

Operating	Systems
Principles	&	Practice

Volume	I:	Kernels	and	Processes
Second	Edition

Thomas	Anderson
University	of	Washington

Mike	Dahlin
University	of	Texas	and	Google

Recursive	Books
recursivebooks.com

Operating	Systems:	Principles	and	Practice	(Second	Edition)	Volume	I:	Kernels
and	Processes	by	Thomas	Anderson	and	Michael	Dahlin
Copyright	©Thomas	Anderson	and	Michael	Dahlin,	2011-2015.

ISBN	978-0-9856735-3-6
Publisher:	Recursive	Books,	Ltd.,	http://recursivebooks.com/	
Cover:	Reflection	Lake,	Mt.	Rainier	
Cover	design:	Cameron	Neat	
Illustrations:	Cameron	Neat	
Copy	editors:	Sandy	Kaplan,	Whitney	Schmidt	
Ebook	design:	Robin	Briggs	
Web	design:	Adam	Anderson

SUGGESTIONS,	COMMENTS,	and	ERRORS.	We	welcome	suggestions,
comments	and	error	reports,	by	email	to	suggestions@recursivebooks.com

Notice	of	rights.	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,
stored	in	a	retrieval	system,	or	transmitted	in	any	form	by	any	means	—
electronic,	mechanical,	photocopying,	recording,	or	otherwise	—	without	the
prior	written	permission	of	the	publisher.	For	information	on	getting	permissions
for	reprints	and	excerpts,	contact	permissions@recursivebooks.com

Notice	of	liability.	The	information	in	this	book	is	distributed	on	an	“As	Is"
basis,	without	warranty.	Neither	the	authors	nor	Recursive	Books	shall	have	any
liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or
alleged	to	be	caused	directly	or	indirectly	by	the	information	or	instructions
contained	in	this	book	or	by	the	computer	software	and	hardware	products
described	in	it.

Trademarks:	Throughout	this	book	trademarked	names	are	used.	Rather	than	put
a	trademark	symbol	in	every	occurrence	of	a	trademarked	name,	we	state	we	are
using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark
owner	with	no	intention	of	infringement	of	the	trademark.	All	trademarks	or
service	marks	are	the	property	of	their	respective	owners.

	

http://recursivebooks.com/

To	Robin,	Sandra,	Katya,	and	Adam
Tom	Anderson

	
To	Marla,	Kelly,	and	Keith

Mike	Dahlin

Contents

	Preface

I	Kernels	and	Processes

1	Introduction

1.1	What	Is	An	Operating	System?

						1.1.1	Resource	Sharing:	Operating	System	as	Referee
						1.1.2	Masking	Limitations:	Operating	System	as	Illusionist
						1.1.3	Providing	Common	Services:	Operating	System	as	Glue
						1.1.4	Operating	System	Design	Patterns

1.2	Operating	System	Evaluation

						1.2.1	Reliability	and	Availability
						1.2.2	Security
						1.2.3	Portability
						1.2.4	Performance
						1.2.5	Adoption
						1.2.6	Design	Tradeoffs

1.3	Operating	Systems:	Past,	Present,	and	Future

						1.3.1	Impact	of	Technology	Trends
						1.3.2	Early	Operating	Systems
						1.3.3	Multi-User	Operating	Systems
						1.3.4	Time-Sharing	Operating	Systems
						1.3.5	Modern	Operating	Systems
						1.3.6	Future	Operating	Systems

	Exercises

2	The	Kernel	Abstraction

2.1	The	Process	Abstraction

2.2	Dual-Mode	Operation

						2.2.1	Privileged	Instructions
						2.2.2	Memory	Protection
						2.2.3	Timer	Interrupts

2.3	Types	of	Mode	Transfer

						2.3.1	User	to	Kernel	Mode
						2.3.2	Kernel	to	User	Mode

2.4	Implementing	Safe	Mode	Transfer

						2.4.1	Interrupt	Vector	Table
						2.4.2	Interrupt	Stack
						2.4.3	Two	Stacks	per	Process
						2.4.4	Interrupt	Masking
						2.4.5	Hardware	Support	for	Saving	and	Restoring	Registers

2.5	Putting	It	All	Together:	x86	Mode	Transfer

2.6	Implementing	Secure	System	Calls

2.7	Starting	a	New	Process

2.8	Implementing	Upcalls

2.9	Case	Study:	Booting	an	Operating	System	Kernel

2.10	Case	Study:	Virtual	Machines

2.11	Summary	and	Future	Directions

	Exercises

3	The	Programming	Interface

3.1	Process	Management

						3.1.1	Windows	Process	Management
						3.1.2	UNIX	Process	Management

3.2	Input/Output

3.3	Case	Study:	Implementing	a	Shell

3.4	Case	Study:	Interprocess	Communication

						3.4.1	Producer-Consumer	Communication
						3.4.2	Client-Server	Communication

3.5	Operating	System	Structure

						3.5.1	Monolithic	Kernels
						3.5.2	Microkernel

3.6	Summary	and	Future	Directions

	Exercises

II:	Concurrency

4.	Concurrency	and	Threads

5.	Synchronizing	Access	to	Shared	Objects

6.	Multi-Object	Synchronization

7.	Scheduling

III:	Memory	Management

8.	Address	Translation

9.	Caching	and	Virtual	Memory

10.	Advanced	Memory	Management

IV:	Persistent	Storage

11.	File	Systems:	Introduction	and	Overview

12.	Storage	Devices

13.	Files	and	Directories

14.	Reliable	Storage

	References

	Glossary

	About	the	Authors

	

	

Preface

Preface	to	the	eBook	Edition

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	In	use	at	over	50	colleges	and	universities
worldwide,	this	textbook	provides:

A	path	for	students	to	understand	high	level	concepts	all	the	way	down	to
working	code.
Extensive	worked	examples	integrated	throughout	the	text	provide	students
concrete	guidance	for	completing	homework	assignments.
A	focus	on	up-to-date	industry	technologies	and	practice

The	eBook	edition	is	split	into	four	volumes	that	together	contain	exactly	the
same	material	as	the	(2nd)	print	edition	of	Operating	Systems:	Principles	and
Practice,	reformatted	for	various	screen	sizes.	Each	volume	is	self-contained	and
can	be	used	as	a	standalone	text,	e.g.,	at	schools	that	teach	operating	systems
topics	across	multiple	courses.

Volume	1:	Kernels	and	Processes.	This	volume	contains	Chapters	1-3	of
the	print	edition.	We	describe	the	essential	steps	needed	to	isolate	programs
to	prevent	buggy	applications	and	computer	viruses	from	crashing	or	taking
control	of	your	system.
Volume	2:	Concurrency.	This	volume	contains	Chapters	4-7	of	the	print
edition.	We	provide	a	concrete	methodology	for	writing	correct	concurrent
programs	that	is	in	widespread	use	in	industry,	and	we	explain	the
mechanisms	for	context	switching	and	synchronization	from	fundamental
concepts	down	to	assembly	code.
Volume	3:	Memory	Management.	This	volume	contains	Chapters	8-10	of
the	print	edition.	We	explain	both	the	theory	and	mechanisms	behind	64-bit
address	space	translation,	demand	paging,	and	virtual	machines.
Volume	4:	Persistent	Storage.	This	volume	contains	Chapters	11-14	of	the
print	edition.	We	explain	the	technologies	underlying	modern	extent-based,

journaling,	and	versioning	file	systems.

A	more	detailed	description	of	each	chapter	is	given	in	the	preface	to	the	print
edition.

Preface	to	the	Print	Edition

Why	We	Wrote	This	Book

Many	of	our	students	tell	us	that	operating	systems	was	the	best	course	they	took
as	an	undergraduate	and	also	the	most	important	for	their	careers.	We	are	not
alone	—	many	of	our	colleagues	report	receiving	similar	feedback	from	their
students.

Part	of	the	excitement	is	that	the	core	ideas	in	a	modern	operating	system	—
protection,	concurrency,	virtualization,	resource	allocation,	and	reliable	storage
—	have	become	widely	applied	throughout	computer	science,	not	just	operating
system	kernels.	Whether	you	get	a	job	at	Facebook,	Google,	Microsoft,	or	any
other	leading-edge	technology	company,	it	is	impossible	to	build	resilient,
secure,	and	flexible	computer	systems	without	the	ability	to	apply	operating
systems	concepts	in	a	variety	of	settings.	In	a	modern	world,	nearly	everything	a
user	does	is	distributed,	nearly	every	computer	is	multicore,	security	threats
abound,	and	many	applications	such	as	web	browsers	have	become	mini-
operating	systems	in	their	own	right.

It	should	be	no	surprise	that	for	many	computer	science	students,	an
undergraduate	operating	systems	class	has	become	a	de	facto	requirement:	a
ticket	to	an	internship	and	eventually	to	a	full-time	position.

Unfortunately,	many	operating	systems	textbooks	are	still	stuck	in	the	past,
failing	to	keep	pace	with	rapid	technological	change.	Several	widely-used	books
were	initially	written	in	the	mid-1980’s,	and	they	often	act	as	if	technology
stopped	at	that	point.	Even	when	new	topics	are	added,	they	are	treated	as	an
afterthought,	without	pruning	material	that	has	become	less	important.	The	result
are	textbooks	that	are	very	long,	very	expensive,	and	yet	fail	to	provide	students
more	than	a	superficial	understanding	of	the	material.

Our	view	is	that	operating	systems	have	changed	dramatically	over	the	past
twenty	years,	and	that	justifies	a	fresh	look	at	both	how	the	material	is	taught	and

what	is	taught.	The	pace	of	innovation	in	operating	systems	has,	if	anything,
increased	over	the	past	few	years,	with	the	introduction	of	the	iOS	and	Android
operating	systems	for	smartphones,	the	shift	to	multicore	computers,	and	the
advent	of	cloud	computing.

To	prepare	students	for	this	new	world,	we	believe	students	need	three	things	to
succeed	at	understanding	operating	systems	at	a	deep	level:

Concepts	and	code.	We	believe	it	is	important	to	teach	students	both
principles	and	practice,	concepts	and	implementation,	rather	than	either
alone.	This	textbook	takes	concepts	all	the	way	down	to	the	level	of
working	code,	e.g.,	how	a	context	switch	works	in	assembly	code.	In	our
experience,	this	is	the	only	way	students	will	really	understand	and	master
the	material.	All	of	the	code	in	this	book	is	available	from	the	author’s	web
site,	ospp.washington.edu.

Extensive	worked	examples.	In	our	view,	students	need	to	be	able	to	apply
concepts	in	practice.	To	that	end,	we	have	integrated	a	large	number	of
example	exercises,	along	with	solutions,	throughout	the	text.	We	uses	these
exercises	extensively	in	our	own	lectures,	and	we	have	found	them	essential
to	challenging	students	to	go	beyond	a	superficial	understanding.

Industry	practice.	To	show	students	how	to	apply	operating	systems
concepts	in	a	variety	of	settings,	we	use	detailed,	concrete	examples	from
Facebook,	Google,	Microsoft,	Apple,	and	other	leading-edge	technology
companies	throughout	the	textbook.	Because	operating	systems	concepts
are	important	in	a	wide	range	of	computer	systems,	we	take	these	examples
not	only	from	traditional	operating	systems	like	Linux,	Windows,	and	OS	X
but	also	from	other	systems	that	need	to	solve	problems	of	protection,
concurrency,	virtualization,	resource	allocation,	and	reliable	storage	like
databases,	web	browsers,	web	servers,	mobile	applications,	and	search
engines.

Taking	a	fresh	perspective	on	what	students	need	to	know	to	apply	operating
systems	concepts	in	practice	has	led	us	to	innovate	in	every	major	topic	covered
in	an	undergraduate-level	course:

Kernels	and	Processes.	The	safe	execution	of	untrusted	code	has	become
central	to	many	types	of	computer	systems,	from	web	browsers	to	virtual

machines	to	operating	systems.	Yet	existing	textbooks	treat	protection	as	a
side	effect	of	UNIX	processes,	as	if	they	are	synonyms.	Instead,	we	start
from	first	principles:	what	are	the	minimum	requirements	for	process
isolation,	how	can	systems	implement	process	isolation	efficiently,	and
what	do	students	need	to	know	to	implement	functions	correctly	when	the
caller	is	potentially	malicious?

Concurrency.	With	the	advent	of	multicore	architectures,	most	students
today	will	spend	much	of	their	careers	writing	concurrent	code.	Existing
textbooks	provide	a	blizzard	of	concurrency	alternatives,	most	of	which
were	abandoned	decades	ago	as	impractical.	Instead,	we	focus	on	providing
students	a	single	methodology	based	on	Mesa	monitors	that	will	enable
students	to	write	correct	concurrent	programs	—	a	methodology	that	is	by
far	the	dominant	approach	used	in	industry.

Memory	Management.	Even	as	demand-paging	has	become	less
important,	virtualization	has	become	even	more	important	to	modern
computer	systems.	We	provide	a	deep	treatment	of	address	translation
hardware,	sparse	address	spaces,	TLBs,	and	on-chip	caches.	We	then	use
those	concepts	as	a	springboard	for	describing	virtual	machines	and	related
concepts	such	as	checkpointing	and	copy-on-write.

Persistent	Storage.	Reliable	storage	in	the	presence	of	failures	is	central	to
the	design	of	most	computer	systems.	Existing	textbooks	survey	the	history
of	file	systems,	spending	most	of	their	time	ad	hoc	approaches	to	failure
recovery	and	defragmentation.	Yet	no	modern	file	systems	still	use	those	ad
hoc	approaches.	Instead,	our	focus	is	on	how	file	systems	use	extents,
journaling,	copy-on-write,	and	RAID	to	achieve	both	high	performance	and
high	reliability.

Intended	Audience

Operating	Systems:	Principles	and	Practice	is	a	textbook	for	a	first	course	in
undergraduate	operating	systems.	We	believe	operating	systems	should	be	taken
as	early	as	possible	in	an	undergraduate’s	course	of	study;	many	students	use	the
course	as	a	springboard	to	an	internship	and	a	career.	To	that	end,	we	have
designed	the	textbook	to	assume	minimal	pre-requisites:	specifically,	students
should	have	taken	a	data	structures	course	and	one	on	computer	organization.
The	code	examples	are	written	in	a	combination	of	x86	assembly,	C,	and	C++.
In	particular,	we	have	designed	the	book	to	interface	well	with	the	Bryant	and

In	particular,	we	have	designed	the	book	to	interface	well	with	the	Bryant	and
O’Halloran	textbook.	We	review	and	cover	in	much	more	depth	the	material
from	the	second	half	of	that	book.

We	should	note	what	this	textbook	is	not:	it	is	not	intended	to	teach	the	API	or
internals	of	any	specific	operating	system,	such	as	Linux,	Android,	Windows	8,
OS	X,	or	iOS.	We	use	many	concrete	examples	from	these	systems,	but	our
focus	is	on	the	shared	problems	these	systems	face	and	the	technologies	these
systems	use	to	solve	those	problems.

A	Guide	to	Instructors

One	of	our	goals	is	enable	instructors	to	choose	an	appropriate	level	of	depth	for
each	course	topic.	Each	chapter	begins	at	a	conceptual	level,	with
implementation	details	and	the	more	advanced	material	towards	the	end.	The
more	advanced	material	can	be	omitted	without	compromising	the	ability	of
students	to	follow	later	material.	No	single-quarter	or	single-semester	course	is
likely	to	be	able	to	cover	every	topic	we	have	included,	but	we	think	it	is	a	good
thing	for	students	to	come	away	from	an	operating	systems	course	with	an
appreciation	that	there	is	always	more	to	learn.

For	each	topic,	we	attempt	to	convey	it	at	three	levels:

How	to	reason	about	systems.	We	describe	core	systems	concepts,	such	as
protection,	concurrency,	resource	scheduling,	virtualization,	and	storage,
and	we	provide	practice	applying	these	concepts	in	various	situations.	In
our	view,	this	provides	the	biggest	long-term	payoff	to	students,	as	they	are
likely	to	need	to	apply	these	concepts	in	their	work	throughout	their	career,
almost	regardless	of	what	project	they	end	up	working	on.

Power	tools.	We	introduce	students	to	a	number	of	abstractions	that	they
can	apply	in	their	work	in	industry	immediately	after	graduation,	and	that
we	expect	will	continue	to	be	useful	for	decades	such	as	sandboxing,
protected	procedure	calls,	threads,	locks,	condition	variables,	caching,
checkpointing,	and	transactions.

Details	of	specific	operating	systems.	We	include	numerous	examples	of
how	different	operating	systems	work	in	practice.	However,	this	material
changes	rapidly,	and	there	is	an	order	of	magnitude	more	material	than	can
be	covered	in	a	single	semester-length	course.	The	purpose	of	these

examples	is	to	illustrate	how	to	use	the	operating	systems	principles	and
power	tools	to	solve	concrete	problems.	We	do	not	attempt	to	provide	a
comprehensive	description	of	Linux,	OS	X,	or	any	other	particular
operating	system.

The	book	is	divided	into	five	parts:	an	introduction	(Chapter	1),	kernels	and
processes	(Chapters	2-3),	concurrency,	synchronization,	and	scheduling
(Chapters	4-7),	memory	management	(Chapters	8-10),	and	persistent	storage
(Chapters	11-14).

Introduction.	The	goal	of	Chapter	1	is	to	introduce	the	recurring	themes
found	in	the	later	chapters.	We	define	some	common	terms,	and	we	provide
a	bit	of	the	history	of	the	development	of	operating	systems.

The	Kernel	Abstraction.	Chapter	2	covers	kernel-based	process	protection
—	the	concept	and	implementation	of	executing	a	user	program	with
restricted	privileges.	Given	the	increasing	importance	of	computer	security
issues,	we	believe	protected	execution	and	safe	transfer	across	privilege
levels	are	worth	treating	in	depth.	We	have	broken	the	description	into
sections,	to	allow	instructors	to	choose	either	a	quick	introduction	to	the
concepts	(up	through	Section	2.3),	or	a	full	treatment	of	the	kernel
implementation	details	down	to	the	level	of	interrupt	handlers.	Some
instructors	start	with	concurrency,	and	cover	kernels	and	kernel	protection
afterwards.	While	our	textbook	can	be	used	that	way,	we	have	found	that
students	benefit	from	a	basic	understanding	of	the	role	of	operating	systems
in	executing	user	programs,	before	introducing	concurrency.

The	Programming	Interface.	Chapter	3	is	intended	as	an	impedance
match	for	students	of	differing	backgrounds.	Depending	on	student
background,	it	can	be	skipped	or	covered	in	depth.	The	chapter	covers	the
operating	system	from	a	programmer’s	perspective:	process	creation	and
management,	device-independent	input/output,	interprocess
communication,	and	network	sockets.	Our	goal	is	that	students	should
understand	at	a	detailed	level	what	happens	when	a	user	clicks	a	link	in	a
web	browser,	as	the	request	is	transferred	through	operating	system	kernels
and	user	space	processes	at	the	client,	server,	and	back	again.	This	chapter
also	covers	the	organization	of	the	operating	system	itself:	how	device
drivers	and	the	hardware	abstraction	layer	work	in	a	modern	operating
system;	the	difference	between	a	monolithic	and	a	microkernel	operating

system;	and	how	policy	and	mechanism	are	separated	in	modern	operating
systems.

Concurrency	and	Threads.	Chapter	4	motivates	and	explains	the	concept
of	threads.	Because	of	the	increasing	importance	of	concurrent
programming,	and	its	integration	with	modern	programming	languages	like
Java,	many	students	have	been	introduced	to	multithreaded	programming	in
an	earlier	class.	This	is	a	bit	dangerous,	as	students	at	this	stage	are	prone	to
writing	programs	with	race	conditions,	problems	that	may	or	may	not	be
discovered	with	testing.	Thus,	the	goal	of	this	chapter	is	to	provide	a	solid
conceptual	framework	for	understanding	the	semantics	of	concurrency,	as
well	as	how	concurrent	threads	are	implemented	in	both	the	operating
system	kernel	and	in	user-level	libraries.	Instructors	needing	to	go	more
quickly	can	omit	these	implementation	details.

Synchronization.	Chapter	5	discusses	the	synchronization	of	multithreaded
programs,	a	central	part	of	all	operating	systems	and	increasingly	important
in	many	other	contexts.	Our	approach	is	to	describe	one	effective	method
for	structuring	concurrent	programs	(based	on	Mesa	monitors),	rather	than
to	attempt	to	cover	several	different	approaches.	In	our	view,	it	is	more
important	for	students	to	master	one	methodology.	Monitors	are	a
particularly	robust	and	simple	one,	capable	of	implementing	most
concurrent	programs	efficiently.	The	implementation	of	synchronization
primitives	should	be	included	if	there	is	time,	so	students	see	that	there	is
no	magic.

Multi-Object	Synchronization.	Chapter	6	discusses	advanced	topics	in
concurrency	—	specifically,	the	twin	challenges	of	multiprocessor	lock
contention	and	deadlock.	This	material	is	increasingly	important	for
students	working	on	multicore	systems,	but	some	courses	may	not	have
time	to	cover	it	in	detail.

Scheduling.	This	chapter	covers	the	concepts	of	resource	allocation	in	the
specific	context	of	processor	scheduling.	With	the	advent	of	data	center
computing	and	multicore	architectures,	the	principles	and	practice	of
resource	allocation	have	renewed	importance.	After	a	quick	tour	through
the	tradeoffs	between	response	time	and	throughput	for	uniprocessor
scheduling,	the	chapter	covers	a	set	of	more	advanced	topics	in	affinity	and
multiprocessor	scheduling,	power-aware	and	deadline	scheduling,	as	well

as	basic	queueing	theory	and	overload	management.	We	conclude	these
topics	by	walking	students	through	a	case	study	of	server-side	load
management.

Address	Translation.	Chapter	8	explains	mechanisms	for	hardware	and
software	address	translation.	The	first	part	of	the	chapter	covers	how
hardware	and	operating	systems	cooperate	to	provide	flexible,	sparse
address	spaces	through	multi-level	segmentation	and	paging.	We	then
describe	how	to	make	memory	management	efficient	with	translation
lookaside	buffers	(TLBs)	and	virtually	addressed	caches.	We	consider	how
to	keep	TLBs	consistent	when	the	operating	system	makes	changes	to	its
page	tables.	We	conclude	with	a	discussion	of	modern	software-based
protection	mechanisms	such	as	those	found	in	the	Microsoft	Common
Language	Runtime	and	Google’s	Native	Client.

Caching	and	Virtual	Memory.	Caches	are	central	to	many	different	types
of	computer	systems.	Most	students	will	have	seen	the	concept	of	a	cache	in
an	earlier	class	on	machine	structures.	Thus,	our	goal	is	to	cover	the	theory
and	implementation	of	caches:	when	they	work	and	when	they	do	not,	as
well	as	how	they	are	implemented	in	hardware	and	software.	We	then	show
how	these	ideas	are	applied	in	the	context	of	memory-mapped	files	and
demand-paged	virtual	memory.

Advanced	Memory	Management.	Address	translation	is	a	powerful	tool
in	system	design,	and	we	show	how	it	can	be	used	for	zero	copy	I/O,	virtual
machines,	process	checkpointing,	and	recoverable	virtual	memory.	As	this
is	more	advanced	material,	it	can	be	skipped	by	those	classes	pressed	for
time.

File	Systems:	Introduction	and	Overview.	Chapter	11	frames	the	file
system	portion	of	the	book,	starting	top	down	with	the	challenges	of
providing	a	useful	file	abstraction	to	users.	We	then	discuss	the	UNIX	file
system	interface,	the	major	internal	elements	inside	a	file	system,	and	how
disk	device	drivers	are	structured.

Storage	Devices.	Chapter	12	surveys	block	storage	hardware,	specifically
magnetic	disks	and	flash	memory.	The	last	two	decades	have	seen	rapid
change	in	storage	technology	affecting	both	application	programmers	and
operating	systems	designers;	this	chapter	provides	a	snapshot	for	students,

as	a	building	block	for	the	next	two	chapters.	If	students	have	previously
seen	this	material,	this	chapter	can	be	skipped.

Files	and	Directories.	Chapter	13	discusses	file	system	layout	on	disk.
Rather	than	survey	all	possible	file	layouts	—	something	that	changes
rapidly	over	time	—	we	use	file	systems	as	a	concrete	example	of	mapping
complex	data	structures	onto	block	storage	devices.

Reliable	Storage.	Chapter	14	explains	the	concept	and	implementation	of
reliable	storage,	using	file	systems	as	a	concrete	example.	Starting	with	the
ad	hoc	techniques	used	in	early	file	systems,	the	chapter	explains
checkpointing	and	write	ahead	logging	as	alternate	implementation
strategies	for	building	reliable	storage,	and	it	discusses	how	redundancy
such	as	checksums	and	replication	are	used	to	improve	reliability	and
availability.

We	welcome	and	encourage	suggestions	for	how	to	improve	the	presentation	of
the	material;	please	send	any	comments	to	the	publisher’s	website,
suggestions@recursivebooks.com.

Acknowledgements

We	have	been	incredibly	fortunate	to	have	the	help	of	a	large	number	of	people
in	the	conception,	writing,	editing,	and	production	of	this	book.

We	started	on	the	journey	of	writing	this	book	over	dinner	at	the	USENIX	NSDI
conference	in	2010.	At	the	time,	we	thought	perhaps	it	would	take	us	the
summer	to	complete	the	first	version	and	perhaps	a	year	before	we	could	declare
ourselves	done.	We	were	very	wrong!	It	is	no	exaggeration	to	say	that	it	would
have	taken	us	a	lot	longer	without	the	help	we	have	received	from	the	people	we
mention	below.

Perhaps	most	important	have	been	our	early	adopters,	who	have	given	us
enormously	useful	feedback	as	we	have	put	together	this	edition:

Carnegie-Mellon David	Eckhardt	and	Garth	Gibson
Clarkson Jeanna	Matthews
Cornell Gun	Sirer
ETH	Zurich Mothy	Roscoe

ETH	Zurich Mothy	Roscoe
New	York	University Laskshmi	Subramanian
Princeton	University Kai	Li
Saarland	University Peter	Druschel
Stanford	University John	Ousterhout
University	of	California	Riverside Harsha	Madhyastha
University	of	California	Santa	Barbara Ben	Zhao
University	of	Maryland Neil	Spring
University	of	Michigan Pete	Chen
University	of	Southern	California Ramesh	Govindan
University	of	Texas-Austin Lorenzo	Alvisi
Universtiy	of	Toronto Ding	Yuan
University	of	Washington Gary	Kimura	and	Ed	Lazowska

In	developing	our	approach	to	teaching	operating	systems,	both	before	we
started	writing	and	afterwards	as	we	tried	to	put	our	thoughts	to	paper,	we	made
extensive	use	of	lecture	notes	and	slides	developed	by	other	faculty.	Of
particular	help	were	the	materials	created	by	Pete	Chen,	Peter	Druschel,	Steve
Gribble,	Eddie	Kohler,	John	Ousterhout,	Mothy	Roscoe,	and	Geoff	Voelker.	We
thank	them	all.

Our	illustrator	for	the	second	edition,	Cameron	Neat,	has	been	a	joy	to	work
with.

We	are	also	grateful	to	Lorenzo	Alvisi,	Adam	Anderson,	Pete	Chen,	Steve
Gribble,	Sam	Hopkins,	Ed	Lazowska,	Harsha	Madhyastha,	John	Ousterhout,
Mark	Rich,	Mothy	Roscoe,	Will	Scott,	Gun	Sirer,	Ion	Stoica,	Lakshmi
Subramanian,	and	John	Zahorjan	for	their	helpful	comments	and	suggestions	as
to	how	to	improve	the	book.

We	thank	Josh	Berlin,	Marla	Dahlin,	Sandy	Kaplan,	John	Ousterhout,	Whitney
Schmidt,	and	Mike	Walfish	for	helping	us	identify	and	correct	grammatical	or
technical	bugs	in	the	text.

We	thank	Jeff	Dean,	Garth	Gibson,	Mark	Oskin,	Simon	Peter,	Dave	Probert,
Amin	Vahdat,	and	Mark	Zbikowski	for	their	help	in	explaining	the	internal
workings	of	some	of	the	commercial	systems	mentioned	in	this	book.

We	would	like	to	thank	Dave	Wetherall,	Dan	Weld,	Mike	Walfish,	Dave
Patterson,	Olav	Kvern,	Dan	Halperin,	Armando	Fox,	Robin	Briggs,	Katya
Anderson,	Sandra	Anderson,	Lorenzo	Alvisi,	and	William	Adams	for	their	help
and	advice	on	textbook	economics	and	production.

The	Helen	Riaboff	Whiteley	Center	as	well	as	Don	and	Jeanne	Dahlin	were	kind
enough	to	lend	us	a	place	to	escape	when	we	needed	to	get	chapters	written.

Finally,	we	thank	our	families,	our	colleagues,	and	our	students	for	supporting	us
in	this	larger-than-expected	effort.

	

	I
Kernels	and	Processes

1.	Introduction

All	I	really	need	to	know	I	learned	in	kindergarten.	—Robert	Fulgham

	

How	do	we	construct	reliable,	portable,	efficient,	and	secure	computer	systems?
An	essential	component	is	the	computer’s	operating	system	—	the	software	that
manages	a	computer’s	resources.

First,	the	bad	news:	operating	systems	concepts	are	among	the	most	complex	in
computer	science.	A	modern,	general-purpose	operating	system	can	exceed	50
million	lines	of	code,	or	in	other	words,	more	than	a	thousand	times	longer	than
this	textbook.	New	operating	systems	are	being	written	all	the	time:	if	you	use	an
e-book	reader,	tablet,	or	smartphone,	an	operating	system	is	managing	your
device.	Given	this	inherent	complexity,	we	limit	our	focus	to	the	essential
concepts	that	every	computer	scientist	should	know.

Now	the	good	news:	operating	systems	concepts	are	also	among	the	most
accessible	in	computer	science.	Many	topics	in	this	book	will	seem	familiar	to
you	—	if	you	have	ever	tried	to	do	two	things	at	once,	or	picked	the	“wrong”
line	at	a	grocery	store,	or	tried	to	keep	a	roommate	or	sibling	from	messing	with
your	things,	or	succeeded	at	pulling	off	an	April	Fool’s	joke.	Each	of	these
activities	has	an	analogue	in	operating	systems.	It	is	this	familiarity	that	gives	us
hope	that	we	can	explain	how	operating	systems	work	in	a	single	textbook.	All
we	assume	of	the	reader	is	a	basic	understanding	of	the	operation	of	a	computer
and	the	ability	to	read	pseudo-code.

We	believe	that	understanding	how	operating	systems	work	is	essential	for	any
student	interested	in	building	modern	computer	systems.	Of	course,	everyone
who	uses	a	computer	or	a	smartphone	—	or	even	a	modern	toaster	—	uses	an
operating	system,	so	understanding	the	function	of	an	operating	system	is	useful
to	most	computer	scientists.	This	book	aims	to	go	much	deeper	than	that,	to

to	most	computer	scientists.	This	book	aims	to	go	much	deeper	than	that,	to
explain	operating	system	internals	that	we	rely	on	every	day	without	realizing	it.

Software	engineers	use	many	of	the	same	technologies	and	design	patterns	as
those	used	in	operating	systems	to	build	other	complex	systems.	Whether	your
goal	is	to	work	on	the	internals	of	an	operating	system	kernel	—	or	to	build	the
next	generation	of	software	for	cloud	computing,	secure	web	browsers,	game
consoles,	graphical	user	interfaces,	media	players,	databases,	or	multicore
software	—	the	concepts	and	abstractions	needed	for	reliable,	portable,	efficient
and	secure	software	are	much	the	same.	In	our	experience,	the	best	way	to	learn
these	concepts	is	to	study	how	they	are	used	in	operating	systems,	but	we	hope
you	will	apply	them	to	a	much	broader	range	of	computer	systems.

To	get	started,	consider	the	web	server	in	Figure	1.1.	Its	behavior	is	amazingly
simple:	it	receives	a	packet	containing	the	name	of	the	web	page	from	the
network,	as	an	HTTP	GET	request.	The	web	server	decodes	the	packet,	reads	the
file	from	disk,	and	sends	the	contents	of	the	file	back	over	the	network	to	the
user’s	machine.

Figure	1.1:	The	operation	of	a	web	server.	The	client	machine	sends	an	HTTP	GET	request	to	the	web
server.	The	server	decodes	the	packet,	reads	the	file,	and	sends	the	contents	back	to	the	client.

Part	of	an	operating	system’s	job	is	to	make	it	easy	to	write	applications	like	web
servers.	But	digging	a	bit	deeper,	this	simple	story	quickly	raises	as	many
questions	as	it	answers:

Many	web	requests	involve	both	data	and	computation.	For	example,	the
Google	home	page	presents	a	simple	text	box,	but	each	search	query
entered	in	that	box	consults	data	spread	over	many	machines.	To	keep	their
software	manageable,	web	servers	often	invoke	helper	applications,	e.g.,	to
manage	the	actual	search	function.	The	main	web	server	must	be	able	to
communicate	with	the	helper	applications	for	this	to	work.	How	does	the
operating	system	enable	multiple	applications	to	communicate	with	each
other?

What	if	two	users	(or	a	million)	request	a	web	page	from	the	server	at	the
same	time?	A	simple	approach	might	be	to	handle	each	request	in	turn.	If
any	individual	request	takes	a	long	time,	however,	every	other	request	must
wait	for	it	to	complete.	A	faster,	but	more	complex,	solution	is	to	multitask:
to	juggle	the	handling	of	multiple	requests	at	once.	Multitasking	is
especially	important	on	modern	multicore	computers,	where	each	processor
can	handle	a	different	request	at	the	same	time.	How	does	the	operating
system	enable	applications	to	do	multiple	things	at	once?

For	better	performance,	the	web	server	might	want	to	keep	a	copy,
sometimes	called	a	cache,	of	recently	requested	pages.	In	this	way,	if
multiple	users	request	the	same	page,	the	server	can	respond	to	subsequent
requests	more	quickly	from	the	cache,	rather	than	starting	each	request	from
scratch.	This	requires	the	web	server	to	coordinate,	or	synchronize,	access
to	the	cache’s	data	structures	by	possibly	thousands	of	web	requests	at	the
same	time.	How	does	the	operating	system	synchronize	application	access
to	shared	data?

To	customize	and	animate	the	user	experience,	web	servers	typically	send
clients	scripting	code	along	with	the	contents	of	the	web	page.	But	this
means	that	clicking	on	a	link	can	cause	someone	else’s	code	to	run	on	your
computer.	How	does	the	client	operating	system	protect	itself	from
compromise	by	a	computer	virus	surreptitiously	embedded	into	the
scripting	code?

Suppose	the	web	site	administrator	uses	an	editor	to	update	the	web	page.
The	web	server	must	be	able	to	read	this	file.	How	does	the	operating
system	store	the	bytes	on	disk	so	that	the	web	server	can	find	and	read
them?

Taking	this	a	step	further,	the	administrator	may	want	to	make	a	consistent
set	of	changes	to	the	web	site	so	that	embedded	links	are	not	left	dangling,
even	temporarily.	How	can	the	operating	system	let	users	make	a	set	of
changes	to	a	web	site,	so	that	requests	see	either	the	old	or	new	pages,	but
not	a	combination	of	the	two?

What	happens	when	the	client	browser	and	the	web	server	run	at	different
speeds?	If	the	server	tries	to	send	a	web	page	to	the	client	faster	than	the
client	can	render	the	page	on	the	screen,	where	are	the	contents	of	the	file
stored	in	the	meantime?	Can	the	operating	system	decouple	the	client	and
server	so	that	each	can	run	at	its	own	speed	without	slowing	the	other
down?

As	demand	on	the	web	server	grows,	the	administrator	may	need	to	move	to
more	powerful	hardware,	with	more	memory,	more	processors,	faster
network	devices,	and	faster	disks.	To	take	advantage	of	new	hardware,	must
the	web	server	be	re-written	each	time,	or	can	it	be	written	in	a	hardware-
independent	fashion?	What	about	the	operating	system	—	must	it	be	re-
written	for	every	new	piece	of	hardware?

We	could	go	on,	but	you	get	the	idea.	This	book	will	help	you	understand	the
answers	to	these	and	many	more	questions.

Chapter	roadmap:

The	rest	of	this	chapter	discusses	three	topics	in	detail:

Operating	System	Definition.	What	is	an	operating	system,	and	what	does
it	do?	(Section	1.1)

Operating	System	Evaluation.	What	design	goals	should	we	look	for	in	an
operating	system?	(Section	1.2)

Operating	Systems:	Past,	Present,	and	Future.	How	have	operating
systems	evolved,	and	what	new	functionality	are	we	likely	to	see	in	future
operating	systems?	(Section	1.3)

1.1	What	Is	An	Operating	System?

An	operating	system	(OS)	is	the	layer	of	software	that	manages	a	computer’s

resources	for	its	users	and	their	applications.	Operating	systems	run	in	a	wide
range	of	computer	systems.	They	may	be	invisible	to	the	end	user,	controlling
embedded	devices	such	as	toasters,	gaming	systems,	and	the	many	computers
inside	modern	automobiles	and	airplanes.	They	are	also	essential	to	more
general-purpose	systems	such	as	smartphones,	desktop	computers,	and	servers.

Our	discussion	will	focus	on	general-purpose	operating	systems	because	the
technologies	they	need	are	a	superset	of	those	needed	for	embedded	systems.
Increasingly,	operating	systems	technologies	developed	for	general-purpose
computing	are	migrating	into	the	embedded	sphere.	For	example,	early	mobile
phones	had	simple	operating	systems	to	manage	their	hardware	and	to	run	a
handful	of	primitive	applications.	Today,	smartphones	—	phones	capable	of
running	independent	third-party	applications	—	are	the	fastest	growing	segment
of	the	mobile	phone	business.	These	devices	require	much	more	complete
operating	systems,	with	sophisticated	resource	management,	multitasking,
security	and	failure	isolation.

Likewise,	automobiles	are	increasingly	software	controlled,	raising	a	host	of
operating	system	issues.	Can	anyone	write	software	for	your	car?	What	if	the
software	fails	while	you	are	driving	down	the	highway?	Can	a	car’s	operating
system	be	hijacked	by	a	computer	virus?	Although	this	might	seem	far-fetched,
researchers	recently	demonstrated	that	they	could	remotely	turn	off	a	car’s
braking	system	through	a	computer	virus	introduced	into	the	car’s	computers	via
a	hacked	car	radio.	A	goal	of	this	book	is	to	explain	how	to	build	more	reliable
and	secure	computer	systems	in	a	variety	of	contexts.

Figure	1.2:	A	general-purpose	operating	system	is	a	layer	of	software	that	manages	a	computer’s
resources	for	its	users	and	applications.

For	general-purpose	systems,	users	interact	with	applications,	applications
execute	in	an	environment	provided	by	the	operating	system,	and	the	operating
system	mediates	access	to	the	underlying	hardware,	as	shown	in	Figure	1.2	and
expanded	in	Figure	1.3.	How	can	an	operating	system	run	multiple	applications?
For	this,	operating	systems	need	to	play	three	roles:

Figure	1.3:	This	shows	the	structure	of	a	general-purpose	operating	system,	as	an	expansion	on	the	simple
view	presented	in	Figure	1.2.	At	the	lowest	level,	the	hardware	provides	processors,	memory,	and	a	set	of
devices	for	storing	data	and	communicating	with	the	outside	world.	The	hardware	also	provides	primitives
that	the	operating	system	can	use	for	fault	isolation	and	synchronization.	The	operating	system	runs	as	the
lowest	layer	of	software	on	the	computer.	It	contains	both	a	device-specific	layer	for	managing	the	myriad
hardware	devices	and	a	set	of	device-independent	services	provided	to	applications.	Since	the	operating
system	must	isolate	malicious	and	buggy	applications	from	other	applications	or	the	operating	system
itself,	much	of	the	operating	system	runs	in	a	separate	execution	environment	protected	from	application
code.	A	portion	of	the	operating	system	can	also	run	as	a	system	library	linked	into	each	application.	In
turn,	applications	run	in	an	execution	context	provided	by	the	operating	system	kernel.	The	application
context	is	much	more	than	a	simple	abstraction	on	top	of	hardware	devices:	applications	execute	in	a
virtual	environment	that	is	more	constrained	(to	prevent	harm),	more	powerful	(to	mask	hardware

limitations),	and	more	useful	(via	common	services)	than	the	underlying	hardware.

1.	 Referee.	Operating	systems	manage	resources	shared	between	different
applications	running	on	the	same	physical	machine.	For	example,	an
operating	system	can	stop	one	program	and	start	another.	Operating
systems	isolate	applications	from	each	other,	so	a	bug	in	one	application
does	not	corrupt	other	applications	running	on	the	same	machine.	An
operating	system	must	also	protect	itself	and	other	applications	from
malicious	computer	viruses.	And	since	the	applications	share	physical
resources,	the	operating	system	needs	to	decide	which	applications	get
which	resources	and	when.

2.	 Illusionist.	Operating	systems	provide	an	abstraction	of	physical	hardware
to	simplify	application	design.	To	write	a	“Hello	world!”	program,	you	do
not	need	(or	want!)	to	think	about	how	much	physical	memory	the	system
has,	or	how	many	other	programs	might	be	sharing	the	computer’s
resources.	Instead,	operating	systems	provide	the	illusion	of	nearly	infinite
memory,	despite	having	a	limited	amount	of	physical	memory.	Likewise,
they	provide	the	illusion	that	each	program	has	the	computer’s	processors
entirely	to	itself.	Obviously,	the	reality	is	quite	different!	These	illusions	let
you	write	applications	independently	of	the	amount	of	physical	memory	on
the	system	or	the	physical	number	of	processors.	Because	applications	are
written	to	a	higher	level	of	abstraction,	the	operating	system	can	invisibly
change	the	amount	of	resources	assigned	to	each	application.

3.	 Glue.	Operating	systems	provide	a	set	of	common	services	that	facilitate
sharing	among	applications.	As	a	result,	cut	and	paste	works	uniformly
across	the	system;	a	file	written	by	one	application	can	be	read	by	another.
Many	operating	systems	provide	common	user	interface	routines	so
applications	can	have	the	same	“look	and	feel.”	Perhaps	most	importantly,
operating	systems	provide	a	layer	separating	applications	from	hardware
input	and	output	(I/O)	devices	so	applications	can	be	written	independently
of	the	specific	keyboard,	mouse,	and	disk	drive	in	use	on	a	particular
computer.

We	next	discuss	these	three	roles	in	greater	detail.

1.1.1	Resource	Sharing:	Operating	System	as	Referee

Sharing	is	central	to	most	uses	of	computers.	Right	now,	my	laptop	is	running	a
browser,	podcast	library,	text	editor,	email	program,	document	viewer,	and
newspaper.	The	operating	system	must	somehow	keep	all	of	these	activities
separate,	yet	allow	each	the	full	capacity	of	the	machine	if	the	others	are	not
running.	At	a	minimum,	when	one	program	stops	running,	the	operating	system
should	let	me	run	another.	Better	still,	the	operating	system	should	let	multiple
applications	run	at	the	same	time,	so	I	can	read	email	while	I	download	a
security	patch	to	the	system	software.

Even	individual	applications	can	do	multiple	tasks	at	once.	For	instance,	a	web
server’s	responsiveness	improves	if	it	handles	multiple	requests	concurrently
rather	than	waiting	for	each	to	complete	before	starting	the	next	one.	The	same
holds	for	the	browser	—	it	is	more	responsive	if	it	can	start	rendering	a	page
while	the	rest	of	the	page	is	transferring.	On	multiprocessors,	the	computation
inside	a	parallel	application	can	be	split	into	separate	units	that	can	be	run
independently	for	faster	execution.	The	operating	system	itself	is	an	example	of
software	written	to	do	multiple	tasks	at	once.	As	we	will	illustrate	throughout	the
book,	the	operating	system	is	a	customer	of	its	own	abstractions.

Sharing	raises	several	challenges	for	an	operating	system:

Resource	allocation.	The	operating	system	must	keep	all	simultaneous
activities	separate,	allocating	resources	to	each	as	appropriate.	A	computer
usually	has	only	a	few	processors	and	a	finite	amount	of	memory,	network
bandwidth,	and	disk	space.	When	there	are	multiple	tasks	to	do	at	the	same
time,	how	should	the	operating	system	decide	how	many	resources	to	give
to	each?	Seemingly	trivial	differences	in	how	resources	are	allocated	can
impact	user-perceived	performance.	As	we	will	see	in	Chapter	9,	an
operating	system	that	allocates	too	little	memory	to	a	program	slows	down
not	only	that	particular	program,	but	often	other	applications	as	well.

To	illustrate	the	difference	between	execution	on	a	physical	machine	versus
on	the	abstract	machine	provided	by	the	operating	system,	what	should
happen	if	an	application	executes	an	infinite	loop?

	while	(true)	{

					;

	}

If	programs	ran	directly	on	raw	hardware,	this	code	fragment	would	lock	up
the	computer,	making	it	completely	non-responsive	to	user	input.	If	the
operating	system	ensures	that	each	program	gets	its	own	slice	of	the
computer’s	resources,	a	specific	application	might	lock	up,	but	other
programs	could	proceed	unimpeded.	Additionally,	the	user	could	ask	the
operating	system	to	force	the	looping	program	to	exit.

Isolation.	An	error	in	one	application	should	not	disrupt	other	applications,
or	even	the	operating	system	itself.	This	is	called	fault	isolation.	Anyone
who	has	taken	an	introductory	computer	science	class	knows	the	value	of
an	operating	system	that	can	protect	itself	and	other	applications	from
programmer	bugs.	Debugging	would	be	vastly	harder	if	an	error	in	one
program	could	corrupt	data	structures	in	other	applications.	Likewise,
downloading	and	installing	a	screen	saver	or	other	application	should	not
crash	unrelated	programs,	provide	a	way	for	a	malicious	attacker	to
surreptitiously	install	a	computer	virus,	or	let	one	user	access	or	change
another’s	data	without	permission.

Fault	isolation	requires	restricting	the	behavior	of	applications	to	less	than
the	full	power	of	the	underlying	hardware.	Otherwise,	any	application
downloaded	off	the	web,	or	any	script	embedded	in	a	web	page,	could
completely	control	the	machine.	Any	application	could	install	spyware	into
the	operating	system	to	log	every	keystroke	you	type,	or	record	the
password	to	every	web	site	you	visit.	Without	fault	isolation	provided	by
the	operating	system,	any	bug	in	any	program	might	irretrievably	corrupt
the	disk.	Error-prone	or	malignant	applications	could	cause	all	sorts	of
havoc.

Communication.	The	flip	side	of	isolation	is	the	need	for	communication
between	different	applications	and	different	users.	For	example,	a	web	site
may	be	implemented	by	a	cooperating	set	of	applications:	one	to	select
advertisements,	another	to	cache	recent	results,	yet	another	to	fetch	and
merge	data	from	disk,	and	several	more	to	cooperatively	scan	the	web	for
new	content	to	index.	For	this	to	work,	the	various	programs	must
communicate	with	one	another.	If	the	operating	system	prevents	bugs	and
malicious	users	and	applications	from	affecting	other	users	and	their
applications,	how	does	it	also	support	communication	to	share	results?	In

setting	up	boundaries,	an	operating	system	must	also	allow	those
boundaries	to	be	crossed	in	carefully	controlled	ways	when	the	need	arises.

In	its	role	as	referee,	an	operating	system	is	somewhat	akin	to	that	of	a
particularly	patient	kindergarten	teacher.	It	balances	needs,	separates	conflicts,
and	facilitates	sharing.	One	user	should	not	be	allowed	to	monopolize	system
resources	or	to	access	or	corrupt	another	user’s	files	without	permission;	a	buggy
application	should	not	be	able	to	crash	the	operating	system	or	other	unrelated
applications;	and	yet,	applications	must	also	work	together.	Enforcing	and
balancing	these	concerns	is	a	central	role	of	the	operating	system.

1.1.2	Masking	Limitations:	Operating	System	as	Illusionist

A	second	important	role	of	an	operating	system	is	to	mask	the	restrictions
inherent	in	computer	hardware.	Physical	constraints	limit	hardware	resources	—
a	computer	has	only	a	limited	number	of	processors	and	a	limited	amount	of
physical	memory,	network	bandwidth,	and	disk.	Further,	since	the	operating
system	must	decide	how	to	divide	its	fixed	resources	among	the	various
applications	running	at	each	moment,	a	particular	application	can	have	differing
amounts	of	resources	from	time	to	time,	even	when	running	on	the	same
hardware.	While	some	applications	are	designed	to	take	advantage	of	a
computer’s	specific	hardware	configuration	and	resource	assignment,	most
programmers	prefer	to	use	a	higher	level	of	abstraction.

Virtualization	provides	an	application	with	the	illusion	of	resources	that	are	not
physically	present.	For	example,	the	operating	system	can	provide	the
abstraction	that	each	application	has	a	dedicated	processor,	even	though	at	a
physical	level	there	may	be	only	a	single	processor	shared	among	all	the
applications	running	on	the	computer.

With	the	right	hardware	and	operating	system	support,	most	physical	resources
can	be	virtualized.	For	example,	hardware	provides	only	a	small,	finite	amount
of	memory,	while	the	operating	system	provides	applications	the	illusion	of	a
nearly	infinite	amount	of	virtual	memory.	Wireless	networks	drop	or	corrupt
packets;	the	operating	system	masks	these	failures	to	provide	the	illusion	of	a
reliable	service.	At	a	physical	level,	magnetic	disk	and	flash	RAM	support	block
reads	and	writes,	where	the	size	of	the	block	depends	on	the	physical	device
characteristics,	addressed	by	a	device-specific	block	number.	Most	programmers
prefer	to	work	with	byte-addressable	files	organized	by	name	into	hierarchical

directories.	Even	the	type	of	processor	can	be	virtualized	to	allow	the	same,
unmodified	application	to	run	on	a	smartphone,	tablet,	and	laptop	computer.

Figure	1.4:	A	guest	operating	system	running	inside	a	virtual	machine.

Pushing	this	one	step	further,	some	operating	systems	virtualize	the	entire
computer,	running	the	operating	system	as	an	application	on	top	of	another
operating	system	(see	Figure	1.4).	This	is	called	creating	a	virtual	machine.	The
operating	system	running	in	the	virtual	machine,	called	the	guest	operating
system,	thinks	it	is	running	on	a	real,	physical	machine,	but	this	is	an	illusion
presented	by	the	true	operating	system	running	underneath.

One	benefit	of	a	virtual	machine	is	application	portability.	If	a	program	runs	only
on	an	old	version	of	an	operating	system,	it	can	still	work	on	a	new	system
running	a	virtual	machine.	The	virtual	machine	hosts	the	application	on	the	old
operating	system,	running	atop	the	new	one.	Virtual	machines	also	aid
debugging.	If	an	operating	system	can	be	run	as	an	application,	then	its
developers	can	set	breakpoints,	stop	the	kernel,	and	single	step	their	code	just	as
they	would	when	debugging	an	application.

Throughout	the	book,	we	discuss	techniques	that	the	operating	system	uses	to
accomplish	these	and	other	illusions.	In	each	case,	the	operating	system	provides
a	more	convenient	and	flexible	programming	abstraction	than	that	provided	by
the	underlying	hardware.

1.1.3	Providing	Common	Services:	Operating	System	as	Glue

Operating	systems	play	a	third	key	role:	providing	a	set	of	common,	standard
services	to	applications	to	simplify	and	standardize	their	design.	An	example	is
the	web	server	described	earlier	in	this	chapter.	The	operating	system	hides	the
specifics	of	how	the	network	and	disk	devices	work,	providing	a	simpler
abstraction	based	on	receiving/sending	reliable	streams	of	bytes	and
reading/writing	named	files.	This	lets	the	web	server	focus	on	its	core	task	—
decoding	incoming	requests	and	filling	them	—	rather	than	on	formatting	data
into	individual	network	packets	and	disk	blocks.

An	important	reason	for	the	operating	system	to	provide	common	services,
rather	than	letting	each	application	provide	its	own,	is	to	facilitate	sharing	among
applications.	The	web	server	must	be	able	to	read	the	file	that	the	text	editor
wrote.	For	applications	to	share	files,	they	must	be	stored	in	a	standard	format,
with	a	standard	system	for	managing	file	directories.	Most	operating	systems
also	provide	a	standard	way	for	applications	to	pass	messages	and	to	share
memory.

The	choice	of	which	services	an	operating	system	should	provide	is	often
judgment	call.	For	example,	computers	can	come	configured	with	a	blizzard	of
different	devices:	different	graphics	co-processors	and	pixel	formats,	different
network	interfaces	(WiFi,	Ethernet,	and	Bluetooth),	different	disk	drives	(SCSI,
IDE),	different	device	interfaces	(USB,	Firewire),	and	different	sensors	(GPS,
accelerometers),	not	to	mention	different	versions	of	each.	Most	applications	can
ignore	these	differences,	by	using	only	a	generic	interface	provided	by	the
operating	system.	For	other	applications,	such	as	a	database,	the	specific	disk
drive	may	matter	quite	a	bit.	For	applications	that	can	operate	at	a	higher	level	of
abstraction,	the	operating	system	serves	as	an	interoperability	layer	so	that	both
applications	and	devices	can	evolve	independently.

Another	standard	service	in	most	modern	operating	systems	is	the	graphical	user
interface	library.	Both	Microsoft’s	and	Apple’s	operating	systems	provide	a	set
of	standard	user	interface	widgets.	This	facilitates	a	common	“look	and	feel”	to
users	so	that	frequent	operations	—	such	as	pull	down	menus	and	“cut”	and

users	so	that	frequent	operations	—	such	as	pull	down	menus	and	“cut”	and
“paste”	commands	—	are	handled	consistently	across	applications.

Most	of	the	code	in	an	operating	system	implements	these	common	services.
However,	much	of	the	complexity	of	operating	systems	is	due	to	resource
sharing	and	the	masking	of	hardware	limits.	Because	common	service	code	uses
the	abstractions	provided	by	the	other	two	operating	system	roles,	this	book	will
focus	primarily	on	the	operating	system	as	a	referee	and	as	an	illusionist.

1.1.4	Operating	System	Design	Patterns

The	challenges	that	operating	systems	address	are	not	unique	—	they	apply	to
many	different	computer	domains.	Many	complex	software	systems	have
multiple	users,	run	programs	written	by	third-party	developers,	and/or	need	to
coordinate	many	simultaneous	activities.	These	pose	questions	of	resource
allocation,	fault	isolation,	communication,	abstractions	of	physical	hardware,
and	how	to	provide	a	useful	set	of	common	services	for	software	developers.	Not
only	are	the	challenges	the	same,	but	often	the	solutions	are,	as	well:	these
systems	use	many	of	the	design	patterns	and	techniques	described	in	this	book.

We	next	describe	some	of	the	systems	with	design	challenges	similar	to	those
found	in	operating	systems:

Figure	1.5:	Cloud	computing	software	provides	a	convenient	abstraction	of	server	resources	to	cloud
applications.

Cloud	computing	(Figure	1.5)	is	a	model	of	computing	where	applications
run	on	shared	computing	and	storage	infrastructure	in	large-scale	data
centers	instead	of	on	the	user’s	own	computers.	Cloud	computing	must
address	many	of	the	same	issues	as	in	operating	systems	in	terms	of
sharing,	abstraction,	and	common	services.

Referee.	How	are	resources	allocated	between	competing	applications
running	in	the	cloud?	How	are	buggy	or	malicious	applications
prevented	from	disrupting	other	applications?

Illusionist.	The	computing	resources	in	the	cloud	are	continually
evolving;	what	abstractions	are	provided	to	isolate	application
developers	from	changes	in	the	underlying	hardware?

Glue.	Cloud	services	often	distribute	their	work	across	different
machines.	What	abstractions	should	cloud	software	provide	to	help
services	coordinate	and	share	data	between	their	various	activities?

Figure	1.6:	A	web	browser	isolates	scripts	and	plug-ins	from	accessing	privileged	resources	on	the
host	operating	system.

Web	browsers	(Figure	1.6),	such	as	Chrome,	Internet	Explorer,	Firefox,
and	Safari,	play	a	role	similar	to	an	operating	system.	Browsers	load	and
display	web	pages,	but,	as	we	mentioned	earlier,	many	pages	embed
scripting	programs	that	the	browser	must	execute.	These	scripts	can	be
buggy	or	malicious;	hackers	have	used	them	to	take	over	vast	numbers	of
home	computers.	Like	an	operating	system,	the	browser	must	isolate	the
user,	other	web	sites,	and	even	the	browser	itself	from	errors	or	malicious
activity	by	these	scripts.	Similarly,	most	browsers	have	a	plug-in
architecture	for	supporting	extensions,	and	these	extensions	must	also	be
isolated	to	prevent	them	from	causing	harm.

Referee.	How	can	a	browser	ensure	responsiveness	when	a	user	has
multiple	tabs	open	with	each	tab	running	a	script	from	a	different	web
site?	How	can	we	limit	web	scripts	and	plug-ins	to	prevent	bugs	from
crashing	the	browser	and	malicious	scripts	from	accessing	sensitive
user	data?

Illusionist.	Many	web	services	are	geographically	distributed	to
improve	the	user	experience.	Not	only	does	this	put	servers	closer	to
users,	but	if	one	server	crashes	or	its	network	connection	has
problems,	a	browser	can	connect	to	a	different	site.	The	user	in	most
cases	does	not	notice	the	difference,	even	when	updating	a	shopping
cart	or	web	form.	How	does	the	browser	make	server	changes
transparent	to	the	user?

Glue.	How	does	the	browser	achieve	a	portable	execution	environment
for	scripts	that	works	consistently	across	operating	systems	and
hardware	platforms?

Media	players,	such	as	Flash	and	Silverlight,	are	often	packaged	as
browser	plug-ins,	but	they	themselves	provide	an	execution	environment
for	scripting	programs.	Thus,	these	systems	face	many	of	the	same	issues	as
both	browsers	and	operating	systems	on	which	they	run:	isolation	of	buggy
or	malicious	code,	concurrent	background	and	foreground	tasks,	and	plug-
in	architectures.

Referee.	Media	players	are	often	in	the	news	for	being	vulnerable	to
some	new,	malicious	attack.	How	should	media	players	sandbox
malicious	or	buggy	scripts	to	prevent	them	from	corrupting	the	host
machine?

Illusionist.	Media	applications	are	often	both	computationally
intensive	and	highly	interactive.	How	do	they	coordinate	foreground
and	background	activities	to	maintain	responsiveness?

Glue.	High-performance	graphics	hardware	rapidly	evolves	in
response	to	the	demands	of	the	video	game	market.	How	do	media
players	provide	a	set	of	standard	API’s	for	scripts	to	work	across	a
diversity	of	graphics	accelerators?

Multiplayer	games	often	have	extensibility	API’s	to	allow	third	party
software	vendors	to	extend	the	game	in	significant	ways.	Often	these
extensions	are	miniature	games	in	their	own	right,	yet	game	extensions
must	also	be	prevented	from	breaking	the	overall	rules	of	the	game.

Referee.	Many	games	try	to	offload	work	to	client	machines	to	reduce
server	load	and	improve	responsiveness,	but	this	opens	up	games	to

the	threat	of	users	installing	specialized	extensions	to	gain	an	unfair
advantage.	How	do	game	designers	set	limits	for	extensions	and	game
players	to	ensure	a	level	playing	field?

Illusionist.	If	objects	in	the	game	are	spread	across	client	and	server
machines,	is	that	distinction	visible	to	extension	code	or	is	the
interface	at	a	higher	level?

Glue.	Most	successful	games	have	a	large	number	of	extensions;	how
should	a	game	designer	set	up	their	API’s	to	make	it	easier	to	foster	a
community	of	developers?

Figure	1.7:	Databases	perform	many	of	the	tasks	of	an	operating	system:	they	allocate	resources
among	user	queries	to	ensure	responsiveness,	they	mask	differences	in	the	underlying	operating
system	and	hardware,	and	they	provide	a	convenient	programming	abstraction	to	developers.

Multi-user	database	systems	(Figure		1.7),	such	as	Oracle	and	Microsoft’s
SQL	Server,	allow	large	organizations	to	store,	query,	and	update	large	data
sets,	such	as	detailed	records	of	every	purchase	ever	made	at	Amazon	or
Walmart.	Large	scale	data	analysis	greatly	optimizes	business	operations,

but,	as	a	consequence,	databases	face	many	of	the	same	challenges	as
operating	systems.	They	are	simultaneously	accessed	by	many	different
users	in	many	different	locations.	They	therefore	must	allocate	resources
among	different	user	requests,	isolate	concurrent	updates	to	shared	data,
and	ensure	that	data	is	stored	consistently	on	disk.	In	fact,	several	of	the
techniques	we	discuss	in	Chapter	14	were	originally	developed	for	database
systems.

Referee.	How	should	resources	be	allocated	among	the	various	users
of	a	database?	How	does	the	database	enforce	data	privacy	so	that	only
authorized	users	access	relevant	data?

Illusionist.	How	does	the	database	mask	machine	failures	so	that	data
is	always	stored	consistently	regardless	of	when	the	failure	occurs?

Glue.	What	common	services	make	it	easier	to	develop	database
applications?

Parallel	applications	are	programs	designed	to	take	advantage	of	multiple
processors	on	a	single	computer.	Each	application	divides	its	work	onto	a
fixed	number	of	processors	and	must	ensure	that	accesses	to	shared	data
structures	are	coordinated	to	preserve	consistency.	While	some	parallel
programs	directly	use	the	services	provided	by	the	underlying	operating
system,	others	need	careful	control	of	the	assignment	of	work	to	processors
to	achieve	good	performance.	These	systems	interpose	a	runtime	system	on
top	of	the	operating	system	to	manage	user-level	parallelism,	essentially
building	a	mini-operating	system	on	top	of	the	underlying	one.

Referee.	When	there	are	more	tasks	to	perform	than	processors,	how
does	the	runtime	system	decide	which	tasks	to	perform	first?

Illusionist.	How	does	the	runtime	system	hide	physical	details	of	the
hardware	from	the	programmer,	such	as	the	number	of	processors	or
the	interprocessor	communication	latency?

Glue.	Highly	concurrent	data	structures	can	make	it	easier	to	write
efficient	parallel	programs;	how	do	we	program	trees,	hash	tables,	and
lists	so	that	they	can	be	used	by	multiple	processors	at	the	same	time?

The	Internet	is	used	everyday	by	a	huge	number	of	people,	but	at	the

physical	layer,	those	users	share	the	same	underlying	resources.	How
should	the	Internet	handle	resource	contention?	Because	of	its	diverse	user
base,	the	Internet	is	rife	with	malicious	behavior,	such	as	denial-of-service
attacks	that	flood	traffic	on	certain	links	to	prevent	legitimate	users	from
communicating.	Various	attempts	are	underway	to	design	solutions	that	will
let	the	Internet	continue	to	function	despite	such	attacks.

Referee.	Should	the	Internet	treat	all	users	identically	(e.g.,	network
neutrality)	or	should	ISPs	be	able	to	favor	some	uses	over	others?	Can
the	Internet	be	re-designed	to	prevent	denial-of-service,	spam,
phishing,	and	other	malicious	behaviors?

Illusionist.	The	Internet	provides	the	illusion	of	a	single	worldwide
network	that	can	deliver	a	packet	from	any	machine	on	the	Internet	to
any	other	machine.	However,	network	hardware	is	composed	of	many
discrete	network	elements	with:	(i)	the	ability	to	transmit	limited	size
packets	over	a	limited	distance,	and	(ii)	some	chance	that	packets	will
be	garbled	in	the	process.	The	Internet	transforms	the	network	into
something	more	useful	for	applications	like	the	web	—	a	facility	to
reliably	transmit	data	of	arbitrary	length,	anywhere	in	the	world.

Glue.	The	Internet	protocol	suite	was	explicitly	designed	to	act	as	an
interoperability	layer	that	lets	network	applications	evolve
independently	of	changes	in	network	hardware,	and	vice	versa.	Does
the	success	of	the	Internet	hold	any	lessons	for	operating	system
design?

Many	of	these	systems	use	the	same	techniques	and	design	patterns	as	operating
systems.	Studying	operating	systems	is	a	great	way	to	understand	how	these
others	systems	work.	In	a	few	cases,	different	mechanisms	are	used	to	achieve
the	same	goals,	but,	even	here,	the	boundaries	are	fuzzy.	For	example,	browsers
often	use	compile-time	checks	to	prevent	scripts	from	gaining	control	over	them,
while	most	operating	systems	use	hardware-based	protection	to	limit	application
programs	from	taking	over	the	machine.	More	recently,	however,	some
smartphone	operating	systems	have	begun	to	use	the	same	compile-time
techniques	as	browsers	to	protect	against	malicious	mobile	applications.	In	turn,
some	browsers	have	begun	to	use	operating	system	hardware-based	protection	to
improve	the	isolation	they	provide.

To	avoid	spreading	our	discussion	too	thinly,	this	book	focuses	on	how
operating	systems	work.	Just	as	it	is	easier	to	learn	a	second	computer
programming	language	after	you	become	fluent	in	the	first,	it	is	better	to	see	how
operating	systems	principles	apply	in	one	context	before	learning	how	they	can
be	applied	in	other	settings.	We	hope	and	expect,	however,	that	you	will	be	able
to	apply	the	concepts	in	this	book	more	widely	than	just	operating	system
design.

1.2	Operating	System	Evaluation

Having	defined	what	an	operating	system	does,	how	should	we	choose	among
alternative	designs?	We	discuss	several	desirable	criteria	for	operating	systems:

Reliability	and	Availability.	Does	the	operating	system	do	what	you	want?

Security.	Can	the	operating	system	be	corrupted	by	an	attacker?

Portability.	Is	the	operating	system	easy	to	move	to	new	hardware
platforms?

Performance.	Is	the	user	interface	responsive,	or	does	the	operating	system
impose	too	much	overhead?

Adoption.	How	many	other	users	are	there	for	this	operating	system?

In	many	cases,	tradeoffs	between	these	criteria	are	inevitable	—	improving	a
system	along	one	dimension	may	hurt	it	along	another.	We	conclude	this	section
with	some	concrete	examples	of	design	tradeoffs.

1.2.1	Reliability	and	Availability

Perhaps	the	most	important	characteristic	of	an	operating	system	is	its	reliability.
Reliability	means	that	a	system	does	exactly	what	it	is	designed	to	do.	As	the
lowest	level	of	software	running	on	the	system,	operating	system	errors	can	have
devastating	and	hidden	effects.	If	the	operating	system	breaks,	you	may	not	be
able	to	get	work	done,	and	in	some	cases,	you	may	even	lose	previous	work,
e.g.,	if	the	failure	corrupts	files	on	disk.	By	contrast,	application	failures	can	be
much	more	benign,	precisely	because	operating	systems	provide	fault	isolation
and	a	rapid	and	clean	restart	after	an	error.

Making	an	operating	system	reliable	is	challenging.	Operating	systems	often
operate	in	a	hostile	environment,	one	where	computer	viruses	and	other
malicious	code	try	to	take	control	of	the	system	by	exploiting	design	or
implementation	errors	in	the	operating	system’s	defenses.

Unfortunately,	the	most	common	ways	to	improve	software	reliability,	such	as
running	test	cases	for	common	code	paths,	are	less	effective	when	applied	to
operating	systems.	Since	malicious	attacks	can	target	a	specific	vulnerability
precisely	to	cause	execution	to	follow	a	rare	code	path,	everything	must	work
correctly	for	the	operating	system	to	be	reliable.	Even	without	intentionally
malicious	attacks,	extremely	rare	corner	cases	can	occur	regularly:	for	an
operating	system	with	a	million	users,	a	once	in	a	billion	event	will	eventually
occur	to	someone.

A	related	concept	is	availability,	the	percentage	of	time	that	the	system	is	usable.
A	buggy	operating	system	that	crashes	frequently,	losing	the	user’s	work,	is	both
unreliable	and	unavailable.	A	buggy	operating	system	that	crashes	frequently	but
never	loses	the	user’s	work	and	cannot	be	subverted	by	a	malicious	attack	is
reliable	but	unavailable.	An	operating	system	that	has	been	subverted	but
continues	to	appear	to	run	normally	while	logging	the	user’s	keystrokes	is
unreliable	but	available.

Thus,	both	reliability	and	availability	are	desirable.	Availability	is	affected	by
two	factors:	the	frequency	of	failures,	measured	as	the	mean	time	to	failure
(MTTF),	and	the	time	it	takes	to	restore	a	system	to	a	working	state	after	a
failure	(for	example,	to	reboot),	called	the	mean	time	to	repair	(MTTR).
Availability	can	be	improved	by	increasing	the	MTTF	or	reducing	the	MTTR.

Throughout	this	book,	we	will	present	various	approaches	to	improving
operating	system	reliability	and	availability.	In	many	cases,	the	abstractions	may
seem	at	first	glance	overly	rigid	and	formulaic.	It	is	important	to	realize	this	is
done	on	purpose!	Only	precise	abstractions	provide	a	basis	for	constructing
reliable	and	available	systems.

1.2.2	Security

Two	concepts	closely	related	to	reliability	are	security	and	privacy.	Security
means	the	computer’s	operation	cannot	be	compromised	by	a	malicious	attacker.
Privacy	is	an	aspect	of	security:	data	stored	on	the	computer	is	only	accessible	to

authorized	users.

Alas,	no	useful	computer	is	perfectly	secure!	Any	complex	piece	of	software	has
bugs,	and	seemingly	innocuous	bugs	can	be	exploited	by	an	attacker	to	gain
control	of	the	system.	Or	the	computer	hardware	might	be	tampered	with,	to
provide	access	to	the	attacker.	Or	the	computer’s	administrator	might	be
untrustworthy,	using	his	or	her	credentials	to	steal	user	data.	Or	an	OS	software
developer	might	be	untrustworthy,	inserting	a	backdoor	for	the	attacker	to	gain
access	to	the	system.

Nevertheless,	an	operating	system	can	be,	and	should	be,	designed	to	minimize
its	vulnerability	to	attack.	For	example,	strong	fault	isolation	can	prevent	third
party	applications	from	taking	over	the	system.	Downloading	and	installing	a
screen	saver	or	other	application	should	not	provide	a	way	for	an	attacker	to
surreptitiously	install	a	computer	virus	on	the	system.	A	computer	program	that
modifies	an	operating	system	or	application	to	copy	itself	from	computer	to
computer	without	the	computer	owner’s	permission	or	knowledge.	Once
installed	on	a	computer,	a	virus	often	provides	the	attacker	control	over	the
system’s	resources	or	data.	An	example	computer	virus	is	a	keylogger:	a
program	that	modifies	the	operating	system	to	record	every	keystroke	entered	by
the	user	and	send	them	back	to	the	attacker’s	machine.	In	this	way,	the	attacker
could	gain	access	to	the	user’s	passwords,	bank	account	numbers,	and	other
private	information.	Likewise,	a	malicious	screen	saver	might	surreptitiously
scan	the	disk	for	files	containing	personal	information	or	turn	the	system	into	an
email	spam	server.

Even	with	strong	fault	isolation,	a	system	can	be	insecure	if	its	applications	are
not	designed	for	security.	For	example,	the	Internet	email	standard	provides	no
strong	assurance	of	the	sender’s	identity;	it	is	possible	to	form	an	email	message
with	anyone’s	email	address	in	the	“from”	field,	not	necessarily	the	actual
sender’s.	Thus,	an	email	message	can	appear	to	be	from	someone	(perhaps
someone	you	trust),	when	in	reality	it	is	from	the	attacker	and	contains,	as	an
attachment,	a	malicious	virus	that	takes	over	the	computer	when	the	attachment
is	opened.	By	now,	you	are	hopefully	suspicious	of	clicking	on	any	email
attachment.	Stepping	back,	the	issue	could	be	seen	as	a	limitation	of	the
interaction	between	the	email	system	and	the	operating	system.	If	the	operating
system	provided	a	cheap	and	easy	way	to	process	an	attachment	in	an	isolated
execution	environment	with	limited	capabilities,	then	even	attachments
containing	viruses	would	do	no	harm.

Complicating	matters	is	that	the	operating	system	must	not	only	prevent
unwanted	access	to	shared	data,	it	must	also	allow	access	in	many	cases.	Users
and	programs	must	be	able	to	interact	with	each	other,	so	that	it	is	possible	to	cut
and	paste	text	between	different	applications,	and	to	share	data	written	to	disk	or
over	the	network.	If	each	program	were	completely	standalone	and	never	needed
to	interact	with	any	other	program,	then	fault	isolation	by	itself	would	be
sufficient.	However,	we	not	only	want	to	isolate	programs	from	one	another,	but
to	easily	share	data	between	programs	and	between	users.

Thus,	an	operating	system	needs	both	an	enforcement	mechanism	and	a	security
policy.	Enforcement	is	how	the	operating	system	ensures	that	only	permitted
actions	are	allowed.	The	security	policy	defines	what	is	permitted	—	who	is
allowed	to	access	what	data,	and	who	can	perform	what	operations.

Malicious	attackers	can	target	vulnerabilities	in	either	enforcement	mechanisms
or	security	policies.	An	error	in	enforcement	can	allow	an	attacker	to	evade	the
policy;	an	error	in	the	policy	can	allow	the	attacker	access	when	it	should	have
been	prohibited.

1.2.3	Portability

All	operating	systems	provide	applications	with	an	abstraction	of	the	underlying
computer	hardware;	a	portable	abstraction	is	one	that	does	not	change	as	the
hardware	changes.	A	program	written	for	Microsoft’s	Windows	8	should	run
correctly	regardless	of	whether	a	specific	graphics	card	is	being	used,	whether
persistent	storage	is	provided	via	flash	memory	or	rotating	magnetic	disk,	or
whether	the	network	is	Bluetooth,	WiFi,	or	gigabit	Ethernet.

Portability	also	applies	to	the	operating	system	itself.	As	we	have	noted,
operating	systems	are	among	the	most	complex	software	systems	ever	invented,
making	it	impractical	to	rewrite	them	from	scratch	every	time	new	hardware	is
produced	or	a	new	application	is	developed.	Instead,	new	operating	systems	are
often	derived,	at	least	in	part,	from	old	ones.	As	one	example,	iOS,	the	operating
system	for	the	iPhone	and	iPad,	was	derived	from	the	MacOS	X	code	base.

As	a	result,	most	successful	operating	systems	have	a	lifetime	measured	in
decades.	Microsoft	Windows	8	originally	began	with	the	development	of
Windows	NT	starting	in	1988.	At	that	time,	the	typical	computer	was	10000
times	less	powerful,	and	with	10000	times	less	memory	and	disk	storage,	than	is
the	case	today.	Operating	systems	that	last	decades	are	no	anomaly.	Microsoft’s

the	case	today.	Operating	systems	that	last	decades	are	no	anomaly.	Microsoft’s
prior	operating	system,	MS/DOS,	was	introduced	in	1981.	It	later	evolved	into
the	early	versions	of	Microsoft	Windows	before	finally	being	phased	out	around
2000.

This	means	that	operating	systems	must	be	designed	to	support	applications	that
have	not	yet	been	written	and	to	run	on	hardware	that	has	not	yet	been
developed.	Likewise,	developers	do	not	want	to	rewrite	applications	when	the
operating	system	is	ported	from	machine	to	machine.	Sometimes,	the	importance
of	“future-proofing”	an	operating	system	is	discovered	only	in	retrospect.
Microsoft’s	first	operating	system,	MS/DOS,	was	designed	in	1981	assuming
that	personal	computers	would	never	have	more	than	640	KB	of	memory.	This
limitation	was	acceptable	at	the	time,	but	today,	even	cellphones	have	orders	of
magnitude	more	memory	than	that.

How	might	we	design	an	operating	system	to	achieve	portability?	As	we
illustrated	earlier	in	Figure	1.3,	it	helps	to	have	a	simple,	standard	way	for
applications	to	interact	with	the	operating	system,	the	abstract	virtual	machine
(AVM).	This	is	the	interface	provided	by	operating	systems	to	applications,
including:	(i)	the	application	programming	interface	(API),	the	list	of	function
calls	the	operating	system	provides	to	applications,	(ii)	the	memory	access
model,	and	(iii)	which	instructions	can	be	legally	executed.	For	example,	an
instruction	to	change	whether	the	hardware	is	executing	trusted	operating	system
code,	or	untrusted	application	code,	must	be	available	to	the	operating	system
but	not	to	applications.

A	well-designed	operating	system	AVM	provides	a	fixed	point	across	which
both	application	code	and	hardware	can	evolve	independently.	This	is	similar	to
the	role	of	the	Internet	Protocol	(IP)	standard	in	networking.	Distributed
applications	such	as	email	and	the	web,	written	using	IP,	are	insulated	from
changes	in	the	underlying	network	technology	(Ethernet,	WiFi,	optical).	Equally
important	is	that	changes	in	applications,	from	email	to	instant	messaging	to	file
sharing,	do	not	require	simultaneous	changes	in	the	underlying	hardware.

This	notion	of	a	portable	hardware	abstraction	is	so	powerful	that	operating
systems	use	the	same	idea	internally:	the	operating	system	itself	can	largely	be
implemented	independently	of	the	hardware	specifics.	The	interface	that	makes
this	possible	is	called	the	hardware	abstraction	layer	(HAL).	It	might	seem	that
the	operating	system	AVM	and	the	operating	system	HAL	should	be	identical,

or	nearly	so	—	after	all,	both	are	portable	layers	designed	to	hide	hardware
details.	The	AVM	must	do	more,	however.	As	we	noted,	applications	execute	in
a	restricted,	virtualized	context	and	with	access	to	high-level	common	services,
while	the	operating	system	itself	uses	a	procedural	abstraction	much	closer	to	the
actual	hardware.

Today,	Linux	is	an	example	of	a	highly	portable	operating	system.	It	has	been
used	as	the	operating	system	for	web	servers,	personal	computers,	tablets,
netbooks,	e-book	readers,	smartphones,	set	top	boxes,	routers,	WiFi	access
points,	and	game	consoles.	Linux	is	based	on	an	operating	system	called	UNIX,
which	was	originally	developed	in	the	early	1970’s.	UNIX	was	written	by	a
small	team	of	developers.	It	was	designed	to	be	compact,	simple	to	program,	and
highly	portable,	but	at	some	cost	in	performance.	Over	the	years,	UNIX’s	and
Linux’s	portability	and	convenient	programming	abstractions	have	been	keys	to
their	success.

1.2.4	Performance

While	the	portability	of	an	operating	system	becomes	apparent	over	time,	the
performance	of	an	operating	system	is	often	immediately	visible	to	its	users.
Although	we	often	associate	performance	with	each	individual	application,	the
operating	system’s	design	can	greatly	affect	the	application’s	perceived
performance.	The	operating	system	decides	when	an	application	can	run,	how
much	memory	it	can	use,	and	whether	its	files	are	cached	in	memory	or	clustered
efficiently	on	disk.	The	operating	system	also	mediates	application	access	to
memory,	the	network,	and	the	disk.	It	must	avoid	slowing	down	the	critical	path
while	still	providing	needed	fault	isolation	and	resource	sharing	between
applications.

Performance	is	not	a	single	quantity.	Rather,	it	can	be	measured	in	several
different	ways.	One	performance	metric	is	the	overhead,	the	added	resource	cost
of	implementing	an	abstraction	presented	to	applications.	A	related	concept	is
efficiency,	the	lack	of	overhead	in	an	abstraction.	One	way	to	measure	overhead
(or	inversely,	efficiency)	is	the	degree	to	which	the	abstraction	impedes
application	performance.	Suppose	you	could	run	the	application	directly	on	the
underlying	hardware	without	the	overhead	of	the	operating	system	abstraction;
how	much	would	that	improve	the	application’s	performance?

Operating	systems	also	need	to	allocate	resources	among	applications,	and	this

can	affect	the	performance	of	the	system	as	perceived	by	the	end	user.	One	issue
is	fairness	between	different	users	or	applications	running	on	the	same	machine.
Should	resources	be	divided	equally	between	different	users	or	applications,	or
should	some	get	preferential	treatment?	If	so,	how	does	the	operating	system
decide	what	tasks	get	priority?

Two	related	concepts	are	response	time	and	throughput.	Response	time,
sometimes	called	delay,	is	how	long	it	takes	for	a	single	task	to	run,	from	the
time	it	starts	to	the	time	it	completes.	For	example,	a	highly	visible	response
time	for	desktop	computers	is	the	time	from	when	the	user	moves	the	hardware
mouse	until	the	pointer	on	the	screen	reflects	the	user’s	action.	An	operating
system	that	provides	poor	response	time	can	be	unusable.	Throughput	is	the	rate
at	which	the	system	completes	tasks.	Throughput	is	a	measure	of	efficiency	for	a
group	of	tasks	rather	than	a	single	one.	While	it	might	seem	that	designs	that
improve	response	time	would	also	necessarily	improve	throughput,	this	is	not	the
case,	as	we	discuss	in	Chapter	7.

A	related	consideration	is	performance	predictability:	whether	the	system’s
response	time	or	other	metric	is	consistent	over	time.	Predictability	can	often	be
more	important	than	average	performance.	If	a	user	operation	sometimes	takes
an	instant	but	sometimes	much	longer,	the	user	may	find	it	difficult	to	adapt.
Consider,	for	example,	two	systems.	In	one,	each	keystroke	is	usually
instantaneous,	but	1%	of	the	time,	it	takes	10	seconds	to	take	effect.	In	the	other
system,	a	keystroke	always	takes	exactly	0.1	seconds	to	appear	on	the	screen.
Average	response	time	is	the	same	in	both	systems,	but	the	second	is	more
predictable.	Which	do	you	think	would	be	more	user-friendly?

EXAMPLE:	To	illustrate	the	concepts	of	efficiency,	overhead,	fairness,
response	time,	throughput,	and	predictability,	consider	a	car	driving	to	its
destination.	If	no	other	cars	or	pedestrians	were	ever	on	the	road,	the	car	could
go	quite	quickly,	never	needing	to	slow	down	for	stoplights.	Stop	signs	and
stoplights	enable	multiple	cars	to	share	the	road,	at	some	cost	in	overhead	and
response	time	for	each	individual	driver.	As	the	system	becomes	more
congested,	predictability	suffers.	Throughput	of	the	system	improves	with
carpooling.	With	dedicated	carpool	lanes,	carpooling	can	even	reduce	delay
despite	carpoolers	needing	to	coordinate	their	pickups.	Scrapping	the	car	and
building	mass	transit	can	improve	predictability,	throughput,	and	fairness.

1.2.5	Adoption

In	addition	to	reliability,	portability	and	performance,	the	success	of	an	operating
system	depends	on	two	factors	outside	its	immediate	control:	the	wide
availability	of	applications	ported	to	that	operating	system,	and	the	wide
availability	of	hardware	that	the	operating	system	can	support.	An	iPhone	runs
iOS,	but	without	the	pre-installed	applications	and	the	contents	of	the	App	Store,
the	iPhone	would	be	just	another	cellphone.

The	network	effect	occurs	when	the	value	of	some	technology	depends	not	only
on	its	intrinsic	capabilities,	but	also	on	the	number	of	other	people	who	have
adopted	it.	Application	and	hardware	designers	spend	their	efforts	on	those
operating	system	platforms	with	the	most	users,	while	users	favor	those
operating	systems	with	the	best	applications	or	the	cheapest	hardware.	If	this
sounds	circular,	it	is!	More	users	imply	more	applications	and	cheaper	hardware;
more	applications	and	cheaper	hardware	imply	more	users,	in	a	virtuous	cycle.

Consider	how	you	might	design	an	operating	system	to	take	advantage	of	the
network	effect,	or	at	least	to	avoid	being	crushed	by	it.	An	obvious	step	would
be	to	design	the	system	to	make	it	easy	to	accommodate	new	hardware	and	for
applications	to	be	ported	across	different	versions	of	the	same	operating	system.

A	more	subtle	issue	is	the	choice	of	whether	the	operating	system	programming
interface	(API),	or	the	operating	system	source	code	itself,	is	open	or
proprietary.	A	proprietary	system	is	one	under	the	control	of	a	single	company;
it	can	be	changed	at	any	time	by	its	provider	to	meet	the	needs	of	its	customers.
An	open	system	is	one	where	the	system’s	source	code	is	public,	giving	anyone
the	ability	to	inspect	and	change	the	code.	Often,	an	open	system	has	an	API	that
can	be	changed	only	with	the	agreement	of	a	public	standards	body.	Adherence
to	standards	provides	assurance	to	application	developers	that	the	API	will	not
be	changed	except	by	general	agreement;	on	the	other	hand,	standards	bodies
can	make	it	difficult	to	quickly	add	new,	desired	features.

Neither	open	nor	proprietary	systems	are	intrinsically	better	for	adoption.
Windows	8	and	MacOS	are	proprietary	operating	systems;	Linux	is	an	open
operating	system.	All	three	are	widely	used.	Open	systems	are	easier	to	adapt	to
a	wide	variety	of	hardware	platforms,	but	they	risk	devolving	into	multiple
versions,	impairing	the	network	effect.	Purveyors	of	proprietary	operating
systems	argue	that	their	systems	are	more	reliable	and	better	adapted	to	the
needs	of	their	customers.	Interoperability	problems	can	be	reduced	if	the	same
company	controls	both	the	hardware	and	the	software,	but	limiting	an	operating
system	to	one	hardware	platform	impairs	the	network	effect	and	risks	alienating

system	to	one	hardware	platform	impairs	the	network	effect	and	risks	alienating
consumers.

Making	it	easy	to	port	applications	from	existing	systems	to	a	new	operating
system	can	help	a	new	system	become	established;	conversely,	designing	an
operating	system	API	that	makes	it	difficult	to	port	applications	away	from	the
operating	system	can	help	prevent	competition	from	becoming	established.
Thus,	there	are	often	commercial	pressures	for	operating	system	interfaces	to
become	idiosyncratic.	Throughout	this	book,	we	discuss	operating	systems
issues	at	a	conceptual	level,	but	remember	that	the	details	may	vary	considerably
for	any	specific	operating	system	due	to	important,	but	sometimes	chaotic,
commercial	interests.

1.2.6	Design	Tradeoffs

Most	practical	operating	system	designs	strike	a	balance	between	the	goals	of
reliability,	security,	portability,	performance,	and	adoption.	Design	choices	that
improve	portability	—	for	example,	preserving	legacy	interfaces	—	often	make
the	system	as	a	whole	less	reliable	and	less	secure.	Similarly,	it	is	often	possible
to	increase	system	performance	by	breaking	an	abstraction.	However,	such
performance	optimizations	may	add	complexity	and	therefore	potentially	hurt
reliability.	The	operating	system	designer	must	carefully	weigh	these	competing
goals.

EXAMPLE:	To	illustrate	the	tradeoff	between	performance	and	complexity,
consider	the	following	true	story.	A	research	operating	system	developed	in	the
late	1980’s	used	a	type-safe	language	to	reduce	the	incidence	of	programmer
errors.	For	speed,	the	most	frequently	used	routines	at	the	core	of	the	operating
system	were	implemented	in	assembly	code.	In	one	of	these	routines,	the
implementation	team	decided	to	use	a	sequence	of	instructions	that	shaved	a
single	instruction	off	a	very	frequently	used	code	path,	but	that	would	sometimes
break	if	the	operating	system	exceeded	a	particular	size.	At	the	time,	the
operating	system	was	nowhere	near	this	limit.	After	a	few	years	of	production
use,	however,	the	system	started	mysteriously	crashing,	apparently	at	random,
and	only	after	many	days	of	execution.	Many	weeks	of	painstaking	investigation
revealed	the	problem:	the	operating	system	had	grown	beyond	the	limit	assumed
in	the	assembly	code	implementation.	The	fix	was	easy,	once	the	problem	was
found,	but	the	question	is:	do	you	think	the	original	optimization	was	worth	the
risk?

1.3	Operating	Systems:	Past,	Present,	and	Future

We	conclude	this	chapter	by	discussing	the	origins	of	operating	systems,	in	order
to	illustrate	where	these	systems	are	heading	in	the	future.	As	the	lowest	layer	of
software	running	on	top	of	computer	hardware,	operating	systems	date	back	to
the	first	computers,	evolving	nearly	as	rapidly	as	computer	hardware.

1.3.1	Impact	of	Technology	Trends

	 1981 1997 2014 Factor	(2014	/
1981)

Single	processor	speed
(MIPS) 1 200 2500 2.5	K

CPUs	per	computer 1 1 10+ 10+
Processor	$	/	MIP $100K $25 $0.20 500	K
DRAM	capacity
(MiB)	/	$ 0.002 2 1K 500	K

Disk	capacity	(GiB)	/
$ 0.003 7 25K 10	M

Home	Internet 300	bps 256	Kbps 20	Mbps 100	K
Machine	room
network

10	Mbps
shared

100	Mbps
switched

10	Gbps
switched 1000+

Ratio	of	users	to
computers 100:1 1:1 1:several 100+

	

Figure	1.8:	Approximate	computer	server	performance	over	time,	reflecting
widely	used	servers	of	each	era:	in	1981,	a	minicomputer;	in	1997,	a	high-end
workstation;	in	2014,	a	rack-mounted	multicore	server.	MIPS	stands	for
“millions	of	instructions	per	second,”	a	rough	measure	of	processor
performance.	The	VAX	11/782	was	introduced	in	1982;	it	achieved	1	MIP.
DRAM	prices	are	from	Hennessey	and	Patterson,	Computer	Architecture:	A
Quantitative	Approach.	Disk	drive	prices	are	from	John	McCallum.	The	Hayes
smartmodem,	introduced	in	1981,	ran	at	300	bps.	The	10	Mbps	shared	Ethernet
standard	was	also	introduced	in	1981.	One	of	the	authors	built	his	first	operating

system	in	1982,	used	a	VAX	at	his	first	job,	and	owned	a	Hayes	to	work	from
home.

The	most	striking	aspect	of	the	last	fifty	years	in	computing	technology	has	been
the	cumulative	effect	of	Moore’s	Law	and	the	comparable	advances	in	related
technologies,	such	as	memory	and	disk	storage.	Moore’s	Law	states	that
transistor	density	increases	exponentially	over	time;	similar	exponential
improvements	have	occurred	in	many	other	component	technologies.	Figure	1.8
provides	an	overview	of	the	past	three	decades	of	technology	improvements	in
computer	hardware.	The	cost	of	processing	and	memory	has	decreased	by	almost
six	orders	of	magnitude	over	this	period;	the	cost	of	disk	capacity	has	decreased
by	seven	orders	of	magnitude.	Not	all	technologies	have	improved	at	the	same
rate;	disk	latency	(not	shown	in	the	table)	has	improved,	but	at	a	much	slower
rate	than	disk	capacity.	These	relative	changes	have	radically	altered	both	the
use	of	computers	and	the	tradeoffs	faced	by	operating	system	designers.

It	is	hard	to	imagine	how	things	used	to	be.	Today,	you	probably	carry	a
smartphone	in	your	pocket,	with	an	incredibly	powerful	computer	inside.
Thousands	of	server	computers	wait	patiently	for	you	to	type	in	a	search	query;
when	the	query	arrives,	they	can	synthesize	a	response	in	a	fraction	of	a	second.
In	the	early	years	of	computing,	however,	the	computers	were	more	expensive
than	the	salaries	of	the	people	who	used	them.	Users	would	queue	up,	often	for
days,	for	their	turn	to	run	a	program.	A	similar	progression	from	expensive	to
cheap	devices	occurred	with	telephones	over	the	past	hundred	years.	Initially,
telephone	lines	were	very	expensive,	with	a	single	shared	line	among	everyone
in	a	neighborhood.	Over	time,	of	course,	both	computers	and	telephones	have
become	cheap	enough	to	sit	idle	until	we	need	them.

Despite	these	changes,	operating	systems	still	face	the	same	conceptual
challenges	as	they	did	fifty	years	ago.	To	manage	computer	resources	for
applications	and	users,	they	must	allocate	resources	among	applications,	provide
fault	isolation	and	communication	services,	abstract	hardware	limitations,	and	so
forth.	We	have	made	tremendous	progress	towards	improving	the	reliability,
security,	efficiency,	and	portability	of	operating	systems,	but	much	more	is
needed.	Although	we	do	not	know	precisely	how	computing	technology	or
application	demand	will	evolve	over	the	next	10-20	years,	it	is	highly	likely	that
these	fundamental	operating	system	challenges	will	persist.

1.3.2	Early	Operating	Systems

The	first	operating	systems	were	runtime	libraries	intended	to	simplify	the
programming	of	early	computer	systems.	Rather	than	the	tiny,	inexpensive	yet
massively	complex	hardware	and	software	systems	of	today,	the	first	computers
often	took	up	an	entire	floor	of	a	warehouse,	cost	millions	of	dollars,	and	yet
were	capable	of	being	used	only	by	a	single	person	at	a	time.	The	user	would
first	reset	the	computer,	load	the	program	by	toggling	it	into	the	system	one	bit	at
a	time,	and	hit	go,	producing	output	to	be	pored	over	during	the	next	user’s	turn.
If	the	program	had	a	bug,	the	user	would	need	to	wait	to	try	the	run	over	again,
often	the	next	day.

It	might	seem	like	there	was	no	need	for	an	operating	system	in	this	setting.
However,	since	computers	were	enormously	expensive,	reducing	the	likelihood
of	programmer	error	was	paramount.	The	first	operating	systems	were	developed
as	a	way	to	reduce	errors	by	providing	a	standard	set	of	common	services.	For
example,	early	operating	systems	provided	standard	input/output	(I/O)	routines
that	each	user	could	link	into	their	programs.	These	services	made	it	more	likely
that	a	user’s	program	would	produce	useful	output.

Although	these	initial	operating	systems	were	a	huge	step	forward,	the	result	was
still	extremely	inefficient.	It	was	around	this	time	that	the	CEO	of	IBM	famously
predicted	that	we	would	only	ever	need	five	computers	in	the	world.	If
computers	today	cost	millions	of	dollars	and	could	only	run	tiny	applications	by
one	person	at	a	time,	he	might	have	been	right.

1.3.3	Multi-User	Operating	Systems

The	next	step	forward	was	sharing,	introducing	many	of	the	advantages,	and
challenges,	that	we	see	in	today’s	operating	systems.	When	processor	time	is
valuable,	restricting	the	system	to	one	user	at	a	time	is	wasteful.	For	example,	in
early	systems	the	processor	remained	idle	while	the	user	loaded	the	program,
even	if	there	was	a	long	line	of	people	waiting	their	turn.

A	batch	operating	system	works	on	a	queue	of	tasks.	It	runs	a	simple	loop:	load,
run,	and	unload	each	job	in	turn.	While	one	job	was	running,	the	operating
system	sets	up	the	I/O	devices	to	do	background	transfers	for	the	next/previous
job	using	a	process	called	direct	memory	access	(DMA).	With	DMA,	the	I/O
device	transfers	its	data	directly	into	memory	at	a	location	specified	by	the

operating	system.	When	the	I/O	transfer	completes,	the	hardware	interrupts	the
processor,	transferring	control	to	the	operating	system	interrupt	handler.	The
operating	system	starts	the	next	DMA	transfer	and	then	resumes	execution	of	the
application.	The	interrupt	appears	to	the	application	as	if	nothing	had	happened,
except	for	some	delay	between	one	instruction	and	the	next.

Batch	operating	systems	were	soon	extended	to	run	multiple	applications	at
once,	called	multitasking	or	sometimes	multiprogramming.	Multiple	programs
are	loaded	into	memory	at	the	same	time,	each	ready	to	use	the	processor	if	for
any	reason	the	previous	task	needed	to	pause,	for	example,	to	read	additional
input	or	produce	output.	Multitasking	increases	processor	efficiency	to	nearly
100%;	if	the	queue	of	tasks	is	long	enough,	and	a	sufficient	number	of	I/O
devices	can	keep	feeding	the	processor,	there	is	no	need	for	the	processor	to
wait.

However,	processor	sharing	raises	the	need	for	program	isolation,	to	limit	a	bug
in	one	program	from	crashing	or	corrupting	another.	During	this	period,
computer	designers	added	hardware	memory	protection,	to	reduce	the	overhead
of	fault	isolation.

A	practical	challenge	with	batch	computing,	however,	is	how	to	debug	the
operating	system	itself.	Unlike	an	application	program,	a	batch	operating	system
assumes	it	is	in	direct	control	of	the	hardware.	New	versions	can	only	be	tested
by	stopping	every	application	and	rebooting	the	system,	essentially	turning	the
computer	back	into	a	single-user	system.	Needless	to	say,	this	was	an	expensive
operation,	often	scheduled	for	the	dead	of	the	night.

Virtual	machines	address	this	limitation	(see	Figure	1.4).	Instead	of	running	a
test	operating	system	directly	on	the	hardware,	virtual	machines	run	an	operating
system	as	an	application.	The	host	operating	system,	also	called	a	virtual
machine	monitor,	exports	an	abstract	virtual	machine	(AVM)	that	is	identical	to
the	underlying	hardware.	The	test	operating	system	running	on	top	of	the	virtual
machine	does	not	need	to	know	that	it	is	running	in	a	virtual	environment	—	it
executes	instructions,	accesses	hardware	devices,	and	restores	application	state
after	an	interrupt	just	as	if	it	were	running	on	real	hardware.

Virtual	machines	are	now	widely	used	for	operating	system	development,
backward	compatibility,	and	cross-platform	support.	Application	software	that
runs	only	on	an	old	version	of	an	operating	system	can	share	hardware	with

entirely	new	applications.	The	virtual	machine	monitor	runs	two	virtual
machines	—	one	for	the	new	operating	system	for	current	applications	and	a
separate	one	for	legacy	applications.	As	another	example,	MacOS	users	who
need	to	run	Windows	or	Linux	applications	can	do	so	by	running	them	inside	a
virtual	machine.

1.3.4	Time-Sharing	Operating	Systems

	

Figure	1.9:	Genealogy	of	several	modern	operating	systems.

Eventually,	the	cumulative	effect	of	Moore’s	Law	meant	that	the	cost	of
computing	dropped	to	where	systems	could	be	optimized	for	users	rather	than
for	efficient	use	of	the	processor.	UNIX,	for	example,	was	developed	in	the	early
70’s	on	a	spare	computer	that	no	one	was	using	at	the	time.	UNIX	became	the
basis	for	Apple’s	MacOS	X,	Linux,	VMware	(a	widely	used	virtual	machine
monitor),	and	Google	Android.	Figure	1.9	traces	the	lineage	of	these	operating
systems.

Time-sharing	operating	systems	—	such	as	Windows,	MacOS,	or	Linux	—	are

designed	to	support	interactive	use	of	the	computer	rather	than	the	batch	mode
processing	of	earlier	systems.	With	time-sharing,	the	user	types	input	on	a
keyboard	or	other	input	device	directly	connected	to	the	computer.	Each
keystroke	or	mouse	action	causes	an	interrupt	to	the	processor	signaling	the
event;	the	interrupt	handler	reads	the	event	from	the	device	and	queues	it	inside
the	operating	system.	When	the	user’s	word	processor,	game,	or	other
application	resumes,	it	fetches	the	event	from	the	operating	system,	processes	it,
and	alters	the	display	appropriately	before	fetching	the	next	event.	Hundreds	or
even	thousands	of	such	events	can	be	processed	per	second,	requiring	both	the
operating	system	and	the	application	to	be	designed	for	frequent,	very	short
bursts	of	activity	rather	than	the	sustained	execution	model	of	batch	processing.

The	basic	operation	of	a	web	server	is	similar	to	a	time-sharing	system.	The	web
server	waits	for	a	packet	to	arrive,	to	request	a	web	page,	web	search,	or	book
purchase.	The	network	hardware	copies	the	arriving	packet	into	memory	using
DMA.	Once	the	transfer	is	complete,	the	hardware	signals	the	packet’s	arrival	by
interrupting	the	processor.	This	triggers	the	server	to	perform	the	requested	task.
Likewise,	the	processor	is	interrupted	as	each	block	of	a	web	page	is	read	from
disk	into	memory.	Like	a	time-sharing	system,	server	operating	systems	must	be
designed	to	handle	very	large	numbers	of	short	actions	per	second.

The	earliest	time-sharing	systems	supported	many	simultaneous	users,	but	even
this	was	just	a	phase.	Eventually,	computers	became	cheap	enough	that	people
could	afford	their	own	dedicated	"personal”	computers,	which	would	sit
patiently	unused	for	much	of	the	day.	Access	to	shared	data	became	paramount,
cementing	the	shift	to	client-server	computing.

1.3.5	Modern	Operating	Systems

Today,	we	have	a	vast	diversity	of	computing	devices,	with	many	different
operating	systems	running	on	them.	The	tradeoffs	faced	by	an	operating	system
designer	depend	on	the	physical	capabilities	of	the	hardware	as	well	as
application	and	user	needs.	Here	are	some	examples	of	operating	systems	that
you	may	have	used	recently:

Desktop,	laptop,	and	netbook	operating	systems.	Examples	include
Windows	8,	MacOS	X,	and	Linux.	These	systems	are	single	user,	run	many
applications,	and	have	various	I/O	devices.	One	might	think	that	with	only
one	user,	there	would	be	no	need	to	design	the	system	to	support	sharing,

and	indeed	the	initial	personal	computer	operating	systems	took	this
approach.	They	had	a	very	limited	ability	to	isolate	different	parts	of	the
system	from	each	other.	Over	time,	however,	it	became	clear	that	stricter
fault	isolation	was	needed	to	improve	system	reliability	and	resilience
against	computer	viruses.	Other	key	design	goals	for	these	systems	include
adoption	(to	support	a	rich	set	of	applications)	and	interactive	performance.

Smartphone	operating	systems.	A	smartphone	is	a	cellphone	with	an
embedded	computer	capable	of	running	third	party	applications.	Examples
of	smartphone	operating	systems	include	iOS,	Android,	Symbian,	WebOS,
Blackberry	OS	and	Windows	Phone.	While	smartphones	have	only	one
user,	they	must	support	many	applications.	Key	design	goals	include
responsiveness,	support	for	a	wide	variety	of	applications,	and	efficient	use
of	the	battery.	Another	design	goal	is	user	privacy.	Because	third-party
applications	might	surreptitiously	gather	private	data	such	as	the	user’s
contact	list	for	marketing	purposes,	the	operating	system	must	be	designed
to	limit	access	to	protected	user	data.

Server	operating	systems.	Search	engines,	web	media,	e-commerce	sites,
and	email	systems	are	hosted	on	computers	in	data	centers;	each	of	these
computers	runs	an	operating	system,	often	an	industrial	strength	version	of
one	of	the	desktop	systems	described	above.	Usually,	only	a	single
application,	such	as	a	web	server,	runs	per	machine,	but	the	operating
system	must	coordinate	thousands	of	simultaneous	incoming	network
connections.	Throughput	in	handling	a	large	number	of	requests	per	second
is	a	key	design	goal.	At	the	same	time,	there	is	a	premium	on
responsiveness:	Amazon	and	Google	both	report	that	adding	even	100
milliseconds	of	delay	to	each	web	request	can	significantly	affect	revenue.
Servers	also	operate	in	a	hostile	environment,	where	malicious	attackers
may	attempt	to	subvert	or	block	the	service;	resistance	to	attack	is	an
essential	requirement.

Virtual	machines.	As	we	noted,	a	virtual	machine	monitor	is	an	operating
system	that	can	run	another	operating	system	as	if	it	were	an	application.
Examples	include	VMWare,	Xen,	and	Windows	Virtual	PC.	Virtual
machine	monitors	face	many	of	the	same	challenges	as	other	operating
systems,	with	the	added	challenge	posed	by	coordinating	a	set	of
coordinators.	A	guest	operating	system	running	inside	a	virtual	machine
makes	resource	allocation	and	fault	isolation	decisions	as	if	it	were	in

complete	control	of	its	resources,	even	though	it	is	sharing	the	system	with
other	operating	systems	and	applications.

A	commercially	important	use	of	virtual	machines	is	to	to	allow	a	single
server	machine	to	run	a	set	of	independent	services.	Each	virtual	machine
can	be	configured	as	needed	by	that	particular	service.	For	example,	this
allows	multiple	unrelated	web	servers	to	share	the	same	physical	hardware.
The	primary	design	goal	for	virtual	machines	is	thus	efficiency	and	low
overhead.

Embedded	systems.	Over	time,	computers	have	become	cheap	enough	to
integrate	into	any	number	of	consumer	devices,	from	cable	TV	set-top
boxes,	to	microwave	ovens,	the	control	systems	for	automobiles	and
airplanes,	LEGO	robots,	and	medical	devices,	such	as	MRI	machines	and
WiFi-based	intravenous	titration	systems.	Embedded	devices	typically	run	a
customized	operating	system	bundled	with	the	task-specific	software	that
controls	the	device.	Although	you	might	think	these	systems	as	too	simple
to	merit	much	attention,	software	errors	in	them	can	have	devastating
effects.	One	example	is	the	Therac-25,	an	early	computer-controlled
radiology	device.	Programming	errors	in	the	operating	system	code	caused
the	system	to	malfunction,	leading	to	several	patient	deaths.

Server	clusters.	For	fault	tolerance,	scale,	and	responsiveness,	web	sites
are	increasingly	implemented	on	distributed	clusters	of	computers	housed
in	one	or	more	geographically	distributed	data	centers	located	close	to
users.	If	one	computer	fails	due	to	a	hardware	fault,	software	crash,	or
power	failure,	another	computer	can	take	over	its	role.	If	demand	for	the
web	site	exceeds	what	a	single	computer	can	accommodate,	web	requests
can	be	partitioned	among	multiple	machines.	As	with	normal	operating
systems,	server	cluster	applications	run	on	top	of	an	abstract	cluster
interface	to	isolate	the	application	from	hardware	changes	and	to	isolate
faults	in	one	application	from	affecting	other	applications	in	the	same	data
center.	Likewise,	resources	can	be	shared	between:	(1)	various	applications
on	the	same	web	site	(such	as	Google	Search,	Google	Earth,	and	Gmail),
and	(2)	multiple	web	sites	hosted	on	the	same	cluster	hardware	(such	as
with	Amazon’s	Elastic	Compute	Cloud	or	Google’s	Compute	Engine).

1.3.6	Future	Operating	Systems

Where	are	operating	systems	heading	from	here	over	the	next	decade?	Operating

Where	are	operating	systems	heading	from	here	over	the	next	decade?	Operating
systems	have	become	dramatically	better	at	resisting	malicious	attacks,	but	they
still	have	quite	a	ways	to	go.	Provided	security	and	reliability	challenges	can	be
met,	huge	potential	benefits	would	result	from	having	computers	tightly	control
and	coordinate	physical	infrastructure,	such	as	the	power	grid,	the	telephone
network,	and	a	hospital’s	medical	devices	and	medical	record	systems.
Thousands	of	lives	are	lost	annually	through	traffic	accidents	that	could
potentially	be	prevented	through	computer	control	of	automobiles.	If	we	are	to
rely	on	computers	for	these	critical	systems,	we	need	greater	assurance	that
operating	systems	are	up	to	the	task.

Second,	underlying	hardware	changes	will	often	trigger	new	work	in	operating
system	design.	The	future	of	operating	systems	is	also	the	future	of	hardware:

Very	large	scale	data	centers.	Operating	systems	will	need	to	coordinate
the	hundreds	of	thousands	or	even	millions	of	computers	in	data	centers	to
support	essential	online	services.

Very	large	scale	multicore	systems.	Computer	architectures	already
contain	several	processors	per	chip;	this	trend	will	continue,	yielding
systems	with	hundreds	or	possibly	even	thousands	of	processors	per
machine.

Ubiquitous	portable	computing	devices.	With	the	advent	of	smartphones,
tablets,	and	e-book	readers,	computers	and	their	operating	systems	will
become	untethered	from	the	keyboard	and	the	screen,	responding	to	voice,
gestures,	and	perhaps	even	brain	waves.

Very	heterogeneous	systems.	As	every	device	becomes	programmable,
operating	systems	will	be	needed	for	a	huge	variety	of	devices,	from
supercomputers	to	refrigerators	to	individual	light	switches.

Very	large	scale	storage.	All	data	that	can	be	stored,	will	be;	the	operating
system	will	need	to	store	enormous	amounts	of	data	reliably,	so	that	it	can
be	retrieved	at	any	point,	even	decades	later.

Managing	all	this	is	the	job	of	the	operating	system.

Exercises

	

	

1.	 What	is	an	example	of	an	operating	system	as:
a.	 Referee?
b.	 Illusionist?
c.	 Glue?

	

	

2.	 What	is	the	difference,	if	any,	between	the	following	terms:
a.	 Reliability	vs.	availability?
b.	 Security	vs.	privacy?
c.	 Security	enforcement	vs.	security	policy?
d.	 Throughput	vs.	response	time?
e.	 Efficiency	vs.	overhead?
f.	 Application	programming	interface	(API)	vs.	abstract	virtual	machine

(AVM)?
g.	 Abstract	virtual	machine	(AVM)	vs.	hardware	abstraction	layer

(HAL)?
h.	 Proprietary	vs.	open	operating	system?
i.	 Batch	vs.	interactive	operating	system?
j.	 Host	vs.	guest	operating	system?

	

	

3.	 Define	the	term,	direct	memory	access	(DMA).

For	the	following	questions,	take	a	moment	to	speculate.	We	provide
answers	to	these	questions	throughout	the	book,	but,	given	what	you	know
now,	how	would	you	answer	them?	Before	there	were	operating	systems,
someone	needed	to	develop	solutions	without	being	able	to	look	them	up!
How	would	you	have	designed	the	first	operating	system?

	

4.	 Suppose	a	computer	system	and	all	of	its	applications	were	completely	bug

free.	Suppose	further	that	everyone	in	the	world	were	completely	honest
and	trustworthy.	In	other	words,	we	need	not	consider	fault	isolation.
a.	 How	should	an	operating	system	allocate	time	on	the	processor?

Should	it	give	the	entire	processor	to	each	application	until	it	no	longer
needs	it?	If	there	were	multiple	tasks	ready	to	go	at	the	same	time,
should	it	schedule	first	the	task	with	the	least	amount	of	work	to	do	or
the	one	with	the	most?	Justify	your	answer.

b.	 How	should	the	operating	system	allocate	physical	memory	to
applications?	What	should	happen	if	the	set	of	applications	does	not	fit
in	memory	at	the	same	time?

c.	 How	should	the	operating	system	allocate	its	disk	space?	Should	the
first	user	to	ask	acquire	all	of	the	free	space?	What	would	the	likely
outcome	be	for	that	policy?

	

	

5.	 Now	suppose	the	computer	system	needs	to	support	fault	isolation.	What
hardware	and/or	operating	support	do	you	think	would	be	needed	to	do	the
following?

	

a.	 Protect	an	application’s	data	structures	in	memory	from	being
corrupted	by	other	applications.

b.	 Protecting	one	user’s	disk	files	from	being	accessed	or	corrupted	by
another	user.

c.	 Protecting	the	network	from	a	virus	trying	to	use	your	computer	to
send	spam.

	

	

6.	 How	should	an	operating	system	support	communication	between
applications?	Explain	your	reasoning.
a.	 Through	the	file	system?
b.	 Through	messages	passed	between	applications?
c.	 Through	regions	of	memory	shared	between	the	applications?
d.	 All	of	the	above?
e.	 None	of	the	above?

	

	

7.	 How	would	you	design	combined	hardware	and	software	support	to	provide
the	illusion	of	a	nearly	infinite	virtual	memory	on	a	limited	amount	of
physical	memory?

	

8.	 How	would	you	design	a	system	to	run	an	entire	operating	system	as	an
application	on	top	of	another	operating	system?

	

9.	 How	would	you	design	a	system	to	update	complex	data	structures	on	disk
in	a	consistent	fashion	despite	machine	crashes?

	

10.	 Society	itself	must	grapple	with	managing	resources.	What	ways	do
governments	use	to	allocate	resources,	isolate	misuse,	and	foster	sharing	in
real	life?

	

11.	 Suppose	you	were	tasked	with	designing	and	implementing	an	ultra-reliable
and	ultra-available	operating	system.	What	techniques	would	you	use?
What	tests,	if	any,	might	be	sufficient	to	convince	you	of	the	system’s
reliability,	short	of	handing	your	operating	system	to	millions	of	users	to
serve	as	beta	testers?

	

12.	 MTTR,	and	therefore	availability,	can	be	improved	by	reducing	the	time	to
reboot	a	system	after	a	failure.	What	techniques	might	you	use	to	speed	up
booting?	Would	your	techniques	always	work	after	a	failure?

	

13.	 For	the	computer	you	are	currently	using,	how	should	the	operating	system
designers	prioritize	among	reliability,	security,	portability,	performance,
and	adoption?	Explain	why.

2.	The	Kernel	Abstraction

Good	fences	make	good	neighbors.	—17th	century	proverb

	

A	central	role	of	operating	systems	is	protection	—	the	isolation	of	potentially
misbehaving	applications	and	users	so	that	they	do	not	corrupt	other	applications
or	the	operating	system	itself.	Protection	is	essential	to	achieving	several	of	the
operating	systems	goals	noted	in	the	previous	chapter:

Reliability.	Protection	prevents	bugs	in	one	program	from	causing	crashes
in	other	programs	or	in	the	operating	system.	To	the	user,	a	system	crash
appears	to	be	the	operating	system’s	fault,	even	if	the	root	cause	of	the
problem	is	some	unexpected	behavior	by	an	application	or	user.	Thus,	for
high	system	reliability,	an	operating	system	must	bullet	proof	itself	to
operate	correctly	regardless	of	what	an	application	or	user	might	do.

Security.	Some	users	or	applications	on	a	system	may	be	less	than
completely	trustworthy;	therefore,	the	operating	system	must	limit	the
scope	of	what	they	can	do.	Without	protection,	a	malicious	user	might
surreptitiously	change	application	files	or	even	the	operating	system	itself,
leaving	the	user	none	the	wiser.	For	example,	if	a	malicious	application	can
write	directly	to	the	disk,	it	could	modify	the	file	containing	the	operating
system’s	code;	the	next	time	the	system	starts,	the	modified	operating
system	would	boot	instead,	installing	spyware	and	disabling	virus
protection.	For	security,	an	operating	system	must	prevent	untrusted	code
from	modifying	system	state.

Privacy.	On	a	multi-user	system,	each	user	must	be	limited	to	only	the	data
that	she	is	permitted	to	access.	Without	protection	provided	by	the
operating	system,	any	user	or	application	running	on	a	system	could	access

anyone’s	data,	without	the	knowledge	or	approval	of	the	data’s	owner.	For
example,	hackers	often	use	popular	applications	—	such	as	games	or	screen
savers	—	as	a	way	to	gain	access	to	personal	email,	telephone	numbers,	and
credit	card	data	stored	on	a	smartphone	or	laptop.	For	privacy,	an	operating
system	must	prevent	untrusted	code	from	accessing	unauthorized	data.

Fair	resource	allocation.	Protection	is	also	needed	for	effective	resource
allocation.	Without	protection,	an	application	could	gather	any	amount	of
processing	time,	memory,	or	disk	space	that	it	wants.	On	a	single-user
system,	a	buggy	application	could	prevent	other	applications	from	running
or	make	them	run	so	slowly	that	they	appear	to	stall.	On	a	multi-user
system,	one	user	could	grab	all	of	the	system’s	resources.	Thus,	for
efficiency	and	fairness,	an	operating	system	must	be	able	to	limit	the
amount	of	resources	assigned	to	each	application	or	user.

Implementing	protection	is	the	job	of	the	operating	system	kernel.	The	kernel,
the	lowest	level	of	software	running	on	the	system,	has	full	access	to	all	of	the
machine	hardware.	The	kernel	is	necessarily	trusted	to	do	anything	with	the
hardware.	Everything	else	—	that	is,	the	untrusted	software	running	on	the
system	—	is	run	in	a	restricted	environment	with	less	than	complete	access	to	the
full	power	of	the	hardware.	Figure	2.1	illustrates	this	difference	between	kernel-
level	and	user-level	execution.

Figure	2.1:	User-level	and	kernel-level	operation.	The	operating	system	kernel	is	trusted	to	arbitrate
between	untrusted	applications	and	users.

In	turn,	applications	themselves	often	need	to	safely	execute	untrusted	third
party	code.	An	example	is	a	web	browser	executing	embedded	Javascript	to
draw	a	web	page.	Without	protection,	a	script	with	an	embedded	virus	can	take
control	of	the	browser,	making	users	think	they	are	interacting	directly	with	the
web	when	in	fact	their	web	passwords	are	being	forwarded	to	an	attacker.

This	design	pattern	—	extensible	applications	running	third-party	scripts	—
occurs	in	many	different	domains.	Applications	become	more	powerful	and
widely	used	if	third	party	developers	and	users	can	customize	them,	but	doing	so
raises	the	issue	of	how	to	protect	the	application	itself	from	rogue	extensions.
This	chapter	focuses	on	how	the	operating	system	protects	the	kernel	from
untrusted	applications,	but	the	principles	also	apply	at	the	application	level.

A	process	is	the	execution	of	an	application	program	with	restricted	rights;	the
process	is	the	abstraction	for	protected	execution	provided	by	the	operating
system	kernel.	A	process	needs	permission	from	the	operating	system	kernel
before	accessing	the	memory	of	any	other	process,	before	reading	or	writing	to
the	disk,	before	changing	hardware	settings,	and	so	forth.	In	other	words,	the
operating	system	kernel	mediates	and	checks	each	process’s	access	to	hardware.
This	chapter	explains	the	process	concept	and	how	the	kernel	implements
process	isolation.

A	key	consideration	is	the	need	to	provide	protection	while	still	running
application	code	at	high	speed.	The	operating	system	kernel	runs	directly	on	the
processor	with	unlimited	rights.	The	kernel	can	perform	any	operation	available
on	the	hardware.	What	about	applications?	They	need	to	run	on	the	processor
with	all	potentially	dangerous	operations	disabled.	To	make	this	work,	hardware
needs	to	provide	a	bit	of	assistance,	which	we	will	describe	shortly.	Throughout
the	book,	there	are	similar	examples	of	how	small	amounts	of	carefully	designed
hardware	can	help	make	it	much	easier	for	the	operating	system	to	provide	what
users	want.

Of	course,	both	the	operating	system	kernel	and	application	processes	running
with	restricted	rights	are	in	fact	sharing	the	same	machine	—	the	same	processor,
the	same	memory,	and	the	same	disk.	When	reading	this	chapter,	keep	these	two
perspectives	in	mind:	when	we	are	running	the	operating	system	kernel,	it	can	do
anything;	when	we	are	running	an	application	process	on	behalf	of	a	user,	the
process’s	behavior	is	restricted.

process’s	behavior	is	restricted.

Thus,	a	processor	running	an	operating	system	is	somewhat	akin	to	someone
with	a	split	personality.	When	running	the	operating	system	kernel,	the	processor
is	like	a	warden	in	charge	of	an	insane	asylum	with	complete	access	to
everything.	At	other	times,	the	processor	runs	application	code	in	a	process	—
the	processor	becomes	an	inmate,	wearing	a	straightjacket	locked	in	a	padded
cell	by	the	warden,	protected	from	harming	anyone	else.	Of	course,	it	is	the	same
processor	in	both	cases,	sometimes	completely	trustworthy	and	at	other	times
completely	untrusted.

Chapter	roadmap:	Protection	raises	several	important	questions	that	we	will
answer	in	the	rest	of	the	chapter:

The	Process	Abstraction.	What	is	a	process	and	how	does	it	differ	from	a
program?	(Section	2.1)

Dual-Mode	Operation.	What	hardware	enables	the	operating	system	to
efficiently	implement	the	process	abstraction?	(Section	2.2)

Types	of	Mode	Transfer.	What	causes	the	processor	to	switch	control
from	a	user-level	program	to	the	kernel?	(Section	2.3)

Implementing	Safe	Mode	Transfer.	How	do	we	safely	switch	between
user	level	and	the	kernel?	(Section	2.4)

Putting	It	All	Together:	x86	Mode	Transfer.	What	happens	on	an	x86
mode	switch?	(Section	2.5)

Implementing	Secure	System	Calls.	How	do	library	code	and	the	kernel
work	together	to	implement	protected	procedure	calls	from	the	application
into	the	kernel?	(Section	2.6)

Starting	a	New	Process.	How	does	the	operating	system	kernel	start	a	new
process?	(Section	2.7)

Implementing	Upcalls.	How	does	the	operating	system	kernel	deliver	an
asynchronous	event	to	a	user	process?	(Section	2.8)

Case	Study:	Booting	an	OS	Kernel.	What	steps	are	needed	to	start
running	an	operating	system	kernel,	to	the	point	where	it	can	create	a

process?	(Section	2.9)

Case	Study:	Virtual	Machines.	Can	an	operating	system	run	inside	a
process?	(Section	2.10)

	

Figure	2.2:	A	user	edits,	compiles,	and	runs	a	user	program.	Other	programs	can	also	be	stored	in	physical
memory,	including	the	operating	system	itself.

2.1	The	Process	Abstraction

In	the	model	you	are	likely	familiar	with,	illustrated	in	Figure	2.2,	a	programmer
types	code	in	some	high-level	language.	A	compiler	converts	that	code	into	a
sequence	of	machine	instructions	and	stores	those	instructions	in	a	file,	called
the	program’s	executable	image.	The	compiler	also	defines	any	static	data	the
program	needs,	along	with	its	initial	values,	and	includes	them	in	the	executable
image.

To	run	the	program,	the	operating	system	copies	the	instructions	and	data	from

the	executable	image	into	physical	memory.	The	operating	system	sets	aside	a
memory	region,	the	execution	stack,	to	hold	the	state	of	local	variables	during
procedure	calls.	The	operating	system	also	sets	aside	a	memory	region,	called
the	heap,	for	any	dynamically	allocated	data	structures	the	program	might	need.
Of	course,	to	copy	the	program	into	memory,	the	operating	system	itself	must
already	be	loaded	into	memory,	with	its	own	stack	and	heap.

Ignoring	protection,	once	a	program	is	loaded	into	memory,	the	operating	system
can	start	it	running	by	setting	the	stack	pointer	and	jumping	to	the	program’s
first	instruction.	The	compiler	itself	is	just	another	program:	the	operating
system	starts	the	compiler	by	copying	its	executable	image	into	memory	and
jumping	to	its	first	instruction.

To	run	multiple	copies	of	the	same	program,	the	operating	system	can	make
multiple	copies	of	the	program’s	instructions,	static	data,	heap,	and	stack	in
memory.	As	we	describe	in	Chapter	8,	most	operating	systems	reuse	memory
wherever	possible:	they	store	only	a	single	copy	of	a	program’s	instructions
when	multiple	copies	of	the	program	are	executed	at	the	same	time.	Even	so,	a
separate	copy	of	the	program’s	data,	heap,	and	stack	are	needed.	For	now,	we
will	keep	things	simple	and	assume	the	operating	system	makes	a	separate	copy
of	the	entire	program	for	each	process.

Thus,	a	process	is	an	instance	of	a	program,	in	much	the	same	way	that	an	object
is	an	instance	of	a	class	in	object-oriented	programming.	Each	program	can	have
zero,	one	or	more	processes	executing	it.	For	each	instance	of	a	program,	there	is
a	process	with	its	own	copy	of	the	program	in	memory.

The	operating	system	keeps	track	of	the	various	processes	on	the	computer	using
a	data	structure	called	the	process	control	block,	or	PCB.	The	PCB	stores	all	the
information	the	operating	system	needs	about	a	particular	process:	where	it	is
stored	in	memory,	where	its	executable	image	resides	on	disk,	which	user	asked
it	to	execute,	what	privileges	the	process	has,	and	so	forth.

Earlier,	we	defined	a	process	as	an	instance	of	a	program	executing	with
restricted	rights.	Each	of	these	roles	—	execution	and	protection	—	is	important
enough	to	merit	several	chapters.

This	chapter	focuses	on	protection,	and	so	we	limit	our	discussion	to	simple
processes,	each	with	one	program	counter,	code,	data,	heap,	and	stack.

Some	programs	consist	of	multiple	concurrent	activities,	or	threads.	A	web
browser,	for	example,	might	need	to	receive	user	input	at	the	same	time	it	is
drawing	the	screen	or	receiving	network	input.	Each	of	these	separate	activities
has	its	own	program	counter	and	stack	but	operates	on	the	same	code	and	data	as
the	other	threads.	The	operating	system	runs	multiple	threads	in	a	process,	in
much	the	same	way	that	it	runs	multiple	processes	in	physical	memory.	We
generalize	on	the	process	abstraction	to	allow	multiple	activities	in	the	same
protection	domain	in	Chapter	4.

	

Processes,	lightweight	processes,	and	threads

The	word	“process",	like	many	terms	in	computer	science,	has	evolved	over
time.	The	evolution	of	words	can	sometimes	trip	up	the	unwary	—	systems	built
at	different	times	will	use	the	same	word	in	significantly	different	ways.

A	“process"	was	originally	coined	to	mean	what	is	now	called	a	“thread"	—	a
logical	sequence	of	instructions	that	executes	either	operating	system	or
application	code.	The	concept	of	a	process	was	developed	as	a	way	of
simplifying	the	correct	construction	of	early	operating	systems	that	provided	no
protection	between	application	programs.

Organizing	the	operating	system	as	a	cooperating	set	of	processes	proved
immensely	successful,	and	soon	almost	every	new	operating	system	was	built
this	way,	including	systems	that	also	provided	protection	against	malicious	or
buggy	user	programs.	At	the	time,	almost	all	user	programs	were	simple,	single-
threaded	programs	with	only	one	program	counter	and	one	stack,	so	there	was
no	confusion.	A	process	was	needed	to	run	a	program,	that	is,	a	single
sequential	execution	stream	with	a	protection	boundary.

As	parallel	computers	became	more	popular,	though,	we	once	again	needed	a
word	for	a	logical	sequence	of	instructions.	A	multiprocessor	program	can	have
multiple	instruction	sequences	running	in	parallel,	each	with	its	own	program
counter,	but	all	cooperating	within	a	single	protection	boundary.	For	a	time,
these	were	called	“lightweight	processes"	(each	a	sequence	of	instructions
cooperating	inside	a	protection	boundary),	but	eventually	the	word	“thread”
became	more	widely	used.

This	leads	to	the	current	naming	convention	used	in	almost	all	modern
operating	systems:	a	process	executes	a	program,	consisting	of	one	or	more
threads	running	inside	a	protection	boundary.

	

2.2	Dual-Mode	Operation

Once	a	program	is	loaded	into	memory	and	the	operating	system	starts	the
process,	the	processor	fetches	each	instruction	in	turn,	then	decodes	and	executes
it.	Some	instructions	compute	values,	say,	by	multiplying	two	registers	and
putting	the	result	into	another	register.	Some	instructions	read	or	write	locations
in	memory.	Still	other	instructions,	like	branches	or	procedure	calls,	change	the
program	counter	and	thus	determine	the	next	instruction	to	execute.	Figure	2.3
illustrates	the	basic	operation	of	a	processor.

Figure	2.3:	The	basic	operation	of	a	CPU.	Opcode,	short	for	operation	code,	is	the	decoded	instruction	to
be	executed,	e.g.,	branch,	memory	load,	or	arithmetic	operation.

How	does	the	operating	system	kernel	prevent	a	process	from	harming	other
processes	or	the	operating	system	itself?	After	all,	when	multiple	programs	are
loaded	into	memory	at	the	same	time,	what	prevents	a	process	from	overwriting
another	process’s	data	structures,	or	even	overwriting	the	operating	system
image	stored	on	disk?

If	we	step	back	from	any	consideration	of	performance,	a	very	simple,	safe,	and
entirely	hypothetical	approach	would	be	to	have	the	operating	system	kernel
simulate,	step	by	step,	every	instruction	in	every	user	process.	Instead	of	the
processor	directly	executing	instructions,	a	software	interpreter	would	fetch,
decode,	and	execute	each	user	program	instruction	in	turn.	Before	executing
each	instruction,	the	interpreter	could	check	if	the	process	had	permission	to	do
the	operation	in	question:	is	it	referencing	part	of	its	own	memory,	or	someone
else’s?	Is	it	trying	to	branch	into	someone	else’s	code?	Is	it	directly	accessing	the
disk,	or	is	it	using	the	correct	routines	in	the	operating	system	to	do	so?	The
interpreter	could	allow	all	legal	operations	while	halting	any	application	that
overstepped	its	bounds.

Now	suppose	we	want	to	speed	up	our	hypothetical	simulator.	Most	instructions
are	perfectly	safe,	such	as	adding	two	registers	together	and	storing	the	result	in
a	third	register.	Can	we	modify	the	processor	in	some	way	to	allow	safe
instructions	to	execute	directly	on	the	hardware?

To	accomplish	this,	we	implement	the	same	checks	as	in	our	hypothetical
interpreter,	but	in	hardware	rather	than	software.	This	is	called	dual-mode
operation,	represented	by	a	single	bit	in	the	processor	status	register	that
signifies	the	current	mode	of	the	processor.	In	user	mode,	the	processor	checks
each	instruction	before	executing	it	to	verify	that	it	is	permitted	to	be	performed
by	that	process.	(We	describe	the	specific	checks	next.)	In	kernel	mode,	the
operating	system	executes	with	protection	checks	turned	off.

	

The	kernel	vs.	the	rest	of	the	operating	system

The	operating	system	kernel	is	a	crucial	piece	of	an	operating	system,	but	it	is
only	a	portion	of	the	overall	operating	system.	In	most	modern	operating
systems,	a	portion	of	the	operating	system	runs	in	user	mode	as	a	library	linked
into	each	application.	An	example	is	library	code	that	manages	an	application’s
menu	buttons.	To	encourage	a	common	user	interface	across	applications,	most
operating	systems	provide	a	library	of	user	interface	widgets.	Applications	can
write	their	own	user	interface	routines,	but	most	developers	choose	to	reuse	the
routines	provided	by	the	operating	system.	This	code	could	run	in	the	kernel	but
does	not	need	to	do	so.	If	the	application	crashes,	it	will	not	matter	if	that

application’s	menu	buttons	stop	working.	The	library	code	(but	not	the
operating	system	kernel)	shares	fate	with	the	rest	of	the	application:	a	problem
with	one	has	the	same	effect	as	a	problem	with	the	other.

Likewise,	parts	of	the	operating	system	can	run	in	their	own	user-level
processes.	A	window	manager	is	one	example.	The	window	manager	directs
mouse	actions	and	keyboard	input	that	occurs	inside	a	window	to	the	correct
application,	and	the	manager	also	ensures	that	each	application	modifies	only
that	application’s	portion	of	the	screen,	and	not	the	operating	system’s	menu	bar
or	any	other	application’s	window.	Without	this	restriction,	a	malicious
application	could	potentially	take	control	of	the	machine.	For	example,	a	virus
could	present	a	login	prompt	that	looked	identical	to	the	system	login,
potentially	inducing	users	to	disclose	their	passwords	to	the	attacker.

Why	not	include	the	entire	operating	system	—	the	library	code	and	any	user-
level	processes	—	in	the	kernel	itself?	While	that	might	seem	more	logical,	one
reason	is	that	it	is	often	easier	to	debug	user-level	code	than	kernel	code.	The
kernel	can	use	low-level	hardware	to	implement	debugging	support	for
breakpoints	and	for	single	stepping	through	application	code;	to	single	step	the
kernel	requires	an	even	lower-level	debugger	running	underneath	the	kernel.
The	difficulty	of	debugging	operating	system	kernels	was	the	original
motivation	behind	the	development	of	virtual	machines.

More	importantly,	the	kernel	must	be	trusted,	as	it	has	full	control	over	the
hardware.	Any	error	in	the	kernel	can	corrupt	the	disk,	the	memory	of	some
unrelated	application,	or	simply	crash	the	system.	By	separating	out	code	that
does	not	need	to	be	in	the	kernel,	the	operating	system	can	become	more
reliable	—	a	bug	in	the	window	system	is	bad	enough,	but	it	would	be	even
worse	if	it	could	corrupt	the	disk.	This	illustrates	the	principle	of	least	privilege,
that	security	and	reliability	are	enhanced	if	each	part	of	the	system	has	exactly
the	privileges	it	needs	to	do	its	job,	and	no	more.

	

Figure	2.4:	The	operation	of	a	CPU	with	kernel	and	user	modes.

Figure	2.4	shows	the	operation	of	a	dual-mode	processor;	the	program	counter
and	the	mode	bit	together	control	the	processor’s	operation.	In	turn,	the	mode	bit
is	modified	by	some	instructions,	just	as	the	program	counter	is	modified	by
some	instructions.

What	hardware	is	needed	to	let	the	operating	system	kernel	protect	applications
and	users	from	one	another,	yet	also	let	user	code	run	directly	on	the	processor?
At	a	minimum,	the	hardware	must	support	three	things:

Privileged	Instructions.	All	potentially	unsafe	instructions	are	prohibited
when	executing	in	user	mode.	(Section	2.2.1)

Memory	Protection.	All	memory	accesses	outside	of	a	process’s	valid
memory	region	are	prohibited	when	executing	in	user	mode.	(Section	2.2.2)

Timer	Interrupts.	Regardless	of	what	the	process	does,	the	kernel	must
have	a	way	to	periodically	regain	control	from	the	current	process.
(Section	2.2.3)

In	addition,	the	hardware	must	also	provide	a	way	to	safely	transfer	control	from
user	mode	to	kernel	mode	and	back.	As	the	mechanisms	to	do	this	are	relatively
involved,	we	defer	the	discussion	of	that	topic	to	Sections	2.3	and		2.4.

	

The	processor	status	register	and	privilege	levels

Conceptually,	the	kernel/user	mode	is	a	one-bit	register.	When	set	to	1,	the
processor	is	in	kernel	mode	and	can	do	anything.	When	set	to	0,	the	processor	is
in	user	mode	and	is	restricted.	On	most	processors,	the	kernel/user	mode	is
stored	in	the	processor	status	register.	This	register	contains	flags	that	control
the	processor’s	operation	and	is	typically	not	directly	accessible	to	application
code.	Rather,	flags	are	set	or	reset	as	a	by-product	of	executing	instructions.	For
example,	the	hardware	automatically	saves	the	status	register	to	memory	when
an	interrupt	occurs	because	otherwise	the	interrupt	handler	code	would
inadvertently	overwrite	its	contents.

The	kernel/user	mode	bit	is	one	flag	in	the	processor	status	register,	set
whenever	the	kernel	is	entered	and	reset	whenever	the	kernel	switches	back	to
user	mode.	Other	flags	include	condition	codes,	set	as	a	side	effect	of	arithmetic
operations,	to	allow	a	more	compact	encoding	of	conditional	branch
instructions.	Still	other	flags	can	specify	whether	the	processor	is	executing
with	16-bit,	32-bit,	or	64-bit	addresses.	The	specific	contents	of	the	processor
status	register	are	processor	architecture	dependent.

Some	processor	architectures,	including	the	Intel	x86,	support	more	than	two
privilege	levels	in	the	processor	status	register	(the	x86	supports	four	privilege
levels).	The	original	reason	for	this	was	to	allow	the	operating	system	kernel	to
be	separated	into	two	layers:	(i)	a	core	with	unlimited	access	to	the	machine,
and	(ii)	an	outer	layer	restricted	from	certain	operations,	but	with	more	power
than	completely	unprivileged	application	code.	This	way,	bugs	in	one	part	of
the	operating	system	kernel	might	not	crash	the	entire	system.	However,	to	our
knowledge,	neither	MacOS,	Windows,	nor	Linux	make	use	of	this	feature.

A	potential	future	use	for	multiple	privilege	levels	would	be	to	simplify	running
an	operating	system	as	an	application,	or	virtual	machine,	on	top	of	another
operating	system.	Applications	running	on	top	of	the	virtual	machine	operating
system	would	run	at	user	level;	the	virtual	machine	would	run	at	some
intermediate	level;	and	the	true	kernel	would	run	in	kernel	mode.	Of	course,
with	only	four	levels,	this	does	not	work	for	a	virtual	machine	running	on	a
virtual	machine	running	on	a	virtual	machine.	For	our	discussion,	we	assume
the	simpler	and	more	universal	case	of	two	levels	of	hardware	protection.

	

2.2.1	Privileged	Instructions

Process	isolation	is	possible	only	if	there	is	a	way	to	limit	programs	running	in
user	mode	from	directly	changing	their	privilege	level.	We	discuss	in	Section	2.3
that	processes	can	indirectly	change	their	privilege	level	by	executing	a	special
instruction,	called	a	system	call,	to	transfer	control	into	the	kernel	at	a	fixed
location	defined	by	the	operating	system.	Other	than	transferring	control	into	the
operating	system	kernel	(that	is,	in	effect,	becoming	the	kernel)	at	these	fixed
locations,	an	application	process	cannot	change	its	privilege	level.

Other	instructions	are	also	limited	to	use	by	kernel	code.	The	application	cannot
be	allowed	to	change	the	set	of	memory	locations	it	can	access;	we	discuss	in
Section	2.2.2	how	limiting	an	application	to	accessing	only	its	own	memory	is
essential	to	preventing	it	from	either	intentionally,	or	accidentally,	corrupting	or
misusing	the	data	or	code	from	other	applications	or	the	operating	system.
Further,	applications	cannot	disable	processor	interrupts,	as	we	will	explain	in
Section	2.2.3.

Instructions	available	in	kernel	mode,	but	not	in	user	mode,	are	called	privileged
instructions.	The	operating	system	kernel	must	be	able	to	execute	these
instructions	to	do	its	work	—	it	needs	to	change	privilege	levels,	adjust	memory
access,	and	disable	and	enable	interrupts.	If	these	instructions	were	available	to
applications,	then	a	rogue	application	would	in	effect	have	the	power	of	the
operating	system	kernel.

Thus,	while	application	programs	can	use	only	a	subset	of	the	full	instruction	set,
the	operating	system	executes	in	kernel	mode	with	the	full	power	of	the
hardware.

hardware.

What	happens	if	an	application	attempts	to	access	restricted	memory	or	attempts
to	change	its	privilege	level?	Such	actions	cause	a	processor	exception.	Unlike
taking	an	exception	in	a	programming	language	where	the	language	runtime	and
user	code	handles	the	exception,	a	processor	exception	causes	the	processor	to
transfer	control	to	an	exception	handler	in	the	operating	system	kernel.	Usually,
the	kernel	simply	halts	the	process	after	a	privilege	violation.

EXAMPLE:	What	could	happen	if	applications	were	allowed	to	jump	into
kernel	mode	at	any	location	in	the	kernel?

ANSWER:	Although	it	might	seem	that	the	worst	that	could	happen	would	be
that	the	operating	system	would	crash	(bad	enough!),	this	might	also	allow	a
malicious	application	to	gain	access	to	privileged	data	or	possibly	control	over
the	machine.	The	operating	system	kernel	implements	a	set	of	privileged
services	on	behalf	of	applications.	Typically,	one	of	the	first	steps	in	a	kernel
routine	is	to	verify	whether	the	user	has	permission	to	perform	the	operation;	for
example,	the	file	system	checks	if	the	user	has	permission	to	read	a	file	before
returning	the	data.	If	an	application	can	jump	past	the	permission	check,	it	could
potentially	evade	the	kernel’s	security	limits.	□

2.2.2	Memory	Protection

To	run	an	application	process,	both	the	operating	system	and	the	application
must	be	resident	in	memory	at	the	same	time.	The	application	must	be	in
memory	in	order	to	execute,	while	the	operating	system	must	be	there	to	start	the
program	and	to	handle	any	interrupts,	processor	exceptions,	or	system	calls	that
happen	while	the	program	runs.	Further,	other	application	processes	may	also	be
stored	in	memory;	for	example,	you	may	read	email,	download	songs,	Skype,
instant	message,	and	browse	the	web	at	the	same	time.

To	make	memory	sharing	safe,	the	operating	system	must	be	able	to	configure
the	hardware	so	that	each	application	process	can	read	and	write	only	its	own
memory,	not	the	memory	of	the	operating	system	or	any	other	application.
Otherwise,	an	application	could	modify	the	operating	system	kernel’s	code	or
data	to	gain	control	over	the	system.	For	example,	the	application	could	change
the	login	program	to	give	the	attacker	full	system	administrator	privileges.	While
it	might	seem	that	read-only	access	to	memory	is	harmless,	recall	that	operating
systems	need	to	provide	both	security	and	privacy.	Kernel	data	structures	—

systems	need	to	provide	both	security	and	privacy.	Kernel	data	structures	—
such	as	the	file	system	buffer	—	may	contain	private	user	data.	Likewise,	user
passwords	may	be	stored	in	kernel	memory	while	they	are	being	verified.

	

MS/DOS	and	memory	protection

As	an	illustration	of	the	power	of	memory	protection,	MS/DOS	was	an	early
Microsoft	operating	system	that	did	not	provide	it.	Instead,	user	programs	could
read	and	modify	any	memory	location	in	the	system,	including	operating	system
data	structures.	While	this	was	seen	as	acceptable	for	a	personal	computer	that
was	only	used	by	a	single	person	at	a	time,	there	were	a	number	of	downsides.
One	obvious	problem	was	system	reliability:	application	bugs	frequently
crashed	the	operating	system	or	corrupted	other	applications.	The	lack	of
memory	protection	also	made	the	system	more	vulnerable	to	computer	viruses.

Over	time,	some	applications	took	advantage	of	the	ability	to	change	operating
system	data	structures,	for	example,	to	change	certain	control	parameters	or	to
directly	manipulate	the	frame	buffer	for	controlling	the	display.	As	a	result,
changing	the	operating	system	became	quite	difficult;	either	the	new	version
could	not	run	the	old	applications,	limiting	its	appeal,	or	it	needed	to	leave	these
data	structures	in	precisely	the	same	place	as	they	were	in	the	old	version.	In
other	words,	memory	protection	is	not	only	useful	for	reliability	and	security;	it
also	helps	to	enforce	a	well-defined	interface	between	applications	and	the
operating	system	kernel	to	aid	future	evolvability	and	portability.

	

How	does	the	operating	system	prevent	a	user	program	from	accessing	parts	of
physical	memory?	We	discuss	a	wide	variety	of	different	approaches	in
	Chapter	8,	but	early	computers	pioneered	a	simple	mechanism	to	provide
protection.	We	describe	it	now	to	illustrate	the	general	principle.

Figure	2.5:	Base	and	bound	memory	protection	using	physical	addresses.	Every	code	and	data	address
generated	by	the	program	is	first	checked	to	verify	that	its	address	lies	within	the	memory	region	of	the
process.

With	this	approach,	a	processor	has	two	extra	registers,	called	base	and	bound.
The	base	specifies	the	start	of	the	process’s	memory	region	in	physical	memory,
while	the	bound	gives	its	endpoint	(Figure	2.5).	These	registers	can	be	changed
only	by	privileged	instructions,	that	is,	by	the	operating	system	executing	in
kernel	mode.	User-level	code	cannot	change	their	values.

Every	time	the	processor	fetches	an	instruction,	it	checks	the	address	of	the
program	counter	to	see	if	it	is	between	the	base	and	the	bound	registers.	If	so,	the
instruction	fetch	is	allowed	to	proceed;	otherwise,	the	hardware	raises	an
exception,	suspending	the	program	and	transferring	control	back	to	the	operating
system	kernel.	Although	it	might	seem	extravagant	to	perform	two	extra
comparisons	for	each	instruction,	memory	protection	is	worth	the	cost.	In	fact,
we	will	discuss	much	more	sophisticated	and	“extravagant"	memory	protection
schemes	in	Chapter	8.

Likewise,	for	instructions	that	read	or	write	data	to	memory,	the	processor
checks	each	memory	reference	against	the	base	and	bound	registers,	generating	a
processor	exception	if	the	boundaries	are	violated.	Complex	instructions,	such	as

processor	exception	if	the	boundaries	are	violated.	Complex	instructions,	such	as
a	block	copy	instruction,	must	check	every	location	touched	by	the	instruction,
to	ensure	that	the	application	does	not	inadvertently	or	maliciously	read	or	write
to	a	buffer	that	starts	in	its	own	region	but	that	extends	into	the	kernel’s	region.
Otherwise,	applications	could	read	or	overwrite	key	parts	of	the	operating
system	code	or	data	and	thereby	gain	control	of	the	system.

The	operating	system	kernel	executes	without	the	base	and	bound	registers,
allowing	it	to	access	any	memory	on	the	system	—	the	kernel’s	memory	or	the
memory	of	any	application	process	running	on	the	system.	Because	applications
touch	only	their	own	memory,	the	kernel	must	explicitly	copy	any	input	or
output	into	or	out	of	the	application’s	memory	region.	For	example,	a	simple
program	might	print	“hello	world".	The	kernel	must	copy	the	string	out	of	the
application’s	memory	region	into	the	screen	buffer.

Memory	allocation	with	base	and	bound	registers	is	simple,	analogous	to	heap
memory	allocation.	When	a	program	starts	up,	the	kernel	finds	a	free	block	of
contiguous	physical	memory	with	enough	room	to	store	the	entire	program,	its
data,	heap	and	execution	stack.	If	the	free	block	is	larger	than	needed,	the	kernel
returns	the	remainder	to	the	heap	for	allocation	to	some	other	process.

	

Memory-mapped	devices

On	most	computers,	the	operating	system	controls	input/output	devices	—	such
as	the	disk,	network,	or	keyboard	—	by	reading	and	writing	to	special	memory
locations.	Each	device	monitors	the	memory	bus	for	the	address	assigned	to	it,
and	when	it	sees	its	address,	the	device	triggers	the	desired	I/O	operation.

The	operating	system	can	use	memory	protection	to	prevent	user-level
processes	from	accessing	these	special	memory	locations.	Thus,	memory
protection	has	the	added	advantage	of	limiting	direct	access	to	input/output
devices	by	user	code.	By	limiting	each	process	to	just	its	own	memory
locations,	the	kernel	prevents	processes	from	directly	reading	or	writing	to	the
disk	controller	or	other	devices.	In	this	way,	a	buggy	or	malicious	application
cannot	modify	the	operating	system’s	image	stored	on	disk,	and	a	user	cannot
gain	access	to	another	user’s	files	without	first	going	through	the	operating
system	to	check	file	permissions.

	

Using	physically	addressed	base	and	bound	registers	can	provide	protection,	but
this	does	not	provide	some	important	features:

Expandable	heap	and	stack.	With	a	single	pair	of	base	and	bound
registers	per	process,	the	amount	of	memory	allocated	to	a	program	is	fixed
when	the	program	starts.	Although	the	operating	system	can	change	the
bound,	most	programs	have	two	(or	more)	memory	regions	that	need	to
independently	expand	depending	on	program	behavior.	The	execution	stack
holds	procedure	local	variables	and	grows	with	the	depth	of	the	procedure
call	graph;	the	heap	holds	dynamically	allocated	objects.	Most	systems
today	grow	the	heap	and	the	stack	from	opposite	sides	of	program	memory;
this	is	difficult	to	accommodate	with	a	pair	of	base	and	bound	registers.

Memory	sharing.	Base	and	bound	registers	do	not	allow	memory	to	be
shared	between	different	processes,	as	would	be	useful	for	sharing	code
between	multiple	processes	running	the	same	program	or	using	the	same
library.

Physical	memory	addresses.	When	a	program	is	compiled	and	linked,	the
addresses	of	its	procedures	and	global	variables	are	set	relative	to	the
beginning	of	the	executable	file,	that	is,	starting	at	zero.	With	the
mechanism	we	have	just	described	using	base	and	bound	registers,	each
program	is	loaded	into	physical	memory	at	runtime	and	must	use	those
physical	memory	addresses.	Since	a	program	may	be	loaded	at	different
locations	depending	on	what	other	programs	are	running	at	the	same	time,
the	kernel	must	change	every	instruction	and	data	location	that	refers	to	a
global	address,	each	time	the	program	is	loaded	into	memory.

Memory	fragmentation.	Once	a	program	starts,	it	is	nearly	impossible	to
relocate	it.	The	program	might	store	pointers	in	registers	or	on	the
execution	stack	(for	example,	the	program	counter	to	use	when	returning
from	a	procedure),	and	these	pointers	need	to	be	changed	to	move	the
program	to	a	different	region	of	physical	memory.	Over	time,	as
applications	start	and	finish	at	irregular	times,	memory	will	become
increasingly	fragmented.	Potentially,	memory	fragmentation	may	reach	a
point	where	there	is	not	enough	contiguous	space	to	start	a	new	process,

despite	sufficient	free	memory	in	aggregate.

For	these	reasons,	most	modern	processors	introduce	a	level	of	indirection,
called	virtual	addresses.	With	virtual	addresses,	every	process’s	memory	starts
at	the	same	place,	e.g.,	zero.	Each	process	thinks	that	it	has	the	entire	machine	to
itself,	although	obviously	that	is	not	the	case	in	reality.	The	hardware	translates
these	virtual	addresses	to	physical	memory	locations.	A	simple	algorithm	would
be	to	add	the	base	register	to	every	virtual	address	so	that	the	process	can	use
virtual	addresses	starting	from	zero.

In	practice,	modern	systems	use	much	more	complex	algorithms	to	translate
between	virtual	and	physical	addresses.	The	layer	of	indirection	provided	by
virtual	addresses	gives	operating	systems	enormous	flexibility	to	efficiently
manage	physical	memory.	For	example,	many	systems	with	virtual	addresses
allocate	physical	memory	in	fixed-sized,	rather	than	variable-sized,	chunks	to
reduce	fragmentation.

Virtual	addresses	can	also	let	the	heap	and	the	stack	start	at	separate	ends	of	the
virtual	address	space	so	they	can	grow	according	to	program	need	(Figure	2.6).
If	either	the	stack	or	heap	grows	beyond	its	initially	allocated	region,	the
operating	system	can	move	it	to	a	different	larger	region	in	physical	memory	but
leave	it	at	the	same	virtual	address.	The	expansion	is	completely	transparent	to
the	user	process.	We	discuss	virtual	addresses	in	more	depth	in	Chapter	8.

Figure	2.6:	Virtual	addresses	allow	the	stack	and	heap	regions	of	a	process	to	grow	independently.	To
grow	the	heap,	the	operating	system	can	move	the	heap	in	physical	memory	without	changing	the	heap’s
virtual	address.

Figure	2.7	lists	a	simple	test	program	to	verify	that	a	computer	supports	virtual
addresses.	The	program	has	a	single	static	variable;	it	updates	the	value	of	the
variable,	waits	for	a	few	seconds,	and	then	prints	the	location	of	the	variable	and
its	value.

	int	staticVar	=	0;				//	a	static	variable

	main()	{

					staticVar	+=	1;

	

					//	sleep	causes	the	program	to	wait	for	x	seconds

					sleep(10);

					printf	("Address:	%x;	Value:	%d\n",	&staticVar,	staticVar);

	}

	

	Produces:

					Address:	5328;	Value:	1

Figure	2.7:	A	simple	C	program	whose	output	illustrates	the	difference	between

execution	in	physical	memory	versus	virtual	memory.	When	multiple	copies	of
this	program	run	simultaneously,	the	output	does	not	change.

With	virtual	addresses,	if	multiple	copies	of	this	program	run	simultaneously,
each	copy	of	the	program	will	print	exactly	the	same	result.	This	would	be
impossible	if	each	copy	were	directly	addressing	physical	memory	locations.	In
other	words,	each	instance	of	the	program	appears	to	run	in	its	own	complete
copy	of	memory:	when	it	stores	a	value	to	a	memory	location,	it	alone	sees	its
changes	to	that	location.	Other	processes	change	their	own	copies	of	the	memory
location.	In	this	way,	a	process	cannot	alter	any	other	process’s	memory,
because	it	has	no	way	to	reference	the	other	process’s	memory;	only	the	kernel
can	read	or	write	the	memory	of	a	process	other	than	itself.

	

Address	randomization

Computer	viruses	often	work	by	attacking	hidden	vulnerabilities	in	operating
system	and	server	code.	For	example,	if	the	operating	system	developer	forgets
to	check	the	length	of	a	user	string	before	copying	it	into	a	buffer,	the	copy	can
overwrite	the	data	stored	immediately	after	the	buffer.	If	the	buffer	is	stored	on
the	stack,	this	might	allow	a	malicious	user	to	overwrite	the	return	program
counter	from	the	procedure;	the	attacker	can	then	cause	the	server	to	jump	to	an
arbitrary	point	(for	example,	into	code	embedded	in	the	string).	These	attacks
are	easier	to	mount	when	a	program	uses	the	same	locations	for	the	same
variables	each	time	it	runs.

Most	operating	systems,	such	as	Linux,	MacOS,	and	Windows,	combat	viruses
by	randomizing	(within	a	small	range)	the	virtual	addresses	that	a	program	uses
each	time	it	runs.	This	is	called	address	space	layout	randomization.	A	common
technique	is	to	pick	a	slightly	different	start	address	for	the	heap	and	stack	for
each	execution.	Thus,	in	Figure	2.7,	if	instead	we	printed	the	address	of	a
procedure	local	variable,	the	address	might	change	from	run	to	run,	even	though
the	value	of	the	variable	would	still	be	1.

Some	systems	have	begun	to	randomize	procedure	and	static	variable	locations,
as	well	as	the	offset	between	adjacent	procedure	records	on	the	stack	to	make	it
harder	to	force	the	system	to	jump	to	the	attacker’s	code.	Nevertheless,	each

harder	to	force	the	system	to	jump	to	the	attacker’s	code.	Nevertheless,	each
process	appears	to	have	its	own	copy	of	memory,	disjoint	from	all	other
processes.

	

This	is	very	much	akin	to	a	set	of	television	shows,	each	occupying	their	own
universe,	even	though	they	all	appear	on	the	same	television.	Events	in	one	show
do	not	(normally)	affect	the	plot	lines	of	other	shows.	Sitcom	characters	are
blissfully	unaware	that	Jack	Bauer	has	just	saved	the	world	from	nuclear
Armageddon.	Of	course,	just	as	television	shows	can	from	time	to	time	share
characters,	processes	can	also	communicate	if	the	kernel	allows	it.	We	will
discuss	how	this	happens	in	Chapter	3.

EXAMPLE:	Suppose	we	have	a	“perfect”	object-oriented	language	and
compiler	in	which	only	an	object’s	methods	can	access	the	data	inside	the	object.
If	the	operating	system	runs	only	programs	written	in	that	language,	would	it	still
need	hardware	memory	address	protection?

ANSWER:	In	theory,	no,	but	in	practice,	yes.	The	compiler	would	be
responsible	for	ensuring	that	no	application	program	read	or	modified	data
outside	of	its	own	objects.	This	requires,	for	example,	the	language	runtime	to	do
garbage	collection:	once	an	object	is	released	back	to	the	heap	(and	possibly
reused	by	some	other	application),	the	application	cannot	continue	to	hold	a
pointer	to	the	object.

In	practice,	this	approach	means	that	system	security	depends	on	the	correct
operation	of	the	compiler	in	addition	to	the	operating	system	kernel.	Any	bug	in
the	compiler	or	language	runtime	becomes	a	possible	way	for	an	attacker	to	gain
control	of	the	machine.	Many	languages	have	extensive	runtime	libraries	to
simplify	the	task	of	writing	programs	in	that	language;	often	these	libraries	are
written	for	performance	in	a	language	closer	to	the	hardware,	such	as	C.	Any
bug	in	a	library	routine	also	becomes	a	possible	means	for	an	attacker	to	gain
control.

Although	it	may	seem	redundant,	many	systems	use	both	language-level
protection	and	process-level	protection.	For	example,	Google’s	Chrome	web
browser	creates	a	separate	process	(e.g.,	one	per	browser	tab)	to	interpret	the
HTML,	Javascript,	or	Java	on	a	web	page.	This	way,	a	malicious	attacker	must

compromise	both	the	language	runtime	as	well	as	the	operating	system	process
boundary	to	gain	control	of	the	client	machine.	□

2.2.3	Timer	Interrupts

Process	isolation	also	requires	hardware	to	provide	a	way	for	the	operating
system	kernel	to	periodically	regain	control	of	the	processor.	When	the	operating
system	starts	a	user-level	program,	the	process	is	free	to	execute	any	user-level
(non-privileged)	instructions	it	chooses,	call	any	function	in	the	process’s
memory	region,	load	or	store	any	value	to	its	memory,	and	so	forth.	To	the	user
program,	it	appears	to	have	complete	control	of	the	hardware	within	the	limits	of
its	memory	region.

However,	this	too	is	only	an	illusion.	If	the	application	enters	an	infinite	loop,	or
if	the	user	simply	becomes	impatient	and	wants	the	system	to	stop	the
application,	then	the	operating	system	must	be	able	to	regain	control.	Of	course,
the	operating	system	needs	to	execute	instructions	to	decide	if	it	should	stop	the
application,	but	if	the	application	controls	the	processor,	the	operating	system	by
definition	is	not	running	on	that	processor.

The	operating	system	also	needs	to	regain	control	of	the	processor	in	normal
operation.	Suppose	you	are	listening	to	music	on	your	computer,	downloading	a
file,	and	typing	at	the	same	time.	To	smoothly	play	the	music,	and	to	respond	in
a	timely	way	to	user	input,	the	operating	system	must	be	able	to	regain	control	to
switch	to	a	new	task.

	

MacOS	and	preemptive	scheduling

Until	2002,	Apple’s	MacOS	lacked	the	ability	to	force	a	process	to	yield	the
processor	back	to	the	kernel.	Instead,	all	application	programmers	were	told	to
design	their	systems	to	periodically	call	into	the	operating	system	to	check	if
there	was	other	work	to	be	done.	The	operating	system	would	then	save	the
state	of	the	original	process,	switch	control	to	another	application,	and	return
only	when	it	again	became	the	original	process’s	turn.	This	had	a	drawback:	if	a
process	failed	to	yield,	e.g.,	because	it	had	a	bug	and	entered	an	infinite	loop,
the	operating	system	kernel	had	no	recourse.	The	user	needed	to	reboot	the
machine	to	return	control	to	the	operating	system.	This	happened	frequently

machine	to	return	control	to	the	operating	system.	This	happened	frequently
enough	that	it	was	given	its	own	name:	the	“spinning	cursor	of	death.”

	

Almost	all	computer	systems	include	a	device	called	a	hardware	timer,	which
can	be	set	to	interrupt	the	processor	after	a	specified	delay	(either	in	time	or	after
some	number	of	instructions	have	been	executed).	Each	timer	interrupts	only	one
processor,	so	a	multiprocessor	will	usually	have	a	separate	timer	for	each	CPU.
The	operating	system	might	set	each	timer	to	expire	every	few	milliseconds;
human	reaction	time	is	a	few	hundred	of	milliseconds.	Resetting	the	timer	is	a
privileged	operation,	accessible	only	within	the	kernel,	so	that	the	user-level
process	cannot	inadvertently	or	maliciously	disable	the	timer.

When	the	timer	interrupt	occurs,	the	hardware	transfers	control	from	the	user
process	to	the	kernel	running	in	kernel	mode.	Other	hardware	interrupts,	such	as
to	signal	the	processor	that	an	I/O	device	has	completed	its	work,	likewise
transfer	control	from	the	user	process	to	the	kernel.	A	timer	or	other	interrupt
does	not	imply	that	the	program	has	an	error;	in	most	cases,	after	resetting	the
timer,	the	operating	system	resumes	execution	of	the	process,	setting	the	mode,
program	counter	and	registers	back	to	the	values	they	had	immediately	before
the	interrupt	occurred.	We	discuss	the	hardware	and	kernel	mechanisms	for
implementing	interrupts	in	Section	2.4.

EXAMPLE:	How	does	the	kernel	know	if	an	application	is	in	an	infinite	loop?

ANSWER:	It	doesn’t.	Typically,	the	operating	system	will	terminate	a	process
only	when	requested	by	the	user	or	system	administrator,	e.g.,	because	the
application	has	become	non-responsive	to	user	input.	The	operating	system
needs	to	be	able	to	regain	control	to	be	able	to	ask	the	user	if	she	wants	to	shut
down	a	particular	process.	□

2.3	Types	of	Mode	Transfer

Once	the	kernel	has	placed	a	user	process	in	a	carefully	constructed	sandbox,	the
next	question	is	how	to	safely	transition	from	executing	a	user	process	to
executing	the	kernel,	and	vice	versa.	These	transitions	are	not	rare	events.	A
high-performance	web	server,	for	example,	might	switch	between	user	mode	and

kernel	mode	thousands	of	times	per	second.	Thus,	the	mechanism	must	be	both
fast	and	safe,	leaving	no	room	for	malicious	or	buggy	programs	to	corrupt	the
kernel,	either	intentionally	or	inadvertently.

2.3.1	User	to	Kernel	Mode

We	first	focus	on	transitions	from	user	mode	to	kernel	mode;	as	we	will	see,
transitioning	in	the	other	direction	works	by	“undo"-ing	the	transition	from	the
user	process	into	the	kernel.

There	are	three	reasons	for	the	kernel	to	take	control	from	a	user	process:
interrupts,	processor	exceptions,	and	system	calls.	Interrupts	occur
asynchronously	—	that	is,	they	are	triggered	by	an	external	event	and	can	cause
a	transfer	to	kernel	mode	after	any	user-mode	instruction.

Processor	exceptions	and	system	calls	are	synchronous	events	triggered	by
process	execution.	We	use	the	term	trap	to	refer	to	any	synchronous	transfer	of
control	from	user	mode	to	the	kernel;	some	systems	use	the	term	more
generically	for	any	transfer	of	control	from	a	less	privileged	to	a	more	privileged
level.

Interrupts.	An	interrupt	is	an	asynchronous	signal	to	the	processor	that
some	external	event	has	occurred	that	may	require	its	attention.	As	the
processor	executes	instructions,	it	checks	for	whether	an	interrupt	has
arrived.	If	so,	it	completes	or	stalls	any	instructions	that	are	in	progress.
Instead	of	fetching	the	next	instruction,	the	processor	hardware	saves	the
current	execution	state	and	starts	executing	at	a	specially	designated
interrupt	handler	in	the	kernel.	On	a	multiprocessor,	an	interrupt	is	taken	on
only	one	of	the	processors;	the	others	continue	to	execute	as	if	nothing
happened.

Each	different	type	of	interrupt	requires	its	own	handler.	For	timer
interrupts,	the	handler	checks	if	the	current	process	is	being	responsive	to
user	input	to	detect	if	the	process	has	gone	into	an	infinite	loop.	The	timer
handler	can	also	switch	execution	to	a	different	process	to	ensure	that	each
process	gets	a	turn.	If	no	change	is	needed,	the	timer	handler	resumes
execution	at	the	interrupted	instruction,	transparently	to	the	user	process.

Interrupts	are	also	used	to	inform	the	kernel	of	the	completion	of	I/O
requests.	For	example,	mouse	device	hardware	triggers	an	interrupt	every

requests.	For	example,	mouse	device	hardware	triggers	an	interrupt	every
time	the	user	moves	or	clicks	on	the	mouse.	The	kernel,	in	turn,	notifies	the
appropriate	user	process	—	the	one	the	user	was	“mousing”	across.
Virtually	every	I/O	device	—	the	Ethernet,	WiFi,	hard	disk,	thumb	drive,
keyboard,	mouse	—	generates	an	interrupt	whenever	some	input	arrives	for
the	processor	and	whenever	a	request	completes.

An	alternative	to	interrupts	is	polling:	the	kernel	loops,	checking	each
input/output	device	to	see	if	an	event	has	occurred	that	requires	handling.
Needless	to	say,	if	the	kernel	is	polling,	it	is	not	available	to	run	user-level
code.

Interprocessor	interrupts	are	another	source	of	interrupts.	A	processor	can
send	an	interrupt	to	any	other	processor.	The	kernel	uses	these	interrupts	to
coordinate	actions	across	the	multiprocessor;	for	example,	when	a	parallel
program	exits,	the	kernel	sends	interrupts	to	stop	the	program	from
continuing	to	run	on	any	other	processor.

	

Buffer	descriptors	and	high-performance	I/O

In	early	computer	systems,	the	key	to	good	performance	was	to	keep	the
processor	busy;	particularly	for	servers,	the	key	to	good	performance	today
is	keeping	I/O	devices,	such	as	the	network	and	disk	device,	busy.	Neither
Internet	nor	disk	bandwidth	has	kept	pace	with	the	rapid	improvement	in
processor	performance	over	the	past	four	decades,	leaving	them	relatively
more	important	than	the	CPU	to	system	performance.

A	simple,	but	inefficient,	approach	to	designing	the	operating	system
software	to	manage	an	I/O	device	is	to	allow	only	one	I/O	operation	to	the
device	at	any	one	time.	In	this	case,	interrupt	handling	can	be	a	limiting
factor	to	performance.	When	the	device	completes	a	request,	it	raises	an
interrupt,	causing	the	device	interrupt	handler	to	run.	The	handler	can	then
issue	the	next	pending	request	to	the	hardware.	In	the	meantime,	while	the
processor	is	handling	the	interrupt,	the	device	is	idle.

For	higher	performance,	the	operating	system	sets	up	a	circular	queue	of
requests	for	each	device	to	handle.	(A	network	interface	will	have	two

queues:	one	for	incoming	packets	and	one	for	outgoing	packets.)	Each
entry	in	the	queue,	called	a	buffer	descriptor,	specifies	one	I/O	operation:
the	requested	operation	(e.g.,	disk	read	or	write)	and	the	location	of	the
buffer	to	contain	the	data.	The	device	hardware	reads	the	buffer	descriptor
to	determine	what	operations	to	perform.	Provided	the	queue	of	buffer
descriptors	is	full,	the	device	can	start	working	on	the	next	operation	while
the	operating	system	handles	with	the	previous	one.

Buffer	descriptors	are	stored	in	memory,	accessed	by	the	device	using
DMA	(direct	memory	access).	An	implication	is	that	each	logical	I/O
operation	can	involve	several	DMA	requests:	one	to	download	the	buffer
descriptor	from	memory	into	the	device,	then	to	copy	the	data	in	or	out,
and	then	to	store	the	success/failure	of	the	operation	back	into	buffer
descriptor.

	

Processor	exceptions.	A	processor	exception	is	a	hardware	event	caused
by	user	program	behavior	that	causes	a	transfer	of	control	to	the	kernel.	As
with	an	interrupt,	the	hardware	finishes	all	previous	instructions,	saves	the
current	execution	state,	and	starts	running	at	a	specially	designated
exception	handler	in	the	kernel.	For	example,	a	processor	exception	occurs
whenever	a	process	attempts	to	perform	a	privileged	instruction	or	accesses
memory	outside	of	its	own	memory	region.	Other	processor	exceptions
occur	when	a	process	divides	an	integer	by	zero,	accesses	a	word	of
memory	with	a	non-aligned	address,	attempts	to	write	to	read-only	memory,
and	so	forth.	In	these	cases,	the	operating	system	simply	halts	the	process
and	returns	an	error	code	to	the	user.	On	a	multiprocessor,	the	exception
only	stops	execution	on	the	processor	triggering	the	exception;	the	kernel
then	needs	to	send	interprocessor	interrupts	to	stop	execution	of	the	parallel
program	on	other	processors.

Processor	exceptions	are	also	caused	by	more	benign	program	events.	For
example,	to	set	a	breakpoint	in	a	program,	the	kernel	replaces	the	machine
instruction	in	memory	with	a	special	instruction	that	invokes	a	trap.	When
the	program	reaches	that	point	in	its	execution,	the	hardware	switches	into
kernel	mode.	The	kernel	restores	the	old	instruction	and	transfers	control	to
the	debugger.	The	debugger	can	then	examine	the	program’s	variables,	set	a
new	breakpoint,	and	resume	the	program	at	the	instruction	causing	the

new	breakpoint,	and	resume	the	program	at	the	instruction	causing	the
exception.

	

Processor	exceptions	and	virtualization

Processor	exceptions	are	a	particularly	powerful	tool	for	virtualization	—
the	emulation	of	hardware	that	does	not	actually	exist.	As	one	example,	it
is	common	for	different	versions	of	a	processor	architecture	family	to
support	some	parts	of	the	instruction	set	and	not	others,	such	as	when	an
inexpensive,	low-power	processor	does	not	support	floating	point
operations.	At	some	cost	in	performance,	the	operating	system	can	use
processor	exceptions	to	make	the	difference	completely	transparent	to	the
user	process.	When	the	program	issues	a	floating	point	instruction,	an
exception	is	raised,	trapping	into	the	operating	system	kernel.	Instead	of
halting	the	process,	the	operating	system	can	emulate	the	missing
instruction,	and,	on	completion,	return	to	the	user	process	at	the	instruction
immediately	after	the	one	that	caused	the	exception.	In	this	way,	the	same
program	binary	can	run	on	different	versions	of	the	processor.

More	generally,	processor	exceptions	are	used	to	transparently	emulate	a
virtual	machine.	When	a	guest	operating	system	is	running	as	a	user-level
process	on	top	of	an	operating	system,	it	will	attempt	to	execute	privileged
instructions	as	if	it	were	running	on	physical	hardware.	These	instructions
will	cause	processor	exceptions,	trapping	into	the	host	operating	system
kernel.	To	maintain	the	illusion	of	physical	hardware,	the	host	kernel	then
performs	the	requested	instruction	of	behalf	of	the	user-level	virtual
machine	and	restarts	the	guest	operating	system	at	the	instruction
immediately	following	the	one	that	caused	the	exception.

As	a	final	example,	processor	exceptions	are	a	key	building	block	for
memory	management.	With	most	types	of	virtual	addressing,	the	processor
can	be	set	up	to	take	an	exception	whenever	it	reads	or	writes	inside	a
particular	virtual	address	range.	This	allows	the	kernel	to	treat	memory	as
virtual	—	a	portion	of	the	program	memory	may	be	stored	on	disk	instead
of	in	physical	memory.	When	the	program	touches	a	missing	address,	the
operating	system	exception	handler	fills	in	the	data	from	disk	before
resuming	the	program.	In	this	way,	the	operating	system	can	execute

programs	that	require	more	memory	than	can	fit	on	the	machine	at	the
same	time.

	

System	calls.	User	processes	can	also	transition	into	the	operating	system
kernel	voluntarily	to	request	that	the	kernel	perform	an	operation	on	the
user’s	behalf.	A	system	call	is	any	procedure	provided	by	the	kernel	that
can	be	called	from	user	level.	Most	processors	implement	system	calls	with
a	special	trap	or	syscall	instruction.	However,	a	special	instruction	is	not
strictly	required;	on	some	systems,	a	process	triggers	a	system	call	by
executing	an	instruction	with	a	specific	invalid	opcode.

As	with	an	interrupt	or	a	processor	exception,	the	trap	instruction	changes
the	processor	mode	from	user	to	kernel	and	starts	executing	in	the	kernel	at
a	pre-defined	handler.	To	protect	the	kernel	from	misbehaving	user
programs,	it	is	essential	that	the	hardware	transfers	control	on	a	system	call
to	a	pre-defined	address	—	user	processes	cannot	be	allowed	to	jump	to
arbitrary	places	in	the	kernel.

Operating	systems	can	provide	any	number	of	system	calls.	Examples
include	system	calls	to	establish	a	connection	to	a	web	server,	to	send	or
receive	packets	over	the	network,	to	create	or	delete	files,	to	read	or	write
data	into	files,	and	to	create	a	new	user	process.	To	the	user	program,	these
are	called	like	normal	procedures,	with	parameters	and	return	values.	The
caller	needs	to	be	concerned	only	with	the	interface;	it	does	not	need	to
know	that	the	routine	is	actually	being	implemented	by	the	kernel.	The
kernel	handles	the	details	of	checking	and	copying	arguments,	performing
the	operation,	and	copying	return	values	back	into	the	process’s	memory.
When	the	kernel	completes	the	system	call,	it	resumes	user-level	execution
at	the	instruction	immediately	after	the	trap.

2.3.2	Kernel	to	User	Mode

Just	as	there	are	several	different	types	of	transitions	from	user	to	kernel	mode,
there	are	several	types	of	transitions	from	kernel	to	user	mode:

New	process.	To	start	a	new	process,	the	kernel	copies	the	program	into

memory,	sets	the	program	counter	to	the	first	instruction	of	the	process,	sets
the	stack	pointer	to	the	base	of	the	user	stack,	and	switches	to	user	mode.

Resume	after	an	interrupt,	processor	exception,	or	system	call.	When
the	kernel	finishes	handling	the	request,	it	resumes	execution	of	the
interrupted	process	by	restoring	its	program	counter	(in	the	case	of	a	system
call,	the	instruction	after	the	trap),	restoring	its	registers,	and	changing	the
mode	back	to	user	level.

Switch	to	a	different	process.	In	some	cases,	such	as	on	a	timer	interrupt,
the	kernel	switches	to	a	different	process	than	the	one	that	had	been	running
before	the	interrupt.	Since	the	kernel	will	eventually	resume	the	old
process,	the	kernel	needs	to	save	the	process	state	—	its	program	counter,
registers,	and	so	forth	—	in	the	process’s	control	block.	The	kernel	can	then
resume	a	different	process	by	loading	its	state	—	its	program	counter,
registers,	and	so	forth	—	from	the	process’s	control	block	into	the	processor
and	then	switching	to	user	mode.

User-level	upcall.	Many	operating	systems	provide	user	programs	with	the
ability	to	receive	asynchronous	notification	of	events.	The	mechanism,
which	we	describe	in	Section	2.8,	is	similar	to	kernel	interrupt	handling,
except	at	user	level.

2.4	Implementing	Safe	Mode	Transfer

Whether	transitioning	from	user	to	kernel	mode	or	in	the	opposite	direction,	care
must	be	taken	to	ensure	that	a	buggy	or	malicious	user	program	cannot	corrupt
the	kernel.	Although	the	basic	idea	is	simple,	the	low-level	implementation	can
be	a	bit	complex:	the	processor	must	save	its	state	and	switch	what	it	is	doing,
while	executing	instructions	that	might	alter	the	state	that	it	is	in	the	process	of
saving.	This	is	akin	to	rebuilding	a	car’s	transmission	while	it	barrels	down	the
road	at	60	mph.

The	context	switch	code	must	be	carefully	crafted,	and	it	relies	on	hardware
support.	To	avoid	confusion	and	reduce	the	possibility	of	error,	most	operating
systems	have	a	common	sequence	of	instructions	both	for	entering	the	kernel	—
whether	due	to	interrupts,	processor	exceptions	or	system	calls	—	and	for
returning	to	user	level,	again	regardless	of	the	cause.

At	a	minimum,	this	common	sequence	must	provide:

At	a	minimum,	this	common	sequence	must	provide:

Limited	entry	into	the	kernel.	To	transfer	control	to	the	operating	system
kernel,	the	hardware	must	ensure	that	the	entry	point	into	the	kernel	is	one
set	up	by	the	kernel.	User	programs	cannot	be	allowed	to	jump	to	arbitrary
locations	in	the	kernel.	For	example,	the	kernel	code	for	handling	the	read
file	system	call	first	checks	whether	the	user	program	has	permission	to	do
so.	If	not,	the	kernel	should	return	an	error.	Without	limited	entry	points
into	the	kernel,	a	malicious	program	could	jump	immediately	after	the	code
to	perform	the	check,	allowing	the	program	to	access	to	anyone’s	file.

Atomic	changes	to	processor	state.	In	user	mode,	the	program	counter	and
stack	point	to	memory	locations	in	the	user	process;	memory	protection
prevents	the	user	process	from	accessing	any	memory	outside	of	its	region.
In	kernel	mode,	the	program	counter	and	stack	point	to	memory	locations	in
the	kernel;	memory	protection	is	changed	to	allow	the	kernel	to	access	both
its	own	data	and	that	of	the	user	process.	Transitioning	between	the	two	is
atomic	—	the	mode,	program	counter,	stack,	and	memory	protection	are	all
changed	at	the	same	time.

Transparent,	restartable	execution.	An	event	may	interrupt	a	user-level
process	at	any	point,	between	any	instruction	and	the	next	one.	For
example,	the	processor	could	have	calculated	a	memory	address,	loaded	it
into	a	register,	and	be	about	to	store	a	value	to	that	address.	The	operating
system	must	be	able	to	restore	the	state	of	the	user	program	exactly	as	it
was	before	the	interrupt	occurred.	To	the	user	process,	an	interrupt	is
invisible,	except	that	the	program	temporarily	slows	down.	A	“hello	world”
program	is	not	written	to	understand	interrupts,	but	an	interrupt	might	still
occur	while	the	program	is	running.

On	an	interrupt,	the	processor	saves	its	current	state	to	memory,	temporarily
defers	further	events,	changes	to	kernel	mode,	and	then	jumps	to	the
interrupt	or	exception	handler.	When	the	handler	finishes,	the	steps	are
reversed:	the	processor	state	is	restored	from	its	saved	location,	with	the
interrupted	program	none	the	wiser.

With	that	context,	we	now	describe	the	hardware	and	software	mechanism	for
handling	an	interrupt,	processor	exception,	or	system	call.	Later,	we	reuse	this
same	basic	mechanism	as	a	building	block	for	implementing	user-level	signals.

2.4.1	Interrupt	Vector	Table

When	an	interrupt,	processor	exception	or	system	call	trap	occurs,	the	operating
system	must	take	different	actions	depending	on	whether	the	event	is	a	divide-
by-zero	exception,	a	file	read	system	call,	or	a	timer	interrupt.	How	does	the
processor	know	what	code	to	run?

Figure	2.8:	An	interrupt	vector	table	lists	the	kernel	routines	to	handle	various	hardware	interrupts,
processor	exceptions,	and	system	calls.

As	Figure	2.8	illustrates,	the	processor	has	a	special	register	that	points	to	an
area	of	kernel	memory	called	the	interrupt	vector	table.	The	interrupt	vector
table	is	an	array	of	pointers,	with	each	entry	pointing	to	the	first	instruction	of	a
different	handler	procedure	in	the	kernel.	An	interrupt	handler	is	the	term	used
for	the	procedure	called	by	the	kernel	on	an	interrupt.

The	format	of	the	interrupt	vector	table	is	processor-specific.	On	the	x86,	for
example,	interrupt	vector	table	entries	0	-	31	are	for	different	types	of	processor
exceptions	(such	as	divide-by-zero);	entries	32	-	255	are	for	different	types	of
interrupts	(timer,	keyboard,	and	so	forth);	and,	by	convention,	entry	64	points	to
the	system	call	trap	handler.	The	hardware	determines	which	hardware	device

the	system	call	trap	handler.	The	hardware	determines	which	hardware	device
caused	the	interrupt,	whether	the	trap	instruction	was	executed,	or	what
exception	condition	occurred.	Thus,	the	hardware	can	select	the	right	entry	from
the	interrupt	vector	table	and	invoke	the	appropriate	handler.

Some	other	processors	have	a	smaller	number	of	entry	points,	instead	putting	a
code	indicating	the	cause	of	the	interrupt	into	a	special	hardware	register.	In	that
case,	the	operating	system	software	uses	the	code	to	index	into	the	interrupt
vector	table.

EXAMPLE:	Why	is	the	interrupt	vector	table	stored	in	kernel	rather	than	user
memory?

ANSWER:	If	the	interrupt	vector	table	could	be	modified	by	application	code,
the	application	could	potentially	hijack	the	network	by	directing	all	network
interrupts	to	its	own	code.	Similarly,	the	hardware	register	that	points	to	the
interrupt	vector	table	must	be	a	protected	register	that	can	be	set	only	when	in
kernel	mode.	□

	

Multiprocessors	and	interrupt	routing

On	a	multiprocessor,	which	of	the	various	processors	should	take	an	interrupt?
Some	early	multiprocessors	dedicated	a	single	processor	(“processor	0")	to
handle	all	external	interrupts.	If	an	event	required	a	change	to	what	one	of	the
other	processors	was	doing,	processor	0	could	send	an	interprocessor	interrupt
to	trigger	that	processor	to	switch	to	a	new	process.

For	systems	needing	to	do	a	large	amount	of	input	and	output,	such	as	a	web
server,	directing	all	I/O	through	a	single	processor	can	become	a	bottleneck.	In
modern	systems,	interrupt	routing	is	increasingly	programmable,	under	control
of	the	kernel.	Each	processor	usually	has	its	own	hardware	timer.	Likewise,	disk
I/O	events	can	be	sent	directly	to	the	processor	that	requested	the	I/O	operation
rather	than	to	a	random	processor.	Modern	processors	can	run	substantially
faster	if	their	data	is	already	loaded	into	the	processor	cache,	versus	if	their	code
and	data	are	in	some	other	processor’s	cache.

Efficient	delivery	of	network	I/O	packets	is	even	more	challenging.	A	high
performance	server	might	send	and	receive	tens	of	thousands	of	packets	per

performance	server	might	send	and	receive	tens	of	thousands	of	packets	per
second,	representing	thousands	of	different	connections.	From	a	processing
perspective,	it	is	best	to	deliver	incoming	packets	to	the	processor	responsible
for	handling	that	connection;	this	requires	the	network	interface	hardware	to
redirect	the	incoming	packet	based	on	the	contents	of	its	header	(e.g.,	the	IP
address	and	port	number	of	the	client).	Recent	network	controllers	accomplish
this	by	supporting	multiple	buffer	descriptor	rings	for	the	same	device,	choosing
which	ring	to	use,	and	therefore	which	processor	to	interrupt,	based	on	the
header	of	the	arriving	packet.

	

2.4.2	Interrupt	Stack

Where	should	the	interrupted	process’s	state	be	saved,	and	what	stack	should	the
kernel’s	code	use?

On	most	processors,	a	special,	privileged	hardware	register	points	to	a	region	of
kernel	memory	called	the	interrupt	stack.	When	an	interrupt,	processor
exception,	or	system	call	trap	causes	a	context	switch	into	the	kernel,	the
hardware	changes	the	stack	pointer	to	point	to	the	base	of	the	kernel’s	interrupt
stack.	The	hardware	automatically	saves	some	of	the	interrupted	process’s
registers	by	pushing	them	onto	the	interrupt	stack	before	calling	the	kernel’s
handler.

When	the	kernel	handler	runs,	it	pushes	any	remaining	registers	onto	the	stack
before	performing	its	work.	When	returning	from	the	interrupt,	processor
exception	or	system	call	trap,	the	reverse	occurs:	first,	the	handler	pops	the	saved
registers,	and	then,	the	hardware	restores	the	registers	it	saved,	returning	to	the
point	where	the	process	was	interrupted.	When	returning	from	a	system	call,	the
value	of	the	saved	program	counter	must	be	incremented	so	that	the	hardware
returns	to	the	instruction	immediately	after	the	one	that	caused	the	trap.

You	might	think	you	could	use	the	process’s	user-level	stack	to	store	its	state.
However,	a	separate,	kernel-level	interrupt	stack	is	needed	for	two	reasons.

Reliability.	The	process’s	user-level	stack	pointer	might	not	be	a	valid
memory	address	(e.g.,	if	the	program	has	a	bug),	but	the	kernel	handler
must	continue	to	work	properly.

Security.	On	a	multiprocessor,	other	threads	running	in	the	same	process
can	modify	user	memory	during	the	system	call.	If	the	kernel	handler	stores
its	local	variables	on	the	user-level	stack,	the	user	program	might	be	able	to
modify	the	kernel’s	return	address,	potentially	causing	the	kernel	to	jump	to
arbitrary	code.

On	a	multiprocessor,	each	processor	needs	to	have	its	own	interrupt	stack	so
that,	for	example,	the	kernel	can	handle	simultaneous	system	calls	and
exceptions	across	multiple	processors.	For	each	processor,	the	kernel	allocates	a
separate	region	of	memory	as	that	processor’s	interrupt	stack.

2.4.3	Two	Stacks	per	Process

Most	operating	system	kernels	go	one	step	farther	and	allocate	a	kernel	interrupt
stack	for	every	user-level	process	(and	as	we	discuss	in	Chapter	4,	every	thread
that	executes	user	code).	When	a	user-level	process	is	running,	the	hardware
interrupt	stack	points	to	that	process’s	kernel	stack.	Note	that	when	a	process	is
running	at	user	level,	it	is	not	running	in	the	kernel	so	its	kernel	stack	is	empty.

Allocating	a	kernel	stack	per	process	makes	it	easier	to	switch	to	a	new	process
inside	an	interrupt	or	system	call	handler.	For	example,	a	timer	interrupt	handler
might	decide	to	give	the	processor	to	a	different	process.	Likewise,	a	system	call
might	need	to	wait	for	an	I/O	operation	to	complete;	in	the	meantime,	some
other	process	should	run.	With	per-process	stacks,	to	suspend	a	process,	we	store
a	pointer	to	its	kernel	stack	in	the	process	control	block,	and	switch	to	the	stack
of	the	new	process.	We	describe	this	mechanism	in	more	detail	in	Chapter	4.

Figure	2.9:	In	most	operating	systems,	a	process	has	two	stacks:	one	for	executing	user	code	and	one	for
kernel	code.	The	Figure	shows	the	kernel	and	user	stacks	for	various	states	of	a	process.	When	a	process	is
running	in	user	mode,	its	kernel	stack	is	empty.	When	a	process	has	been	preempted	(ready	but	not
running),	its	kernel	stack	will	contain	the	user-level	processor	state	at	the	point	when	the	user	process	was
interrupted.	When	a	process	is	inside	a	system	call	waiting	for	I/O,	the	kernel	stack	contains	the	context	to
be	resumed	when	the	I/O	completes,	and	the	user	stack	contains	the	context	to	be	resumed	when	the
system	call	returns.

Figure	2.9	summarizes	the	various	states	of	a	process’s	user	and	kernel	stacks:

If	the	process	is	running	on	the	processor	in	user	mode,	its	kernel	stack	is
empty,	ready	to	be	used	for	an	interrupt,	processor	exception,	or	system
call.

If	the	process	is	running	on	the	processor	in	kernel	mode	—	due	to	an
interrupt,	processor	exception	or	system	call	—	its	kernel	stack	is	in	use,
containing	the	saved	registers	from	the	suspended	user-level	computation	as
well	as	the	current	state	of	the	kernel	handler.

If	the	process	is	available	to	run	but	is	waiting	for	its	turn	on	the	processor,
its	kernel	stack	contains	the	registers	and	state	to	be	restored	when	the
process	is	resumed.

If	the	process	is	waiting	for	an	I/O	event	to	complete,	its	kernel	stack
contains	the	suspended	computation	to	be	resumed	when	the	I/O	finishes.

	

UNIX	and	kernel	stacks

In	the	original	implementation	of	UNIX,	kernel	memory	was	at	a	premium;
main	memory	was	roughly	one	million	times	more	expensive	per	byte	than	it	is
today.	The	initial	system	could	run	with	only	50KB	of	main	memory.	Instead	of
allocating	an	entire	interrupt	stack	per	process,	UNIX	allocated	just	enough
memory	in	the	process	control	block	to	store	the	user-level	registers	saved	on	a
mode	switch.	In	this	way,	UNIX	could	suspend	a	user-level	process	with	the
minimal	amount	of	memory.	UNIX	still	needed	a	few	kernel	stacks:	one	to	run
the	interrupt	handler	and	one	for	every	system	call	waiting	for	an	I/O	event	to
complete,	but	that	is	much	less	than	one	for	every	process.

Of	course,	now	that	memory	is	much	cheaper,	most	systems	keep	things	simple
and	allocate	a	kernel	stack	per	process	or	thread.

	

2.4.4	Interrupt	Masking

Interrupts	arrive	asynchronously;	the	processor	could	be	executing	either	user	or
kernel	code	when	an	interrupt	arrives.	In	certain	regions	of	the	kernel	—	such	as
inside	interrupt	handlers	themselves,	or	inside	the	CPU	scheduler	—	taking	an
interrupt	could	cause	confusion.	If	an	interrupt	handler	is	interrupted,	we	cannot
set	the	stack	pointer	to	point	to	the	base	of	the	kernel’s	interrupt	stack	—	doing
so	would	obliterate	the	state	of	the	first	handler.

To	simplify	the	kernel	design,	the	hardware	provides	a	privileged	instruction	to
temporarily	defer	delivery	of	an	interrupt	until	it	is	safe	to	do	so.	On	the	x86	and
several	other	processors,	this	instruction	is	called	disable	interrupts.	However,
this	is	a	misnomer:	the	interrupt	is	only	deferred	(masked),	and	not	ignored.
Once	a	corresponding	enable	interrupts	instruction	is	executed,	any	pending
interrupts	are	delivered	to	the	processor.	The	instructions	to	mask	and	unmask

interrupts	must	be	privileged;	otherwise,	user	code	could	inadvertently	or
maliciously	disable	the	hardware	timer,	allowing	the	machine	to	freeze.

If	multiple	interrupts	arrive	while	interrupts	are	disabled,	the	hardware	delivers
them	in	turn	when	interrupts	are	re-enabled.	However,	since	the	hardware	has
limited	buffering	for	pending	interrupts,	some	interrupts	may	be	lost	if	interrupts
are	disabled	for	too	long	a	period	of	time.	Generally,	the	hardware	will	buffer
one	interrupt	of	each	type;	the	interrupt	handler	is	responsible	for	checking	the
device	hardware	to	see	if	multiple	pending	I/O	events	need	to	be	processed.

	

Interrupt	handlers:	top	and	bottom	halves

When	a	machine	invokes	an	interrupt	handler	because	some	hardware	event
occurred	(e.g.,	a	timer	expired,	a	key	was	pressed,	a	network	packet	arrived,	or	a
disk	I/O	completed),	the	processor	hardware	typically	masks	interrupts	while
the	interrupt	handler	executes.	While	interrupts	are	disabled,	another	hardware
event	will	not	trigger	another	invocation	of	the	interrupt	handler	until	the
interrupt	is	re-enabled.

Some	interrupts	can	trigger	a	large	amount	of	processing,	and	it	is	undesirable
to	leave	interrupts	masked	for	too	long.	Hardware	I/O	devices	have	a	limited
amount	of	buffering,	which	can	lead	to	dropped	events	if	interrupts	are	not
processed	in	a	timely	fashion.	For	example,	keyboard	hardware	can	drop
keystrokes	if	the	keyboard	buffer	is	full.	Interrupt	handlers	are	therefore	divided
into	a	top	half	and	a	bottom	half	.	Unfortunately,	this	terminology	can	differ	a
bit	from	system	to	system;	in	Linux,	the	sense	of	top	and	bottom	are	reversed.
In	this	book,	we	adopt	the	more	common	(non-Linux)	usage.

The	interrupt	handler’s	bottom	half	is	invoked	by	the	hardware	and	executes
with	interrupts	masked.	It	is	designed	to	complete	quickly.	The	bottom	half
typically	saves	the	state	of	the	hardware	device,	resets	it	so	that	it	can	receive	a
new	event,	and	notifies	the	scheduler	that	the	top	half	needs	to	run.	At	this
point,	the	bottom	half	is	done,	and	it	can	re-enable	interrupts	and	return	to	the
interrupted	task	or	(if	the	event	is	high	priority)	switch	to	the	top	half	but	with
interrupts	enabled.	When	the	top	half	runs,	it	can	do	more	general	kernel	tasks,
such	as	parsing	the	arriving	packet,	delivering	it	to	the	correct	user-level

process,	sending	an	acknowledgment,	and	so	forth.	The	top	half	can	also	do
operations	that	require	the	kernel	to	wait	for	exclusive	access	to	shared	kernel
data	structures,	the	topic	of	Chapter	5.

	

If	the	processor	takes	an	interrupt	in	kernel	mode	with	interrupts	enabled,	it	is
safe	to	use	the	current	stack	pointer	rather	than	resetting	it	to	the	base	of	the
interrupt	stack.	This	approach	can	recursively	push	a	series	of	handlers’	states
onto	the	stack;	then,	as	each	one	completes,	its	state	is	popped	from	the	stack,
and	the	earlier	handler	is	resumed	where	it	left	off.

2.4.5	Hardware	Support	for	Saving	and	Restoring	Registers

An	interrupted	process’s	registers	must	be	saved	so	that	the	process	can	be
restarted	exactly	where	it	left	off.	Because	the	handler	might	change	the	values
in	those	registers	as	it	executes,	the	state	must	be	saved	before	the	handler	runs.
Because	most	instructions	modify	the	contents	of	registers,	the	hardware
typically	provides	special	instructions	to	make	it	easier	to	save	and	restore	user
state.

To	make	this	concrete,	consider	the	x86	architecture.	Rather	than	relying	on
handler	software	to	do	all	the	work,	when	an	interrupt	or	trap	occurs:

If	the	processor	is	in	user	mode,	the	x86	pushes	the	interrupted	process’s
stack	pointer	onto	the	kernel’s	interrupt	stack	and	switches	to	the	kernel
stack.

The	x86	pushes	the	interrupted	process’s	instruction	pointer.

The	x86	pushes	the	x86	processor	status	word.	The	processor	status	word
includes	control	bits,	such	as	whether	the	most	recent	arithmetic	operation
in	the	interrupted	code	resulted	in	a	positive,	negative,	or	zero	value.	This
needs	to	be	saved	and	restored	for	the	correct	behavior	of	any	subsequent
conditional	branch	instruction.

The	hardware	saves	the	values	for	the	stack	pointer,	program	counter,	and
processor	status	word	before	jumping	through	the	interrupt	vector	table	to	the

interrupt	handler.	Once	the	handler	starts	running,	these	values	will	be	those	of
the	handler,	not	those	of	the	interrupted	process.

Once	the	handler	starts	running,	it	can	use	the	pushad	(“push	all	double”)
instruction	to	save	the	remaining	registers	onto	the	stack.	This	instruction	saves
all	32-bit	x86	integer	registers.	On	a	16-bit	x86,	pusha	is	used	instead.	Because
the	kernel	does	not	typically	perform	floating	point	operations,	those	do	not	need
to	be	saved	unless	the	kernel	switches	to	a	different	process.

The	x86	architecture	has	complementary	features	for	restoring	state:	a	popad
instruction	to	pop	an	array	of	integer	register	values	off	the	stack	into	the
registers	and	an	iret	(return	from	interrupt)	instruction	that	loads	a	stack	pointer,
instruction	pointer,	and	processor	status	word	off	of	the	stack	into	the
appropriate	processor	registers.

	

Architectural	support	for	fast	mode	switches

Some	processor	architectures	are	able	to	execute	user-and	kernel-mode	switches
very	efficiently,	while	other	architectures	are	much	slower	at	performing	these
switches.

The	SPARC	architecture	is	in	the	first	camp.	SPARC	defines	a	set	of	register
windows	that	operate	like	a	hardware	stack.	Each	register	window	includes	a
full	set	of	the	registers	defined	by	the	SPARC	instruction	set.	When	the
processor	performs	a	procedure	call,	it	shifts	to	a	new	window,	so	the	compiler
never	needs	to	save	and	restore	registers	across	procedure	calls,	making	them
quite	fast.	(At	a	deep	enough	level	of	recursion,	the	SPARC	will	run	out	of	its
register	windows;	it	then	takes	an	exception	that	saves	half	the	windows	and
resumes	execution.	Another	exception	occurs	when	the	processor	pops	its	last
window,	allowing	the	kernel	to	reload	the	saved	windows.)

Mode	switches	can	be	quite	fast	on	the	SPARC.	On	a	mode	switch,	the
processor	switches	to	a	different	register	window.	The	kernel	handler	can	then
run,	using	the	registers	from	the	new	window	and	not	disturbing	the	values
stored	in	the	interrupted	process’s	copy	of	its	registers.	Unfortunately,	this
comes	at	a	cost:	switching	between	different	processes	is	quite	expensive	on	the
SPARC,	as	the	kernel	needs	to	save	and	restore	the	entire	register	set	of	every

SPARC,	as	the	kernel	needs	to	save	and	restore	the	entire	register	set	of	every
active	window.

The	Motorola	88000	was	in	the	second	camp.	The	88000	was	an	early	pipelined
architecture;	now,	almost	all	modern	computers	are	pipelined.	For	improved
performance,	pipelined	architectures	execute	multiple	instructions	at	the	same
time.	For	example,	one	instruction	is	being	fetched	while	another	is	being
decoded,	a	third	is	completing	a	floating	point	operation,	and	a	fourth	is
finishing	a	store	to	memory.	When	an	interrupt	or	processor	exception	occurred
on	the	88000,	the	pipeline	operation	was	suspended,	and	the	operating	system
kernel	was	required	to	save	and	restore	the	entire	state	of	the	pipeline	to
preserve	transparency	to	user	code.

Most	modern	processors	with	deep	execution	pipelines,	such	as	the	x86,	instead
provide	precise	interrupts:	the	hardware	first	completes	all	instructions	that
occur,	in	program	order,	before	the	interrupted	instruction.	The	hardware	annuls
any	instruction	that	occurs,	in	program	order,	after	the	interrupt	or	trap,	even	if
the	instruction	is	in	progress	when	the	processor	detects	the	interrupt.

	

2.5	Putting	It	All	Together:	x86	Mode	Transfer

The	high	level	steps	needed	to	handle	an	interrupt,	processor	exception,	or
system	call	are	simple,	but	the	details	require	some	care.

To	give	a	concrete	example	of	how	such	“carefully	crafted”	code	works,	we	now
describe	one	way	to	implement	an	interrupt-triggered	mode	switch	on	the	x86
architecture.	Different	operating	systems	on	the	x86	follow	this	basic	approach,
though	details	differ.	Similarly,	different	architectures	handle	the	same	types	of
issues,	but	they	may	do	so	with	different	hardware	support.

First,	we	provide	some	background	on	the	x86	architecture.	The	x86	is
segmented,	so	pointers	come	in	two	parts:	(i)	a	segment,	a	region	of	memory
such	as	code,	data,	or	stack,	and	(ii)	an	offset	within	that	segment.	The	current
user-level	instruction	is	a	combination	of	the	code	segment	(cs	register)	plus	the
instruction	pointer	(eip	register).	Likewise,	the	current	stack	position	is	the
combination	of	the	stack	segment	(ss)	and	the	stack	pointer	within	the	stack
segment	(esp).	The	current	privilege	level	is	stored	as	the	low-order	bits	of	the	cs

register	rather	than	in	the	processor	status	word	(eflags	register).	The	eflags
register	has	condition	codes	that	are	modified	as	a	by-product	of	executing
instructions;	the	eflags	register	also	has	other	flags	that	control	the	processor’s
behavior,	such	as	whether	interrupts	are	masked	or	not.

Figure	2.10:	State	of	the	system	before	an	interrupt	handler	is	invoked	on	the	x86	architecture.	SS	is	the
stack	segment,	ESP	is	the	stack	pointer,	CS	is	the	code	segment,	and	EIP	is	the	program	counter.	The
program	counter	and	stack	pointer	refer	to	locations	in	the	user	process,	and	the	interrupt	stack	is	empty.

When	a	user-level	process	is	running,	the	current	state	of	the	processor,	stack,
kernel	interrupt	vector	table,	and	kernel	stack	is	illustrated	in	Figure	2.10.	When
a	processor	exception	or	system	call	trap	occurs,	the	hardware	carefully	saves	a
small	amount	of	the	interrupted	thread	state,	leaving	the	system	as	shown	in
Figure	2.11:

Figure	2.11:	State	of	the	system	after	the	x86	hardware	has	jumped	to	the	interrupt	handler.	The	hardware
saves	the	user	context	on	the	kernel	interrupt	stack	and	changes	the	program	counter/stack	to	locations	in
kernel	memory.

1.	 Mask	interrupts.	The	hardware	starts	by	preventing	any	interrupts	from
occurring	while	the	processor	is	in	the	middle	of	switching	from	user	mode
to	kernel	mode.

2.	 Save	three	key	values.	The	hardware	saves	the	values	of	the	stack	pointer
(the	x86	esp	and	ss	registers),	the	execution	flags	(the	x86	eflags	register),
and	the	instruction	pointer	(the	x86	eip	and	cs	registers)	to	internal,
temporary	hardware	registers.

3.	 Switch	onto	the	kernel	interrupt	stack.	The	hardware	then	switches	the
stack	segment/stack	pointer	to	the	base	of	the	kernel	interrupt	stack,	as
specified	in	a	special	hardware	register.

4.	 Push	the	three	key	values	onto	the	new	stack.	Next,	the	hardware	stores

the	internally	saved	values	onto	the	stack.

5.	 Optionally	save	an	error	code.	Certain	types	of	exceptions,	such	as	page
faults,	generate	an	error	code	to	provide	more	information	about	the	event;
for	these	exceptions,	the	hardware	pushes	this	code,	making	it	the	top	item
on	the	stack.	For	other	types	of	events,	the	software	interrupt	handler
pushes	a	dummy	value	onto	the	stack	so	that	the	stack	format	is	identical	in
both	cases.

6.	 Invoke	the	interrupt	handler.	Finally,	the	hardware	changes	the	code
segment/program	counter	to	the	address	of	the	interrupt	handler	procedure.
A	special	register	in	the	processor	contains	the	location	of	the	interrupt
vector	table	in	kernel	memory.	This	register	can	only	be	modified	by	the
kernel.	The	type	of	interrupt	is	mapped	to	an	index	in	this	array,	and	the
code	segment/program	counter	is	set	to	the	value	at	this	index.

This	starts	the	handler	software.

The	handler	must	first	save	the	rest	of	the	interrupted	process’s	state	—	it	needs
to	save	the	other	registers	before	it	changes	them!	The	handler	pushes	the	rest	of
the	registers,	including	the	current	stack	pointer,	onto	the	stack	using	the	x86
pushad	instruction.

Figure	2.12:	State	of	the	system	after	the	interrupt	handler	has	started	executing	on	the	x86	architecture.
The	handler	first	saves	the	current	state	of	the	processor	registers,	since	it	may	overwrite	them.	Note	that
this	saves	the	stack	pointer	twice:	first,	the	user	stack	pointer	then	the	kernel	stack	pointer.

As	Figure	2.12	shows,	at	this	point	the	kernel’s	interrupt	stack	holds	(1)	the	stack
pointer,	execution	flags,	and	program	counter	saved	by	the	hardware,	(2)	an
error	code	or	dummy	value,	and	(3)	a	copy	of	all	of	the	general	registers
(including	the	stack	pointer	but	not	the	instruction	pointer	or	eflags	register).

Once	the	handler	has	saved	the	interrupted	thread’s	state	to	the	stack,	it	can	use
the	registers	as	it	pleases,	and	it	can	push	additional	items	onto	the	stack.	So,	the
handler	can	now	do	whatever	work	it	needs	to	do.

When	the	handler	completes,	it	can	resume	the	interrupted	process.	To	do	this,

When	the	handler	completes,	it	can	resume	the	interrupted	process.	To	do	this,
the	handler	pops	the	registers	it	saved	on	the	stack.	This	restores	all	registers
except	the	execution	flags,	program	counter,	and	stack	pointer.	For	the	x86
instruction	set,	the	popad	instruction	is	commonly	used.	The	handler	also	pops
the	error	value	off	the	stack.

Finally,	the	handler	executes	the	x86	iret	instruction	to	restore	the	code	segment,
program	counter,	execution	flags,	stack	segment,	and	stack	pointer	from	the
kernel’s	interrupt	stack.

This	restores	the	process	state	to	exactly	what	it	was	before	the	interrupt.	The
process	continues	execution	as	if	nothing	happened.

A	small	but	important	detail	occurs	when	the	hardware	takes	an	exception	to
emulate	an	instruction	in	the	kernel,	e.g.,	for	missing	floating	point	hardware.	If
the	handler	returns	back	to	the	instruction	that	caused	the	exception,	another
exception	would	instantly	recur!	To	prevent	an	infinite	loop,	the	exception
handler	modifies	the	program	counter	stored	at	the	base	on	the	stack	to	point	to
the	instruction	immediately	after	the	one	causing	the	mode	switch.	The	iret
instruction	can	then	return	to	the	user	process	at	the	correct	location.

For	a	system	call	trap,	the	Intel	x86	hardware	does	the	increment	when	it	saves
the	user-level	state.	The	program	counter	for	the	instruction	after	the	trap	is
saved	on	the	kernel’s	interrupt	stack.

EXAMPLE:	A	trapframe	is	the	data	stored	by	the	hardware	and	interrupt
handler	at	the	base	of	the	interrupt	stack,	describing	the	state	of	the	user-level
execution	context.	Typically,	a	pointer	to	the	trapframe	is	passed	as	an	argument
to	the	handler,	e.g.,	to	allow	system	calls	to	access	arguments	passed	in	registers.

How	large	is	the	32-bit	x86	trapframe	in	the	example	given	above?

ANSWER:	The	hardware	saves	six	registers;	the	interrupt	handler	saves	another
eight	general-purpose	registers.	In	all,	56	bytes	are	saved	in	the	trapframe.	□

2.6	Implementing	Secure	System	Calls

The	operating	system	kernel	constructs	a	restricted	environment	for	process
execution	to	limit	the	impact	of	erroneous	and	malicious	programs	on	system
reliability.	Any	time	a	process	needs	to	perform	an	action	outside	of	its

protection	domain	—	to	create	a	new	process,	read	from	the	keyboard,	or	write	a
disk	block	—	it	must	ask	the	operating	system	to	perform	the	action	on	its
behalf,	via	a	system	call.

System	calls	provide	the	illusion	that	the	operating	system	kernel	is	simply	a	set
of	library	routines	available	to	user	programs.	To	the	user	program,	the	kernel
provides	a	set	of	system	call	procedures,	each	with	its	own	arguments	and	return
values,	that	can	be	called	like	any	other	routine.	The	user	program	need	not
concern	itself	with	how	the	kernel	implements	these	calls.

Implementing	system	calls	requires	the	operating	system	to	define	a	calling
convention	—	how	to	name	system	calls,	pass	arguments,	and	receive	return
values	across	the	user/kernel	boundary.	Typically,	the	operating	system	uses	the
same	convention	as	the	compiler	uses	for	normal	procedures	—	some
combination	of	passing	arguments	in	registers	and	on	the	execution	stack.

Once	the	arguments	are	in	the	correct	format,	the	user-level	program	can	issue	a
system	call	by	executing	the	trap	instruction	to	transfer	control	to	the	kernel.
System	calls,	like	interrupts	and	processor	exceptions,	share	the	same
mechanism	for	switching	between	user	and	kernel	mode.	In	fact,	the	x86
instruction	to	trap	into	the	kernel	on	a	system	call	is	called	int,	for	“software
interrupt.”

Inside	the	kernel,	a	procedure	implements	each	system	call.	This	procedure
behaves	exactly	as	if	the	call	was	made	from	within	the	kernel	but	with	one
notable	difference:	the	kernel	must	implement	its	system	calls	in	a	way	that
protects	itself	from	all	errors	and	attacks	that	might	be	launched	by	the	misuse	of
the	interface.	Of	course,	most	applications	will	use	the	interface	correctly!	But
errors	in	an	application	program	must	not	crash	the	kernel,	and	a	computer	virus
must	not	be	able	to	use	the	system	call	interface	to	take	control	of	the	kernel.
One	can	think	of	this	as	an	extreme	version	of	defensive	programming:	the
kernel	should	always	assume	that	the	parameters	passed	to	a	system	call	are
intentionally	designed	to	be	as	malicious	as	possible.

We	bridge	these	two	views	—	the	user	program	calling	the	system	call,	and	the
kernel	implementing	the	system	call	—	with	a	pair	of	stubs.	A	pair	of	stubs	is	a
pair	of	procedures	that	mediate	between	two	environments,	in	this	case	between
the	user	program	and	the	kernel.	Stubs	also	mediate	procedure	calls	between
computers	in	a	distributed	system.

Figure	2.13:	A	pair	of	stubs	mediates	between	the	user-level	caller	and	the	kernel’s	implementation	of
system	calls.	The	code	is	for	the	file_open	system	call;	other	calls	have	their	own	stubs.	(1)	The	user
process	makes	a	normal	procedure	call	to	a	stub	linked	with	the	process.	(2)	The	stub	executes	the	trap
instruction.	This	transfers	control	to	the	kernel	trap	handler.	The	trap	handler	copies	and	checks	its
arguments	and	then	(3)	calls	a	routine	to	do	the	operation.	Once	the	operation	completes,	(4)	the	code
returns	to	the	trap	handler,	which	copies	the	return	value	into	user	memory	and	(5)	resumes	the	user	stub
immediately	after	the	trap.	(6)	The	user	stub	returns	to	the	user-level	caller.

Figure	2.13	illustrates	the	sequence	of	steps	involved	in	a	system	call:

1.	 The	user	program	calls	the	user	stub	in	the	normal	way,	oblivious	to	the	fact
the	implementation	of	the	procedure	is	in	fact	in	the	kernel.

2.	 The	user	stub	fills	in	the	code	for	the	system	call	and	executes	the	trap
instruction.

3.	 The	hardware	transfers	control	to	the	kernel,	vectoring	to	the	system	call
handler.	The	handler	acts	as	a	stub	on	the	kernel	side,	copying	and	checking

arguments	and	then	calling	the	kernel	implementation	of	system	call.

4.	 After	the	system	call	completes,	it	returns	to	the	handler.

5.	 The	handler	returns	to	user	level	at	the	next	instruction	in	the	stub.

6.	 The	stub	returns	to	the	caller.

	//	We	assume	that	the	caller	put	the	filename	onto	the	stack,

	//	using	the	standard	calling	convention	for	the	x86.

	

	open:

	//	Put	the	code	for	the	system	call	we	want	into	%eax.

					movl	#SysCallOpen,	%eax

	

	//	Trap	into	the	kernel.

					int	#TrapCode

	

	//	Return	to	the	caller;	the	kernel	puts	the	return	value	in	%eax.

					ret

Figure	2.14:	User-level	library	stub	for	the	file	system	open	system	call	for	the
x86	processor.	SysCallOpen	is	the	code	for	the	specific	system	call	to	run.
TrapCode	is	the	index	into	the	x86	interrupt	vector	table	for	the	system	call
handler.

We	next	describe	these	steps	in	more	detail.	Figure	2.14	illustrates	the	behavior
of	the	user-level	stub	for	the	x86.	The	operating	system	provides	a	library
routine	for	each	system	call	that	takes	its	arguments,	reformats	them	according
to	the	calling	convention,	and	executes	a	trap	instruction.	When	the	kernel
returns,	the	stub	returns	the	result	provided	by	the	kernel.	Of	course,	the	user
program	need	not	use	the	library	routine	—	it	is	free	to	trap	directly	to	the
kernel;	in	turn,	the	kernel	must	protect	itself	from	misbehaving	programs	that	do
not	format	arguments	correctly.

The	system	call	calling	convention	is	arbitrary.	In	Figure	2.14,	the	code	passes
its	arguments	on	the	user	stack,	storing	the	system	call	code	in	the	register	%eax.
The	return	value	comes	back	in	%eax,	so	there	is	no	work	to	do	on	the	return.

The	int	instruction	saves	the	program	counter,	stack	pointer,	and	eflags	on	the

The	int	instruction	saves	the	program	counter,	stack	pointer,	and	eflags	on	the
kernel	stack	before	jumping	to	the	system	call	handler	through	the	interrupt
vector	table.	The	kernel	handler	saves	any	additional	registers	that	must	be
preserved	across	function	calls.	It	then	examines	the	system	call	integer	code	in
%eax,	verifies	that	it	is	a	legal	opcode,	and	calls	the	correct	stub	for	that	system
call.

The	kernel	stub	has	four	tasks:

Locate	system	call	arguments.	Unlike	a	regular	kernel	procedure,	the
arguments	to	a	system	call	are	stored	in	user	memory,	typically	on	the	user
stack.	Of	course,	the	user	stack	pointer	may	be	corrupted!	Even	if	it	is	valid,
it	is	a	virtual,	not	a	physical,	address.	If	the	system	call	has	a	pointer
argument	(e.g.,	a	file	name	or	buffer),	the	stub	must	check	the	address	to
verify	it	is	a	legal	address	within	the	user	domain.	If	so,	the	stub	converts	it
to	a	physical	address	so	that	the	kernel	can	safely	use	it.	In	Figure	2.14,	the
pointer	to	the	string	representing	the	file	name	is	stored	on	the	stack;
therefore,	the	stub	must	check	and	translate	both	the	stack	address	and	the
string	pointer.

Validate	parameters.	The	kernel	must	also	protect	itself	against	malicious
or	accidental	errors	in	the	format	or	content	of	its	arguments.	A	file	name	is
typically	a	zero-terminated	string,	but	the	kernel	cannot	trust	the	user	code
to	always	work	correctly.	The	file	name	may	be	corrupted;	it	may	point	to
memory	outside	the	application’s	region;	it	may	start	inside	the
application’s	memory	region	but	extend	beyond	it;	the	application	may	not
have	permission	to	access	the	file;	the	file	may	not	exist;	and	so	forth.	If	an
error	is	detected,	the	kernel	returns	it	to	the	user	program;	otherwise,	the
kernel	performs	the	operation	on	the	application’s	behalf.

Copy	before	check.	In	most	cases,	the	kernel	copies	system	call	parameters
into	kernel	memory	before	performing	the	necessary	checks.	The	reason	for
this	is	to	prevent	the	application	from	modifying	the	parameter	after	the
stub	checks	the	value,	but	before	the	parameter	is	used	in	the	actual
implementation	of	the	routine.	This	is	called	a	time	of	check	vs.	time	of	use
(TOCTOU)	attack.	For	example,	the	application	could	call	open	with	a
valid	file	name	but,	after	the	check,	change	the	contents	of	the	string	to	be	a
different	name,	such	as	a	file	containing	another	user’s	private	data.

TOCTOU	is	not	a	new	attack	—	the	first	occurrence	dates	from	the	mid-
1960’s.	While	it	might	seem	that	a	process	necessarily	stops	whenever	it

1960’s.	While	it	might	seem	that	a	process	necessarily	stops	whenever	it
does	a	system	call,	this	is	not	always	the	case.	For	example,	if	one	process
shares	a	memory	region	with	another	process,	then	the	two	processes
working	together	can	launch	a	TOCTOU	attack.	Similarly,	a	parallel
program	running	on	two	processors	can	launch	a	TOCTOU	attack,	where
one	processor	traps	into	the	kernel	while	the	other	modifies	the	string	at
precisely	the	right	(or	wrong)	time.	Note	that	the	kernel	needs	to	be	correct
in	every	case,	while	the	attacker	can	try	any	number	of	times	before
succeeding.

Copy	back	any	results.	For	the	user	program	to	access	the	results	of	the
system	call,	the	stub	must	copy	the	result	from	the	kernel	into	user	memory.
Again,	the	kernel	must	first	check	the	user	address	and	convert	it	to	a	kernel
address	before	performing	the	copy.

Putting	this	together,	Figure	2.15	shows	the	kernel	stub	for	the	system	call	open.
In	this	case,	the	return	value	fits	in	a	register	so	the	stub	can	return	directly;	in
other	cases,	such	as	a	file	read,	the	stub	would	need	to	copy	data	back	into	a
user-level	buffer.

	

	int	KernelStub_Open()	{

					char	*localCopy[MaxFileNameSize	+	1];

	

	//	Check	that	the	stack	pointer	is	valid	and	that	the	arguments	are	stored	at

	//	valid	addresses.

	

					if	(!validUserAddressRange(userStackPointer,	userStackPointer	+	size	of	arguments))

									return	error_code;

	

	//	Fetch	pointer	to	file	name	from	user	stack	and	convert	it	to	a	kernel	pointer.

	

					filename	=	VirtualToKernel(userStackPointer);

	

	//	Make	a	local	copy	of	the	filename.		This	prevents	the	application

	//	from	changing	the	name	surreptitiously.

	

	//	The	string	copy	needs	to	check	each	address	in	the	string	before	use	to	make	sure

	//	it	is	valid.

	

	//	The	string	copy	terminates	after	it	copies	MaxFileNameSize	to	ensure	we

	//	do	not	overwrite	our	internal	buffer.

	

					if	(!VirtualToKernelStringCopy(filename,	localCopy,	MaxFileNameSize))

									return	error_code;

	

	//	Make	sure	the	local	copy	of	the	file	name	is	null	terminated.

	

					localCopy[MaxFileNameSize]	=	0;

	

	//	Check	if	the	user	is	permitted	to	access	this	file.

	

					if	(!UserFileAccessPermitted(localCopy,	current_process)

									return	error_code;

	

	//	Finally,	call	the	actual	routine	to	open	the	file.		This	returns	a	file

	//	handle	on	success,	or	an	error	code	on	failure.

	

					return	Kernel_Open(localCopy);

	}

Figure	2.15:	Stub	routine	for	the	open	system	call	inside	the	kernel.	The	kernel
must	validate	all	parameters	to	a	system	call	before	it	uses	them.

After	the	system	call	finishes,	the	handler	pops	any	saved	registers	(except
%eax)	and	uses	the	iret	instruction	to	return	to	the	user	stub	immediately	after
the	trap,	allowing	the	user	stub	to	return	to	the	user	program.

2.7	Starting	a	New	Process

Thus	far,	we	have	described	how	to	transfer	control	from	a	user-level	process	to
the	kernel	on	an	interrupt,	processor	exception,	or	system	call	and	how	the
kernel	resumes	execution	at	user	level	when	done.

We	now	examine	how	to	start	running	at	user	level	in	the	first	place.	The	kernel
must:

Allocate	and	initialize	the	process	control	block.

Allocate	memory	for	the	process.

Copy	the	program	from	disk	into	the	newly	allocated	memory.

Allocate	a	user-level	stack	for	user-level	execution.

Allocate	a	kernel-level	stack	for	handling	system	calls,	interrupts	and
processor	exceptions.

To	start	running	the	program,	the	kernel	must	also:

Copy	arguments	into	user	memory.	When	starting	a	program,	the	user
may	give	it	arguments,	much	like	calling	a	procedure.	For	example,	when
you	click	on	a	file	icon	in	MacOS	or	Windows,	the	window	manager	asks
the	kernel	to	start	the	application	associated	with	the	file,	passing	it	the	file
name	to	open.	The	kernel	copies	the	file	name	from	the	memory	of	the
window	manager	process	to	a	special	region	of	memory	in	the	new	process.
By	convention,	arguments	to	a	process	are	copied	to	the	base	of	the	user-
level	stack,	and	the	user’s	stack	pointer	is	incremented	so	those	addresses
are	not	overwritten	when	the	program	starts	running.

Transfer	control	to	user	mode.	When	a	new	process	starts,	there	is	no
saved	state	to	restore.	While	it	would	be	possible	to	write	special	code	for
this	case,	most	operating	systems	re-use	the	same	code	to	exit	the	kernel	for
starting	a	new	process	and	for	returning	from	a	system	call.	When	we	create
the	new	process,	we	allocate	a	kernel	stack	to	it,	and	we	reserve	room	at	the
bottom	of	the	kernel	stack	for	the	initial	values	of	its	user-space	registers,
program	counter,	stack	pointer,	and	processor	status	word.	To	start	the	new
program,	we	can	then	switch	to	the	new	stack	and	jump	to	the	end	of	the
interrupt	handler.	When	the	handler	executes	popad	and	iret,	the	processor
“returns”	to	the	start	of	the	user	program.

Finally,	although	you	can	think	of	a	user	program	as	starting	with	a	call	to	main,
in	fact	the	compiler	inserts	one	level	of	indirection.	It	puts	a	stub	at	the	location
in	the	process’s	memory	where	the	kernel	will	jump	when	the	process	starts.	The
stub’s	job	is	to	call	main	and	then,	if	main	returns,	to	call	exit	—	the	system	call
to	terminate	the	process.	Without	the	stub,	a	user	program	that	returned	from
main	would	try	to	pop	the	return	program	counter,	and	since	there	is	no	such
address	on	the	stack,	the	processor	would	start	executing	random	code.

	start(arg1,	arg2)	{

								main(arg1,	arg2);		//	Call	program	main.

								exit();					//	If	main	returns,	call	exit.

				}

2.8	Implementing	Upcalls

We	can	use	system	calls	for	most	of	the	communication	between	applications
and	the	operating	system	kernel.	When	a	program	requests	a	protected	operation,
it	can	trap	to	ask	the	kernel	to	perform	the	operation	on	its	behalf.	Likewise,	if
the	application	needs	data	inside	the	kernel,	a	system	call	can	retrieve	it.

To	allow	applications	to	implement	operating	system-like	functionality,	we	need
something	more.	For	many	of	the	reasons	that	kernels	need	interrupt-based	event
delivery,	applications	can	also	benefit	from	being	told	when	events	occur	that
need	their	immediate	attention.	Throughout	this	book,	we	will	see	this	pattern
repeatedly:	the	need	to	virtualize	some	part	of	the	kernel	so	that	applications	can
behave	more	like	operating	systems.	We	call	virtualized	interrupts	and
exceptions	upcalls.	In	UNIX,	they	are	called	signals;	in	Windows,	they	are
asynchronous	events.

There	are	several	uses	for	immediate	event	delivery	with	upcalls:

Preemptive	user-level	threads.	Just	as	the	operating	system	kernel	runs
multiple	processes	on	a	single	processor,	an	application	may	run	multiple
tasks,	or	threads,	in	a	process.	A	user-level	thread	package	can	use	a
periodic	timer	upcall	as	a	trigger	to	switch	tasks,	to	share	the	processor
more	evenly	among	user-level	tasks	or	to	stop	a	runaway	task,	e.g.,	if	a	web
browser	needs	to	terminate	an	embedded	third	party	script.

Asynchronous	I/O	notification.	Most	system	calls	wait	until	the	requested
operation	completes	and	then	return.	What	if	the	process	has	other	work	to
do	in	the	meantime?	One	approach	is	asynchronous	I/O:	a	system	call	starts
the	request	and	returns	immediately.	Later,	the	application	can	poll	the
kernel	for	I/O	completion,	or	a	separate	notification	can	be	sent	via	an
upcall	to	the	application	when	the	I/O	completes.

Interprocess	communication.	Most	interprocess	communication	can	be
handled	with	system	calls	—	one	process	writes	data,	while	the	other	reads
it	sometime	later.	A	kernel	upcall	is	needed	if	a	process	generates	an	event
that	needs	the	instant	attention	of	another	process.	As	an	example,	UNIX
sends	an	upcall	to	notify	a	process	when	the	debugger	wants	to	suspend	or

resume	the	process.	Another	use	is	for	logout	—	to	notify	applications	that
they	should	save	file	data	and	cleanly	terminate.

User-level	exception	handling.	Earlier,	we	described	a	mechanism	where
processor	exceptions,	such	as	divide-by-zero	errors,	are	handled	by	the
kernel.	However,	many	applications	have	their	own	exception	handling
routines,	e.g.,	to	ensure	that	files	are	saved	before	the	application	shuts
down.	For	this,	the	operating	system	needs	to	inform	the	application	when	it
receives	a	processor	exception	so	the	application	runtime,	rather	than	the
kernel,	handles	the	event.

User-level	resource	allocation.	Operating	systems	allocate	resources	—
deciding	which	users	and	processes	should	get	how	much	CPU	time,	how
much	memory,	and	so	forth.	In	turn,	many	applications	are	resource
adaptive	—	able	to	optimize	their	behavior	to	differing	amounts	of	CPU
time	or	memory.	An	example	is	Java	garbage	collection.	Within	limits,	a
Java	process	can	adapt	to	different	amounts	of	available	memory	by
changing	the	frequency	with	which	it	runs	its	garbage	collector.	The	more
memory,	the	less	time	Java	needs	to	run	its	collector,	speeding	execution.
For	this,	the	operating	system	must	inform	the	process	when	its	allocation
changes,	e.g.,	because	some	other	process	needs	more	or	less	memory.

Upcalls	from	kernels	to	user	processes	are	not	always	needed.	Many	applications
are	more	simply	structured	around	an	event	loop	that	polls	for	events	and	then
processes	each	event	in	turn.	In	this	model,	the	kernel	can	pass	data	to	the
process	by	sending	it	events	that	do	not	need	to	be	handled	immediately.	In	fact,
until	recently,	Windows	lacked	support	for	the	immediate	delivery	of	upcalls	to
user-level	programs.

Figure	2.16:	The	state	of	the	user	program	and	signal	handler	before	a	UNIX	signal.	UNIX	signals	behave
analogously	to	processor	exceptions,	but	at	user	level.

We	next	describe	UNIX	signals	as	a	concrete	example	of	kernel	support	for
upcalls.	As	shown	in	Figures	2.16	and	2.17,	UNIX	signals	share	many
similarities	with	hardware	interrupts:

Figure	2.17:	The	state	of	the	user	program	and	signal	handler	during	a	UNIX	signal.	The	signal	stack
stores	the	state	of	the	hardware	registers	at	the	point	where	the	process	was	interrupted,	with	room	for	the
signal	handler	to	execute	on	the	signal	stack.

Types	of	signals.	In	place	of	hardware-defined	interrupts	and	processor
exceptions,	the	kernel	defines	a	limited	number	of	signal	types	that	a
process	can	receive.

Handlers.	Each	process	defines	its	own	handlers	for	each	signal	type,	much
as	the	kernel	defines	its	own	interrupt	vector	table.	If	a	process	does	not
define	a	handler	for	a	specific	signal,	then	the	kernel	calls	a	default	handler
instead.

Signal	stack.	Applications	have	the	option	to	run	UNIX	signal	handlers	on
the	process’s	normal	execution	stack	or	on	a	special	signal	stack	allocated
by	the	user	process	in	user	memory.	Running	signal	handlers	on	the	normal
stack	makes	it	more	difficult	for	the	signal	handler	to	manipulate	the	stack,
e.g.,	if	the	runtime	needs	to	raise	a	language-level	exception.

Signal	masking.	UNIX	defers	signals	for	events	that	occur	while	the	signal
handler	for	those	types	of	events	is	in	progress.	Instead,	the	signal	is
delivered	once	the	handler	returns	to	the	kernel.	UNIX	also	provides	a
system	call	for	applications	to	mask	signals	as	needed.

Processor	state.	The	kernel	copies	onto	the	signal	stack	the	saved	state	of
the	program	counter,	stack	pointer,	and	general-purpose	registers	at	the
point	when	the	program	stopped.	Normally,	when	the	signal	handler
returns,	the	kernel	reloads	the	saved	state	into	the	processor	to	resume
program	execution.	The	signal	handler	can	also	modify	the	saved	state,	e.g.,
so	that	the	kernel	resumes	a	different	user-level	task	when	the	handler
returns.

The	mechanism	for	delivering	UNIX	signals	to	user	processes	requires	only	a
small	modification	to	the	techniques	already	described	for	transferring	control
across	the	kernel-user	boundary.	For	example,	on	a	timer	interrupt,	the	hardware
and	the	kernel	interrupt	handler	save	the	state	of	the	user-level	computation.	To
deliver	the	timer	interrupt	to	user	level,	the	kernel	copies	that	saved	state	to	the
bottom	of	the	signal	stack,	resets	the	saved	state	to	point	to	the	signal	handler
and	signal	stack,	and	then	exits	the	kernel	handler.	The	iret	instruction	then
resumes	user-level	execution	at	the	signal	handler.	When	the	signal	handler
returns,	these	steps	are	unwound:	the	processor	state	is	copied	back	from	the

signal	handler	into	kernel	memory,	and	the	iret	returns	to	the	original
computation.

2.9	Case	Study:	Booting	an	Operating	System	Kernel

When	a	computer	boots,	it	sets	the	machine’s	program	counter	to	start	executing
at	a	pre-determined	position	in	memory.	Since	the	computer	is	not	yet	running,
the	initial	machine	instructions	must	be	fetched	and	executed	immediately	after
the	power	is	turned	on	before	the	system	has	had	a	chance	to	initialize	its
DRAM.	Instead,	systems	typically	use	a	special	read-only	hardware	memory
(Boot	ROM)	to	store	their	boot	instructions.	On	most	x86	personal	computers,
the	boot	program	is	called	the	BIOS,	for	“Basic	Input/Output	System”.

There	are	several	drawbacks	to	trying	to	store	the	entire	kernel	in	ROM.	The
most	significant	problem	is	that	the	operating	system	would	be	hard	to	update.
ROM	instructions	are	fixed	when	the	computer	is	manufactured	and	(except	in
rare	cases)	are	never	changed.	If	an	error	occurs	while	the	BIOS	is	being
updated,	the	machine	can	be	left	in	a	permanently	unusable	state	—	unable	to
boot	and	unable	to	complete	the	update	of	the	BIOS.

By	contrast,	operating	systems	need	frequent	updates,	as	bugs	and	security
vulnerabilities	are	discovered	and	fixed.	This,	and	the	fact	that	ROM	storage	is
relatively	slow	and	expensive,	argues	for	putting	only	a	small	amount	of	code	in
the	BIOS.

Figure	2.18:	The	boot	ROM	copies	the	bootloader	image	from	disk	into	memory,	and	the	bootloader
copies	the	operating	system	kernel	image	from	disk	into	memory.

Instead,	the	BIOS	provides	a	level	of	indirection,	as	illustrated	in	Figure	2.18.
The	BIOS	reads	a	fixed-size	block	of	bytes	from	a	fixed	position	on	disk	(or
flash	RAM)	into	memory.	This	block	of	bytes	is	called	the	bootloader.	Once	the
BIOS	has	copied	the	bootloader	into	memory,	it	jumps	to	the	first	instruction	in
the	block.	On	some	newer	machines,	the	BIOS	also	checks	that	the	bootloader
has	not	been	corrupted	by	a	computer	virus.	(If	a	virus	could	change	the
bootloader	and	get	the	BIOS	to	jump	to	it,	the	virus	would	then	be	in	control	of
the	machine.)	As	a	check,	the	bootloader	is	stored	with	a	cryptographic
signature,	a	specially	designed	function	of	the	bytes	in	a	file	and	a	private
cryptographic	key	that	allows	someone	with	the	corresponding	public	key	to
verify	that	an	authorized	entity	produced	the	file.	It	is	computationally
intractable	for	an	attacker	without	the	private	key	to	create	a	different	file	with	a
valid	signature.	The	BIOS	checks	that	the	bootloader	code	matches	the

signature,	verifying	its	authenticity.

The	bootloader	in	turn	loads	the	kernel	into	memory	and	jumps	to	it.	Again,	the
bootloader	can	check	the	cryptographic	signature	of	the	operating	system	to
verify	that	it	has	not	been	corrupted	by	a	virus.	The	kernel’s	executable	image	is
usually	stored	in	the	file	system.	Thus,	to	find	the	bootloader,	the	BIOS	needs	to
read	a	block	of	raw	bytes	from	disk;	the	bootloader,	in	turn,	needs	to	know	how
to	read	from	the	file	system	to	find	and	read	the	operating	system	image.

When	the	kernel	starts	running,	it	can	initialize	its	data	structures,	including
setting	up	the	interrupt	vector	table	to	point	to	the	various	interrupt,	processor
exception,	and	system	call	handlers.	The	kernel	then	starts	the	first	process,
typically	the	user	login	page.	To	run	this	process,	the	operating	system	reads	the
code	for	the	login	program	from	its	disk	location,	and	jumps	to	the	first
instruction	in	the	program,	using	the	start	process	procedure	described	above.
The	login	process	in	turn	can	trap	into	the	kernel	using	a	system	call	whenever	it
needs	the	kernel’s	services,	e.g.,	to	render	the	login	prompt	on	the	screen.	We
discuss	the	system	calls	needed	for	processes	to	do	useful	work	in	Chapter	3.

2.10	Case	Study:	Virtual	Machines

Some	operating	system	kernels	provide	the	abstraction	of	an	entire	virtual
machine	at	user	level.	How	do	interrupts,	processor	exceptions,	and	system	calls
work	in	this	context?	To	avoid	confusion	when	discussing	virtual	machines,	we
need	to	recap	some	terminology	introduced	in	Chapter	1.	The	operating	system
providing	the	virtual	machine	abstraction	is	called	the	host	operating	system.
The	operating	system	running	inside	the	virtual	machine	is	called	the	guest
operating	system.

The	host	operating	system	provides	the	illusion	that	the	guest	kernel	is	running
on	real	hardware.	For	example,	to	provide	a	guest	disk,	the	host	kernel	simulates
a	virtual	disk	as	a	file	on	the	physical	disk.	To	provide	network	access	to	the
guest	kernel,	the	host	kernel	simulates	a	virtual	network	using	physical	network
packets.	Likewise,	the	host	kernel	must	manage	memory	to	provide	the	illusion
that	the	guest	kernel	is	managing	its	own	memory	protection	even	though	it	is
running	with	virtual	addresses.	We	discuss	address	translation	for	virtual
machines	in	more	detail	in	Chapter	10.

How	does	the	host	kernel	manage	mode	transfer	between	guest	processes	and	the
guest	kernel?	During	boot,	the	host	kernel	initializes	its	interrupt	vector	table	to

guest	kernel?	During	boot,	the	host	kernel	initializes	its	interrupt	vector	table	to
point	to	its	own	interrupt	handlers	in	host	kernel	memory.	When	the	host	kernel
starts	the	virtual	machine,	the	guest	kernel	starts	running	as	if	it	is	being	booted:

1.	 The	host	loads	the	guest	bootloader	from	the	virtual	disk	and	starts	it
running.

2.	 The	guest	bootloader	loads	the	guest	kernel	from	the	virtual	disk	into
memory	and	starts	it	running.

3.	 The	guest	kernel	then	initializes	its	interrupt	vector	table	to	point	to	the
guest	interrupt	handlers.

4.	 The	guest	kernel	loads	a	process	from	the	virtual	disk	into	guest	memory.

5.	 To	start	a	process,	the	guest	kernel	issues	instructions	to	resume	execution
at	user	level,	e.g.,	using	iret	on	the	x86.	Since	changing	the	privilege	level
is	a	privileged	operation,	this	instruction	traps	into	the	host	kernel.

6.	 The	host	kernel	simulates	the	requested	mode	transfer	as	if	the	processor
had	directly	executed	it.	It	restores	the	program	counter,	stack	pointer,	and
processor	status	word	exactly	as	the	guest	operating	system	had	intended.
Note	that	the	host	kernel	must	protect	itself	from	bugs	in	the	guest
operating	system,	and	so	it	also	must	check	the	validity	of	the	mode	transfer
—	to	ensure	that	the	guest	kernel	is	not	surreptitiously	attempting	to	get	the
host	kernel	to	“switch"	to	an	arbitrary	point	in	the	kernel	code.

Figure	2.19:	Emulation	of	user-and	kernel-mode	transfer	for	processes	running	inside	a	virtual	machine.
Both	the	guest	kernel	and	the	host	kernel	have	their	own	copies	of	an	interrupt	vector	table	and	interrupt
stack.	The	guest	vector	table	points	to	interrupt	handlers	in	the	guest	kernel;	the	host	vector	table	points	to
interrupt	handlers	in	the	host	kernel.

Next,	consider	what	happens	when	the	guest	user	process	does	a	system	call,
illustrated	in	Figure	2.19.	To	the	hardware,	there	is	only	one	kernel,	the	host
operating	system.	Thus,	the	trap	instruction	traps	into	the	host	kernel’s	system
call	handler.	Of	course,	the	system	call	was	not	intended	for	the	host!	Rather,	the
host	kernel	simulates	what	would	have	happened	had	the	system	call	instruction
occurred	on	real	hardware	running	the	guest	operating	system:

1.	 The	host	kernel	saves	the	instruction	counter,	processor	status	register,	and

user	stack	pointer	on	the	interrupt	stack	of	the	guest	operating	system.

2.	 The	host	kernel	transfers	control	to	the	guest	kernel	at	the	beginning	of	the
interrupt	handler,	but	with	the	guest	kernel	running	with	user-mode
privilege.

3.	 The	guest	kernel	performs	the	system	call	—	saving	user	state	and	checking
arguments.

4.	 When	the	guest	kernel	attempts	to	return	from	the	system	call	back	to	user
level,	this	causes	a	processor	exception,	dropping	back	into	the	host	kernel.

5.	 The	host	kernel	can	then	restore	the	state	of	the	user	process,	running	at
user	level,	as	if	the	guest	OS	had	been	able	to	return	there	directly.

The	host	kernel	handles	processor	exceptions	similarly,	with	one	caveat.	Some
exceptions	generated	by	the	virtual	machine	are	due	to	the	user	process;	the	host
kernel	forwards	these	to	the	guest	kernel	for	handling.	Other	exceptions	are
generated	by	the	guest	kernel	(e.g.,	when	it	tries	to	execute	privileged
instructions);	the	host	kernel	simulates	these	itself.	Thus,	the	host	kernel	must
track	whether	the	virtual	machine	is	executing	in	virtual	user	mode	or	virtual
kernel	mode.

The	hardware	vectors	interrupts	to	the	host	kernel.	Timer	interrupts	need	special
handling,	as	time	can	elapse	in	the	host	without	elapsing	in	the	guest.	When	a
timer	interrupt	occurs,	enough	virtual	time	may	have	passed	that	the	guest	kernel
is	due	for	a	timer	interrupt.	If	so,	the	host	kernel	returns	from	the	interrupt	to	the
interrupt	handler	for	the	guest	kernel.	The	guest	kernel	may	in	turn	switch	guest
processes;	its	iret	will	cause	a	processor	exception,	returning	to	the	host	kernel,
which	can	then	resume	the	correct	guest	process.

Handling	I/O	interrupts	is	simpler:	the	simulation	of	the	virtual	device	does	not
need	to	be	anything	like	a	real	device.	When	the	guest	kernel	makes	a	request	to
a	virtual	disk,	the	kernel	writes	instructions	to	the	buffer	descriptor	ring	for	the
disk	device;	the	host	kernel	translates	these	instructions	into	operations	on	the
virtual	disk.	The	host	kernel	can	simulate	the	disk	request	however	it	likes	—
e.g.,	through	regular	file	reads	and	writes,	copied	into	the	guest	kernel	memory
as	if	there	was	true	DMA	hardware.	The	guest	kernel	expects	to	receive	an
interrupt	when	the	virtual	disk	completes	its	work;	this	can	be	triggered	by	the
timer	interrupt,	but	vectored	to	the	guest	disk	interrupt	handler	instead	of	the
guest	timer	interrupt	handler.

guest	timer	interrupt	handler.

	

Hardware	support	for	operating	systems

We	have	described	a	number	of	hardware	mechanisms	that	support	operating
systems:

Privilege	levels,	user	and	kernel.

Privileged	instructions:	instructions	available	only	in	kernel	mode.

Memory	translation	prevents	user	programs	from	accessing	kernel	data
structures	and	aids	in	memory	management.

Processor	exceptions	trap	to	the	kernel	on	a	privilege	violation	or	other
unexpected	event.

Timer	interrupts	return	control	to	the	kernel	on	time	expiration.

Device	interrupts	return	control	to	the	kernel	to	signal	I/O	completion.

Interprocessor	interrupts	cause	another	processor	to	return	control	to	the
kernel.

Interrupt	masking	prevents	interrupts	from	being	delivered	at
inopportune	times.

System	calls	trap	to	the	kernel	to	perform	a	privileged	action	on	behalf	of
a	user	program.

Return	from	interrupt:	switch	from	kernel	mode	to	user	mode,	to	a
specific	location	in	a	user	process.

Boot	ROM:	code	that	loads	startup	routines	from	disk	into	memory.

To	support	threads,	we	will	need	one	additional	mechanism,	described	in
Chapter	5:

Atomic	read-modify-write	instructions	used	to	implement
synchronization	in	multithreaded	programs.

	

2.11	Summary	and	Future	Directions

The	process	concept	—	the	ability	to	execute	arbitrary	user	programs	with
restricted	rights	—	has	been	remarkably	successful.	With	the	exception	of
devices	that	run	only	a	single	application	at	a	time	(such	as	embedded	systems
and	game	consoles),	every	commercially	successful	operating	system	provides
process	isolation.

The	reason	for	this	success	is	obvious.	Without	process	isolation,	computer
systems	would	be	much	more	fragile	and	less	secure.	As	recently	as	a	decade
ago,	it	was	common	for	personal	computers	to	crash	on	a	daily	basis.	Today,
laptops	can	remain	working	for	weeks	at	a	time	without	rebooting.	This	has
occurred	even	though	the	operating	system	and	application	software	on	these
systems	have	become	more	complex.	While	some	of	the	improvement	is	due	to
better	hardware	reliability	and	automated	bug	tracking,	process	isolation	has
been	a	key	technology	in	constructing	more	reliable	system	software.

Process	isolation	is	also	essential	to	building	more	secure	computer	systems.
Without	isolation,	computer	users	would	be	forced	to	trust	every	application
loaded	onto	the	computer,	not	just	the	operating	system	code.	In	practice,
however,	complete	process	isolation	remains	more	an	aspiration	than	a	reality.
Most	operating	systems	are	vulnerable	to	malicious	applications	because	the
attacker	can	exploit	any	vulnerability	in	the	kernel	implementation.	Even	a
single	bug	in	the	kernel	can	leave	the	system	vulnerable.	Keeping	your	system
current	with	the	latest	patches	provides	some	level	of	defense,	but	it	is	still
inadvisable	to	download	and	install	untrusted	software	off	the	web.

In	the	future,	we	are	likely	to	see	three	complementary	trends:

Operating	system	support	for	fine-grained	protection.	Process	isolation
is	becoming	more	flexible	and	fine-grained	in	order	to	reflect	different
levels	of	trust	in	different	applications.	Today,	it	is	typical	for	a	user
application	to	have	the	permissions	of	that	user.	This	allows	a	virus

masquerading	as	a	screen	saver	to	steal	or	corrupt	that	user’s	data	without
needing	to	compromise	the	operating	system	first.	Smartphone	operating
systems	have	started	to	add	better	controls	to	prevent	certain	applications
without	a	“need	to	know”	from	accessing	sensitive	information,	such	as	the
smartphone’s	location	or	the	list	of	frequently	called	telephone	numbers.

Application-layer	sandboxing.	Increasingly,	many	applications	are
becoming	mini-operating	systems	in	their	own	right,	capable	of	safely
executing	third-party	software	to	extend	and	improve	the	user	experience.
Sophisticated	scripts	customize	web	site	behavior;	web	browsers	must
efficiently	and	completely	isolate	these	scripts	so	that	they	cannot	steal	the
user’s	data	or	corrupt	the	browser.	Other	applications	—	such	as	databases
and	desktop	publishing	systems	—	are	also	moving	in	the	direction	of
needing	application-layer	sandboxing.	Google’s	Native	Client	and
Microsoft’s	Application	Domains	are	two	example	systems	that	provide
general-purpose,	safe	execution	of	third-party	code	at	the	user	level.

Hardware	support	for	virtualization.	Virtual	machines	provide	an	extra
layer	of	protection	beneath	the	operating	system.	Even	if	a	malicious
process	run	by	a	guest	operating	system	on	a	virtual	machine	were	able	to
corrupt	the	kernel,	its	impact	would	be	limited	to	just	that	virtual	machine.
Below	the	virtual	machine	interface,	the	host	operating	system	needs	to
provide	isolation	between	different	virtual	machines;	this	is	much	easier	in
practice	because	the	virtual	machine	interface	is	much	simpler	than	the
kernel’s	system	call	interface.	For	example,	in	a	data	center,	virtual
machines	provide	users	with	the	flexibility	to	run	any	application	without
compromising	data	center	operation.

Computer	manufacturers	are	re-designing	processor	architectures	to	reduce
the	cost	of	running	a	virtual	machine.	For	example,	on	some	new
processors,	guest	operating	systems	can	directly	handle	their	own
interrupts,	processor	exceptions,	and	system	calls	without	those	events
needing	to	be	mediated	by	the	host	operating	system.	Likewise,	I/O	device
manufacturers	are	re-designing	their	interfaces	to	do	direct	transfers	to	and
from	the	guest	operating	system	without	the	need	to	go	through	the	host
kernel.

Exercises

	

	

1.	 When	a	user	process	is	interrupted	or	causes	a	processor	exception,	the	x86
hardware	switches	the	stack	pointer	to	a	kernel	stack,	before	saving	the
current	process	state.	Explain	why.

	

	

2.	 For	the	“Hello	world”	program,	we	mentioned	that	the	kernel	must	copy	the
string	from	the	user	program	to	screen	memory.	Why	must	the	screen’s
buffer	memory	be	protected?	Explain	what	might	happen	if	a	malicious
application	could	alter	any	pixel	on	the	screen,	not	just	those	within	its	own
window.

	

	

3.	 For	each	of	the	three	mechanisms	that	supports	dual-mode	operation	—
privileged	instructions,	memory	protection,	and	timer	interrupts	—	explain
what	might	go	wrong	without	that	mechanism,	assuming	the	system	still
had	the	other	two.

	

	

4.	 Suppose	you	are	tasked	with	designing	the	security	system	for	a	new	web
browser	that	supports	rendering	web	pages	with	embedded	web	page
scripts.	What	checks	would	you	need	to	implement	to	ensure	that	executing
buggy	or	malicious	scripts	could	not	corrupt	or	crash	the	browser?

	

5.	 Define	three	types	of	user-mode	to	kernel-mode	transfers.

	

6.	 Define	four	types	of	kernel-mode	to	user-mode	transfers.

	

7.	 Most	hardware	architectures	provide	an	instruction	to	return	from	an
interrupt,	such	as	iret.	This	instruction	switches	the	mode	of	operation	from
kernel-mode	to	user-mode.

	

a.	 Explain	where	in	the	operating	system	this	instruction	would	be	used.
b.	 Explain	what	happens	if	an	application	program	executes	this

instruction.

	

	

8.	 A	hardware	designer	argues	that	there	is	now	enough	on-chip	transistors	to
provide	1024	integer	registers	and	512	floating	point	registers.	As	a	result,
the	compiler	should	almost	never	need	to	store	anything	on	the	stack.	As	an
operating	system	guru,	give	your	opinion	of	this	design.

	

a.	 What	is	the	effect	on	the	operating	system	of	having	a	large	number	of
registers?

b.	 What	hardware	features	would	you	recommend	adding	to	the	design?
c.	 What	happens	if	the	hardware	designer	also	wants	to	add	a	16-stage

pipeline	into	the	CPU,	with	precise	exceptions.	How	would	that	affect
the	user-kernel	switching	overhead?

	

9.	 With	virtual	machines,	the	host	kernel	runs	in	privileged	mode	to	create	a
virtual	machine	that	runs	in	user	mode.	The	virtual	machine	provides	the
illusion	that	the	guest	kernel	runs	on	its	own	machine	in	privileged	mode,
even	though	it	is	actually	running	in	user	mode.

Early	versions	of	the	x86	architecture	(pre-2006)	were	not	completely
virtualizable	—	these	systems	could	not	guarantee	to	run	unmodified	guest
operating	systems	properly.	One	problem	was	the	popf	“pop	flags”
instruction	that	restores	the	processor	status	word.	When	popf	was	run	in
privileged	mode,	it	changed	both	the	ALU	flags	(e.g.,	the	condition	codes)
and	the	systems	flags	(e.g.,	the	interrupt	mask).	When	popf	was	run	in
unprivileged	mode,	it	changed	just	the	ALU	flags.

	

a.	 Why	do	instructions	like	popf	prevent	transparent	virtualization	of	the
(old)	x86	architecture?

	

	

b.	 How	would	you	change	the	(old)	x86	hardware	to	fix	this	problem?

	

	

	

10.	 Which	of	the	following	components	is	responsible	for	loading	the	initial
value	in	the	program	counter	for	an	application	program	before	it	starts
running:	the	compiler,	the	linker,	the	kernel,	or	the	boot	ROM?

	

	

11.	 We	described	how	the	operating	system	kernel	mediates	access	to	I/O
devices	for	safety.	Some	newer	I/O	devices	are	virtualizable	—	they	permit
safe	access	from	user-level	programs,	such	as	a	guest	operating	system
running	in	a	virtual	machine.	Explain	how	you	might	design	the	hardware
and	software	to	get	this	to	work.	(Hint:	The	device	needs	much	of	the	same
hardware	support	as	the	operating	system	kernel.)

	

12.	 System	calls	vs.	procedure	calls:	How	much	more	expensive	is	a	system
call	than	a	procedure	call?	Write	a	simple	test	program	to	compare	the	cost
of	a	simple	procedure	call	to	a	simple	system	call	(getpid()	is	a	good
candidate	on	UNIX;	see	the	man	page).	To	prevent	the	optimizing	compiler
from	“optimizing	out"	your	procedure	calls,	do	not	compile	with
optimization	on.	You	should	use	a	system	call	such	as	the	UNIX
gettimeofday()	for	time	measurements.	Design	your	code	so	the
measurement	overhead	is	negligible.	Also,	be	aware	that	timer	values	in
some	systems	have	limited	resolution	(e.g.,	millisecond	resolution).

Explain	the	difference	(if	any)	between	the	time	required	by	your	simple

Explain	the	difference	(if	any)	between	the	time	required	by	your	simple
procedure	call	and	simple	system	call	by	discussing	what	work	each	call
must	do.

	

13.	 Suppose	you	have	to	implement	an	operating	system	on	hardware	that
supports	interrupts	and	exceptions	but	does	not	have	a	trap	instruction.	Can
you	devise	a	satisfactory	substitute	for	traps	using	interrupts	and/or
exceptions?	If	so,	explain	how.	If	not,	explain	why.

	

	

14.	 Suppose	you	have	to	implement	an	operating	system	on	hardware	that
supports	exceptions	and	traps	but	does	not	have	interrupts.	Can	you	devise
a	satisfactory	substitute	for	interrupts	using	exceptions	and/or	traps?	If	so,
explain	how.	If	not,	explain	why.

	

	

15.	 Explain	the	steps	that	an	operating	system	goes	through	when	the	CPU
receives	an	interrupt.

	

16.	 When	an	operating	system	receives	a	system	call	from	a	program,	a	switch
to	operating	system	code	occurs	with	the	help	of	the	hardware.	The
hardware	sets	the	mode	of	operation	to	kernel	mode,	calls	the	operating
system	trap	handler	at	a	location	specified	by	the	operating	system,	and	lets
the	operating	system	return	to	user	mode	after	it	finishes	its	trap	handling.

Consider	the	stack	on	which	the	operating	system	must	run	when	it	receives
the	system	call.	Should	this	stack	be	different	from	the	one	the	application
uses,	or	could	it	use	the	same	stack	as	the	application	program?	Assume
that	the	application	program	is	blocked	while	the	system	call	runs.

	

17.	 Write	a	program	to	verify	that	the	operating	system	on	your	computer

correctly	protects	itself	from	rogue	system	calls.	For	a	single	system	call	—
such	as	file	system	open	—	try	all	possible	illegal	calls:	e.g.,	an	invalid
system	call	number,	an	invalid	stack	pointer,	an	invalid	pointer	stored	on
the	stack,	etc.	What	happens?

3.	The	Programming	Interface

From	a	programmer’s	point	of	view,	the	user	is	a	peripheral	that	types	when	you
issue	a	read	request.	—Peter	Williams

	

The	previous	chapter	concerned	the	mechanisms	needed	in	the	operating	system
kernel	to	implement	the	process	abstraction.	A	process	is	an	instance	of	a
program	—	the	kernel	provides	an	efficient	sandbox	for	executing	untrusted
code	at	user-level,	running	user	code	directly	on	the	processor.

This	chapter	concerns	how	we	choose	to	use	the	process	abstraction:	what
functionality	does	the	operating	system	provide	applications,	and	what	should	go
where	—	what	functionality	should	be	put	in	the	operating	system	kernel,	what
should	be	put	into	user-level	libraries,	and	how	should	the	operating	system
itself	be	organized?

There	are	as	many	answers	to	this	as	there	are	operating	systems.	Describing	the
full	programming	interface	and	internal	organization	for	even	a	single	operating
system	would	take	an	entire	book.	Instead,	in	this	chapter	we	explore	a	subset	of
the	programming	interface	for	UNIX,	the	foundation	of	Linux,	MacOS,	iOS,	and
Android.	We	also	touch	on	how	the	same	issues	are	addressed	in	Windows.

First,	we	need	to	answer	“what”	—	what	functions	do	we	need	an	operating
system	to	provide	applications?

Process	management.	Can	a	program	create	an	instance	of	another
program?	Wait	for	it	to	complete?	Stop	or	resume	another	running
program?	Send	it	an	asynchronous	event?

Input/output.	How	do	processes	communicate	with	devices	attached	to	the

computer	and	through	them	to	the	physical	world?	Can	processes
communicate	with	each	other?

Thread	management.	Can	we	create	multiple	activities	or	threads	that
share	memory	or	other	resources	within	a	process?	Can	we	stop	and	start
threads?	How	do	we	synchronize	their	use	of	shared	data	structures?

Memory	management.	Can	a	process	ask	for	more	(or	less)	memory
space?	Can	it	share	the	same	physical	memory	region	with	other	processes?

File	systems	and	storage.	How	does	a	process	store	the	user’s	data
persistently	so	that	it	can	survive	machine	crashes	and	disk	failures?	How
does	the	user	name	and	organize	their	data?

Networking	and	distributed	systems.	How	do	processes	communicate
with	processes	on	other	computers?	How	do	processes	on	different
computers	coordinate	their	actions	despite	machine	crashes	and	network
problems?

Graphics	and	window	management.	How	does	a	process	control	pixels
on	its	portion	of	the	screen?	How	does	a	process	make	use	of	graphics
accelerators?

Authentication	and	security.	What	permissions	does	a	user	or	a	program
have,	and	how	are	these	permissions	kept	up	to	date?	On	what	basis	do	we
know	the	user	(or	program)	is	who	they	say	they	are?

In	this	chapter,	we	focus	on	just	the	first	two	of	these	topics:	process
management	and	input/output.	We	will	cover	thread	management,	memory
management,	and	file	systems	in	detail	in	later	chapters	in	this	book.

Remarkably,	we	can	describe	a	functional	interface	for	process	management	and
input/output	with	just	a	dozen	system	calls,	and	the	rest	of	the	system	call
interface	with	another	dozen.	Even	more	remarkably,	these	calls	are	nearly
unchanged	from	the	original	UNIX	design.	Despite	being	first	designed	and
implemented	in	the	early	1970’s,	most	of	these	calls	are	still	in	wide	use	in
systems	today!

Figure	3.1:	Operating	system	functionality	can	be	implemented	in	user-level	programs,	in	user-level
libraries,	in	the	kernel	itself,	or	in	a	user-level	server	invoked	by	the	kernel.

Second,	we	need	to	answer	“where”	—	for	any	bit	of	functionality	the	operating
system	provides	to	user	programs,	we	have	several	options	for	where	it	lives,
illustrated	in	Figure	3.1:

We	can	put	the	functionality	in	a	user-level	program.	In	both	Windows	and
UNIX,	for	example,	there	is	a	user	program	for	managing	a	user’s	login	and
another	for	managing	a	user’s	processes.

We	can	put	the	functionality	in	a	user-level	library	linked	in	with	each
application.	In	Windows	and	MacOS,	user	interface	widgets	are	part	of
user-level	libraries,	included	in	those	applications	that	need	them.

We	can	put	the	functionality	in	the	operating	system	kernel,	accessed
through	a	system	call.	In	Windows	and	UNIX,	low-level	process
management,	the	file	system	and	the	network	stack	are	all	implemented	in
the	kernel.

We	can	access	the	function	through	a	system	call,	but	implement	the
function	in	a	standalone	server	process	invoked	by	the	kernel.	In	many
systems,	the	window	manager	is	implemented	as	a	separate	server	process.

How	do	we	make	this	choice?	It	is	important	to	realize	that	the	choice	can	be
(mostly)	transparent	to	both	the	user	and	the	application	programmer.	The	user
wants	a	system	that	works;	the	programmer	wants	a	clean,	convenient	interface

wants	a	system	that	works;	the	programmer	wants	a	clean,	convenient	interface
that	does	the	job.	As	long	as	the	operating	system	provides	that	interface,	where
each	function	is	implemented	is	up	to	the	operating	system,	based	on	a	tradeoff
between	flexibility,	reliability,	performance,	and	safety.

Flexibility.	It	is	much	easier	to	change	operating	system	code	that	lives
outside	of	the	kernel,	without	breaking	applications	using	the	old	interface.
If	we	create	a	new	version	of	a	library,	we	can	just	link	that	library	in	with
new	applications,	and	over	time	convert	old	applications	to	use	the	new
interface.	However,	if	we	need	to	change	the	system	call	interface,	we	must
either	simultaneously	change	both	the	kernel	and	all	applications,	or	we
must	continue	to	support	both	the	old	and	the	new	versions	until	all	old
applications	have	been	converted.	Many	applications	are	written	by	third
party	developers,	outside	of	the	control	of	the	operating	system	vendor.
Thus,	changing	the	system	call	interface	is	a	huge	step,	often	requiring
coordination	across	many	companies.

Figure	3.2:	The	kernel	system	call	interface	can	be	seen	as	a	“thin	waist,”	enabling	independent
evolution	of	applications	and	hardware.

One	of	the	key	ideas	in	UNIX,	responsible	for	much	of	its	success,	was	to
design	its	system	call	interface	to	be	simple	and	powerful,	so	that	almost	all
of	the	innovation	in	the	system	could	happen	in	user	code	without	changing
the	interface	to	the	operating	system.	The	UNIX	system	call	interface	is
also	highly	portable	—	the	operating	system	can	be	ported	to	new	hardware
without	needing	to	rewrite	application	code.	As	shown	in	Figure	3.2,	the

kernel	can	be	seen	as	a	“thin	waist,”	enabling	innovation	at	the	application-
level,	and	in	the	hardware,	without	requiring	simultaneous	changes	in	the
other	parts	of	the	system.

	

The	Internet	and	the	“thin	waist”

The	Internet	is	another	example	of	the	benefit	of	designing	interfaces	to	be
simple	and	portable.	The	Internet	defines	a	packet-level	protocol	that	can
run	on	top	of	virtually	any	type	of	network	hardware	and	can	support
almost	any	type	of	network	application.	Creating	the	World	Wide	Web
required	no	changes	to	the	Internet	packet	delivery	mechanism;	likewise,
the	introduction	of	wireless	networks	required	changes	in	hardware	devices
and	in	the	operating	system,	but	no	changes	in	network	applications.
Although	the	Internet’s	“thin	waist”	can	sometimes	lead	to	inefficiencies,
the	upside	is	to	foster	innovation	in	both	applications	and	hardware	by
decoupling	changes	in	one	from	changes	in	the	other.

	

Safety.	However,	resource	management	and	protection	are	the
responsibility	of	the	operating	system	kernel.	As	Chapter	2	explained,
protection	checks	cannot	be	implemented	in	a	user-level	library	because
application	code	can	skip	any	checks	made	by	the	library.

Reliability.	Improved	reliability	is	another	reason	to	keep	the	operating
system	kernel	minimal.	Kernel	code	needs	the	power	to	set	up	hardware
devices,	such	as	the	disk,	and	to	control	protection	boundaries	between
applications.	However,	kernel	modules	are	typically	not	protected	from	one
another,	and	so	a	bug	in	kernel	code	(whether	sensitive	or	not)	may	corrupt
user	or	kernel	data.	This	has	led	some	systems	to	use	a	philosophy	of	“what
can	be	at	user	level,	should	be.”	An	extreme	version	of	approach	is	to
isolate	privileged,	but	less	critical,	parts	of	the	operating	system	such	as	the
file	system	or	the	window	system,	from	the	rest	of	the	kernel.	This	is	called
a	microkernel	design.	In	a	microkernel,	the	kernel	itself	is	kept	small,	and
instead	most	of	the	functionality	of	a	traditional	operating	system	kernel	is

put	into	a	set	of	user-level	processes,	or	servers,	accessed	from	user
applications	via	interprocess	communication.

Performance.	Finally,	transferring	control	into	the	kernel	is	more
expensive	than	a	procedure	call	to	a	library,	and	transferring	control	to	a
user-level	file	system	server	via	the	kernel	is	still	even	more	costly.
Hardware	designers	have	attempted	to	reduce	the	cost	of	these	boundary
crossings,	but	their	performance	remains	a	problem.	Microsoft	Windows
NT,	a	precursor	to	Windows	7,	was	initially	designed	as	a	microkernel,	but
over	time,	much	of	its	functionality	has	been	migrated	back	into	the	kernel
for	performance	reasons.

	

Application-level	sandboxing	and	operating	system	functionality

Applications	that	support	executing	third-party	code	or	scripts	in	a	restricted
sandbox	must	address	many	of	these	same	questions,	with	the	sandbox	playing
the	role	of	the	operating	system	kernel.	In	terms	of	functionality:	Can	the
scripting	code	start	a	new	instance	of	itself?	Can	it	do	input/output?	Can	it
perform	work	in	the	background?	Can	it	store	data	persistently,	and	if	it	can,
how	does	it	name	that	data?	Can	it	communicate	data	over	the	network?	How
does	it	authenticate	actions?

For	example,	in	web	browsers,	HTML5	not	only	allows	scripts	to	draw	on	the
screen,	communicate	with	servers,	and	save	and	read	cookies,	it	also	has
recently	added	programming	interfaces	for	offline	storage	and	cross-document
communication.	The	Flash	media	player	provides	scripts	with	the	ability	to	do
asynchronous	operations,	file	storage,	network	communication,	memory
management,	and	authentication.

Just	as	with	system	calls,	these	interfaces	must	be	carefully	designed	to	be
bulletproof	against	malicious	use.	A	decade	ago,	email	viruses	became
widespread	because	scripts	could	be	embedded	in	documents	that	were
executed	on	opening;	the	programming	interfaces	for	these	scripts	would	allow
them	to	discover	the	list	of	correspondents	known	to	the	current	email	user	and
to	send	them	email,	thereby	propagating	and	expanding	the	virus	with	a	single
click.	The	more	fully	featured	the	interface,	the	more	convenient	it	is	for
developers,	and	the	more	likely	that	some	aspect	of	the	interface	will	be	abused

developers,	and	the	more	likely	that	some	aspect	of	the	interface	will	be	abused
by	a	hacker.

	

There	are	no	easy	answers!	We	will	investigate	the	question	of	how	to	design	the
system	call	interface	and	where	to	place	operating	system	functionality	through
case	studies	of	UNIX	and	other	systems.

Chapter	roadmap:

Process	management.	What	is	the	system	call	interface	for	process
management?	(Section	3.1)

Input/output.	What	is	the	system	call	interface	for	performing	I/O	and
interprocess	communication?	(Section	3.2)

Case	study:	Implementing	a	shell.	We	will	illustrate	these	interfaces	by
using	them	to	implement	a	user-level	job	control	system	called	a	shell.
(Section	3.3)

Case	study:	Interprocess	communication.	How	does	the	communication
between	a	client	and	server	work?	(Section	3.4)

Operating	system	structure.	Can	we	use	the	process	abstraction	to
simplify	the	construction	of	the	operating	system	itself	and	to	make	it	more
secure,	more	reliable,	and	more	flexible?	(Section	3.5)

3.1	Process	Management

On	a	modern	computer,	when	a	user	clicks	on	a	file	or	application	icon,	the
application	starts	up.	How	does	this	happen	and	who	is	called?	Of	course,	we
could	implement	everything	that	needs	to	happen	in	the	kernel	—	draw	the	icon
for	every	item	in	the	file	system,	map	mouse	positions	to	the	intended	icon,	catch
the	mouse	click,	and	start	the	process.	In	early	batch	processing	systems,	the
kernel	was	in	control	by	necessity.	Users	submitted	jobs,	and	the	operating
system	took	it	from	there,	instantiating	the	process	when	it	was	time	to	run	the
job.

A	different	approach	is	to	allow	user	programs	to	create	and	manage	their	own

A	different	approach	is	to	allow	user	programs	to	create	and	manage	their	own
processes.	This	has	fostered	a	blizzard	of	innovation.	Today,	programs	that
create	and	manage	processes	include	window	managers,	web	servers,	web
browsers,	shell	command	line	interpreters,	source	code	control	systems,
databases,	compilers,	and	document	preparation	systems.	We	could	go	on,	but
you	get	the	idea.	If	creating	a	process	is	something	a	process	can	do,	then	anyone
can	build	a	new	version	of	any	of	these	applications,	without	recompiling	the
kernel	or	forcing	anyone	else	to	use	it.

An	early	motivation	for	user-level	process	management	was	to	allow	developers
to	write	their	own	shell	command	line	interpreters.	A	shell	is	a	job	control
system;	both	Windows	and	UNIX	have	a	shell.	Many	tasks	involve	a	sequence
of	steps	to	do	something,	each	of	which	can	be	its	own	program.	With	a	shell,
you	can	write	down	the	sequence	of	steps,	as	a	sequence	of	programs	to	run	to
do	each	step.	Thus,	you	can	view	it	as	a	very	early	version	of	a	scripting	system.

For	example,	to	compile	a	C	program	from	multiple	source	files,	you	might	type:

	cc	-c	sourcefile1.c

				cc	-c	sourcefile2.c

				ln	-o	program	sourcefile1.o	sourcefile2.o

If	we	put	those	commands	into	a	file,	the	shell	reads	the	file	and	executes	it,
creating,	in	turn,	a	process	to	compile	sourcefile1.c,	a	process	to	compile
sourcefile2,	and	a	process	to	link	them	together.	Once	a	shell	script	is	a	program,
we	can	create	other	programs	by	combining	scripts	together.	In	fact,	on	UNIX,
the	C	compiler	is	itself	a	shell	program!	The	compiler	first	invokes	a	process	to
expand	header	include	files,	then	a	separate	process	to	parse	the	output,	another
process	to	generate	(text)	assembly	code,	and	yet	another	to	convert	assembly
into	executable	machine	instructions.

	

There	is	an	app	for	that

User-level	process	management	is	another	way	of	saying	“there	is	an	app	for
that.”	Instead	of	a	single	program	that	does	everything,	we	can	create

that.”	Instead	of	a	single	program	that	does	everything,	we	can	create
specialized	programs	for	each	task,	and	mix	and	match	what	we	need.	The
formatting	system	for	this	textbook	uses	over	fifty	separate	programs.

The	web	is	a	good	example	of	the	power	of	composing	complex	applications
from	more	specialized	services.	A	web	page	does	not	need	to	do	everything
itself:	it	can	mash	up	the	results	of	many	different	web	pages,	and	it	can	invoke
process	creation	on	the	local	server	to	generate	part	of	the	page.	The	flexibility
to	create	processes	was	extremely	important	early	on	in	the	development	of	the
web.	HTML	was	initially	just	a	way	to	describe	the	formatting	for	static
information,	but	it	included	a	way	to	escape	to	a	process,	e.g.,	to	do	a	lookup	in
a	database	or	to	authenticate	a	user.	Over	time,	HTML	has	added	support	for
many	different	features	that	were	first	prototyped	via	execution	by	a	separate
process.	And	of	course,	HTML	can	still	execute	a	process	for	any	format	not
supported	by	the	standard.

	

3.1.1	Windows	Process	Management

One	approach	to	process	management	is	to	just	add	a	system	call	to	create	a
process,	and	other	system	calls	for	other	process	operations.	This	turns	out	to	be
simple	in	theory	and	complex	in	practice.	In	Windows,	there	is	a	routine	called,
unsurprisingly,	CreateProcess,	in	simplified	form	below:

	boolean	CreateProcess(char	*prog,	char	*args);

We	call	the	process	creator	the	parent	and	the	process	being	created,	the	child.

What	steps	does	CreateProcess	take?	As	we	explained	in	the	previous	chapter,
the	kernel	needs	to:

Create	and	initialize	the	process	control	block	(PCB)	in	the	kernel.

Create	and	initialize	a	new	address	space.

Load	the	program	prog	into	the	address	space.

Copy	arguments	args	into	memory	in	the	address	space.

Initialize	the	hardware	context	to	start	execution	at	“start”.

Inform	the	scheduler	that	the	new	process	is	ready	to	run.

Unfortunately,	there	are	quite	a	few	aspects	of	the	process	that	the	parent	might
like	to	control,	such	as:	its	privileges,	where	it	sends	its	input	and	output,	what	it
should	store	its	files,	what	to	use	as	a	scheduling	priority,	and	so	forth.	We
cannot	trust	the	child	process	itself	to	set	its	own	privileges	and	priority,	and	it
would	be	inconvenient	to	expect	every	application	to	include	code	for	figuring
out	its	context.	So	the	real	interface	to	CreateProcess	is	quite	a	bit	more
complicated	in	practice,	given	in	Figure	3.3.

	//	Start	the	child	process

	if	(!CreateProcess(NULL,			//	No	module	name	(use	command	line)

					argv[1],								//	Command	line

					NULL,											//	Process	handle	not	inheritable

					NULL,											//	Thread	handle	not	inheritable

					FALSE,										//	Set	handle	inheritance	to	FALSE

					0,														//	No	creation	flags

					NULL,											//	Use	parent’s	environment	block

					NULL,											//	Use	parent’s	starting	directory

					&si,												//	Pointer	to	STARTUPINFO	structure

					&pi)											//	Pointer	to	PROCESS_INFORMATION	structure

)

Figure	3.3:	Excerpt	from	an	example	of	how	to	use	the	Windows	CreateProcess
system	call.	The	first	two	arguments	specify	the	program	and	its	arguments;	the
rest	concern	aspects	of	the	process	runtime	environment.

3.1.2	UNIX	Process	Management

UNIX	takes	a	different	approach	to	process	management,	one	that	is	complex	in
theory	and	simple	in	practice.	UNIX	splits	CreateProcess	in	two	steps,	called
fork	and	exec,	illustrated	in	Figure	3.4.

Figure	3.4:	The	operation	of	the	UNIX	fork	and	exec	system	calls.	UNIX	fork	makes	a	copy	of	the	parent
process;	UNIX	exec	changes	the	child	process	to	run	the	new	program.

UNIX	fork	creates	a	complete	copy	of	the	parent	process,	with	one	key
exception.	(We	need	some	way	to	distinguish	between	which	copy	is	the	parent
and	which	is	the	child.)	The	child	process	sets	up	privileges,	priorities,	and	I/O
for	the	program	that	is	about	to	be	started,	e.g.,	by	closing	some	files,	opening
others,	reducing	its	priority	if	it	is	to	run	in	the	background,	etc.	Because	the
child	runs	exactly	the	same	code	as	the	parent,	it	can	be	trusted	to	set	up	the
context	for	the	new	program	correctly.

Once	the	context	is	set,	the	child	process	calls	UNIX	exec.	UNIX	exec	brings	the
new	executable	image	into	memory	and	starts	it	running.	It	may	seem	wasteful
to	make	a	complete	copy	of	the	parent	process,	just	to	overwrite	that	copy	when
we	bring	in	the	new	executable	image	into	memory	using	exec.	It	turns	out	that
fork	and	exec	can	be	implemented	efficiently,	using	a	set	of	techniques	we	will
describe	in	Chapter	8.

With	this	design,	UNIX	fork	takes	no	arguments	and	returns	an	integer.	UNIX
exec	takes	two	arguments	(the	name	of	the	program	to	run	and	an	array	of

exec	takes	two	arguments	(the	name	of	the	program	to	run	and	an	array	of
arguments	to	pass	to	the	program).	This	is	in	place	of	the	ten	parameters	needed
for	CreateProcess.	In	part	because	of	the	simplicity	of	UNIX	fork	and	exec,	this
interface	has	remained	nearly	unchanged	since	UNIX	was	designed	in	the	early
70’s.	(Although	the	interface	has	not	changed,	the	word	fork	is	now	a	bit
ambiguous.	It	is	used	for	creating	a	new	copy	of	a	UNIX	process,	and	in	thread
systems	for	creating	a	new	thread.	To	disambiguate,	we	will	always	use	the	term
“UNIX	fork”	to	refer	to	UNIX’s	copy	process	system	call.)

UNIX	fork

The	steps	for	implementing	UNIX	fork	in	the	kernel	are:

Create	and	initialize	the	process	control	block	(PCB)	in	the	kernel

Create	a	new	address	space

Initialize	the	address	space	with	a	copy	of	the	entire	contents	of	the	address
space	of	the	parent

Inherit	the	execution	context	of	the	parent	(e.g.,	any	open	files)

Inform	the	scheduler	that	the	new	process	is	ready	to	run

A	strange	aspect	of	UNIX	fork	is	that	the	system	call	returns	twice:	once	to	the
parent	and	once	to	the	child.	To	the	parent,	UNIX	returns	the	process	ID	of	the
child;	to	the	child,	it	returns	zero	indicating	success.	Just	as	if	you	made	a	clone
of	yourself,	you	would	need	some	way	to	tell	who	was	the	clone	and	who	was
the	original,	UNIX	uses	the	return	value	from	fork	to	distinguish	the	two	copies.
Some	sample	code	to	call	fork	is	given	in	Figure	3.5.

	int	child_pid	=	fork();

	

	if	(child_pid	==	0)	{			//	I’m	the	child	process.

					printf("I	am	process	#%d\n",	getpid());

					return	0;

	}	else	{																//	I’m	the	parent	process.

					printf("I	am	the	parent	of	process	#%d\n",	child_pid);

					return	0;

	}

	

	Possible	output:

					I	am	the	parent	of	process	495

					I	am	process	495

	

	Another	less	likely	but	still	possible	output:

					I	am	process	456

					I	am	the	parent	of	process	456

Figure	3.5:	Example	UNIX	code	to	fork	a	process,	and	some	possible	outputs
of	running	the	code.	getpid	is	a	system	call	to	get	the	current	process’s	ID.

If	we	run	the	program	in	Figure	3.5,	what	happens?	If	you	have	access	to	a
UNIX	system,	you	can	try	it	and	see	for	yourself.	UNIX	fork	returns	twice,	once
in	the	child,	with	a	return	value	of	zero,	and	once	in	the	parent	with	a	return
value	of	the	child’s	process	ID.	However,	we	do	not	know	whether	the	parent
will	run	next	or	the	child.	The	parent	had	been	running,	and	so	it	is	likely	that	it
will	reach	its	print	statement	first.	However,	a	timer	interrupt	could	intervene
between	when	the	parent	forks	the	process	and	when	it	reaches	the	print
statement,	so	that	the	processor	is	reassigned	to	the	child.	Or	we	could	be
running	on	a	multicore	system,	where	both	the	parent	and	child	are	running
simultaneously.	In	either	case,	the	child	could	print	its	output	before	the	parent.
We	will	talk	in	much	more	depth	about	the	implications	of	different	orderings	of
concurrent	execution	in	the	next	chapter.

	

UNIX	fork	and	the	Chrome	Web	browser

Although	UNIX	fork	is	normally	paired	with	a	call	to	exec,	in	some	cases
UNIX	fork	is	useful	on	its	own.	A	particularly	interesting	example	is	in
Google’s	Chrome	web	browser.	When	the	user	clicks	on	a	link,	Chrome	forks	a
process	to	fetch	and	render	the	web	page	at	the	link,	in	a	new	tab	on	the
browser.	The	parent	process	continues	to	display	the	original	referring	web
page,	while	the	child	process	runs	the	same	browser,	but	in	its	own	address
space	and	protection	boundary.	The	motivation	for	this	design	is	to	isolate	the
new	link,	so	that	if	the	web	site	is	infected	with	a	virus,	it	will	not	infect	the	rest
of	the	browser.	Closing	the	infected	browser	tab	will	then	remove	the	link	and
the	virus	from	the	system.

Some	security	researchers	take	this	a	step	further.	They	set	up	their	browsers
and	email	systems	to	create	a	new	virtual	machine	for	every	new	link,	running	a
copy	of	the	browser	in	each	virtual	machine;	even	if	the	web	site	has	a	virus	that
corrupts	the	guest	operating	system	running	in	the	virtual	machine,	the	rest	of
the	system	will	remain	unaffected.	In	this	case,	closing	the	virtual	machine
cleans	the	system	of	the	virus.

Interestingly,	on	Windows,	Google	Chrome	does	not	use	CreateProcess	to	fork
new	copies	of	the	browser	on	demand.	The	difficulty	is	that	if	Chrome	is
updated	while	Chrome	is	running,	CreateProcess	will	create	a	copy	of	the	new
version,	and	that	may	not	interoperate	correctly	with	the	old	version.	Instead,
they	create	a	pool	of	helper	processes	that	wait	in	the	background	for	new	links
to	render.

	

UNIX	exec	and	wait

The	UNIX	system	call	exec	completes	the	steps	needed	to	start	running	a	new
program.	The	child	process	typically	calls	UNIX	exec	once	it	has	returned	from
UNIX	fork	and	configured	the	execution	environment	for	the	new	process.	We
will	describe	more	about	how	this	works	when	we	discuss	UNIX	pipes	in	the
next	section.

UNIX	exec	does	the	following	steps:

Load	the	program	prog	into	the	current	address	space.

Copy	arguments	args	into	memory	in	the	address	space.

Initialize	the	hardware	context	to	start	execution	at	“start.”

Note	that	exec	does	not	create	a	new	process!

On	the	other	side,	often	the	parent	process	needs	to	pause	until	the	child	process
completes,	e.g.,	if	the	next	step	depends	on	the	output	of	the	previous	step.	In	the
shell	example	we	started	the	chapter	with,	we	need	to	wait	for	the	two
compilations	to	finish	before	it	is	safe	to	start	the	linker.

UNIX	has	a	system	call,	naturally	enough	called	wait,	that	pauses	the	parent
until	the	child	finishes,	crashes,	or	is	terminated.	Since	the	parent	could	have
created	many	child	processes,	wait	is	parameterized	with	the	process	ID	of	the
child.	With	wait,	a	shell	can	create	a	new	process	to	perform	some	step	of	its
instructions,	and	then	pause	for	that	step	to	complete	before	proceeding	to	the
next	step.	It	would	be	hard	to	build	a	usable	shell	without	wait.

However,	the	call	to	wait	is	optional	in	UNIX.	For	example,	the	Chrome	browser
does	not	need	to	wait	for	its	forked	clones	to	finish.	Likewise,	most	UNIX	shells
have	an	option	to	run	operations	in	the	background,	signified	by	appending	‘&’
to	the	command	line.	(As	with	fork,	the	word	wait	is	now	a	bit	ambiguous.	It	is
used	for	pausing	the	current	UNIX	process	to	wait	for	another	process	to
complete;	it	is	also	used	in	thread	synchronization,	for	waiting	on	a	condition
variable.	To	disambiguate,	we	will	always	use	the	term	“UNIX	wait”	to	refer	to
UNIX’s	wait	system	call.	Oddly,	waiting	for	a	thread	to	complete	is	called
“thread	join”,	even	though	it	is	most	analogous	to	UNIX	wait.	Windows	is
simpler,	with	a	single	function	called	“WaitForSingleObject”	that	can	wait	for
process	completion,	thread	completion,	or	on	a	condition	variable.)

	

Kernel	handles	and	garbage	collection

As	we	discussed	in	the	previous	chapter,	when	a	UNIX	process	finishes,	it	calls
the	system	call	exit.	Exit	can	release	various	resources	associated	with	the
process,	such	as	the	user	stack,	heap,	and	code	segments.	It	must	be	careful,
however,	in	how	it	garbage	collects	the	process	control	block	(PCB).	Even
though	the	child	process	has	finished,	if	it	deletes	the	PCB,	then	the	parent
process	will	be	left	with	a	dangling	pointer	if	later	on	it	calls	UNIX	wait.	Of
course,	we	don’t	know	for	sure	if	the	parent	will	ever	call	wait,	so	to	be	safe,	the
PCB	can	only	be	reclaimed	when	both	the	parent	and	the	child	have	finished	or
crashed.

Generalizing,	both	Windows	and	UNIX	have	various	system	calls	that	return	a
handle	to	some	kernel	object;	these	handles	are	used	in	later	calls	as	an	ID.	The
process	ID	returned	by	UNIX	fork	is	used	in	later	calls	to	UNIX	wait;	we	will
see	below	that	UNIX	open	returns	a	file	descriptor	that	is	used	in	other	system
calls.	It	is	important	to	realize	that	these	handles	are	not	pointers	to	kernel	data

structures;	otherwise,	an	erroneous	user	program	could	cause	havoc	in	the
kernel	by	making	system	calls	with	fake	handles.	Rather,	they	are	specific	to	the
process	and	checked	for	validity	on	each	use.

Further,	in	both	Windows	and	UNIX,	handles	are	reference	counted.	Whenever
the	kernel	returns	a	handle,	it	bumps	a	reference	counter,	and	whenever	the
process	releases	a	handle	(or	exits),	the	reference	counter	is	decremented.	UNIX
fork	sets	the	process	ID	reference	count	to	two,	one	for	the	parent	and	one	for
the	child.	The	underlying	data	structure,	the	PCB,	is	reclaimed	only	when	the
reference	count	goes	to	zero,	that	is,	when	both	the	parent	and	child	terminate.

	

Finally,	as	we	outlined	in	the	previous	chapter,	UNIX	provides	a	facility	for	one
process	to	send	another	an	instant	notification,	or	upcall.	In	UNIX,	the
notification	is	sent	by	calling	signal.	Signals	are	used	for	terminating	an
application,	suspending	it	temporarily	for	debugging,	resuming	after	a
suspension,	timer	expiration,	and	a	host	of	other	reasons.	In	the	default	case,
where	the	receiving	application	did	not	specify	a	signal	handler,	the	kernel
implements	a	standard	one	on	its	behalf.

3.2	Input/Output

Computer	systems	have	a	wide	diversity	of	input	and	output	devices:	keyboard,
mouse,	disk,	USB	port,	Ethernet,	WiFi,	display,	hardware	timer,	microphone,
camera,	accelerometer,	and	GPS,	to	name	a	few.

To	deal	with	this	diversity,	we	could	specialize	the	application	programming
interface	for	each	device,	customizing	it	to	the	device’s	specific	characteristics.
After	all,	a	disk	device	is	quite	different	from	a	network	and	both	are	quite
different	from	a	keyboard:	a	disk	is	addressed	in	fixed	sized	chunks,	while	a
network	sends	and	receives	a	stream	of	variable	sized	packets,	and	the	keyboard
returns	individual	characters	as	keys	are	pressed.	While	the	disk	only	returns
data	when	asked,	the	network	and	keyboard	provide	data	unprompted.	Early
computer	systems	took	the	approach	of	specializing	the	interface	to	the	device,
but	it	had	a	significant	downside:	every	time	a	new	type	of	hardware	device	is
invented,	the	system	call	interface	has	to	be	upgraded	to	handle	that	device.

One	of	the	primary	innovations	in	UNIX	was	to	regularize	all	device	input	and

One	of	the	primary	innovations	in	UNIX	was	to	regularize	all	device	input	and
output	behind	a	single	common	interface.	In	fact,	UNIX	took	this	one	giant	step
further:	it	uses	this	same	interface	for	reading	and	writing	files	and	for
interprocess	communication.	This	approach	was	so	successful	that	it	is	almost
universally	followed	in	systems	today.	We	will	sketch	the	interface	in	this
section,	and	then	in	the	next	section,	show	how	to	use	it	to	build	a	shell.

The	basic	ideas	in	the	UNIX	I/O	interface	are:

Uniformity.	All	device	I/O,	file	operations,	and	interprocess
communication	use	the	same	set	of	system	calls:	open,	close,	read	and
write.

Open	before	use.	Before	an	application	does	I/O,	it	must	first	call	open	on
the	device,	file,	or	communication	channel.	This	gives	the	operating	system
a	chance	to	check	access	permissions	and	to	set	up	any	internal
bookkeeping.	Some	devices,	such	as	a	printer,	only	allow	one	application
access	at	a	time	—	the	open	call	can	return	an	error	if	the	device	is	in	use.

Open	returns	a	handle	to	be	used	in	later	calls	to	read,	write	and	close	to
identify	the	file,	device	or	channel;	this	handle	is	somewhat	misleadingly
called	a	file	descriptor,	even	when	it	refers	to	a	device	or	channel	so	there	is
no	file	involved.	For	convenience,	the	UNIX	shell	starts	applications	with
open	file	descriptors	for	reading	and	writing	to	the	terminal.

Byte-oriented.	All	devices,	even	those	that	transfer	fixed-size	blocks	of
data,	are	accessed	with	byte	arrays.	Similarly,	file	and	communication
channel	access	is	in	terms	of	bytes,	even	though	we	store	data	structures	in
files	and	send	data	structures	across	channels.

Kernel-buffered	reads.	Stream	data,	such	as	from	the	network	or
keyboard,	is	stored	in	a	kernel	buffer	and	returned	to	the	application	on
request.	This	allows	the	UNIX	system	call	read	interface	to	be	the	same	for
devices	with	streaming	reads	as	those	with	block	reads,	such	as	disks	and
Flash	memory.	In	both	cases,	if	no	data	is	available	to	be	returned
immediately,	the	read	call	blocks	until	it	arrives,	potentially	giving	up	the
processor	to	some	other	task	with	work	to	do.

Kernel-buffered	writes.	Likewise,	outgoing	data	is	stored	in	a	kernel
buffer	for	transmission	when	the	device	becomes	available.	In	the	normal

case,	the	system	call	write	copies	the	data	into	the	kernel	buffer	and	returns
immediately.	This	decouples	the	application	from	the	device,	allowing	each
to	go	at	its	own	speed.	If	the	application	generates	data	faster	than	the
device	can	receive	it	(as	is	common	when	spooling	data	to	a	printer),	the
write	system	call	blocks	in	the	kernel	until	there	is	enough	room	to	store	the
new	data	in	the	buffer.

Explicit	close.	When	an	application	is	done	with	the	device	or	file,	it	calls
close.	This	signals	to	the	operating	system	that	it	can	decrement	the
reference-count	on	the	device,	and	garbage	collect	any	unused	kernel	data
structures.

	

Open	vs.	creat	vs.	stat

By	default,	the	UNIX	open	system	call	returns	an	error	if	the	application	tries	to
open	a	file	that	does	not	exist;	as	an	option	(not	shown	above),	a	parameter	can
tell	the	kernel	to	instead	create	the	file	if	it	does	not	exist.	Since	UNIX	also	has
system	calls	for	creating	a	file	(creat)	and	for	testing	whether	a	file	exists	(stat),
it	might	seem	as	if	open	could	be	simplified	to	always	assume	that	the	file
already	exists.

However,	UNIX	often	runs	in	a	multi-user,	multi-application	environment,	and
in	that	setting	the	issue	of	system	call	design	can	become	more	subtle.	Suppose
instead	of	the	UNIX	interface,	we	had	completely	separate	functions	for	testing
if	a	file	exists,	creating	a	file,	and	opening	the	file.	Assuming	that	the	user	has
permission	to	test,	open,	or	create	the	file,	does	this	code	work?

	if	(!exists(file))	{				//	If	the	file	doesn’t	exist	create	it.

				//	Are	we	guaranteed	the	file	doesn’t	exist?

								create(file);

				}

				//	Are	we	guaranteed	the	file	does	exist?

				open(file);

The	problem	is	that	on	a	multi-user	system,	some	other	user	might	have	created

The	problem	is	that	on	a	multi-user	system,	some	other	user	might	have	created
the	file	in	between	the	call	to	test	for	its	existence,	and	the	call	to	create	the	file.
Thus,	call	to	create	must	also	test	the	existence	of	the	file.	Likewise,	some	other
user	might	have	deleted	the	file	between	the	call	to	create	and	the	call	to	open.
So	open	also	needs	the	ability	to	test	if	the	file	is	there,	and	if	not	to	create	the
file	(if	that	is	the	user’s	intent).

UNIX	addresses	this	with	an	all-purpose,	atomic	open:	test	if	the	file	exists,
optionally	create	it	if	it	does	not,	and	then	open	it.	Because	system	calls	are
implemented	in	the	kernel,	the	operating	system	can	make	open	(and	all	other
I/O	systems	calls)	non-interruptible	with	respect	to	other	system	calls.	If	another
user	tries	to	delete	a	file	while	the	kernel	is	executing	an	open	system	call	on	the
same	file,	the	delete	will	be	delayed	until	the	open	completes.	The	open	will
return	a	file	descriptor	that	will	continue	to	work	until	the	application	closes	the
file.	The	delete	will	remove	the	file	from	the	file	system,	but	the	file	system
does	not	actually	reclaim	its	disk	blocks	until	the	file	is	closed.

	

For	interprocess	communication,	we	need	a	few	more	concepts:

Figure	3.6:	A	pipe	is	a	temporary	kernel	buffer	connecting	a	process	producing	data	with	a	process
consuming	the	data.

Pipes.	A	UNIX	pipe	is	a	kernel	buffer	with	two	file	descriptors,	one	for
writing	(to	put	data	into	the	pipe)	and	one	for	reading	(to	pull	data	out	of	the
pipe),	as	illustrated	in	Figure	3.6.	Data	is	read	in	exactly	the	same	sequence
it	is	written,	but	since	the	data	is	buffered,	the	execution	of	the	producer	and
consumer	can	be	decoupled,	reducing	waiting	in	the	common	case.	The

pipe	terminates	when	either	endpoint	closes	the	pipe	or	exits.

The	Internet	has	a	similar	facility	to	UNIX	pipes	called	TCP	(Transmission
Control	Protocol).	Where	UNIX	pipes	connect	processes	on	the	same
machine,	TCP	provides	a	bi-directional	pipe	between	two	processes	running
on	different	machines.	In	TCP,	data	is	written	as	a	sequence	of	bytes	on	one
machine	and	read	out	as	the	same	sequence	on	the	other	machine.

Replace	file	descriptor.	By	manipulating	the	file	descriptors	of	the	child
process,	the	shell	can	cause	the	child	to	read	its	input	from,	or	send	its
output	to,	a	file	or	a	pipe	instead	of	from	a	keyboard	or	to	the	screen.	This
way,	the	child	process	does	not	need	to	be	aware	of	who	is	providing	or
consuming	its	I/O.	The	shell	does	this	redirection	using	a	special	system
call	named	dup2(from,	to)	that	replaces	the	to	file	descriptor	with	a	copy	of
the	from	file	descriptor.

Wait	for	multiple	reads.	For	client-server	computing,	a	server	may	have	a
pipe	open	to	multiple	client	processes.	Normally,	read	will	block	if	there	is
no	data	to	be	read,	and	it	would	be	inefficient	for	the	server	to	poll	each
pipe	in	turn	to	check	if	there	is	work	for	it	to	do.	The	UNIX	system	call
select(fd[],	number)	addresses	this.	Select	allows	the	server	to	wait	for	input
from	any	of	a	set	of	file	descriptors;	it	returns	the	file	descriptor	that	has
data,	but	it	does	not	read	the	data.	Windows	has	an	equivalent	function,
called	WaitForMultipleObjects.

Figure	3.7	summarizes	the	dozen	UNIX	system	calls	discussed	in	this	section.

	

Creating	and	managing	processes
.

fork	() Create	a	child	process	as	a	clone	of	the	current	process.	The
fork	call	returns	to	both	the	parent	and	child.

exec	(prog,
args) Run	the	application	prog	in	the	current	process.

exit	() Tell	the	kernel	the	current	process	is	complete,	and	its	data
structures	should	be	garbage	collected.

wait
(processID) Pause	until	the	child	process	has	exited.

(processID) Pause	until	the	child	process	has	exited.

signal
(processID,
type)

Send	an	interrupt	of	a	specified	type	to	a	process.

	

I/O	operations
fileDesc	open
(name)

Open	a	file,	channel,	or	hardware	device,	specified	by	name;
returns	a	file	descriptor	that	can	be	used	by	other	calls.

pipe
(fileDesc[2])

Create	a	one-directional	pipe	for	communication	between	two
processes.	Pipe	returns	two	file	descriptors,	one	for	reading	and
one	for	writing.

dup2
(fromFileDesc,
toFileDesc)

Replace	the	toFileDesc	file	descriptor	with	a	copy	of
fromFileDesc.	Used	for	replacing	stdin	or	stdout	or	both	in	a
child	process	before	calling	exec.

int	read
(fileDesc,
buffer,	size)

Read	up	to	size	bytes	into	buffer,	from	the	file,	channel,	or
device.	Read	returns	the	number	of	bytes	actually	read.	For
streaming	devices	this	will	often	be	less	than	size.	For	example,
a	read	from	the	keyboard	device	will	(normally)	return	all	of	its
queued	bytes.

int	write
(fileDesc,
buffer,	size)

Analogous	to	read,	write	up	to	size	bytes	into	kernel	output
buffer	for	a	file,	channel,	or	device.	Write	normally	returns
immediately	but	may	stall	if	there	is	no	space	in	the	kernel
buffer.

fileDesc	select
(fileDesc[],
arraySize)

Return	when	any	of	the	file	descriptors	in	the	array	fileDesc[]
have	data	available	to	be	read.	Returns	the	file	descriptor	that
has	data	pending.

close
(fileDescriptor)

Tell	the	kernel	the	process	is	done	with	this	file,	channel,	or
device.

	

Figure	3.7:	List	of	UNIX	system	calls	discussed	in	this	section.

3.3	Case	Study:	Implementing	a	Shell

The	dozen	UNIX	system	calls	listed	in	Figure	3.7	are	enough	to	build	a	flexible
and	powerful	command	line	shell,	one	that	runs	entirely	at	user-level	with	no
special	permissions.	As	we	mentioned,	the	process	that	creates	the	shell	is
responsible	for	providing	it	an	open	file	descriptor	for	reading	commands	for	its
input	(e.g.,	from	the	keyboard),	called	stdin	and	for	writing	output	(e.g.,	to	the
display),	called	stdout.

	

	main()	{

					char	*prog	=	NULL;

					char	**args	=	NULL;

	

					//	Read	the	input	a	line	at	a	time,	and	parse	each	line	into	the	program

					//	name	and	its	arguments.	End	loop	if	we’ve	reached	the	end	of	the	input.

					while	(readAndParseCmdLine(&prog,	&args))	{

	

									//	Create	a	child	process	to	run	the	command.

									int	child_pid	=	fork();

	

									if	(child_pid	==	0)	{

													//	I’m	the	child	process.

													//	Run	program	with	the	parent’s	input	and	output.

													exec(prog,	args);

													//	NOT	REACHED

									}	else	{

													//	I’m	the	parent;	wait	for	the	child	to	complete.

													wait(child_pid);

													return	0;

									}

					}

	}

Figure	3.8:	Example	code	for	a	simple	UNIX	shell.

Figure		3.8	illustrates	the	code	for	the	basic	operation	of	a	shell.	The	shell	reads	a
command	line	from	the	input,	and	it	forks	a	process	to	execute	that	command.
UNIX	fork	automatically	duplicates	all	open	file	descriptors	in	the	parent,
incrementing	the	kernel’s	reference	counts	for	those	descriptors,	so	the	input	and
output	of	the	child	is	the	same	as	the	parent.	The	parent	waits	for	the	child	to
finish	before	it	reads	the	next	command	to	execute.

Because	the	commands	to	read	and	write	to	an	open	file	descriptor	are	the	same

Because	the	commands	to	read	and	write	to	an	open	file	descriptor	are	the	same
whether	the	file	descriptor	represents	a	keyboard,	screen,	file,	device,	or	pipe,
UNIX	programs	do	not	need	to	be	aware	of	where	their	input	is	coming	from,	or
where	their	output	is	going.	This	is	helpful	in	a	number	of	ways:

A	program	can	be	a	file	of	commands.	Programs	are	normally	a	set	of
machine	instructions,	but	on	UNIX	a	program	can	be	a	file	containing	a	list
of	commands	for	a	shell	to	interpret.	To	disambiguate,	shell	programs
signified	in	UNIX	by	putting	“#!	interpreter”	as	the	first	line	of	the	file,
where	“interpreter”	is	the	name	of	the	shell	executable.

The	UNIX	C	compiler	works	this	way.	When	it	is	exec’ed,	the	kernel
recognizes	it	as	a	shell	file	and	starts	the	interpreter,	passing	it	the	file	as
input.	The	shell	reads	the	file	as	a	list	of	commands	to	invoke	the
preprocessor,	parser,	code	generator	and	assembler	in	turn,	exactly	as	if	it
was	reading	text	input	from	the	keyboard.	When	the	last	command
completes,	the	shell	interpreter	calls	exit	to	inform	the	kernel	that	the
program	is	done.

A	program	can	send	its	output	to	a	file.	By	changing	the	stdout	file
descriptor	in	the	child,	the	shell	can	redirect	the	child’s	output	to	a	file.	In
the	standard	UNIX	shell,	this	is	signified	with	a	“greater	than”	symbol.
Thus,	“ls	>	tmp"	lists	the	contents	of	the	current	directory	into	the	file
“tmp.”	After	the	fork	and	before	the	exec,	the	shell	can	replace	the	stdout
file	descriptor	for	the	child	using	dup2.	Because	the	parent	has	been	cloned,
changing	stdout	for	the	child	has	no	effect	on	the	parent.

A	program	can	read	its	input	from	a	file.	Likewise,	by	using	dup2	to
change	the	stdin	file	descriptor,	the	shell	can	cause	the	child	to	read	its
input	from	a	file.	In	the	standard	UNIX	shell,	this	is	signified	with	a	“less
than”	symbol.	Thus,	“zork	<	solution"	plays	the	game	“zork”	with	a	list	of
instructions	stored	in	the	file	“solution.”

The	output	of	one	program	can	be	the	input	to	another	program.	The
shell	can	use	a	pipe	to	connect	two	programs	together,	so	that	the	output	of
one	is	the	input	of	another.	This	is	called	a	producer-consumer	relationship.
For	example,	in	the	C-compiler,	the	output	of	the	preprocessor	is	sent	to	the
parser,	and	the	output	of	the	parser	is	sent	to	the	code-generator	and	then	to
the	assembler.	In	the	standard	UNIX	shell,	a	pipe	connecting	two	programs
is	signified	by	a	“|”	symbol,	as	in:	“cpp	file.c	|	cparse	|	cgen	|	as	>	file.o”.	In

this	case	the	shell	creates	four	separate	child	processes,	each	connected	by
pipes	to	its	predecessor	and	successor.	Each	of	the	phases	can	run	in
parallel,	with	the	parent	waiting	for	all	of	them	to	finish.

3.4	Case	Study:	Interprocess	Communication

For	many	of	the	same	reasons	it	makes	sense	to	construct	complex	applications
from	simpler	modules,	it	often	makes	sense	to	create	applications	that	can
specialize	on	a	specific	task,	and	then	combine	those	applications	into	more
complex	structures.	We	gave	an	example	above	with	the	C	compiler,	but	many
parts	of	the	operating	system	are	structured	this	way.	For	example,	instead	of
every	program	needing	to	know	how	to	coordinate	access	to	a	printer,	UNIX	has
a	printer	server,	a	specialized	program	for	managing	the	printer	queue.

For	this	to	work,	we	need	a	way	for	processes	to	communicate	with	each	other.
Three	widely	used	forms	of	interprocess	communication	are:

Producer-consumer.	In	this	model,	programs	are	structured	to	accept	as
input	the	output	of	other	programs.	Communication	is	one-way:	the
producer	only	writes,	and	the	consumer	only	reads.	As	we	explained	above,
this	allows	chaining:	a	consumer	can	be,	in	turn,	a	producer	for	a	different
process.	Much	of	the	success	of	UNIX	was	due	to	its	ability	to	easily
compose	many	different	programs	together	in	this	fashion.

Client-server.	An	alternative	model	is	to	allow	two-way	communication
between	processes,	as	in	client-server	computing.	The	server	implements
some	specialized	task,	such	as	managing	the	printer	queue	or	managing	the
display.	Clients	send	requests	to	the	server	to	do	some	task,	and	when	the
operation	is	complete,	the	server	replies	back	to	the	client.

File	system.	Another	way	programs	can	be	connected	together	is	through
reading	and	writing	files.	A	text	editor	can	import	an	image	created	by	a
drawing	program,	and	the	editor	can	in	turn	write	an	HTML	file	that	a	web
server	can	read	to	know	how	to	display	a	web	page.	A	key	distinction	is
that,	unlike	the	first	two	modes,	communication	through	the	file	system	can
be	separated	in	time:	the	writer	of	the	file	does	not	need	to	be	running	at	the
same	time	as	the	file	reader.	Therefore,	data	needs	to	be	stored	persistently
on	disk	or	other	stable	storage,	and	the	data	needs	to	be	named	so	that	you
can	find	the	file	when	needed	later	on.

All	three	models	are	widely	used	both	on	a	single	system	and	over	a	network.
For	example,	the	Google	MapReduce	utility	operates	over	a	network	in	a
producer-consumer	fashion:	the	output	of	the	map	function	is	sent	to	the
machines	running	the	reduce	function.	The	web	is	an	example	of	client-server
computing,	and	many	enterprises	and	universities	run	centralized	file	servers	to
connect	a	text	editor	on	one	computer	with	a	compiler	running	on	another.

As	persistent	storage,	file	naming,	and	distributed	computing	are	each	complex
topics	in	their	own	right,	we	defer	the	discussions	of	those	topics	to	later
chapters.	Here	we	focus	on	interprocess	communication,	where	both	processes
are	running	simultaneously	on	the	same	machine.

3.4.1	Producer-Consumer	Communication

Figure	3.9:	Interprocess	communication	between	a	producer	application	and	a	consumer.	The	producer
uses	the	write	system	call	to	put	data	into	the	buffer;	the	consumer	uses	the	read	system	call	to	take	data
out	of	the	buffer.

Figure	3.9	illustrates	how	two	processes	communicate	through	the	operating
system	in	a	producer-consumer	relationship.	Via	the	shell,	we	establish	a	pipe
between	the	producer	and	the	consumer.	As	one	process	computes	and	produces
a	stream	of	output	data,	it	issues	a	sequence	of	write	system	calls	on	the	pipe	into

the	kernel.	Each	write	can	be	of	variable	size.	Assuming	there	is	room	in	the
kernel	buffer,	the	kernel	copies	the	data	into	the	buffer,	and	returns	immediately
back	to	the	producer.

At	some	point	later,	the	operating	system	will	schedule	the	consumer	process	to
run.	(On	a	multicore	system,	the	producer	and	consumer	could	be	running	at	the
same	time.)	The	consumer	issues	a	sequence	of	read	calls.	Because	the	pipe	is
just	a	stream	of	bytes,	the	consumer	can	read	the	data	out	in	any	convenient
chunking	—	the	consumer	can	read	in	1	KB	chunks,	while	the	producer	wrote	its
data	in	4	KB	chunks,	or	vice	versa.	Each	system	call	read	made	by	the	consumer
returns	the	next	successive	chunk	of	data	out	of	the	kernel	buffer.	The	consumer
process	can	then	compute	on	its	input,	sending	its	output	to	the	display,	a	file,	or
onto	the	next	consumer.

The	kernel	buffer	allows	each	process	to	run	at	its	own	pace.	There	is	no
requirement	that	each	process	have	equivalent	amounts	of	work	to	do.	If	the
producer	is	faster	than	the	consumer,	the	kernel	buffer	fills	up,	and	when	the
producer	tries	to	write	to	a	full	buffer,	the	kernel	stalls	the	process	until	there	is
room	to	store	the	data.	Equivalently,	if	the	consumer	is	faster	than	the	producer,
the	buffer	will	empty	and	the	next	read	request	will	stall	until	the	producer
creates	more	data.

In	UNIX,	when	the	producer	finishes,	it	closes	its	side	of	the	pipe,	but	there	may
still	be	data	queued	in	the	kernel	for	the	consumer.	Eventually,	the	consumer
reads	the	last	of	the	data,	and	the	read	system	call	will	return	an	“end	of	file”
marker.	Thus,	to	the	consumer,	there	is	no	difference	between	reading	from	a
pipe	and	reading	from	a	file.

Using	kernel	buffers	to	decouple	the	execution	of	the	producer	and	consumer
reduces	the	number	and	cost	of	context	switches.	Modern	computers	make
extensive	use	of	hardware	caches	to	improve	performance,	but	caches	are
ineffective	if	a	program	only	runs	for	a	short	period	of	time	before	it	must	yield
the	processor	to	another	task.	The	kernel	buffer	allows	the	operating	system	to
run	each	process	long	enough	to	benefit	from	reuse,	rather	than	alternating
between	the	producer	and	consumer	on	each	system	call.

3.4.2	Client-Server	Communication

Figure	3.10:	Interprocess	communication	between	a	client	process	and	a	server	process.	Once	the	client
and	server	are	connected,	the	client	sends	a	request	to	the	server	by	writing	it	into	a	kernel	buffer.	The
server	reads	the	request	out	of	the	buffer,	and	returns	the	result	by	writing	it	into	a	separate	buffer	read	by
the	client.

We	can	generalize	the	above	to	illustrate	client-server	communication,	shown	in
Figure	3.10.	Instead	of	a	single	pipe,	we	create	two,	one	for	each	direction.	To
make	a	request,	the	client	writes	the	data	into	one	pipe,	and	reads	the	response
from	the	other.	The	server	does	the	opposite:	it	reads	requests	from	the	first	pipe,
performs	whatever	is	requested	(provided	the	client	has	permission	to	make	the
request),	and	writes	the	response	onto	the	second	pipe.

The	client	and	server	code	are	shown	in	Figure	3.11.	To	simplify	the	code,	we
assume	that	the	requests	and	responses	are	fixed-size.

	Client:

					char	request[RequestSize];

					char	reply[ReplySize]

	

					//	..compute..

	

					//	Put	the	request	into	the	buffer.

	

					//	Send	the	buffer	to	the	server.

					write(output,	request,	RequestSize);

	

					//	Wait	for	response.

					read(input,	reply,	ReplySize);

	

					//	..compute..

	

	Server:

					char	request[RequestSize];

					char	reply[ReplySize];

	

					//	Loop	waiting	for	requests.

					while	(1)	{

									//	Read	incoming	command.

									read(input,	request,	RequestSize);

	

									//	Do	operation.

	

									//	Send	result.

									write(output,	reply,	ReplySize);

					}

Figure	3.11:	Example	code	for	client-server	interaction.

	

Streamlining	client-server	communication

Client-server	communication	is	a	common	pattern	in	many	systems,	and	so	one
can	ask:	how	can	we	improve	its	performance?	One	step	is	to	recognize	that
both	the	client	and	the	server	issue	a	write	immediately	followed	by	a	read,	to
wait	for	the	other	side	to	reply;	at	the	cost	of	adding	a	system	call,	these	can	be
combined	to	eliminate	two	kernel	crossings	per	round	trip.	Further,	the	client
will	always	need	to	wait	for	the	server,	so	it	makes	sense	for	it	to	donate	its
processor	to	run	the	server	code,	reducing	delay.	Microsoft	added	support	for
this	optimization	to	Windows	in	the	early	1990’s	when	it	converted	to	a
microkernel	design	(explained	a	bit	later	in	this	chapter).	However,	as	we	noted
earlier,	modern	computer	architectures	make	extensive	use	of	caches,	so	for	this
to	work	we	need	code	and	data	for	both	the	client	and	the	server	to	be	able	to	be
in	cache	simultaneously.	We	will	talk	about	mechanisms	to	accomplish	that	in	a
later	chapter.

later	chapter.

We	can	take	this	streamlining	even	further.	On	a	multicore	system,	it	is	possible
or	even	likely	that	both	the	client	and	server	each	have	their	own	processor.	If
the	kernel	sets	up	a	shared	memory	region	accessible	to	both	the	client	and	the
server	and	no	other	processes,	then	the	client	and	server	can	(safely)	pass
requests	and	replies	back	and	forth,	as	fast	as	the	memory	system	will	allow,
without	ever	traversing	into	the	kernel	or	relinquishing	their	processors.

	

Frequently,	we	want	to	allow	many	clients	to	talk	to	the	same	server.	For
example,	there	is	one	server	to	manage	the	print	queue,	although	there	can	be
many	processes	that	want	to	be	able	to	print.	For	this,	the	server	uses	the	select
system	call	to	identify	the	pipe	containing	the	request,	as	shown	in	Figure	3.12.
The	client	code	is	unchanged.

	Server:

					char	request[RequestSize];

					char	reply[ReplySize];

					FileDescriptor	clientInput[NumClients];

					FileDescriptor	clientOutput[NumClients];

	

					//	Loop	waiting	for	a	request	from	any	client.

					while	(fd	=	select(clientInput,	NumClients)	{

	

									//	Read	incoming	command	from	a	specific	client.

									read(clientInput[fd],	request,	RequestSize);

	

									//	Do	operation.

	

									//	Send	result.

									write(clientOutput[fd],	reply,	ReplySize);

					}

Figure	3.12:	Server	code	for	communicating	with	multiple	clients.

3.5	Operating	System	Structure

We	started	this	chapter	with	a	list	of	functionality	that	users	and	applications
need	from	the	operating	system.	We	have	shown	that	by	careful	design	of	the
system	call	interface,	we	can	offload	some	of	the	work	of	the	operating	system
to	user	programs,	such	as	to	a	shell	or	to	a	print	server.

In	the	rest	of	this	chapter,	we	ask	how	should	we	organize	the	remaining	parts	of
the	operating	system.	There	are	many	dependencies	among	the	modules	inside
the	operating	system,	and	there	is	often	quite	frequent	interaction	between	these
modules:

Many	parts	of	the	operating	system	depend	on	synchronization	primitives
for	coordinating	access	to	shared	data	structures	with	the	kernel.

The	virtual	memory	system	depends	on	low-level	hardware	support	for
address	translation,	support	that	is	specific	to	a	particular	processor
architecture.

Both	the	file	system	and	the	virtual	memory	system	share	a	common	pool
of	blocks	of	physical	memory.	They	also	both	depend	on	the	disk	device
driver.

The	file	system	can	depend	on	the	network	protocol	stack	if	the	disk	is
physically	located	on	a	different	machine.

This	has	led	operating	system	designers	to	wrestle	with	a	fundamental	tradeoff:
by	centralizing	functionality	in	the	kernel,	performance	is	improved	and	it	makes
it	easier	to	arrange	tight	integration	between	kernel	modules.	However,	the
resulting	systems	are	less	flexible,	less	easy	to	change,	and	less	adaptive	to	user
or	application	needs.	We	discuss	these	tradeoffs	by	describing	several	options
for	the	operating	system	architecture.

3.5.1	Monolithic	Kernels

	

Figure	3.13:	In	a	monolithic	operating	system	kernel,	most	of	the	operating	system	functionality	is	linked
together	inside	the	kernel.	Kernel	modules	directly	call	into	other	kernel	modules	to	perform	needed
functions.	For	example,	the	virtual	memory	system	uses	buffer	management,	synchronization,	and	the
hardware	abstraction	layer.

Almost	all	widely	used	commercial	operating	systems,	such	as	Windows,
MacOS,	and	Linux,	take	a	similar	approach	to	the	architecture	of	the	kernel	—	a
monolithic	design.	As	shown	in	Figure	3.13,	with	a	monolithic	kernel,	most	of
the	operating	system	functionality	runs	inside	the	operating	system	kernel.	In
truth,	the	term	is	a	bit	of	a	misnomer,	because	even	in	so-called	monolithic
systems,	there	are	often	large	segments	of	what	users	consider	the	operating
system	that	runs	outside	the	kernel,	either	as	utilities	like	the	shell,	or	in	system
libraries,	such	as	libraries	to	manage	the	user	interface.

Internal	to	a	monolithic	kernel,	the	operating	system	designer	is	free	to	develop
whatever	interfaces	between	modules	that	make	sense,	and	so	there	is	quite	a	bit
of	variation	from	operating	system	to	operating	system	in	those	internal
structures.	However,	two	common	themes	emerge	across	systems:	to	improve
portability,	almost	all	modern	operating	systems	have	both	a	hardware
abstraction	layer	and	dynamically	loaded	device	drivers.

Hardware	Abstraction	Layer

A	key	goal	of	operating	systems	is	to	be	portable	across	a	wide	variety	of
hardware	platforms.	To	accomplish	this,	especially	within	a	monolithic	system,
requires	careful	design	of	the	hardware	abstraction	layer.	The	hardware
abstraction	layer	(HAL)	is	a	portable	interface	to	machine	configuration	and
processor-specific	operations	within	the	kernel.	For	example,	within	the	same
processor	family,	such	as	an	Intel	x86,	different	computer	manufacturers	will
require	different	machine-specific	code	to	configure	and	manage	interrupts	and
hardware	timers.

Operating	systems	that	are	portable	across	processor	families,	say	between	an
ARM	and	an	x86	or	between	a	32-bit	and	a	64-bit	x86,	will	need	processor-
specific	code	for	process	and	thread	context	switches.	The	interrupt,	processor
exception,	and	system	call	trap	handling	is	also	processor-specific;	all	systems
have	those	functions,	but	the	specific	implementation	will	vary.	As	we	will	see
in	Chapter	8,	machines	differ	quite	a	bit	in	their	architecture	for	managing	virtual
address	spaces;	most	kernels	provide	portable	abstractions	on	top	of	the
machine-dependent	routines,	such	as	to	translate	virtual	addresses	to	physical
addresses	or	to	copy	memory	from	applications	to	kernel	memory	and	vice
versa.

With	a	well-defined	hardware	abstraction	layer	in	place,	most	of	the	operating
system	is	machine-and	processor-independent.	Thus,	porting	an	operating
system	to	a	new	computer	is	just	a	matter	of	creating	new	implementations	of
these	low-level	HAL	routines	and	re-linking.

	

The	hardware	abstraction	layer	in	Windows

As	a	concrete	example,	Windows	has	a	two-pronged	strategy	for	portability.	To
allow	the	same	Windows	kernel	binary	to	be	used	across	personal	computers
manufactured	by	different	vendors,	the	kernel	is	dynamically	linked	at	boot	time
with	a	set	of	library	routines	specifically	written	for	each	hardware
configuration.	This	isolates	the	kernel	from	the	specifics	of	the	motherboard
hardware.

Windows	also	runs	across	a	number	of	different	processor	architectures.

Windows	also	runs	across	a	number	of	different	processor	architectures.
Typically,	a	different	kernel	binary	is	produced	for	each	type	of	processor,	with
any	needed	processor-specific	code;	sometimes,	conditional	execution	is	used	to
allow	a	kernel	binary	to	be	shared	across	closely	related	processor	designs.

	

Dynamically	Installed	Device	Drivers

A	similar	consideration	leads	to	operating	systems	that	can	easily	accommodate
a	wide	variety	of	physical	I/O	devices.	Although	there	are	only	a	handful	of
different	instruction	set	architectures	in	wide	use	today,	there	are	a	huge	number
of	different	types	of	physical	I/O	devices,	manufactured	by	a	large	number	of
companies.	There	is	diversity	in	the	hardware	interfaces	to	devices	as	well	as	in
the	hardware	chip	sets	for	managing	the	devices.	A	recent	survey	found	that
approximately	70%	of	the	code	in	the	Linux	kernel	was	in	device-specific
software.

To	keep	the	rest	of	the	operating	system	kernel	portable,	we	want	to	decouple
the	operating	system	source	code	from	the	specifics	of	each	device.	For	instance,
suppose	a	manufacturer	creates	a	new	printer	—	what	steps	does	the	operating
system	manufacturer	need	to	take	to	accommodate	that	change?

The	key	innovation,	widely	adopted	today,	is	a	dynamically	loadable	device
driver.	A	dynamically	loadable	device	driver	is	software	to	manage	a	specific
device,	interface,	or	chipset,	added	to	the	operating	system	kernel	after	the
kernel	starts	running,	to	handle	the	devices	that	are	present	on	a	particular
machine.	The	device	manufacturer	typically	provides	the	driver	code,	using	a
standard	interface	supported	by	the	kernel.	The	operating	system	kernel	calls
into	the	driver	whenever	it	needs	to	read	or	write	data	to	the	device.

The	operating	system	boots	with	a	small	number	of	device	drivers	—	e.g.,	for
the	disk	(to	read	the	operating	system	binary	into	memory).	For	the	devices
physically	attached	to	the	computer,	the	computer	manufacturer	bundles	those
drivers	into	a	file	it	stores	along	with	the	bootloader.	When	the	operating	system
starts	up,	it	queries	the	I/O	bus	for	which	devices	are	attached	to	the	computer
and	then	loads	those	drivers	from	the	file	on	disk.	Finally,	for	any	network-
attached	devices,	such	as	a	network	printer,	the	operating	system	can	load	those
drivers	over	the	Internet.

While	dynamically	loadable	device	drivers	solve	one	problem,	they	pose	a
different	one.	Errors	in	a	device	driver	can	corrupt	the	operating	system	kernel
and	application	data	structures;	just	as	with	a	regular	program,	errors	may	not	be
caught	immediately,	so	that	user	may	be	unaware	that	their	data	is	being	silently
modified.	Even	worse,	a	malicious	attacker	can	use	device	drivers	to	introduce	a
computer	virus	into	the	operating	system	kernel,	and	thereby	silently	gain
control	over	the	entire	computer.	Recent	studies	have	found	that	90%	of	all
system	crashes	were	due	to	bugs	in	device	drivers,	rather	than	in	the	operating
system	itself.

Operating	system	developers	have	taken	five	approaches	to	dealing	with	this
issue:

Code	inspection.	Operating	system	vendors	typically	require	all	device
driver	code	to	be	submitted	in	advance	for	inspection	and	testing,	before
being	allowed	into	the	kernel.

Bug	tracking.	After	every	system	crash,	the	operating	system	can	collect
information	about	the	system	configuration	and	the	current	kernel	stack,
and	sends	this	information	back	to	a	central	database	for	analysis.	Microsoft
does	this	on	a	wide	scale.	With	hundreds	of	millions	of	installed	computers,
even	a	low	rate	of	failure	can	yield	millions	of	bug	reports	per	day.	Many
crashes	happen	inside	the	device	driver	itself,	but	even	those	that	do	not	can
sometimes	be	tracked	down.	For	example,	if	failures	are	correlated	with	the
presence	of	a	particular	device	driver,	or	increase	after	the	release	of	a	new
version	of	the	driver,	that	can	indicate	the	source	of	a	problem.

User-level	device	drivers.	Both	Apple	and	Microsoft	strongly	encourage
new	device	drivers	to	run	at	user-level	rather	than	in	the	kernel.	Each	device
driver	runs	in	a	separate	user-level	process,	using	system	calls	to
manipulate	the	physical	device.	This	way,	a	buggy	driver	can	only	affect	its
own	internal	data	structures	and	not	the	rest	of	the	operating	system	kernel;
if	the	device	driver	crashes,	the	kernel	can	restart	it	easily.

Although	user-level	device	drivers	are	becoming	more	common,	it	can	be
time-consuming	to	port	existing	device	drivers	to	run	at	user-level.
Unfortunately,	there	is	a	huge	amount	of	existing	device	driver	code	that
directly	addresses	internal	kernel	data	structures;	drawing	a	boundary
around	these	drivers	has	proven	difficult.	Of	course,	supporting	legacy

drivers	is	less	of	a	problem	as	completely	new	hardware	and	operating
system	platforms,	such	as	smartphones	and	tablets,	are	developed.

Figure	3.14:	Legacy	device	drivers	can	run	inside	a	guest	operating	system	on	top	of	a	virtual
machine	in	order	to	isolate	the	effect	of	implementation	errors	in	driver	code.

Virtual	machine	device	drivers.	To	handle	legacy	device	drivers,	one
approach	that	has	gained	some	traction	is	to	run	device	driver	code	inside	a
guest	operating	system	running	on	a	virtual	machine,	as	shown	in
Figure	3.14.	The	guest	operating	system	loads	the	device	drivers	as	if	it	was
running	directly	on	the	real	hardware,	but	when	the	devices	attempt	to
access	the	physical	hardware,	the	underlying	virtual	machine	monitor
regains	control	to	ensure	safety.	Device	drivers	can	still	have	bugs,	but	they
can	only	corrupt	the	guest	operating	system	and	not	other	applications
running	on	the	underlying	virtual	machine	monitor.

Driver	sandboxing.	A	further	challenge	for	both	user-level	device	drivers
and	virtual	machine	drivers	is	performance.	Some	device	drivers	need
frequent	interaction	with	hardware	and	the	rest	of	the	kernel.	Some
researchers	have	proposed	running	device	drivers	in	their	own	restricted
execution	environment	inside	the	kernel.	This	requires	lightweight
sandboxing	techniques,	a	topic	we	will	return	to	at	the	end	of	Chapter	8.

3.5.2	Microkernel

An	alternative	to	the	monolithic	kernel	approach	is	to	run	as	much	of	the
operating	system	as	possible	in	one	or	more	user-level	servers.	The	window
manager	on	most	operating	systems	works	this	way:	individual	applications
draw	items	on	their	portion	of	the	screen	by	sending	requests	to	the	window
manager.	The	window	manager	adjudicates	which	application	window	is	in	front
or	in	back	for	each	pixel	on	the	screen,	and	then	renders	the	result.	If	the	system
has	a	hardware	graphics	accelerator	present,	the	window	manager	can	use	it	to
render	items	more	quickly.	Some	systems	have	moved	other	parts	of	the
operating	system	into	user-level	servers:	the	network	stack,	the	file	system,
device	drivers,	and	so	forth.

The	difference	between	a	monolithic	and	a	microkernel	design	is	often
transparent	to	the	application	programmer.	The	location	of	the	service	can	be
hidden	in	a	user-level	library	—	calls	go	to	the	library,	which	casts	the	requests
either	as	system	calls	or	as	reads	and	writes	to	the	server	through	a	pipe.	The
location	of	the	server	can	also	be	hidden	inside	the	kernel	—	the	application	calls
the	kernel	as	if	the	kernel	implements	the	service,	but	instead	the	kernel
reformats	the	request	into	a	pipe	that	the	server	can	read.

A	microkernel	design	offers	considerable	benefit	to	the	operating	system
developer,	as	it	easier	to	modularize	and	debug	user-level	services	than	kernel
code.	Aside	from	a	potential	reliability	improvement,	however,	microkernels
offer	little	in	the	way	of	visible	benefit	to	end	users	and	can	slow	down	overall
performance	by	inserting	extra	steps	between	the	application	and	the	services	it
needs.	Thus,	in	practice,	most	systems	adopt	a	hybrid	model	where	some
operating	system	services	are	run	at	user-level	and	some	are	in	the	kernel,
depending	on	the	specific	tradeoff	between	code	complexity	and	performance.

3.6	Summary	and	Future	Directions

In	this	chapter,	we	have	seen	how	system	calls	can	be	used	by	applications	to
create	and	manage	processes,	perform	I/O,	and	communicate	with	other
processes.	Every	operating	system	has	its	own	unique	system	call	interface;
describing	even	a	single	interface	in	depth	would	be	beyond	the	scope	of	this
book.	In	this	chapter,	we	focused	parts	of	the	UNIX	interface	because	it	is	both
compact	and	powerful.	A	key	aspect	of	the	UNIX	interface	are	that	creating	a
process	(with	fork)	is	separate	from	starting	to	run	a	program	in	that	process

(with	exec);	another	key	feature	is	the	use	of	kernel	buffers	to	decouple	reading
and	writing	data	through	the	kernel.

Operating	systems	use	the	system	call	interface	to	provide	services	to
applications	and	to	aid	in	the	internal	structuring	of	the	operating	system	itself.
Almost	all	general-purpose	computer	systems	today	have	a	user-level	shell
and/or	a	window	manager	that	can	start	and	manage	applications	on	behalf	of	the
user.	Many	systems	also	implement	parts	of	the	operating	system	as	user-level
services	accessed	through	kernel	pipes.

As	we	noted,	a	trend	is	for	applications	to	become	mini-operating	systems	in
their	own	right,	with	multiple	users,	resource	sharing	and	allocation,	untrusted
third-party	code,	processor	and	memory	management,	and	so	forth.	The	system
call	interfaces	for	Windows	and	UNIX	were	not	designed	with	this	in	mind,	and
an	interesting	question	is	how	they	will	change	to	accommodate	this	future	of
powerful	meta-applications.

In	addition	to	the	fine-grained	sandboxing	and	process	creation	we	described	at
the	end	of	the	last	chapter,	a	trend	is	to	re-structure	the	system	call	interface	to
make	resource	allocation	decisions	explicit	and	visible	to	applications.
Traditionally,	operating	systems	make	resource	allocation	decisions	—	when	to
schedule	a	process	or	a	thread,	how	much	memory	to	give	a	particular
application,	where	and	when	to	store	its	disk	blocks,	when	to	send	its	network
packets	—	transparently	to	the	application,	with	a	goal	of	improving	end	user
and	overall	system	performance.	Applications	are	unaware	of	how	many
resources	they	have,	appearing	to	run	by	themselves,	isolated	on	their	own
(virtual)	machine.

Of	course,	the	reality	is	often	quite	different.	An	alternate	model	is	for	operating
systems	to	divide	resources	among	applications	and	then	allow	each	application
to	decide	for	itself	how	best	to	use	those	resources.	One	can	think	of	this	as	a
type	of	federalism.	If	both	the	operating	system	and	applications	are
governments	doing	their	own	resource	allocation,	they	are	likely	to	get	in	each
other’s	way	if	they	are	not	careful.	As	a	simple	example,	consider	how	a	garbage
collector	works;	it	assumes	it	has	a	fixed	amount	of	memory	to	manage.
However,	as	other	applications	start	or	stop,	it	can	gain	or	lose	memory,	and	if
the	operating	system	does	this	reallocation	transparently,	the	garbage	collector
has	no	hope	of	adapting.	We	will	see	examples	of	this	same	design	pattern	in
many	different	areas	of	operating	system	design.

Exercises

	

	

1.	 Can	UNIX	fork	return	an	error?	Why	or	why	not?
Note:	You	can	answer	this	question	by	looking	at	the	manual	page	for	fork,
but	before	you	do	that,	think	about	what	the	fork	system	call	does.	If	you
were	designing	this	call,	would	you	need	to	allow	fork	to	return	an	error?

	

	

2.	 Can	UNIX	exec	return	an	error?	Why	or	why	not?
Note:	You	can	answer	this	question	by	looking	at	the	manual	page	for	exec,
but	before	you	do	that,	think	about	what	the	exec	system	call	does.	If	you
were	designing	this	call,	would	you	need	to	allow	it	to	return	an	error?

	

	

3.	 What	happens	if	we	run	the	following	program	on	UNIX?

	main()	{

								while	(fork()	>=	0)

												;

				}

	

4.	 Explain	what	must	happen	for	UNIX	wait	to	return	immediately	(and
successfully).

	

5.	 Suppose	you	were	the	instructor	of	a	very	large	introductory	programming
class.	Explain	(in	English)	how	you	would	use	UNIX	system	calls	to
automate	testing	of	submitted	homework	assignments.

	

6.	 What	happens	if	you	run	“exec	csh”	in	a	UNIX	shell?	Why?

	

	

7.	 What	happens	if	you	run	“exec	ls”	in	a	UNIX	shell?	Why?

	

8.	 How	many	processes	are	created	if	the	following	program	is	run?	

	main(int	argc,	char	**	argv)	{

								forkthem(5)

				}

				void	forkthem(int	n)	{

								if	(n	>	0)	{

												fork();

												forkthem(n-1);

								}

				}

	

9.	 Consider	the	following	program:

	main	(int	argc,	char	**	argv)	{

								int	child	=	fork();

								int	x	=	5;

				

								if	(child	==	0)	{

												x	+=	5;

								}	else	{

												child	=	fork();

												x	+=	10;

												if(child)	{

																x	+=	5;

												}

								}

				}

How	many	different	copies	of	the	variable	x	are	there?	What	are	their
values	when	their	process	finishes?

	

	

10.	 What	is	the	output	of	the	following	programs?	(Please	try	to	solve	the
problem	without	compiling	and	running	the	programs.)

	

	//	Program	1

				main()	{

								int	val	=	5;

								int	pid;

				

								if	(pid	=	fork())

												wait(pid);

								val++;

								printf("%d\n",	val);

								return	val;

				}

	//	Program	2:

				main()	{

								int	val	=	5;

								int	pid;

								if	(pid	=	fork())

												wait(pid);

								else

												exit(val);

								val++;

								printf("%d\n",	val);

								return	val;

				}

	

11.	 Implement	a	simple	Linux	shell	in	C	capable	of	executing	a	sequence	of
programs	that	communicate	through	a	pipe.	For	example,	if	the	user	types	ls
|	wc,	your	program	should	fork	off	the	two	programs,	which	together	will
calculate	the	number	of	files	in	the	directory.	For	this,	you	will	need	to	use
several	of	the	Linux	system	calls	described	in	this	chapter:	fork,	exec,	open,
close,	pipe,	dup2,	and	wait.	Note:	You	will	to	replace	stdin	and	stdout	in
the	child	process	with	the	pipe	file	descriptors;	that	is	the	role	of	dup2.

	

12.	 Extend	the	shell	implemented	above	to	support	foreground	and	background
tasks,	as	well	as	job	control:	suspend,	resume,	and	kill.

	

References

[1]	

Keith	Adams	and	Ole	Agesen.	A	comparison	of	software	and	hardware	techniques	for
x86	virtualization.	In	Proceedings	of	the	12th	International	conference	on
Architectural	Support	for	Programming	Languages	and	Operating	Systems,	ASPLOS-
XII,	pages	2–13,	2006.

[2]	
Thomas	E.	Anderson,	Brian	N.	Bershad,	Edward	D.	Lazowska,	and	Henry	M.	
Scheduler	activations:	effective	kernel	support	for	the	user-level	management	of
parallelism.	ACM	Trans.	Comput.	Syst.,	10(1):53–79,	February	1992.

[3]	

Thomas	E.	Anderson,	Henry	M.	Levy,	Brian	N.	Bershad,	and	Edward	D.	Lazowska.
The	interaction	of	architecture	and	operating	system	design.	In	Proceedings	
fourth	International	conference	on	Architectural	Support	for	Programming	
and	Operating	Systems,	ASPLOS-IV,	pages	108–120,	1991.

[4]	
Andrew	W.	Appel	and	Kai	Li.	Virtual	memory	primitives	for	user	programs.	In
Proceedings	of	the	fourth	International	conference	on	Architectural	Support	for
Programming	Languages	and	Operating	Systems,	ASPLOS-IV,	pages	96–107,	1991.

[5]	
Amittai	Aviram,	Shu-Chun	Weng,	Sen	Hu,	and	Bryan	Ford.	Efficient	system-enforced
deterministic	parallelism.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating
Systems	Design	and	Implementation,	OSDI’10,	pages	1–16,	2010.

[6]	
Özalp	Babaoglu	and	William	Joy.	Converting	a	swap-based	system	to	do	paging	in	an
architecture	lacking	page-referenced	bits.	In	Proceedings	of	the	eighth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’81,	pages	78–86,	1981.

[7]	

David	Bacon,	Joshua	Bloch,	Jeff	Bogda,	Cliff	Click,	Paul	Haahr,	Doug	Lea,	
May,	Jan-Willem	Maessen,	Jeremy	Manson,	John	D.	Mitchell,	Kelvin	Nilsen,	
Pugh,	and	Emin	Gun	Sirer.	The	“double-checked	locking	is	broken"	declaration.
http://www.cs.umd.	edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[8]	

Gaurav	Banga,	Peter	Druschel,	and	Jeffrey	C.	Mogul.	Resource	containers:	a	new
facility	for	resource	management	in	server	systems.	In	Proceedings	of	the	third
USENIX	symposium	on	Operating	Systems	Design	and	Implementation,	OSDI	’99,
pages	45–58,	1999.
Paul	Barham,	Boris	Dragovic,	Keir	Fraser,	Steven	Hand,	Tim	Harris,	Alex	Ho,	Rolf
Neugebauer,	Ian	Pratt,	and	Andrew	Warfield.	Xen	and	the	art	of	virtualization.	In
Proceedings	of	the	nineteenth	ACM	Symposium	on	Operating	Systems	Principles,

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[9]	 Proceedings	of	the	nineteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’03,	pages	164–177,	2003.

[10]	 Blaise	Barney.	POSIX	threads	programming.
http://computing.llnl.gov/tutorials/pthreads/,	2013.

[11]	 Joel	F.	Bartlett.	A	nonstop	kernel.	In	Proceedings	of	the	eighth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’81,	pages	22–29,	1981.

[12]	

Andrew	Baumann,	Paul	Barham,	Pierre-Evariste	Dagand,	Tim	Harris,	Rebecca	Isaacs,
Simon	Peter,	Timothy	Roscoe,	Adrian	Schüpbach,	and	Akhilesh	Singhania.	The
multikernel:	a	new	OS	architecture	for	scalable	multicore	systems.	In	Proceedings	of
the	22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	29–44,
2009.

[13]	 A.	Bensoussan,	C.	T.	Clingen,	and	R.	C.	Daley.	The	multics	virtual	memory:	concepts
and	design.	Commun.	ACM,	15(5):308–318,	May	1972.

[14]	
Tom	Bergan,	Nicholas	Hunt,	Luis	Ceze,	and	Steven	D.	Gribble.	Deterministic	
groups	in	dOS.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI’10,	pages	1–16,	2010.

[15]	

B.	N.	Bershad,	S.	Savage,	P.	Pardyak,	E.	G.	Sirer,	M.	E.	Fiuczynski,	D.	Becker,
C.	Chambers,	and	S.	Eggers.	Extensibility	safety	and	performance	in	the	SPIN
operating	system.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’95,	pages	267–283,	1995.

[16]	
Brian	N.	Bershad,	Thomas	E.	Anderson,	Edward	D.	Lazowska,	and	Henry	M.	
Lightweight	remote	procedure	call.	ACM	Trans.	Comput.	Syst.,	8(1):37–55,	February
1990.

[17]	
Brian	N.	Bershad,	Thomas	E.	Anderson,	Edward	D.	Lazowska,	and	Henry	M.	
User-level	interprocess	communication	for	shared	memory	multiprocessors.	
Trans.	Comput.	Syst.,	9(2):175–198,	May	1991.

[18]	 Andrew	Birrell.	An	introduction	to	programming	with	threads.	Technical	Report	35,
Digital	Equipment	Corporation	Systems	Research	Center,	1991.

[19]	 Andrew	D.	Birrell	and	Bruce	Jay	Nelson.	Implementing	remote	procedure	calls.	
Trans.	Comput.	Syst.,	2(1):39–59,	February	1984.

[20]	

Silas	Boyd-Wickizer,	Austin	T.	Clements,	Yandong	Mao,	Aleksey	Pesterev,	
Kaashoek,	Robert	Morris,	and	Nickolai	Zeldovich.	An	analysis	of	Linux	scalability	
many	cores.	In	Proceedings	of	the	9th	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI’10,	pages	1–8,	2010.

[21]	
Lee	Breslau,	Pei	Cao,	Li	Fan,	Graham	Phillips,	and	Scott	Shenker.	Web	caching	
Zipf-like	distributions:	evidence	and	implications.	In	INFOCOM,	pages	126–134,

1999.

[22]	 Thomas	C.	Bressoud	and	Fred	B.	Schneider.	Hypervisor-based	fault	tolerance.	
Trans.	Comput.	Syst.,	14(1):80–107,	February	1996.

[23]	
Sergey	Brin	and	Lawrence	Page.	The	anatomy	of	a	large-scale	hypertextual	web
search	engine.	In	Proceedings	of	the	seventh	International	conference	on	the	World
Wide	Web,	WWW7,	pages	107–117,	1998.

[24]	 Max	Bruning.	ZFS	on-disk	data	walk	(or:	Where’s	my	data?).	In	OpenSolaris
Developer	Conference,	2008.

[25]	
Edouard	Bugnion,	Scott	Devine,	Kinshuk	Govil,	and	Mendel	Rosenblum.	Disco:
running	commodity	operating	systems	on	scalable	multiprocessors.	ACM	Trans.
Comput.	Syst.,	15(4):412–447,	November	1997.

[26]	 Brian	Carrier.	File	System	Forensic	Analysis.	Addison	Wesley	Professional,	2005.

[27]	

Miguel	Castro,	Manuel	Costa,	Jean-Philippe	Martin,	Marcus	Peinado,	Periklis
Akritidis,	Austin	Donnelly,	Paul	Barham,	and	Richard	Black.	Fast	byte-granularity
software	fault	isolation.	In	Proceedings	of	the	22nd	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’09,	pages	45–58,	2009.

[28]	
J.	Chapin,	M.	Rosenblum,	S.	Devine,	T.	Lahiri,	D.	Teodosiu,	and	A.	Gupta.	
fault	containment	for	shared-memory	multiprocessors.	In	Proceedings	of	the	fifteenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	12–25,	1995.

[29]	
Jeffrey	S.	Chase,	Henry	M.	Levy,	Michael	J.	Feeley,	and	Edward	D.	Lazowska.
Sharing	and	protection	in	a	single-address-space	operating	system.	ACM	Trans.
Comput.	Syst.,	12(4):271–307,	November	1994.

[30]	
J.	Bradley	Chen	and	Brian	N.	Bershad.	The	impact	of	operating	system	structure	
memory	system	performance.	In	Proceedings	of	the	fourteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’93,	pages	120–133,	1993.

[31]	 Peter	M.	Chen	and	Brian	D.	Noble.	When	virtual	is	better	than	real.	In	Proceedings	of
the	Eighth	Workshop	on	Hot	Topics	in	Operating	Systems,	HOTOS	’01,	2001.

[32]	 David	Cheriton.	The	V	distributed	system.	Commun.	ACM,	31(3):314–333,	March
1988.

[33]	
David	R.	Cheriton	and	Kenneth	J.	Duda.	A	caching	model	of	operating	system	kernel
functionality.	In	Proceedings	of	the	1st	USENIX	conference	on	Operating	Systems
Design	and	Implementation,	OSDI	’94,	1994.

[34]	 David	D.	Clark.	The	structuring	of	systems	using	upcalls.	In	Proceedings	of	the	tenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’85,	pages	171–180,	1985.

[35]	

Jeremy	Condit,	Edmund	B.	Nightingale,	Christopher	Frost,	Engin	Ipek,	Benjamin	
Doug	Burger,	and	Derrick	Coetzee.	Better	I/O	through	byte-addressable,	persistent

memory.	In	Proceedings	of	the	22nd	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’09,	pages	133–146,	2009.

[36]	 Fernando	J.	Corbató.	On	building	systems	that	will	fail.	Commun.	ACM,	34(9):72–81,
September	1991.

[37]	 Fernando	J.	Corbató	and	Victor	A.	Vyssotsky.	Introduction	and	overview	of	the
Multics	system.	AFIPS	Fall	Joint	Computer	Conference,	27(1):185–196,	1965.

[38]	 R.	J.	Creasy.	The	origin	of	the	VM/370	time-sharing	system.	IBM	J.	Res.	Dev.,
25(5):483–490,	September	1981.

[39]	

Michael	D.	Dahlin,	Randolph	Y.	Wang,	Thomas	E.	Anderson,	and	David	A.	Patterson.
Cooperative	caching:	using	remote	client	memory	to	improve	file	system	performance.
In	Proceedings	of	the	1st	USENIX	conference	on	Operating	Systems	Design	and
Implementation,	OSDI	’94,	1994.

[40]	 Robert	C.	Daley	and	Jack	B.	Dennis.	Virtual	memory,	processes,	and	sharing	in
Multics.	Commun.	ACM,	11(5):306–312,	May	1968.

[41]	
Wiebren	de	Jonge,	M.	Frans	Kaashoek,	and	Wilson	C.	Hsieh.	The	logical	disk:	a	new
approach	to	improving	file	systems.	In	Proceedings	of	the	fourteenth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’93,	pages	15–28,	1993.

[42]	
Jeffrey	Dean	and	Sanjay	Ghemawat.	MapReduce:	simplified	data	processing	on	large
clusters.	In	Proceedings	of	the	6th	USENIX	Symposium	on	Operating	Systems	Design
&	Implementation,	OSDI’04,	2004.

[43]	 Peter	J.	Denning.	The	working	set	model	for	program	behavior.	Commun.	
11(5):323–333,	May	1968.

[44]	 P.J.	Denning.	Working	sets	past	and	present.	Software	Engineering,	IEEE
Transactions	on,	SE-6(1):64	–	84,	jan.	1980.

[45]	 Jack	B.	Dennis.	Segmentation	and	the	design	of	multiprogrammed	computer	systems.
J.	ACM,	12(4):589–602,	October	1965.

[46]	 Jack	B.	Dennis	and	Earl	C.	Van	Horn.	Programming	semantics	for	multiprogrammed
computations.	Commun.	ACM,	9(3):143–155,	March	1966.

[47]	 E.	W.	Dijkstra.	Solution	of	a	problem	in	concurrent	programming	control.	Commun.
ACM,	8(9):569–,	September	1965.

[48]	 Edsger	W.	Dijkstra.	The	structure	of	the	“THE”-multiprogramming	system.	
ACM,	11(5):341–346,	May	1968.

[49]	

Mihai	Dobrescu,	Norbert	Egi,	Katerina	Argyraki,	Byung-Gon	Chun,	Kevin	Fall,
Gianluca	Iannaccone,	Allan	Knies,	Maziar	Manesh,	and	Sylvia	Ratnasamy.
Routebricks:	exploiting	parallelism	to	scale	software	routers.	In	Proceedings	of	the
22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	15–28,
2009.

2009.

[50]	 Alan	Donovan,	Robert	Muth,	Brad	Chen,	and	David	Sehr.	Portable	Native	Client
executables.	Technical	report,	Google,	2012.

[51]	 Fred	Douglis	and	John	Ousterhout.	Transparent	process	migration:	design	alternatives
and	the	Sprite	implementation.	Softw.	Pract.	Exper.,	21(8):757–785,	July	1991.

[52]	

Richard	P.	Draves,	Brian	N.	Bershad,	Richard	F.	Rashid,	and	Randall	W.	Dean.	
continuations	to	implement	thread	management	and	communication	in	operating
systems.	In	Proceedings	of	the	thirteenth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’91,	pages	122–136,	1991.

[53]	 Peter	Druschel	and	Larry	L.	Peterson.	Fbufs:	a	high-bandwidth	cross-domain	transfer
facility.	SIGOPS	Oper.	Syst.	Rev.,	27(5):189–202,	December	1993.

[54]	
George	W.	Dunlap,	Samuel	T.	King,	Sukru	Cinar,	Murtaza	A.	Basrai,	and	Peter	M.
Chen.	ReVirt:	enabling	intrusion	analysis	through	virtual-machine	logging	and	replay.
SIGOPS	Oper.	Syst.	Rev.,	36(SI):211–224,	December	2002.

[55]	

Petros	Efstathopoulos,	Maxwell	Krohn,	Steve	VanDeBogart,	Cliff	Frey,	David
Ziegler,	Eddie	Kohler,	David	Mazières,	Frans	Kaashoek,	and	Robert	Morris.	Labels
and	event	processes	in	the	Asbestos	operating	system.	In	Proceedings	of	the	twentieth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’05,	pages	17–30,	2005.

[56]	
D.	R.	Engler,	M.	F.	Kaashoek,	and	J.	O’Toole,	Jr.	Exokernel:	an	operating	
architecture	for	application-level	resource	management.	In	Proceedings	of	the	fifteenth
ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	251–266,	1995.

[57]	

Dawson	Engler,	David	Yu	Chen,	Seth	Hallem,	Andy	Chou,	and	Benjamin	Chelf.	
as	deviant	behavior:	a	general	approach	to	inferring	errors	in	systems	code.	
Proceedings	of	the	eighteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’01,	pages	57–72,	2001.

[58]	 R.	S.	Fabry.	Capability-based	addressing.	Commun.	ACM,	17(7):403–412,	July	1974.

[59]	
Jason	Flinn	and	M.	Satyanarayanan.	Energy-aware	adaptation	for	mobile	applications.
In	Proceedings	of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’99,	pages	48–63,	1999.

[60]	

Christopher	Frost,	Mike	Mammarella,	Eddie	Kohler,	Andrew	de	los	Reyes,	
Hovsepian,	Andrew	Matsuoka,	and	Lei	Zhang.	Generalized	file	system	dependencies.
In	Proceedings	of	twenty-first	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’07,	pages	307–320,	2007.

[61]	
Gregory	R.	Ganger,	Marshall	Kirk	McKusick,	Craig	A.	N.	Soules,	and	Yale	N.	Patt.
Soft	updates:	a	solution	to	the	metadata	update	problem	in	file	systems.	ACM	Trans.
Comput.	Syst.,	18(2):127–153,	May	2000.

[62]	 Simson	Garfinkel	and	Gene	Spafford.	Practical	Unix	and	Internet	security	(2nd	ed.).
O’Reilly	&	Associates,	Inc.,	1996.

O’Reilly	&	Associates,	Inc.,	1996.

[63]	

Tal	Garfinkel,	Ben	Pfaff,	Jim	Chow,	Mendel	Rosenblum,	and	Dan	Boneh.	Terra:	a
virtual	machine-based	platform	for	trusted	computing.	In	Proceedings	of	the
nineteenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’03,	pages	193–
206,	2003.

[64]	

Kirk	Glerum,	Kinshuman	Kinshumann,	Steve	Greenberg,	Gabriel	Aul,	Vince
Orgovan,	Greg	Nichols,	David	Grant,	Gretchen	Loihle,	and	Galen	Hunt.	Debugging	in
the	(very)	large:	ten	years	of	implementation	and	experience.	In	Proceedings	of	the
22nd	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’09,	pages	103–116,
2009.

[65]	 R.P.	Goldberg.	Survey	of	virtual	machine	research.	IEEE	Computer,	7(6):34–45,	June
1974.

[66]	

Kinshuk	Govil,	Dan	Teodosiu,	Yongqiang	Huang,	and	Mendel	Rosenblum.	Cellular
Disco:	resource	management	using	virtual	clusters	on	shared-memory	multiprocessors.
In	Proceedings	of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’99,	pages	154–169,	1999.

[67]	
Jim	Gray.	The	transaction	concept:	virtues	and	limitations	(invited	paper).	In
Proceedings	of	the	seventh	International	conference	on	Very	Large	Data	Bases,	VLDB
’81,	pages	144–154,	1981.

[68]	 Jim	Gray.	Why	do	computers	stop	and	what	can	be	done	about	it?	Technical	Report
TR-85.7,	HP	Labs,	1985.

[69]	
Jim	Gray,	Paul	McJones,	Mike	Blasgen,	Bruce	Lindsay,	Raymond	Lorie,	Tom	Price,
Franco	Putzolu,	and	Irving	Traiger.	The	recovery	manager	of	the	System	R	database
manager.	ACM	Comput.	Surv.,	13(2):223–242,	June	1981.

[70]	 Jim	Gray	and	Andreas	Reuter.	Transaction	Processing:	Concepts	and	Techniques.
Morgan	Kaufmann,	1993.

[71]	 Jim	Gray	and	Daniel	P.	Siewiorek.	High-availability	computer	systems.	Computer,
24(9):39–48,	September	1991.

[72]	

Diwaker	Gupta,	Sangmin	Lee,	Michael	Vrable,	Stefan	Savage,	Alex	C.	Snoeren,
George	Varghese,	Geoffrey	M.	Voelker,	and	Amin	Vahdat.	Difference	engine:
harnessing	memory	redundancy	in	virtual	machines.	In	Proceedings	of	the	8th
USENIX	conference	on	Operating	Systems	Design	and	Implementation,	OSDI’08,
pages	309–322,	2008.

[73]	 Hadoop.	http://hadoop.apache.org.

[74]	
Steven	M.	Hand.	Self-paging	in	the	Nemesis	operating	system.	In	Proceedings	of	the
third	USENIX	Symposium	on	Operating	Systems	Design	and	Implementation,	OSDI
’99,	pages	73–86,	1999.

[75]	 Per	Brinch	Hansen.	The	nucleus	of	a	multiprogramming	system.	Commun.	
13(4):238–241,	April	1970.

[76]	
Mor	Harchol-Balter	and	Allen	B.	Downey.	Exploiting	process	lifetime	distributions
for	dynamic	load	balancing.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’95,	pages	236–,	1995.

[77]	

Kieran	Harty	and	David	R.	Cheriton.	Application-controlled	physical	memory	
external	page-cache	management.	In	Proceedings	of	the	fifth	International	
on	Architectural	Support	for	Programming	Languages	and	Operating	Systems,
ASPLOS-V,	pages	187–197,	1992.

[78]	 Rober	Haskin,	Yoni	Malachi,	and	Gregory	Chan.	Recovery	management	in
QuickSilver.	ACM	Trans.	Comput.	Syst.,	6(1):82–108,	February	1988.

[79]	 John	L.	Hennessy	and	David	A.	Patterson.	Computer	Architecture	-	A	Quantitative
Approach	(5.	ed.).	Morgan	Kaufmann,	2012.

[80]	 Maurice	Herlihy.	Wait-free	synchronization.	ACM	Trans.	Program.	Lang.	Syst.,
13(1):124–149,	January	1991.

[81]	 Maurice	Herlihy	and	Nir	Shavit.	The	Art	of	Multiprocessor	Programming.	Morgan
Kaufmann,	2008.

[82]	 Dave	Hitz,	James	Lau,	and	Michael	Malcolm.	File	system	design	for	an	NFS	file
server	appliance.	Technical	Report	3002,	Network	Appliance,	1995.

[83]	 C.	A.	R.	Hoare.	Monitors:	An	operating	system	structuring	concept.	Communications
of	the	ACM,	17:549–557,	1974.

[84]	 C.	A.	R.	Hoare.	Communicating	sequential	processes.	Commun.	ACM,	21(8):666–
677,	August	1978.

[85]	 C.	A.	R.	Hoare.	The	emperor’s	old	clothes.	Commun.	ACM,	24(2):75–83,	February
1981.

[86]	
Thomas	R.	Horsley	and	William	C.	Lynch.	Pilot:	A	software	engineering	case	study.
In	Proceedings	of	the	4th	International	conference	on	Software	engineering,	ICSE	’79,
pages	94–99,	1979.

[87]	 Raj	Jain.	The	Art	of	Computer	Systems	Performance	Analysis.	John	Wiley	&	Sons,
1991.

[88]	

Asim	Kadav	and	Michael	M.	Swift.	Understanding	modern	device	drivers.	In
Proceedings	of	the	seventeenth	international	conference	on	Architectural	Support	for
Programming	Languages	and	Operating	Systems,	ASPLOS	’12,	pages	87–98,	New
York,	NY,	USA,	2012.	ACM.

[89]	
Paul	A.	Karger,	Mary	Ellen	Zurko,	Douglas	W.	Bonin,	Andrew	H.	Mason,	
Clifford	E.	Kahn.	A	retrospective	on	the	VAX	VMM	security	kernel.	IEEE	Trans.

Softw.	Eng.,	17(11):1147–1165,	November	1991.

[90]	
Yousef	A.	Khalidi	and	Michael	N.	Nelson.	Extensible	file	systems	in	Spring.	In
Proceedings	of	the	fourteenth	ACM	Symposium	on	Operating	Systems	Principles,
SOSP	’93,	pages	1–14,	1993.

[91]	

Gerwin	Klein,	Kevin	Elphinstone,	Gernot	Heiser,	June	Andronick,	David	Cock,	Philip
Derrin,	Dhammika	Elkaduwe,	Kai	Engelhardt,	Rafal	Kolanski,	Michael	Norrish,
Thomas	Sewell,	Harvey	Tuch,	and	Simon	Winwood.	sel4:	formal	verification	of	an
OS	kernel.	In	Proceedings	of	the	ACM	SIGOPS	22nd	Symposium	on	Operating
Systems	Principles,	SOSP	’09,	pages	207–220,	2009.

[92]	 L.	Kleinrock	and	R.	R.	Muntz.	Processor	sharing	queueing	models	of	mixed
scheduling	disciplines	for	time	shared	system.	J.	ACM,	19(3):464–482,	July	1972.

[93]	 Leonard	Kleinrock.	Queueing	Systems,	Volume	II:	Computer	Applications.	Wiley
Interscience,	1976.

[94]	 H.	T.	Kung	and	John	T.	Robinson.	On	optimistic	methods	for	concurrency	control.
ACM	Trans.	Database	Syst.,	6(2):213–226,	June	1981.

[95]	 Leslie	Lamport.	A	fast	mutual	exclusion	algorithm.	ACM	Trans.	Comput.	Syst.,
5(1):1–11,	January	1987.

[96]	 B.	W.	Lampson.	Hints	for	computer	system	design.	IEEE	Softw.,	1(1):11–28,	January
1984.

[97]	 Butler	Lampson	and	Howard	Sturgis.	Crash	recovery	in	a	distributed	data	storage
system.	Technical	report,	Xerox	Palo	Alto	Research	Center,	1979.

[98]	 Butler	W.	Lampson	and	David	D.	Redell.	Experience	with	processes	and	monitors	
Mesa.	Commun.	ACM,	23(2):105–117,	February	1980.

[99]	 Butler	W.	Lampson	and	Howard	E.	Sturgis.	Reflections	on	an	operating	system
design.	Commun.	ACM,	19(5):251–265,	May	1976.

[100]	 James	Larus	and	Galen	Hunt.	The	Singularity	system.	Commun.	ACM,	53(8):72–79,
August	2010.

[101]	 Hugh	C.	Lauer	and	Roger	M.	Needham.	On	the	duality	of	operating	system	structures.
In	Operating	Systems	Review,	pages	3–19,	1979.

[102]	
Edward	D.	Lazowska,	John	Zahorjan,	G.	Scott	Graham,	and	Kenneth	C.	Sevcik.
Quantitative	system	performance:	computer	system	analysis	using	queueing	
models.	Prentice-Hall,	Inc.,	1984.

[103]	
Will	E.	Leland,	Murad	S.	Taqqu,	Walter	Willinger,	and	Daniel	V.	Wilson.	
similar	nature	of	Ethernet	traffic	(extended	version).	IEEE/ACM	Trans.	Netw.,	2(1):1–
15,	February	1994.

[104]	 N.	G.	Leveson	and	C.	S.	Turner.	An	investigation	of	the	Therac-25	accidents.

Computer,	26(7):18–41,	July	1993.

[105]	 H.	M.	Levy	and	P.	H.	Lipman.	Virtual	memory	management	in	the	VAX/VMS
operating	system.	Computer,	15(3):35–41,	March	1982.

[106]	 J.	Liedtke.	On	microkernel	construction.	In	Proceedings	of	the	fifteenth	ACMSymposium	on	Operating	Systems	Principles,	SOSP	’95,	pages	237–250,	1995.

[107]	 John	Lions.	Lions’	Commentary	on	UNIX	6th	Edition,	with	Source	Code.	Peer-to-Peer	Communications,	1996.

[108]	 J.	S.	Liptay.	Structural	aspects	of	the	System/360	model	85:	ii	the	cache.	IBM	Syst.	J.,
7(1):15–21,	March	1968.

[109]	

David	E.	Lowell,	Subhachandra	Chandra,	and	Peter	M.	Chen.	Exploring	failure
transparency	and	the	limits	of	generic	recovery.	In	Proceedings	of	the	4th	conference
on	Symposium	on	Operating	Systems	Design	and	Implementation,	OSDI’00,	pages
20–20,	2000.

[110]	
David	E.	Lowell	and	Peter	M.	Chen.	Free	transactions	with	Rio	Vista.	In	Proceedings
of	the	sixteenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’97,	pages
92–101,	1997.

[111]	 P.	McKenney.	Is	parallel	programming	hard,	and,	if	so,	what	can	be	done	about	
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.05.30a.pdf.

[112]	
Paul	E.	McKenney,	Dipankar	Sarma,	Andrea	Arcangeli,	Andi	Kleen,	Orran	Krieger,
and	Rusty	Russell.	Read-copy	update.	In	Ottawa	Linux	Symposium,	pages	338–367,
June	2002.

[113]	 Marshall	K.	McKusick,	William	N.	Joy,	Samuel	J.	Leffler,	and	Robert	S.	Fabry.	
file	system	for	UNIX.	ACM	Trans.	Comput.	Syst.,	2(3):181–197,	August	1984.

[114]	
Marshall	Kirk	McKusick,	Keith	Bostic,	Michael	J.	Karels,	and	John	S.	Quarterman.
The	design	and	implementation	of	the	4.4BSD	operating	system.	Addison	
Longman	Publishing	Co.,	Inc.,	1996.

[115]	
John	M.	Mellor-Crummey	and	Michael	L.	Scott.	Algorithms	for	scalable
synchronization	on	shared-memory	multiprocessors.	ACM	Trans.	Comput.	Syst.,
9(1):21–65,	February	1991.

[116]	 Scott	Meyers	and	Andrei	Alexandrescu.	C++	and	the	perils	of	double-checked
locking.	Dr.	Dobbs	Journal,	2004.

[117]	 Jeffrey	C.	Mogul	and	K.	K.	Ramakrishnan.	Eliminating	receive	livelock	in	
interrupt-driven	kernel.	ACM	Trans.	Comput.	Syst.,	15(3):217–252,	August	1997.

[118]	
Jeffrey	C.	Mogul,	Richard	F.	Rashid,	and	Michael	J.	Accetta.	The	packet	filter:	An
efficient	mechanism	for	user-level	network	code.	In	In	the	Proceedings	of	the	eleventh
ACM	Symposium	on	Operating	Systems	Principles,	pages	39–51,	1987.

[119]	 C.	Mohan,	Don	Haderle,	Bruce	Lindsay,	Hamid	Pirahesh,	and	Peter	Schwarz.	
a	transaction	recovery	method	supporting	fine-granularity	locking	and	partial	rollbacks
using	write-ahead	logging.	ACM	Trans.	Database	Syst.,	17(1):94–162,	March	1992.

[120]	 Gordon	E.	Moore.	Cramming	more	components	onto	integrated	circuits.	Electronics,
38(8):114–117,	1965.

[121]	

Madanlal	Musuvathi,	Shaz	Qadeer,	Thomas	Ball,	Gerard	Basler,
Piramanayagam	Arumuga	Nainar,	and	Iulian	Neamtiu.	Finding	and	reproducing
Heisenbugs	in	concurrent	programs.	In	Proceedings	of	the	8th	USENIX	conference	on
Operating	Systems	Design	and	Implementation,	OSDI’08,	pages	267–280,	2008.

[122]	 Kai	Nagel	and	Michael	Schreckenberg.	A	cellular	automaton	model	for	freeway
traffic.	J.	Phys.	I	France,	1992.

[123]	
George	C.	Necula	and	Peter	Lee.	Safe	kernel	extensions	without	runtime	checking.	
Proceedings	of	the	second	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	OSDI	’96,	pages	229–243,	1996.

[124]	 Edmund	B.	Nightingale,	Kaushik	Veeraraghavan,	Peter	M.	Chen,	and	Jason	
Rethink	the	sync.	ACM	Trans.	Comput.	Syst.,	26(3):6:1–6:26,	September	2008.

[125]	 Elliott	I.	Organick.	The	Multics	system:	an	examination	of	its	structure.	MIT	Press,
1972.

[126]	

Steven	Osman,	Dinesh	Subhraveti,	Gong	Su,	and	Jason	Nieh.	The	design	and
implementation	of	Zap:	a	system	for	migrating	computing	environments.	In
Proceedings	of	the	fifth	USENIX	Symposium	on	Operating	Systems	Design	and
Implementation,	OSDI	’02,	pages	361–376,	2002.

[127]	
John	Ousterhout.	Scheduling	techniques	for	concurrent	systems.	In	Proceedings	of
Third	International	Conference	on	Distributed	Computing	Systems,	pages	22–30,
1982.

[128]	 John	Ousterhout.	Why	aren’t	operating	systems	getting	faster	as	fast	as	hardware?	In
Proceedings	USENIX	Conference,	pages	247–256,	1990.

[129]	 John	Ousterhout.	Why	threads	are	a	bad	idea	(for	most	purposes).	In	USENIX	Winter
Technical	Conference,	1996.

[130]	
Vivek	S.	Pai,	Peter	Druschel,	and	Willy	Zwaenepoel.	Flash:	an	efficient	and	portable
web	server.	In	Proceedings	of	the	annual	conference	on	USENIX	Annual	Technical
Conference,	ATEC	’99,	1999.

[131]	
Vivek	S.	Pai,	Peter	Druschel,	and	Willy	Zwaenepoel.	IO-lite:	a	unified	I/O	buffering
and	caching	system.	In	Proceedings	of	the	third	USENIX	Symposium	on	Operating
Systems	Design	and	Implementation,	OSDI	’99,	pages	15–28,	1999.
David	A.	Patterson,	Garth	Gibson,	and	Randy	H.	Katz.	A	case	for	redundant	arrays	of

[132]	 inexpensive	disks	(RAID).	In	Proceedings	of	the	1988	ACM	SIGMOD	International
conference	on	Management	of	Data,	SIGMOD	’88,	pages	109–116,	1988.

[133]	
L.	Peterson,	N.	Hutchinson,	S.	O’Malley,	and	M.	Abbott.	RPC	in	the	x-Kernel:
evaluating	new	design	techniques.	In	Proceedings	of	the	twelfth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’89,	pages	91–101,	1989.

[134]	 Jonathan	Pincus	and	Brandon	Baker.	Beyond	stack	smashing:	recent	advances	inexploiting	buffer	overruns.	IEEE	Security	and	Privacy,	2(4):20–27,	July	2004.

[135]	
Eduardo	Pinheiro,	Wolf-Dietrich	Weber,	and	Luiz	André	Barroso.	Failure	
large	disk	drive	population.	In	Proceedings	of	the	5th	USENIX	conference	on	File	and
Storage	Technologies,	FAST	’07,	pages	2–2,	2007.

[136]	

Vijayan	Prabhakaran,	Lakshmi	N.	Bairavasundaram,	Nitin	Agrawal,	Haryadi	S.
Gunawi,	Andrea	C.	Arpaci-Dusseau,	and	Remzi	H.	Arpaci-Dusseau.	IRON	
systems.	In	Proceedings	of	the	twentieth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’05,	pages	206–220,	2005.

[137]	

Richard	Rashid,	Robert	Baron,	Alessandro	Forin,	David	Golub,	Michael	Jones,	Daniel
Julin,	Douglas	Orr,	and	Richard	Sanzi.	Mach:	A	foundation	for	open	systems.	In
Proceedings	of	the	Second	Workshop	on	Workstation	Operating	Systems(WWOS2),
1989.

[138]	

Richard	F.	Rashid,	Avadis	Tevanian,	Michael	Young,	David	B.	Golub,	Robert	V.
Baron,	David	L.	Black,	William	J.	Bolosky,	and	Jonathan	Chew.	Machine-
independent	virtual	memory	management	for	paged	uniprocessor	and	multiprocessor
architectures.	IEEE	Trans.	Computers,	37(8):896–907,	1988.

[139]	 E.S.	Raymond.	The	Cathedral	and	the	Bazaar:	Musings	On	Linux	And	Open	Source
By	An	Accidental	Revolutionary.	O’Reilly	Series.	O’Reilly,	2001.

[140]	
David	D.	Redell,	Yogen	K.	Dalal,	Thomas	R.	Horsley,	Hugh	C.	Lauer,	William	C.
Lynch,	Paul	R.	McJones,	Hal	G.	Murray,	and	Stephen	C.	Purcell.	Pilot:	an	operating
system	for	a	personal	computer.	Commun.	ACM,	23(2):81–92,	February	1980.

[141]	 Dennis	M.	Ritchie	and	Ken	Thompson.	The	UNIX	time-sharing	system.	Commun.
ACM,	17(7):365–375,	July	1974.

[142]	 Mendel	Rosenblum	and	John	K.	Ousterhout.	The	design	and	implementation	
structured	file	system.	ACM	Trans.	Comput.	Syst.,	10(1):26–52,	February	1992.

[143]	 Chris	Ruemmler	and	John	Wilkes.	An	introduction	to	disk	drive	modeling.	Computer,
27(3):17–28,	March	1994.

[144]	 J.	H.	Saltzer,	D.	P.	Reed,	and	D.	D.	Clark.	End-to-end	arguments	in	system	design.ACM	Trans.	Comput.	Syst.,	2(4):277–288,	November	1984.

[145]	 Jerome	H.	Saltzer.	Protection	and	the	control	of	information	sharing	in	Multics.

Commun.	ACM,	17(7):388–402,	July	1974.

[146]	
M.	Satyanarayanan,	Henry	H.	Mashburn,	Puneet	Kumar,	David	C.	Steere,	and
James	J.	Kistler.	Lightweight	recoverable	virtual	memory.	ACM	Trans.	Comput.	Syst.,
12(1):33–57,	February	1994.

[147]	
Stefan	Savage,	Michael	Burrows,	Greg	Nelson,	Patrick	Sobalvarro,	and	Thomas
Anderson.	Eraser:	a	dynamic	data	race	detector	for	multithreaded	programs.	ACM
Trans.	Comput.	Syst.,	15(4):391–411,	November	1997.

[148]	
Bianca	Schroeder	and	Garth	A.	Gibson.	Disk	failures	in	the	real	world:	what	
MTTF	of	1,000,000	hours	mean	to	you?	In	Proceedings	of	the	5th	USENIX
conference	on	File	and	Storage	Technologies,	FAST	’07,	2007.

[149]	 Bianca	Schroeder	and	Mor	Harchol-Balter.	Web	servers	under	overload:	How
scheduling	can	help.	ACM	Trans.	Internet	Technol.,	6(1):20–52,	February	2006.

[150]	
Michael	D.	Schroeder,	David	D.	Clark,	and	Jerome	H.	Saltzer.	The	Multics	kernel
design	project.	In	Proceedings	of	the	sixth	ACM	Symposium	on	Operating	Systems
Principles,	SOSP	’77,	pages	43–56,	1977.

[151]	 Michael	D.	Schroeder	and	Jerome	H.	Saltzer.	A	hardware	architecture	for
implementing	protection	rings.	Commun.	ACM,	15(3):157–170,	March	1972.

[152]	 D.	P.	Siewiorek.	Architecture	of	fault-tolerant	computers.	Computer,	17(8):9–18,August	1984.
[153]	 E.	H.	Spafford.	Crisis	and	aftermath.	Commun.	ACM,	32(6):678–687,	June	1989.
[154]	 Structured	Query	Language	(SQL).	http://en.wikipedia.org/wiki/SQL.

[155]	 Michael	Stonebraker.	Operating	system	support	for	database	management.	Commun.
ACM,	24(7):412–418,	July	1981.

[156]	
Michael	M.	Swift,	Muthukaruppan	Annamalai,	Brian	N.	Bershad,	and	Henry	M.	Levy.
Recovering	device	drivers.	ACM	Trans.	Comput.	Syst.,	24(4):333–360,	November
2006.

[157]	 K.	Thompson.	Unix	implementation.	Bell	System	Technical	Journal,	57:1931–1946,1978.

[158]	 Ken	Thompson.	Reflections	on	trusting	trust.	Commun.	ACM,	27(8):761–763,	August
1984.

[159]	 Paul	Tyma.	Thousands	of	threads	and	blocking	i/o.http://www.mailinator.com/tymaPaulMultithreaded.pdf,	2008.

[160]	
Robbert	van	Renesse.	Goal-oriented	programming,	or	composition	using	events,	or
threads	considered	harmful.	In	ACM	SIGOPS	European	Workshop	on	Support	for
Composing	Distributed	Applications,	pages	82–87,	1998.
Joost	S.	M.	Verhofstad.	Recovery	techniques	for	database	systems.	ACM	Comput.

[161]	 Surv.,	10(2):167–195,	June	1978.

[162]	

Michael	Vrable,	Justin	Ma,	Jay	Chen,	David	Moore,	Erik	Vandekieft,	Alex	C.
Snoeren,	Geoffrey	M.	Voelker,	and	Stefan	Savage.	Scalability,	fidelity,	and
containment	in	the	Potemkin	virtual	honeyfarm.	In	Proceedings	of	the	twentieth	ACM
Symposium	on	Operating	Systems	Principles,	SOSP	’05,	pages	148–162,	2005.

[163]	
Robert	Wahbe,	Steven	Lucco,	Thomas	E.	Anderson,	and	Susan	L.	Graham.	
software-based	fault	isolation.	In	Proceedings	of	the	fourteenth	ACM	Symposium	on
Operating	Systems	Principles,	SOSP	’93,	pages	203–216,	1993.

[164]	 Carl	A.	Waldspurger.	Memory	resource	management	in	VMware	ESX	server.
SIGOPS	Oper.	Syst.	Rev.,	36(SI):181–194,	December	2002.

[165]	
Andrew	Whitaker,	Marianne	Shaw,	and	Steven	D.	Gribble.	Scale	and	performance	in
the	Denali	isolation	kernel.	In	Proceedings	of	the	fifth	USENIX	Symposium	on
Operating	Systems	Design	and	Implementation,	OSDI	’02,	pages	195–209,	2002.

[166]	
J.	Wilkes,	R.	Golding,	C.	Staelin,	and	T.	Sullivan.	The	HP	AutoRAID	hierarchical
storage	system.	In	Proceedings	of	the	fifteenth	ACM	Symposium	on	Operating
Systems	Principles,	SOSP	’95,	pages	96–108,	1995.

[167]	

Alec	Wolman,	M.	Voelker,	Nitin	Sharma,	Neal	Cardwell,	Anna	Karlin,	and	
Levy.	On	the	scale	and	performance	of	cooperative	web	proxy	caching.	In	Proceedings
of	the	seventeenth	ACM	Symposium	on	Operating	Systems	Principles,	SOSP	’99,
pages	16–31,	1999.

[168]	
W.	Wulf,	E.	Cohen,	W.	Corwin,	A.	Jones,	R.	Levin,	C.	Pierson,	and	F.	Pollack.	
the	kernel	of	a	multiprocessor	operating	system.	Commun.	ACM,	17(6):337–345,	June
1974.

[169]	

Bennet	Yee,	David	Sehr,	Gregory	Dardyk,	J.	Bradley	Chen,	Robert	Muth,	Tavis
Ormandy,	Shiki	Okasaka,	Neha	Narula,	and	Nicholas	Fullagar.	Native	Client:	a
sandbox	for	portable,	untrusted	x86	native	code.	In	Proceedings	of	the	2009	30th	IEEE
Symposium	on	Security	and	Privacy,	SP	’09,	pages	79–93,	2009.

[170]	 Nickolai	Zeldovich,	Silas	Boyd-Wickizer,	Eddie	Kohler,	and	David	Mazières.	Making
information	flow	explicit	in	HiStar.	Commun.	ACM,	54(11):93–101,	November	2011.

Glossary

absolute	path
A	file	path	name	interpreted	relative	to	the	root	directory.

abstract	virtual	machine
The	interface	provided	by	an	operating	system	to	its	applications,	including
the	system	call	interface,	the	memory	abstraction,	exceptions,	and	signals.

ACID	properties
A	mnemonic	for	the	properties	of	a	transaction:	atomicity,	consistency,
isolation,	and	durability.

acquire-all/release-all
A	design	pattern	to	provide	atomicity	of	a	request	consisting	of	multiple
operations.	A	thread	acquires	all	of	the	locks	it	might	need	before	starting	to
process	a	request;	it	releases	the	locks	once	the	request	is	done.

address	translation
The	conversion	from	the	memory	address	the	program	thinks	it	is
referencing	to	the	physical	location	of	the	memory.

affinity	scheduling
A	scheduling	policy	where	tasks	are	preferentially	scheduled	onto	the	same
processor	they	had	previously	been	assigned,	to	improve	cache	reuse.

annual	disk	failure	rate
The	fraction	of	disks	expected	to	failure	each	year.

API
See:	application	programming	interface.

application	programming	interface
The	system	call	interface	provided	by	an	operating	system	to	applications.

arm
An	attachment	allowing	the	motion	of	the	disk	head	across	a	disk	surface.

arm	assembly
A	motor	plus	the	set	of	disk	arms	needed	to	position	a	disk	head	to	read	or
write	each	surface	of	the	disk.

arrival	rate
The	rate	at	which	tasks	arrive	for	service.

asynchronous	I/O
A	design	pattern	for	system	calls	to	allow	a	single-threaded	process	to	make
multiple	concurrent	I/O	requests.	When	the	process	issues	an	I/O	request,
the	system	call	returns	immediately.	The	process	later	on	receives	a
notification	when	the	I/O	completes.

asynchronous	procedure	call
A	procedure	call	where	the	caller	starts	the	function,	continues	execution
concurrently	with	the	called	function,	and	later	waits	for	the	function	to
complete.

atomic	commit
The	moment	when	a	transaction	commits	to	apply	all	of	its	updates.

atomic	memory
The	value	stored	in	memory	is	the	last	value	stored	by	one	of	the
processors,	not	a	mixture	of	the	updates	of	different	processors.

atomic	operations
Indivisible	operations	that	cannot	be	interleaved	with	or	split	by	other
operations.

atomic	read-modify-write	instruction
A	processor-specific	instruction	that	lets	one	thread	temporarily	have
exclusive	and	atomic	access	to	a	memory	location	while	the	instruction
executes.	Typically,	the	instruction	(atomically)	reads	a	memory	location,
does	some	simple	arithmetic	operation	to	the	value,	and	stores	the	result.

attribute	record
In	NTFS,	a	variable-size	data	structure	containing	either	file	data	or	file
metadata.

availability
The	percentage	of	time	that	a	system	is	usable.

average	seek	time
The	average	time	across	seeks	between	each	possible	pair	of	tracks	on	a
disk.

AVM
See:	abstract	virtual	machine.

backup
A	logically	or	physically	separate	copy	of	a	system’s	main	storage.

base	and	bound	memory	protection
An	early	system	for	memory	protection	where	each	process	is	limited	to	a
specific	range	of	physical	memory.

batch	operating	system
An	early	type	of	operating	system	that	efficiently	ran	a	queue	of	tasks.
While	one	program	was	running,	another	was	being	loaded	into	memory.

While	one	program	was	running,	another	was	being	loaded	into	memory.
bathtub	model

A	model	of	disk	device	failure	combining	device	infant	mortality	and	wear
out.

Belady’s	anomaly
For	some	cache	replacement	policies	and	some	reference	patterns,	adding
space	to	a	cache	can	hurt	the	cache	hit	rate.

best	fit
A	storage	allocation	policy	that	attempts	to	place	a	newly	allocated	file	in
the	smallest	free	region	that	is	large	enough	to	hold	it.

BIOS
The	initial	code	run	when	an	Intel	x86	computer	boots;	acronym	for	Basic
Input/Output	System.	See	also:	Boot	ROM.

bit	error	rate
The	non-recoverable	read	error	rate.

bitmap
A	data	structure	for	block	allocation	where	each	block	is	represented	by	one
bit.

block	device
An	I/O	device	that	allows	data	to	be	read	or	written	in	fixed-sized	blocks.

block	group
A	set	of	nearby	disk	tracks.

block	integrity	metadata
Additional	data	stored	with	a	block	to	allow	the	software	to	validate	that	the
block	has	not	been	corrupted.

blocking	bounded	queue
A	bounded	queue	where	a	thread	trying	to	remove	an	item	from	an	empty
queue	will	wait	until	an	item	is	available,	and	a	thread	trying	to	put	an	item
into	a	full	queue	will	wait	until	there	is	room.

Bohrbugs
Bugs	that	are	deterministic	and	reproducible,	given	the	same	program	input.
See	also:	Heisenbugs.

Boot	ROM
Special	read-only	memory	containing	the	initial	instructions	for	booting	a
computer.

bootloader
Program	stored	at	a	fixed	position	on	disk	(or	flash	RAM)	to	load	the
operating	system	into	memory	and	start	it	executing.

bounded	queue
A	queue	with	a	fixed	size	limit	on	the	number	of	items	stored	in	the	queue.

A	queue	with	a	fixed	size	limit	on	the	number	of	items	stored	in	the	queue.
bounded	resources

A	necessary	condition	for	deadlock:	there	are	a	finite	number	of	resources
that	threads	can	simultaneously	use.

buffer	overflow	attack
An	attack	that	exploits	a	bug	where	input	can	overflow	the	buffer	allocated
to	hold	it,	overwriting	other	important	program	data	structures	with	data
provided	by	the	attacker.	One	common	variation	overflows	a	buffer
allocated	on	the	stack	(e.g.,	a	local,	automatic	variable)	and	replaces	the
function’s	return	address	with	a	return	address	specified	by	the	attacker,
possibly	to	code	“pushed”	onto	the	stack	with	the	overflowing	input.

bulk	synchronous
A	type	of	parallel	application	where	work	is	split	into	independent	tasks	and
where	each	task	completes	before	the	results	of	any	of	the	tasks	can	be
used.

bulk	synchronous	parallel	programming
See:	data	parallel	programming.

bursty	distribution
A	probability	distribution	that	is	less	evenly	distributed	around	the	mean
value	than	an	exponential	distribution.	See:	exponential	distribution.
Compare:	heavy-tailed	distribution.

busy-waiting
A	thread	spins	in	a	loop	waiting	for	a	concurrent	event	to	occur,	consuming
CPU	cycles	while	it	is	waiting.

cache
A	copy	of	data	that	can	be	accessed	more	quickly	than	the	original.

cache	hit
The	cache	contains	the	requested	item.

cache	miss
The	cache	does	not	contain	the	requested	item.

checkpoint
A	consistent	snapshot	of	the	entire	state	of	a	process,	including	the	contents
of	memory	and	processor	registers.

child	process
A	process	created	by	another	process.	See	also:	parent	process.

Circular	SCAN
See:	CSCAN.

circular	waiting
A	necessary	condition	for	deadlock	to	occur:	there	is	a	set	of	threads	such
that	each	thread	is	waiting	for	a	resource	held	by	another.

that	each	thread	is	waiting	for	a	resource	held	by	another.
client-server	communication

Two-way	communication	between	processes,	where	the	client	sends	a
request	to	the	server	to	do	some	task,	and	when	the	operation	is	complete,
the	server	replies	back	to	the	client.

clock	algorithm
A	method	for	identifying	a	not	recently	used	page	to	evict.	The	algorithm
sweeps	through	each	page	frame:	if	the	page	use	bit	is	set,	it	is	cleared;	if
the	use	bit	is	not	set,	the	page	is	reclaimed.

cloud	computing
A	model	of	computing	where	large-scale	applications	run	on	shared
computing	and	storage	infrastructure	in	data	centers	instead	of	on	the	user’s
own	computer.

commit
The	outcome	of	a	transaction	where	all	of	its	updates	occur.

compare-and-swap
An	atomic	read-modify-write	instruction	that	first	tests	the	value	of	a
memory	location,	and	if	the	value	has	not	been	changed,	sets	it	to	a	new
value.

compute-bound	task
A	task	that	primarily	uses	the	processor	and	does	little	I/O.

computer	virus
A	computer	program	that	modifies	an	operating	system	or	application	to
copy	itself	from	computer	to	computer	without	the	computer	owner’s
permission	or	knowledge.	Once	installed	on	a	computer,	a	virus	often
provides	the	attacker	control	over	the	system’s	resources	or	data.

concurrency
Multiple	activities	that	can	happen	at	the	same	time.

condition	variable
A	synchronization	variable	that	enables	a	thread	to	efficiently	wait	for	a
change	to	shared	state	protected	by	a	lock.

continuation
A	data	structure	used	in	event-driven	programming	that	keeps	track	of	a
task’s	current	state	and	its	next	step.

cooperating	threads
Threads	that	read	and	write	shared	state.

cooperative	caching
Using	the	memory	of	nearby	nodes	over	a	network	as	a	cache	to	avoid	the
latency	of	going	to	disk.

cooperative	multithreading
Each	thread	runs	without	interruption	until	it	explicitly	relinquishes	control
of	the	processor,	e.g.,	by	exiting	or	calling	thread_yield.

copy-on-write
A	method	of	sharing	physical	memory	between	two	logically	distinct	copies
(e.g.,	in	different	processes).	Each	shared	page	is	marked	as	read-only	so
that	the	operating	system	kernel	is	invoked	and	can	make	a	copy	of	the	page
if	either	process	tries	to	write	it.	The	process	can	then	modify	the	copy	and
resume	normal	execution.

copy-on-write	file	system
A	file	system	where	an	update	to	the	file	system	is	made	by	writing	new
versions	of	modified	data	and	metadata	blocks	to	free	disk	blocks.	The	new
blocks	can	point	to	unchanged	blocks	in	the	previous	version	of	the	file
system.	See	also:	COW	file	system.

core	map
A	data	structure	used	by	the	memory	management	system	to	keep	track	of
the	state	of	physical	page	frames,	such	as	which	processes	reference	the
page	frame.

COW	file	system
See:	copy-on-write	file	system.

critical	path
The	minimum	sequence	of	steps	for	a	parallel	application	to	compute	its
result,	even	with	infinite	resources.

critical	section
A	sequence	of	code	that	operates	on	shared	state.

cross-site	scripting
An	attack	against	a	client	computer	that	works	by	compromising	a	server
visited	by	the	client.	The	compromised	server	then	provides	scripting	code
to	the	client	that	accesses	and	downloads	the	client’s	sensitive	data.

cryptographic	signature
A	specially	designed	function	of	a	data	block	and	a	private	cryptographic
key	that	allows	someone	with	the	corresponding	public	key	to	verify	that	an
authorized	entity	produced	the	data	block.	It	is	computationally	intractable
for	an	attacker	without	the	private	key	to	create	a	different	data	block	with	a
valid	signature.

CSCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	only
services	requests	when	the	head	is	traveling	in	one	direction.	See	also:
Circular	SCAN.

current	working	directory
The	current	directory	of	the	process,	used	for	interpreting	relative	path
names.

data	breakpoint
A	request	to	stop	the	execution	of	a	program	when	it	references	or	modifies
a	particular	memory	location.

data	parallel	programming
A	programming	model	where	the	computation	is	performed	in	parallel
across	all	items	in	a	data	set.

deadlock
A	cycle	of	waiting	among	a	set	of	threads,	where	each	thread	waits	for
some	other	thread	in	the	cycle	to	take	some	action.

deadlocked	state
The	system	has	at	least	one	deadlock.

declustering
A	technique	for	reducing	the	recovery	time	after	a	disk	failure	in	a	RAID
system	by	spreading	redundant	disk	blocks	across	many	disks.

defense	in	depth
Improving	security	through	multiple	layers	of	protection.

defragment
Coalesce	scattered	disk	blocks	to	improve	spatial	locality,	by	reading	data
from	its	present	storage	location	and	rewriting	it	to	a	new,	more	compact,
location.

demand	paging
Using	address	translation	hardware	to	run	a	process	without	all	of	its
memory	physically	present.	When	the	process	references	a	missing	page,
the	hardware	traps	to	the	kernel,	which	brings	the	page	into	memory	from
disk.

deterministic	debugging
The	ability	to	re-execute	a	concurrent	process	with	the	same	schedule	and
sequence	of	internal	and	external	events.

device	driver
Operating	system	code	to	initialize	and	manage	a	particular	I/O	device.

direct	mapped	cache
Only	one	entry	in	the	cache	can	hold	a	specific	memory	location,	so	on	a
lookup,	the	system	must	check	the	address	against	only	that	entry	to
determine	if	there	is	a	cache	hit.

direct	memory	access
Hardware	I/O	devices	transfer	data	directly	into/out	of	main	memory	at	a

location	specified	by	the	operating	system.	See	also:	DMA.
dirty	bit

A	status	bit	in	a	page	table	entry	recording	whether	the	contents	of	the	page
have	been	modified	relative	to	what	is	stored	on	disk.

disk	buffer	memory
Memory	in	the	disk	controller	to	buffer	data	being	read	or	written	to	the
disk.

disk	infant	mortality
The	device	failure	rate	is	higher	than	normal	during	the	first	few	weeks	of
use.

disk	wear	out
The	device	failure	rate	rises	after	the	device	has	been	in	operation	for
several	years.

DMA
See:	direct	memory	access.

dnode
In	ZFS,	a	file	is	represented	by	variable-depth	tree	whose	root	is	a	dnode
and	whose	leaves	are	its	data	blocks.

double	indirect	block
A	storage	block	containing	pointers	to	indirect	blocks.

double-checked	locking
A	pitfall	in	concurrent	code	where	a	data	structure	is	lazily	initialized	by
first,	checking	without	a	lock	if	it	has	been	set,	and	if	not,	acquiring	a	lock
and	checking	again,	before	calling	the	initialization	function.	With
instruction	reordering,	double-checked	locking	can	fail	unexpectedly.

dual	redundancy	array
A	RAID	storage	algorithm	using	two	redundant	disk	blocks	per	array	to
tolerate	two	disk	failures.	See	also:	RAID	6.

dual-mode	operation
Hardware	processor	that	has	(at	least)	two	privilege	levels:	one	for
executing	the	kernel	with	complete	access	to	the	capabilities	of	the
hardware	and	a	second	for	executing	user	code	with	restricted	rights.	See
also:	kernel-mode	operation.	See	also:	user-mode	operation.

dynamically	loadable	device	driver
Software	to	manage	a	specific	device,	interface,	or	chipset,	added	to	the
operating	system	kernel	after	the	kernel	starts	running.

earliest	deadline	first
A	scheduling	policy	that	performs	the	task	that	needs	to	be	completed	first,
but	only	if	it	can	be	finished	in	time.

EDF
See:	earliest	deadline	first.

efficiency
The	lack	of	overhead	in	implementing	an	abstraction.

erasure	block
The	unit	of	erasure	in	a	flash	memory	device.	Before	any	portion	of	an
erasure	block	can	be	overwritten,	every	cell	in	the	entire	erasure	block	must
be	set	to	a	logical	“1.”

error	correcting	code
A	technique	for	storing	data	redundantly	to	allow	for	the	original	data	to	be
recovered	even	though	some	bits	in	a	disk	sector	or	flash	memory	page	are
corrupted.

event-driven	programming
A	coding	design	pattern	where	a	thread	spins	in	a	loop;	each	iteration	gets
and	processes	the	next	I/O	event.

exception
See:	processor	exception.

executable	image
File	containing	a	sequence	of	machine	instructions	and	initial	data	values
for	a	program.

execution	stack
Space	to	store	the	state	of	local	variables	during	procedure	calls.

exponential	distribution
A	convenient	probability	distribution	for	use	in	queueing	theory	because	it
has	the	property	of	being	memoryless.	For	a	continuous	random	variable
with	a	mean	of	1⁄λ,	the	probability	density	function	is	f(x)	=	λe-λx.

extent
A	variable-sized	region	of	a	file	that	is	stored	in	a	contiguous	region	on	the
storage	device.

external	fragmentation
In	a	system	that	allocates	memory	in	contiguous	regions,	the	unusable
memory	between	valid	contiguous	allocations.	A	new	request	for	memory
may	find	no	single	free	region	that	is	both	contiguous	and	large	enough,
even	though	there	is	enough	free	memory	in	aggregate.

fairness
Partitioning	of	shared	resources	between	users	or	applications	either	equally
or	balanced	according	to	some	desired	priorities.

false	sharing
Extra	interprocessor	communication	required	because	a	single	cache	entry
contains	portions	of	two	different	data	structures	with	different	sharing

contains	portions	of	two	different	data	structures	with	different	sharing
patterns.

fate	sharing
When	a	crash	in	one	module	implies	a	crash	in	another.	For	example,	a
library	shares	fate	with	the	application	it	is	linked	with;	if	either	crashes,	the
process	exits.

fault	isolation
An	error	in	one	application	should	not	disrupt	other	applications,	or	even
the	operating	system	itself.

file
A	named	collection	of	data	in	a	file	system.

file	allocation	table
An	array	of	entries	in	the	FAT	file	system	stored	in	a	reserved	area	of	the
volume,	where	each	entry	corresponds	to	one	file	data	block,	and	points	to
the	next	block	in	the	file.

file	data
Contents	of	a	file.

file	descriptor
A	handle	to	an	open	file,	device,	or	channel.	See	also:	file	handle.	See	also:
file	stream.

file	directory
A	list	of	human-readable	names	plus	a	mapping	from	each	name	to	a
specific	file	or	sub-directory.

file	handle
See:	file	descriptor.

file	index	structure
A	persistently	stored	data	structure	used	to	locate	the	blocks	of	the	file.

file	metadata
Information	about	a	file	that	is	managed	by	the	operating	system,	but	not
including	the	file	contents.

file	stream
See:	file	descriptor.

file	system
An	operating	system	abstraction	that	provides	persistent,	named	data.

file	system	fingerprint
A	checksum	across	the	entire	file	system.

fill-on-demand
A	method	for	starting	a	process	before	all	of	its	memory	is	brought	in	from
disk.	If	the	first	access	to	the	missing	memory	triggers	a	trap	to	the	kernel,
the	kernel	can	fill	the	memory	and	then	resume.

the	kernel	can	fill	the	memory	and	then	resume.
fine-grained	locking

A	way	to	increase	concurrency	by	partitioning	an	object’s	state	into
different	subsets	each	protected	by	a	different	lock.

finished	list
The	set	of	threads	that	are	complete	but	not	yet	de-allocated,	e.g.,	because	a
join	may	read	the	return	value	from	the	thread	control	block.

first-in-first-out
A	scheduling	policy	that	performs	each	task	in	the	order	in	which	it	arrives.

flash	page	failure
A	flash	memory	device	failure	where	the	data	stored	on	one	or	more
individual	pages	of	flash	are	lost,	but	the	rest	of	the	flash	continues	to
operate	correctly.

flash	translation	layer
A	layer	that	maps	logical	flash	pages	to	different	physical	pages	on	the
flash	device.	See	also:	FTL.

flash	wear	out
After	some	number	of	program-erase	cycles,	a	given	flash	storage	cell	may
no	longer	be	able	to	reliably	store	information.

fork-join	parallelism
A	type	of	parallel	programming	where	threads	can	be	created	(forked)	to	do
work	in	parallel	with	a	parent	thread;	a	parent	may	asynchronously	wait	for
a	child	thread	to	finish	(join).

free	space	map
A	file	system	data	structure	used	to	track	which	storage	blocks	are	free	and
which	are	in	use.

FTL
See:	flash	translation	layer.

full	disk	failure
When	a	disk	device	stops	being	able	to	service	reads	or	writes	to	all	sectors.

full	flash	drive	failure
When	a	flash	device	stops	being	able	to	service	reads	or	writes	to	all
memory	pages.

fully	associative	cache
Any	entry	in	the	cache	can	hold	any	memory	location,	so	on	a	lookup,	the
system	must	check	the	address	against	all	of	the	entries	in	the	cache	to
determine	if	there	is	a	cache	hit.

gang	scheduling
A	scheduling	policy	for	multiprocessors	that	performs	all	of	the	runnable
tasks	for	a	particular	process	at	the	same	time.

tasks	for	a	particular	process	at	the	same	time.
Global	Descriptor	Table

The	x86	terminology	for	a	segment	table	for	shared	segments.	A	Local
Descriptor	Table	is	used	for	segments	that	are	private	to	the	process.

grace	period
For	a	shared	object	protected	by	a	read-copy-update	lock,	the	time	from
when	a	new	version	of	a	shared	object	is	published	until	the	last	reader	of
the	old	version	is	guaranteed	to	be	finished.

green	threads
A	thread	system	implemented	entirely	at	user-level	without	any	reliance	on
operating	system	kernel	services,	other	than	those	designed	for	single-
threaded	processes.

group	commit
A	technique	that	batches	multiple	transaction	commits	into	a	single	disk
operation.

guest	operating	system
An	operating	system	running	in	a	virtual	machine.

hard	link
The	mapping	between	a	file	name	and	the	underlying	file,	typically	when
there	are	multiple	path	names	for	the	same	underlying	file.

hardware	abstraction	layer
A	module	in	the	operating	system	that	hides	the	specifics	of	different
hardware	implementations.	Above	this	layer,	the	operating	system	is
portable.

hardware	timer
A	hardware	device	that	can	cause	a	processor	interrupt	after	some	delay,
either	in	time	or	in	instructions	executed.

head
The	component	that	writes	the	data	to	or	reads	the	data	from	a	spinning	disk
surface.

head	crash
An	error	where	the	disk	head	physically	scrapes	the	magnetic	surface	of	a
spinning	disk	surface.

head	switch	time
The	time	it	takes	to	re-position	the	disk	arm	over	the	corresponding	track	on
a	different	surface,	before	a	read	or	write	can	begin.

heap
Space	to	store	dynamically	allocated	data	structures.

heavy-tailed	distribution
A	probability	distribution	such	that	events	far	from	the	mean	value	(in

A	probability	distribution	such	that	events	far	from	the	mean	value	(in
aggregate)	occur	with	significant	probability.	When	used	for	the
distribution	of	time	between	events,	the	remaining	time	to	the	next	event	is
positively	related	to	the	time	already	spent	waiting	—	you	expect	to	wait
longer	the	longer	you	have	already	waited.

Heisenbugs
Bugs	in	concurrent	programs	that	disappear	or	change	behavior	when	you
try	to	examine	them.	See	also:	Bohrbugs.

hint
A	result	of	some	computation	whose	results	may	no	longer	be	valid,	but
where	using	an	invalid	hint	will	trigger	an	exception.

home	directory
The	sub-directory	containing	a	user’s	files.

host	operating	system
An	operating	system	that	provides	the	abstraction	of	a	virtual	machine,	to
run	another	operating	system	as	an	application.

host	transfer	time
The	time	to	transfer	data	between	the	host’s	memory	and	the	disk’s	buffer.

hyperthreading
See:	simultaneous	multithreading.

I/O-bound	task
A	task	that	primarily	does	I/O,	and	does	little	processing.

idempotent
An	operation	that	has	the	same	effect	whether	executed	once	or	many
times.

incremental	checkpoint
A	consistent	snapshot	of	the	portion	of	process	memory	that	has	been
modified	since	the	previous	checkpoint.

independent	threads
Threads	that	operate	on	completely	separate	subsets	of	process	memory.

indirect	block
A	storage	block	containing	pointers	to	file	data	blocks.

inode
In	the	Unix	Fast	File	System	(FFS)	and	related	file	systems,	an	inode	stores
a	file’s	metadata,	including	an	array	of	pointers	that	can	be	used	to	find	all
of	the	file’s	blocks.	The	term	inode	is	sometimes	used	more	generally	to
refer	to	any	file	system’s	per-file	metadata	data	structure.

inode	array
The	fixed	location	on	disk	containing	all	of	the	file	system’s	inodes.	See

also:	inumber.
intentions

The	set	of	writes	that	a	transaction	will	perform	if	the	transaction	commits.
internal	fragmentation

With	paged	allocation	of	memory,	the	unusable	memory	at	the	end	of	a
page	because	a	process	can	only	be	allocated	memory	in	page-sized	chunks.

interrupt
An	asynchronous	signal	to	the	processor	that	some	external	event	has
occurred	that	may	require	its	attention.

interrupt	disable
A	privileged	hardware	instruction	to	temporarily	defer	any	hardware
interrupts,	to	allow	the	kernel	to	complete	a	critical	task.

interrupt	enable
A	privileged	hardware	instruction	to	resume	hardware	interrupts,	after	a
non-interruptible	task	is	completed.

interrupt	handler
A	kernel	procedure	invoked	when	an	interrupt	occurs.

interrupt	stack
A	region	of	memory	for	holding	the	stack	of	the	kernel’s	interrupt	handler.
When	an	interrupt,	processor	exception,	or	system	call	trap	causes	a	context
switch	into	the	kernel,	the	hardware	changes	the	stack	pointer	to	point	to	the
base	of	the	kernel’s	interrupt	stack.

interrupt	vector	table
A	table	of	pointers	in	the	operating	system	kernel,	indexed	by	the	type	of
interrupt,	with	each	entry	pointing	to	the	first	instruction	of	a	handler
procedure	for	that	interrupt.

inumber
The	index	into	the	inode	array	for	a	particular	file.

inverted	page	table
A	hash	table	used	for	translation	between	virtual	page	numbers	and
physical	page	frames.

kernel	thread
A	thread	that	is	implemented	inside	the	operating	system	kernel.

kernel-mode	operation
The	processor	executes	in	an	unrestricted	mode	that	gives	the	operating
system	full	control	over	the	hardware.	Compare:	user-mode	operation.

LBA
See:	logical	block	address.

least	frequently	used

A	cache	replacement	policy	that	evicts	whichever	block	has	been	used	the
least	often,	over	some	period	of	time.	See	also:	LFU.

least	recently	used
A	cache	replacement	policy	that	evicts	whichever	block	has	not	been	used
for	the	longest	period	of	time.	See	also:	LRU.

LFU
See:	least	frequently	used.

Little’s	Law
In	a	stable	system	where	the	arrival	rate	matches	the	departure	rate,	the
number	of	tasks	in	the	system	equals	the	system’s	throughput	multiplied	by
the	average	time	a	task	spends	in	the	system:	N	=	XR.

liveness	property
A	constraint	on	program	behavior	such	that	it	always	produces	a	result.
Compare:	safety	property.

locality	heuristic
A	file	system	block	allocation	policy	that	places	files	in	nearby	disk	sectors
if	they	are	likely	to	be	read	or	written	at	the	same	time.

lock
A	type	of	synchronization	variable	used	for	enforcing	atomic,	mutually
exclusive	access	to	shared	data.

lock	ordering
A	widely	used	approach	to	prevent	deadlock,	where	locks	are	acquired	in	a
pre-determined	order.

lock-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	some	thread:	some
method	will	finish	in	a	finite	number	of	steps,	regardless	of	the	state	of
other	threads	executing	in	the	data	structure.

log
An	ordered	sequence	of	steps	saved	to	persistent	storage.

logical	block	address
A	unique	identifier	for	each	disk	sector	or	flash	memory	block,	typically
numbered	from	1	to	the	size	of	the	disk/flash	device.	The	disk	interface
converts	this	identifier	to	the	physical	location	of	the	sector/block.	See	also:
LBA.

logical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	the	same	location	as
the	primary	storage,	but	with	restricted	access,	e.g.,	to	prevent	updates.

LRU
See:	least	recently	used.

master	file	table
In	NTFS,	an	array	of	records	storing	metadata	about	each	file.	See	also:
MFT.

maximum	seek	time
The	time	it	takes	to	move	the	disk	arm	from	the	innermost	track	to	the
outermost	one	or	vice	versa.

max-min	fairness
A	scheduling	objective	to	maximize	the	minimum	resource	allocation	given
to	each	task.

MCS	lock
An	efficient	spinlock	implementation	where	each	waiting	thread	spins	on	a
separate	memory	location.

mean	time	to	data	loss
The	expected	time	until	a	RAID	system	suffers	an	unrecoverable	error.	See
also:	MTTDL.

mean	time	to	failure
The	average	time	that	a	system	runs	without	failing.	See	also:	MTTF.

mean	time	to	repair
The	average	time	that	it	takes	to	repair	a	system	once	it	has	failed.	See	also:
MTTR.

memory	address	alias
Two	or	more	virtual	addresses	that	refer	to	the	same	physical	memory
location.

memory	barrier
An	instruction	that	prevents	the	compiler	and	hardware	from	reordering
memory	accesses	across	the	barrier	—	no	accesses	before	the	barrier	are
moved	after	the	barrier	and	no	accesses	after	the	barrier	are	moved	before
the	barrier.

memory	protection
Hardware	or	software-enforced	limits	so	that	each	application	process	can
read	and	write	only	its	own	memory	and	not	the	memory	of	the	operating
system	or	any	other	process.

memoryless	property
For	a	probability	distribution	for	the	time	between	events,	the	remaining
time	to	the	next	event	does	not	depend	on	the	amount	of	time	already	spent
waiting.	See	also:	exponential	distribution.

memory-mapped	file
A	file	whose	contents	appear	to	be	a	memory	segment	in	a	process’s	virtual
address	space.

memory-mapped	I/O
Each	I/O	device’s	control	registers	are	mapped	to	a	range	of	physical
addresses	on	the	memory	bus.

memristor
A	type	of	solid-state	persistent	storage	using	a	circuit	element	whose
resistance	depends	on	the	amounts	and	directions	of	currents	that	have
flowed	through	it	in	the	past.

MFQ
See:	multi-level	feedback	queue.

MFT
See:	master	file	table.

microkernel
An	operating	system	design	where	the	kernel	itself	is	kept	small,	and
instead	most	of	the	functionality	of	a	traditional	operating	system	kernel	is
put	into	a	set	of	user-level	processes,	or	servers,	accessed	from	user
applications	via	interprocess	communication.

MIN	cache	replacement
See:	optimal	cache	replacement.

minimum	seek	time
The	time	to	move	the	disk	arm	to	the	next	adjacent	track.

MIPS
An	early	measure	of	processor	performance:	millions	of	instructions	per
second.

mirroring
A	system	for	redundantly	storing	data	on	disk	where	each	block	of	data	is
stored	on	two	disks	and	can	be	read	from	either.	See	also:	RAID	1.

model
A	simplification	that	tries	to	capture	the	most	important	aspects	of	a	more
complex	system’s	behavior.

monolithic	kernel
An	operating	system	design	where	most	of	the	operating	system
functionality	is	linked	together	inside	the	kernel.

Moore’s	Law
Transistor	density	increases	exponentially	over	time.	Similar	exponential
improvements	have	occurred	in	many	other	component	technologies;	in	the
popular	press,	these	often	go	by	the	same	term.

mount
A	mapping	of	a	path	in	the	existing	file	system	to	the	root	directory	of
another	file	system	volume.

MTTDL
See:	mean	time	to	data	loss.

MTTF
See:	mean	time	to	failure.

MTTR
See:	mean	time	to	repair.

multi-level	feedback	queue
A	scheduling	algorithm	with	multiple	priority	levels	managed	using	round
robin	queues,	where	a	task	is	moved	between	priority	levels	based	on	how
much	processing	time	it	has	used.	See	also:	MFQ.

multi-level	index
A	tree	data	structure	to	keep	track	of	the	disk	location	of	each	data	block	in
a	file.

multi-level	paged	segmentation
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page
frames,	virtual	addresses	are	segmented,	and	each	segment	is	translated	to
physical	addresses	through	multiple	levels	of	page	tables.

multi-level	paging
A	virtual	memory	mechanism	where	physical	memory	is	allocated	in	page
frames,	and	virtual	addresses	are	translated	to	physical	addresses	through
multiple	levels	of	page	tables.

multiple	independent	requests
A	necessary	condition	for	deadlock	to	occur:	a	thread	first	acquires	one
resource	and	then	tries	to	acquire	another.

multiprocessor	scheduling	policy
A	policy	to	determine	how	many	processors	to	assign	each	process.

multiprogramming
See:	multitasking.

multitasking
The	ability	of	an	operating	system	to	run	multiple	applications	at	the	same
time,	also	called	multiprogramming.

multithreaded	process
A	process	with	multiple	threads.

multithreaded	program
A	generalization	of	a	single-threaded	program.	Instead	of	only	one	logical
sequence	of	steps,	the	program	has	multiple	sequences,	or	threads,
executing	at	the	same	time.

mutual	exclusion
When	one	thread	uses	a	lock	to	prevent	concurrent	access	to	a	shared	data
structure.

structure.
mutually	recursive	locking

A	deadlock	condition	where	two	shared	objects	call	into	each	other	while
still	holding	their	locks.	Deadlock	occurs	if	one	thread	holds	the	lock	on	the
first	object	and	calls	into	the	second,	while	the	other	thread	holds	the	lock
on	the	second	object	and	calls	into	the	first.

named	data
Data	that	can	be	accessed	by	a	human-readable	identifier,	such	as	a	file
name.

native	command	queueing
See:	tagged	command	queueing.

NCQ
See:	native	command	queueing.

nested	waiting
A	deadlock	condition	where	one	shared	object	calls	into	another	shared
object	while	holding	the	first	object’s	lock,	and	then	waits	on	a	condition
variable.	Deadlock	results	if	the	thread	that	can	signal	the	condition	variable
needs	the	first	lock	to	make	progress.

network	effect
The	increase	in	value	of	a	product	or	service	based	on	the	number	of	other
people	who	have	adopted	that	technology	and	not	just	its	intrinsic
capabilities.

no	preemption
A	necessary	condition	for	deadlock	to	occur:	once	a	thread	acquires	a
resource,	its	ownership	cannot	be	revoked	until	the	thread	acts	to	release	it.

non-blocking	data	structure
Concurrent	data	structure	where	a	thread	is	never	required	to	wait	for
another	thread	to	complete	its	operation.

non-recoverable	read	error
When	sufficient	bit	errors	occur	within	a	disk	sector	or	flash	memory	page,
such	that	the	original	data	cannot	be	recovered	even	after	error	correction.

non-resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	addressed	indirectly,
through	extent	pointers	in	the	master	file	table	that	point	to	the	contents	in
those	extents.

non-volatile	storage
Unlike	DRAM,	memory	that	is	durable	and	retains	its	state	across	crashes
and	power	outages.	See	also:	persistent	storage.	See	also:	stable	storage.

not	recently	used
A	cache	replacement	policy	that	evicts	some	block	that	has	not	been

A	cache	replacement	policy	that	evicts	some	block	that	has	not	been
referenced	recently,	rather	than	the	least	recently	used	block.

oblivious	scheduling
A	scheduling	policy	where	the	operating	system	assigns	threads	to
processors	without	knowledge	of	the	intent	of	the	parallel	application.

open	system
A	system	whose	source	code	is	available	to	the	public	for	modification	and
reuse,	or	a	system	whose	interfaces	are	defined	by	a	public	standards
process.

operating	system
A	layer	of	software	that	manages	a	computer’s	resources	for	its	users	and
their	applications.

operating	system	kernel
The	kernel	is	the	lowest	level	of	software	running	on	the	system,	with	full
access	to	all	of	the	capabilities	of	the	hardware.

optimal	cache	replacement
Replace	whichever	block	is	used	farthest	in	the	future.

overhead
The	added	resource	cost	of	implementing	an	abstraction	versus	using	the
underlying	hardware	resources	directly.

ownership	design	pattern
A	technique	for	managing	concurrent	access	to	shared	objects	in	which	at
most	one	thread	owns	an	object	at	any	time,	and	therefore	the	thread	can
access	the	shared	data	without	a	lock.

page	coloring
The	assignment	of	physical	page	frames	to	virtual	addresses	by	partitioning
frames	based	on	which	portions	of	the	cache	they	will	use.

page	fault
A	hardware	trap	to	the	operating	system	kernel	when	a	process	references	a
virtual	address	with	an	invalid	page	table	entry.

page	frame
An	aligned,	fixed-size	chunk	of	physical	memory	that	can	hold	a	virtual
page.

paged	memory
A	hardware	address	translation	mechanism	where	memory	is	allocated	in
aligned,	fixed-sized	chunks,	called	pages.	Any	virtual	page	can	be	assigned
to	any	physical	page	frame.

paged	segmentation
A	hardware	mechanism	where	physical	memory	is	allocated	in	page
frames,	but	virtual	addresses	are	segmented.

frames,	but	virtual	addresses	are	segmented.
pair	of	stubs

A	pair	of	short	procedures	that	mediate	between	two	execution	contexts.
paravirtualization

A	virtual	machine	abstraction	that	allows	the	guest	operating	system	to
make	system	calls	into	the	host	operating	system	to	perform	hardware-
specific	operations,	such	as	changing	a	page	table	entry.

parent	process
A	process	that	creates	another	process.	See	also:	child	process.

path
The	string	that	identifies	a	file	or	directory.

PCB
See:	process	control	block.

PCM
See:	phase	change	memory.

performance	predictability
Whether	a	system’s	response	time	or	other	performance	metric	is	consistent
over	time.

persistent	data
Data	that	is	stored	until	it	is	explicitly	deleted,	even	if	the	computer	storing
it	crashes	or	loses	power.

persistent	storage
See:	non-volatile	storage.

phase	change	behavior
Abrupt	changes	in	a	program’s	working	set,	causing	bursty	cache	miss
rates:	periods	of	low	cache	misses	interspersed	with	periods	of	high	cache
misses.

phase	change	memory
A	type	of	non-volatile	memory	that	uses	the	phase	of	a	material	to	represent
a	data	bit.	See	also:	PCM.

physical	address
An	address	in	physical	memory.

physical	separation
A	backup	storage	policy	where	the	backup	is	stored	at	a	different	location
than	the	primary	storage.

physically	addressed	cache
A	processor	cache	that	is	accessed	using	physical	memory	addresses.

pin
To	bind	a	virtual	resource	to	a	physical	resource,	such	as	a	thread	to	a
processor	or	a	virtual	page	to	a	physical	page.

processor	or	a	virtual	page	to	a	physical	page.
platter

A	single	thin	round	plate	that	stores	information	in	a	magnetic	disk,	often
on	both	surfaces.

policy-mechanism	separation
A	system	design	principle	where	the	implementation	of	an	abstraction	is
independent	of	the	resource	allocation	policy	of	how	the	abstraction	is	used.

polling
An	alternative	to	hardware	interrupts,	where	the	processor	waits	for	an
asynchronous	event	to	occur,	by	looping,	or	busy-waiting,	until	the	event
occurs.

portability
The	ability	of	software	to	work	across	multiple	hardware	platforms.

precise	interrupts
All	instructions	that	occur	before	the	interrupt	or	exception,	according	to
the	program	execution,	are	completed	by	the	hardware	before	the	interrupt
handler	is	invoked.

preemption
When	a	scheduler	takes	the	processor	away	from	one	task	and	gives	it	to
another.

preemptive	multithreading
The	operating	system	scheduler	may	switch	out	a	running	thread,	e.g.,	on	a
timer	interrupt,	without	any	explicit	action	by	the	thread	to	relinquish
control	at	that	point.

prefetch
To	bring	data	into	a	cache	before	it	is	needed.

principle	of	least	privilege
System	security	and	reliability	are	enhanced	if	each	part	of	the	system	has
exactly	the	privileges	it	needs	to	do	its	job	and	no	more.

priority	donation
A	solution	to	priority	inversion:	when	a	thread	waits	for	a	lock	held	by	a
lower	priority	thread,	the	lock	holder	is	temporarily	increased	to	the
waiter’s	priority	until	the	lock	is	released.

priority	inversion
A	scheduling	anomaly	that	occurs	when	a	high	priority	task	waits
indefinitely	for	a	resource	(such	as	a	lock)	held	by	a	low	priority	task,
because	the	low	priority	task	is	waiting	in	turn	for	a	resource	(such	as	the
processor)	held	by	a	medium	priority	task.

privacy
Data	stored	on	a	computer	is	only	accessible	to	authorized	users.

Data	stored	on	a	computer	is	only	accessible	to	authorized	users.
privileged	instruction

Instruction	available	in	kernel	mode	but	not	in	user	mode.
process

The	execution	of	an	application	program	with	restricted	rights	—	the
abstraction	for	protection	provided	by	the	operating	system	kernel.

process	control	block
A	data	structure	that	stores	all	the	information	the	operating	system	needs
about	a	particular	process:	e.g.,	where	it	is	stored	in	memory,	where	its
executable	image	is	on	disk,	which	user	asked	it	to	start	executing,	and
what	privileges	the	process	has.	See	also:	PCB.

process	migration
The	ability	to	take	a	running	program	on	one	system,	stop	its	execution,	and
resume	it	on	a	different	machine.

processor	exception
A	hardware	event	caused	by	user	program	behavior	that	causes	a	transfer	of
control	to	a	kernel	handler.	For	example,	attempting	to	divide	by	zero
causes	a	processor	exception	in	many	architectures.

processor	scheduling	policy
When	there	are	more	runnable	threads	than	processors,	the	policy	that
determines	which	threads	to	run	first.

processor	status	register
A	hardware	register	containing	flags	that	control	the	operation	of	the
processor,	including	the	privilege	level.

producer-consumer	communication
Interprocess	communication	where	the	output	of	one	process	is	the	input	of
another.

proprietary	system
A	system	that	is	under	the	control	of	a	single	company;	it	can	be	changed	at
any	time	by	its	provider	to	meet	the	needs	of	its	customers.

protection
The	isolation	of	potentially	misbehaving	applications	and	users	so	that	they
do	not	corrupt	other	applications	or	the	operating	system	itself.

publish
For	a	read-copy-update	lock,	a	single,	atomic	memory	write	that	updates	a
shared	object	protected	by	the	lock.	The	write	allows	new	reader	threads	to
observe	the	new	version	of	the	object.

queueing	delay
The	time	a	task	waits	in	line	without	receiving	service.

quiescent
For	a	read-copy-update	lock,	no	reader	thread	that	was	active	at	the	time	of
the	last	modification	is	still	active.

race	condition
When	the	behavior	of	a	program	relies	on	the	interleaving	of	operations	of
different	threads.

RAID
A	Redundant	Array	of	Inexpensive	Disks	(RAID)	is	a	system	that	spreads
data	redundantly	across	multiple	disks	in	order	to	tolerate	individual	disk
failures.

RAID	1
See:	mirroring.

RAID	5
See:	rotating	parity.

RAID	6
See:	dual	redundancy	array.

RAID	strip
A	set	of	several	sequential	blocks	placed	on	one	disk	by	a	RAID	block
placement	algorithm.

RAID	stripe
A	set	of	RAID	strips	and	their	parity	strip.

R-CSCAN
A	variation	of	the	CSCAN	disk	scheduling	policy	in	which	the	disk	takes
into	account	rotation	time.

RCU
See:	read-copy-update.

read	disturb	error
Reading	a	flash	memory	cell	a	large	number	of	times	can	cause	the	data	in
surrounding	cells	to	become	corrupted.

read-copy-update
A	synchronization	abstraction	that	allows	concurrent	access	to	a	data
structure	by	multiple	readers	and	a	single	writer	at	a	time.	See	also:	RCU.

readers/writers	lock
A	lock	which	allows	multiple	“reader”	threads	to	access	shared	data
concurrently	provided	they	never	modify	the	shared	data,	but	still	provides
mutual	exclusion	whenever	a	“writer”	thread	is	reading	or	modifying	the
shared	data.

ready	list
The	set	of	threads	that	are	ready	to	be	run	but	which	are	not	currently
running.

running.
real-time	constraint

The	computation	must	be	completed	by	a	deadline	if	it	is	to	have	value.
recoverable	virtual	memory

The	abstraction	of	persistent	memory,	so	that	the	contents	of	a	memory
segment	can	be	restored	after	a	failure.

redo	logging
A	way	of	implementing	a	transaction	by	recording	in	a	log	the	set	of	writes
to	be	executed	when	the	transaction	commits.

relative	path
A	file	path	name	interpreted	as	beginning	with	the	process’s	current
working	directory.

reliability
A	property	of	a	system	that	does	exactly	what	it	is	designed	to	do.

request	parallelism
Parallel	execution	on	a	server	that	arises	from	multiple	concurrent	requests.

resident	attribute
In	NTFS,	an	attribute	record	whose	contents	are	stored	directly	in	the
master	file	table.

response	time
The	time	for	a	task	to	complete,	from	when	it	starts	until	it	is	done.

restart
The	resumption	of	a	process	from	a	checkpoint,	e.g.,	after	a	failure	or	for
debugging.

roll	back
The	outcome	of	a	transaction	where	none	of	its	updates	occur.

root	directory
The	top-level	directory	in	a	file	system.

root	inode
In	a	copy-on-write	file	system,	the	inode	table’s	inode:	the	disk	block
containing	the	metadata	needed	to	find	the	inode	table.

rotating	parity
A	system	for	redundantly	storing	data	on	disk	where	the	system	writes
several	blocks	of	data	across	several	disks,	protecting	those	blocks	with	one
redundant	block	stored	on	yet	another	disk.	See	also:	RAID	5.

rotational	latency
Once	the	disk	head	has	settled	on	the	right	track,	it	must	wait	for	the	target
sector	to	rotate	under	it.

round	robin
A	scheduling	policy	that	takes	turns	running	each	ready	task	for	a	limited

A	scheduling	policy	that	takes	turns	running	each	ready	task	for	a	limited
period	before	switching	to	the	next	task.

R-SCAN
A	variation	of	the	SCAN	disk	scheduling	policy	in	which	the	disk	takes	into
account	rotation	time.

safe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	regardless	of
the	sequence	of	future	resource	requests,	there	is	at	least	one	safe	sequence
of	decisions	as	to	when	to	satisfy	requests	such	that	all	pending	and	future
requests	are	met.

safety	property
A	constraint	on	program	behavior	such	that	it	never	computes	the	wrong
result.	Compare:	liveness	property.

sample	bias
A	measurement	error	that	occurs	when	some	members	of	a	group	are	less
likely	to	be	included	than	others,	and	where	those	members	differ	in	the
property	being	measured.

sandbox
A	context	for	executing	untrusted	code,	where	protection	for	the	rest	of	the
system	is	provided	in	software.

SCAN
A	disk	scheduling	policy	where	the	disk	arm	repeatedly	sweeps	from	the
inner	to	the	outer	tracks	and	back	again,	servicing	each	pending	request
whenever	the	disk	head	passes	that	track.

scheduler	activations
A	multiprocessor	scheduling	policy	where	each	application	is	informed	of
how	many	processors	it	has	been	assigned	and	whenever	the	assignment
changes.

scrubbing
A	technique	for	reducing	non-recoverable	RAID	errors	by	periodically
scanning	for	corrupted	disk	blocks	and	reconstructing	them	from	the	parity
block.

secondary	bottleneck
A	resource	with	relatively	low	contention,	due	to	a	large	amount	of
queueing	at	the	primary	bottleneck.	If	the	primary	bottleneck	is	improved,
the	secondary	bottleneck	will	have	much	higher	queueing	delay.

sector
The	minimum	amount	of	a	disk	that	can	be	independently	read	or	written.

sector	failure
A	magnetic	disk	error	where	data	on	one	or	more	individual	sectors	of	a

A	magnetic	disk	error	where	data	on	one	or	more	individual	sectors	of	a
disk	are	lost,	but	the	rest	of	the	disk	continues	to	operate	correctly.

sector	sparing
Transparently	hiding	a	faulty	disk	sector	by	remapping	it	to	a	nearby	spare
sector.

security
A	computer’s	operation	cannot	be	compromised	by	a	malicious	attacker.

security	enforcement
The	mechanism	the	operating	system	uses	to	ensure	that	only	permitted
actions	are	allowed.

security	policy
What	operations	are	permitted	—	who	is	allowed	to	access	what	data,	and
who	can	perform	what	operations.

seek
The	movement	of	the	disk	arm	to	re-position	it	over	a	specific	track	to
prepare	for	a	read	or	write.

segmentation
A	virtual	memory	mechanism	where	addresses	are	translated	by	table
lookup,	where	each	entry	in	the	table	is	to	a	variable-size	memory	region.

segmentation	fault
An	error	caused	when	a	process	attempts	to	access	memory	outside	of	one
of	its	valid	memory	regions.

segment-local	address
An	address	that	is	relative	to	the	current	memory	segment.

self-paging
A	resource	allocation	policy	for	allocating	page	frames	among	processes;
each	page	replacement	is	taken	from	a	page	frame	already	assigned	to	the
process	causing	the	page	fault.

semaphore
A	type	of	synchronization	variable	with	only	two	atomic	operations,	P()	and
V().	P	waits	for	the	value	of	the	semaphore	to	be	positive,	and	then
atomically	decrements	it.	V	atomically	increments	the	value,	and	if	any
threads	are	waiting	in	P,	triggers	the	completion	of	the	P	operation.

serializability
The	result	of	any	program	execution	is	equivalent	to	an	execution	in	which
requests	are	processed	one	at	a	time	in	some	sequential	order.

service	time
The	time	it	takes	to	complete	a	task	at	a	resource,	assuming	no	waiting.

set	associative	cache
The	cache	is	partitioned	into	sets	of	entries.	Each	memory	location	can	only

The	cache	is	partitioned	into	sets	of	entries.	Each	memory	location	can	only
be	stored	in	its	assigned	set,	by	it	can	be	stored	in	any	cache	entry	in	that
set.	On	a	lookup,	the	system	needs	to	check	the	address	against	all	the
entries	in	its	set	to	determine	if	there	is	a	cache	hit.

settle
The	fine-grained	re-positioning	of	a	disk	head	after	moving	to	a	new	track
before	the	disk	head	is	ready	to	read	or	write	a	sector	of	the	new	track.

shadow	page	table
A	page	table	for	a	process	inside	a	virtual	machine,	formed	by	constructing
the	composition	of	the	page	table	maintained	by	the	guest	operating	system
and	the	page	table	maintained	by	the	host	operating	system.

shared	object
An	object	(a	data	structure	and	its	associated	code)	that	can	be	accessed
safely	by	multiple	concurrent	threads.

shell
A	job	control	system	implemented	as	a	user-level	process.	When	a	user
types	a	command	to	the	shell,	it	creates	a	process	to	run	the	command.

shortest	job	first
A	scheduling	policy	that	performs	the	task	with	the	least	remaining	time	left
to	finish.

shortest	positioning	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	can	be
handled	in	the	minimum	amount	of	time.	See	also:	SPTF.

shortest	seek	time	first
A	disk	scheduling	policy	that	services	whichever	pending	request	is	on	the
nearest	track.	Equivalent	to	shortest	positioning	time	first	if	rotational
positioning	is	not	considered.	See	also:	SSTF.

SIMD	(single	instruction	multiple	data)	programming
See	data	parallel	programming

simultaneous	multithreading
A	hardware	technique	where	each	processor	simulates	two	(or	more)	virtual
processors,	alternating	between	them	on	a	cycle-by-cycle	basis.	See	also:
hyperthreading.

single-threaded	program
A	program	written	in	a	traditional	way,	with	one	logical	sequence	of	steps
as	each	instruction	follows	the	previous	one.	Compare:	multithreaded
program.

slip	sparing
When	remapping	a	faulty	disk	sector,	remapping	the	entire	sequence	of	disk
sectors	between	the	faulty	sector	and	the	spare	sector	by	one	slot	to

sectors	between	the	faulty	sector	and	the	spare	sector	by	one	slot	to
preserve	sequential	access	performance.

soft	link
A	directory	entry	that	maps	one	file	or	directory	name	to	another.	See	also:
symbolic	link.

software	transactional	memory	(STM)
A	system	for	general-purpose	transactions	for	in-memory	data	structures.

software-loaded	TLB
A	hardware	TLB	whose	entries	are	installed	by	software,	rather	than
hardware,	on	a	TLB	miss.

solid	state	storage
A	persistent	storage	device	with	no	moving	parts;	it	stores	data	using
electrical	circuits.

space	sharing
A	multiprocessor	allocation	policy	that	assigns	different	processors	to
different	tasks.

spatial	locality
Programs	tend	to	reference	instructions	and	data	near	those	that	have	been
recently	accessed.

spindle
The	axle	of	rotation	of	the	spinning	disk	platters	making	up	a	disk.

spinlock
A	lock	where	a	thread	waiting	for	a	BUSY	lock	“spins”	in	a	tight	loop	until
some	other	thread	makes	it	FREE.

SPTF
See:	shortest	positioning	time	first.

SSTF
See:	shortest	seek	time	first.

stable	property
A	property	of	a	program,	such	that	once	the	property	becomes	true	in	some
execution	of	the	program,	it	will	stay	true	for	the	remainder	of	the
execution.

stable	storage
See:	non-volatile	storage.

stable	system
A	queueing	system	where	the	arrival	rate	matches	the	departure	rate.

stack	frame
A	data	structure	stored	on	the	stack	with	storage	for	one	invocation	of	a
procedure:	the	local	variables	used	by	the	procedure,	the	parameters	the
procedure	was	called	with,	and	the	return	address	to	jump	to	when	the

procedure	was	called	with,	and	the	return	address	to	jump	to	when	the
procedure	completes.

staged	architecture
A	staged	architecture	divides	a	system	into	multiple	subsystems	or	stages,
where	each	stage	includes	some	state	private	to	the	stage	and	a	set	of	one	or
more	worker	threads	that	operate	on	that	state.

starvation
The	lack	of	progress	for	one	task,	due	to	resources	given	to	higher	priority
tasks.

state	variable
Member	variable	of	a	shared	object.

STM
See:	software	transactional	memory	(STM).

structured	synchronization
A	design	pattern	for	writing	correct	concurrent	programs,	where	concurrent
code	uses	a	set	of	standard	synchronization	primitives	to	control	access	to
shared	state,	and	where	all	routines	to	access	the	same	shared	state	are
localized	to	the	same	logical	module.

superpage
A	set	of	contiguous	pages	in	physical	memory	that	map	a	contiguous	region
of	virtual	memory,	where	the	pages	are	aligned	so	that	they	share	the	same
high-order	(superpage)	address.

surface
One	side	of	a	disk	platter.

surface	transfer	time
The	time	to	transfer	one	or	more	sequential	sectors	from	(or	to)	a	surface
once	the	disk	head	begins	reading	(or	writing)	the	first	sector.

swapping
Evicting	an	entire	process	from	physical	memory.

symbolic	link
See:	soft	link.

synchronization	barrier
A	synchronization	primitive	where	n	threads	operating	in	parallel	check	in
to	the	barrier	when	their	work	is	completed.	No	thread	returns	from	the
barrier	until	all	n	check	in.

synchronization	variable
A	data	structure	used	for	coordinating	concurrent	access	to	shared	state.

system	availability
The	probability	that	a	system	will	be	available	at	any	given	time.

system	call
A	procedure	provided	by	the	kernel	that	can	be	called	from	user	level.

system	reliability
The	probability	that	a	system	will	continue	to	be	reliable	for	some	specified
period	of	time.

tagged	command	queueing
A	disk	interface	that	allows	the	operating	system	to	issue	multiple
concurrent	requests	to	the	disk.	Requests	are	processed	and	acknowledged
out	of	order.	See	also:	native	command	queueing.	See	also:	NCQ.

tagged	TLB
A	translation	lookaside	buffer	whose	entries	contain	a	process	ID;	only
entries	for	the	currently	running	process	are	used	during	translation.	This
allows	TLB	entries	for	a	process	to	remain	in	the	TLB	when	the	process	is
switched	out.

task
A	user	request.

TCB
See:	thread	control	block.

TCQ
See:	tagged	command	queueing.

temporal	locality
Programs	tend	to	reference	the	same	instructions	and	data	that	they	had
recently	accessed.

test	and	test-and-set
An	implementation	of	a	spinlock	where	the	waiting	processor	waits	until
the	lock	is	FREE	before	attempting	to	acquire	it.

thrashing
When	a	cache	is	too	small	to	hold	its	working	set.	In	this	case,	most
references	are	cache	misses,	yet	those	misses	evict	data	that	will	be	used	in
the	near	future.

thread
A	single	execution	sequence	that	represents	a	separately	schedulable	task.

thread	context	switch
Suspend	execution	of	a	currently	running	thread	and	resume	execution	of
some	other	thread.

thread	control	block
The	operating	system	data	structure	containing	the	current	state	of	a	thread.
See	also:	TCB.

thread	scheduler
Software	that	maps	threads	to	processors	by	switching	between	running

Software	that	maps	threads	to	processors	by	switching	between	running
threads	and	threads	that	are	ready	but	not	running.

thread-safe	bounded	queue
A	bounded	queue	that	is	safe	to	call	from	multiple	concurrent	threads.

throughput
The	rate	at	which	a	group	of	tasks	are	completed.

time	of	check	vs.	time	of	use	attack
A	security	vulnerability	arising	when	an	application	can	modify	the	user
memory	holding	a	system	call	parameter	(such	as	a	file	name),	after	the
kernel	checks	the	validity	of	the	parameter,	but	before	the	parameter	is	used
in	the	actual	implementation	of	the	routine.	Often	abbreviated	TOCTOU.

time	quantum
The	length	of	time	that	a	task	is	scheduled	before	being	preempted.

timer	interrupt
A	hardware	processor	interrupt	that	signifies	a	period	of	elapsed	real	time.

time-sharing	operating	system
An	operating	system	designed	to	support	interactive	use	of	the	computer.

TLB
See:	translation	lookaside	buffer.

TLB	flush
An	operation	to	remove	invalid	entries	from	a	TLB,	e.g.,	after	a	process
context	switch.

TLB	hit
A	TLB	lookup	that	succeeds	at	finding	a	valid	address	translation.

TLB	miss
A	TLB	lookup	that	fails	because	the	TLB	does	not	contain	a	valid
translation	for	that	virtual	address.

TLB	shootdown
A	request	to	another	processor	to	remove	a	newly	invalid	TLB	entry.

TOCTOU
See:	time	of	check	vs.	time	of	use	attack.

track
A	circle	of	sectors	on	a	disk	surface.

track	buffer
Memory	in	the	disk	controller	to	buffer	the	contents	of	the	current	track
even	though	those	sectors	have	not	yet	been	requested	by	the	operating
system.

track	skewing
A	staggered	alignment	of	disk	sectors	to	allow	sequential	reading	of	sectors
on	adjacent	tracks.

on	adjacent	tracks.
transaction

A	group	of	operations	that	are	applied	persistently,	atomically	as	a	group	or
not	at	all,	and	independently	of	other	transactions.

translation	lookaside	buffer
A	small	hardware	table	containing	the	results	of	recent	address	translations.
See	also:	TLB.

trap
A	synchronous	transfer	of	control	from	a	user-level	process	to	a	kernel-
mode	handler.	Traps	can	be	caused	by	processor	exceptions,	memory
protection	errors,	or	system	calls.

triple	indirect	block
A	storage	block	containing	pointers	to	double	indirect	blocks.

two-phase	locking
A	strategy	for	acquiring	locks	needed	by	a	multi-operation	request,	where
no	lock	can	be	released	before	all	required	locks	have	been	acquired.

uberblock
In	ZFS,	the	root	of	the	ZFS	storage	system.

UNIX	exec
A	system	call	on	UNIX	that	causes	the	current	process	to	bring	a	new
executable	image	into	memory	and	start	it	running.

UNIX	fork
A	system	call	on	UNIX	that	creates	a	new	process	as	a	complete	copy	of
the	parent	process.

UNIX	pipe
A	two-way	byte	stream	communication	channel	between	UNIX	processes.

UNIX	signal
An	asynchronous	notification	to	a	running	process.

UNIX	stdin
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	input.

UNIX	stdout
A	file	descriptor	set	up	automatically	for	a	new	process	to	use	as	its	output.

UNIX	wait
A	system	call	that	pauses	until	a	child	process	finishes.

unsafe	state
In	the	context	of	deadlock,	a	state	of	an	execution	such	that	there	is	at	least
one	sequence	of	future	resource	requests	that	leads	to	deadlock	no	matter
what	processing	order	is	tried.

upcall
An	event,	interrupt,	or	exception	delivered	by	the	kernel	to	a	user-level

An	event,	interrupt,	or	exception	delivered	by	the	kernel	to	a	user-level
process.

use	bit
A	status	bit	in	a	page	table	entry	recording	whether	the	page	has	been
recently	referenced.

user-level	memory	management
The	kernel	assigns	each	process	a	set	of	page	frames,	but	how	the	process
uses	its	assigned	memory	is	left	up	to	the	application.

user-level	page	handler
An	application-specific	upcall	routine	invoked	by	the	kernel	on	a	page	fault.

user-level	thread
A	type	of	application	thread	where	the	thread	is	created,	runs,	and	finishes
without	calls	into	the	operating	system	kernel.

user-mode	operation
The	processor	operates	in	a	restricted	mode	that	limits	the	capabilities	of	the
executing	process.	Compare:	kernel-mode	operation.

utilization
The	fraction	of	time	a	resource	is	busy.

virtual	address
An	address	that	must	be	translated	to	produce	an	address	in	physical
memory.

virtual	machine
An	execution	context	provided	by	an	operating	system	that	mimics	a
physical	machine,	e.g.,	to	run	an	operating	system	as	an	application	on	top
of	another	operating	system.

virtual	machine	honeypot
A	virtual	machine	constructed	for	the	purpose	of	executing	suspect	code	in
a	safe	environment.

virtual	machine	monitor
See:	host	operating	system.

virtual	memory
The	illusion	of	a	nearly	infinite	amount	of	physical	memory,	provided	by
demand	paging	of	virtual	addresses.

virtualization
Provide	an	application	with	the	illusion	of	resources	that	are	not	physically
present.

virtually	addressed	cache
A	processor	cache	which	is	accessed	using	virtual,	rather	than	physical,
memory	addresses.

volume
A	collection	of	physical	storage	blocks	that	form	a	logical	storage	device
(e.g.,	a	logical	disk).

wait	while	holding
A	necessary	condition	for	deadlock	to	occur:	a	thread	holds	one	resource
while	waiting	for	another.

wait-free	data	structures
Concurrent	data	structure	that	guarantees	progress	for	every	thread:	every
method	finishes	in	a	finite	number	of	steps,	regardless	of	the	state	of	other
threads	executing	in	the	data	structure.

waiting	list
The	set	of	threads	that	are	waiting	for	a	synchronization	event	or	timer
expiration	to	occur	before	becoming	eligible	to	be	run.

wear	leveling
A	flash	memory	management	policy	that	moves	logical	pages	around	the
device	to	ensure	that	each	physical	page	is	written/erased	approximately	the
same	number	of	times.

web	proxy	cache
A	cache	of	frequently	accessed	web	pages	to	speed	web	access	and	reduce
network	traffic.

work-conserving	scheduling	policy
A	policy	that	never	leaves	the	processor	idle	if	there	is	work	to	do.

working	set
The	set	of	memory	locations	that	a	program	has	referenced	in	the	recent
past.

workload
A	set	of	tasks	for	some	system	to	perform,	along	with	when	each	task
arrives	and	how	long	each	task	takes	to	complete.

wound	wait
An	approach	to	deadlock	recovery	that	ensures	progress	by	aborting	the
most	recent	transaction	in	any	deadlock.

write	acceleration
Data	to	be	stored	on	disk	is	first	written	to	the	disk’s	buffer	memory.	The
write	is	then	acknowledged	and	completed	in	the	background.

write-back	cache
A	cache	where	updates	can	be	stored	in	the	cache	and	only	sent	to	memory
when	the	cache	runs	out	of	space.

write-through	cache
A	cache	where	updates	are	sent	immediately	to	memory.

zero-copy	I/O
A	technique	for	transferring	data	across	the	kernel-user	boundary	without	a
memory-to-memory	copy,	e.g.,	by	manipulating	page	table	entries.

zero-on-reference
A	method	for	clearing	memory	only	if	the	memory	is	used,	rather	than	in
advance.	If	the	first	access	to	memory	triggers	a	trap	to	the	kernel,	the
kernel	can	zero	the	memory	and	then	resume.

Zipf	distribution
The	relative	frequency	of	an	event	is	inversely	proportional	to	its	position	in
a	rank	order	of	popularity.

About	the	Authors

Thomas	Anderson	holds	the	Warren	Francis	and	Wilma	Kolm	Bradley	Chair	of
Computer	Science	and	Engineering	at	the	University	of	Washington,	where	he
has	been	teaching	computer	science	since	1997.

Professor	Anderson	has	been	widely	recognized	for	his	work,	receiving	the
Diane	S.	McEntyre	Award	for	Excellence	in	Teaching,	the	USENIX	Lifetime
Achievement	Award,	the	IEEE	Koji	Kobayashi	Computers	and	Communications
Award,	the	ACM	SIGOPS	Mark	Weiser	Award,	the	USENIX	Software	Tools
User	Group	Award,	the	IEEE	Communications	Society	William	R.	Bennett
Prize,	the	NSF	Presidential	Faculty	Fellowship,	and	the	Alfred	P.	Sloan
Research	Fellowship.	He	is	an	ACM	Fellow.	He	has	served	as	program	co-chair
of	the	ACM	SIGCOMM	Conference	and	program	chair	of	the	ACM	Symposium
on	Operating	Systems	Principles	(SOSP).	In	2003,	he	helped	co-found	the
USENIX/ACM	Symposium	on	Networked	Systems	Design	and	Implementation
(NSDI).

Professor	Anderson’s	research	interests	span	all	aspects	of	building	practical,
robust,	and	efficient	computer	systems,	including	operating	systems,	distributed
systems,	computer	networks,	multiprocessors,	and	computer	security.	Over	his
career,	he	has	authored	or	co-authored	over	one	hundred	peer-reviewed	papers;
nineteen	of	his	papers	have	won	best	paper	awards.

Michael	Dahlin	is	a	Principal	Engineer	at	Google.	Prior	to	that,	from	1996	to
2014,	he	was	a	Professor	of	Computer	Science	at	the	University	of	Texas	in
Austin,	where	he	taught	operating	systems	and	other	subjects	and	where	he	was
awarded	the	College	of	Natural	Sciences	Teaching	Excellence	Award.

Professor	Dahlin’s	research	interests	include	Internet-and	large-scale	services,
fault	tolerance,	security,	operating	systems,	distributed	systems,	and	storage
systems.

Professor	Dahlin’s	work	has	been	widely	recognized.	Over	his	career,	he	has
authored	over	seventy	peer	reviewed	papers;	ten	of	which	have	won	best	paper

authored	over	seventy	peer	reviewed	papers;	ten	of	which	have	won	best	paper
awards.	He	is	both	an	ACM	Fellow	and	an	IEEE	Fellow,	and	he	has	received	an
Alfred	P.	Sloan	Research	Fellowship	and	an	NSF	CAREER	award.	He	has
served	as	the	program	chair	of	the	ACM	Symposium	on	Operating	Systems
Principles	(SOSP),	co-chair	of	the	USENIX/ACM	Symposium	on	Networked
Systems	Design	and	Implementation	(NSDI),	and	co-chair	of	the	International
World	Wide	Web	conference	(WWW).

	Contents
	Preface
	1 Introduction
	2 The Kernel Abstraction
	3 The Programming Interface
	References
	Glossary
	About the Authors

