weather sensor project that
connected our board to the Adafruit IO cloud service and used that service to store
and visualize the data. While in retrospect this project seems easier than the previous
projects, we gained specialized knowledge in those projects that made this project easier
to implement. That is, without the basics of how to build IOT projects, jumping into the
deep end of IOT projects would be folly.

Chapter 11 ■ Project 4: Using Weather Sensors

413

Fortunately, with the help of the nice folks at Adafruit, we can now build IOT projects
to send data to the cloud and share it with the world. Not only that, but we can also build
solutions that allow us to control our projects from the Internet. Everything done quickly
with very little effort and no need to learn a complicated API. How cool is that?

With the experience gained in this book, you are now ready to build sophisticated
IOT solutions from simple projects that you run for fun to full cloud-based solutions. Now
it’s time for you to engage your own imagination and put the tools and techniques you
learned in this book toward building your own MicroPython IOT solutions.

In the next chapter, we will see how you can take what you’ve learned in this book
further as you plan more MicroPython projects.

I hope you enjoyed the ride, and that reading about and working on the projects in
this book were as much fun for you as I had writing them.

415© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4_12

CHAPTER 12

Where to Go from Here

Now that you have had a thorough introduction to MicroPython, MicroPython hardware,
the Internet of Things, and the types of projects you can create and tutorials as well as
examples, it is time to consider what you can do beyond the pages of this book.

In this chapter, we will explore what you can do to continue your craft of building
IOT solutions. Most people will want to simply continue to develop projects for
themselves either for fun or to solve problems around the home or office. However, some
will want to take their skills to the next level.

Whichever the case, there are a few things that you should consider. In the following
sections, we will look at sources for more example projects, how to join the community
of IOT enthusiasts through social media and other Internet resources, and finally how to
become a contributing member of the growing throng of Makers.

More Projects to Explore
If you want to work on more MicroPython IOT projects, you will be happy to learn that
there are many examples that you can explore. Most of the examples are either in the
various documentation sites or are contributions from the community, ranging from a
high-level overview to detailed instructions on how to complete the project. Sadly, most
of the examples are presented with little or no instruction. However, now that you have
had detailed instructions1 on working with MicroPython IOT projects and the various
MicroPython boards, you should be able to complete the examples with little or no
documentation (but documentation always helps).

There are several repositories for MicroPython IOT example projects. Most are
either in forums dedicated to MicroPython or the MicroPython board (for example, the
Pyboard), but there is also a cool site named Hackster.io, which is a general hardware
community forum (www.hackster.io). We will see how to navigate that site in a moment.
First, let’s look at a couple of resources for MicroPython sample projects.

1This is one of my major motivations for writing this book.

https://doi.org/10.1007/978-1-4842-3123-4_12
http://www.hackster.io/

Chapter 12 ■ Where to Go from Here

416

MicroPython Project Samples
There are several websites that host MicroPython examples. There are three basic
types of websites: forums that have categories where people can post their projects,
documentation sites that have example projects, and repositories where people can
upload their projects. Let’s look at each of these.

■■ Tip  The best way to find MicroPython examples is to google for “MicroPython Example”
or “MicroPython Sample”. You’ll find lots of hits including those resources listed in this chapter.

Forums
The first type, forums, offer a list of categories ranging from announcements, questions
and answers, frequently asked questions, technical support, and more. Fortunately,
several also have a category for projects. Sometimes the category includes many entries
(topics) with most being questions about how to implement a certain project. This can
sometimes make looking for a project idea tedious.

The MicroPython forum has such a category (https://forum.micropython.org/
viewforum.php?f=5). And while there are over 100 topics and most are questions, there
are a few gems in there you can explore. Pycom also has a forum for the WiPy with a
category for projects (https://forum.pycom.io/category/28/projects).

Using a forum to find example projects or samples can take a little work because
they are intended to be used by a community and thus contain a lot of questions and
commentary, but I feel they are still one of the best resources. However, keep in mind
they are intended for a specific board (Pyboard or WiPy). The best way to use them is
to navigate to the forum and either scroll through the topics or search for a key phrase.
Figure 12-1 shows an excerpt from the Pycom MicroPython project category.

Figure 12-1.  Excerpt from the Pycom MicroPython Project Category (courtesy of pycom.io)

https://forum.micropython.org/viewforum.php?f=5
https://forum.micropython.org/viewforum.php?f=5
https://forum.pycom.io/category/28/projects

Chapter 12 ■ Where to Go from Here

417

Documentation
The MicroPython documentation is also a good resource for finding example code
(but not entire projects). They’re typically better than the forums because they are
much better organized and sometimes better written. However, like the forums, the
MicroPython documentation sites, especially the samples, are hardware specific. That is,
there is one set of documentation for Pyboard, another for WiPy, and other boards.

However, there are some example projects buried in the documentation.
Unfortunately, some are not as well documented or may be partially documented.
Regardless, the code in these samples is generally far superior to what you may find in the
forums (generally).

The best way to use the documentation sides is to simply navigate to them and
browse through the table of contents (that alone makes them better than forums).
For example, Figure 12-2 shows an example project from the Pycom MicroPython
documentation for the PySense shield.

Repositories
The best websites for MicroPython projects are repositories. These are typically hosted in
a source control service such as GitHub. What makes these sites most useful is that you
can navigate directly to the source files and see the code in your browser, skipping the
documentation or demonstration page. This makes it nice if you just want to see how to
implement some feature rather than walk through a long page of text. Of course, the best
way to use the samples is to download the entire set of samples. Simply visit the GitHub
main site and download the sample projects. How cool is that?

The main MicroPython site (https://github.com/micropython/micropython) is
one of the best examples of MicroPython sample project repositories. This repository has
a lot of samples and while some are geared to the Pyboard, you can use them as templates

Figure 12-2.  PySense Sample Project (courtesy of pycom.io)

https://github.com/micropython/micropython

Chapter 12 ■ Where to Go from Here

418

for how to write code for a wide variety of projects. Figure 12-3 shows an excerpt of the
repository main page.

Figure 12-3.  MicroPython GitHub Repository Sample Projects

Most (if not all — I haven’t checked all) of the samples are licensed under an open
source license such as the MIT license, which makes it very convenient for everyone since
the MIT license permits you to use and even publish the code. (See https://opensource.
org/licenses/MIT for a sample of the MIT license.) This is great because I have many
times wanted to use a sample or demonstration of a project, only to discover the license
doesn’t permit it.

Community Project Sites: Hackster.io
The Hackster site is a community dedicated to learning hardware. You can find all
manner of hardware sample projects, including many of those for MicroPython, Python,
Raspberry Pi, Arduino, and more! There is a small but growing list of MicroPython
projects. When you visit the parent site (www.hackster.io), you can search for projects
by typing “MicroPython” in the search box. Once you enter the search criteria, the search
results page, you see all the projects you can explore. Each is marked with a relative
level of difficultly, ranging from easy to advanced. You also see a count of the number of

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://www.hackster.io/

Chapter 12 ■ Where to Go from Here

419

times the sample project was viewed and the number of thumbs-up ratings the project
received from others in the community (you must join Hackster.io to rate a project). Best
of all, there is a comments section that you can use to encourage the designer or ask the
designer for help with the project.

■■ Tip  Use the golden rule when posting comments or questions in online forums. Resist
the temptation to post opinions, fan flames of dissent or ridicule, and stick only to the facts.

What I like most about the Hackster site is that the samples are generally well
documented and often include several photos of the project. Due to the unique structure
of the site, the samples are organized in parts that make it easy to follow. For example,
the web page for “Character LCD over I2C” (www.hackster.io/dzerycz/character-
lcd-over-i2c-ba8ee9) contains an overview section that presents a short description of
the project, associated tags, difficulty rating, publication date, and even the license. This
makes reviewing the project very easy.

For example, there is an excellent example of an intermediate-level project that is
not only well documented but also well written. It is the “MicroPython Leak Detector
with Adafruit and Home Assistant” by Robin Cole. Figure 12-4 shows an excerpt from
the project overview. If you want to see another excellent project, visit https://www.
hackster.io/robin-cole/micropython-leak-detector-with-adafruit-and-home-
assistant-a2fa9e.

Figure 12-4.  Hackster.io sample project

http://www.hackster.io/dzerycz/character-lcd-over-i2c-ba8ee9
http://www.hackster.io/dzerycz/character-lcd-over-i2c-ba8ee9
https://www.hackster.io/robin-cole/micropython-leak-detector-with-adafruit-and-home-assistant-a2fa9e
https://www.hackster.io/robin-cole/micropython-leak-detector-with-adafruit-and-home-assistant-a2fa9e
https://www.hackster.io/robin-cole/micropython-leak-detector-with-adafruit-and-home-assistant-a2fa9e

Chapter 12 ■ Where to Go from Here

420

If you scroll down from the overview, you find sections that demonstrate how to
connect the hardware (like how I introduce the projects in this book), a short walkthrough
of the code, and descriptions and demonstrations on how to use the project.

Some samples include short videos to demonstrate or explain the project. At the end
of the page, you find the comments section, which you can use to read what others have
said about the project, as well as the questions that others have had regarding the project.
If you get stuck on a sample, be sure to read all the comments — there is a good chance
that someone has already asked the question or solved the problem.

WHAT ABOUT HACKADAY.IO?

Another site that is like Hackster.io that is gaining a following is Hackaday.io.
It is very like the Hackster.io site in that you can search for MicroPython projects.
However, I don’t like it as much as Hackster.io, but don’t let that stop you from
exploring it – try it!

Knowledge Repositories: learn.adafruit.io
Another excellent source of information about MicroPython is learn.adafruit.com.
This site contains articles, blogs, and tutorials on a wide range of topics. Much like
the user forums, content is added to this site frequently. So, you should visit the site
periodically and search for your topic. For example, to find the MicroPython content,
simply search for MicroPython. Or, you can use this link: https://learn.adafruit.com/
search?q=micropython&.

I’ve often used this site to find ideas for projects. Even if the article, blog, or tutorial
isn’t exactly what you want or it may not match your hardware, it is often worth reading
for tips. For example, if you’re planning to build a project using a Charlieplex LED
(https://www.adafruit.com/?q=charlie), you can find a tutorial at https://learn.
adafruit.com/micropython-hardware-charlieplex-led-matrix/software?view=all.
While this tutorial features the Feather and ESP8266 board, you can still learn quite a
bit about using the Charlieplex LED including a driver (that you can modify), hints, and
insights in how to make it work with other MicroPython boards.

Figure 12-5 shows an excerpt from learn.adafruit.com showing some of the
interesting content for MicroPython. Be sure to check the site for recent additions.

https://learn.adafruit.com/search?q=micropython
https://learn.adafruit.com/search?q=micropython
https://www.adafruit.com/?q=charlie
https://learn.adafruit.com/micropython-hardware-charlieplex-led-matrix/software?view=all
https://learn.adafruit.com/micropython-hardware-charlieplex-led-matrix/software?view=all

Chapter 12 ■ Where to Go from Here

421

Now that you have seen a couple of resources for more sample projects, let’s discuss
how you can join the community and contribute to the growing repository of all things
MicroPython for the IOT.

Join the Community
Once you have mastered the sample projects in this book as well as a few from other
resources, it is time to take your hobby a bit further by joining the community of IOT
developers and enthusiasts.

In this section, I discuss some of the reasons you may want to share your knowledge,
etiquette for sharing and contributing, and a few example communities you may want to
join or at least monitor. As you will see, not these are strictly devoted to MicroPython, but
can be an excellent source for ideas. Let’s begin with why we would want to share.

Figure 12-5.  MicroPython Content on learn.adafruit.com

Chapter 12 ■ Where to Go from Here

422

Why Contribute?
As more and more free thinkers drive hobbies like MicroPython and the IOT, the more
prevalent the concept of sharing becomes. This is no accident. Many of the founders
and pioneers of the Python, MicroPython, and IOT are open hardware and open source
advocates. While this applies not only to hardware and software, it also applies to other
intellectual products such as the source code and documentation for published projects.

Many feel their code should be free for anyone to use and modify with reciprocal
expectations. For example, if you modify someone else’s design or code, you should
share not only the improved design but also credit the originator. In some cases, this is
as simple as listing the original author, but other times it may mean giving the original
author your modifications. So long as you follow the guidelines of the license, all is fair
and well in sharing.

However, depending on how the sample code was written (licensed), there may be
some limitation to what can be shared. For example, it may not be possible to share code
from a proprietary library. While you may be the creator of the code that uses the library,
you do not own the library and cannot share it. You most likely can share your code with
others, but publication may be restricted.

Sharing your projects also means placing them someplace where others can find
them. You may want to make them freely available to anyone or you may want to limit
what people can do with your project. Fortunately, there are websites that can handle
either quite well.

So, why contribute your project? There are many reasons including the fact that it
can be a good feeling to see one of your projects being liked, used, and made by others.
Perhaps the most important reason for contributing is to help others learn what you have
or, better, learn how to avoid pitfalls or problems. In this way, we all benefit by learning
best practices or simply better ways to implement our ideas. Finally, your own project and
experiences, when shared, will inspire others to create other projects or perhaps improve
on yours.

I’ve had this happen with my own projects. People have taken what I have made and
improved it. Since they, in turn, shared their project, I could incorporate a lot of their
improvements in my projects, making them even better than I envisioned.

Which License, Where?
So, how do you know which license is in play? Every website that hosts any form of source
code, documentation, examples, etc., will have a clearly marked license. It may appear
on the screen at the bottom or some other discrete location or even only in a special page
marked a “license” or similar label.

For example, the license on the micropython.org website is located under the
heading, “Completely free, open source software” and cites the MIT license for the
MicroPython core and paraphrases that license as follows.

You can freely use and adapt MicroPython for personal use, in education,
and in commercial products.

Chapter 12 ■ Where to Go from Here

423

Similarly, the Hackster.io website has a section for specifying the license whenever
someone uploads a project. Figure 12-6 shows an example of one of the MicroPython
projects on their website. As you can see, the license is clearly listed in the project
information summary. In fact, you can click on the link and read the license. Fortunately,
most projects on Hackster.io and other sites are open source and you should be safe to
use them in your projects (but check anyway).

Figure 12-6.  Example Project Information from Hackster.io

■■ Tip  Always check the license of any example you use before you publish it to ensure
you are conforming to not only the originator’s wishes but also the legal restrictions of the
license assigned.

Now, let’s focus on how to go about sharing your projects.

How We Share
You may be wondering why anyone would want to give something they have worked
on for hours away for free. While it is true that the expectation is that you should share
your cool projects with others, it isn’t a hard and fast rule. In fact, there are some who
have made their projects available for a fee as a precursor to selling the IOT solution in
a commercial avenue. However, the clear majority of enthusiasts share their ideas and
projects for free.

There are several communities where you can share your projects and we will see
some of these in the next section. But first, there are some things you must understand
about sharing objects. Believe it or not there is a set of rules – some written, some not – that
you are expected to follow should you decide to embrace the community of the IOT or any
similar community. The following lists some guidelines (rules) you would do well to heed
when sharing your ideas, projects, and commentary with the community.

Chapter 12 ■ Where to Go from Here

424

Keep Your Designs Original
Nobody likes a copycat. You didn’t like it when you were 5 and you won’t appreciate it
when you see something you designed and shared for free being presented as ‘design of
the month’ credited to someone else.

Thus, you must do your homework to make sure your design is unique. You don’t
have to purposefully alter your design so that it doesn’t resemble someone else’s, but
you should do due diligence and at least search for similar projects. Remember, it is OK
if you develop a similar project, but it generally is bad form (or perhaps a violation of the
license) to simply reproduce something someone else has published.

In the rare case when it so happens your project is nearly identical to another, so
long as your work is your own, there shouldn’t be a problem. In fact, this happened to
me once. The other designer’s responses and mine were something like, “Cool project.
Like minds, eh?” Once again, there is nothing wrong with that, provided you both
acknowledge the resemblance and there are no licensing issues.

If the other project like yours is truly the same design but was licensed differently,
you may have to negotiate with the other designer. This can happen when projects are
licensed for ownership (e.g., commercial property), but it is rare given most IOT sample
repositories are sites where people share their projects for free.

Let’s look at another, non-source code example. What is the likelihood that a dozen
different cases for a Raspberry Pi will be similar in size, have the same openings for ports,
and perhaps even assemble the same way (snap together)? Very likely, yes? Does this
mean there is one original and 11 copies? No, certainly not. This is not what I am talking
about.

What I mean by unique is of those 12 cases, you should be able to identify some
differences among them. Be that how they print (e.g., orientation on the build platform),
if they are made from several parts, whether they have designed with ventilation, etc.
Even if all 12 designers started at the same time, there will be some minor differences.
More importantly, each is its own work. That is, no one used the design of another to pass
off as their own.

In the case of a software project, the source code is most likely going to be a little
different among the examples. While how much difference qualifies source code to be
deemed different is something for lawyers to sort out, suffice to say if your code and
another’s are nearly identical, but created without knowledge of the other, it is OK to
share your code provided there are no licensing conflicts.

Finally, when you share your project that is based on the work of another, you must
annotate your code, documentation, and project web site giving credit to the original
designer. That is, you state unequivocally that your project is a derivation of the original.
It is also good form to include a link to the original design along with a list of your
modifications. Once again, this assumes the license permits it.

Check the License
I have mentioned licensing under the aspect of downloading and using sample projects.
Recall that most repositories will require you to specify a license for your project. This
permits the repository to host your project and communicate to everyone what your
intentions are regarding ownership, permissions to use, etc.

Chapter 12 ■ Where to Go from Here

425

As I stated previously, you need to check the license before using any design. If you
plan to modify it, you need to pay close attention to the license. The clear majority of
licenses will allow you to use the design and most will allow you to modify it.

However, where some licenses differ concerns the ownership of the modifications.
Some open source licenses, like GPL, permit modifications but require you to surrender
those modifications to the original owner (the person or organization that created and
licensed it) if you plan to distribute those changes. That is, you can modify it at will for
personal use but once you distribute those changes, you must give them to the owner of
the license.

I have only run into this a couple of times but in those cases the designer was
prototyping designs for a commercial product. The license and indeed the text of the
project made it clear she was looking for help with the design but that the design would
not be made public. Watch out for this and tread lightly. Any work you do could be for the
benefit of the owner and not yours to keep or profit.

■■ Tip  When in doubt about a license, contact the originator and ask them directly.

Since most sample IOT projects are licensed for sharing and free modification, you
normally don’t have to worry too much. However, I recommend you check the license
before using any project, especially if you intend to share or publish your derivation.

Keep It Appropriate
Believe it or not, there are hobbyists and enthusiasts with impressively vivid imaginations
who have come up with IOT projects that some may consider inappropriate or even
obscene. No matter what your own views are, you should strive to tolerate the views of
others. That doesn’t mean you must compromise your own views; just be aware yours
may offend and strive to minimize the offense.

More specifically, don’t upload projects with inappropriate themes to sites that are
viewable by everyone. It’s (may be) fine to upload some project that promotes a theme,
ideal, etc. (provided there are no copyright violations); just don’t upload projects or
commentary that are clearly offensive or intended to cause harm.

For example, if you consider the fact that IOT projects are being used in schools
to teach children the technology and techniques of working with hardware and
designing software, you shouldn’t upload projects with themes that parents may deem
as inappropriate. The most obvious of course are offensive language, adult themes, and
slanderous images.

You should check the usage and user agreement for the site that hosts your chosen
repository as part of the post-no-post decision. Make sure you read the section about
what is and is not appropriate and adhere to that.

There is another angle to consider. You should avoid uploading sample projects that
are or could potentially be illegal or unlawful. This may be difficult to discern considering
the IOT community includes the entire globe. However, most sites will have language to
suggest what is and is not permitted. And some have language in the agreement that gives
them (the site) the right to remove things they deem inappropriate.

Chapter 12 ■ Where to Go from Here

426

For example, I once saw a project for a radio frequency identification (RFID) reader
that could be used to read RFIDs from a distance. This sounds harmless, but consider
the number of things that use RFID such as security badges, identification, and even
credit cards. Clearly, reading RFID from things you own is fine (indeed, that’s what the
project demonstrated), but the project could be (and most likely has been) used for evil.
Fortunately, others noticed this and the project site has been removed (URL results in a
401 error).

So, before you upload a design or sample project, make sure you understand and
agree to the terms of the user agreement as to what is and is not appropriate. Most times a
misunderstanding is not something that will get you into trouble, but if you do it more than
once, chances are someone at the site will want to speak with you or restrict your access.
Which brings me back to the opening of this section – be sure to respect the views of others
and especially the intended audience of the site. If you disagree, find another site.

Annotate Your Work
One of the ways I can tell if a sample IOT project is good or of high quality is how it is
annotated and documented. That is, how well the designer described the project on its
site. If I encounter a project that looks appealing only to discover the designer didn’t
bother to describe how to connect the hardware, or explain the code with more seven
words (or less), didn’t provide any instructions, or worse didn’t present any photos of the
actual implementation, I won’t use it.

Thus, you should strive to provide as full a description as possible. You don’t have
to write a novel, novella, or a dissertation; but you should provide enough information to
describe the intended use; what problem it solves; as well as a set of instructions for how
to write the source code, compile, and deploy it.

The only exception is a case where you are still working on a project or you plan to
make changes before finalizing it. In this case, you should mark (annotate) the project
with some verbiage about a work in progress, being experimental, etc. If your repository
has a feature to mark the project as such, use that. This way, others will know your
project isn’t quite ready for general adoption. One reason for doing this may be to get
feedback from others. I’ve done this myself with mixed results. Mostly people are happy
to comment they like it, but don’t comment or if they do, however encouraging, don’t
suggest any changes or improvements.

I would also suggest you provide some level of contact information so that others
who have questions can contact you. Most sites make it easy for viewers to contact you
through the site but you may want to provide other forms of contact (e.g., email). You may
not want to provide your home address and phone number (don’t do that), but an email
address is a nice way to make yourself open to the community.

For example, I have seen blogs, sample projects, and even tutorials where people
have posted their IRC handle, email address, and even in one case their business phone
number. While I may not go quite that far, I suggest providing an email address so that
you can communicate with people who like the project. Plus, it’s nice to connect 1:1 with
someone to discuss your work!

Chapter 12 ■ Where to Go from Here

427

Be a Good Citizen
Suppose you run across a sample project that not only isn’t high quality but is also (in
your opinion) designed or implemented incorrectly. Should you immediately comment
and crush the designer’s ego with a flippant remark about how dumb their code is? No,
certainly not!

What I would do (most likely) is ignore the project altogether. I mean, why make
things worse by pointing out the defects? I have found the community at large (there
are some exceptions) will likely do the same and not comment. Recall one of the keys
to determining whether a project is well designed (good) is how many people use
it. Typically, there is a counter you can check for this. If no one has liked it or even
downloaded it, you can be sure it won’t make it to the top of any search lists or sample
project of the month.

On the other hand, if you feel compelled to comment, be sure to either contact the
designer privately or be as constructive as you possibly can. The goal should be to help
the designer improve his projects, not challenge their intellect (or pride).

When I do comment on projects that I find strange and perhaps flawed (and it is
rare), I generally phrase my comments in the form of a question. A question normally
doesn’t put someone on the defensive and if worded properly should also not offend.

For example, I may ask, “Have you found the code may hang if the user presses the
button more than once?” This is a nice way of asking if the designer has tested his project
under the conditions you expect it to fail. This is good, constructive criticism in a most
intellectual form. I am certain if you think about what you are about to say, you can find
other and perhaps more elegant ways of helping people improve their projects.

Now that we’ve seen why we share and how to share in a responsible manner, let’s
discover some of the communities you may want to join or at least monitor.

Suggested Communities
There are quite a few general Python and MicroPython web sites and online communities
you can visit and even join. Most online communities have repositories that you can
search for examples, tips, techniques, and even complete projects that you can explore.
Most also have one or more areas where members can comment, ask questions, or
generally communicate with others on the forum. You typically must join to be able to
post a reply or ask a question, but viewing is typically permitted by anyone.

The best way to use these resources is to visit them periodically. More specifically,
you should read the articles (that interest you) and forum posts regularly. This allows
you to keep up to date on current events, new techniques, and even new solutions to
challenging problems. Table 12-1 presents a brief list of online resources that you should
consider visiting to keep abreast of the latest news about Python, MicroPython, hardware,
and IOT. I list the general topic, URL, and a brief description for each. However, you
neither must join these communities nor are these are the only sites you can or should
join. In some cases, you may want to simply monitor the site regularly.

Chapter 12 ■ Where to Go from Here

428

Notice there are web sites for Python specifically, Raspberry Pi, general hardware,
and similar resources. While many do not specifically address or cover MicroPython,
most have a growing repository of knowledge that is often surprisingly helpful even with
MicroPython.

For example, I try to connect to the Raspberry Pi sites to keep tabs on what is going
on there. I can often get ideas for IOT projects or simply ideas for features by seeing
projects implemented for the Raspberry Pi and its native operating system. I find it is
often the case that while the source code can be quite different, most of the hardware
(connections, etc.) apply without modification, which makes sense since the hardware
is not tied to the operating system running on the device (but the libraries that drive the
hardware does).

Table 12-1.  Online Resources for Python, MicroPython, IOT, and Hardware

Topics URL Description

MicroPython,
Python, and
more

hackster.io General hardware and
project site for all manner
of projects. Look here for
detailed explanations of
projects searching for
Python or MicroPython

MicroPython,
Pyboard

http://docs.micropython.org/en/
latest/pyboard/

Documentation for
MicroPython on the
Pyboard

https://forum.micropython.org/ Forums for MicroPython
and Pyboard

MicroPython,
WiPy

https://docs.pycom.io/pycom_esp32/
index.html

Documentation for
MicroPython on the WiPy
and other Pycom boards

https://forum.pycom.io/ Forums for MicroPython
and the Pycom boards

MicroPython,
BBC micro:bit

https://microbit-micropython.
readthedocs.io/en/latest/

Documentation for
MicroPython on the BBC
micro:bit

CircuitPython https://learn.adafruit.com/
search?q=circuitpython&

Adafruit’s tutorials on
CircuitPython

https://blog.adafruit.
com/?s=circuitpython

Adafruit’s blogs on
CircuitPython

Python https://www.python.org/ General Python information

https://www.python.org/doc/ Python documentation

https://www.python.org/community/ Forums for Python

http://docs.micropython.org/en/latest/pyboard/
http://docs.micropython.org/en/latest/pyboard/
https://forum.micropython.org/
https://docs.pycom.io/pycom_esp32/index.html
https://docs.pycom.io/pycom_esp32/index.html
https://forum.pycom.io/
https://microbit-micropython.readthedocs.io/en/latest/
https://microbit-micropython.readthedocs.io/en/latest/
https://learn.adafruit.com/search?q=circuitpython
https://learn.adafruit.com/search?q=circuitpython
https://blog.adafruit.com/?s=circuitpython
https://blog.adafruit.com/?s=circuitpython
https://www.python.org/
https://www.python.org/doc/
https://www.python.org/community/

Chapter 12 ■ Where to Go from Here

429

Also, don’t discount the power of a keyword search using your favorite online search
tool. I have often found obscure gems of information that aren’t posted on the more
popular sites. In most cases, they are well-written blogs. I often start with a keyword
search before I visit the sites listed above. If nothing else, it confirms whether what I am
researching is unique or ubiquitous. You should also consider using key phrases from
error messages as search terms to get help for specific errors.

There are also a few excellent periodicals that you should consider obtaining. I
exclude the typical Windows, PC, and general programming periodicals not because
they aren’t helpful but because they are far too general for IOT-related research. Rather,
the following are periodicals that I’ve found to be very helpful in my IOT research or any
electronics or hobby project.

•	 The MagPi Magazine: a monthly magazine devoted to all things
Raspberry Pi. Includes many articles on sample projects, news
about the Raspberry Pi, peripherals, and general hardware
reviews. (raspberrypi.org/magpi)

•	 Make: a magazine devoted to the broad realm of the Maker
community presenting sample projects, tutorials, hardware, tools,
drones, robots, and more! It truly is a one-stop periodical for all
things hacking, tweaking, and general DIY hobbyist, enthusiast,
and professional alike. (http://makezine.com/)

Now that we’ve seen several online communities (but in not a complete list as more
are being added seemingly weekly) as well as a couple of periodicals you can buy, let’s
discuss the next step you can take once you have become a productive contributing
member of IOT and IOT-related online communities – becoming a maker.

Become a Maker
The next progression in your growth from novice to enthusiast (and even professional) is
to practice your craft regularly and share your knowledge with the world. One excellent
outlet for this desire is to become a maker. Makers are widely regarded as experts in their
areas of interest. The best part is a maker’s interests can vary greatly from one to another.
That is, becoming a maker isn’t about learning a specific set of techniques (academic or
otherwise). It is about practicing a craft.

What’s a Maker?
Sadly, there is no single definition of what a maker is or should be. This is because a
maker is someone with highly creative skills who desires to tinker and work on projects
that can range from mechanical sculptures that spit fire to electronic gismos to new ways
to recycle materials to build things on the cheap.

Indeed, a maker is simply an artisan, craftsman, hobbyist, or enthusiast who desires
to create things. Hence, Maker. Thus, there are many kinds of Makers. However, what
unites them is the willingness to share their techniques and skills with others. Thus, to
truly become a maker, you must participate in the community of Makers.

http://makezine.com/

Chapter 12 ■ Where to Go from Here

430

Share Your Ideas
You can become a maker and not contribute at all to the online communities and while
that’s perfectly fine, if you want to help make the community stronger, you should
become more involved. The best way to do this is to join one or more of the online forums
and start contributing.

That doesn’t mean you must start off by posting some fantastically cool and
successful MicroPython or IOT project complete with award-winning documentation
and bulletproof code that computer science professors will use someday to teach young
minds to mimic your brilliance. Sure, you may scoff (or even laugh) at that, but I have
encountered people who are afraid of posting anything lest they be wrong or ridiculed for
inaccuracies. Don’t worry about that - the best contributors are those that help you grow
and you grow by learning better techniques!

The best way to avoid that is to start out slow by first asking questions of your own.
You can also start by throwing out a few positive comments for those ideas and projects
you like. As you become more involved with the topics and techniques, your knowledge
will expand to the point where you can start answering questions of others.

I encourage you to consider this level of involvement if you want to become more
involved with MicroPython. I believe interacting with the community and gaining
a reputation for being helpful and sharing ideas is one of the things that separates a
hobbyist from an enthusiast.

Thus, if you want to become a maker, you should share your ideas with others.

Attend an Event
Another way you can become more involved with the maker community is to attend
a Maker Faire (makerfaire.com/). These events are held all over the world. The events
allow Makers to showcase their creations, teach others, and generally celebrate all things
maker. See the Maker Faire site for events in your area near you.

If you live in or near a larger city, you may find there are local user groups for Python,
Raspberry Pi, MySQL, Arduino, and even maker user groups. Try searching for events
and groups in your area and find out where and when they meet. Most groups have an
open-door policy and invite one and all to attend their meetings. Some, however, do have
dues for charter members but this often comes with additional perks such as access to
tools, labs, and discounts on bulk purchases.

You may be wondering how a maker event could possibly help you with
MicroPython or IOT projects. I am happy to report there is a very strong attendance and
many attendees who are interested in IOT and even Python! As we learned from other
chapters in this book, a lot of what we can learn to do in Python transfers to MicroPython.
The same is true with hardware and IOT. Sure, you may only see demonstrations of IOT
projects using other boards like a Raspberry Pi or Arduino, but much of the hardware
can be used in MicroPython. If nothing else, you will gain knowledge of what is possible,
which you can leverage in your next project idea.

Once you have attended an event – even one that has nothing to do with MicroPython
such as a Raspberry Pi meetup, you’ll be hooked. You can learn quite a lot from others
this way and, who knows, perhaps one day you will be presenting at an event. Speaking
from experience, it can be very satisfying sharing your knowledge with others in an open

Chapter 12 ■ Where to Go from Here

431

forum like a conference, user group, meetup, or Maker Faire. That’s when you know you’ve
obtained the reputation, skills, and knowledge that a typical maker possesses.

■■ Tip  Many users of the Raspberry Pi use Python in their projects. Don’t hesitate to seek
out a Raspberry Pi meetup as you can learn quite a lot from Raspberry Pi Python developers.

That doesn’t mean that by the time you read this chapter, you’re an expert at all things
IOT or even profess to be an expert, but you should be well on your way all the same.

Summary
Taking your IOT skills to the next level is what most people will ultimately be inspired
to achieve. However, even if you do not want to become a traveling maker teaching the
world, you can learn quite a lot by simply joining the online communities that serve
Python, IOT, and open hardware.

In this chapter, I have presented suggestions on how best to interact with online
communities, where to look to join an online community, and even how to take your
skills to the highest level of enthusiasm and become a maker. This chapter therefore
rounds out our journey down the road of MicroPython for the IOT that I hope inspires
you to continue practicing your skills and ultimately join the community of like-minded
enthusiasts.

I sincerely hope that this book has opened many doors for you concerning Python,
MicroPython, IOT, and anything open hardware. May your IOT projects all be successful
and if they aren’t that you learn something in the process. Just remember to share your
experiences – good or bad – with the world and give back a little of what you can take
from the efforts of others.

433© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4

Appendix

There are a lot of components and electronics used in this book. To make things a bit
easier for you to acquire what you need to complete the projects in this book, I present a
set of tables to help you make your own shopping list. I include two sections starting with
the minimally required components to complete Chapters 8–11 followed by the list of
components for the other examples in the book.

Required Components
This section lists the required components needed to complete the projects in
Chapters 8–11. Table A-1 contains a consolidated list of the components needed along
with the quantity needed, estimated cost, and links to sources. When more than one
option exists, the rows are combined for the component name but you can safely order
either of the options.

Table A-1.  Required Components

Component Qty Description Cost Links

MicroPython
board

1 Pyboard v1.1 with
headers

$45–50 https://www.adafruit.com/
product/2390
https://www.adafruit.com/
product/3499

https://store.micropython.
org/store

WiPy $25 https://www.adafruit.com/
product/3338

https://www.pycom.io/
product/wipy/

WiPy Expansion
Board

$23 https://pycom.io/product/
expansion-board-2-0/

OLED display 1 ssd1306-based SPI
display

$18 https://www.adafruit.com/
product/661

(continued)

https://doi.org/10.1007/978-1-4842-3123-4
http://dx.doi.org/10.1007/978-1-4842-3123-4_8
http://dx.doi.org/10.1007/978-1-4842-3123-4_11
http://dx.doi.org/10.1007/978-1-4842-3123-4_8
http://dx.doi.org/10.1007/978-1-4842-3123-4_11
https://www.adafruit.com/product/2390
https://www.adafruit.com/product/2390
https://www.adafruit.com/product/3499
https://www.adafruit.com/product/3499
https://store.micropython.org/store
https://store.micropython.org/store
https://www.adafruit.com/product/3338
https://www.adafruit.com/product/3338
https://www.pycom.io/product/wipy/
https://www.pycom.io/product/wipy/
https://pycom.io/product/expansion-board-2-0/
https://pycom.io/product/expansion-board-2-0/
https://www.adafruit.com/product/661
https://www.adafruit.com/product/661

﻿ ■ Appendix

434

Component Qty Description Cost Links

RTC breakout
board

1 RTC module with
battery backup

$15 https://www.sparkfun.com/
products/12708

Coin cell battery 1 See RTC breakout
board datasheet

$3–5 Commonly available

LED 2 Red LEDs kit https://www.adafruit.com/
product/2975

LED 2 Yellow LEDs kit https://www.adafruit.com/
product/2975

LED 1 Green LEDs kit https://www.adafruit.com/
product/2975

Resistor 5 220 or 330 Ohm
resistors

$8–12 https://www.sparkfun.com/
products/10969

Button 1 Momentary button,
breadboard friendly

kit https://www.sparkfun.com/
products/12708

Breadboard 1 Prototyping board,
half-sized

$5 https://www.sparkfun.com/
products/12002

Networking
Module
(Pyboard)

1 CC3000 breakout
board (or
equivalent)

$15+ various

Soil Moisture
Sensor

1+ Soil Moisture
Sensor

$6 https://www.sparkfun.com/
products/13637

Weather Sensor 1 BME280 (I2C
interface)

$20 https://www.sparkfun.com/
products/13676

Jumper wires 20 M/M jumper wires,
6” (cost is for a set of
10 jumper wires)

$4 https://www.sparkfun.com/
products/8431

Power 1 USB cable to get
power from PC

Use from your spares

1 USB 5V power
source and cable

Use from your spares

Table A-1.  (continued)

The exception may be the MicroPython board. You are free to choose a different
board than what is listed here as it is your choice and except for some differences in
the firmware, most MicroPython boards will work. If you want to run all the projects in
Chapters 8–11, you should consider buying the WiPy and Expansion Board. However, if
you want to be able to run all the examples in the book, you should consider buying both
the WiPy and Pyboard.

https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/12708
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.sparkfun.com/products/10969
https://www.sparkfun.com/products/10969
https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/12708
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/13637
https://www.sparkfun.com/products/13637
https://www.sparkfun.com/products/13676
https://www.sparkfun.com/products/13676
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
http://dx.doi.org/10.1007/978-1-4842-3123-4_8
http://dx.doi.org/10.1007/978-1-4842-3123-4_11

﻿ ■ Appendix

435

You may also want to purchase a basic electronics kit such as the one at
https://adafruit.com/products/2975 or https://sparkfun.com/products/13973.
These kits normally have all the LEDs and resistors (and more) that you will need for
most projects. If you find a kit that does not have a breadboard, be sure to add one to your
order. See Chapter 2 for more information about basic electronics kits.

Optional Components
This section lists those components needed to complete the examples shown in the rest
of the book. Table A-2 contains a consolidated list of the components needed along with
the quantity needed, estimated cost, and links to sources. When more than one option
exists, the rows are combined for the component name but you can safely order either of
the options.

Table A-2.  Optional Components

Component Qty Description Cost Links

Case 1 Case for your
MicroPython board

varies Pyboard: https://store.
micropython.org

WiPy: https://pycom.io/
product/pycase-clear/

LCD160CR 1 Pyboard LCD shield $35 https://store.
micropython.org/store

RGB Sensor 1 Adafruit RGB Sensor $8 https://www.adafruit.
com/product/1334

Thermocouple 1 Adafruit Thermocouple $15 https://www.adafruit.
com/product/269

K-Sensor 1 Adafruit Thermocouple
K-Sensor

$10 https://www.adafruit.
com/product/270

These components are optional because the examples in Chapters 1–7 are intended
to be informational rather than something you need to do to understand the concepts.
That said, I include this table for those that want a complete set of components so that
they can experience every example in the book. Even so, these are the minimal set of
optional components. For example, I do not include all the various MicroPython boards,
shields, and accessories listed in the book. Rather, I only list those you would need to run
the examples.

https://adafruit.com/products/2975
https://sparkfun.com/products/13973
http://dx.doi.org/10.1007/978-1-4842-3123-4_2
https://store.micropython.org/
https://store.micropython.org/
https://pycom.io/product/pycase-clear/
https://pycom.io/product/pycase-clear/
https://store.micropython.org/store
https://store.micropython.org/store
https://www.adafruit.com/product/1334
https://www.adafruit.com/product/1334
https://www.adafruit.com/product/269
https://www.adafruit.com/product/269
https://www.adafruit.com/product/270
https://www.adafruit.com/product/270
http://dx.doi.org/10.1007/978-1-4842-3123-4_1
http://dx.doi.org/10.1007/978-1-4842-3123-4_7

﻿ ■ Appendix

436

Recommended Tools
While most of the examples in this book require no tools, some of the breakout boards
and sensors (and some MicroPython boards) do not come with headers soldered.
Thus, you may need a soldering iron such as the Hakko FX-901 Cordless Soldering
Iron (https://www.sparkfun.com/products/13151) and some solder (https://www.
sparkfun.com/products/9163). If you already know how to solder, you probably already
have everything you need. If you do not want to purchase these tools, you may want to ask
around and find someone who knows how to solder and has the tools. After all, you will
only need to solder a few headers.

Other than a soldering iron, you may need a small screwdriver or pliers to assemble
some components. That is, some boards come with mounts or risers and some cases
require some assembly. However, you do not need more than a handy small screwdriver.

On the other hand, if you want to put together a basic electronics kit, see Chapter 7
for the typical tools needed for working with electronics. Figure A-1 shows a sample
electronics toolkit from Adafruit (https://www.adafruit.com/product/136). This kit
costs about $100 and even has solder, a vice, and a few electronics to get you started! If
you have no tools at all, you may want to consider a package like this one.

Figure A-1.  Ladyada’s Electronics Toolkit (courtesy of adafruit.com)

https://www.sparkfun.com/products/13151
https://www.sparkfun.com/products/9163
https://www.sparkfun.com/products/9163
http://dx.doi.org/10.1007/978-1-4842-3123-4_7
https://www.adafruit.com/product/136

﻿ ■ Appendix

437

Another excellent choice for the budget minded is the Beginner Toolkit from
Sparkfun (https://www.adafruit.com/product/136). This kit has a more modest set of
tools that beginner electronics enthusiasts will need to grow beyond the projects in this
book. Plus, it comes in a stylish red box. Figure A-1 shows the basic electronics toolkit
from Sparkfun.

Figure A-2.  Beginner’s Electronics Toolkit (courtesy of sparkfun.com)

https://www.adafruit.com/product/136

439© Charles Bell 2017
C. Bell, MicroPython for the Internet of Things, https://doi.org/10.1007/978-1-4842-3123-4

�       � A
Adafruit Feather Huzzah

auto-reset support, 105
command-line tool, 104
features, 104
firmware

erasing, 106
loading, 106
uploading, 106

GPIO headers, 104
hardware features, 105
REPL Console, 107
wearable boards, 99

Advanced Encryption Standard (AES), 217
Alligator clips, 100
Analog-to-digital conversion (ADC), 345
Arduino Integrated Development

Environment (IDE), 61

�       � B
BBC micro:bit board

array of programmable LEDs, 96
Bluetooth, 97
hardware features, 97
large-holed pins, 96
Mu Editor, 98
REPL console, 98–99
up and running (micropython), 98
WiFi module, 97

Bipolar transistor, 262
Bluetooth Low Energy (BLE), 226
Board-specific accessories

BBC micro bit, 119–121
Pyboard, 117
WiPy and related boards, 118–119

Board-specific libraries
Pyboard

classes, 206
lcd160cr, 210
pyb, 206

WiPy, 215
AES, 217
pycom, 216

Board-Specific Shields/Skins
Pyboard add-on boards, 112–114
WiPy and Related add-on boards,

114–116
Breakout boards, 226

Adafruit CC3000 Module, 110
BBC micro:bit

board, 111
edge, 112

hobbyists and enthusiasts, 109
I2C protocol, 227
IOT project, 227
MicroPython, 109
serial peripheral interface, 233
soil moisture sensor, 111
Sparkfun, 109
weather, 110
WIZNET5K Ethernet chipset, 109

�       � C
Callbacks, 224
CC3K module, 77
Circuit playground express board

Adafruit, 99, 102
alligator clips, 100
Bluetooth module, 101
CircuitPython binaries, 102
developer edition, 100

Index

https://doi.org/10.1007/978-1-4842-3123-4

■ INDEX

440

hardware features, 100–101
hardware libraries, 101
installation options (Adafruit Boards

Driver), 102
MicroPython, 101
REPL console, 103
USB drive mounts, 103

CircuitPython, 203
Class instance variable, 143

�       � D
Dashboards, 388

available blocks, 391
blocks, 390
creation, 389
dialog creation, 389
feed selection, 392
name and description, 389
pressure, 395
rearranging blocks, 396
stream block, 394
temperature setting, 393

Data structures
dictionaries, 134–136
lists, 133
tuples, 134

�       � E
Electronics

alternating current (AC), 254
breadboard-circuits, 265

application, 267
assorted breadboards, 266
breadboard layout, 267
definition, 265
power supply, 268

cathode, 254
components

breakout boards and
circuits, 264

button, 255
capacitor, 256
diode, 257
fuse, 257
LED, 258
relay, 260
resistor, 260
switch, 261

transistor, 262
voltage regulator, 263

definition, 254
direct current (DC), 254
hand tool, 244
multimeter, 241, 246

current, 250–251
dial-up, 246
measure voltage, 249
resistance ohms (Ω), 252
testing continuity, 247

overview of, 239
sensors, 268

accelerometers, 271
analog, 270
audio, 271
barcode readers, 272
biometric sensors, 272
capacitive, 272
coin, 273
current, 273
DHT-22 humidity, 269
digital sensors, 270
Flex/Force, 273
gas, 274
IOT solution, 271
light, 274–275
liquid-flow, 275
location, 276
magnetic-tripe readers, 276
magnetometers, 277
measures, 269
moisture, 277
proximity, 277
radiation, 278
speed, 279
switches and pushbuttons, 280
tilt switches, 280
touch-sensitive membranes, 280
video, 280
weather, 280

soldering iron, 242
tools, 240
wire strippers, 244

Electrostatic discharge (ESD), 65–66

�       � F, G
Fibonacci series, 158–159
File transfer protocol (FTP), 90
Fleet management, 13–15

Circuit playground express board (cont.)

■ INDEX

441

�       � H
Hand tool, 244

�       � I
Indentation, 127
Inheritance, 143
Instantiation, 143
Inter-Integrated Circuit (I2C), 227

Adafruit RGB sensor (WiPy), 228, 232
breakout board, 227
console output, 231
driver, 229
init() function, 230
Pin() class, 230
RBG sensor (WiPy), 228
scan() function, 230
sensor.read() function, 230
Wi-Fi network (WiPy), 229

Internet of Things (IOT), 415
automotive, 11–13
community project sites, 418
documentation, 417
fleet management, 13–15
forums, 416
internet, 3
join community, 421

annotation work, 426
appropriate, 425
check license, 424
contributes, 422
designs original, 424
good citizen, 427
Hackster.io, 423
license, 422
online communities, 427
share, 423

knowledge repositories, 420
medical applications, 7–10
repositories, 415, 417
security

cloud, 18
devices, 17–18
encryption, 18
firewall, 17
physical access, 17
WiFi, 17

sensors, 2, 6
services, 4–5
several websites, 416

�       � J, K
JavaScript Object Notation (JSON), 150
json.dumps() method, 153
json.loads() method, 151

�       � L
lcd160cr classes, 210

firmware, 212
helper function, 212
LCD, 210
pyb.LED() function, 212
Pyboard, 211
REPL console output, 215
reusable function, 212

learn.adafruit.io, 420
Libraries of MicroPython

built-in functions, 174
dict() function, 191
classes, 187
overview, 174

directory/file layout, 199
exceptions, 192
helper_functions.py module, 201
help() function, 176, 203
keys() function, 194
machine, 197
metadata, 202
my_helper() function, 202
network, 198
paraphrase/gasp copy, 173
raise() function, 192
sensor_convert.py module, 202
specific functions, 196
standard libraries

format_time() function, 186
get_rand() function, 186
overview, 174
sys, 177
uio, 179
ujson, 180
uos, 182
utime, 184

user-supplied and custom
libraries, 173

WiPy files, 200
Light Emitting Diode (LED), 258
Lower-level hardware

abstraction layers, 205
breakout boards (see Breakout boards)

■ INDEX

442

callbacks, 224
documentation online, 220
drivers and libraries, 220–221
on-board sensors, 220
real-time clock, 221

Low-level hardware
board-specific libraries (see Board-

specific libraries)
classes, 208

�       � M
Maker

definition of, 429
event, 430
progression, 429
sharing idea, 430

Message queue telemetry transport
(MQTT), 379

Adafruit IO, 382
brokers, 382
clients, 382
concept, 381
driver, 398
lightweight protocol, 380
publish/subscribe model, 380
website, 382

Method overloading, 143
MicroPython

breadboard and jumper
wires, 48–49, 51–57

boards
assembly requirement, 63
community forums, 64
ESD, 65–66
firmware updates, 59–60
flash drive mounted, 160
GPIO pins, 64
jumpers, 67–68
micro SD card/drive, 67
networking issues, 60
programming tools, 61–63
protective case, 66

categories of boards, 31
compiled vs. interpreted languages, 29
electronic components, 46–48
features, 30
interpreter, 37–38
limitations, 31
microcontrollers, 28–29

projects information
clock (WiPy and Pyboard), 289, 310
code completion, 306
components, 285
design, 293
driver, 285
embellishment, 311
fill() and show() functions, 303
hardware set up, 288
imports section, 299
initialize object instances, 301
libraries, 293
links, 284
modules of RTC, 312
new function, 302
OLED breakout board, 305
overview, 284
Pyboard, 291
RTC breakout board testing, 304
run() function, 303
set up interfaces, 300
ssd1306.py, 294, 297
uRTC.py Pyboard, 296
WiPy, 290

Pyboard, 45
REPL console

macOS and Linux, 43–44
Pyboard, 40
Windows, 40–43

simulator, 20–24
Modularization

built-in attributes, 147
classes and objects, 143, 145, 147

__init__() method, 146
Pickup Truck class, 143–146
Vehicle class, 141–142

functions, 139
modules, 138

Multimeter, 241

�       � N
Network time protocol (NTP)

server, 284, 368

�       � O
Object-oriented programming

language, 140, 143
Optional components, 435
Organic light-emitting diode (OLED), 284

Lower-level hardware (cont.)

■ INDEX

443

�       � P, Q
Passive infrared sensor (PIR), 278
Plant monitoring

code writing
calibration, 352
overview, 351

conceptual project, 345
data file, 375
hardware setup

connections, 349
Pyboard, 351
WiPy, 350

HTML code (files), 365
imports, 367–368
IP address, 376
main code

Pyboard, 372
WiPy, 369

network time protocol, 368
plant soil moisture solution, 345
project concept, 346
required components

components, 347
environmental factors, 348
soil moisture sensor, 349

run() function, 368
sensor code (see Sensor code

module)
WiPy, 375

Polymorphism, 143
Printed circuit boards (PCBs), 246
Programming (MicroPython)

arithmetic, logical and comparison
operators, 128–129

challenges
classes, 170
complex data and files, 155
functions, 162
loops, 149–150

code blocks, 126–127
coding

classes, 163–166
complex data and files,

151–154
functions, 156–159
loops, 148

comments, 127–128
conditional statements, 136–137
data structures, 133
data types, 132

executing, code
classes, 167–170
complex data and files, 155
functions, 159–162
loops, 148–149

loops, 137–138
print messages, 129–130
variables, 130–131

pyb library
Accel class, 209
classes, 206
forum.micropython.org, 207
hard_reset() function, 207
low-level hardware classes, 208
pyb.bootloader() function, 207
pyb.hard_reset() function, 207
pyb.info() function, 207
pyb.main(filename) function, 208
REPL function, 210

Pyboard board
Audio Skin, 114
hardware

boot drive, 70
data and datasheets,

components, 71
internal drive to boot, 70
microcontroller and memory

specifications, 71
pins, external power, 72
USR button, 70

LCD Skin, 114
load firmware, 73–77
networking

Adafruit CC3000 Arduino
Shield, 78–79

CC3000 (CC3K), 77
CC3000 connection, 79
code and CC3000 module, 80
connection errors, 81
mapping pins and CC3000, 78
pins, 77–78
REPL console, 80
test_connect(), 80
testing connection, 80
WIZNET5000 (WIZNET5K), 77

overview, 69
PYBFLASH, 73
REPL console, 73
v1.1 headers, 69

PyMakr plugin, 93
PyMate app, 94

■ INDEX

444

PySense Shield, 115
Python

features, 19
file access modes, 152
Python 3

execution, 36–37
Linux, 35–36
macOS, 34
Windows 10, 33

simulator, 20
PyTrack Shield, 116

�       � R
Radio frequency identification device

(RFID), 279, 426
Real-time clock (RTC), 184, 221, 284, 288
Recommended tools, 436

Beginner’s electronics toolkit, 437
Ladyada’s electronics toolkit, 436

Required components, 433
Roman Numeral Class, 164–165
run() function, 368

�       � S
Sensor code module

complete code, 359
constructor, 357
high-level design, 355
initialization section, 356
networks, 6
private functions, 358
public functions, 358
Pyboard, 361
sampling rate, 356
setup and initialization, 355

Serial Peripheral Interface (SPI)
Adafruit Thermocouple Amplifier, 233
header and terminal posts, 234
module, 234
Pyboard, 234
source code, 235
Type-H sensor, 233

Shields, 114
Skins, 112
Soldering Iron, 242
Stoplight simulation projects

code written, 322
components, 316

hardware set up, 319
overview, 316
pushbutton, 323

button_pressed() function,
325–326

cycle_lights() function, 325
functions, 324
imports, 323
setup, 323
test and debug code, 329

Pyboard, 320
remote control (HTML), 329

code completed, 335
functions, 333
HTML response string, 332
imports, 330
run() function, 334
setup, 330
web pages, 333
WiPy, 341
wireless network setup, 331

techniques reuse, 343
WiPy, 320

Systems on a chip (SOC) boards, 284

�       � T
Teensy 3.X version boards, 108
Type conversion, 132

�       � U, V
Ultrasonic Proximity Sensor, 278

�       � W, X, Y, Z
Weather sensors

Adafruit IO, 387
AIO key, 397
credentials, 396
dashboard, 388
feeds creation, 387

BME280 library, 398
class code module, 403
classes, 399
constructor, 400
data modification, 411
design, 399
hardware set up, 385
historical data, 411

■ INDEX

445

imports section, 400
main code

completed code, 406
connect() function, 405
global definitions, 405
imports, 405
run() function, 406

message callback function, 401
MQTT (see also Message queue

telemetry transport (MQTT))
driver, 398

overview, 380
protocol definition, 379
read data function, 401
required components, 384
run function, 401
TCP/WebREPL connection, 407
turn sensors ON, 408
visualization of data, 409

WiPy MicroPython board

firmware upgrade process, 91–93
hardware

Bluetooth communication
mechanisms, 84

boot modes, 83
features, 84–85
Jumper installation, 84
micro SD card, 83
pins, external power, 86
product description, 85
WiFi, 84

overview, 82–83
Pycom Expansion Board, 83
Pycom WiPy, 82
PyMakr plugin, 93–94
PyMate app, 94
REPL console, 86–87
SD Drive, 90–91
WiFi network connection, 87–90

Wire strippers, 244

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is the Internet of Things?
	The Internet of Things and You
	IOT Is More Than Just Connected to the Internet
	IOT Services
	A Brief Look at IOT Solutions
	Sensor Networks
	Medical Applications
	Automotive IOT Solutions
	Fleet Management

	IOT and Security
	Security Begins at Home
	Secure Your Devices
	Use Encryption
	Security Doesn’t End at the Cloud

	Python and the IOT
	Origins
	Online Python Simulator

	Summary

	Chapter 2: Introducing MicroPython
	Getting Started
	Origins
	MicroPython Features
	MicroPython Limitations
	What Does MicroPython Run On?
	Experimenting with Python on Your PC
	Installing Python 3 on Windows 10
	Installing Python 3 on macOS
	Installing Python 3 on Linux
	Running the Python Console
	Running Python Programs with the Interpreter

	How MicroPython Works
	The Run, Evaluate, Print Loop (REPL Console)
	Connect the Board
	Starting the REPL Console (Windows)
	Starting the REPL Console (macOS and Linux)

	Off and Running with MicroPython
	Additional Hardware
	Basic Electronics Kit
	Breadboard and Jumper Wires

	Example 1:
	Example 2:
	Example 3:

	Summary

	Chapter 3: MicroPython Hardware
	Getting Started with MicroPython Boards
	Firmware Updates
	Networking Issues
	One Step at a Time!
	Programming Tools
	Some Assembly Required
	GPIO Pins
	Other Tips
	Visit the Community Forums
	Handle with Care!
	PC Doesn’t Recognize the SD Drive
	Loose or Missing Jumpers

	MicroPython-Ready Boards
	Pyboard
	Overview
	More About the Hardware
	Getting Started with Pyboard
	Loading the Firmware
	Networking with the Pyboard
	Where to Buy

	WiPy
	Overview
	More About the Hardware
	Getting Started with WiPy
	Connecting to Your WiFi Network
	Using the SD Drive
	Loading the Firmware
	Special Applications
	Where to Buy

	MicroPython-Compatible Boards
	BBC micro:bit
	Up and Running with MicroPython
	Where to Buy

	Circuit Playground Express (Developer Edition)
	Up and Running with CircuitPython
	Where to Buy

	Adafruit Feather Huzzah
	Up and Running with MicroPython
	Where to Buy

	Other Boards
	Breakout Boards and Add-Ons
	Breakout Boards
	Board-Specific Shields/Skins
	Pyboard
	WiPy and Related

	Board-Specific Accessories
	Pyboard
	WiPy and Related Boards
	BBC micro:bit

	Which Board Should I Buy?
	Summary

	Chapter 4: How to Program in MicroPython
	Basic Concepts
	Code Blocks
	Comments
	Arithmetic
	Output to Screen
	Variables
	Types

	Basic Data Structures
	Lists
	Tuples
	Dictionaries

	Statements
	Conditional Statements
	Loops

	Modularization; Modules, Functions, and Classes
	Including Modules
	Functions
	Classes and Objects

	Learning Python by Example
	Example 1: Using Loops
	Write the Code
	Execute the Code
	Your Challenge

	Example 2: Using Complex Data and Files
	Write the Code
	Execute the Code
	Your Challenge

	Example 3: Using Functions
	Write the Code
	Execute the Code
	Your Challenge

	Example 4: Using Classes
	Write the Code
	Execute the Code
	Your Challenge

	For More Information
	Summary

	Chapter 5: MicroPython Libraries
	Built-In and Standard Libraries
	Overview
	Common Standard Libraries
	sys
	uio
	ujson
	uos
	utime

	Built-In Functions and Classes
	Exceptions

	MicroPython Libraries
	Overview
	Common MicroPython Libraries
	machine
	network

	Custom Libraries
	Summary

	Chapter 6: Low-Level Hardware Support
	Board-Specific Libraries
	Pyboard
	pyb
	lcd160cr

	WiPy
	pycom
	AES

	Low-Level Examples
	Drivers and Libraries to the Rescue!
	Real-Time Clock (RTC)
	Callbacks

	Using Breakout Boards
	Inter-Integrated Circuit (I2C)
	Serial Peripheral Interface (SPI)

	Summary

	Chapter 7: Electronics for Beginners
	The Basics
	Tools
	Multimeter
	Soldering Iron
	Wire Strippers
	Helping Hands
	Using a Multimeter
	Testing Continuity
	Measuring Voltage
	Measuring Current
	Measuring Resistance

	Powering Your Electronics

	Electronic Components
	Button
	Capacitor
	Diode
	Fuse
	Light Emitting Diode (LED)
	Relay
	Resistor
	Switch
	Transistor
	Voltage Regulator
	Breakout Boards and Circuits

	Using a Breadboard to Build Circuits
	What Are Sensors?
	How Sensors Measure
	Analog Sensors
	Digital Sensors

	Examples of Sensors
	Accelerometers
	Audio Sensors
	Barcode Readers
	Biometric Sensors
	Capacitive Sensors
	Coin Sensors
	Current Sensors
	Flex/Force Sensors
	Gas Sensors
	Light Sensors
	Liquid-Flow Sensors
	Liquid-Level Sensors
	Location Sensors
	Magnetic-Stripe Readers
	Magnetometers
	Moisture Sensors
	Proximity Sensors
	Radiation Sensors
	RFID Sensors
	Speed Sensors
	Switches and Pushbuttons
	Tilt Switches
	Touch Sensors
	Video Sensors
	Weather Sensors

	Summary

	Chapter 8: Project 1: Hello, World! MicroPython Style
	Overview
	Required Components
	Set Up the Hardware
	WiPy
	Pyboard

	Write the Code
	Design
	Libraries Needed
	Changes to ssd1306.py for the WiPy
	Changes to uRTC.py for the Pyboard
	Changes to ssd1306.py for the Pyboard

	Planning the Code
	Imports
	Set Up
	Initialize
	New Function

	Test the Parts of the Code
	Test the RTC Breakout Board
	Test the OLED Breakout Board

	Completed Code

	Execute!
	Taking It Further
	Summary

	Chapter 9: Project 2: Stoplight Simulator
	Overview
	Required Components
	Set Up the Hardware
	WiPy
	Pyboard

	Write the Code
	Part 1: Stoplight Simulator – Using a Pushbutton
	Imports
	Setup
	Functions
	Test and Debug the Code

	Part 2: Stoplight Simulator – Remote Control with HTML
	Imports
	Setup
	Functions

	Completed Code

	Execute!
	Taking it Further
	Summary

	Chapter 10: Project 3: Plant Monitoring
	Overview
	Required Components
	Set Up the Hardware
	WiPy
	Pyboard

	Write the Code
	Calibrating the Sensor
	Part 1: Sensor Code Module
	High-Level Design
	Setup and Initialization
	Constructor
	Public Functions
	Private Functions
	Complete Code
	Changes for the Pyboard

	Part 2: Main Code
	HTML Code (Files)
	Imports
	Imports
	Network Time Protocol
	The run() Function
	Complete Code
	Changes for the Pyboard

	Execute!
	Taking it Further
	Summary

	Chapter 11: Project 4: Using Weather Sensors
	Overview
	Message Queue Telemetry Transport
	How It Works
	Clients
	Brokers

	Getting Started with Adafruit IO

	Required Components
	Set Up the Hardware
	Configure Adafruit IO
	Set Up Feeds
	Set Up a Dashboard
	Get Your Credentials

	Write the Code
	MQTT Driver
	BME280 Library
	Weather Class
	Design
	Imports
	Constructor
	Read Data Function
	Message Callback Function
	Run Function
	Completed Code

	Main Code
	Imports
	Global Definitions
	Connect Function
	Run Function
	Completed Code

	Execute!
	Taking it Further
	Summary

	Chapter 12: Where to Go from Here
	More Projects to Explore
	MicroPython Project Samples
	Forums
	Documentation
	Repositories
	Community Project Sites: Hackster.io
	Knowledge Repositories: learn.adafruit.io

	Join the Community
	Why Contribute?
	Which License, Where?
	How We Share
	Keep Your Designs Original
	Check the License
	Keep It Appropriate
	Annotate Your Work
	Be a Good Citizen
	Suggested Communities

	Become a Maker
	What’s a Maker?
	Share Your Ideas
	Attend an Event

	Summary

	Appendix
	Required Components
	Optional Components
	Recommended Tools

	Index

