

Android	Developer	Tools
Essentials

Mike	Wolfson

Beijing	•	Cambridge	•	Farnham	•	Köln	•	Sebastopol	•	Tokyo

Special	Upgrade	Offer

If	you	purchased	this	ebook	directly	from	oreilly.com,	you	have	the	following
benefits:

DRM-free	ebooks—use	your	ebooks	across	devices	without	restrictions	or
limitations

Multiple	formats—use	on	your	laptop,	tablet,	or	phone

Lifetime	access,	with	free	updates

Dropbox	syncing—your	files,	anywhere

If	you	purchased	this	ebook	from	another	retailer,	you	can	upgrade	your	ebook	to
take	advantage	of	all	these	benefits	for	just	$4.99.	Click	here	to	access	your
ebook	upgrade.
Please	note	that	upgrade	offers	are	not	available	from	sample	content.

http://oreilly.com

Preface

If	you	are	reading	this	book,	it’s	likely	that	you	already	know	a	little	about
Android	development	and	how	challenging	it	can	be.	Learning	to	effectively	use
the	standard	Android	Developer	Tools	(ADT)	can	make	the	development	process
easier	and	improve	the	quality	of	your	code,	thereby	producing	a	more	refined
and	robust	end	product.

Requirements	for	Android	Developer	Tools
Android	is	very	different	from	other	mobile	platforms	currently	available.	It	is
not	managed	by	a	single	organization,	but	by	a	group	of	companies	named	the
“Open	Handset	Alliance,”	which	is	committed	to	providing	a	mobile	OS	that	is
free,	complete,	and	open	source.	While	this	approach	ensures	decentralized
control	of	the	platform,	it	does	create	some	complexities.	These	include:

Multiple	screen	sizes
Android	devices	come	in	a	multitude	of	different	screen	sizes.	Success	of
your	app	can	hinge	upon	how	your	app	looks	across	devices.

Fragmentation
It	is	up	to	the	carrier	and	manufacturer	to	update	their	devices	when	a	new
version	of	the	OS	and	runtime	are	released,	which	doesn’t	always	happen	in
a	timely	manner.	It	is	therefore	necessary	to	support	older	versions	of	the	OS
and	runtime.

Different	hardware	capabilities
Android	phones	come	in	all	shapes,	sizes,	and	capabilities.	It	is	necessary	to
ensure	that	you	degrade	unsupported	features	gracefully	when	the	hardware
is	limited.	Another	important	consideration	is	the	particular	hardware
components	on	which	you	can	or	cannot	rely	(for	instance,	some	devices

don’t	have	cameras,	GPS	sensors,	or	keyboards).

Resource	limitations
Developing	applications	targeted	to	the	mobile	environment	is	different	from
developing	for	the	desktop.	CPU	speed	and	memory	are	limited	compared	to
desktops	or	servers.	Mobile	device	users	don’t	put	up	with	apps	that	tie	up
their	devices	(blocking	the	UI),	consume	too	many	resources,	or	crash	their
devices.

Development	Process	for	Android	Developer
Tools
Google	manages	ADT	development,	as	well	as	the	standard	Android	platform.
However,	the	two	products	are	managed	very	differently,	particularly	in	regards
to	the	open-source	nature	of	the	products.	The	ADT	project	is	developed	by	a
different	group	from	the	one	that	manages	the	main	platform.	The	tools	are
released	separately	from	the	standard	SDK	and	follow	their	own	release	cycle,
which	is	frequently	(but	not	always)	tied	to	the	platform	release.

The	standard	OS	is	developed	behind	closed	doors—contributions	are	not
accepted	to	the	current	code	base.	The	source	code	is	released	to	the	public	at
some	point	after	the	group	releases	it	to	manufacturers	and	other	insiders.

The	first	line	on	the	ADT	website	makes	it	clear	that	this	project	is	different.	It
reads:	“The	Developer	Tools	for	Android	are	being	developed	entirely	in	the
open	and	[the	project]	is	accepting	contributions.”	ADT	is	developed	as	a	series
of	open	source	projects	with	publicly	accessible	Git	repositories	and	a	public	bug
tracker.	The	management	group	solicits	contributions	from	the	community	and
considers	them	for	implementation	in	current	releases.	You	can	find	information
on	how	to	contribute	on	their	website.

Development	on	a	Variety	of	OS	Platforms
Just	as	Android	is	designed	to	run	on	many	different	devices,	it	is	also	possible
to	use	many	different	computer	configurations	when	developing	Android
applications.	This	book	provides	examples	based	on	the	Windows	7	64-bit	OS

http://tools.android.com/
https://android.googlesource.com/
http://b.android.com
http://tools.android.com

and	Mac	OS	X,	using	the	Eclipse	Integrated	Development	Environment	(IDE).
One	chapter	introduces	the	new	Gradle-based	Android	Studio.	But	you	should	be
able	to	follow	along	with	any	OS	and	IDE,	as	the	tools	have	been	ported	to	work
on	a	large	variety	of	platforms.	It	is	also	worth	noting	that	it	is	possible	to
develop	for	the	Android	platform	without	using	an	IDE	at	all,	as	most	of	the
tools	can	be	run	directly	from	the	command	line.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	data	types,	and	XML	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	icon	signifies	a	tip,	suggestion,	or	general	note.

WARNING
This	icon	indicates	a	warning	or	caution.

Using	Code	Examples
This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	this	book	includes
code	examples,	you	may	use	the	code	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Android	Developer	Tools
Essentials	by	Mike	Wolfson	(O’Reilly).	Copyright	2013	Mike	Wolfson,	978-1-
449-32821-4.”

Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	https://github.com/mwolfson/ToolsDemo.

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

Safari®	Books	Online
Safari	Books	Online	(www.safaribooksonline.com)	is	an	on-demand	digital
library	that	delivers	expert	content	in	both	book	and	video	form	from	the	world’s
leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and
creative	professionals	use	Safari	Books	Online	as	their	primary	resource	for
research,	problem	solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	product	mixes	and	pricing	programs	for
organizations,	government	agencies,	and	individuals.	Subscribers	have	access	to
thousands	of	books,	training	videos,	and	prepublication	manuscripts	in	one	fully
searchable	database	from	publishers	like	O’Reilly	Media,	Prentice	Hall
Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan

https://github.com/mwolfson/ToolsDemo
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,
New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	dozens
more.	For	more	information	about	Safari	Books	Online,	please	visit	us	online.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at
http://oreil.ly/Android_Essentials.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
Special	thanks	to	my	wife	Dana.	Without	your	support	and	encouragement,	this
book	(and	many	other	things	in	my	life)	wouldn’t	be	possible.	I	love	you	and
appreciate	everything	you	do	for	me.

Thanks	to	the	tech	reviewers	who	stuck	with	me	and	provided	great	feedback
throughout	the	long	writing	process:	Jason	Douglas,	Maija	Mednieks,	Charlie
Meyersohn,	and	especially	Peter	Van	Der	Linden,	whose	thorough	review	and

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Android_Essentials
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

excellent	comments	improved	the	quality	of	the	book	and	made	my	job	much
easier.	I	couldn’t	have	done	it	without	you.

Thanks	to	Donn	Felker	for	your	last-minute	help	on	Android	Studio.	Your
content	really	improves	the	quality	of	this	book.	Looking	forward	to	shipping
more	products	together!

Shout-out	to	Heatsync	Labs	in	Mesa,	AZ	and	CO+HOOTS	in	Phoenix,	AZ	for
providing	spaces	that	foster	creativity.

Chapter	1.	Getting	Started

It’s	fairly	easy	to	set	up	the	Android	developer	environment.	The	steps	are
basically	the	same	for	all	supported	platforms	(with	small	variations	on	each
OS).	I’ll	describe	them	in	detail	so	you	can	be	sure	you	have	everything
configured	correctly.

WARNING
Installation	instructions	might	change	over	time.	These	basic	steps	are	consistent	with	the	latest
release.	However,	they	might	change,	so	you	should	always	check	the	online	documentation	to
make	sure	you	are	installing	and	using	the	most	up-to-date	version.

The	basic	steps	are:

1.	 Make	sure	your	computer	meets	minimum	requirements.

2.	 Install	the	Java	Development	Kit	(JDK).

3.	 Install	the	Android	SDK.

4.	 Install	the	Eclipse	Integrated	Development	Environment	(IDE).

5.	 Install	the	Android	Developer	Tools	(ADT)	plug-in	for	Eclipse.

Minimum	Requirements
To	develop	for	Android,	you’ll	need	a	reasonably	responsive	computer.	You	will
likely	be	running	a	few	memory-intensive	processes	(including	emulators)	and
IO-intensive	things	(such	as	building	your	code	or	packaging	a	release	artifact).
The	published	base	requirements	for	Android	make	it	possible	to	develop	on	a
variety	of	very	low-powered	devices	(such	as	netbooks),	but	for	practical
purposes	I	suggest	using	a	development	environment	with	more	widely	available

http://bit.ly/XUepi1

resources.	Guidelines	for	practical	minimum	requirements	are	listed	in	Table	1-
1.

Table	1-1.	Practical	minimum	hardware	requirements

	 Windows Linux Mac	OS	X
OS	Version Windows	XP	(32-bit) Ubuntu,	RedHat,	and	others OS	X	(10.4.9	+)

Hard	Disk	Space 25GB 25GB 25GB

System	Memory 3GB 2GB 4GB

Processor Dual	Core	+ Dual	Core	+ x86	Only

USB USB	2.0+ USB	2.0+ USB	2.0+

Installing	Java
The	Android	development	platform	is	built	on	the	standard	Java	framework.
Android	applications	are	built	on	top	of	the	Java	platform,	so	you	will	need	to
install	it	in	order	to	do	anything	with	Android.	Make	sure	you	get	the	Java
Developer	Kit	(JDK)	as	opposed	to	the	Java	Runtime	Environment	(JRE)	(which
may	already	be	installed	on	your	system).	The	JDK	has	the	compiler,	debugger,
and	other	tools	you	will	use	to	develop	software;	the	JRE	is	a	runtime	for
executing	those	tools.	Download	the	latest	version,	choosing	the	default	settings
(it	is	not	necessary	to	have	any	of	the	optional	packages	that	are	available).

TIP
Currently,	Android	is	designed	to	target	Java	version	1.6.	If	you	download	a	version	newer
than	this	(which	is	likely),	you	will	need	to	set	the	Java	Compiler	level	to	be	compliant	with
1.6.	In	Eclipse,	a	Java	Compiler	option	in	the	properties	of	your	Android	project	allows	you	to
set	this.

You	can	download	the	JDK	installation	packages	for	each	supported	OS	from	the
Java	download	site.

TIP
Optionally,	if	you	are	on	Linux,	you	can	use	a	package	manager	(such	as	apt	or	yum)	to
download	and	install	Java.	For	instance,	on	Ubuntu	or	Debian,	use	the	following	command:

http://bit.ly/TEA7iC

sudo apt-get install sun-java6-jdk

In	general,	Mac	OS	X	developers	aren’t	required	to	install	Java	manually.	On	the
Mac	OS,	Java	comes	preinstalled,	with	a	custom	packaged	version	directly	from
Apple.	Updating	to	newer	versions	of	Java	is	only	possible	when	Apple	releases
an	update	through	their	own	channels.	To	confirm	that	the	correct	version	of
Java	is	installed,	the	following	command	can	be	run	from	any	terminal	window
to	display	this	information:

java	-version

More	information	about	Java	on	Mac	OS	X	is	available	here:	Mac	OS	Java	site.

Installing	the	Android	Software	Development	Kit
The	Android	Software	Development	Kit	(SDK)	is	the	collection	of	libraries,
tools,	documentation,	and	samples	that	are	required	to	run	and	develop	Android
apps	and	to	use	the	tools.	It	is	not	a	complete	development	environment,	and
contains	only	the	base	tools	needed	to	download	the	rest	of	the	necessary
components.	Downloading	tools	and	components	will	be	discussed	in	detail	in
the	section	about	using	the	SDK	Manager.

In	order	to	get	started,	you	will	need	to	download	the	“ADT	Bundle.”	This	is	a
new	packaging	style	(as	of	ADT	version	21)	that	includes	all	the	components
required	to	develop	for	Android	packaged	as	a	single,	integrated	download.
Previous	to	this	release,	it	was	necessary	to	download	and	install	each	of	the
required	components	separately,	and	then	set	them	up	to	work	together.	This
manual	approach	is	more	error-prone,	but	is	still	supported,	particularly	if	you
wish	to	use	an	IDE	other	than	Eclipse.	The	manual	procedure	is	described	on	the
Android	Developers	web	page	titled	Setting	Up	an	Existing	IDE.	I	strongly
recommend	you	use	the	ADT	Bundle	to	install	the	tools.	It	streamlines	the
process,	minimizes	the	chances	of	error,	and	creates	a	standard	directory
structure	for	the	tools.	The	bundle	includes	each	of	these	components:

The	Eclipse	IDE,	including	the	ADT	plug-ins,	and	all	the	required	extensions

http://bit.ly/15U7ZkF
http://bit.ly/13LJtmy

The	SDK	Tools

The	Platform	Tools

The	latest	Android	Platform

A	CPU	image	compatible	with	the	latest	platform

Installing	the	ADT	Bundle
The	most	recent	release	of	the	tools	provides	a	convenient	single	package
containing	everything	necessary	to	develop	Android.	It	makes	installation	easy.

Downloading	the	ADT	bundle
On	the	main	page	of	the	SDK	site,	you	will	notice	a	button	to	download	the
package,	which	currently	looks	like	Figure	1-1.	This	link	will	automatically
download	the	version	for	the	OS	you	are	using.	Make	sure	you	have	good
Internet	connectivity	(it	is	a	large	download—at	the	time	of	this	writing,	over
400MB).

http://bit.ly/XUepi1

Figure	1-1.	Downloading	the	ADT	Bundle

Extracting	the	tools	to	Android	Home
The	next	step	in	the	installation	is	to	extract	the	artifacts	to	an	appropriate
location	on	your	filesystem.	You	will	need	to	select	the	location	to	install	the
tools,	which	can	be	wherever	you	wish.	I	suggest	placing	this	directory	at	a	high
level	in	the	filesystem,	in	order	to	make	it	easier	to	reference,	locate,	and	back
up.	Here	are	some	suggestions:

If	you	are	on	a	single-user	machine	or	want	to	put	everything	in	a	common
location,	you	could	use	the	following	locations:

Windows:	C:\android

Linux	or	Mac	OS	X:	usrdev/android

It	is	common	and	perfectly	acceptable	to	put	Android	in	your	home	directory.
For	instance:

Windows:	C:\Users\youruserid\android

Mac	OS	X:	Usersyouruserid/android

Linux:	homeyouruserid/android

Unzip	the	downloaded	artifact	to	the	Android	folder
Use	the	appropriate	utility	(such	as	WinZip	on	Windows,	tar	on	Linux,	or	just
double-click	the	file	on	Mac	OS	X)	to	extract	the	Bundle	into	the	folder	you
chose	in	the	previous	step.	If	you	do	this	correctly,	you	should	see	the	android-
sdk	folder	in	the	Android	Home	folder	you	created	in	the	previous	section.	On
Windows,	this	is	C:\android\sdk,	and	on	Mac	OS	X	or	Linux,	it’s
usrdev/android/sdk.

Setting	your	PATH	variable
Next,	you	will	need	to	append	the	location	of	the	Android	executables	to	your
PATH	environment	variable.	This	is	not	strictly	required,	but	makes	it	much
easier	to	use	the	Android	tools	from	anywhere	on	your	system	(and	will	be
assumed	in	the	examples	in	this	book).	All	the	executables	we	want	to	use	from
the	command	line	can	be	found	in	the	platform-tools	and	the	tools	directories	in
your	Android	installation.

Setting	your	PATH	is	different	on	each	OS.	Instructions	about	how	to	do	this	can
be	found	on	the	help	pages	of	each	operating	system,	or	in	this	article,	which
contains	a	great	overview	of	how	to	set	and	use	PATH	and	other	environment
variables.

You	can	verify	that	your	path	is	set	correctly	by	opening	a	new	terminal	window
and	typing	android	at	the	command	prompt.	This	will	launch	the	SDK	Manager,
which	signifies	you	did	everything	correctly	and	that	you	have	successfully
installed	the	Android	SDK.	You	will	use	the	SDK	Manager	to	download
additional	components,	but	won’t	need	to	use	it	now,	since	the	ADT	Bundle
already	has	the	current	platform	included.

http://bit.ly/14smsVa

Validating	the	installation
To	validate	that	everything	was	installed	correctly,	launch	the	Eclipse	executable
by	clicking	on	or	running	${android.sdk}\eclipse\eclipse.	Eclipse	will	start,	and
prompt	you	to	enter	the	location	of	the	workspace.	This	is	the	location	where
your	project-specific	assets	(source	code,	images,	build	scripts,	and	so	on)	will
be	stored.	You	can	select	whatever	location	you	prefer,	or	just	use	the	default
value	supplied.	Eclipse	will	start,	and	you	will	see	a	customized	version	of	the
tool	(named	the	Android	Developer	Tools	–	ADT).	Congrats,	your	installation
was	successful.

Developing	Without	Eclipse
Although	it	is	recommended	that	you	use	an	IDE	to	help	in	the	development
process,	the	tools	provided	in	the	SDK	can	also	be	used	on	the	command	line	or
with	other	IDEs.	You	will	be	able	to	do	almost	anything	you	need	(including
compiling,	building	and	packaging	artifacts,	launching	emulators,	and	using	the
tools)	strictly	using	the	command	line	or	other	tools.

Command-Line	Usage
To	start	using	the	tools	from	the	command	prompt,	simply	start	a	terminal
window,	and	type	the	name	of	the	tool	you	want	to	start	at	the	command	prompt.
If	you	set	your	PATH	variable	properly	(according	to	the	instructions	in	Setting
your	PATH	variable),	you	will	be	able	to	execute	the	various	command	from
anywhere	on	your	filesystem.	Some	examples	of	command-line	usage	can	be
found	in	Android	Debug	Bridge	(ADB).	The	main	way	you	will	access	the	tools
is	through	Eclipse,	but	you	can	also	access	them	from	the	command	line.	This	is
useful	for	scripting	or	automation.	It	is	not	recommended	to	use	them
exclusively,	as	the	tools	integrated	into	Eclipse	are	excellent,	make	a	lot	of	tasks
simpler,	and	will	likely	make	your	coding	more	efficient.

TIP
Windows	users	can	use	Explorer	to	navigate	to	their	C:\android\sdk\tools	folder,	highlight	the
full	address,	and	simply	replace	it	with	cmd.	Press	Enter,	and	the	command	prompt	starts	at	the
location.

Using	a	Different	IDE
It	is	not	strictly	necessary	to	use	Eclipse	for	development.	Many	people	have	had
success	using	Netbeans	or	IntelliJ.	At	the	time	of	this	writing,	the	officially
supported	IDE	is	Eclipse,	which	is	the	tool	we	will	focus	on	for	this	book.	In
general,	I	suggest	using	the	officially	supported	tools.	This	will	ensure	that	you
are	able	to	get	the	latest	updates	and	are	using	the	most	stable	tool.	Another
important	reason	to	stick	with	the	suggested	tools	is	that	you	will	be	using	the
same	tools	as	a	majority	of	the	development	community,	so	bugs	you	come
across	will	likely	be	easier	to	fix	because	they’ll	be	encountered	by	a	larger
community	of	users.

The	open-source	nature	of	the	Tools	projects	means	that	they	are	designed	to	be
platform-and	tool-agnostic.	This	means	the	development	team	takes	care	to
ensure	the	tools	run	well	everywhere.	If	you	do	have	a	preference	for	other
development	tools,	you	most	likely	will	be	able	to	use	them	for	your	Android
projects.	There	are	robust	communities	supporting	various	platforms,	and	in
many	cases,	the	alternate	tools	do	things	better	than	Eclipse.

At	Google	I/O	2013,	the	Android	tools	team	announced	support	for	a	new	IDE
named	“Android	Studio”	(Chapter	6	describes	how	to	use	it).	This	looks	like	an
exciting	alternative	for	the	future.	However,	it	is	currently	a	very	early	release,
so	it	is	not	ready	for	production	usage.

The	NetBeans	IDE	also	supports	Android	development.	Information	about	using
this	can	be	found	on	the	Android	Plug-in	for	NetBeans	page	on	the	Kenai
website.

Configuring	a	Device	for	Development
The	simplest	way	to	test	your	applications	is	often	by	using	an	Android	device.
You	can	use	almost	any	Android	device	for	development,	as	long	as	you	make	a
few	changes	in	order	to	enable	communication	with	the	development	tools.

1.	 Configuring	a	Physical	Device	for	Development.

The	instructions	for	setting	up	your	device	to	be	used	as	a	development
device	are	covered	in	Configuring	a	Physical	Device	for	Development.

http://bit.ly/14cHF1f

2.	 Change	phone	settings.

Launch	the	Settings	app	on	your	phone,	then	select	Applications	→
Development	→	USB-Debugging.	Check	the	box	next	to	“USB
debugging”	to	enable	this	functionality.	The	result	should	look	like
Figure	1-2.

3.	 Download	the	ADB	driver.

In	order	to	connect	an	Android-powered	device	for	testing	on	Windows
machines,	it	is	necessary	to	install	the	appropriate	USB	driver.	This	is	not
necessary	on	Mac	OS	X	or	Linux.

You	can	find	drivers	at	the	website	of	the	manufacturer	of	your	phone.	You
may	be	able	to	find	a	driver	through	the	Android	Document	website,	which
contains	a	list	of	links	to	software	for	many	original	equipment
manufacturers	(OEMs).

4.	 Validate	debugging	on	the	phone.

Connect	your	device	to	your	computer.	If	everything	went	well,	you	will
see	a	notification	()	from	your	operating	system,	indicating	that	the	device
is	installed	and	ready	to	use.

You	will	also	notice	two	new	entries	in	the	notification	drawer	of	your
device	(shown	in	Figure	1-3).	These	will	show	that	you	are	successfully
connected.	You	can	select	them	to	launch	the	Settings	application.

http://bit.ly/18gFmi4

Figure	1-2.	Debugging	enabled	for	testing	apps	on	a	phone

Congratulations!	You	have	successfully	installed	everything	you	need	to	develop
and	test	Android	applications.

Figure	1-3.	Debugging	notification

Chapter	2.	Essential	Tools

This	chapter	describes	the	fundamental	tools	that	you	need	in	order	to	start
developing	Android	applications.	In	it,	I	will	show	you	how	to	use	the	SDK
Manager	to	download	various	development	resources,	and	discuss	using	the
command-line	tools	(in	particular	the	Android	Debug	Bridge	–	ADB).

SDK	Manager
The	SDK	Manager	is	a	GUI	tool	designed	to	make	it	easy	to	download	and
install	the	required	components.	It	is	likely	the	first	tool	you	will	encounter,	and
the	one	you	will	use	most	often.	The	SDK	Manager	allows	you	to	update	the
Android	SDK	and	install	additional	components.

SDK	Components
The	Android	SDK	has	a	modular	structure,	which	means	that	the	major
components	of	the	SDK	are	collected	into	separate	packages.	This	makes	it	easy
to	install	only	the	components	you	need	for	your	particular	unique	use	case.	The
packages	you	install	are	determined	by	the	version	of	the	OS	you	are	targeting,	if
you	use	third-party	services	(like	Google	Maps	or	Analytics),	and	if	you	plan	to
support	specific	hardware	(like	a	particular	chipset	or	a	dual	screen).	The
modular	structure	has	two	important	benefits.	The	first	is	that	disk	storage	is	not
wasted	on	downloading	unnecessary	components.	This	is	important	because
each	platform	requires	at	least	100MB	of	space,	and	this	can	grow	rapidly	when
optional	packages	are	included.	The	other	advantage	is	that	managing
dependencies	within	a	project	is	streamlined	because	it	is	possible	to	control
exactly	which	software	you	are	working	with,	and	install	only	the	components
you	require.

It	is	important	to	understand	the	various	components	that	are	available.	They	are
organized	into	categories:

SDK	Tools
These	include	the	various	utility	tools	you	will	use	to	develop	apps.	These
are	essential	tools	required	by	all	developers.	You	can	think	of	them	as	the
core	system	tools	of	the	platform.	These	include	android,	ddms,	apkbuilder,
and	emulator,	among	others.	You	can	find	these	in	the	android-sdk/tools
directory.

Platform	Tools
These	are	additional	tools	that	are	developed	alongside	the	core	platform,
and	are	typically	updated	in	concert	with	the	release	of	a	new	version	of	the
platform.	These	include	adb,	fastboot,	dx,	aidl,	and	others.	You	can	find	these
in	the	android-sdk/platform-tools	directory.

Android	Platform
An	SDK	platform	is	released	for	every	version	of	Android.	Each	release
includes	a	compliant	library,	system	image,	emulator	skins,	and	platform-
specific	tools.	Patches	and	point	releases	to	the	platform	are	also	located
here.

Google	APIs
The	additional	libraries	required	to	use	Google-specific	services	such	as
Google	Cloud	Messaging	or	Maps.

Drivers
This	contains	driver	files	that	allow	an	Android	device	to	communicate	with
a	computer.	USB	drivers	here	can	be	or	downloaded	from	here.

Samples	and	documentation
Here	you’ll	find	the	sample	code	and	documentation	for	each	platform
release.	This	includes	example	projects	containing	documented	code	that	can
and	should	be	used	when	designing	your	own	code.	As	with	the	SDK,	it	is
generally	a	good	idea	to	use	the	latest	release	because	updates	include	the
best	examples	with	the	least	bugs.

http://bit.ly/1ccVmY5

Third-party	add-ons
This	category	includes	tools	and	libraries	for	third-party	add-ons,	including
the	Android	support	package	and	the	Analytics	SDK.	This	also	includes
third-party	add-ons	such	as	a	Samsung	Galaxy	Tab	skin,	Motorola	SDK	add-
ons,	and	the	Nook	Color	SDK	add-ons.	You	can	also	find	customized,	fully
compliant	Android	system	images	representing	particular	devices.

Starting	the	SDK	Manager
The	SDK	Manager	can	be	launched	as	an	independent	application,	directly	from
the	OS	or	from	inside	Eclipse.	Follow	these	steps	depending	on	how	you	will	be
launching	the	SDK	Manager:

Windows
Start	→	All	Programs	→	Android	SDK	Tools	→	SDK	Manager

Linux/Mac	OS	X
Open	a	terminal,	and	run	android.

Eclipse	(all	platforms)
Look	for	the	 	icon	in	your	Eclipse	toolbar.	Click	on	it	to	launch	the	SDK
Manager.

On	all	platforms,	you	can	also	launch	directly	from	the	menu:	Window	→
Android	SDK	Manager.

The	SDK	Manager	GUI	launches,	as	shown	in	Figure	2-1.

Figure	2-1.	SDK	Manager

Viewing	Installed	and	Available	Components
After	launch,	the	SDK	Manager	will	present	a	list	of	all	the	packages	available
for	download	from	the	SDK	repository.	The	components	are	organized	into	those
defined	in	SDK	Components.	You	can	click	on	the	white	triangle	()	next	to	any
particular	platform	to	expand	the	tree	and	see	more	detail	about	the	compatible
resources	available.	Figure	2-1	shows	the	Android	4.2	and	4.1.2	sections
expanded	to	expose	more	details	about	the	compatible	downloads	available.	In
this	view,	you	will	see	additional	information	about	a	particular	package	(this	is
the	column	on	the	right).	This	includes	version	information	and	install	status.	If
there	is	a	newer	version	of	a	component	available,	it	will	appear	in	the	status
column.	In	Figure	2-1,	you	will	notice	that	there	is	an	update	available	for	the

Tools.

Selecting	packages
Next,	select	the	packages	you	want	to	download.	Place	a	checkmark	next	to	each
individual	component	that	interests	you,	or	select	every	package	in	a	release	by
marking	the	top-level	package.	After	you	have	selected	the	packages	you	want	to
download,	you	are	ready	to	proceed.	The	button	on	the	bottom	right	(marked
“Install	X	packages...”)	now	indicates	the	number	of	selected	packages.	Confirm
that	this	number	matches	what	you	expect,	as	it	is	common	to	have	packages
marked	for	download	that	you	didn’t	expect,	and	this	is	not	always	obvious
(especially	if	something	is	marked	in	a	platform	that	is	not	expanded).

TIP
The	various	packages	can	take	up	a	lot	of	space	on	your	computer	(for	instance,	each	of	the
core	platforms	are	around	100MB,	without	the	docs	or	samples).	It	is	important	to	decide
which	packages	you	want	to	support,	and	limit	your	downloads	to	those	that	are	important	to
you.	There	are	a	lot	of	things	to	consider	when	making	this	decision,	and	a	discussion	of	this	is
outside	the	scope	of	this	book.	This	discussion	covers	it	well,	and	is	recommended	reading.

Installing	packages
Click	the	Install	Packages	button	to	finalize	your	selections	and	start	the
installation	process.	You	are	then	prompted	to	accept	the	“Terms	Of	Service”	for
the	software	you	are	downloading.	Make	sure	to	click	the	Accept	All	button,	or
else	all	the	components	may	not	install.	After	you	have	accepted	them,	the
downloads	will	begin.

The	packages	are	downloaded	to	your	computer	and	automatically	stored	in	the
appropriate	folder	in	the	location	where	you	installed	Android	(see	Extracting
the	tools	to	Android	Home).	The	components	are	downloaded	into	the	following
subdirectories:

Platforms platforms/android-API_level

Add-ons add-ons

Samples samples/android-API_level

Documentation docs	(there	is	only	one	copy,	because	old	docs	are	replaced)

http://bit.ly/13THhp6

In	some	cases	(such	as	when	installing	device	drivers),	you	need	to	run	the
software	you	downloaded	to	complete	the	installation.	Other	components,
including	the	Platform	components,	are	automatically	installed	during	the
download	process	and	don’t	require	additional	installation	steps.

Deleting	and	updating	components
In	order	to	delete	a	package,	follow	the	same	process	as	you	did	when	you
installed	it.	Select	the	packages	to	delete,	and	then	click	the	Delete	Packages
button.	If	there	are	packages	that	need	to	be	updated,	select	them	and	click	the
Install	Packages	button.	Don’t	forget	to	confirm	that	the	number	of	packages
shown	on	the	button	is	correct,	so	you	don’t	accidentally	remove	something	you
need.

Managing	dependencies
For	the	most	part,	Android	developers	don’t	need	to	worry	about	package
dependencies	too	much.	For	the	most	part,	the	components	are	designed	to	run
independently	of	each	other.	As	long	as	you	are	extra	careful	and	double-check
which	packages	you	are	installing	or	removing,	you	shouldn’t	have	many
problems	managing	installed	components.	If	you	do	make	an	error,	you	now
know	how	easy	it	is	to	use	this	tool	to	manage	your	installed	components.

ADT	Preview	Channel
The	ADT	team	releases	new	code	frequently.	This	can	include	bug	fixes,	or
previews	of	new	features.	You	may	want	to	try	a	particular	release	if	it	has	a
particular	bug	fix	you	require	or	new	tools	that	you	would	like	to	try.	The	ability
to	download	and	install	a	preview	is	integrated	directly	into	the	SDK	Manager,
which	makes	switching	to	it	very	simple.	For	the	most	part,	you	should	use	the
officially	released	tools,	because	they	are	more	stable,	but	having	the	ability	to
switch	to	the	newest	tools	can	be	useful	in	some	situations.

Enable	the	Preview	Channel
The	Preview	Channel	is	not	enabled	by	default.	You	can	access	this	setting	(as
shown	in	Figure	2-2)	from	the	following	menu:	Tools	→	Options	→	Check
“Enable	Preview	Tools.”

Figure	2-2.	Enabling	the	Preview	Channel

Installing	Preview	Tools
After	enabling	this	option,	you	will	see	the	Preview	Channel	option,	shown	in
Figure	2-3,	appear	in	the	list	under	the	“Tools	(Preview	Channel)”	heading.	To
install	it,	select	it,	then	click	the	Install	Packages	button	to	use	that	version	of	the
tools.

Figure	2-3.	Verifying	that	the	Preview	Channel	is	enabled

Reverting	to	released	tools
If	you	would	like	to	revert	to	the	released	version,	simply	reinstall	that	version
by	selecting	it	and	then	clicking	the	Install	Packages	button	again.

Android	Debug	Bridge	(ADB)
ADB	is	the	main	tool	that	allows	you	to	interact	with	your	emulator	or	a
connected	device.	The	ADB	process	is	actually	a	client/server	program.	The
server	component	communicates	with	a	variety	of	clients	(such	as	the	command
line	or	DDMS).	The	daemon	process	on	the	device	facilitates	communication	of
activities	such	as:

Push/pull	of	data	or	apps

Issuing	shell	commands

Restarting	the	device

Reading	system	logs

Starting	ADB
Start	the	ADB	client	using	the	command	line.	To	start	the	process,	simply
execute	the	following	command:

adb

Querying	for	Device	Instances
The	ADB	server	automatically	connects	to	all	of	the	devices	or	emulators	that
are	currently	connected	to	your	computer.	If	you	have	only	one	device
connected,	it	will	automatically	connect	to	that	single	instance.	If	you	have	more
than	once	device	connected,	you	will	need	to	direct	commands	to	a	specific
instance.

Find	connected	devices
You	can	get	a	list	of	all	devices	that	ADB	is	able	to	communicate	with	by	issuing
the	following	command:

adb devices

The	response	will	include:

Serial	number
The	unique	ID	of	each	connected	device.	You	will	need	the	serial	number	to
connect	directly.	The	format	of	the	serial	number	includes	information	about
the	device	itself	(namely,	the	type	of	device	and	the	port	on	which	it	is
listening).

State
The	connection	state	of	the	device.	This	will	be	offline	if	the	device	is
connected	but	not	responding.	It	will	be	device	if	is	available	and	connected.
Otherwise,	the	response	will	be	no	devices,	which	indicates	there	are	no
active	devices	that	ADB	can	communicate	with	currently.

Directing	a	command	to	a	specific	device
Now	that	you	know	what	devices	are	on	your	system,	you	can	direct	a	command
to	a	specific	instance	by	issuing	the	following	command:

adb -s serialNumber

 command

The	example	below	shows	how	you	would	target	a	command	to	a	particular
device,	when	more	than	one	is	connected.	The	first	step	is	to	issue	the	devices
command	to	display	a	list	of	connected	devices.	The	list	shows	two	connected
devices:	the	first	is	a	physical	device,	and	the	second	is	an	emulator	(which	is
clear	from	the	name).	The	next	step	is	to	use	the	-s	option	to	target	the	preferred
device.	In	this	example,	we	are	using	ADB	to	find	the	ADB	version	number	of
the	attached	emulator.

$ adb devices

List of devices attached

emulator-5556 device

emulator-5554 device

$ adb -s emulator-5556 version

Android Debug Bridge version 1.0.31

$

TIP
If	there	is	only	one	device	connected,	ADB	automatically	defaults	to	use	that	instance.	I
usually	keep	only	one	device	connected	at	a	time.	This	makes	issuing	ADB	commands	simpler
because	I	don’t	need	to	specify	a	device	argument	anymore	(ADB	will	default	to	the	only
running	device).	For	example,	you	can	eliminate	the	targeting	step	during	the	deploy	cycle,
which	speeds	up	this	common	task.

Issuing	Commands
Now	that	ADB	knows	which	device	to	target,	we	can	interact	with	it.	It	is
possible	to	do	a	variety	of	useful	things	with	this	interface.	Let’s	walk	through	a
few	examples:

Transferring	files

It	is	very	easy	to	transfer	files	between	your	computer	and	your	device	using	the
push	and	pull	commands.	push	goes	from	your	computer	to	the	device,	whereas
pull	does	the	opposite.	You	can	include	additional	path	parameters	if	you	would
like	to	specify	a	particular	location	for	the	files.	If	a	path	is	not	specified,	the
commands	will	use	the	current	directory	of	your	computer	for	the	local	location
and	the	data	folder	on	the	device	for	the	remote	location.	push	and	pull	can	also
copy	complete	directories	(recursively),	which	can	be	very	useful.

The	syntax	of	push	is:

adb push local-directory

 remote

An	example	of	using	this	command	is	shown	here.	We	are	using	ADB	to	push	a
file	named	foo.txt	from	the	current	directory	to	the	SD	card.	The	syntax	for	this
is:

adb push foo.txt sdcardfoo.txt

To	move	the	file	off	the	SD	card	and	back	onto	your	machine,	in	a	new	directory
and	with	a	new	name,	type:

adb pull sdcardfoo.txt C:/tmp2/foo2.txt

This	looks	like	this,	when	executed	from	the	command	line:

$ adb push foo.txt sdcard

0 KB/s (8 bytes in 0.019s)

$ adb pull sdcardfoo.txt tmpfoo2/txt

1 KB/s (8 bytes in 0.004s)

$

Managing	applications	on	a	device
A	very	common	process	is	to	install	or	remove	applications	from	a	device.	This
is	easy	to	accomplish	using	ADB.	Simply	issue	the	install	command	and	supply
a	valid	APK	file.	This	installs	the	app	on	your	device.

The	syntax	of	the	command	is:

adb install foo.apk

The	syntax	is	similar	to	remove	an	app,	except	that	you	need	to	supply	the
package	name	instead	of	the	APK	filename	as	an	argument.

The	syntax	of	the	command	is:

adb uninstall com.example.masterd

$ adb install foo.apk

2134 KB/s (222527 bytes in 0.101s)

 pkg: datalocaltmpfoo.apk

Success

$ adb uninstall com.tools.demo

Success

$

The	Shell	Command
The	Android	Framework	is	built	upon	a	modified	Linux	kernel.	The	creators	of
Android	added	their	own	middleware,	libraries,	and	APIs	to	the	Linux	kernel	to
develop	the	framework.	This	means	that	it	includes	a	command-line	interface
that	will	look	familiar	to	Linux	users.	The	shell	interface	will	have	many	of	the
same	tools	developers	are	used	to,	but	not	all	of	them.	Additionally,	the	tools
themselves	may	be	different,	and	likely	won’t	support	every	operation	you
expect.	For	instance,	the	ls	-l	command	works,	but	ls	-x	does	not.

The	binaries	for	the	included	tools	are	stored	on	the	device	in	the	systembin
folder.	I	suggest	you	look	in	that	folder	to	familiarize	yourself	with	the
commands	that	are	available.	Some	frequently	used	commands	that	are	not
available	include	more,	less,	cp,	and	file.	Some	common	tools	that	are	included
are	ls,	ps,	and	rm.	It	is	definitely	worth	reviewing	the	contents	of	the	systembin/
directory.	It	contains	not	just	the	standard	command-line	tools,	but	also	a	variety
of	additional	tools	designed	specifically	for	Android	development	(like	monkey,
logcat,	dumpstate,	etc.).	You	may	get	frustrated	by	the	limitations	of	the	Android
shell,	especially	if	you	are	used	to	the	more	feature-rich	options	available	in	full
Linux	distributions.	You	should	spend	some	time	learning	how	to	use	these	tools
effectively;	they	may	be	limited,	but	they	still	are	still	very	useful.

You	can	use	ADB	to	access	the	command	shell	of	a	device	directly.	You	can

issue	commands	as	one-line	executables,	or	interact	with	the	shell	interactively
by	issuing	a	series	of	commands.

Interactive	mode
Interactive	mode	allows	you	to	execute	more	than	one	command	successively	on
the	device.	To	start	interactive	shell	mode,	type:

adb shell

You	will	see	a	#	symbol,	which	indicates	that	you	are	in	shell	mode.	When	you
are	ready	to	exit	the	remote	shell,	you	can	use	Ctrl+D	or	type	exit	to	end	the
shell	session.

The	example	belows	shows	accessing	the	shell,	using	common	Linux	commands
to	navigate	the	directory	structure,	reading	the	contents	of	a	file,	and	finally,
exiting	the	shell	back	to	the	command	prompt.

$ adb shell

root@android:/ # pwd

root@android: # cd systemetc

root@android:systemetc # pwd

systemetc

root@android:systemetc # cat ./hosts

127.0.0.1 localhost

root@android:systemetc # exit

$

One-off	mode
It	is	also	possible	to	execute	commands	noninteractively.	To	do	this,	type	the
command	you	want	to	execute	after	the	shell	keyword.

adb shell command

The	next	example	shows	how	you	would	read	the	systemetc/hosts	file	by	issuing
a	single	command	that	executes,	but	does	not	maintain,	an	open	connection	to
the	remote	shell.

$ adb shell cat systemetc/hosts

127.0.0.1 localhost

$

Retrieving	system	data
There	are	many	cases	in	which	you	need	detailed	information	about	the	various
systems	on	your	device.	Some	useful	commands	can	dump	huge	amounts	of
information	about	the	system,	including	service	status,	system	statistics,	and
error	logs.	You	may	want	to	collect	these	statistics	if	you	are	trying	to	analyze
trends	or	specific	details	about	your	application.

adb	shell	dumpsys
Outputs	data	about	specific	system	services	to	the	screen.	For	example,	adb
shell	dumpsys	alarm	will	output	details	about	all	the	alarms	currently
registered	on	the	system.

adb	shell	dumpstate
Detailed	system	data	representing	a	device	at	a	particular	state	in	time
(includes	dumpsys	information	as	well).

adb	shell	dmesg
Outputs	the	contents	of	the	kernel’s	ring	buffer	to	the	screen.	This	output	is
quite	verbose,	and	contains	a	lot	of	key	information	from	the	system	kernel,
including	information	about	the	CPU,	memory,	OS	version,	system	mount
points,	and	lots	more.	It	can	be	useful,	especially	when	trying	to	debug
hardware	issues,	or	when	writing	software	that	interacts	directly	with	the
system	hardware.

adb	shell	logcat	-b	radio
This	command	provides	access	to	the	cellular	radio	log.	This	information	is
useful	when	interacting	with	the	networking	stack.	Some	of	the	information
available	in	this	log	includes	time	of	events,	a	listing	of	commands	used	by
the	system	to	communicate,	SMS	information,	IP	information,	and	cellular
network	data.

Using	the	Activity	Manager

Shell	access	allows	much	more	granular	access	to	the	device.	You	can	use	this	to
start	applications	or	even	single	activities	in	a	controlled	way.	This	can	be	very
useful	if	you	need	to	test	different	entry	points	to	an	application	that	may	be	hard
to	simulate	by	stepping	through	the	UI.	Use	the	Activity	Manager	to	launch	a
specific	screen	with	a	specific	set	of	Intent	parameters.

An	example	of	starting	an	activity	named	com.foo.FooActivity	directly	would	be:

adb shell am start -n com.foo/.FooActivity

In	Figure	2-4,	I	start	my	app	at	a	particular	activity	(MemDemoActivity),	which
is	not	the	activity	defined	in	the	manifest	as	the	main	launcher	activity.

adb shell am start com.tools.demo/.MemDemoActivity

Figure	2-4.	Activity	Manager	example

ADB	Does	a	Lot	More
The	ADB	tool	has	a	variety	of	additional	functionality	that	is	beyond	the	scope
of	this	book.	It	is	worth	becoming	familiar	with	these	additional	features,	as	they
provide	a	lot	of	useful	and	important	functionality.

Some	functionality	worth	highlighting	includes:

Modify	network	configuration	options	like	port	forwarding	(example:	adb
forward	tcp:7101	tcp:8101)

Access	your	device	as	the	root	user	(example:	adb	shell	su)

Restart	the	device	in	alternate	modes,	such	as	recovery	mode	(example:	adb
reboot	recovery)

View	system	logs,	such	as	the	radio	or	event	buffers	(example:	adb	logcat	-b
events)

Show	kernel	debug	info	(example:	adb	shell	dmesg)

Examine	system	utilization	(example:	adb	shell	tail	|	top)

There	is	a	lot	of	other	functionality	we	aren’t	able	to	cover.	For	a	complete	list	of
all	available	commands	and	their	parameters,	type	adb	-help	without	any
additional	arguments	to	get	a	listing	of	all	options.

Resetting	the	ADB	Server
There	will	be	times	when	ADB	loses	connectivity,	or	encounters	other	issues	that
require	resetting	the	process.	To	do	so,	stop	the	existing	ADB	process,	and	then
restart	it	by	issuing	the	following	two	commands	in	order:

1.	 adb kill-server

2.	 adb start-server

$ adb kill-server

$ adb start-server

 daemon not running. starting it now on port 5037

 daemon started successfully

$ adb devices

List of devices attached

emulator-5554 device

$

Additional	Resources
There	are	many	features	of	the	ADB	tool	that	I	am	not	able	to	cover	in	this
chapter.	If	you	would	like	to	learn	more	about	the	advanced	capabilities	of	this
tool,	there	are	a	few	excellent	resources.

Command	Reference
The	command	reference	on	the	official	Android	page	has	a	listing	of	all	the
commands	and	their	options.

XDA	Devs	ADB	Guide
The	XDA	Devs	website	has	a	very	complete	explanation	of	how	to	get
started	using	the	advanced	features	of	ADB,	and	is	targeted	towards	people
wanting	to	root	their	devices.

Embedded	Android	Book
This	book	by	Karim	Yaghmour	contains	in-depth	explanations	relating	to	the
internals	of	the	ADB	tool	and	using	it	to	control	embedded	environments.

http://bit.ly/1extzNM
http://bit.ly/13LJZko
http://bit.ly/embedded-android

Chapter	3.	Configuring	Devices
and	Emulators

When	developing	mobile	applications,	it	is	necessary	to	test	your	code	on	many
different	devices.	Because	there	is	such	a	large	variety	available	for	Android	(at
the	time	of	this	writing,	there	are	over	3,000	devices	supported	in	the	Google
Play	Store),	this	can	be	particularly	challenging.	It	is	necessary	to	test	your	app
to	ensure	it	runs	well	on	the	majority	of	devices;	you	also	need	to	test	out	a	few
different	screen	sizes.	You	may	also	need	to	account	for	different	hardware
capabilities,	including	OS	levels,	existence	of	sensors,	amount	of	memory,	or
CPU.	Fortunately,	ADT	provides	tools	that	make	handling	these	challenges
easier.	I’ll	describe	how	to	test	on	real	devices,	and	also	how	to	use	emulators
when	the	devices	you	need	aren’t	available.

Using	a	Physical	Device	for	Development
For	many	activities,	it’s	important	not	to	rely	completely	on	an	emulator,	but	to
check	your	app	on	an	actual	device.	For	instance,	this	is	particularly	useful	when
you	are	testing	advanced	graphics	rendering,	utilizing	location	services,	or
making	use	of	advanced	sensors.	It	is	not	strictly	necessary	to	own	an	Android
device	to	develop	for	Android	(see	Using	Hardware	Acceleration	for	details),	but
it	is	a	common	and	simple	way	to	start	testing	with	minimal	effort.	This	section
will	go	through	the	steps	required	to	use	an	Android	device	as	a	development
aid.

If	you	don’t	already	have	a	device,	it	is	easy	to	acquire	a	cheap	used	handset;
check	Craigslist	or	eBay	for	older	devices.	Other	alternatives	are	outlined	later	in
this	chapter	(including	HAXM	and	Genymotion).

Capabilities	and	Limitations

As	I	mentioned,	there	are	reasons	to	use	a	physical	device	instead	of	an	emulator.
Here	is	an	overview	of	the	most	important	capabilities	and	limitations:

Capabilities
Making	real	phone	calls	and	sending	real	SMS	text	messages.

Using	multitouch	on	a	screen.

Having	access	to	actual	location	data,	in	multiple	locations	and	when	in
motion.

Using	advanced	sensors,	such	as	a	compass,	gyroscope,	or	barometer.

Limitations
Certain	core	services	of	a	phone	might	be	locked	down	by	the	device
manufacturer	or	service	provider.	It	might	be	difficult	to	change	networking
parameters	or	access	resources	as	the	root	user.

Testing	on	a	device,	particularly	if	it	is	one	you	rely	on,	could	mess	up	your
phone.

Simulating	distant	locations	is	a	no-go	(for	example,	if	you	want	to	test	a
location	in	Egypt	and	your	device	is	in	Belize).

Configuring	a	Physical	Device	for	Development
Almost	any	Android	phone	can	be	used	for	development.	In	order	to	configure	a
device,	enable	the	option	in	the	Settings	app	on	the	device.	To	do	this,	open	the
Settings	app,	then	select	Applications	→	Development.	Place	a	checkmark	next
to	USB	debugging	(if	you	are	running	a	device	with	OS	4.0+,	the	setting	is
located	in	a	slightly	different	place	within	the	Settings	app,	namely	“Developer
options”).	The	result	should	look	like	Figure	3-1.

Figure	3-1.	Enable	USB	debugging	on	a	physical	deviceUsing	an	Emulator	for	Development
We	all	agree	that	it	is	necessary	to	test	Android	apps	on	a	variety	of	different
devices	and	hardware.	As	it	is	practically	impossible	to	own	every	physical
device,	you	will	need	to	use	an	emulator	to	check	configurations	of	hardware
you	don’t	have.	Some	of	the	important	reasons	to	use	emulators	include:

Testing	on	different	hardware	configurations

Validating	on	different	versions	of	the	Android	OS

Simulating	load	or	other	stress	tests

Viewing	your	UI	on	various	screen	sizes	and	resolutions

Supported	Features
The	emulator	included	in	the	standard	toolkit	is	feature-rich,	however	there	are
some	constraints.

Supported	features
Simulating	telephony,	including	latency	and	connectivity

Simulating	text	messaging

Simulating	both	a	single	location	or	a	path

Simulating	a	variety	of	hardware	configurations	(see	Emulator	Options	for
options)

Modifying	networking	(including	port	redirection,	DNS	settings,	and	proxy
settings)

Simulating	various	processor	types,	including	ARM	and	Intel	(see	Using
Hardware	Acceleration)

Using	multimedia	(video	only,	not	audio)

Unsupported	features

Cannot	make	real	phone	calls	or	send	real	text	messages

No	accessing	of	Google	services	such	as	Gmail,	Google	Play	Store,	and	other
Google-specific	applications

No	advanced	graphics	support	without	using	native	x86	processor	support;
see	Using	Hardware	Acceleration	for	a	workaround

No	simulating	of	touch	events	(in	particular	multitouch,	or	gestures);	see
Chapter	4	for	a	workaround	that	allows	you	to	use	a	device	to	simulate
sensors

No	accessory	integration	(USB,	headphones,	or	other	peripherals)

No	support	for	performance-sensitive	applications—the	standard	emulator
does	not	reliably	perform	as	a	real	device	would	in	all	situations

Android	Virtual	Devices
To	test	a	variety	of	devices,	you	will	want	to	create	different	emulator	images	(to
represent	different	devices).	These	configurations	are	stored	in	files	with	the	avd
extension,	which	stands	for	Android	Virtual	Device	(AVD).	It	allows	you	to
specify	hardware	and	software	options	that	will	be	used	by	the	emulator	to
model	an	actual	device.

Creating	AVDs
There	are	two	primary	ways	to	create	AVDs.	The	easiest	way	is	to	use	the
graphical	AVD	manager.	It	is	also	possible	to	configure	AVDs	from	the
command	line	by	passing	configuration	parameters	to	the	android	tool.	For	the
most	part,	you	will	likely	want	to	use	the	graphical	tool,	as	it	is	simple	to	use.
You	would	use	the	command-line	option	when	working	with	scripts	or	other
noninteractive	operations	(for	instance,	if	you	are	creating	emulator	images	on	a
build	server,	or	using	a	batch	operation	to	test	your	code	on	multiple	device
configurations).

AVD	Manager

Next,	let’s	look	at	the	AVD	Manager,	a	GUI	tool	designed	to	make	configuring
AVDs	simple.	Start	it	by	clicking	on	the	 	icon	or	running	the	android	tool	from
the	command	line.	The	first	time	you	launch	it,	you	will	see	something	similar	to
Figure	3-2.	The	screen	will	display	a	list	of	existing	emulator	configurations.
You	will	be	able	to	create,	edit,	repair,	start,	or	see	details	of	the	various	AVDs
you	have	configured.

Figure	3-2.	AVD	Manager

To	create	a	new	emulator	configuration,	click	the	New	button	to	launch	the
“Create	new	Android	Virtual	Device	(AVD)”	wizard	(see	Figure	3-3).	You	will
then	use	this	simple	form	to	set	the	various	configuration	options	necessary.

Figure	3-3.	Create	AVD	wizard

To	configure	an	AVD,	you	need	to	supply	a	variety	of	configuration	parameters.
They	will	be	used	to	define	the	specific	hardware	parameters	you	wish	to
emulate.	The	options	include:

Name
Identifies	your	current	configuration	image.	This	can	be	anything	you	like,
but	you	should	choose	a	name	that	lets	you	identify	the	specific	options
offered	by	the	AVD.	I	usually	name	these	according	to	the	device	I	am	trying

to	emulate,	e.g.,	GalaxyNexus,	SamsungS4,	or	HTCOne.

Device
Allows	you	to	select	a	preconfigured	image	based	on	a	variety	of	common
devices.

Target
Specifies	the	version	of	the	platform	the	device	will	run.	The	tool	will	allow
you	to	specify	only	those	platforms	that	you	have	downloaded	to	your
environment.	In	other	words,	if	you	have	not	used	the	SDK	Manager
(Chapter	1)	to	install	the	API	you	wish	to	use,	you	will	not	be	able	to	create
an	emulator	running	that	version.

CPU/ABI
Specifies	a	particular	hardware	configuration	to	use	(currently	either	ARM	or
Intel	Atom).	See	Using	Hardware	Acceleration	for	information	on	how	to
enable	it.

SD	Card
Simulates	an	SD	card.	You	can	specify	the	size	and	location	on	your	local
disk	(the	default	is	the	~/.android	folder).

Snapshot
Enabling	this	feature	gives	you	the	ability	to	save	and	restore	an	emulator’s
state	to	a	“snapshot”	file.	This	can	be	useful	for	saving	the	state	of	an
emulator,	allowing	you	to	quickly	boot	to	a	specific	state,	avoiding	lengthy
boot	times.	For	more	information,	see	Using	the	Emulator.

Skin
Allows	you	to	specify	a	particular	screen	size	and	resolution.	It	provides	a	set
of	standard	screen	configurations	for	a	particular	platform,	or	you	can
specify	custom	values.

Creating	AVDs	from	the	command	line
It	can	be	useful	to	generate	AVD	images	from	the	command	line	when	you	are
scripting	or	using	an	environment	where	employing	the	GUI	isn’t	practical.	To
create	AVDs	using	this	method,	you	need	to	pass	command-line	parameters	to
the	android	tool.

To	create	an	AVD,	run	the	android create avd	command	and	include
parameters	that	specify	the	particular	configurations.	Required	parameters	are	a
name	for	the	AVD	and	the	system	image	that	should	run	on	the	emulator	when	it
is	invoked.	If	you	want,	you	can	also	specify	other	options,	such	as	SD	card	size,
OS	platform,	skin,	or	a	specific	location	in	which	to	store	user	data	files.	The
syntax	of	the	command	is:

android create avd -n name -t targetID/ [option value] ...

As	an	example,	if	we	wanted	to	create	an	AVD	named	ToolsAvd,	targeting	the
Android 2.3 Platform,	with	a	WVGA800	display,	the	command	would	look	like
this:

android create avd -n ToolsAvd -t 5 --skin WVGA800

Location	of	the	AVD	files
When	you	create	an	AVD	image	(regardless	of	whether	you	do	it	using	the	GUI
tool	or	command	line),	a	variety	of	files	are	stored	on	your	system	in	a	default
directory	named	.android.	This	directory	contains	the	AVD	configuration	files,
the	user	data	image,	the	SD	card	image	(if	configured),	and	any	other	relevant
files.	The	root	of	this	directory	will	also	contain	a	file	named	AVD_name.ini.	This
file	contains	the	location	of	the	directory	containing	the	AVD	files.

The	default	location	of	this	directory	is:

~/.android/avd	on	Linux	or	a	Mac

C:\Documents	and	Settings\user\.android	on	Windows	XP

C:\Users\user\.android	on	Windows	7	or	Vista

If	you	would	like	to	specify	a	different	default	location	for	this	directory,	you	can
create	an	environment	variable	named	ANDROID_HOME	and	set	it	to	the	new

default	location.	It	is	also	possible	to	specify	a	different	location	for	a	specific
AVD	by	including	-p	path	as	an	option	when	you	create	the	AVD.	If	you	do	set
a	custom	location	for	the	.android	folder,	make	sure	you	put	it	on	a	local
directory	and	not	a	network	drive.

Emulator	Options
There	are	many	options	available	when	creating	an	AVD.	I	will	describe	a	few	of
the	most	common	ones	you	will	likely	want	to	set	for	each	emulator	you	create.
If	you	want	to	learn	about	all	the	available	options,	this	AVD	Command
Reference	is	an	excellent	source.

Device	RAM	size
Sets	the	amount	of	physical	RAM	available	on	a	device	(in	MB	or
megabytes).	The	default	value	is	96,	which	is	quite	low.	I	suggest	increasing
this	value	substantially	to	improve	emulator	performance.	I	generally	set	it	to
512,	but	you	can	set	it	higher	if	your	hardware	can	support	it.

Keyboard	support
Defines	whether	the	device	will	support	the	physical	keyboard	on	your
computer.	I	always	set	this	to	“yes,”	because	it	makes	interacting	with	the
device	easier.	You	will	be	able	to	use	your	computer	keyboard	to	interact
directly	with	the	Android	OS,	which	makes	typing	much	easier	than	trying	to
use	the	onscreen	keyboard	with	your	mouse.

Camera	support
Defines	whether	your	emulator	will	support	camera	functionality.	If	your	app
requires	a	camera,	make	sure	to	set	this	value,	as	the	default	is	“no.”	You	can
specify	if	your	emulator	will	support	front,	back,	or	both	cameras.

GPS	support
Will	allow	your	device	to	support	location	functionality.	The	default	for	this
is	“yes,”	so	you	will	need	to	change	it	only	if	you	specifically	want	to	disable
this	functionality.

http://bit.ly/1bwMSJX

Cache	partition	size
This	value	is	used	by	the	Google	Play	Store	to	determine	whether	a	device
can	download	an	app	from	the	market.	This	value	differs	greatly	between
devices	(for	instance	on	an	HTC	Wildfire,	it	is	30	MB,	and	on	the	Nexus	S,
the	size	is	500	MB).	It	is	worth	testing	with	a	variety	of	settings	to	make	sure
your	app	will	work	on	many	different	devices.	I	suggest	setting	this	to	1024
MB,	especially	if	you	see	Installation	error:
INSTALL_FAILED_INSUFFICIENT_STORAGE	messages	when	trying	to
install	an	app.

Advanced	Emulator	Configuration
Working	with	the	emulator	can	be	frustrating.	Some	of	the	most	common	tasks
(like	starting	or	deploying	an	app)	can	take	a	long	time.	There	are	a	few	simple
things	you	can	do	to	make	it	faster,	including	using	VM	hardware	acceleration,
eliminating	unnecessary	functionality,	and	dedicating	a	CPU	core	to	the
emulator.

Using	Hardware	Acceleration
People	running	development	machines	on	Intel	processors	can	use	the	Hardware
Accelerated	Execution	Manager	(Intel	HAXM)	to	speed	up	the	Android
emulator	on	the	host	computer.	Using	it	can	improve	performance	significantly,
but	there	are	also	limitations	to	consider.

Benefits
Key	benefits	of	HAXM	include:

Improved	emulator	performance,	in	particular,	quicker	startup	and	shorter
deploy	times.

Better	performance	of	graphics-intensive	applications,	particularly	those	that
make	use	of	OpenGL.

Better	use	of	native	hardware:	if	your	development	computer	is	robust,	using
HAXM	will	allow	you	to	use	it	to	its	full	potential.

Limitations
There	are	also	some	limitations	to	consider:

HAXM	doesn’t	support	Google	APIs,	which	means	you	can’t	test	apps	(such
as	Maps	or	Cloud	Messaging)	using	this	code.

The	performance	characteristics	of	the	emulator	are	not	the	same	as	you
would	find	in	the	real	world,	because	most	current	Android	devices	use
different	(ARM-based)	processors.

HAXM	offers	support	only	for	certain	API	levels:	currently	only	APIs	10,	15,
16,	and	17.

It	has	very	specific	hardware	requirements:	your	processor	must	support	VT-
x,	EM64T,	and	the	Execute	Disable	Bit.

Downloading	the	components
In	order	to	use	HAXM,	you	need	to	install	some	software	on	your	host	computer.
The	easiest	way	to	do	this	is	using	the	SDK	Manager	(see	SDK	Manager).
Download	and	install	the	following	components:

Android	SDK	Platform	that	supports	HAXM	(the	only	supported	API	levels
are	10	and	anything	over	15)

Intel	Atom	x86	System	Image	(consistent	with	the	platform	version)

Intel	Hardware	Accelerated	Execution	Manager	Driver	(from	the	Extras
section)

As	an	example,	if	you	want	to	create	a	HAXM	enable	emulator	compliant	with
API	16,	you	need	to	ensure	your	selections	look	like	those	in	Figure	3-4.

Figure	3-4.	Example	of	selecting	necessary	components	to	run	HAXM

Installing	the	HAXM	software
It	is	not	enough	to	just	download	the	tool;	you	also	need	to	install	it.	On
Windows	and	Mac	OS	X,	you	can	do	this	by	running	the	executable	available	in
the	${android.sdk}/extras/intel/Hardware_Accelerated_Execution_Manager
directory.	You	need	to	launch	the	installer	process	and	accept	the	license

agreement	to	complete	the	installation.

In	order	to	use	this	functionality	on	Linux,	you	also	need	to	install	the	KVM
software	package.	Instructions	for	this	vary	based	on	the	particular	version	of	the
OS	being	used.	The	official	documentation,	HAXM	Linux	Install	Guide,
describes	the	additional	steps	required	for	running	on	Linux.

Configuring	an	AVD
Once	you	have	downloaded	and	installed	the	correct	components,	follow	the
usual	procedure	to	creating	an	AVD.	You	will	see	additional	options	for	using
the	Intel-based	system	for	your	emulator.	When	you	create	an	AVD	and	specify	a
compatible	Target	(in	this	case	API	16),	you	will	be	able	to	specify	a	particular
CPU/ABI	image	to	use.	Select	the	“Intel	Atom	(x86)”	option	to	enable	HAXM.
The	dialog	should	look	like	Figure	3-5.

http://intel.ly/19S6mbE

Figure	3-5.	Configuring	an	AVD	to	use	HAXM

Select	the	“Use	Host	GPU”	option	for	your	image.	HAXM	executes	most	CPU
instructions	natively	in	the	processor,	so	this	option	enables	OpenGL	to	be
accelerated	by	the	host	GPU.

Do	not	select	the	Snapshot	option.	Snapshots	are	not	supported	for	emulators
with	graphics	acceleration	enabled.

Validating	that	HAXM	is	running

After	you	have	installed	all	the	correct	components	and	started	your	correctly
configured	AVD,	you	can	easily	validate	that	everything	is	running	correctly.	If
it	is,	a	notification	indicating	success	is	displayed	in	the	console	during	startup
(Figure	3-6).

Figure	3-6.	Validating	that	HAXM	is	running

Disabling	the	Boot	Animation
When	the	emulator	starts	up,	it	displays	a	boot	animation.	Generally	this	isn’t
something	you	need	to	see,	and	it’s	preferable	not	to	waste	precious	seconds
while	it	displays.	You	can	disable	the	boot	animation	by	adding	the	-no-boot-
anim	option	to	your	AVD	start	command.	For	example:

emulator -avd myAvd.ini -no-boot-anim

On	Windows:	Dedicating	a	Core	to	the	Emulator
If	you	are	running	on	a	Windows	machine	and	have	a	multicore	processor,	it	is
possible	to	dedicate	one	of	the	CPU	cores	to	a	running	emulator	process.	This
prevents	it	from	contending	for	a	CPU	with	other	resource-intensive	processes
(such	as	Eclipse).	To	do	this,	start	the	Windows	Task	Manager,	select	the
Processes	tab,	right-click	on	the	running	emulator	process,	and	click	on	“Set

Affinity	option	().”	Then	you	will	be	able	to	check	or	uncheck	the	CPU
processor	core(s)	on	which	you	want	to	run	the	application	(see	Figure	3-7).
Finally,	click	OK	to	finish	the	setup.

Figure	3-7.	Dedicating	a	core	to	the	emulator

Chapter	4.	Using	Devices	and
Emulators

Using	the	Emulator
In	the	previous	chapter,	we	learned	how	to	create	emulators.	Now	we’ll	discuss
their	use.	An	emulator	is	a	very	powerful	tool	that	makes	testing	easier	and
allows	the	developer	to	simulate	a	variety	of	things	that	would	be	difficult	to
accomplish	under	real-world	conditions.	For	instance,	if	you	are	writing	a
mapping	application,	you	might	need	to	test	locations	all	over	the	world,	and	it
would	be	impractical	(although	quite	a	bit	of	fun)	to	actually	travel	to	each	of
these	locations.	The	emulator	provides	the	capability	to	simulate	networking
configurations,	hardware/software	configurations,	and	sensor	events.	It
eliminates	the	need	to	have	physical	devices	to	represent	each	configuration	that
you	need	to	test.	For	instance,	you	will	use	emulators	to	mock	various	screen
sizes	and	memory	configurations.	This	chapter	describes	how	to	use	the
emulator	to	effectively	test	various	parameters.

For	the	most	part,	emulators	and	physical	devices	interact	with	the	ADT	tools	in
the	exact	same	way.	In	other	words,	the	operations	we	discuss	in	this	chapter
perform	the	same	way	on	an	emulator	as	they	will	on	a	physical	device.	In	most
cases,	a	physical	device	is	more	limited,	because	options	(such	as	changing
network	configurations)	are	locked	down	by	the	service	provider.

You	will	likely	use	many	different	combinations	of	physical	devices	and
emulators	to	test	thoroughly.	You	can	run	as	many	different	emulators	and
devices	as	you	like.	If	you	plan	on	running	a	lot	of	emulator	instances,	you	will
need	a	powerful	computer	to	support	it	(depending	on	configuration,	each
emulator	can	require	1	GB+	of	dedicated	memory).	It	is	common	for	a	developer
to	have	many	different	emulator	and	physical	devices	running	at	the	same	time,
then	use	each	of	them	throughout	the	test	cycle.	It	is	worth	noting	that	the
emulator	doesn’t	support	certain	actions,	such	as	simulating	accelerometer
activity,	or	simulating	some	sensor	activity	(such	as	the	magnetometer).	You

should	review	the	Capabilities	and	Limitations	discussion	to	determine	whether
the	emulator	suits	your	needs.

Starting	the	Emulator
In	the	previous	chapter,	we	discussed	using	the	AVD	Manager	to	create	AVDs
(Creating	AVDs).	This	tool	is	also	used	to	start	the	emulator	instances	as	well.	It
provides	options	to	control	runtime	parameters	of	the	emulators	you	created.

To	start	it	from	within	Eclipse,	click	the	 	icon	from	the	main	toolbar.

Or	start	it	from	the	command	line	with	the	following	command:

android avd

When	you	launch	the	AVD	Manager,	you	will	see	a	screen	similar	to	Figure	4-1.
This	screen	displays	a	list	of	all	the	AVDs	you	have	configured	on	your	system,
and	some	options	for	managing	them.	To	start	an	emulator,	select	a	particular
AVD	and	click	the	Start	button.

Figure	4-1.	AVD	Manager	tool

You	are	then	presented	with	a	secondary	screen	(Figure	4-2)	that	has	a	variety	of
options	specific	to	running	an	emulator	instance.

Figure	4-2.	AVD	launch	options

AVD	launch	options
It	is	important	to	understand	the	launch	options,	and	what	they	do.	Using	them
allows	you	to	change	the	size,	performance,	and	data	of	your	emulator.

Scale	factor
This	allows	you	to	adjust	the	size	of	the	emulator	on	your	computer	screen.
To	specify	a	particular	screen	size,	place	a	checkmark	in	the	Scale	Factor
box.	Next,	click	the	?	next	to	the	dpi	option	to	set	the	particular	resolution	of
your	computer.	Enter	the	resolution	and	size	of	your	display.	Then	type	a
number	in	the	Screen	Size	box.	Your	emulator	will	be	started	with	the	screen
size	you	entered.

Snapshot
This	lets	you	save	an	emulator’s	state	to	a	snapshot	file	and	restore	it	later.
This	can	be	useful	if	you	would	like	to	preconfigure	an	emulator	to	start	in	a
particular	state	every	time,	or	would	like	to	avoid	the	lengthy	boot	process
when	starting	from	scratch.	This	is	a	great	way	to	speed	up	the	time	to	boot
an	emulator,	and	will	save	a	lot	of	time.	Emulator	boot	times	can	be	reduced
from	many	minutes	to	just	seconds.

Starting	an	emulator	from	the	command	line
It’s	not	absolutely	necessary	to	use	the	AVD	Manager	to	start	an	emulator.	You
can	also	start	it	from	the	command	line.	This	is	useful	when	using	scripts,	or	if
you	would	like	to	run	an	emulator	without	the	overhead	of	Eclipse.	There	are	a
variety	of	configuration	options	you	can	use	when	starting	an	emulator	this	way.
There	are	options	relating	to	networking,	graphics	acceleration,	sensor	abilities,
and	more.	To	see	a	complete	list	of	options,	type:

emulator -help

The	command	to	start	an	emulator	has	the	following	syntax:

emulator -avd avd_name

 [option

 [value]]...

For	example,	you	could	start	an	emulator	with	graphics	acceleration	turned	on
and	boot	animation	disabled	(two	good	options	you	can	use	to	improve
performance).	This	would	look	like:

emulator -avd Nexus7 -gpu on -no-boot-anim

Using	snapshots	to	improve	performance
The	snapshot	is	a	view	of	your	emulator	including	all	data,	the	current	UI	being
displayed,	or	any	other	sensor	or	data	currently	being	used.	This	snapshot	can	be
very	useful	if	you	wish	to	start	your	emulator	with	a	certain	configuration	or
state	multiple	times.	In	order	to	use	snapshots	with	a	particular	AVD,	it	needs	to
be	configured	appropriately.	Reread	Creating	AVDs	to	review	how	to	do	this.

You	will	notice	three	options	in	the	snapshot	section	of	the	launch	configuration
tool.

Wipe	user	data
Refreshes	your	emulator	image	to	remove	all	data	and	resets	it	to	a	clean
configuration	(just	as	if	it	were	started	for	the	very	first	time).

Launch	from	snapshot
Allows	you	to	restore	your	emulator	to	the	state	it	was	in	when	the	last
snapshot	was	taken.	If	there	is	no	snapshot	in	memory,	this	option	is	not
enabled.

Save	to	snapshot
Triggers	the	system	to	save	a	snapshot	of	the	current	state	of	the	emulator
when	you	close	it.

TIP
I	use	snapshots	as	a	way	to	save	a	clean	emulator	that	I	can	recover	quickly.	I	save	a	snapshot
the	first	time	I	start	the	emulator,	right	after	it	has	completed	the	boot	sequence.	From	that
point	forward,	I	make	sure	I	don’t	check	the	“Save	Snapshot”	box.	If	I	need	a	clean	emulator
image,	I	can	just	restart	this	emulator	and	thanks	to	snapshots,	I	will	have	a	fully	booted	clean
emulator	ready	to	go.

Saving	and	retrieving	a	snapshot
Snapshots	are	such	a	great	way	of	speeding	up	your	emulator	usage,	it	is	worth
going	through	an	example	to	show	exactly	how	they	work.	Let’s	step	through
setting	up	an	emulator	using	snapshots	so	you	can	actually	see	it	for	yourself.

The	first	step	when	using	this	functionality	is	to	enable	it	for	the	AVD	you	are
using.	If	you	haven’t	done	this	already,	review	Creating	AVDs	to	do	it.

When	you	start	your	emulator,	the	options	for	snapshots	will	be	enabled.	The
first	time	you	start	your	emulator,	you	should	select	the	“Wipe	user	data”	and
“Save	to	snapshot”	options	(as	shown	in	Figure	4-3).	This	starts	the	emulator
with	a	brand	new	image,	and	allows	you	to	save	your	state	when	you	close	it
down.	Once	you	have	these	checkmarks	selected,	you	can	press	the	Launch

button	to	start	the	emulator.	Depending	on	the	speed	of	your	hardware,	this	can
take	a	long	time	(anywhere	from	90	seconds	to	many	minutes).	After	the	wait,
you	have	an	emulator	booted	to	its	clean	state	(Figure	4-4).

Figure	4-3.	Enabling	the	options	to	save	the	initial	snapshot

Figure	4-4.	AVD	snapshot	initial	instance

Now	configure	your	device	to	a	state	you	would	like.	In	this	example,	the	state
we’ll	save	is	the	emulator	started	with	the	main	Activity	of	an	app	displayed	(see
Figure	4-5).	Now	close	the	process;	in	this	case,	that	means	clicking	the	red
circle	on	the	top	left	to	kill	the	window.	This	will	take	a	little	bit	of	time	(maybe
up	to	a	minute)	because	a	“snapshot”	of	the	current	state	of	the	emulator	is	being
saved,	which	will	allow	you	to	recover	to	this	state	easily.

Figure	4-5.	AVD	snapshot	saved	state

The	next	time	you	start	your	emulator,	you	can	select	the	middle	selection:
“Launch	from	snapshot”	(see	Figure	4-6).	When	you	select	this	option,	and	press
the	Launch	button,	instead	of	the	emulator	starting	from	scratch	(which	takes
many	minutes),	it	starts	up	to	the	state	we	saved	when	we	shut	down	the
emulator	in	the	previous	step.	Because	the	emulator	doesn’t	need	to	go	through
the	entire	boot	process,	startup	time	is	drastically	improved	(the	emulator	will
start	to	a	snapshot	state	in	around	10	seconds).	You	will	see	your	emulator
booted	right	to	the	same	place	(as	shown	in	Figure	4-7).

Figure	4-6.	Enabling	the	options	to	launch	from	snapshot

Figure	4-7.	AVD	after	loading	snapshot	state

The	Emulator	Application
The	emulator	you	start	will	look	similar	to	the	one	in	Figure	4-8.	The	emulator
consists	of	a	screen	and	optionally	a	keyboard	or	navigation	buttons,	if	they	were
enabled	when	you	created	your	AVD	(Creating	AVDs).	The	emulator	runs	like	a
native	application	in	your	operating	system,	and	can	be	closed	or	minimized	just
like	any	other	window	(by	clicking	an	X	or	red	button	at	the	top	of	the	window).

Figure	4-8.	Emulator	anatomy

The	Devices	Tool
So	how	do	you	keep	track	of	the	emulators	or	devices	you	have	hooked	to	your
computer?	You	can	use	the	Devices	tool	(shown	in	Figure	4-9),	which	allows
you	to	see	and	control	the	various	devices	or	emulators	connected	to	your

computer.	This	will	be	the	central	location	where	you	control	your	devices.	You
will	start	a	variety	of	important	operations	from	this	window	(including	memory
inspection,	location	and	network	simulation,	and	UI	inspection).	I	cover	these
operations	in	the	DDMS	section	(Dalvik	Debug	Monitor	Server	(DDMS)).

I’ll	also	highlight	frequently	used,	essential	functionality	you	that	you	will
access	directly	from	this	tab.

The	primary	way	to	access	the	Devices	tool	is	from	a	tab	at	the	bottom	of	your
screen	(see	Figure	4-9).	The	devices	tab	should	be	there	by	default.	If	it	is	not
there,	you	can	add	it	from	the	menu:	Window	→	Show	View	→	Other	→
Android	→	Select	Devices	from	list.

Figure	4-9.	Viewing	running	devices	using	the	Devices	tool

TIP
There	is	also	a	version	of	the	tool	that	can	be	run	from	the	command	line	without	Eclipse.	This
is	particularly	useful	for	team	members	that	might	not	have	the	full	development	suite

installed,	but	could	still	benefit	from	using	these	tools.	The	tool	is	named	Android	Debug
Monitor,	and	can	be	started	with	the	following	command:

{$android.sdk}\tools $ monitor

The	upper	left	corner	contains	the	Devices	view.	This	will	show	you	all	the
devices	(both	physical	devices	and	emulators)	that	are	currently	connected	and
available.	You	can	use	the	arrow	on	the	left	to	collapse	or	expand	a	particular
device	tree	in	order	to	see	details	about	the	current	running	processes.	In
Figure	4-9,	you’ll	see	different	devices	connected.	The	first	two	are	emulators
(the	icon	and	their	name	both	signify	this),	and	the	last	one	in	the	list	(with	the
funny	name	that	is	a	mix	of	letters	and	numbers)	is	a	physical	device.

There	are	a	variety	of	useful	operations	that	can	be	launched	from	this	tab,
including:

Debugging
The	first	button	on	the	top	()	allows	you	to	enter	debugging	mode.	In	this
mode,	you	can	attach	the	debugger	to	an	application	that	is	already	running.
This	means	that	you	can	start	an	application,	run	it	until	it	gets	to	the	place
you	would	like	to	test,	and	then	start	debugging	from	that	point.	This	can	be
an	efficient	way	to	directly	debug	exactly	the	code	you	want	and	avoid	other
code	paths.

Heap
The	second	set	of	buttons	allows	you	to	start	inspection	of	the	memory
(heap)	of	a	running	application.	See	Chapter	10	for	more	information.

Device	screen	capture
The	next	button	()	launches	a	utility	that	allows	you	to	take	a	screenshot	of
what	is	currently	displayed	on	your	device.	Pressing	this	will	launch	the
dialog	in	Figure	4-10.	The	dialog	shows	an	image	of	whatever	is	currently
displayed	on	the	screen	of	your	device,	along	with	buttons	across	the	top	that
will	enable	you	to	save,	rotate,	or	refresh	the	image.

Reset	ADB
The	upside-down	triangle	()	is	a	particularly	important	button.	Pressing	this
allows	you	to	access	the	controls	to	reset	the	ADB	process.	This	resets
connectivity	between	the	computer	and	the	devices.	You	can	use	it	if	you
encounter	connectivity	issues	between	your	computer	and	device.

Figure	4-10.	Capturing	a	screenshot	using	the	Devices	tool

Keyboard	Shortcuts
If	you	enabled	keyboard	support	when	you	created	your	AVD	(see	Emulator
Options),	a	variety	of	keys	will	be	mapped	between	your	computer	keyboard	and
the	emulator.	I	have	listed	some	of	the	more	useful	mappings	in	Table	4-1.	A
description	of	each	option	can	be	found	in	the	emulator	documentation	on	the
Android	developer	website.

Table	4-1.	Popular	shortcuts

Key Effect
Home Android	Home

F2 Menu

Esc Back

Ctrl-F11	(Cmd-F11	on	Mac) Rotate	landscape/portrait

Keypad	4/6/5/8/2 D-Pad:	left/right/center/up/down

Ctrl-F8 Toggle	Cell	Network	On/Off

File	Explorer
ADT	provides	a	GUI	tool	that	makes	exploring	and	interacting	with	the	files	on
the	device	very	easy.	It	allows	you	to	navigate	the	file	system	to	discover	which
files	are	on	the	device,	move	files	onto	and	off	the	device,	and	modify	the	file
system	by	adding	and	rearranging	folder	locations.	To	use	this	tool,	open	the
DDMS	perspective,	select	a	device,	and	select	the	File	Explorer	()	tab.	This
allows	you	to	do	a	variety	of	things,	including:

Push	files	to	a	device	()

Pull	files	from	the	device	()

Delete	a	file	from	the	device	()

Create	a	new	directory/folder	()

http://bit.ly/14cIuY2

Developer	Tools	Application
One	more	important	tool	that	we	need	to	explore	is	the	“Developer	Tools”
application.	It	is	installed	by	default	on	all	system	images	included	with	the
SDK,	and	is	preinstalled	on	your	emulator.

This	application	allows	you	to	enable	various	settings	on	your	device	that	will
make	it	easier	to	test	and	debug.

The	application	incudes	some	of	the	basic	items	you	might	expect	(such	as	“Stay
Awake	When	Connected”	or	“Allow	Mock	Location”).

In	addition	to	the	standard	debugging	options,	there	are	many	other	tools
designed	to	help	debug	applications	by	enabling	visuals	when	certain	events
occur	(such	as	touch	events,	or	the	UI	thread	being	locked).	These	tools	are	very
useful	when	you	are	testing	on	a	real	device,	as	you	can	quickly	visualize	many
system	operations.

You	can	find	the	icon	(labeled	“Developer	Tools”)	to	launch	the	application	in
the	main	app	drawer.	It	allows	you	to	do	a	large	variety	of	activities	relating	to
testing,	instrumenting,	and	inspecting	the	state	of	various	systems	on	your
device.	A	brief	list	of	some	of	the	core	functions	follows:

TIP
If	you	are	running	a	device	with	Android	4.2	and	up,	the	developer	options	are	hidden	by
default.	You	will	need	to	know	the	“secret”	way	to	enable	them.

To	enable	them,	open	the	Settings	app,	scroll	to	the	bottom,	then	click	“About	phone”	(or
“About	tablet”)	and	then	tap	on	the	Build	number	at	the	bottom	of	the	screen	seven	times.
After	doing	this,	you	will	see	a	message	that	says	“Congratulations,	you	are	now	a	developer,”
and	the	“Developer	options”	will	be	available.

Accounts	Tester
Allows	you	to	access	and	configure	a	variety	of	user	accounts	on	the
emulator.	Very	useful	if	you	need	to	test	logins	or	similar	authorization
functionality.

Bad	Behavior

Allows	you	to	simulate	a	variety	of	issues,	like	creating	ANR	(Activity	Not
Responding)	events,	or	crashing	key	systems	(like	the	main	app	thread	or	the
system	server).

Configuration
Displays	the	current	configuration	values	for	the	keyboard	and	display
parameters.	You	can	also	see	things	like	system	locale,	keyboard	type,	and
display	metrics	(such	as	density).	This	can	be	extremely	useful	when	trying
to	determine	how	your	app	looks	on	different	resolution	devices.

Connectivity
Allows	you	to	modify	the	networking	parameters	or	modify	the	WiFi
connectivity	of	the	device.	This	is	useful	when	you	need	to	test	connectivity
issues	or	how	your	app	will	perform	without	connectivity.

Development	Settings
Does	a	variety	of	things	such	as	enable	debugging,	show	system	statistics
(such	as	running	processes,	CPU,	and	memory	usage)	or	display	UI	hints
(like	showing	the	coordinates	of	touch	points	or	flashing	the	screen	during
updates).

Instrumentation
Runs	unit	tests	directly	on	the	device.

Media	Scanner
Scans	the	media	folder	of	your	SD	card	and	identifies	any	media	available
for	use.

Package	Browser
This	tool	should	look	familiar,	as	it	is	the	same	tool	you	use	to	manage	apps
from	the	Android	Settings	app	installed	on	your	device.	It	serves	the	same
purpose	(managing	applications)	here	as	well.

Pointer	Location
Displays	visible	lines	and	coordinates	that	allow	the	developer	to	closely
determine	specific	touch	points.

Running	Processes
Presents	a	list	of	processes	currently	running.

Sync	Tester
Tests	third-party	sync	adapters.

Terminal	Emulation
Opens	a	terminal,	allowing	command-line	access	to	the	Linux	shell.

TIP
This	application	relies	on	many	system-level	permissions	that	aren’t	available	to	third	parties.
If	you	would	like	to	run	this	on	an	actual	physical	device,	it	is	necessary	to	build	a	custom
system	image	and	sign	the	Dev	Tools	APK	with	the	same	key	as	the	system	image.	After
signing	the	app	correctly,	you	will	be	able	to	install	it	and	run	it	on	a	device.	This	means	that
you	can	only	run	it	on	a	rooted	device,	or	on	a	device	for	which	you	built	the	system	image.
The	system	image	signing	key	is	generally	only	available	to	the	hardware	manufacturer.

Chapter	5.	Developing	with
Eclipse

ADT	provides	a	robust	and	powerful	development	environment	in	which	to	build
Android	applications.	Designed	as	a	plug-in	to	the	Eclipse	IDE,	it	leverages
many	Eclipse	features	including	code	completion,	syntax	highlighting,	and	JUnit
integration.	There	is	also	a	rich	ecosystem	of	plug-ins	and	additional	features
available	to	download	and	install	from	third-party	developers.	In	addition	to	the
standard	IDE,	there	are	a	variety	of	Android-specific	tools	that	have	been
integrated.	These	include	wizards	for	resource	creation,	the	logcat	Viewer,	the
Hierarchy	Viewer,	and	the	Visual	GUI	Builder,	among	others.

The	close	integration	makes	developing	easier,	so	I	recommend	ADT	as	the
fastest	way	to	get	started	with	Android	development.	Throughout	this	section
(and	this	book),	I	highlight	many	of	the	ways	you	can	leverage	the	IDE	to
improve	your	experience	writing	Android	code.

Anatomy	of	the	Eclipse	Workspace
You	will	be	spending	a	lot	of	your	development	time	within	Eclipse,	so	you’ll
need	to	familiarize	yourself	with	how	it	is	organized.	Figure	5-1	shows	the
standard	Eclipse	layout.	Let’s	look	at	a	few	key	areas:

Figure	5-1.	Standard	Eclipse	layout

Package	Explorer
The	window	on	the	far	left	allows	you	to	view	all	the	code	components
included	in	your	project.	You	can	click	on	the	small	triangles	()	to	expand
or	minimize	a	particular	tree,	which	will	expand	or	minimize	that	section	of
the	code	appropriately.

Code	Editor
Seen	in	the	middle	of	the	screen,	this	is	the	area	where	you	make	changes	to
your	code.	The	source	code	is	color-coded	to	highlight	different	elements	of
syntax.	For	instance,	variable	definitions	are	displayed	in	blue,	and	method
modifiers	are	displayed	in	purple.

Outline

The	view	on	the	far	right	displays	the	main	sections	of	the	code	in	a
structured	way.	You	can	click	on	the	triangles	to	expand	and	minimize
certain	sections,	just	as	in	the	Package	Explorer	view.	Refer	to	Quick	Outline
for	XML	for	an	alternate	way	to	view	this.

Problems
This	tab	appears	at	the	bottom	of	the	screen	and	displays	any	warnings	or
errors	in	your	project.	If	there	is	an	error	in	your	code,	it	will	be	listed	here
(in	red).	You	can	click	on	any	of	the	messages	that	appear	here.	This	will
open	the	code	with	the	error	and	place	the	cursor	at	the	location	where	the
problem	exists.

Uncovering	Additional	Tools	and	Views
The	default	layout	for	Eclipse	likely	won’t	have	all	the	components	you	need	to
use.	Several	additional	tools	are	available,	as	well	as	a	few	different	ways	to
customize	what	is	displayed	(Figure	5-2).

Figure	5-2.	Adding	views	to	Eclipse	layout

You	can	display	the	additional	Android	tools	by	selecting	Window	→	Show
View	→	Other	→	Android.

This	displays	a	long	list	of	tools	under	the	Android	section,	as	shown	in
Figure	5-3.	To	add	one	of	these	to	your	Eclipse	layout,	select	it	from	the	list.
Once	it	is	placed	in	your	screen,	you	can	drag	and	drop	the	tab	to	move	it
wherever	you	would	like.

Figure	5-3.	Viewing	the	options	available	in	the	Android	menu

The	perspectives	concept	in	Eclipse	is	a	collection	of	tabs	and	tools	organized	in
a	predefined	way.	Android	comes	with	a	few	preconfigured	perspectives:
DDMS,	the	Hierarchy	Viewer,	and	the	Pixel	Perfect	View.	We	will	cover	each	of
these	in	detail	later	in	the	book.

The	steps	to	open	a	perspective	(shown	in	Figure	5-4)	are:

1.	 Select	Window	→	Open	Perspective.

2.	 Select	the	perspective	you	would	like	to	display.

Figure	5-4.	Eclipse	perspectives

Quick	Button
There	is	a	small	button	at	the	top	of	the	menu	bar	()	that	is	easy	to	overlook.
This	button	is	a	shortcut	to	run	your	project.	It	has	the	same	functionality	that	is
executed	by	invoking	the	Run	as...	menu	(which	you	can	access	by	right-clicking
on	your	project).	This	button	is	the	simplest	way	to	run	your	app,	as	it	is	just	a
single	button	click	(as	opposed	to	navigating	a	menu).	It	is	important	to	note	that
this	works	only	if	you	are	editing	a	Java	file.	If	you	are	editing	an	XML	file,
nothing	happens	when	you	click	the	button	(not	even	an	error	dialog).

Code	Templates
It	can	be	difficult	to	understand	the	proper	way	to	create	Android	classes.	You
need	to	know	the	proper	naming	standards,	which	methods	are	required,	how	to
tie	various	resources	together,	and	other	patterns	for	creating	proper	classes.

ADT	now	provides	the	“Code	Templates	and	Wizards”	tools	to	assist	in	creating

these	base	resources	so	the	developer	doesn’t	need	to	start	from	scratch.	This
ensures	that	the	basic	format	of	the	classes	is	correct	and	that	they	match	the
standard	style	for	Android.	The	different	templates	make	it	easy	to	get	started
quickly	and	are	available	for	a	variety	of	different	classes.	You	should	use	these
to	create	your	initial	classes	to	ensure	that	you	are	starting	with	properly
designed	code.

Generating	code	this	way	has	a	few	important	benefits.	The	first	is	that	the	code
is	written	to	Android	and	Java	coding	standards,	so	you	are	starting	with	the	best
code	possible.	The	second	is	that	generating	this	code	automatically	is	generally
faster	than	writing	it	from	scratch,	which	can	be	tedious	and	error-prone.	The	last
benefit	is	that	the	generated	code	works	properly	from	the	start,	so	you	won’t
need	to	spend	time	fixing	errors	and	can	start	implementing	your	business-
specific	code	sooner.

There	are	a	variety	of	templates	available,	ranging	from	the	template	for	creating
a	new	project	to	templates	for	creating	individual	resource	components.

To	access	a	menu	of	code	templates	(Figure	5-5),	select	File	→	New	→	Other	→
Android.

This	displays	many	options	for	creating	a	variety	of	resources	and	code.	You	can
create	a	new	Application	Project,	Icon	Set	(see	Working	with	Graphics	for
details	on	using	this),	or	code	snippets.	This	tool	allows	you	to	launch	wizards
that	will	guide	you	through	creating	these	various	components.	After	the	wizard
walks	you	through	the	process,	the	system	generates	all	the	required	code,
resources,	and	dependencies	and	puts	them	directly	in	your	project.

As	an	example,	I	will	show	how	you	would	use	a	code	template	to	generate	a
master/detail	flow.	This	is	a	common	UI	pattern	where	there	is	a	list	of	items	on
one	side	of	the	screen	and	a	detail	view	of	that	item	is	displayed	in	a	panel	on	the
other	side	when	it	is	selected.

1.	 First,	select	the	desired	option	from	the	templates	option	screen.

Figure	5-5.	Viewing	Code	Templates	menu

2.	 Enter	the	details	about	your	code	in	the	wizard	(Figure	5-6).

Figure	5-6.	Using	a	code	template	to	generate	a	Master/detail	flow

3.	 Review	and	confirm	the	data	you	have	entered.	Accept	your	entries	to
complete	the	wizard	(as	shown	in	Figure	5-7).

Figure	5-7.	Confirming	the	generated	code

4.	 The	system	then	automatically	generates	the	appropriate	code.	For	the
master/detail	flow,	quite	a	bit	of	code	is	created.	All	of	the	activities,
fragments,	layouts,	and	resources	that	are	shown	in	Figure	5-8	were	created
using	this	template.

You	should	explore	each	of	the	code	templates	that	are	available.	There	are	many
different	possibilities	including	various	activity	types,	Android-specific	XML
files,	and	unit	testing	assistance.	Having	the	ability	to	create	framework	code
that	is	written	correctly	and	works	is	something	I	can’t	recommend	enough.	It
will	eliminate	time	spent	debugging	and	ensure	that	your	code	is	written	to
standards.

Figure	5-8.	Viewing	the	code	generated	from	the	Master/detail
TIP

You	are	not	limited	to	using	only	the	existing	templates.	There	is	a	syntax	that	allows	you	to
create	your	own	templates.	There	is	a	good	article	by	Roman	Nurik	titled	ADT	Template
Format	Documentation	that	outlines	how	to	do	this.

Properties	Editors
ADT	includes	editors	designed	to	create	XML	files	without	requiring	direct
editing	of	the	file.	You	can	use	these	editors	to	enter	values	into	a	form,	which	is
easier	than	trying	to	enter	the	properly	formatted	XML	tags	manually.

A	good	example	of	this	is	the	Manifest	Editor.	Every	Android	application	has	a
manifest	file	(which	must	be	named	AndroidManifest.xml).	This	file	contains
information	about	the	application	that	the	Android	system	must	have	before	it
can	execute	the	code.	The	manifest	file	contains	information	about	application
permissions,	the	components	of	the	application	(activities,	services,	etc.),	API
level,	instrumentation	classes	used	by	profilers,	and	a	variety	of	other	important
data.	This	file	is	critically	important	to	Android	development,	and	is	modified
frequently.

The	Manifest	Editor	tool	makes	editing	this	file	easy,	and	less	error-prone.	This
tool	is	launched	when	you	edit	AndroidManifest.xml	(which	is	located	in	your
project	root	directory).	The	tools	will	look	like	Figure	5-9.

http://bit.ly/15WgRc1

Figure	5-9.	Android	Manifest	Editor

The	manifest	wizard	groups	common	elements	together.	Each	can	be	accessed
by	clicking	its	tab	on	the	bottom	of	this	window.	The	tabs	are	organized	as
follows:

Manifest
Allows	you	to	change	general	information	about	your	app	(like	OS	level,

screen	support,	package	name,	version	number,	etc.)

Application
Describes	application-level	components,	as	well	as	general	application
attributes.	You	will	list	the	components	you	use	(activities,	services,	etc.)
here,	and	can	specify	a	variety	of	parameters	specific	to	the	app	execution:
for	instance,	whether	it	is	debuggable,	or	information	relating	to	optional
backup	configurations.

Permissions
Lists	the	Android	permissions	your	app	requires.	For	instance,
android.permission.INTERNET	grants	the	app	the	ability	to	send	or	receive
data	over	the	Internet	in	your	application.

Instrumentation
Allows	a	developer	to	designate	a	class	that	will	be	instantiated	before	any
other	component	in	the	application.	This	class	can	be	used	to	monitor	an
app’s	interaction	with	the	system,	or	set	up	test	functionality.

AndroidManifest.xml
Allows	you	to	edit	the	XML	directly,	if	you	prefer	that.

XML	Formatter
You	probably	know	that	the	layout	files	in	Android	are	designed	using	a
hierarchy	of	XML	tags	to	describe	the	various	views	in	your	interface.	These
files	can	get	complicated	quickly,	and	often	become	disorganized	and	difficult	to
read.	ADT	provides	a	very	useful	key	sequence	that	allows	you	to	quickly
format	XML	files.	In	addition	to	aligning	the	whitespace,	the	tools	go	a	step
further,	and	reorder	the	attributes	within	each	tag.

On	Windows	or	Linux,	you	will	use	the	keys	Ctrl+Shift+F	and	on	Mac	OS	X,
you	will	use	Command+Shift+F.

By	default,	this	will	reorder	the	attributes	to	a	default	standard	that	the	Android

team	has	determined	is	best	for	a	wide	variety	of	developers.	This	default	order
should	work	for	most	people,	but	it	is	possible	to	specify	your	own	order	if	you
prefer.	You	can	specify	your	own	preferences	in	the	following	location:	Window
→	Preferences	→	XML	→	XML	Files	→	Editor.

You	can	learn	more	about	this	in	XML	formatting.

The	Android	Key
This	keyboard	combination	is	worth	mentioning	because	it	provides	quick	access
to	a	few	operations	that	are	frequently	used.	Using	this	shortcut	makes
performing	these	tasks	quicker,	and	speeds	up	the	development	workflow.	You
can	access	these	shortcuts	with	the	following	keystrokes:	on	Windows	and
Linux,	use	Alt+Shift+A,	and	on	Mac	OS	X,	use	Option+Shift+A.

When	you	use	this	key	combo,	a	small	dialog	opens	at	the	bottom	right	of	your
IDE	(as	seen	in	Figure	5-10)	that	contains	three	shortcuts	allowing	you	to	do	the
following	things:

Figure	5-10.	Using	the	Android	key	to	access	shortcuts

Run	Android	Application
Launches	your	app	to	a	running	emulator	(or	starts	one	if	necessary).

Debug	Android	Application
Launches	your	app	in	debug	mode.

Extract	Android	String

Launches	a	dialog	allowing	you	to	extract	a	string	out	of	any	file	and	place	it
in	the	strings.xml	file.

Quick	Outline	for	XML
Use	this	key	sequence	to	launch	a	UI	(as	shown	in	Figure	5-11)	that	shows	the
structure	of	the	current	XML	document	or	Java	class	you	are	editing	inline	with
your	editor.	You	can	then	quickly	navigate	to	any	location	in	the	file.	This	is	a
giant	time	saver,	and	is	my	primary	way	of	navigating	within	my	files.	On
Windows	and	Linux,	use	Ctrl+O,	and	on	Mac	OS	X,	use	Command+O.

Figures	5-11	and	5-12	show	how	the	outline	looks	in	XML	and	Java	classes.

Figure	5-11.	Viewing	the	Quick	Outline	in	an	XML	file

Figure	5-12.	Viewing	the	Quick	Outline	in	a	Java	class

Other	Essential	Eclipse	Shortcuts
It	is	worth	mentioning	a	few	other	key	shortcuts	that	make	development	easier,
but	aren’t	Android-specific.

Ctrl/Command+Shift+R
Open	any	file	quickly	without	browsing	using	the	package	manager	or
navigator.

Ctrl/Command+Q
Go	to	the	last	location	you	edited	(particularly	useful	for	going	right	back	to
the	last	place	you	were	working).

Ctrl/Command+F6
Quickly	navigate	to	any	open	editor.

There	are	a	lot	more	than	I	have	space	to	mention	here.	You	can	access	the	full
list	of	shortcuts	from	the	following	menu:	Help	→	Help	Contents	→	Java
Development	User	Guide	→	Reference	→	Menus	and	Actions.

Refactor	Menu
There	is	one	more	top-level	menu	with	some	useful	options	that	I	want	to
mention	in	this	chapter.	As	the	name	implies,	this	allows	you	to	do	a	variety	of
useful	refactors	to	your	project.	These	are	great	shortcuts	to	help	rearrange	or
clean	up	your	code.	For	example,	one	provides	a	way	to	extract	strings	and	there
are	convenience	utilities	that	allow	you	to	modify	your	layout	when	you	are
editing	a	layout	file.	You	should	use	these	shortcuts	to	modify	your	layouts.	This
can	be	much	less	error-prone	and	quicker	than	editing	the	XML	directly.	You	can
access	this	feature	from	the	menu	by	selecting	Refactor	→	Android	→	Extract
Style.

“Extract	Style”	is	an	example	of	a	useful	feature	available	through	this	menu.
This	is	a	useful	pattern	in	Android,	which	allows	you	to	keep	your	style
independent	of	your	layouts.	This	convenient	shortcut	makes	it	simple	to	extract
elements	from	your	layout	into	styles.xml	(Figure	5-13).

Figure	5-13.	Using	the	tools	to	extract	style	information

ADT	version	21.1	included	some	additional	functionality	that	makes	it	easier	to
rename	item	IDs.	Previously	this	was	challenging,	as	the	developer	was
responsible	for	manually	changing	the	names	in	each	file	where	it	occurs.	This
makes	it	easier	to	rename	a	resource	XML	file,	drawable	name,	field	name,	or
ID.	If	you	are	using	the	layout	editor,	renaming	any	of	these	resources	will
automatically	launch	a	refactoring	routine	that	updates	all	resource	references.

Chapter	6.	Developing	with
Android	Studio

Donn	Felker

Android	Studio	(shown	in	Figure	6-1)	is	the	IDE	for	Android	that	was
announced	in	May	2013	at	the	Google	I/O	developers	event,	and	is	intended	as
an	alternative	to	Eclipse.	At	the	time	of	this	writing,	Android	Studio	is	currently
in	Early	Access	Preview,	with	the	most	recent	version	being	0.0.5.	At	this	time,
Android	Studio	is	not	ready	for	full	end-to-end	Android	application
development,	but	should	be	ready	in	the	coming	months.	I	highly	advise	you
review	this	chapter,	as	this	is	where	Android	development	is	migrating	to	in	the
future.	Android	Studio	is	based	on	the	Java	IDE	called	IntelliJ.	If	you’ve	worked
with	other	products	by	JetBrains	(developer	of	IntelliJ),	such	as	RedMine,
PyCharm,	PhpStorm,	WebStorm,	or	AppCode,	you	will	find	yourself	at	home.
All	IntelliJ	products	share	the	same	shell	IDE,	which	you’ll	see	as	soon	as	you
open	up	Android	Studio.	In	this	chapter,	I	intend	to	familiarize	you	with	Android
Studio	and	show	how	you	can	use	it	for	Android	development.

Figure	6-1.	Android	Studio	with	the	Editor,	Project,	and	Android	panels

Although	Android	Studio	is	a	brand	new	IDE,	it	is	important	to	note	that	most	of
your	IDE	skills	from	Eclipse	apply	to	Android	Studio	as	well.	Most	of	the
tooling	in	Android	Studio	is	very	similar	to	Eclipse,	such	as	shortcuts,	designers,
and	code	editors.	You’ll	still	export	signed	APKs,	view	logcat,	and	edit	code
virtually	the	same	way	in	Android	Studio	as	if	you	were	in	Eclipse.	Think	of
Android	Studio	like	this:	if	Eclipse	were	a	trusty	old	power	drill	used	in
construction,	Android	Studio	is	the	new	cordless	high-powered	version	of	that
same	drill.	Android	Studio	has	some	of	the	same	options,	and	some	new	ones
that	you’ll	need	to	familiarize	yourself	with.	In	the	end,	you’ll	still	feel
comfortable	enough	to	use	the	tool	to	get	the	desired	result—an	Android	app.

Installing	Android	Studio
Google	has	made	installing	Android	Studio	as	simple	as	possible.	Just	visit	the
Android	Studio	page	and	download	the	installer	for	your	platform.	Supported
platforms	include	Windows,	Mac	OS	X,	and	Linux.	Follow	the	installation
instructions	for	your	platform	to	install	the	application.	Installation	instructions
are	not	provided	in	this	chapter	because	installation	instructions	change	often.	If

http://bit.ly/1cQuSJE

you	encounter	issues,	please	visit	the	Android	Studio	installation	page.

Bundled	SDK
Android	Studio	comes	bundled	with	its	own	version	of	the	Android	SDK,	which
is	preconfigured	to	be	used	with	Android	Studio	upon	installation.	On	Mac	OS
X,	it	is	located	in	the	package	contents	for	the	application,	as	I	determined	by
choosing	Android	Studio	→	Show	Package	Contents	(see	Figure	6-2)	and
checking	the	resulting	screen	(as	shown	in	Figure	6-3).	This	means	that	if	you
already	have	an	SDK	installed,	Android	Studio	will	not	use	the	previously
installed	SDK	by	default.	If	you	would	like	to	use	the	existing	SDK	on	your
machine,	follow	these	steps	from	Stack	Overflow.

http://bit.ly/1cQuSJE
http://bit.ly/135ZsgO

Figure	6-2.	Showing	the	package	contents	of	the	Android	Studio	application

Figure	6-3.	The	SDK	folder	in	the	Android	Studio	package	contents

Default	Project	Location
After	installing	Android	Studio,	you	can	create	a	new	project	and	define	a
destination	location	for	the	project	files.	If	you	don’t	explicitly	define	a	location
for	your	project,	Android	Studio	will	place	your	files	into	the
~/AndroidStudioProjects	folder	in	the	current	user’s	folder	on	your	machine.

Anatomy	of	the	Android	Studio	IDE
The	Android	Studio	IDE	is	comprised	of	a	vast	array	of	panels,	tools,	and
functions	to	help	you	become	as	productive	as	possible	at	developing	Android
applications.	I’ll	cover	the	most	common	panels,	windows,	and	toolbars	with
which	you’ll	be	interacting.

Panels
The	main	panels	that	you	will	interact	with	during	your	day-to-day	development
of	Android	apps	appear	in	Table	6-1.

Table	6-1.	Important	panels	in	Android	Studio

Panel Description
Project
Panel

Allows	you	to	navigate	through	the	file	hierarchy	of	your	project	and	select,	open,
edit,	and	perform	various	other	actions	on	your	files.

File
Editor

The	main	editing	window	in	Android	Studio.	This	is	where	you	write	your	code.

Android
Panel

Presents	the	devices	(emulators	and	physical	devices)	connected	to	your	system,	and
allows	you	to	view	the	logcat	output,	filter	the	output,	and	view	ADB	logs.

Messages
Panel

Here	you’ll	find	any	important	messages	that	the	IDE	presents,	such	as	compilation
errors.

TODO
Panel

Shows	all	the	TODO	comments	sprinkled	throughout	your	project’s	code.

Find
Results
Panel

Here	you	can	examine	the	results	of	any	find	command	that	you	execute.	Examples
include	the	Find	Results	command	(Edit	→	Find	→	Find)	and	the	Find	Usages
command	(Edit	→	Find	→	Find	Usages).

Maven
Panel

If	your	project	is	Maven-based,	interact	with	this	panel	to	perform	Maven	activities.

Gradle
Panel

If	you’re	utilizing	the	new	Gradle	build	system,	you	can	find	the	tools	necessary	to
interact	with	Gradle	here.

Event
Log
Panel

At	times,	the	Android	Studio	IDE	may	encounter	an	unexpected	error	or	have
important	events	that	need	to	be	visible	to	you,	the	developer.	This	panel	will	show
you	these	events.

The	final	area,	which	is	of	utmost	importance,	is	the	status	bar	at	the	bottom	of
Android	Studio,	shown	in	Figure	6-4.	This	is	where	the	majority	of	status
updates	will	occur	when	background	processes	run.	Some	of	these	background
processes	include	updating	indices	on	the	files,	Maven	or	Gradle	background
processing,	and	event	errors.	The	right-most	box	shows	the	IDE’s	memory
usage.

Figure	6-4.	The	Android	Studio	status	bar

Toolbars
Android	Studio	ships	with	a	highly	customizable	toolbar	that	is	easily	accessible
from	the	top	of	the	display.	The	default	toolbar	that	ships	with	Android	Studio	is

shown	in	Figure	6-5.

Figure	6-5.	The	default	toolbar	in	Android	Studio

Table	6-2	describes	each	set	of	tools	from	left	to	right.

Table	6-2.	Tools	in	the	default	toolbar

Tool Description
File	Actions Actions	such	as	Open,	Save,	and	Synchronize.

Undo/Redo Undo	and	redo	the	previous	action.

Cut/Copy/Paste Quickly	cut,	copy,	and	paste	from	the	toolbar.

Find/Replace Find	and	replace	values	in	the	project	files.

Navigation Navigate	forward	and	backward	in	the	most	recent	files	that	you’ve
accessed	or	edited	recently.

Build/Run/Debug/Attach These	buttons	are	some	of	the	most	common	buttons	that	you	will
use	in	Android	Studio,	as	they	allow	you	to	build,	run,	debug,	and
attach	to	a	running	Android	process	for	debugging.

Settings These	access	the	IDE	Preferences	and	Project	Structure.

Android	Actions The	Android	Action	Group	allows	you	to	sync	your	project	with	the
Gradle	files,	open	the	AVD	or	SDK	Manager,	and	open	the	Android
Monitor	application.

Help Where	you	can	go	for	help	in	using	Android	Studio.

Useful	Actions	in	Android	Studio
In	addition	to	the	various	panels	and	toolbars,	Android	Studio	has	a	wide	feature
set	that	is	accessible	via	the	top	menu	and	various	contextual	menus.	Table	6-3
shows	a	few	of	the	common	actions	that	you’ll	want	to	familiarize	yourself	with.

Table	6-3.	Common	actions

Action Description
New
Module/Library/Java
Library

You	can	easily	add	a	new	Android	Module,	Android	Library,	or	Java
Library	to	your	application	by	simply	choosing	the	File	→	New	Module
or	File	→	Import	Module	file	option	and	following	the	wizard	through
the	process.

Preferences At	times,	you	may	want	to	customize	Android	Studio.	You	can	do	this	by
accessing	the	Preferences	through	the	Android	Studio	→	Preferences
menu.	Some	options	you	can	edit	are	the	theme	of	the	IDE,	font	sizes,
keymap,	toolbars,	and	many	other	options.

Project	Structure An	Android	project	is	comprised	of	modules	and	libraries,	and	at	times
you	may	need	to	edit	the	settings	for	these	modules	and	libraries.	To	do
so,	you’ll	need	to	enter	the	project	structure	by	visiting	the	File	→
Project	Structure	menu.

Showing	Additional
Windows

Although	the	default	windows	that	ship	with	Android	Studio	are	usually
sufficient	for	day-to-day	Android	development,	there	may	come	a	time
when	you	need	to	get	into	the	gritty	details	of	the	IDE.	To	explore	the
various	other	windows	that	are	available	to	you	(such	as	file	structure,
commander,	VCS	changes,	etc.),	visit	the	View	→	Tool	Windows	menu.

Right-Click	to
Explore

Anytime	you’re	unaware	of	the	actions	you	can	perform	in	the	IDE,
simply	right-click	the	area	in	which	you	would	like	to	see	the	various
options.	Android	Studio	will	present	you	with	the	array	of	options	(if
available)	that	are	possible	in	the	given	context	of	the	IDE	panel	in	which
you’re	working.

Navigation
Navigation	shortcuts	are	used	for	navigating	around	your	code	base	at	the	speed
of	light.	Master	the	shortcuts	in	Table	6-4	and	you’ll	increase	your	productivity
immensely.

Table	6-4.	Keystroke	shortcuts	in	Android	Studio

Action Shortcut	on	Mac	OS	X Shortcut	on	Windows\Linux
Go	to	Class Command	+	O Ctrl	+	O

Go	to	File Command	+	Shift	+	O Ctrl	+	Shift	+	O

Go	to	Definition Command	+	B Ctrl	+	B

Back	/	Forward Command	+	[or] Ctrl	+	[or]

Code	Editor	Tab	Nav Command	+	Alt	+	Left	or	Right Ctrl	+	Alt	+	Left	or	Right

File	Switcher Ctrl	+	Tab Ctrl	+	Tab

Find	Usages Alt	+	F7 Alt	+	F7

Find Command	+	F Ctrl	+	F

Replace Command	+	R Ctrl	+	R

Find	in	Path Command	+	Shift	+	F Ctrl	+	Shift	+	F

Replace	in	Path Command	+	Shift	+	R Ctrl	+	Shift	+	R

The	New	Structure	of	an	Android	Project
When	you	first	open	up	Android	Studio	and	create	your	first	new	project	in	the
IDE,	you’ll	notice	that	Android	Studio	introduces	a	new	paradigm	in	regards	to
folder	and	file	placement	that	is	not	congruent	with	what	you	may	be	used	to	in
Eclipse.	Almost	all	of	your	files	are	located	in	the	src	directory.	The	new	file
structure	is	in	place	in	order	to	support	the	new	Gradle	build	system.

A	Tour	Around	the	New	Structure
As	noted,	the	new	file	structure	puts	the	majority	of	your	files	in	the	src	folder,
as	shown	in	Figure	6-6.	The	files	in	this	folder	are	the	source	files	for	your
project.	These	are	the	files	you’ll	be	editing	the	majority	of	the	time.	This	file
structure	provides	more	flexibility	and	will	eventually	provide	the	ability	to
provide	multiple	build	variants	(different	types	of	builds	with	the	same	project).
Everything	in	your	project	will	still	behave	the	same	for	the	most	part.

Figure	6-6.	An	example	of	the	Android	folder	structure	in	Android	Studio

NOTE
Build	variants	are	not	implemented	at	the	time	of	this	writing.

Running	and	Debugging	an	Android	Project
When	you’re	ready	to	deploy	your	app	to	a	device	or	an	emulator	to	test	and/or
debug	it	(see	Debugging),	you	can	easily	do	so	with	Android	Studio.	The	three
various	methods	for	this	are	Run,	Debug,	and	“Attach	Debugger	to	Android
Process.”	All	three	of	these	commands	are	available	via	the	Run	menu	or	the
main	toolbar	in	Android	Studio,	as	shown	in	Figures	6-7[1]	and	6-8.

Figure	6-7.	The	Run	menu

Figure	6-8.	The	toolbar	run	actions

To	run	an	Android	app	on	the	currently	connected	device,	select	Run	from	the
Run	menu	or	press	the	Run	button	in	the	toolbar.	This	command	will	build	the
Android	application	and	deploy	it	to	the	currently	attached	device.

To	debug	an	Android	app	on	the	currently	connected	device,	select	Debug	from
the	Run	menu	or	click	the	debug	icon	in	the	toolbar.	This	command	will	build
the	Android	app	and	deploy	it	to	the	currently	attached	device,	and	attach	the

debugger	to	it.	At	this	point,	if	any	breakpoints	are	set,	Android	Studio	will	stop
execution	so	that	you	can	inspect	your	runtime	environment	for	debugging.

Another	wildly	useful	tool	is	the	“Attach	Debugger	to	Android	Process”
command.	This	is	mainly	used	when	you	need	to	start	your	app	and	navigate
through	a	series	of	steps	before	attaching	the	debugger	at	a	particular	execution
point	(perhaps	right	before	you	click	a	button	or	before	you	navigate	to	a	new
screen).	This	tool	allows	you	to	quickly	flow	through	your	app	and	then	set	the
breakpoint,	instead	of	having	the	debugger	running	the	entire	time.	To	attach	the
debugger	to	your	currently	running	app,	install	the	app	with	the	run	command	as
outlined	earlier	and	then	select	Run	→	Attach	Debugger	to	Android	Process	or
press	the	“Attach	Debugger	to	Android	Process”	icon	in	the	toolbar.

Creating	New	Android	Components
A	very	common	task	during	Android	development	is	to	create	new	components
for	the	app.	You	can	quickly	accomplish	this	in	Android	Studio	by	right-clicking
on	the	package	name	and	selecting	New	→	Android	Component,	as	shown	in
Figure	6-9,	or	by	pressing	Command+N	on	Mac	OS	X,	or	Ctrl+N	on
Windows\Linux	while	your	package	name	is	highlighted	in	the	src	directory.

Figure	6-9.	New	Android	component	creation

Layout	Designer	and	Layout	Preview
Android	Studio	ships	with	two	graphical	tools	to	help	you	lay	out	your	user
interface:	Layout	Designer	and	Layout	Preview.	Layout	Designer	lets	you

arrange	Views	on	the	screen	by	dragging	and	dropping,	while	Layout	Preview
lets	you	see	how	your	screen	looks	while	you	are	editing	your	XML	resources.
I’ll	provide	a	brief	introduction	to	both	tools	in	this	section.

Layout	Designer
When	you	first	open	an	Android	layout	file,	you’ll	see	the	Android	designer	with
the	Design	tab	selected,	as	shown	in	Figure	6-10.	The	other	tab	is	Text,	which
allows	you	to	hop	into	the	XML	that	defines	the	layout.	I	will	cover	that	in	the
next	section.

Figure	6-10.	The	Android	Layout	Designer

Android	Studio’s	Layout	Designer	allows	you	to	easily	drag	and	drop	controls
onto	the	layout	surface	to	quickly	create	a	prototype	of	the	layout	that	you	need.
Select	one	of	the	controls	from	the	palette	and	drag	it	to	the	layout.	Once	the
control	is	in	place,	you	can	edit	the	various	properties	of	the	control	by	selecting
the	control	and	editing	the	properties	on	the	right,	as	shown	in	Figure	6-10.
Layout	Designer	automatically	creates	the	underlying	XML	code	that	represents
the	layout	you	created.	The	component	tree	shows	you	how	the	layout	is
organized	in	a	hierarchical	fashion.

To	view	the	XML	of	a	particular	control,	simply	select	it	in	the	designer	and

click	Command+B	on	Mac	OS	X,	or	Ctrl+B	on	Windows\Linux.	You	can	also
right-click	and	choose	“Go	To	Definition.”	This	will	open	the	Text	tab	of	the
layout	designer	and	you	are	navigated	to	the	XML	snippet	that	defines	that
control.

In	Layout	Designer,	you	can	select	various	devices	to	emulate,	themes,	API
levels,	and	orientations.	I	highly	advise	you	to	peruse	the	various	options	in	the
designer,	as	it	is	a	very	powerful	tool.

If	you	love	graphical	editors,	the	Layout	Designer	is	great	for	whipping	up	a	user
interface	quickly.	However,	some	of	us	love	to	get	as	close	to	the	metal	as
possible,	and	in	order	to	do	that	you	need	to	edit	the	XML.	To	edit	the	XML,
click	the	Text	tab	at	the	bottom	of	the	Layout	Designer.

Layout	Preview
As	soon	as	you	enter	the	XML	layout,	you	will	notice	that	the	control	palette,
component	tree,	property	editor,	and	drag-and-drop	designer	are	gone	and
replaced	with	a	slew	of	XML	code	and	a	layout	preview.	This	is	shown	in
Figure	6-11.	The	preview	shown	here	is	the	Layout	Preview	tool.	You	can	turn
this	panel	on	and	off	by	selecting	the	Preview	button	on	the	right	side	of	the
screen.	This	panel	is	shown	only	when	the	XML	editor	is	in	use.

The	Layout	Preview	will	update	any	time	you	make	changes	to	the	layout	XML.
As	an	example,	if	you	change	a	TextView	or	Button	to	a	bold	font	style,	the
Layout	Preview	will	show	the	bolded	text.	If	you	like	being	closer	to	the	XML,
this	is	the	view	for	you.	I	often	hop	back	and	forth	between	the	Layout	Designer
and	Layout	Preview	tools	during	my	day-to-day	Android	development.

Figure	6-11.	The	Layout	Preview	with	the	XML	layout	editor

Generating	an	APK
Generating	an	APK	in	Android	Studio	is	a	snap.	Follow	these	steps:

1.	 Select	Generate	Signed	APK	from	the	Build	menu.	This	will	display	the
Generate	Signed	APK	Wizard.

2.	 Select	your	module	and	click	Next.

3.	 Either	supply	the	path	to	your	keystore	that	you’re	currently	using	for	your
Android	application,	or	create	a	new	keystore.

4.	 (Optional)	Once	your	keystore	values	are	provided,	click	“Remember
Password”	and	Android	Studio	will	keep	track	of	your	entered	password	in
a	local	password	database	so	you	don’t	have	to	enter	it	again.	You	will	be
required	to	provide	a	master	password	for	this	password	database,	so	be
sure	you	remember	this	password.	Tools	like	LastPass.com	are	very	useful
for	keeping	track	of	numerous	passwords	safely.	The	remember	password
feature	is	very	useful	if	you	create	or	maintain	a	lot	of	Android
applications.

http://lastpass.com

5.	 Click	Next.

6.	 At	this	point	you	can	define	the	destination	for	your	APK.	You	can	also
specify	whether	you’d	like	to	run	ProGuard	(described	in	ProGuard),	and
where	the	ProGuard	configuration	file	is	located.

7.	 Click	Finish	and	your	APK	will	be	generated	in	the	destination	folder.

Interacting	with	Maven	and	Gradle
Maven	(see	Using	the	Maven	Tools)	and	Gradle	(see	Gradle-Based	Build	Tools)
are	build	systems	that	are	very	popular	within	the	Android	community.	Android
Studio	ships	with	support	for	Maven	and	Gradle	right	out	of	the	box.	This	is
great	considering	that	in	Eclipse	you	had	to	use	a	plug-in	that	was	often	buggy
and	not	entirely	reliable.	Given	that	Android	Studio	ships	with	support	for	both
tools,	you	can	easily	work	with	projects	that	use	either	technology	via	a	panel	in
Android	Studio.

Interacting	with	Maven
Projects	that	use	Maven	are	easy	to	open	in	Android	Studio.	Simply	start
Android	Studio	and	open	the	pom.xml	file.	Android	Studio	walks	you	through
the	Maven	project	import	process.	Once	the	import	is	complete,	you	can	open
pom.xml	and	edit	it	if	needed	for	any	reason,	or	you	can	open	the	Maven	panel.
The	Maven	panel	is	now	populated	with	various	options,	as	shown	in	Figure	6-
12.

Figure	6-12.	The	Maven	panel	expanded

Once	the	Maven	panel	is	expanded,	you	will	be	able	to	explore	the	lifecycle,
various	plug-ins,	and	dependencies.	To	refresh	the	Maven	project,	click	the
refresh	icon	in	the	top	right	of	the	panel.	This	loads	all	of	the	dependencies,
plug-ins,	etc.,	that	are	defined	in	the	pom.xml	file.	To	execute	a	lifecycle	goal,
simply	select	it	and	then	press	the	play	button	in	the	top	part	of	the	panel.	I
recommend	that	you	explore	the	panel	and	its	options,	because	you	can
configure	Maven	and	perform	various	other	actions	within	it.

You	can	build	a	Maven	project	in	Android	Studio	in	a	couple	of	ways.	One	way
is	to	execute	and	build	the	task	you	want	through	the	Maven	panel.	You	can	also
set	up	a	Maven	build	configuration	(Run/Debug	Configuration).	Finally,	you	can
build	through	the	Build	menu.	I	prefer	to	build	through	the	Build	menu	because
Android	Studio	caches	the	files	and	only	builds	off	of	changesets,	so	I’m	not
running	through	an	entire	Android	Maven	build	every	time	(which	can	be	very
time	consuming).

Interacting	with	Gradle

As	with	Maven,	projects	that	use	the	Gradle	build	system	are	very	easy	to	work
with	in	Android	Studio.	There	are	a	couple	of	panels	that	you	should	be	familiar
with.	These	panels	include	the	Gradle	panel	and	the	Build	Variants	panel	as
shown	in	Figures	6-13	and	6-14.	Once	your	project	is	loaded,	you	can	open	the
Gradle	panel	and	interact	with	the	various	tasks.	You	can	also	open	the
build.gradle	file	in	the	editor	and	edit	anything	necessary.

Figure	6-13.	The	Gradle	task	panel

Figure	6-14.	The	Gradle	Build	Variants	panel

Building	your	application	is	quite	easy	with	Gradle.	I	recommend	that	you	use
the	Build	menu	to	build	your	application	because	it	is	the	simplest	way.	If	for
any	reason	your	application	Gradle	files	become	out	of	sync	with	your	Android
application,	you	can	select	the	“Sync	Project	with	Gradle	Files”	option	from	the
toolbar,	as	shown	in	Figure	6-15.	This	will	update	your	project	with	the	settings
defined	in	the	Gradle	file.

Figure	6-15.	Sync	Project	with	Gradle	Files

Version	Control	Integration
Android	Studio	ships	with	numerous	built-in	Version	Control	System	(VCS)
integrations.	These	integrations	allow	you	to	perform	VCS	operations	(commit,
pull,	push,	update,	etc.)	within	Android	Studio:

Git

GitHub

Mercurial

SVN	(Subversion)

CVS

If	you’re	using	something	that	is	not	listed	here,	plug-ins	are	available	for
various	other	VCS	systems	such	as	Team	Foundation	Server,	Perforce,	and
others.

To	configure	your	VCS	system,	select	“Enable	Version	Control	Integration”
from	the	VCS	menu	and	follow	the	steps.	Once	it	is	set	up,	you	will	be	able	to
perform	various	VCS	commands	for	all	the	files	in	Android	Studio.

Migrating	from	Eclipse
Although	Android	Studio	is	not	ready	for	prime	time	yet,	it	will	be	shortly	and
I’m	sure	a	lot	of	folks	are	going	to	be	moving	to	Android	Studio	from	Eclipse.
When	the	time	comes	for	you	to	make	the	move,	you	can	easily	export	your
project	from	Eclipse	using	the	Gradle	export	tool,	and	import	it	into	Android
Studio.	The	Android	team	has	written	an	easy-to-follow	guide	on	how	to	migrate
from	Eclipse.

Android	Studio	Tips	and	Tricks
Android	Studio	is	packed	with	great	keyboard	shortcuts	that	allow	you	to	be
much	more	productive	than	previous	Android	development	environments
(except	for	IntelliJ,	which	is	what	Android	Studio	is	based	on).	In	this	section,
I’m	going	to	show	you	some	of	the	most	common	keyboard	shortcuts	that	you’ll
use	on	a	daily	basis	while	developing	Android	applications.

When	in	doubt	about	what	you	can	do	in	a	particular	scenario,	place	your	cursor

http://bit.ly/14Cc5Bi

in	the	area	of	interest	and	press	Alt+Enter 	to	see	the	various	options,	as	shown
in	Figure	6-16.

Figure	6-16.	Context-specific	options

Errors	can	also	be	refactored	and	edited.	To	do	so,	place	your	cursor	on	the	error
in	the	Android	Studio	file	editor	and	press	Alt+Enter 	(on	all	platforms)	to	view
the	available	options.

Refactoring	and	Code	Generation
Many	of	the	important	code	refactoring	options	available	in	Eclipse	(see
Refactor	Menu)	are	also	available	in	Android	Studio.	I	advise	you	to	review	the
“Refactor	This	…”	option	in	Table	6-5	as	well	as	the	other	options	in	the
Refactor	menu	in	Android	Studio.	Learning	common	refactorings,	such	as
generating	getters	and	setters,	will	save	you	valuable	time	and	ensure	the	code
you	generate	is	standards-compliant.

Table	6-5.	Refactoring	options

Action Shortcut	on	Mac	OS
X

Shortcut	on
Windows\Linux

Refactor	This	… Ctrl	+	T	(after	placing
cursor	on	area	of	interest)

Ctrl	+	T	(after	placing
cursor	on	area	of	interest)

Rename Shift	+	F6	(to	rename
files,	resources,	variables

Shift	+	F6	(to	rename
files,	resources,	variables

—anything) —anything)

Generate:	Create	Constructor,	New	File,
Layout,	Getters/Setters,	Override
Methods,	Copyright

Command	+	N	in	a	file Ctrl	+	N	in	a	file

Miscellaneous	Shortcuts
Table	6-6	shows	a	few	other	miscellaneous	shortcuts	that	I	use	day	to	day.

Table	6-6.	Other	useful	shortcuts

Action Shortcut	on	Mac	OS	X Shortcut	on	Windows\Linux
Go	to	Line Command	+	L Ctrl	+	L

Reformat
Code

Alt	+	Command	+	L Alt	+	Ctrl	+	L

Run/Debug Ctrl	+	R	or	D Ctrl	+	R	or	D

Hiding
Panels

Make	sure	the	panel	is	active,	then	press
Shift	+	Esc

Make	sure	the	panel	is	active,	then	press
Shift	+	Esc

Android	Studio	is	packed	with	a	ton	of	great	features.	Having	used	IntelliJ	for
Android	for	the	last	two	years,	I	can	honestly	say	I’m	twice	as	fast	at	developing
Android	applications	and	I’ve	become	a	better	developer	because	of	it.	I	believe
that	Android	Studio	will	be	an	extension	of	that	same	strength	and	I	hope	you
feel	the	same	way	about	it	after	you	use	it	for	a	while.

Additional	training	resources	are	available	on	my	website,	Donn	Felker—
Android	Studio	Training.	I	will	update	these	tutorials	as	Android	Studio	evolves,
so	I	encourage	you	to	check	it	out	if	you	would	like	to	learn	more.

[1]	The	“Attach	Debugger	to	Android	Process”	item	is	at	the	very	bottom	of	this	long	menu	and	has	been
removed	from	this	screenshot	for	brevity.

http://bit.ly/17cmdfQ

Chapter	7.	Testing	Your	Code

Logcat
The	Android	platform	provides	a	logging	mechanism	called	logcat	for	collecting
and	viewing	system	information.	Logs	from	the	system	and	various	apps	are
output	to	a	series	of	buffers,	which	can	then	be	filtered	with	the	logcat
command.	If	you	have	experience	working	with	Log4J	or	the	java.util.logging
package,	this	will	seem	very	familiar.	You	can	review	output	from	many
different	systems	in	a	single	location	and	filter	it	to	view	information	relevant	to
your	application.	It	is	worth	getting	a	good	understanding	of	all	the	options,	as
this	tool	will	make	your	life	much	easier.

Android	logs	pretty	much	everything	in	the	system	to	a	common	log	file.
Information	about	garbage	collection,	various	system	activities,	and	app	output
are	all	sent	to	the	same	file.	This	provides	a	central	location	to	gather	a	broad
range	of	information	in	a	single	place.	It	is	also	important	to	note	that	this	single
file	is	shared	by	all	apps	installed	on	the	device.	Therefore,	you	should	be	careful
not	to	output	sensitive	information	to	the	logs.	You	can	use	the	Proguard	utility
to	obfuscate	your	code	and	hide	certain	details.	It	can	also	be	used	to	remove	log
statements	when	packaging	your	app	for	release	(details	about	using	this	tool	can
be	found	in	ProGuard.

Viewing	the	Logcat	File
To	view	the	entire	log	file	(without	any	filters),	issue	the	command:

adb logcat

This	outputs	a	very	verbose	log,	which	includes	information	about	all	processes
on	the	system.

Anatomy	of	a	Log	Message

Each	log	message	includes	a	variety	of	metadata	that	can	be	used	to	filter	the
output.

Log	level
Indicates	the	severity	of	the	message	being	reported	from	the	app’s	point	of
view.

Log	tag
Defines	a	process	or	ID	associated	with	a	message.

Log	message
The	content	being	reported.

Reading	logcat	output
Each	line	in	the	logcat	contains	a	variety	of	important	information.	I	want	to
highlight	what	they	mean,	so	you	can	understand	where	to	find	relevant
information	in	the	statement.

Here	are	a	few	lines	from	a	logcat	file:

E/PowerManagerService(170): Excessive delay setting brightness: 101ms, mask=2

V/PhoneStatusBar(308): setLightsOn(true)

I/ActivityManager(170): No longer want com.android.contacts (pid 598): hidden

I/ActivityManager(170): Displayed com.tools.demo/.LogcatDemoActivity: +955ms

D/UI (897): The user has pressed the button

D/UI (897): The user entered a value: value from the call is: 24324

Let’s	look	at	one	statement	to	get	an	understanding	of	exactly	what	information
it	contains.	The	first	statement	we	will	look	at	is	one	generated	from	the	system
(remember	both	system	and	custom	messages	are	output	to	the	same	file).	This
statement	comes	from	the	Android	component	that	manages	activity	interaction
with	the	core	OS,	and	records	how	long	the	Activity	Manager	took	to	render	the
LogcatDemoActivity:

I/ActivityManager(170): Displayed com.tools.demo/.LogcatDemoActivity: +955ms

This	statement	can	be	broken	down	to	understand	the	exact	information	it

contains:

I
This	is	the	severity	level	(see	Filtering	Based	on	Logging	Level).	This	log
statement	was	marked	to	be	output	when	the	Info	level	is	being	output.

ActivityManager
This	is	the	tag	(see	Using	Tags	to	Filter	Output)	used	when	creating	the	log
message.	It	tells	us	which	system	(in	this	case,	Activity	Manager)	was
responsible	for	generating	this	message.

(170)
This	is	the	“Process	ID”	of	the	application	that	originated	this	message.	This
is	a	unique	identifier	assigned	to	an	application	during	runtime,	and	can	be	a
great	way	to	filter	messages.

Displayed	com.tools.demo/.LogcatDemoActivity:	+955ms
This	is	the	custom	content	entered	in	the	log	statement.	In	this	case,	the
message	tells	us	that	an	activity	was	started,	and	how	many	milliseconds	it
took	to	be	created.	To	be	clear,	all	this	content	was	entered	as	custom	text	by
the	application	that	generated	original	log	statement.

We	can	look	at	another	statement;	this	time,	it	is	output	as	a	result	of	a	statement
I	placed	in	my	code.	You	can	see	the	output	from	a	custom	statement	looks
exactly	like	a	system	message	and	contains	the	same	information.

D/UI (897): The user entered a value: value from the call is: 24324

The	information	in	a	custom	statement	is	exactly	the	same	as	the	system
messages:

D
Using	the	Debug	severity	level	for	this	message.

UI

A	tag	I	created	to	keep	track	of	user	interaction	events.

(897)
The	ID	assigned	to	my	application	by	the	OS.

The	user	entered	a	value:	value	from	the	call	is:	24324
Tracks	that	the	user	entered	24324	into	a	form	field.

There	is	a	lot	of	information	in	the	logcat,	which	can	be	difficult	to	manage.
Next	I	will	discuss	some	strategies	for	generating	and	filtering	logs	that	will
make	this	easier.

Filtering	Based	on	Logging	Level
It	is	possible	to	filter	logging	output	based	on	the	severity	of	a	message.	Log
messages	are	displayed	based	on	their	debug	priority.	You	can	specify	a
minimum	level,	and	the	output	will	be	filtered	to	include	only	messages	with	that
level	or	higher.

It	is	important	to	know	the	different	log	levels.	You	want	to	ensure	that	the	level
you	are	viewing	is	appropriate	for	the	type	of	message	you	are	looking	for.	Refer
to	Table	7-1	for	a	breakdown	of	the	log	levels.

Table	7-1.	Logging	levels	shown	by	priority

Identifier	(ID) Name Priority
V Verbose	(show	everything) 1	(lowest)

D Debug 2

I Info 3

W Warning 4

E Error 5

F Fatal 6

S Silent	(Show	Nothing) 7

To	view	all	of	the	messages	with	a	certain	level	(and	everything	with	a	higher
priority),	enter:

adb logcat *:Identifier (ID)

As	an	example,	if	you	wanted	to	see	everything	with	a	priority	of	Error	or
higher,	enter:

adb logcat *:E

TIP
It	is	a	good	idea	to	use	the	D	level	for	most	of	your	log	statements.	As	the	Android	Log	API
states:	“Debug	logs	are	compiled	in	but	stripped	at	runtime.”	This	means	that	any	logs	you
create	with	the	D	level	will	not	be	output	in	your	production	app.	Therefore,	it	is	safest	to	use
this	level	for	most	of	your	log	statements,	in	order	to	make	sure	that	sensitive	data	doesn’t
accidentally	get	output	into	the	field.

Using	Tags	to	Filter	Output
It	is	possible	to	apply	filter	expressions	from	logcat	so	you	see	only	the	messages
that	are	most	interesting	to	you.	The	filter	expressions	have	the	format
tag:level.	You	can	apply	more	than	one	filter	at	a	time	to	isolate	the	specific
information	you	need.

The	procedure	for	finding	messages	of	interest	to	you,	therefore,	is	to	create
custom	tags	in	your	Java	code	and	filter	using	these	tags.	The	syntax	for	this
follows:

Log.level("CustomTag", "Log message")

An	example	of	this	in	use	is:

Log.D("UI", "User entered a value: " + myEditText.getText());

You	can	then	view	only	the	specific	messages	you’re	interested	in	by	typing:

adb logcat UI:D *:S

Getting	the	Most	Out	of	Logcat
As	you	have	seen,	there	are	many	ways	to	filter	the	logcat	output,	making	it	easy

to	ensure	you	are	seeing	the	messages	you	need	to	see.	You	can	apply	as	many
different	filter	expressions	to	your	logcat	command	as	you	need	to	fine-tune
what	is	being	displayed.

To	apply	multiple	filter	expressions,	simply	append	them	to	your	logcat
command	in	the	following	format:

adb logcat TAG1:level

 TAG2:level

 TAG3:level

For	instance,	if	you	want	to	see	all	statistics	from	the	Activity	Manager,	use	the
ActivityManager:*	tag.	To	see	only	messages	with	a	severity	level	of	Error	or
higher	from	the	Power	Manager	component,	use	the	PowerManagerService:E
tag.	To	see	messages	about	the	custom	User	Interface	tag,	use:	UI:*.	Don’t
forget	to	silence	the	other	messages	with	the	tag	*:s	(this	means	silence
everything	else).	The	combination	of	filters	in	this	paragraph	would	look	like
this:

adb logcat ActivityManager:* PowerManagerService:E UI:D *:s

Viewing	Alternative	Log	Buffers
The	logging	system	keeps	multiple	buffers	for	log	messages.	For	certain	content
(such	as	the	radio	or	events),	output	will	be	left	in	an	alternative	buffer	instead	of
the	default	one.	To	see	the	additional	log	messages,	start	logcat	with	the	-b
option	and	specify	the	alternate	buffer	you	wish	to	view.	For	example,	to	view
the	radio	buffer,	enter:

adb logcat -b radio

Predefined	Output	Formats
Log	messages	include	a	variety	of	metadata	fields,	such	as	level,	time,	process
ID,	application,	tag,	and	the	error	text.	There	are	a	variety	of	predefined	output
formats	that	can	be	specified	in	order	to	include	the	specific	metadata	field	you
want	to	see	in	the	display.	You	can	do	this	by	including	the	-v	option	and	one	of
these	predefined	output	formats.

brief

Displays	the	tag	and	the	PID	of	process

raw

Displays	just	the	raw	log	message	without	other	metadata

time

Displays	date,	time	information,	tag,	and	the	PID

long

Displays	all	of	the	metadata	fields	and	puts	blank	lines	between	messages.

For	example,	to	generate	output	data	in	the	time	format,	enter:

adb logcat -v time

Logcat	Viewer	in	Eclipse
In	the	standard	Java	perspective	in	Eclipse,	you	will	notice	a	logcat	tab	()	in	the
collection	of	tabs	on	the	bottom	of	the	screen	(see	Figure	7-1).	This	tool	allows
you	to	navigate	the	logcat	of	the	currently	connected	device	using	some
additional	UI	assistance.

TIP
There	can	be	a	lot	of	noise	in	the	system	log	files.	To	make	things	easier,	you	can	create	an
exclusion	filter	to	exclude	common	system	information	that	you	don’t	want	to	see.	To	create	a
filter:

1.	 Select	the	plus	icon	()	icon	to	create	a	new	filter.

2.	 Specify	a	“Filter	Name.”

3.	 Enter	your	filter	value	in	the	“by	Log	Tag”	section:
^(?!excludeterm1|excludeterm2|excludeterm3).*$.

4.	 I	use	the	following	filter	as	a	good	starting	point:
^(?!dalvikvm|ActivityManager|SystemServer|BackupManagerService).*$.

Figure	7-1.	The	Logcat	tool

Logcat	Example
Logcat	is	a	very	powerful	Android	feature,	but	it	can	be	hard	to	find	what	you
need	in	it	sometimes	due	to	the	amount	of	information	that	is	output	to	the
common	log.	Let’s	step	through	a	simple	example	to	demonstrate	how	to	filter
verbose	system	logs	to	find	the	information	you	want	and	get	a	better
understanding	of	your	code	output.

For	this	example,	I	created	code	that	takes	an	input	value	from	the	user	in	US
dollars	and	sends	this	value	to	a	web	service,	which	returns	the	value	in	Euros.
Finally,	the	value	is	converted	to	a	custom	formatted	style	and	displayed	on	the
user	interface.

Determining	areas	to	monitor
It	is	important	to	think	about	the	specific	characteristics	of	the	code	you	are
logging.	You	want	to	separate	your	logic	into	distinct	areas	(which	will	be
represented	with	custom	tags).	This	will	make	it	easy	to	concentrate	on	specific
areas	because	you	will	be	able	to	isolate	log	statements	based	on	functionality.	In
this	case,	there	are	a	few	particular	functional	areas,	which	should	be	tracked
independently.	The	areas	I	want	to	monitor	include:

User	Interface
Check	the	values	entered	by	the	user,	check	the	values	actually	displayed	on

the	screen,	monitor	when	the	user	presses	a	button,	etc.

Network
Validate	the	URL	I’m	sending,	monitor	connectivity	errors,	display
request/response	values,	etc.

JSON	Parsing
Output	JSON	values	at	various	points	during	the	parsing,	etc.

Formatting
Check	the	algorithm	I	use	to	format	the	values	for	my	application.

AsyncTasks
Track	a	call	through	the	lifecycle	of	this	code.

Creating	log	statements
After	determining	the	categories	I	want	to	log,	I	create	custom	tags	to	represent
each	of	them,	in	this	case:

UI

NETWORK

JSON

FORMAT

ASYNC

TIP

I	create	a	utility	class	with	constants	(e.g.,	public static final String TAG_UI =
"my_tag_ui";)	to	represent	common	categories	I	use.	Then	I	use	this	tag	in	my	code	(e.g.,
Log.d(LogUtil.TAG_UI, "UI Log message");).	That	way,	I	can	easily	look	at	a	particular
subsystem	even	across	multiple	activities,	by	filtering	for	that	particular	tag.

Then	I	put	log	statements	in	my	code	and	use	the	custom	tags	as	appropriate.
The	following	code	snippet	shows	how	I	used	custom	tags	to	track	Web,	JSON,
and	formatting	functionality:

public static String ConvWebCall(String amount) {

 // To save space, I removed code not important to the example

 try {

 HttpClient client = new DefaultHttpClient();

 HttpGet request = new HttpGet();

 ...

 sb.append(amount);

 Log.d("NETWORK", "The URL we are sending is: " + sb.toString());

 request.setURI(new URI(sb.toString()));

 HttpResponse response = client.execute(request);

 Log.d("NETWORK", "Response received");

 ...

 Log.d("NETWORK", "The return String is: " + retStr.toString());

 String page = retStr.toString();

 } catch (URISyntaxException e) {

 Log.e("NETWORK", "URISyntaxException", e);

 e.printStackTrace();

 ...

 }

 Log.d("NETWORK", "Return value is: " + page);

 return page;

}

public static String parseConvedValue(String page) {

 String curr = "";

 try {

 JSONObject jso = new JSONObject(page);

 Log.d("JSON", "JSON Value: " + jso);

 curr = jso.optString("v");

 } catch (JSONException e) {

 Log.e("JSON", "Parsing exception: ", e);

 }

 Log.d("JSON", "JSON Value: currency element is " + curr);

 return curr;

}

private String formatEuroForDisplay(String amount, String name) {

 String euro = "Euro 00.00";

 Log.d("FORMAT", "Before formatEuroForDisplay: " + amount);

 if (amount != null) {

 int index = amount.indexOf(".");

 String euros = amount.substring(0, index + 3);

 Log.d("FORMAT", "Euros back from NETWORK: " + amount);

 euro = "Euro " + euros;

 }

 Log.d("FORMAT", "After formatEuroForDisplay: " + euro);

 String euroString = euro;

 return euroString;

}

Verbose	logging
You	can	run	the	logcat	tool	without	any	filters	(using	the	command	adb
logcat)	to	view	the	unfiltered	output.	As	the	following	printout	shows,	this
output	can	contain	a	lot	of	information	and	be	difficult	to	understand.	The
following	output	is	what	you	would	see	from	a	single	execution	of	our	currency
conversion	workflow.	You	can	look	at	the	tags	to	see	how	the	process
progresses:	first	the	UI	messages,	then	the	FORMAT	ones,	then	the	NETWORK
ones,	and	so	on.

I/ActivityManager(170): START {cmp=com.tools.demo/.LogcatDemoActivity u=0} from

pid 897

W/WindowManager(170): Failure taking screenshot for (328x583) to layer 21010

D/dalvikvm(170): WAIT_FOR_CONCURRENT_GC blocked 0ms

D/dalvikvm(170): GC_EXPLICIT freed 114K, 39% free 13611K/22023K, paused 10ms+9ms,

total 267ms

I/Choreographer(897): Skipped 35 frames! The application may be doing too much

work on its main thread.

E/PowerManagerService(170): Excessive delay setting brightness: 101ms, mask=2

V/PhoneStatusBar(308): setLightsOn(true)

I/ActivityManager(170): No longer want com.android.contacts (pid 598): hidden

I/ActivityManager(170): Displayed com.tools.demo/.LogcatDemoActivity: +955ms

D/UI (897): The user has pressed the button

D/UI (897): The user entered a value: value from the call is: 24324

D/FORMAT (897): formatForWebcall() before: 24324

D/FORMAT (897): formatForWebcall() after: 243.24

D/ASYNC (897): onPreExecute()

D/NETWORK (897): URL to send: http://rate-exchange.appspot.com/currency?

from=USD&to=EUR&q=243.24

D/dalvikvm(897): GC_CONCURRENT freed 121K, 2% free 11063K/11271K, paused

17ms+32ms, total 78ms

D/NETWORK (897): Response received

D/NETWORK (897): The return String is: {"to": "EUR", "rate": 0.756258035, "from":

"USD", "v": 183.9522044334}

D/ASYNC (897): doInBackground(): {"to": "EUR", "rate": 0.756258035, "from":

"USD", "v": 183.9522044334}

D/JSON (897): Json Object is:

{"to":"EUR","v":183.9522044334,"from":"USD","rate":0.756258035}

D/JSON (897): Json parsed currency value: 183.9522044334

D/ASYNC (897): onPostExecute(): result is: 183.9522044334

D/FORMAT (897): Before formatEuroForDisplay: 183.9522044334

D/FORMAT (897): Euros back from call: 183.9522044334

D/FORMAT (897): After formatEuroForDisplay: Euro 183.95

D/UI (897): Setting value on screen to: Euro 183.95

I/ActivityManager(170): START {act=android.intent.action.MAIN cat=

[android.intent.category.HOME] flg=0x10200000

cmp=com.android.launcher/com.android.launcher2.Launcher u=0} from pid 170

W/WindowManager(170): Failure taking screenshot for (328x583) to layer 21015

W/IInputConnectionWrapper(897): showStatusIcon on inactive InputConnection

I/Choreographer(489): Skipped 42 frames! The application may be doing too much

work on its main thread.

Filtering	the	logcat
I	use	the	unfiltered	view	to	get	an	overview	of	my	entire	process,	but	I	often
need	to	get	a	more	granular	view.	To	do	this,	I	use	the	custom	tags	I	created	to
view	the	specific	categories	I	want	to	see.	Because	only	the	information	I	care
about	is	displayed,	it	is	much	easier	to	understand	the	specific	operations	I	am
interested	in.

For	instance,	if	I	wanted	to	see	only	information	related	to	user	interactions,	I
could	filter	based	on	the	UI	tag.	In	this	case,	I	have	an	*	next	to	the	UI	tag
(specifying	I	want	to	see	all	messages),	and	an	*:s	to	specify	that	I	want	to
silence	all	other	messages:

$ adb logcat UI:* *:s

D/UI (897): The user has pressed the button

D/UI (897): The user entered a value: value from the call is: 24324

D/UI (897): Setting value on screen to: Euro 183.95

Another	example	of	something	I	need	to	track	is	the	logic	related	to	making	the
web	call	and	parsing	the	response.	For	this,	I	use	a	combination	of	NETWORK
and	JSON	categories	to	see	the	logic:

$ adb logcat JSON:* NETWORK:* *:s

D/NETWORK (897): URL to send: http://rate-exchange.appspot.com/currency?

from=USD&to=EUR&q=243.24-->

D/NETWORK (897): Response received

D/NETWORK (897): The return String is: {"to": "EUR", "rate": 0.756258035, "from":

"USD", "v": 183.9522044334}

D/JSON (897): Json Object is:

{"to":"EUR","v":183.9522044334,"from":"USD","rate":0.756258035}

D/JSON (897): Json parsed currency value: 183.9522044334

Debugging
Debugging	is	an	important	step	in	the	development	process,	and	can	often	take
longer	than	actually	writing	the	code.	Debugging	Android	apps	can	be
particularly	difficult	due	to	the	various	subsystems	integrated	into	the	OS.	The
ADT	tools	provide	an	integrated	debug	environment	that	makes	this	process
easier.

A	common	method	for	debugging	code	is	to	create	“breakpoints”	that	are
triggered	when	code	takes	a	certain	execution	path.	The	program	execution
pauses	at	that	point,	allowing	you	to	inspect	the	state	of	the	system	(including
current	variable	values	and	application	status).	You	can	use	this	information	to
analyze	how	code	operates	and	locate	errors.

Setting	Your	App	to	Debuggable
In	order	to	debug	an	app,	it	is	necessary	to	specify	that	your	app	is	debuggable	in
the	application	manifest.	If	you	are	deploying	your	app	using	the	ADT	tools
(from	Eclipse	or	another	IDE),	this	is	done	for	you	automatically.	If	you	aren’t
building	your	project	using	those	tools,	you	need	to	set	this	value	manually.	To
specify	that	your	app	is	debuggable,	add	the	android:debuggable="true"
attribute	to	the	application	element	in	your	AndroidManifest.xml	file.	It	should
look	similar	to	this:

<application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:debuggable="true">

WARNING

If	you	set	the	debug	flag	manually,	don’t	forget	to	remove	it	before	releasing	the	app	to
production.	You	don’t	want	this	enabled	in	production,	as	it	will	negatively	impact	your
performance.	If	you	forget	to	remove	it,	there	is	a	Lint	checker	(see	Lint)	that	warns	you	that
this	is	set	when	you	are	doing	a	release	build.

Setting	a	Debug	Point
The	starting	place	in	debugging	is	usually	to	set	a	breakpoint	in	the	source	code
of	your	app.	In	Eclipse,	this	is	done	by	clicking	in	the	“alley”	next	to	a	code	path
and	selecting	“Toggle	Breakpoint.”	You	can	also	set	the	breakpoint	by	pressing
Ctrl+Shift+B	on	Windows	or	Linux,	or	Command+Shift+B	on	a	Mac.	Either
way,	this	triggers	your	IDE	to	show	the	“Debug	perspective”	when	that
particular	code	path	is	reached	during	execution.	For	example,	in	Figure	7-2,	we
set	a	breakpoint	in	the	onCreate()	method	of	the	LogcatDemoActivity.	The
small	caret	next	to	line	12	shows	the	location	of	the	breakpoint.	During	the
execution	of	this	code,	when	this	code	path	is	executed	(in	this	example,	when
the	intializeView()	method	is	reached),	the	Debug	perspective	will
automatically	be	launched,	and	the	code	execution	will	pause	at	this	statement.

Figure	7-2.	Setting	a	debug	breakpoint

The	Eclipse	Debug	Perspective
After	you	have	successfully	configured	your	environment	and	set	a	breakpoint,
the	Debug	perspective	will	automatically	be	launched.	It	can	also	be	launched
manually	by	selecting	Window	→	Open	Perspective	→	Debug.	The	Debug
perspective	will	look	similar	to	Figure	7-3.	Some	sections	on	the	screen	are
worth	highlighting:

Debug
Shows	the	Android	app	that	is	being	debugged	and	its	currently	running
threads.

Variables
Shows	the	values	of	variables	during	code	execution	at	the	particular
breakpoint.

Breakpoints
Contains	a	list	of	all	breakpoints	currently	set	in	your	app.	In	this	view,	you
are	able	to	control	them,	including	enabling	or	disabling	them.

Logcat
Displays	the	system	log	messages.

Code	and	outline	tabs
Displays	the	currently	executing	source	code,	and	an	outline	view.

Figure	7-3.	The	Debug	perspective

Debugging	Example
Let	me	take	you	through	an	example	to	show	you	exactly	how	to	debug	a
specific	element	of	code.	I	created	a	very	simple	bit	of	code	(see	Figure	7-4)

demonstrating	how	to	use	the	debugger	to	inspect	a	value	at	different	points	in
the	execution	cycle.	The	functionality	of	the	code	is	simple.	It	takes	a	value	input
by	the	user,	stores	the	value	to	an	internal	variable,	and	displays	it	back	to	the
screen	after	a	button	has	been	pressed.	Running	the	app	will	look	similar	to
Figure	7-5.

Figure	7-4.	Debug	example	source	code

Setting	the	debug	points
The	first	step	in	debugging	the	app	is	to	determine	the	appropriate	points	in	the
code	to	create	debug	points.	For	this	example,	I	would	like	to	know	the	value	of
the	VALUE	variable	at	two	execution	points.	The	first	is	before	the	user	has
entered	anything,	which	in	this	case	is	Line	28.	I	would	also	like	to	check	the
value	after	it	has	been	set,	so	I’ll	set	another	debug	point	at	Line	30.	Remember,

to	set	a	breakpoint,	just	rightclick	on	the	line	number	and	select	“Toggle
Breakpoint.”	Notice	(in	Figure	7-4)	the	little	blue	indicators	next	to	each	line
number:	these	show	that	the	debug	points	have	been	set.

Figure	7-5.	Running	the	debug	example

Starting	the	debugger
After	setting	the	debug	points,	I	start	the	debugger	by	rightclicking	on	my
project	and	selecting	Debug	As	→	Android	Application	(see	Figure	7-6).

Figure	7-6.	Starting	debugging	with	the	rightclick	menu

This	is	basically	the	normal	routine	I	use	to	run	my	app.	I	must	select	a	device
from	the	Android	Device	Chooser,	and	will	navigate	through	my	app	to	the	point
where	I	want	to	start	debugging.	At	this	point,	I	am	presented	with	a	dialog	(see
Figure	7-7)	asking	if	it	is	OK	to	launch	the	Debug	perspective.	I	click	yes	(and
also	select	the	checkbox	on	the	bottom	to	authorize	this	for	next	time).	This
launches	the	Debug	perspective.

Figure	7-7.	Debug	confirmation	dialog

Stepping	through	the	code
At	this	point,	the	Debug	perspective	is	displayed,	and	the	debugger	has	paused

execution	at	my	first	breakpoint	(see	Figure	7-8).	Notice	the	first	debug	point
(Line	28)	is	highlighted.	I	can	now	use	the	other	tools	to	learn	more	about	my
code	at	this	point.	In	particular,	I	will	use	the	Variables	tab	(on	the	top	right)	to
determine	the	current	state	of	my	VALUE	variable.	At	this	point,	it	is	null	because
I	have	not	entered	the	value	as	a	user.

Figure	7-8.	First	debug	point

To	proceed	to	the	next	debug	point,	I	need	to	tell	the	debugger	to	proceed.	To	do
this,	I	use	the	debug	toolbar	()	to	Resume	(see	Figure	7-9)	and	move	to	the	next
debug	point.

TIP
If	you	hover	your	mouse	pointer	over	these	buttons,	their	functionality	will	be	displayed	and
you	can	discover	advanced	options	for	stepping	through	your	code.

Figure	7-9.	Debug	toolbar

After	I	press	the	Resume	button,	the	debugger	executes	the	code	and	stops	at	the
next	debug	point	(in	this	case,	Line	30).	The	view	has	changed	(see	Figure	7-10),
because	the	code	has	executed	to	the	next	debug	point.	Execution	stops	at	this
point,	and	I	can	inspect	my	code	again	to	determine	how	the	values	of	my
components	have	changed.

Looking	at	the	Variables	tab	now,	I	see	that	the	contents	of	the	VALUE	variable
have	changed,	and	it	now	has	the	value	New Text Entered.

Figure	7-10.	Second	debug	point

I	can	inspect	other	values	at	this	point	as	well.	If	I	click	the	“tv”	component	in
the	Variables	tag	(representing	the	TextView	from	our	code),	I	can	get	a	variety
of	information	about	this	component	(see	Figure	7-11).	I	can	get	information
about	Android	attributes	(such	as	padding,	animations,	or	formatting)	or	state
information	(such	as	the	text	content	currently	displayed).	It	is	very	useful	to
explore	the	various	values	at	different	execution	points	in	order	to	understand
detailed	properties	of	your	components.

Figure	7-11.	Inspect	other	values

Lint
Lint	is	a	static	analysis	tool	introduced	in	ADT	16	that	scans	your	source	code
and	identifies	potential	bugs.	You	can	run	it	from	the	command	line,	use	it
directly	with	the	Java	or	XML	editors,	and	use	it	with	your	build	tools.	It	is
intended	to	identify	potential	issues	based	on	established	rules	and	patterns.	Lint
highlights	these	problems,	and	in	many	cases	provides	suggestions	for
remediation	or	quick	fixes.	It	is	a	powerful	tool	and	an	easy	way	to	improve	the
code	quality	with	minimal	effort.

Lint	checks	for	a	variety	of	different	issues.	Examples	include:

Accessibility	and	internationalization,	such	as	missing	translations

User	interface	optimization,	such	as	highlighting	unused	views

Security,	such	as	highlighting	that	you	are	not	using	HTTPS

Code	errors,	such	as	inconsistent	array	sizes	across	classes

Resource	problems,	such	as	missing	densities	for	certain	icons

You	can	get	a	list	of	every	issue	currently	enabled	by	issuing	the	lint	--list
command.	This	outputs	a	list	of	the	categories	currently	in	use	and	a	complete
list	of	every	issue	with	a	short	description	of	its	purpose.	It	looks	like	this:

$ lint --list

Valid issue categories:

 Correctness

 Correctness:Messages

 Security

 Performance

 Usability:Typography

 Usability:Icons

 Usability

 Accessibility

 Internationalization

Valid issue id's:

"ContentDescription": Ensures that image widgets provide a contentDescription

"LabelFor": Ensures that text fields are marked with a labelFor attribute

"FloatMath": Suggests replacing android.util.FloatMath calls with

 java.lang.Math

"FieldGetter": Suggests replacing uses of getters with direct field access

 within a class

...

Command-Line	Usage
The	simplest	way	to	get	started	with	Lint	is	to	run	it	on	your	project,	and	then
examine	all	the	errors	it	reports	back	to	you.	This	gives	you	a	good	overview	of
the	kind	of	errors	Lint	finds.

To	run	the	tool,	just	execute	the	lint	command,	specifying	the	directory	where
you	have	the	source	code	of	an	Android	project.	If	you	specify	a	directory	that
contains	multiple	projects,	Lint	will	recursively	check	every	project	in	the	path.

Here’s	an	excerpt	from	a	sample	Lint	report	I	ran	on	a	project	of	mine.	You	can
get	an	idea	of	some	of	the	items	identified:

$ lint ./ToolsDemo

Scanning ToolsDemo:

Scanning ToolsDemo (Phase 2):

res/layout/gooduidemo.xml:15: Warning: Should use "sp" instead of "dp" for text

sizes [SpUsage]

 android:textSize="20dp" >

        ~~~~~~~~~~~~~~~~~~~~~~~

reslayout/baduidemo.xml:167: Warning: [I18N] Hardcoded string "Text will go here", 

should use @string resource [HardcodedText]

                    android:hint="Text will go here"

                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

res/layout/baduidemo.xml:120: Warning: Duplicate id @+id/imageView2, already defined

earlier in this layout [DuplicateIds]

 android:id="@+id/imageView2"

                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

res/layout/imagesdemo.xml:23: Warning: [Accessibility] 

Missing contentDescription attribute on image [ContentDescription]

        >ImageView

        ^

res/layout/baduidemo.xml:89: Warning: This tag and its children can be replaced by 

one >TextView/< and a compound drawable [UseCompoundDrawables]

        >LinearLayout

        ^

...

0 errors, 80 warnings

$

The	example	I’ve	included	is	only	an	excerpt,	and	doesn’t	show	every	error	Lint
found	on	my	project.	You	can	see	in	the	last	line	that	Lint	found	0	errors—but	80
warnings,	and	this	project	is	pretty	small.	You	should	run	Lint	on	your	own
project	often,	as	you	are	likely	to	see	a	variety	of	things	that	will	improve	the
quality	of	your	code.

Excluding	issues
You	likely	will	want	to	omit	certain	errors	from	being	checked	(perhaps	you
don’t	support	internationalization,	so	do	not	need	to	be	warned	about	those
issues).	You	can	do	this	from	the	command	line	by	including	the	--disable
list	argument.	The	list	is	a	comma-separated	list	of	issue	IDs	or	categories	you



wish	to	exclude.

For	example,	I	might	want	to	eliminate	any	errors	relating	to	the
Internationalization	category	(perhaps	my	app	uses	English	only),	as	well	as	the
specific	ContentDescription	error	(if	I’m	not	worried	if	my	images	don’t	appear).
When	I	run	the	same	report	as	before,	but	with	the	--disable	argument	in	my
command,	Lint	produces	fewer	items:	26	warnings,	which	is	much	fewer	than
the	80	reported	before.	This	practice	allows	you	to	narrow	down	the	list	of	issues
so	you	can	concentrate	on	the	particular	ones	that	are	most	important	to	you.

$ lint ./ToolsDemo --disable Internationalization,ContentDescription

Scanning ToolsDemo: ................................

Scanning ToolsDemo (Phase 2): .................

res/layout/gooduidemo.xml:15: Warning: Should use "sp" instead of "dp" for text 

sizes [SpUsage]

        android:textSize="20dp" />

        ~~~~~~~~~~~~~~~~~~~~~~~

...

0 errors, 26 warnings

$

It	is	important	to	mention	that	the	--disable	command	is	permanent,	and	not
per	session.	The	issues	will	not	be	reported	on	your	entire	project,	even	when
you	test	from	within	Eclipse,	or	start	a	new	terminal	session.	If	you	intend	to
disable	the	options	temporarily,	make	sure	to	enable	them	when	you	are	finished.
Simply	issue	the	same	command	as	before,	but	use	the	--enable	option	instead.
This	will	rerun	the	Lint	check	and	re-enable	these	issues	for	future	tests.	The
output	will	look	like:

$ lint ./ToolsDemo --enable Internationalization,ContentDescription

Scanning ToolsDemo:

Scanning ToolsDemo (Phase 2):

res/layout/gooduidemo.xml:15: Warning: Should use "sp" instead of "dp" for text

sizes [SpUsage]

 android:textSize="20dp" >

        ~~~~~~~~~~~~~~~~~~~~~~~

reslayout/baduidemo.xml:167: Warning: [I18N] Hardcoded string "Text will go here", 

should use @string resource [HardcodedText]

                    android:hint="Text will go here"



                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

...

0 errors, 80 warnings

$

Running	in	Eclipse
Inside	Eclipse,	it	is	very	easy	to	start	Lint.	Just	rightclick	on	your	project	folder,
then	choose	Android	Tools	→	Run	Lint:	Check	for	Common	Errors.

After	launching	Lint,	you	will	notice	a	new	tab	named	Lint	Warnings	(see
Figure	7-12).	This	is	the	Lint	UI	you	will	use	to	track	and	fix	the	errors.	It
contains	a	tree	of	errors,	organized	by	issue	type.	This	makes	it	easy	to
concentrate	on	a	specific	category.	The	toolbar	has	a	variety	of	actions	for
manipulating	the	list	and	options	for	customizing	the	display.

Figure	7-12.	Lint	Warnings	tab

Lint	toolbar	menu
When	you	highlight	an	error,	the	toolbar	(Figure	7-13)	on	the	top	of	the	tab
becomes	enabled.	This	is	the	Lint	Warnings	toolbar,	which	provides	a	central
place	to	disable	issues.

Figure	7-13.	Lint	Warnings	toolbar

The	buttons,	from	left	to	right,	offer	the	following	tasks:

Refresh
Reruns	the	Lint	tests	and	displays	new	results.

Fix
Launches	the	XML	or	Java	editor	and	modifies	the	source	code	to	fix	the
issue.

Suppresses	the	selected	error	with	an	annotation/attribute
Suppresses	the	warning	for	the	selected	single	instance,	by	placing	the
appropriate	notation	in	the	source	file.

Ignore	in	this	file
All	instances	of	the	selected	issue	will	be	suppressed	for	the	entire	file.

Ignore	in	this	project
All	instances	of	the	selected	issue	will	be	suppressed	for	the	entire	project.

Always	ignore
You	will	not	see	the	selected	error	reported	from	any	project	or	file.

Remove
Deletes	the	selected	issue	from	this	view,	but	does	not	disable	the	issue,	so	it
will	reappear	the	next	time	you	run	Lint.

Remove	all
Deletes	all	issues	from	this	view,	but	they	will	reappear	the	next	time	you	run
Lint.

Expand	all
Expands	every	node	in	the	issue	tree	so	you	can	see	every	independent	issue
reported.

Collapse	all
Collapses	the	issue	tree	so	the	items	are	grouped	into	categories.

Options
Launches	a	dialog	(see	Figure	7-14)	that	contains	a	few	important	options.
This	dialog	provides	another	way	to	enable	or	disable	issues	and	examine	the
issues	that	are	enabled.	This	is	also	where	you	set	your	preferences	for	how
and	when	Lint	runs.

Figure	7-14.	Lint	options

Java	and	XML	editor	integration
By	default,	Lint	runs	automatically,	so	you	have	likely	already	seen	the	errors	it
flags.	Depending	on	the	option	you	specified,	you	will	see	the	errors	flagged
when	you	are	typing	or	when	you	save	your	file.	When	Lint	encounters	an	error,
it	places	a	marker	at	the	line	of	code	with	the	problem.	To	learn	more	about	the
issue,	hover	your	mouse	over	the	warning	icon,	or	the	line	of	code	(underlined	in
yellow)	to	learn	more.	Figures	7-15	and	7-16	show	how	this	looks	in	both	the
XML	and	Java	editors.

Figure	7-15.	Lint	warnings	in	XML	file

Figure	7-16.	Lint	warnings	in	Java	file

Quick	Fix	tool
It	is	likely	that	you	will	want	to	do	more	than	just	learn	about	the	errors	in	your
code—you	probably	want	to	fix	the	problems!	There	is	a	“Quick	Fix”	tool	that
makes	fixing	errors	very	easy.

The	best	way	to	invoke	this	feature	is	to	select	the	code	with	the	error,	and	press
Ctrl+1	on	Windows	or	Linux,	or	Command+1	on	Mac	OS	X.

After	you	launch	the	“Quick	Fix”	dialog,	you	will	be	prompted	with	a	variety	of
options	for	handling	the	particular	warning.	These	are	the	same	options	provided
by	the	Lint	toolbar	(see	Lint	toolbar	menu).	The	options	will	look	like	Figures	7-
17	and	7-18	in	Java,	respectively.

It	is	possible	that	this	functionality	won’t	work	for	every	issue	you	have.	In	cases
where	the	system	is	unable	to	provide	a	“Quick	Fix,”	you	need	to	debug	the	code
yourself	and	determine	the	way	to	fix	your	problem.

Figure	7-17.	Lint	Quick	Fix	in	XML

Figure	7-18.	Lint	Quick	Fix	in	Java

Chapter	8.	Simulating	Events

There	are	a	variety	of	occurrences	you	will	want	to	test	that	are	difficult	to
replicate	as	they	would	happen	in	real	life.	In	these	cases,	tools	are	available	that
will	allow	you	to	simulate	events	so	you	can	test	effectively.

Simulating	Location	and	Routes
For	instance,	testing	location	can	be	challenging.	It	is	impractical	or	impossible
to	travel	to	remote	locations	or	simulate	the	exact	same	track	over	and	over
again.	Fortunately,	the	DDMS	tool	provides	a	way	to	specify	a	location	you
would	like	your	emulator	to	simulate	(as	latitude/longitude	coordinates),	or	a
path	you	would	like	to	simulate	(in	the	form	of	GPX	or	KML).

To	simulate	location,	you	need	to	open	the	DDMS	tool	(see	Launching	the
DDMS	Perspective).	To	launch	the	Eclipse	perspective,	select:Window	→	Open
Perspective...	→	Other...	→	DDMS	→	OK.

Next,	open	the	Emulator	Control	tab	(which	looks	like	Figure	8-1).	In	this	tab,
you	can	see	a	section	marked	Location	Controls,	where	you	can	enter	location
attributes.	When	you	are	done	entering	your	personalized	data,	hit	the	Send,
Load	GPX,	or	Load	KML	button	(depending	on	which	type	of	data	you	are
working	with).	This	causes	your	emulator	to	simulate	the	location	you	specified.

Figure	8-1.	Simulating	location	with	the	emulator

The	following	steps	demonstrate	how	to	simulate	a	particular	location	on	your
device.	The	same	process	can	be	used	to	simulate	a	path	using	KML	or	GPX.

1.	 Launch	the	DDMS	perspective	in	Eclipse.

2.	 Locate	a	device	or	emulator	you	want	to	work	with,	and	highlight	it	in	the
Devices	tab.

3.	 Select	the	Emulator	Control	tab	in	the	right-side	pane	(as	shown	in
Figure	8-2).

4.	 In	the	Telephony	Actions	section,	scroll	to	the	bottom	section	labeled
Location	Controls.	In	this	section,	select	the	Manual	tab,	and	enter	a	valid
latitude	and	longitude	in	the	form.	The	default	value	(which	is	the	default
value	that	is	set)	is	Mountain	View,	California.

Figure	8-2.	Setting	up	a	location	simulation

5.	 You	might	need	to	enable	Location	Settings	on	your	device	if	it	hasn’t	been
done	already	(see	Figure	8-3).	You	will	be	prompted	the	first	time	you	try
to	access	your	location	if	you	need	to	do	it.

6.	 Press	the	Send	button	to	simulate	this	location	of	your	device.	Your	device
now	reflects	this	location.

Figure	8-3.	Viewing	a	location	simulation

Simulating	Telephony	Operations
The	Emulator	Control	tab	has	another	section	called	Telephony	Actions	(see
Figure	8-4),	which	can	simulate	telephone	events	and	radio	connectivity
functionality.	This	is	a	useful	way	to	interact	with	the	emulator	if	you	need	to
simulate	phone	calls	or	SMS	messaging.	It	is	also	useful	to	adjust	radio	settings
in	order	to	learn	your	app’s	effectiveness	in	situations	where	connectivity	is	less
than	optimal.	The	top	of	the	tab	has	a	section	titled	Telephony	Status.	If	you
would	like	to	simulate	connectivity	issues	(such	as	latency	or	packet	loss),	you
can	adjust	these	settings.	The	other	section,	named	Telephony	Actions,	is	where
you	simulate	phone	calls	or	messages.	To	simulate	either	of	these	actions,	enter	a
value	for	the	return	phone	number,	select	the	operation	you	want	to	perform
(either	phone	call	or	SMS),	enter	your	SMS	message	content	(if	appropriate),
and	click	the	Send	button.

Figure	8-4.	Emulator	telephony	simulation

The	following	steps	demonstrate	how	to	generate	an	SMS	message.	This	is	the
same	process	used	to	simulate	phone	calls.

1.	 Launch	the	DDMS	perspective	in	Eclipse.

2.	 Locate	a	device	or	emulator	you	want	to	work	with,	and	highlight	it	in	the
Devices	tab.

3.	 Select	the	Emulator	Control	tab	in	the	right-side	pane	(Figure	8-5).

Figure	8-5.	Setting	up	SMS	simulation

4.	 (Optional)	Adjust	the	Speed	and	Latency	settings	if	you	want	to	test	how
your	app	will	perform	with	poor	connectivity.

5.	 In	the	Telephony	Actions	section,	enter	a	phone	number	(without	dashes)
and	your	example	message	text.

6.	 Press	the	Send	button	to	send	your	simulated	message,	which	will	show	up
on	your	device	or	emulator.	Your	device	shows	an	SMS	has	come	into	the
system	(as	shown	in	Figure	8-6).

Figure	8-6.	Viewing	SMS	simulation

Changing	Networking	Parameters
You	likely	will	want	to	change	the	networking	parameters	of	your	device.	This
can	be	useful	when	you	want	to	forward	requests	from	your	computer	to	your
emulator	or	device	(perhaps	you	want	to	test	a	configuration	of	the	local	network
on	the	Android	system).

It	is	pretty	easy	to	do	this	using	ADB.	The	syntax	will	look	like	this	example:

adb forward tcp:9222 tcp:9333

Then,	the	next	time	you	ping

localhost:9333

from	your	local	desktop,	your	command	will	be	forwarded	directly	to	your
Android	device.

Using	a	Device	with	Sensor	Emulation
It	is	difficult	to	simulate	certain	activities	using	the	emulator,	such	as	when
simulating	multi-touch	or	interacting	with	motion-based	sensors	such	as	the
gyroscope.	To	work	around	this	challenge,	ADT	provides	the	capability	to
connect	a	physical	device	to	your	emulator	and	use	the	sensors	on	that	device	to
interact	with	your	emulator.	The	app	running	on	the	emulator	monitors	changes
in	the	device	sensors,	which	are	transmitted	to	the	emulator	and	injected	into	the
system	image.	This	allows	you	to	generate	various	sensor	events	using	your
physical	device,	and	transmit	them	to	your	running	emulator.

In	order	to	use	this	feature,	you	need	the	system	image	for	Android	version	4.0,
release	2	or	greater	running	in	your	emulator.

The	steps	to	enable	sensor	emulation	are:

1.	 Edit	the	AVD	you	will	be	using.	Add	the	hardware	property	“Multi-touch
screen	support,”	and	set	it	to	true.	Chapter	3	describes	how	to	do	this.

2.	 Install	the	SdkControllerSensor	application	on	the	device.	You	can	find	the
source	code	for	this	application	in	the	$SDK/tools/apps/SdkController
folder.

3.	 Enable	“USB	debugging”	on	your	device,	and	connect	it	to	your	computer.

4.	 Run	the	SdkControllerSensor	application	on	the	device.

5.	 Select	the	particular	sensors	you	wish	to	emulate	using	the	application.

6.	 Enable	port	forwarding	by	running	adb	forward	tcp:1968	tcp:2068	from
the	device’s	shell	command	line.

7.	 Start	the	emulator	that	you	plan	to	test	with.

Port	forwarding	can	be	unreliable.	If	you	are	not	seeing	sensor	events	in	the
emulator,	run	the	adb	forward	tcp:1968	tcp:2068	command	again	to	restore	the
connection.

Advanced	Sensor	Testing
If	you	are	writing	an	app	that	makes	extensive	use	of	sensors,	you	will	likely
face	many	challenges	when	testing	them.	Testing	different	scenarios	can	be
difficult,	even	impossible	in	many	situations.	It	can	be	impractical	to	test
extreme	situations.	For	instance,	if	you	need	to	test	extreme	temperatures,	you
can’t	put	your	phone	in	the	oven	or	freezer.	It	is	also	difficult	to	test	the	exact
precision	of	other	sensors	(try	holding	your	phone	still	for	a	long	period	when
testing	the	gyroscope	for	instance).	SensorSimulator,	an	open	source	project
managed	by	OpenIntents.org,	makes	sensor	testing	much	more	practical.

SensorSimulator	is	a	series	of	applications,	including	a	desktop	component	and
multiple	APKs.	You	can	use	the	desktop	component	to	send	real-time	sensor
events	to	your	device.	Having	the	precise	control	and	ability	to	reliably	trigger
sensor	interactions	is	extremely	valuable	when	writing	apps	that	make	use	of
sensors.	This	tool	also	provides	the	ability	to	record	a	series	of	sensor	events	that
can	be	played	back	on	a	device.	You	can	create	a	scenario	(using	the	desktop
app,	or	by	recording	events	on	your	device),	then	save	it	to	play	back.	This	is	an

http://bit.ly/16zLVem

extremely	valuable	regression	tool,	as	it	allows	you	to	trigger	consistent	sensor
actions	over	and	over.

Supported	Sensors
The	SensorSimulator	project	currently	supports	a	variety	of	sensors	including
accelerometer,	compass,	orientation,	temperature,	light,	proximity,	pressure,
gravity,	linear	acceleration,	rotation	vector,	and	gyroscope	sensors.	You	can
control	how	each	of	the	sensors	are	being	simulated	using	the	Sensors	tab	(the
right	side	of	Figure	8-7	shows	this).	Sensors	can	be	enabled	or	disabled	in	this
window	(they	will	be	highlighted	in	blue	when	enabled).	Only	enable	the	sensors
you	are	testing	so	you	only	see	the	particular	data	in	which	you’re	interested.	If
you	want	to	modify	the	values	of	some	of	these	sensors,	you	can	do	that	in	the
Quick	Settings	and	Sensors	Parameters	tabs.

Figure	8-7.	Optional	sensors

Simulating	Sensor	Events	in	Real	Time
You	will	download,	install,	and	run	this	tool	the	same	as	any	other	native
application	(the	simple	instructions	are	on	the	project	website).	Run	a	desktop

Java	application	(bin/SensorSimulator.jar)	on	your	computer,	install,	and	run	an
APK	on	your	device	(bin/SensorSimulatorSettings-x.x.x.apk),	and	then	connect
the	two	processes	together	using	your	WiFi	connection.	Once	connected,	use	the
desktop	application	to	send	sensor	events	and	view	them	on	your	device.
Figure	8-8	shows	an	example	of	what	it	would	look	like	to	use	the	accelerometer
sensor	to	simulate	moving	the	phone.	You	move	the	mouse	in	the	desktop	to
“move”	the	phone,	and	can	see	these	interactions	on	your	device.

Figure	8-8.	SensorSimulator	accelerometer	example

Recording	Sensor	Scenarios
In	addition	to	simulating	events,	you	can	also	use	this	tool	to	record	a	series	of
sensor	events	to	play	back	on	a	device	or	emulator—called	a	scenario.	This	is
extremely	valuable,	as	it	enables	repeating	the	exact	same	sensor	events	over	and
over.	This	makes	regression	testing	easier.	For	example,	you	could	record	the

exact	interactions	required	to	pass	a	level	of	your	gyroscope	controlled	game—
then	play	it	back	against	a	build	to	validate	it	for	production.

The	easiest	way	to	create	scenarios	is	to	use	the	Java	app	to	generate	them.	The
righthand	section	of	Figure	8-9	has	a	Scenario	Simulator	tab.	To	create	a
scenario,	create	a	sensor	event	representing	a	particular	sensor	state.	You	can
then	create	more	events,	and	string	them	together	to	play	out	a	scenario	(using
the	controls	on	the	bottom	of	the	tab).	Figure	8-9	shows	how	this	would	look	if
you	were	trying	to	simulate	rotating	the	phone.	You	can	use	the	simulator	to	set
up	your	sensors,	or	modify	the	values	directly	by	typing	preferred	values	in	the
middle	tab.	After	you	create	a	scenario	you	like,	save	it,	and	load	it	later	to	play
it	back	on	any	device.

Figure	8-9.	SensorSimulator	recording	scenarios

It	is	worth	mentioning	that	you	can	record	sensor	interactions	on	a	physical
device.	For	complex	scenarios,	this	is	a	simple	way	to	record	a	series	of	UI
actions	that	you	can	play	back	in	the	simulator	later.	Install	and	run	an	app	on
your	device	(SensorRecordFromDevice.apk,	available	in	the	bin	directory)	that
allows	you	to	record	sensor	activities.	You	can	then	play	back	the	recorded
scenario	using	the	desktop	application	in	the	same	manner	as	if	it	were	created

using	the	tool	itself.	This	makes	mapping	a	complex	UI	interaction	pretty	simple
because	you	can	simply	record	your	interactions	and	reliably	play	them	back
over	and	over.	For	complex	scenarios,	this	might	be	a	more	efficient	way	to
record	a	series	of	events	than	creating	them	using	the	Java	tool.

Developer	Options	Menu
The	Android	4.0	release	included	a	revamped	Developer	tool	that	introduced
some	very	interesting	features.	The	tool	can	be	accessed	by	opening	the	Settings
app	on	your	phone,	then	selecting	“Developer	Options”	(if	you	are	on	a	version
4.1	or	newer	device,	see	Tip	to	enable	this	option).	The	app	(see	Figure	8-10)
includes	a	variety	of	advanced	options	that	can	help	you	understand	your	UI	and
app	performance	on	a	deeper	level.	These	options	include:

Strict	mode	enabled
This	flashes	the	screen	when	an	app	is	doing	a	long	operation	on	the	UI
thread.	This	is	useful	to	help	identify	UI	freezes	and	discover	times	when	the
UI	is	unresponsive.	Mobile	users	perceive	very	small	delays,	so	you	need	to
minimize	these	whenever	possible.	This	option	makes	pinpointing	these
long-running	processes	easier	so	they	can	be	moved	to	the	background	and
off	the	UI	thread	(where	they	won’t	cause	your	app	to	freeze).

Pointer	location
Figure	8-11	shows	how	you	can	highlight	a	specific	location	on	the	screen.
You	can	place	your	finger	or	mouse	at	any	place	on	the	screen	to	determine
the	exact	location	of	that	touch	point.	This	is	useful	when	you	need	to
identify	items	that	are	hard	to	touch,	determine	optimal	spacing	between
targets,	or	otherwise	fine-tune	touch	interactivity.	You	can	gather	exact
locations	on	your	UI	based	on	pixel	measurements,	which	can	be	useful	if
you	are	trying	to	map	your	UI	components	to	a	very	exact	location	on	the
screen	(which	can	be	critical	in	certain	types	of	applications	including	games
or	other	graphic-intensive	apps).

Show	screen	updates
This	feature	flashes	independent	areas	of	the	screen	to	highlight	when

different	components	of	the	screen	are	repainted.	This	is	useful	when	trying
to	improve	performance.	You	can	identify	large	screen	redraws	and	try	to
reduce	them	by	selectively	refreshing	certain	views	instead	of	the	entire
screen.

Don’t	keep	activities
Enabling	this	option	forces	the	Android	system	to	destroy	activities	as	soon
as	the	user	leaves	them	(under	the	normal	activity	lifecycle,	they	probably
would	be	moved	to	the	background,	but	kept	alive).	This	can	be	useful	when
trying	to	debug	an	issue	that	is	isolated	to	a	single	activity.	Normally,	if	you
want	to	test	an	activity	that	is	initialized	to	a	new	state,	you	would	be
required	to	quit	your	application	completely	(using	the	system	menu).	Using
this	option	allows	you	to	destroy	your	current	activity,	ensuring	that	when
you	start	it	again	it	is	initialized	from	a	clean	state.

Force	GPU	rendering
This	makes	the	system	use	hardware	acceleration	to	render	graphics.
Enabling	this	option	will	offload	graphics	rendering	to	the	GPU,	which	frees
up	the	CPU	for	other	operations.	In	many	cases,	this	will	improve	your
application	performance,	but	in	some	cases	this	may	cause	issues.	I	suggest
you	enable	this	feature,	and	if	your	app	performs	as	expected	leave	it
enabled.	If	you	are	testing	an	app	that	makes	extensive	use	of	graphics,
enabling	this	option	should	give	you	a	better	idea	of	how	your	app	will
perform	on	a	modern	device	(that	has	a	GPU).

Figure	8-10.	Viewing	the	Developer	options

Figure	8-11.	Highlighting	a	specific	location	with	the	display	pointer

Chapter	9.	Build	Tools

When	building	apps,	at	some	point	it	will	be	necessary	to	compile	your	code,
and	package	it	into	a	deployable	artifact.	This	chapter	outlines	the	tools	used	to
do	this.

The	automated	build	tools	can	also	package	Android	applications.	There	is
support	for	a	variety	of	tools,	including	Ant,	Maven,	and	most	recently	Gradle.	It
is	beyond	the	scope	of	this	book	to	go	into	a	lot	of	detail	about	using	these	tools,
but	let’s	go	through	some	basic	concepts	to	get	you	started.

Compiling	Your	Code
When	writing	computer	applications,	it	is	necessary	to	translate	the	computer
language	you	are	using	(in	our	case	Java)	to	a	different	computer	language	that
the	computer	can	understand	(in	this	case,	Dalvik	Compatible	executables,	or
DEX	files).	This	process	is	called	compiling.	You	will	need	to	do	this	during	the
coding	process	in	order	to	validate	your	code,	and	also	when	you	are	packaging
your	code	for	release.

If	you	are	running	the	most	current	version	of	Java	(or	anything	newer	than
version	1.6),	it	is	necessary	to	set	the	compliance	level	of	your	project	in	order	to
get	Android	to	build	correctly.	To	do	this:

1.	 Right-click	on	your	Android	project.

2.	 Select	Properties	→	Java	Compiler.

3.	 Check	the	“Enable	project	specific	settings”	option.

4.	 Choose	either	1.5	or	1.6	from	“Compiler	compliance	settings.”

The	code	will	then	be	compiled	if	you	are	using	Eclipse	and	have	the	“Build
Automatically”	setting	selected.	To	select	it,	make	sure	Project	→	Build

http://www.gradle.org

Automatically	is	checked.

Packaging	an	APK	for	Release
In	order	to	release	your	app	to	the	Android	market	you	need	to	create	an	Android
application	package	file	(APK).	This	is	a	specially	formatted	ZIP	file	that
contains	the	various	components	of	your	app	(including	compiled	code,	static
resources,	library	code,	and	the	manifest	file).	To	create	an	APK,	source	code	is
compiled	into	DEX	files,	which	are	packaged	together	with	the	other
components,	and	then	signed.	The	output	of	this	process	will	be	a	file	with	the
.apk	extension.	This	file	can	then	be	deployed	to	your	test	devices,	or	uploaded
to	the	Google	Play	Store	for	distribution.

Signing	Your	App
The	Android	system	requires	you	to	digitally	sign	all	apps	with	a	certificate
before	deploying	them	to	the	Google	Play	Store.	Android	uses	the	certificate	to
verify	the	identity	of	the	developer,	which	is	used	to	establish	trust	relationships
between	apps	and	the	framework.

There	are	some	important	things	to	know	about	these	certificates:

You	must	sign	your	app	to	install	it	on	an	emulator	or	device.

When	you	are	developing	your	app,	the	build	tools	will	sign	your	app	with	a
debug	key.	This	key	cannot	be	used	to	sign	an	app	for	release	to	end	users.

Self-signed	certificates	are	allowed.	They	do	not	need	to	be	signed	by	a
signing	authority	such	as	Verisign.

It	is	important	to	ensure	that	your	key	is	valid	for	the	entire	expected	lifespan
of	your	application.	The	Android	docs	specify	that	you	should	use	25	years
for	the	validity	term	(it	must	expire	after	October	22,	2033	if	you	plan	to
deploy	to	the	Play	Store).

TIP
It	is	extremely	important	to	keep	track	of	the	key	you	are	using	to	sign	your	app	if	you	plan	to

deploy	to	the	Play	Store.	You	will	need	to	use	the	same	key	for	all	updates	to	your	app.	If	you
are	not	able	to	sign	your	app	with	the	same	key,	they	will	never	allow	you	to	update	it.

You	can	take	care	of	these	tasks	through	either	a	wizard	or	the	command	line.	I’ll
show	the	wizard	first	because	it’s	easier.

An	Export	wizard	in	the	tools	can	walk	you	through	the	process	of	creating	a
signed	APK	for	deployment.	It	automates	a	variety	of	steps	and	is	easy	to	use.
Launch	the	wizard	by	right-clicking	on	your	project	and	choosing	Android	Tools
→	Export	Signed	Application	Package.	You	are	presented	with	a	series	of
screens	that	walk	you	through	the	process	of	creating	a	Java	keystore,	and
building	an	APK	for	deployment.

1.	 Project	checks.	The	wizard	performs	a	variety	of	checks	to	ensure	the
project	is	valid	and	able	to	be	exported.	If	the	checks	pass,	the	user	is
presented	with	the	initial	screen	(see	Figure	9-1).

Figure	9-1.	Launching	the	Build	wizard

2.	 Keystore	selection.	This	screen	allows	you	to	select	a	valid	keystore	to	be
used	to	sign	the	app.	If	a	valid	keystore	doesn’t	already	exist,	you	can
choose	the	Create	New	Keystore	selection	to	generate	a	new	one	(Figure	9-
2).

Figure	9-2.	Selecting	a	keystore	and	entering	credentials

3.	 Keystore	creation.	If	you	want	to	create	a	new	keystore	for	signing	your
app,	enter	all	the	required	information	into	this	form	(Figure	9-3).	The
wizard	then	generates	the	key	for	you.	This	is	easier	than	using	the	Java
keytool	to	generate	the	key.

Figure	9-3.	Confirming	keystore	information

4.	 Keystore	check.	The	next	step	in	the	process	is	to	validate	the	keystore	to
ensure	it	is	valid	for	the	amount	of	time	necessary.	If	the	keystore	is	valid,
the	APK	is	generated	and	placed	in	the	location	you	specify	(Figure	9-4).

Figure	9-4.	Defining	destination	location	for	APK

At	this	point,	you	have	successfully	generated	a	signed	APK	that	can	be
deployed	to	the	Play	Store	or	Android	devices.

Instead	of	using	the	wizard,	you	can	sign	an	APK	using	the	standard	Java	tools,
then	use	the	command	line	to	sign	the	app.	To	do	this,	first	compile	your	project
and	generate	an	APK	file	(yourApp.apk	in	the	example).	Then	enter	the
following	command:

jarsigner -keystore your-key.keystore yourApp.apk alias_name

Building	from	the	Command	Line	Using	Ant
Ant	is	a	standard	Java	build	tool	that	Android	uses	to	build	projects	under	the

covers.	Although	the	ADT	team	is	replacing	Ant	with	Gradle	(discussed	later	in
this	chapter),	Ant	is	still	the	most	full-featured	build	tool	for	Android.	It	includes
a	variety	of	scripts	that	can	easily	be	modified	to	suit	your	individual	needs.	This
build	tool	is	very	robust,	and	can	be	extended	to	do	many	useful	things	(such	as
running	automated	tests	or	static	analysis	tools).	You	can	learn	more	about	it	at
the	Apache	Ant	home	page.

Ant	comes	preinstalled	with	ADT,	and	will	automatically	be	available	if	you
have	correctly	set	your	PATH	(review	Setting	your	PATH	variable).	There	are
two	main	types	of	builds	you	can	do.

Debug	mode
Used	for	testing	and	debugging	your	app.

Release	mode
Used	when	creating	a	package	for	release.

Building	an	Android	app	(regardless	of	the	type	of	build	you	are	doing)	involves
the	following	steps:

1.	 Compiling	the	Java	code	into	DEX	bytecode.

2.	 Building	the	Android	project	into	a	deployable	APK	file.

3.	 Signing	the	APK,	so	it	can	be	deployed	to	an	emulator	or	device—
remember,	all	apps	must	be	signed	before	they	can	be	deployed	to	a	device.

If	you	are	building	from	Eclipse,	these	steps	are	automatically	performed	by	the
tool.	If	you	are	using	Ant	to	build	from	the	command	line,	some	of	these	steps
need	to	be	done	manually.

Setting	Up	Your	Project
In	order	to	build,	you	need	to	create	a	build.xml	file	that	provides	Ant	with	the
information	it	needs	to	build	the	project.	This	file	is	where	we	will	set	up
information	about	signing	our	app,	running	Lint,	or	mapping	project
dependencies.

http://ant.apache.org/

Creating	the	Ant	build.xml	file
Anyone	who	has	experience	with	Ant	knows	that	these	build	files	aren’t	always
the	easiest	to	work	with.	Build	files	become	large	and	disorganized	quickly.

Fortunately,	ADT	provides	a	tool	that	creates	build.xml	automatically.	To
execute	this	command,	open	a	command	prompt	at	the	base	directory	of	your
project,	and	execute	the	Android	update	command.	Its	syntax	is:

android update project --name project_name --target target_api_id

--path path_to_project

Although	you	can	omit	some	of	the	command-line	options	and	leave	as-is	the
command	settings	in	the	existing	project	files,	it	is	often	useful	to	override	these
settings	in	order	to	specify	support	for	certain	platforms,	or	to	specify	path
values.	For	example:

android update project --name YourProject --target 17 --path

UsersyourUserId/workspace/YourProject

If	you	don’t	want	to	specify	custom	values,	and	are	working	from	the	base
directory	of	your	project,	you	can	simply	enter:

android update project -path .

Building	applications	from	multiple	source	libraries
It	is	very	common	to	use	open	source	libraries	and	other	external	sources	of	code
when	writing	Android	apps.	In	some	cases,	you	can	simply	compile	that	library
into	a	JAR	file	and	include	it	directly	in	your	project.	In	other	cases,	the	library
should	be	compiled	as	part	of	your	build	process.	This	is	easy	to	accomplish
using	the	Android	tools	if	you	follow	some	simple	steps.

1.	 Define	your	project	dependencies	and	target	API.	You	should	have	a	file	in
your	project	home	directory	named	project.properties.	This	file	contains
the	listing	of	each	of	the	libraries	you	have	as	dependencies.	A	sample	file
follows.

This file is automatically generated by Android Tools.

Do not modify this file -- YOUR CHANGES WILL BE ERASED!

#

This file must be checked in Version Control Systems.

#

To customize properties used by the Ant build system edit

"ant.properties", and override values to adapt the script to your

project structure.

#

To enable ProGuard to shrink and obfuscate your code, uncomment this

(available properties: sdk.dir, user.home):

proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:

proguard-project.txt

Project target.

target=android-17

android.library.reference.1=../shared/libs/android/ActionBarSherlock-

4.2.0/library

android.library.reference.2=../CustomLibrary/YourLibraryName

You	will	notice	that	the	header	mentions	that	this	file	is	automatically
generated.	If	you	have	used	the	Eclipse	tools	to	create	your	project,	this	file
should	already	have	everything	you	need,	but	you	may	want	to	validate	the
dependencies	or	their	order.

2.	 Run	the	android	update	project	command,	discussed	in	the	previous
section,	in	each	folder	you	are	including	as	a	dependency.

3.	 Issue	the	ant	command	to	start	the	build:

ant debug

This	compiles	each	of	the	specified	libraries,	before	compiling	the	application
code	or	carrying	out	other	build	operations.

Building	in	Debug	Mode
This	method	creates	an	APK	for	deployment,	signed	by	the	debug	key.	This	app
cannot	be	deployed	to	the	Play	Store,	or	other	places.	This	mode	can	be	used	for
quick	debugging	or	testing	when	it	is	not	necessary	to	create	a	real	signing
certificate.

The	steps	to	building	with	this	method	are:

1.	 Open	a	command	prompt,	and	navigate	to	the	base	directory	of	your

project.

2.	 Issue	the	ant	command	to	start	the	build:

ant debug

3.	 This	creates	an	.apk	file	with	the	name	of	your	project	inside	the	bin
directory	of	your	project	home.	The	file	will	be	signed	with	a	debug	key
that	is	automatically	generated	during	the	build	process.	This	means	that
the	key	is	different	with	each	build,	so	it	will	restrict	you	from	installing
over	old	instances	of	your	app	(because	the	signing	certificate	will	not
always	be	the	same).

Building	an	App	to	Release	to	the	Play	Store
The	Release	mode	creates	an	APK	that	can	be	released	to	the	Play	Store	and
installed	on	other	Android	devices.	This	mode	allows	you	to	specify	the	keystore
to	use	when	signing	your	app.	This	is	very	similar	to	building	in	Debug	mode,
except	that	you	use	a	real	keystore	during	the	signing	process.

Signing	an	app	with	a	custom	keystore
In	order	to	sign	with	a	custom	certificate,	you	need	to	specify	the	following
information	so	the	build	system	knows	which	parameters	to	use	during	the	build.

1.	 Copy	your	keystore	file	to	a	location	on	your	build	machine	and	note	the
location.	If	you	have	not	already	created	a	custom	certificate	for	signing,
review	Signing	Your	App	for	instructions	on	how	to	create	a	valid
certificate.

2.	 Create	a	new	file	in	your	project	home	directory	named	build.properties.

3.	 Insert	the	key.store	and	key.alias	variables	into	this	file	to	tell	the	build
system	about	your	custom	keystore	location	and	keystore	alias.	The
contents	of	this	file	should	look	like:

key.store=/path_to_location_of/my.keystore key.alias=my_key_alias

4.	 After	creating	this	file	and	setting	these	values,	issue	the	ant	release

command	to	start	the	process.

5.	 At	the	appropriate	point	in	the	build	process,	you	will	be	prompted	to	enter
your	keystore	and	alias	passwords.	Enter	the	information	to	complete	the
build.

This	creates	an	application	file	inside	your	bin	directory.	It	will	be	signed
properly	and	named	project_name-release.apk.	Because	it	is	signed	using	a	real
certificate,	you	will	be	able	to	release	this	APK	for	public	consumption.

Storing	the	password	information
It	is	likely	that	you	will	want	to	store	your	password	information	so	that	your
build	can	run	automatically	without	requiring	human	intervention.	In	order	to	do
this,	you	need	to	store	your	keystore	and	keystore	alias	password	information.

You	might	be	tempted	to	include	this	information	in	the	build.properties	file	we
already	created.	While	this	works	technically,	it’s	a	bad	idea.	It	is	generally	not
suggested	that	you	check	secure	information	into	source	control.	In	fact,	many
corporate	security	policies	prohibit	doing	so.	You	generally	want	to	control
access	to	these	sensitive	files	by	storing	them	locally	on	the	build	system,	and
ensuring	read	permissions	are	secured	on	the	file.

1.	 Create	a	new	file	named	secure.properties.	This	will	be	used	to	store	the
password	information,	and	thus	should	be	stored	someplace	secure	where
the	information	is	not	available	publicly.	The	name	and	location	of	this	file
are	completely	up	to	you.	Keep	track	of	this	information	because	we	will
use	it	in	the	following	steps.

2.	 Insert	two	variables	into	this	file	to	tell	the	build	system	about	your
keystore	and	alias	passwords.	You	will	use	the	key.store	and	key.alias
variables	for	this.	The	contents	of	this	file	should	look	like:

key.store.password=keystore_password

key.alias.password=keystore_alias_password

3.	 Now	you	need	to	create	yet	another	file	to	tie	this	all	together,	and	inform
the	build	system	where	it	can	get	the	password	information.	The	new	file	is
named	custom_rules.xml	and	will	be	discovered	automatically	during	the

build.	It	should	look	like:

<?xml version="1.0" encoding="UTF-8"?>

<project name="custom_rules" default="help"/>

<property file="/path_to_secure_location/secure.properties"/>

</project>

4.	 At	this	point,	you	can	issue	the

ant release

command	again.	This	time	however,	instead	of	stopping	to	wait	for	the
password	information	to	be	entered,	the	build	finishes	without	interruption.

5.	 This	application	file	inside	the	bin	subdirectory	of	our	project	home
directory	will	be	signed	with	your	custom	key,	and	named	project_name-
release.apk.	It	is	signed,	and	thus	can	be	released	to	the	public.

Additional	Ant	Commands
There	are	a	variety	of	things	you	can	do	with	Ant.	The	documentation	does	a
great	job	of	explaining	them.	I	highlight	some	of	the	more	useful	options	here,
but	I	suggest	checking	the	documentation	to	learn	more	about	the	advanced
options	available.	Many	of	these	tags	can	be	combined	to	perform	multiple
operations	in	a	single	build.

ant	emma	debug
Builds	a	test	project	with	instrumentation	turned	on.	This	is	designed	to
generate	code	coverage	information	during	a	run.

ant	installd
Installs	an	already	compiled	debug	package	to	a	running	device	or	emulator.

ant	test
Runs	the	tests	in	your	project.	This	works	only	if	the	test	.apk	files	are
already	installed.

http://bit.ly/13615Lt

ant	emma	debug	install	test
This	is	an	example	of	running	multiple	operations	in	a	single	operation.	The
command	shown	will	build	a	test	project,	install	.apk	files,	and	run	the	tests
with	code	coverage	enabled.

Advanced	Packaging	Steps
At	some	point,	it	will	be	necessary	to	do	some	additional	things	to	prepare	your
artifact	to	be	released	to	the	public.	These	things	include	obfuscating	your	code,
minimizing	the	size	of	the	artifact,	and	signing	the	app	with	a	correct	certificate.
The	steps	to	accomplish	these	tasks	are	outlined	in	the	following	sections.

ProGuard
ProGuard	is	a	free	Java	tool	that	shrinks,	optimizes,	and	obfuscates	your	code	in
preparation	for	deployment.	It	does	this	by	removing	unused	code,	replacing
class	or	method	names	with	semantically	distinct	ones,	and	optimizing	bytecode.
This	makes	your	application	smaller,	more	efficient,	and	harder	to	reverse
engineer.	The	process	protects	against	reuse	of	your	code	and	protects	your
confidential	data.

Enabling	Proguard
It	is	very	easy	to	run	this	tool,	and	mostly	automatic,	especially	if	you	package
your	APK	using	the	Export	Signed	Application	Package	wizard	shown	in
Signing	Your	App.	If	your	build	target	is	higher	than	2.3,	this	tool	is
automatically	run	as	part	of	the	packaging	process.	A	default	configuration	file	is
placed	in	the	root	directory	of	your	project,	and	looks	similar	to	the	following
example.	It	is	placed	at	the	root	level	of	your	project	home	and	named	proguard-
project.txt.

To enable ProGuard in your project, edit project.properties

to define the proguard.config property as described in that file.

Add project specific ProGuard rules here.

By default, the flags in this file are appended to flags specified

in ${sdk.dir}/tools/proguard/proguard-android.txt

You can edit the include path and order by changing the ProGuard

include property in project.properties.

#

For more details, see

http://developer.android.com/guide/developing/tools/proguard.html

Add any project specific keep options here:

If your project uses WebView with JS, uncomment the following

and specify the fully qualified class name to the JavaScript interface

class:

-keepclassmembers class fqcn.of.javascript.interface.for.webview {

public *;

}

You	can	enter	specific	configurations	and	rules	for	your	project	in	this	file.	To
enable	ProGuard	to	run	automatically	as	part	of	a	build,	modify	the	file	to
remove	the	#	comment	symbol	before	the	following	statement:

proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:

proguard-project.txt

Your	file	should	then	look	like:

This file is automatically generated by Android Tools.

Do not modify this file -- YOUR CHANGES WILL BE ERASED!

#

This file must be checked in Version Control Systems.

#

To customize properties used by the Ant build system edit

"ant.properties", and override values to adapt the script to your

project structure.

#

To enable ProGuard to shrink and obfuscate your code, uncomment this

(available properties: sdk.dir, user.home):

proguard.config=${sdk.dir}\tools\proguard\proguard-android.txt:

proguard-project.txt

Project target.

target=android-10

Next	time	you	do	a	release	build,	Proguard	will	automatically	be	run,	and	your
code	will	be	obfuscated.	This	means	all	your	error	reports	(including	reports	you
receive	through	the	Play	Store)	will	be	modified	to	a	format	that	is	hard	to	read.

Configuring	ProGuard
Default	ProGuard	rules	are	defined	in	a	file	that	is	external	to	your	project

(${android.home}/tools/proguard/proguard-android.txt).	These	standard	rules
are	defined	by	the	Android	tools	team,	and	should	work	for	most	cases.	The
standard	rules	include	basic	configurations	designed	to	accommodate	most	users.
You	may	need	to	override	these	defaults.	You	should	not	do	this	by	modifying
this	file	directly,	as	it	will	get	updated	with	the	rest	of	the	tools	and	your	changes
will	not	persist.	Instead,	if	you	need	to	define	custom	rules,	define	them	in	the
proguard-project.txt	file	mentioned	in	the	previous	section,	as	they	will	be
persisted	and	won’t	be	overwritten.

There	are	many	different	possible	rule	combinations.	The	following	listing
includes	a	good	starting	point.	It	provides	a	“safe”	configuration	that	should	not
break	your	code	execution,	but	will	still	allow	you	to	get	the	other	benefits	of
ProGuard	(including	packaging	optimization	and	code	obfuscation).

#Does a 5 step optimization

-optimizationpasses 5

#Support for systems - such as Windows that don't care about capitalization

-dontusemixedcaseclassnames

#Don't ignore nonpublic library classes. Is default on newer ADT builds

-dontskipnonpubliclibraryclasses

The Dex tool does its own optimizations, so we shouldn't do them with Proguard

-dontoptimize

-dontpreverify

-dontwarn android.support.**

#Verbose option - will print stacktrace if build fails

-verbose

#To repackage classes on a single package

#-repackageclasses ''

#Keep annotations (if this is uncommented)

#-keepattributes Annotation

#Keep classes with references from the AndroidManifest

-keep public class extends android.app.Activity

-keep public class extends android.app.Application

-keep public class extends android.app.Service

-keep public class extends android.content.BroadcastReceiver

-keep public class extends android.content.ContentProvider

-keep public class extends android.app.backup.BackupAgentHelper

-keep public class * extends android.preference.Preference

-keep public class com.google.vending.licensing.ILicensingService

-keep public class com.android.vending.licensing.ILicensingService

#Keep classes from the Support library

-keep public class * extends android.support.v4.app.Fragment

-keep public class * extends android.app.Fragment

#To maintain custom components names that are used on layouts XML.

#Uncomment if having any problem with the approach below

#-keep public class custom.components.package.and.name.**

In Views, keep getters and setters so that animations still work.

-keepclassmembers public class * extends android.view.View {

 void set*(***);

 *** get*();

}

#To not obfuscate names of methods invoked in a layout's onClick method.

Uncomment and add specific method names if using onClick on layouts

#-keepclassmembers class * {

public void onClickButton(android.view.View);

#}

#Remove debug, verbose, and warning error messages from Logcat

-assumenosideeffects class android.util.Log {

 public static *** d(...);

 public static *** v(...);

 public static *** w(...);

}

#Keep native Java methods

-keepclasseswithmembernames class * {

 native <methods>;

}

#Keep custom components names layouts

-keep public class * extends android.view.View {

 public <init>(android.content.Context);

}

-keep public class * extends android.view.View {

 public <init>(android.content.Context, android.util.AttributeSet);

}

-keep public class * extends android.view.View {

 public <init>(android.content.Context, android.util.AttributeSet, int);

}

#Keep enums

-keepclassmembers enum * {

 public static **[] values();

 public static ** valueOf(java.lang.String);

}

#Keep parcelable classes (when used to serialize objects sent through Intents)

-keep class * implements android.os.Parcelable {

 public static final android.os.Parcelable$Creator *;

}

#Keep the R

-keepclassmembers class **.R$* {

 public static <fields>;

}

#Uncomment if using Serializable

#-keepclassmembers class * implements java.io.Serializable {

private static final java.io.ObjectStreamField[] serialPersistentFields;

private void writeObject(java.io.ObjectOutputStream);

private void readObject(java.io.ObjectInputStream);

java.lang.Object writeReplace();

java.lang.Object readResolve();

#}

Viewing	obfuscated	code
The	ProGuard	technique	of	renaming	variables	makes	it	very	difficult	to	read
and	debug	your	code.	This	is	great	when	you	are	trying	to	keep	other	people
from	viewing	your	code,	but	presents	challenges	if	you	need	to	read	the	code
yourself	(from	a	stacktrace	or	logs).	ProGuard	provides	a	tool	named	retrace	that
allows	you	to	switch	the	nonsensical	names	back	the	real	ones.

After	ProGuard	runs,	you	will	notice	some	new	files	in	the	proguard
subdirectory	of	your	project	home	directory.	These	files	manage	the	obfuscation
process	and	the	consequent	restoration	of	meaningful	names.	The	files	contain:

dump.txt
Includes	information	relating	to	the	internal	structure	of	the	class	files	in
your	project.

mapping.txt
Maps	the	original	names	to	the	obfuscated	names.	This	file	will	be	used	to
decode	obfuscated	messages	back	into	readable	format	(as	described	in	the
following	section).

seeds.txt
Contains	a	list	of	all	the	classes	and	members	that	were	not	obfuscated.

usage.txt
Contains	a	list	of	all	classes	that	were	stripped	from	the	APK.

In	particular,	you	can	use	the	mapping.txt	file	to	de-obfuscate	a	stacktrace	and
read	the	output.	To	decode	a	stacktrace,	run	the	retrace	script	with	two
arguments:	the	name	of	the	mapping	file,	and	the	name	of	the	text	file	containing
the	stacktrace.	On	Windows,	for	example,	enter:

{$android.sdk}/tools/proguard/retrace.bat mapping.txt obfuscated_stacktrace.txt

On	a	Mac	or	Linux,	the	command	is	slightly	different:

{$android.sdk}/tools/proguard/retrace.sh mapping.txt obfuscated_stacktrace.txt

As	an	example,	the	following	error	comes	from	the	logcat	file	of	an	APK	that
has	been	built	using	Proguard.

E/AndroidRuntime(1655): FATAL EXCEPTION: main

E/AndroidRuntime(1655): java.lang.NullPointerException

E/AndroidRuntime(1655): at com.tools.demo.f.onClick(Unknown Source)

E/AndroidRuntime(1655): at android.view.View.performClick(View.java:4084)

E/AndroidRuntime(1655): at android.view.View$PerformClick.run(View.java:16966)

...

Notice	on	the	third	line	that	the	location	in	the	code	that	encountered	the	null
pointer	is	not	shown.	It	has	been	obfuscated	to	look	like
com.tools.demo.f.onClick(Unknown Source).	We	are	not	able	to	see	the
name	of	the	file	or	the	line	number	where	the	error	is	being	reported.

Use	the	mapping.txt	file	to	restore	the	correct	information	through	a	command
like:

{$android.sdk}/tools/proguard/bin/retrace.sh

{$project.root}/proguard/mapping.txt proguarded_log.txt

After	running	this	command,	you	will	be	able	to	read	the	output	and	determine
exactly	where	your	error	is.	The	output	from	this	command	looks	like:

E/AndroidRuntime(1584): FATAL EXCEPTION: main

E/AndroidRuntime(1584): java.lang.NullPointerException

E/AndroidRuntime(1584): at com.tools.demo.ToolsDemoActivity

$1.onClick(ToolsDemoActivity.java:36)

E/AndroidRuntime(1584): at android.view.View.performClick(View.java:4084)

E/AndroidRuntime(1584): at android.view.View$PerformClick.run(View.java:16966)

...

Zipalign
Zipalign	is	a	tool	that	optimizes	APK	archives	by	aligning	all	uncompressed	data
within	the	archive	relative	to	the	start	of	a	file.	This	allows	the	app	to	consume
less	RAM	when	running.	The	tool	should	be	run	on	all	APKs	before	releasing
them	to	the	end	user.	If	you	are	using	the	Export	wizard	to	package	your	code,
Zipalign	will	be	run	automatically.

It	is	also	possible	to	run	it	on	the	command	line.	It	should	only	be	run	after	the
.apk	file	has	been	signed	with	your	private	key.	Otherwise,	the	signing	will	mess
up	the	alignment.

zipalign inFile.apk alignedFile.apk

Gradle-Based	Build	Tools
Official	support	has	recently	been	added	in	ADT	for	Gradle,	a	build	tool	that
many	developers	are	using	to	replace	such	classic	utilities	as	Ant	(the	original
build	tool	used	in	ADT)	and	Maven	(which	was	never	officially	supported	by	the
Android	team).	The	ADT	team	chose	Gradle	as	the	foundation	of	a	new	tool	set
because	it	embodied	many	principles	to	meet	their	goals	of	supporting	the	reuse
of	code	and	resources,	creating	multiple	specialized	variants	of	applications,	and

ensuring	that	the	build	system	is	extensible.	The	Gradle	project	works	hard	to
create	high-quality	documentation.	Documentation	about	its	integration	with
ADT	can	be	found	at	the	ADT	project	site.

The	Ant	build	system	will	be	deprecated	in	Android,	and	the	Tools	team	has
stated	that	Gradle	is	their	build	tool	of	choice	moving	forward.	It	is	strongly
suggested	that	developers	migrate	their	builds	to	this	tool.

Installing	Gradle
In	order	to	use	this	tool,	make	you	have	the	proper	version	downloaded	and
installed.

You	need	version	1.6,	which	you	can	get	from	here:	Gradle	download	site.	Put
Gradle	in	your	PATH	(see	Setting	your	PATH	variable)	and	you	will	be	ready	to
go.

KEY	CONCEPTS	AND	TERMS
There	are	a	few	definitions	you	need	to	know	to	understand	building	with	Gradle.

Product	flavor

This	specifies	a	customized	version	of	the	application	build	by	the	project.	The	concept	helps
manage	small	variations,	such	as	changing	SDK	support,	version	number,	or	release	signing
information.

Build	type

This	determines	how	an	application	is	packaged.	It’s	where	you	do	things	such	as	specify	debug
flags,	enable	ProGuard,	or	specify	native	compilation	settings.	The	system	provides	two	default
build	types,	debug	and	release,	but	you	can	create	your	own	as	well.

Build	variant

This	is	combination	of	a	product	flavor	and	a	build	type.	In	fact,	this	is	the	only	way	to	define	the
output	of	a	build.

Flavor	group

This	allows	you	to	add	even	more	dimensions	to	your	build.	You	would	use	this	if	you	wanted	to
package	differently	for	different	target	environments,	such	as	different	GL	texture	formats	based
on	the	chipset	you	are	targeting.

Sourceset

This	term	is	used	to	define	the	different	source	folders	you	will	create	for	each	build	type	or

http://www.gradle.org/documentation
http://bit.ly/1983q7L
http://www.gradle.org/downloads

product	flavor.

Task

This	represents	an	atomic	element	of	work	performed	during	a	build.	This	might	be	packaging	an
APK,	signing	a	JAR,	or	publishing	an	archive	to	a	repository.

Creating	Multiple	Build	Variations
The	concept	of	Gradle	is	that	you	will	put	files	(Java	class	files,	image	resources,
XML,	etc.)	in	a	particular	folder	designed	to	represent	a	particular	“Product
Flavor.”	The	different	source	folders	(known	as	sourcesets)	represent	different
build	variations.

Gradle	follows	the	concept	of	convention	over	configuration,	which	means	that
if	you	don’t	explicitly	override	something,	the	system	defaults	to	a	standard
configuration.	This	means	it	is	only	necessary	to	include	the	particular	item	that
is	specific	to	your	build	and	let	the	system	handle	the	defaults.

Example
I	will	show	a	few	examples	that	demonstrate	how	easy	it	is	to	customize	build
types	in	Gradle	by	putting	unique	files	in	appropriate	directories.

Let’s	say	you	want	to	change	the	flavor1	build	to	contain	custom	icons	and
translations	for	the	app	you	plan	to	distribute	only	to	Mexico.	You	need	to
replace	the	launcher_icon.png,	and	the	strings.xml	file	(containing	my
translations),	and	use	the	rest	of	the	defaults	from	the	“main”	build.	This	would
look	like	this:

src/

 main/ - standard Android Project files

 AndroidManifest.xml

 aidl/ - ex. my_interface.aidl

 assets/ - ex. database_preload.db

 java/ - ex. com.project.SomeActivity

 jni/ - ex. jni_file.c

 res/ - ic_launcher.png, main_layout.xml, strings.xml

 flavor1/ - files specific to 'flavor1' build

 res/ic_launcher.png - (custom icon for Mexico)

 res/strings.xml - Spanish translations

 ...

As	another	example,	you	could	provide	a	unique	function	that	would	be
available	only	for	a	certain	user	base	(such	as	to	enable	an	advanced	feature
available	only	in	a	“Pro”	build.).	To	do	this,	place	your	unique	activity	and	its
appropriate	manifest	entry	in	the	correct	sourcesets,	which	look	like	this:

src/

 main/ - standard Android Project files

 AndroidManifest.xml

 aidl/

 assets/

 java/

 jni/

 res/

 proVersion/ - files specific to 'Pro' build

 AndroidManifest.xml - contain entry for Activity

 source/com/myapp/pro/ProActivity.java - class for 'Pro' function

 res/pro_activity.xml - the layout file for ProActivity.java

 ...

One	final	example	is	if	you	wanted	to	preload	different	database	data	(perhaps	to
support	different	default	datasets	for	different	target	audiences).	To	handle	this,
you	would	place	specific	database	resources	in	each	folder,	which	looks	like:

src/

 main/ - standard Android Project files

 AndroidManifest.xml

 aidl/

 assets/db_preload.db - default database file

 java/

 jni/

 res/

 dev/ - files specific to 'Developer' build

 assets/db_preload.db - database for 'Developer' release

 qa/ - files specific to 'Developer' build

 assets/db_preload.db - database for 'Quality Assurance' release

 prod/ - files specific to 'Developer' build

 assets/db_preload.db - contains for 'Production' release

 ...

Build	File
To	use	the	build	tool,	you	need	to	configure	it	in	a	file	called	build.gradle	in	the
root	folder	of	the	project.	The	build	file	is	written	using	the	Groovy	syntax.

As	I	mentioned,	Gradle	is	designed	to	use	convention	over	configuration.	This	is
why	the	basic	gradle.build	file	is	actually	very	simple	and	provides	sensible
default	options.	The	most	basic	file	defines:

Repositories	used	to	hold	build	artifacts	and	dependencies

Dependencies	within	your	project

Basic	information	(API	level,	etc.)	specific	to	your	Android	build

Optional	parameters	specific	to	your	Android	build

The	most	basic	build	file	looks	like:

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath 'com.android.tools.build:gradle:0.3'

 }

 }

 apply plugin: 'android' // Note: do not also use the Java Plug-in

 // which will break the build

 android {

 compileSdkVersion 18

 //Optional: Set parameters for a particular buildType

 buildTypes {

 release {

 runProguard true

 proguardFile getDefaultProguardFile('proguard-android.txt')

 }

 }

 //Optional: Define specific parameters for a flavor

 productFlavors {

 flavor1 {

 proguardFile 'flavor1_rules.txt'

 }

 }

}

Build	Tasks
You	can	execute	Gradle	tasks	from	the	command	line,	similar	to	how	you	would
run	an	Ant	task.	Enter	the	gradle	command	followed	by	the	task	you	wish	to
execute,	such	as:

gradle build

You	can	define	your	own	task,	or	use	one	of	the	common	default	ones:

assemble
Create	the	output	of	a	project.

check
Run	the	tests	to	ensure	the	validity	of	the	build.

build
Performs	both	the	check	and	assemble	tasks.

clean
Removes	files	created	by	a	build.

To	see	a	list	of	all	possible	tasks	and	their	dependencies,	run:

gradle tasks --all

Just	as	with	Ant,	you	can	issue	multiple	tasks	in	a	single	command	and	they	will
be	executed	in	order:

gradle clean build

Generating	a	Gradle	Build	from	Eclipse
It	is	possible	to	generate	a	Gradle	build	from	your	existing	Eclipse	project.	This

will	not	change	your	existing	project,	but	will	add	the	appropriate	Gradle	build
files.	The	steps	to	do	this	are:

TIP
If	you	use	the	new	Android	Studio	IDE,	you	can	import	a	project	without	generating	the
Gradle	build	file.	It	will	successfully	build	and	run	within	Android	Studio,	but	you	will	not	be
able	to	use	build	variants	or	other	advanced	features	in	the	future.	It	is	strongly	suggested	that
you	generate	a	Gradle	build	file	(or	write	your	own)	if	you	plan	to	use	Android	Studio.

1.	 Update	your	ADT	Plug-in	to	version	22.0	or	higher.

2.	 Select	File	→	Export.

3.	 In	the	next	dialog,	select	Android	→	Generate	Gradle	build	files.

4.	 Select	the	projects	you	want	to	export,	and	click	Finish.

Using	the	Maven	Tools
As	with	most	things	Android,	the	developer	is	not	stuck	using	the	supported
tools.	There	is	good	support	for	using	other	build	tools,	including	Maven.

To	learn	more	about	Maven	integration,	I	suggest	checking	out	the	great	free
resources	at	Sonatype,	and	in	particular,	the	Android-specific	chapter:	Android
Application	Development	with	Maven.

http://bit.ly/14CcuDy

Chapter	10.	Monitoring	System
Resources

It	is	important	to	monitor	resource	usage	on	mobile	devices	because	memory	is
limited.	In	this	chapter,	I	show	how	to	use	the	profiling	tools	to	help	you
understand	your	application’s	memory	usage.

Memory	Usage	in	Android
Android	programmers	don’t	explicitly	allocate	free	memory,	as	they	do	in	other
languages	like	C++.	It	is	still	possible	to	create	a	“memory	leak.”	This	is	when
code	keeps	a	reference	to	an	object	that	is	no	longer	used,	which	can	prevent	a
large	set	of	objects	from	being	garbage-collected.	This	can	be	a	result	of
improper	scoping	of	variables,	not	closing	handles	to	system	resources	after
using	them,	or	long-running	processes	that	may	not	expire.

The	Dalvik	runtime	is	garbage-collected,	which	means	that	unused	memory	is
automatically	recovered	by	the	system	at	certain	intervals.	This	might	lead	you
to	think	that	you	can	ignore	memory	usage	entirely	because	the	system	will
eventually	take	care	of	it.	This	is	not	true,	as	memory	issues	can	manifest	in
many	different	ways.	Some	may	be	obvious,	such	as	getting	an	OutOfMemory
exception	due	to	not	recycling	your	bitmaps	correctly.

There	are	other	issues	related	to	memory	usage	that	are	far	more	difficult	to
debug	and	that	can	impact	performance	more	significantly.	These	are	issues
related	to	inefficient	garbage	collection	as	a	result	of	frequent	or	large	collections
that	manifest	themselves	in	ways	that	aren’t	as	obvious.	Instead	of	your	app
force	closing	with	an	OutOfMemory	exception,	your	app	continues	to	run,	but
with	degraded	performance,	pauses,	continues,	or	stutters.	Garbage	collection	is
an	expensive	operation	for	the	system	to	run.	It	is	best	to	manage	memory
efficiently	in	your	code	so	the	process	runs	less	frequently.

Memory	issues	are	very	common	in	Android,	so	you	will	likely	encounter	a
variety	of	issues	throughout	your	development.

Dalvik	Debug	Monitor	Server	(DDMS)
The	main	tool	you	will	use	to	analyze	memory	is	called	the	Dalvik	Debug
Monitor	Server	(DDMS).	This	tool	is	used	to	analyze	memory	consumption	over
a	given	time	period.	You	will	use	this	tool	to	understand	how	the	footprint	of
your	app	grows	over	time	(in	particular	relating	to	memory	and	thread	usage).	It
offers	fine-grained	information	about	your	app	in	relation	to	performance	by
providing	statistics	about	memory	and	thread	usage.	The	tool	itself	will	likely
look	familiar	to	you	by	this	point,	as	we	already	covered	some	of	its	usage
earlier	in	the	book	(see	The	Devices	Tool).	I	am	going	highlight	some	of	the
other	tools	you	might	not	have	used	that	are	particularly	useful	for	diagnosing
resource	issues	and	eliminating	performance	problems.

Launching	the	DDMS	Perspective
It	is	useful	to	have	a	single	view	of	all	the	DDMS	tools	in	one	place.	Fortunately,
ADT	has	already	created	this	for	us.	The	DDMS	perspective	organizes	the	most
important	device	tools	into	a	single	view,	which	is	useful	when	analyzing
performance	and	device	functionality.	To	launch	this	perspective,	select:
Window	→	Open	Perspective...	→	Other...	→	DDMS	→	OK.

TIP
There	is	also	a	version	of	the	tool	that	can	be	run	from	the	command	line	without	Eclipse.	This
is	particularly	useful	for	team	members	that	might	not	have	the	full	development	suite
installed,	but	could	still	benefit	from	using	these	tools.	The	tool	is	named	Android	Debug
Monitor	and	can	be	started	with	the	following	command:

{$android.sdk}\tools $ monitor

After	launching	the	DDMS	or	the	Device	Monitor	(see	Figure	10-1),	you	will
see	a	screen	with	a	few	important	tools:

Figure	10-1.	Android	Debug	Monitor

Analyzer	Tool
Used	primarily	to	track	memory	over	a	specific	time	period.	You	will	be	able
to	track	allocation	order,	size,	where	the	allocation	occurred,	and	a	stacktrace
showing	the	specific	classes	associated	with	the	memory	allocation.

Threads
Offers	information	about	thread	usage	within	your	process.	You	can	get
information	about	current	status,	utime,	name,	and	a	stacktrace	listing	all	the
classes	being	accessed	by	that	thread.

Heap
Used	to	track	general	information	about	your	heap	usage,	including	its	size,
how	much	space	is	used,	and	the	number	of	objects	allocated.

Traceview

Tool	for	tracing	method	calls,	including	timing	and	resource	allocation.

Each	of	these	tools	serves	a	unique	purpose	and	has	its	own	usage	nuances.	I	will
describe	details	about	each	one.

Analyzer	Tool
This	tool	allows	you	to	track	individual	memory	allocations	in	an	Android	app.
This	can	be	extremely	useful	when	analyzing	how	a	particular	application	flow
is	consuming	memory.

Running	the	tool
The	steps	to	run	the	Analyzer	Tool	are	straightforward:

1.	 Launch	the	app	you	want	to	profile	on	a	device.

2.	 If	you	want	to	test	a	particular	code	path,	navigate	through	your	UI	until
you	are	at	the	point	just	before	the	code	is	executed.

3.	 In	the	Devices	tab	of	DDMS,	highlight	the	process	you	want	to	track.

4.	 Select	the	Analyzer	Tool	tab	().

5.	 Press	the	Start	Tracking	button.

6.	 Exercise	your	application	to	execute	the	code	you	wish	to	analyze.

7.	 Click	the	Get	Allocation	button	to	gather	metrics.	This	generates	allocation
information	based	on	that	time.	You	can	press	this	button	as	many	times	as
you	want,	to	refresh	the	allocation	information.

8.	 Click	the	Stop	Tracking	button	when	you	are	done	to	finish	the	process.

Viewing	the	results	of	Analyzer	Tool
After	running	the	tool,	you	will	see	details	about	the	memory	allocations	that
occurred	(see	Figure	10-2).	This	shows	the	objects	that	were	allocated	and	a
variety	of	information	about	them.	The	information	includes	the	allocation	order,
the	amount	of	memory	allocated,	and	the	type	of	object	created.	If	you	select	one

of	the	elements	in	the	list,	you	can	see	the	stacktrace	containing	the	names	of	the
classes	that	were	allocated.

If	you	would	like	to	find	a	specific	class	in	the	list,	you	can	type	the	name	into
the	Filter	box.	The	search	will	happen	as	you	are	typing.

Figure	10-2.	Viewing	output	from	the	Analyzer	Tool

To	see	even	more	detail	about	a	particular	object,	highlight	it	to	display	a
stacktrace	in	the	second	table.	This	view	has	more	details	about	the	object,
including	the	file,	object,	and	method	where	it	was	created	and	the	stacktrace
that	led	to	the	allocation.

Threads
When	you	start	an	application,	the	Android	system	launches	a	new	Linux
process	with	a	single	thread	of	execution.	In	general,	all	components	of	an	app
run	within	the	same	process	and	thread,	which	is	commonly	called	the	UI
Thread.	Because	everything	runs	off	this	single	process,	it	is	important	to
identify	particular	processes	that	are	blocking	execution	(and	thus	locking	up	the
rest	of	the	app).	Fortunately,	the	Threads	tool	makes	it	easy	to	track	a	variety	of
statistics	about	thread	usage.

Running	the	Threads	tool
To	run	the	Threads	tool:

1.	 Launch	the	application	you	want	to	profile	on	a	device.

2.	 In	the	Devices	tab,	highlight	the	process	you	would	like	to	track.

3.	 Click	the	Update	Threads	icon	()	to	enable	profiling	(you	will	click	this
again	after	you	are	done	to	stop	tracking).

4.	 Select	the	Threads	tab	()	on	the	right.

5.	 Click	the	Refresh	()	button	once	to	ensure	that	you	are	viewing	current
threads.

Viewing	thread	information
The	output	from	running	this	process	should	appear	as	in	Figure	10-3.	The	top
tab	includes	a	variety	of	information	regarding	thread	status	and	execution	time.

The	information	on	the	bottom	tab	is	a	stacktrace	related	to	a	single	thread.	To
see	this	detailed	information,	highlight	a	single	thread	in	the	top	pane.

Figure	10-3.	Viewing	information	about	Heap	execution

Heap
The	Heap	tool	makes	it	easy	to	view	how	much	heap	memory	a	process	is	using.
This	is	useful	to	track	memory	usage	at	certain	execution	points.

Running	the	Heap	tool
To	run	the	Heap	tool:

1.	 Launch	the	application	you	would	like	to	profile	on	a	device.

2.	 In	the	Devices	tab,	navigate	to	your	application	and	highlight	the	process
you	plan	to	track.

3.	 Click	the	Update	Heap	icon	()	to	enable	profiling	(you	will	click	this
again	after	you	are	done	to	stop	tracking).

4.	 Click	the	Cause	GC	button	()	to	collect	the	current	heap	information.

5.	 Select	the	Heap	tab	()	on	the	right.

Viewing	heap	information
The	output	from	running	this	process	should	look	like	Figure	10-4.

Figure	10-4.	Heap	view

The	heap	information	is	displayed	in	three	sections:

The	top	section	contains	overview	information	about	the	heap,	including	size
and	how	much	memory	is	allocated.

The	center	section	contains	more	detail	about	the	objects	that	are	in	the	heap,
including	details	about	how	much	memory	they	are	consuming.

The	bottom	panel,	“Allocation	count	per	size,”	is	a	graphical	representation
that	shows	when	specific	objects	were	created	in	relation	to	the	overall	size	of
the	heap.

Traceview
Traceview	is	a	tool	that	gives	very	fine	details	about	the	execution	path	of	an
application,	including	when	a	method	or	thread	was	started,	what	methods	or
threads	were	accessed	while	it	was	running,	and	when	it	stopped.	This	can	be

useful	if	you	are	working	on	optimizing	particular	code	paths,	as	it	allows	you	to
track	very	fine	details	about	your	performance	(and	understand	if	your
optimizations	are	effective).	The	tool	includes	support	for	saving	the	files	it
creates,	which	makes	it	possible	to	track	optimizations	over	time	because	it	is
easy	to	keep	a	historical	record.

To	generate	a	traceview,	press	the	button	()	in	the	Devices	tab.	You	will	be
shown	a	dialog	with	a	few	options	(location	of	the	file,	duration	to	run,	max	size
of	the	file).	Specify	your	options	and	click	OK	to	generate	the	file.	After	the
traceview	has	been	generated,	the	viewer	(Figure	10-5)	launches	automatically.

You	can	start	Traceview	from	the	command	line	(if	you	wish	to	look	at	an
existing	file)	using	the	following	command:

traceview filename.trace

Figure	10-5.	Example	output	from	Traceview

Traceview	output—timeline	panel	(top	section)

The	timeline	panel	(see	Figure	10-5)	allows	you	to	see	detailed	information
about	the	execution	path	and	order	of	methods	within	your	app.	It	shows	the
threads	and	resources	the	app	consumes	across	the	time	period	you	were
tracking.	This	includes	the	classes	and	methods	that	are	being	used,	how	often,
and	how	much	time	is	spent	in	each	call.	You	can	get	finely	grained	detail	about
parent/child	relationships	and	CPU	utilization	metrics.	There	are	two	sections	of
the	view,	showing	different	types	of	information.

The	timeline	is	color	coded	to	coordinate	with	specific	process	names	in	the
lower	pane.	Each	method	is	displayed	in	its	own	color-coded	column.	You	can
look	at	this	chart	and	quickly	determine	which	methods	are	taking	the	most	time
to	execute	by	looking	for	areas	in	the	graph	with	the	most	color	(which
represents	more	time	spent	in	that	method).	You	might	notice	some	small	lines
beneath	these	columns.	These	are	designed	to	show	the	extent	(entry	to	exit)	of
the	calls	to	the	method	being	tracked.

Profile	panel
This	panel	is	designed	to	show	more	detailed	information	about	the	time	spent	in
a	method,	so	that	you	can	get	fine	details	about	the	timing	of	your	method
execution.	You	can	track	entry	and	exit	times	and	the	time	actually	spent	in	the
method.	It	is	even	possible	to	track	executions	between	methods	by	clicking	on
the	triangle	()	next	to	the	method	to	expand	and	see	its	children.

This	table	includes	a	few	different	columns	including	information	about	CPU
time,	and	actual	time	spent	in	a	method.	You	can	gather	exact	times	(in
milliseconds)	or	percentages	(%,	which	indicates	the	ratio	of	time	spent	in
relation	to	total	execution	time.)	There	are	a	few	different	columns	representing
different	data.	The	tool	shows	the	data	in	two	distinct	ways:

Exclusive	time	(Excl)
Time	spent	within	the	method

Inclusive	time	(Incl)
Time	spent	in	the	method	and	time	spent	in	any	functions	called	by	that
method

The	Traceview	tool	is	useful	for	determining	nuanced	details	about	the	execution

order	of	your	app,	which	is	useful	when	debugging	applications	with	complex
execution	paths.	It	is	also	a	great	tool	for	tracking	your	application	performance
over	time,	since	you	can	easily	archive	the	output	files	to	compare	historical
data.

Memory	Analyzer	Tool	(MAT)
Another	great	way	to	analyze	memory	is	to	generate	snapshots	of	the
application’s	heap	at	certain	points	in	time.	The	Android	tooling	will	generate
these	files	into	a	common	format	named	HPROF.	The	file	contains	binary	data
that	can	be	used	to	find	performance	problems	that	result	from	inefficient
memory	usage	in	your	application.	There	are	tools	available	(such	as	MAT)	that
allow	you	to	browse	the	allocated	objects	when	you	supply	a	valid	HPROF	file.
Having	a	collection	of	these	files	makes	it	easy	to	analyze	them,	track	trends,
and	identify	issues.

Generating	an	HPROF	File
There	are	two	primary	ways	to	generate	a	new	HPROF	file.

1.	 Include	the	code	android.os.Debug.dumpHprofData()	in	your
application	to	trigger	a	dump	at	a	specific	execution	point.

2.	 Use	the	“Dump	HPROF	file”	button	(),	which	generates	a	dump	file	when
you	press	it.

HPROF	File
Both	of	these	methods	generate	a	file	that	is	slightly	different	than	what	the
Android	tooling	requires.	It	is	necessary	to	convert	the	file	before	it	can	be
analyzed.

To	convert	it,	use	the	provided	conversion	tool	from	the	command	line.	For
instance:

hprof-conv dump.hprof dump-converted.hprof

After	completing	the	conversion,	you	will	be	able	to	analyze	the	dump	file	in
any	of	the	applications	designed	to	handle	this	kind	of	file—like	jhat,	or	MAT,

http://bit.ly/12TiQXD

the	Eclipse	Memory	Analyzer	Tool.

Installing	MAT	into	Eclipse
MAT	is	not	available	by	default	and	needs	to	be	installed	separately.	The	MAT
update	site	includes	directions	on	how	to	install	it	into	Eclipse.

TIP
You	might	see	a	“Duplicate	Location	Exists”	warning	when	you	enter	the	update	site	URL.	In
this	case,	you	will	find	the	MAT	update	site	as	a	subcategory	to	your	main	update	site.	To
install	MAT,	in	the	Work	With:	box,	select	your	main	update	site	(for	instance	“Eclipse	Indigo
Update	Site”).	Then	find	“Memory	Analyzer”	in	the	list.	Place	a	checkmark	next	to	it	here,	and
proceed	to	install	as	normal.

Launching	MAT	from	Within	Eclipse
If	you	are	using	Eclipse,	there	is	a	DDMS	preference	that	automatically	converts
the	HPROF	file	and	starts	the	MAT	tool	(if	it	is	installed).	This	happens
automatically	when	you	press	the	“Dump	HPROF	file”	button	().	If	you	want	to
set	this	as	the	default	behavior,	go	to	Window	→	Preferences	→	Android	→
DDMS.

If	you	would	like	to	view	historical	heap	data,	you	can	maintain	copies	of	the
HPROF	files	(which	could	be	triggered	during	automated	testing	or	manually).

Using	MAT	to	Analyze	HRPOF	Files
Using	the	MAT	tool	can	be	somewhat	complicated.	It	is	very	feature	rich	and
provides	many	ways	to	identify	memory	problems.	I	will	discuss	the	three	most
commonly	used	options.	If	you	would	like	to	learn	about	other	options,	the
official	site	is	a	great	resource.

When	you	launch	the	MAT	wizard,	the	first	screen	to	appear	looks	like
Figure	10-6.	It	provides	you	three	options	for	viewing	your	data:

Leak	Suspects	Report
Analyzes	your	file	to	detect	leaks	automatically.	It	also	reports	which	objects
are	kept	alive,	and	what	is	stopping	them	from	being	garbage-collected.

http://www.eclipse.org/mat/
http://bit.ly/18pq4rZ
http://www.eclipse.org/mat/

Component	Report
Allows	you	to	analyze	certain	objects,	and	to	find	duplicate	strings,	unused
collections,	weak	references,	and	other	memory	issues.

Reopen	previously	run	reports
Use	the	tools	to	review	previously	run	reports.

Figure	10-6.	Launching	the	MAT	wizard

TIP
If	you	would	like	to	learn	more	details	about	using	MAT,	the	documentation	for	the	tool	does	a
great	job.	It	details	different	memory	scenarios	and	describes	ways	to	use	MAT	to	find	them.	It
is	available	at	Eclipsepedia.

There	is	also	a	great	Android-specific	write-up	on	the	developers	blog.	It	is	worthwhile

http://bit.ly/15SeyVv
http://bit.ly/15RuIwc

reading.

The	MAT	Overview	Screen
The	first	screen	(see	Figure	10-7)	that	appears	provides	an	overview	of	the
memory	footprint	of	your	app,	and	links	to	other	tools	(like	Histogram	or	Top
Consumers)	that	allows	you	to	learn	more	about	your	memory	usage.	You	can
get	some	general	information	about	your	heap	from	this	screen	such	as	total	size,
and	how	many	objects	and	classes	are	allocated.	This	is	a	great	way	to	get	a
general	overview	of	your	heap,	which	you	can	then	use	to	learn	more	about
specific	areas.

Figure	10-7.	The	MAT	Overview	screen

Viewing	a	Report
The	reports	generated	by	MAT	are	very	detailed.	It	is	useful	to	see	an	example
report	to	get	an	idea	of	the	format	and	kind	of	information	you	can	get	from	this
tool.	I	have	included	an	example	Leak	Suspects	Report	(Figure	10-8)	to	show
how	easy	it	is	to	view	information.

Notice	the	tool	lists	information	about	each	of	the	Problem	Suspect	classes	it	has
identified.	It	outlines	very	clearly	how	many	instances	of	the	class	are	causing

memory	issues,	including	how	much	memory	(actual	bytes	and	percentage	of
total	heap),	information	about	the	type	of	memory	(for	instance,	in	Problem
Suspect	1	it	is	a	byte	array),	and	more	details	about	specific	locations	in	code
where	execution	is	called.

It	is	important	to	note	that	the	items	reported	in	this	tool	are	not	necessarily
issues,	as	there	are	instances	where	it	makes	sense	for	classes	to	be	instantiated
and	retained	for	a	long	time.	You	will	notice	that	Problem	Suspect	2	identifies	a
variety	of	instances	of	java.lang.Class.	In	many	cases,	instances	of	this	class	are
not	leaks,	but	are	instantiated	and	retained	as	part	of	normal	program	flow.

Figure	10-8.	MAT	Leak	Suspects	Report

Chapter	11.	Working	with	the	User
Interface

The	user	interface	(UI)	of	any	mobile	application	is	important,	and	Android’s
widespread	use	requires	that	your	software	run	well	on	a	variety	of	different
target	devices.	Generally,	the	wider	range	of	devices	you	can	support,	the	larger
your	potential	customer	base.

In	almost	all	mobile	applications,	the	elegance	and	usability	of	the	user	interface
are	more	important	than	anything	else.	Your	app	has	to	look	good	to	succeed	in
today’s	market.	However,	creating	an	attractive	UI	is	made	more	difficult	by	the
vast	profusion	of	screen	sizes	and	resolutions	in	Android.	You	can’t	finesse	the
problem	by	restricting	your	app	to	work	on	only	one	or	a	small	range	of	devices;
at	least,	you	can’t	do	that	without	giving	up	a	very	large	number	of	potential
customers.

This	is	where	the	Android	framework	comes	to	the	rescue.	From	the	beginning,
Android	was	designed	to	support	various	devices	and	has	thus	offered	simple
ways	for	the	developer	to	support	them.	The	developer	tools	are	also	designed	to
make	supporting	multiple	devices	easier.

Android	Layout	Basic	Concepts
In	order	to	leverage	all	the	features	of	the	UI,	it	is	important	to	understand	the
fundamental	concepts	of	the	framework.

Defining	Layouts	Using	XML
Android	layouts	are	conventionally	created	using	XML	syntax	to	define	the	user
interface	(UI)	of	an	app.	These	XML	files	contain	descriptions	of	various
interface	widgets,	which	could	be	TextViews,	Buttons,	or	ImageViews	(don’t
confuse	these	with	“Desktop	Widgets,”	which	are	a	different	thing).	The	files

contain	information	defining	the	widgets	you	wish	to	display	and	detailed
information	about	them	(for	example,	orientation,	spacing,	or	the	specific
location	of	an	element	on	the	screen).

The	advantage	of	placing	the	layout	into	XML	is	that	it	separates	the
presentation	of	your	application	from	the	business	logic.	Your	layout	definitions
are	separate	from	your	application	code,	so	you	can	modify	the	layout	without
needing	to	change	your	source	code	or	recompile.	You	can	create	different
layouts	for	multiple	device	orientations,	screen	sizes,	or	locations.

It	is	worth	noting	that	almost	everything	you	do	in	XML	can	also	be	done	in
Java	code,	or	by	using	a	combination	of	both.	For	instance,	you	might	define	the
placement	and	size	of	a	button	in	XML	and	then	use	Java	to	set	the	text	at
runtime,	depending	on	a	particular	code	path	execution.

TERMINOLOGY
There	are	a	few	definitions	you	need	to	know	to	follow	the	next	few	chapters.

Widgets

Native	controls	available	to	be	used	by	the	developer.	These	include	a	variety	of	elements,	such	as
TextViews,	ListViews,	Buttons,	and	other	UI	components	you	will	use	to	create	layouts.	These
built-in	components	are	commonly	found	in	the	android.widget	package	and	are	frequently
subclasses	of	the	class	android.view.View.	If	the	native	controls	don’t	provide	the	capabilities
you	need,	it	is	possible	to	use	custom	components	imported	from	libraries	or	developed	as	part	of
your	codebase.

Layout	Files

XML	files	that	describe	the	widgets	making	up	your	UI.	These	are	located	in	the	res	folder	of	your
project.

Layout

A	class	whose	primary	purpose	is	to	contain	other	controls.	These	classes	(such	as	LinearLayout,
TableLayout,	and	FrameLayout)	organize	widgets	(such	as	TextViews,	Buttons,	etc.)	on	the
screen.

Attributes

Control	specific	behavior	in	your	components.	They	have	the	format	(namespace:name=value),
which	allows	you	to	specify	characteristics	of	your	components.	Some	examples	of	these	with
which	you	are	probably	familiar	include	android:width="48dp",
android:color="@colors/text_color",	and	android:text="Text Value".

Themes	and	Styles

Allow	the	developer	to	define	the	specific	look	and	feel	of	a	layout	in	external	files.	This	is	a
common	way	to	apply	color	or	text	attributes	in	a	single	file	to	apply	them	to	multiple	widgets,	and
also	make	changes	to	multiple	screens	from	a	single	file.

Resource	Qualifiers

The	most	common	way	to	support	multiple	devices	in	Android	is	to	use	different	folders	for
different	resources	(described	later	in	Resources).	This	term	is	used	to	describe	the	name	you	add
to	a	folder,	which	allows	this	to	work.

Views	and	ViewGroups
Layouts	in	Android	are	constructed	by	combining	these	two	base	objects	into
hierarchies.

Views
This	is	the	base	class	for	many	widgets	(such	as	TextView	or	Button).	It	is
the	base	class	(classes.android.view.View)	for	almost	all	UI	components
in	android.classes.android.view.View.

ViewGroups
This	is	a	view	that	contains	other	views.	The	ViewGroup	class
(android.view.ViewGroup)	is	the	base	class	for	many	layouts	in	Android	or
other	specialized	components	such	as	ListView	and	WebView.

The	first	step	in	visualizing	your	layout	is	to	define	a	simple	hierarchy.	This
might	look	like	Figure	11-1.

Figure	11-1.	Layout	basics:	view	hierarchy

The	next	step	in	creating	a	layout	is	to	describe	your	hierarchy	in	code.	To	do
this,	create	a	layout	file	and	insert	the	appropriate	XML	tags	describing	your
Views	and	ViewGroups.	The	following	XML	file	below	shows	a	basic	layout.	It
contains	two	ViewGroups,	(the	LinearLayout	elements)	that	contain	other
Views	(in	this	case	the	Buttons	and	a	TextView).	The	order	in	the	XML	file
matters:	it	lays	out	two	buttons	side-by-side,	with	text	below	them,	and	then
another	button	below	that.	The	screenshot	(see	Figure	11-2)	shows	how	this
would	look	on	a	device.

Example	11-1.	XML	file	that	produces	screen	in	Figure	11-2
<?xml version="1.0" encoding="utf-8"?>

< Layout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <LinearLayout

 android:id="@+id/button_linear"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal" >

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button1" />

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button2" />

 </LinearLayout>

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Lorem ipsum dolor sit amet, consectetur adipisicing elit" />

 <Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button3" />

</LinearLayout>

The	outermost	layout,	filling	the	screen.	The	other	layout,	the	TextView,
and	the	final	button	are	nested	inside	it.

The	vertical	orientation	ensures	that	the	other	layout,	the	TextView,	and
the	final	button	are	stacked	up	in	the	order	in	which	they	are	specified

Figure	11-2.	Layout	basics:	rendered	UIfrom	the	top	down.

We	include	a	second	layout,	nested	in	the	first,	so	that	we	can	arrange
some	things	horizontally	in	it.

This	orientation	specifies	that	the	buttons	will	be	side-by-side.

The	first	button,	at	the	top	left	of	the	screen.	This	is	within	the	second,
innermost	layout.

The	second	button,	to	the	right	of	the	first.	This	also	is	within	the
second,	innermost	layout.

This	line	ends	the	innermost	layout,	the	one	containing	two	buttons.

The	TextView,	which	is	within	the	outermost	layout	but	outside	the
innermost	layout.	It	is	therefore	oriented	vertically	under	the	first	two
buttons.

The	third	button,	which	like	the	TextView	is	within	the	outermost	layout
and	therefore	oriented	vertically.

This	line	ends	the	outermost	layout.

Resources
An	Android	application	consists	of	much	more	that	just	Java	files.	A	variety	of
other	files	(such	as	images,	videos,	and	colors)	are	also	used	to	create	your
interface.	These	are	known	collectively	as	resources	and	resource	files.	The
Android	framework	supports	an	easy	way	to	tie	different	versions	of	a	resource
(a	different	resolution	image,	or	a	different	size	of	icon,	or	text	in	a	different
natural	language)	to	different	configurations	on	the	device	(no	keyboard,	French
locale,	hi-res	screen).	For	example,	in	order	to	support	different	screen
resolutions,	it	is	necessary	to	include	multiple	copies	of	the	same	image,	in
various	resolutions.

Using	resources	has	many	advantages,	including:

Source	code	is	separate	from	resources,	which	makes	customization	easier.

Resources	are	static	and	compiled	into	the	application,	which	means	they	can
be	checked	for	availability	before	runtime.

It	is	easy	to	support	additional	functionality	(localization,	for	instance)	by
simply	adding	the	appropriate	resources	without	requiring	modification	to
existing	source	code.

Android	specifies	that	you	put	these	items	in	the	res	folder	at	the	base	level	of
your	project	(see	Figure	11-3).	You	will	put	resources	in	unique	folders	that	are
determined	by	the	features	you	want	to	support.	At	compile	time,	Android	scans
the	folders	and	uses	the	appropriate	resource.	For	instance,	when	your	app	is	run,
the	system	will	know	to	use	the	appropriately	sized	image	and	retrieve	it	from
the	res	folder.

Figure	11-3	shows	how	to	supply	a	graphic	resource	that	supports	different
resolutions.	To	do	this,	put	a	resource	with	the	same	name	(in	this	case,
ic_launcher.png)	in	the	folder	appropriate	for	each	resolution	you	support	(mdpi
for	medium	resolution,	hdpi	for	high	resolution,	etc.).	When	your	app	is	run,	that
image	will	be	used	by	the	system	automatically.

Figure	11-3.	Using	multiple	graphic	resources

In	the	same	way	that	you	provide	alternate	image	resources,	you	can	supply
layouts,	strings,	colors,	dimensions,	and	much	more	to	support	specific	device
configurations.

There	are	many	nuances	to	externalizing	application	resources,	and
understanding	them	can	really	help	the	development	process.	The	official
documentation	describes	all	the	different	ways	you	can	customize	your
application	using	alternative	resources	and	is	worth	reading.

Leveraging	ADT	to	Build	Great	UIs
Generating	Android	applications	that	support	multiple	devices	is	one	of	the	more
challenging	aspects	of	working	with	the	platform.	Fortunately,	ADT	provides	a
robust	set	of	tools	to	aid	the	developer	(or	designer)	in	creating	the	UI	layer.
There	are	tools	to	create	layouts	using	a	drag-and-drop	editor,	generate	code
templates,	extract	resources,	refactor	XML,	and	much	more.	This	chapter	(and
the	next	few)	will	highlight	all	the	great	tools	available,	and	show	how	you	can
leverage	them	to	make	responsive	interfaces	that	work	well	and	look	good	on	a
variety	of	devices.

The	documentation	describing	how	to	handle	multiple	devices	does	an	excellent
job	of	explaining	what	the	different	resolution	formats	are,	as	well	as	specific
strategies	for	making	the	most	of	this	feature.	I	suggest	reading	it.

Editing	XML	Files	Directly
In	Code	Templates,	we	discussed	using	the	tools	to	generate	code.	There	are	also
a	lot	of	templates	you	can	use	to	generate	XML	files.	There	is	support	for
creating	a	variety	of	different	XML	files,	which	makes	creating	them	simple.

Using	Templates
The	XML	templates	can	be	accessed	by	choosing	File	→	New	→	Other	→
Android	→	Android	XML	File.	You	will	be	presented	with	a	menu	(similar	to
Figure	11-4)	showing	a	list	of	XML	files	available.	There	is	support	for	a	variety

http://bit.ly/1361xt8
http://bit.ly/17CeIhq

of	file	types,	so	it	is	worthwhile	to	know	which	ones	the	system	can	create	for
you.

Figure	11-4.	XML	editor:	code	templates

Editing	XML	Directly
Editing	XML	files	can	be	challenging.	You	have	to	be	careful	to	match	tags,	and
always	use	correct	attribute	values.	Many	times,	errors	don’t	show	up	until
compile	time	or	runtime,	which	makes	the	debug	cycle	long	and	inefficient.	The
XML	editor	that	is	built	into	the	tools	includes	functionality	to	simplify	manually
editing	layout	files.	Using	these	features	makes	it	easy	to	write	valid	XML,	use
correct	attributes,	and	refactor	layouts	without	syntax	errors.

Code	completion
You	have	probably	already	used	the	code	completion	facilities	available	when
editing	Java	files.	ADT	provides	similar	capabilities	when	editing	layout	XML
files.	You	will	be	able	to	use	this	functionality	to	insert	UI	widget	definitions,
look	up	attribute	values,	and	identify	resources	(such	as	drawables,	layout
elements,	string	values,	or	style	definitions).	These	tools	make	it	much	easier	to
generate	XML	layout	files	correctly,	so	you	won’t	spent	time	fixing	syntax	errors
or	searching	APIs	to	find	acceptable	values.

The	key	combination	that	launches	code	completion	is	the	same	one	you	use	in
Java	and	the	same	on	all	platforms:	Ctrl+Space.	It	provides	different	options
depending	on	the	code	you	have	highlighted.

Inserting	new	layouts	or	widgets
If	you	place	your	cursor	on	a	blank	line	or	outside	an	existing	tag,	when	you
press	this	key	combination,	you	will	be	provided	with	a	list	of	elements	you	can
insert	(like	in	Figure	11-5).	Selecting	one	of	the	items	from	the	list	as	shown	will
create	a	stubbed	item,	which	you	can	extend	with	your	own	custom	attribute
values.

Figure	11-5.	XML	editor:	inserting	new	element

Attribute	values
If	you	place	your	cursor	inside	an	XML	attribute	definition	(i.e.,	between	the
quotation	marks),	you	will	be	provided	with	a	list	of	appropriate	entries.	There
are	two	different	possibilities	for	these	values,	depending	on	the	particular
attribute	you	are	defining.

The	first	allows	you	to	fill	in	API	options	to	define	elements	from	the	system
(such	as	width	attributes	or	buffer).	For	example,	in	Figure	11-6	I	am	using	code
completion	to	define	the	width	attribute	for	a	TextView.

Figure	11-6.	XML	editor:	adding	a	new	element

The	second	allows	you	to	locate	local	or	system	resources	for	your	UI.	These
things	might	include	color	definitions,	string	values,	style	definitions,	or	other
layout	elements.	The	example	in	Figure	11-7	shows	how	the	tool	provides	you
with	a	list	of	values	available.

Figure	11-7.	XML	editor:	adding	a	new	API	attribute

Refactor	menu
This	tool	allows	you	to	quickly	complete	refactoring	operations.	These	include
removing	layout	elements,	wrapping	multiple	widgets	in	a	container,	or
extracting	XML	to	be	shared	by	multiple	resources.	To	launch	this	menu,
highlight	the	starting	tag	of	the	element	you	want	to	refactor,	then	select	the
Refactor	menu	from	the	top	menu	bar.	It	offers	a	variety	of	options,	some	of
which	we	already	covered	in	the	IDE	section	(Refactor	Menu).	It	is	worth
discussing	the	layout-specific	options	here:

Change	layout
This	lets	you	change	the	layout	and	then	re-renders	the	canvas	automatically.
You	might	need	this	if	you	need	to	convert	to	another	container	type	because
of	a	limitation	with	your	current	type	(for	instance,	you	needed	finer	control
over	placement	than	a	LinearLayout	provides).

Change	widget
This	allows	you	to	change	the	type	of	one	or	more	widgets.	It	automatically
removes	incompatible	attribute	types,	and	includes	default	values	for	any
new	ones	that	are	required.

Extract	as	include
This	allows	you	to	extract	views	into	a	separate	layout	file.	It	creates	the	new
external	layout	file	and	includes	the	appropriate	reference	in	your	XML.	This
is	a	simple	way	to	reuse	common	view	components,	which	avoids
duplications	and	creates	cleaner	code.

Wrap	in	container
You	can	use	this	menu	to	select	one	of	more	siblings	and	wrap	them	in	a	new
layout	container.	The	tool	transfers	layout	attributes	from	the	sibling	to	the
new	parent	container.	This	can	be	useful	if	you	need	to	group	UI
components,	perhaps	to	apply	common	gravity.

TIP
You	can	use	the	Quick	Assistant	if	you	aren’t	sure	which	refactor	you	need	to	use.	This	is	a
great	way	to	allow	the	system	to	provide	suggestions	depending	on	the	current	context.	In
either	editor	(Java	or	XML),	highlight	a	field	and	press	Ctrl+1 	on	Windows\Linux	or
Command+1 	on	Mac	OS	X.	This	will	bring	up	a	list	of	refactor	possibilities,	and	is	the
quickest	way	to	access	these	common	options.

The	example	in	Figure	11-8	shows	how	you	would	use	the	Refactor	menu	to
remove	a	layout	container.	After	highlighting	the	LinearLayout	to	remove,	select
the	Remove	Container	menu	item	and	a	screen	appears	(Figure	11-9)	allowing

you	to	review	the	changes	before	clicking	OK	to	commit	them.

Figure	11-8.	Accessing	the	refactor	menu	from	the	XML	editor

Figure	11-9.	XML	editor:	options	shown	by	Refactor	menu

XML	formatting
Layout	files	can	get	complicated	fast.	You	will	likely	use	many	different
attributes	to	specify	unique	parameters	for	your	different	UI	elements.	The	XML
files	can	become	particularly	difficult	to	follow	when	attributes	are	not	spaced
uniformly	or	when	they	are	out	of	order.	You	can	use	the	following	keys	to
quickly	format	your	code:	Ctrl+Shift+F	on	Windows\Linux	or
Command+Shift+F	on	Mac	OS	X.

It	automatically	adjusts	tab	spacing	and	organizes	the	attributes	into	a	specific
predefined	order.	Having	correctly	formatted	XML	makes	it	easier	to	understand
element	relationships	and	find	particular	attributes	you	may	need	to	modify.

The	default	formatting	style	matches	the	conventions	used	in	official	Android
documentation,	tutorials,	and	source	code,	so	your	code	will	match	standards.
The	system	automatically	applies	custom	formatting	rules	depending	on	which

type	of	file	is	being	edited.	This	means	that	custom	formatting	rules	will	be
applied	to	standard	layout	files,	resource	definition	files	(such	as	strings.xml),	or
AndroidManifest.xml.	This	makes	a	big	difference	in	the	readability	(and
maintainability	of	your	code).	The	XML	files	can	become	particularly	difficult	to
follow	when	attributes	are	not	spaced	uniformly	or	when	they	are	out	of	order
(as	seen	in	Figure	11-10).

Figure	11-10.	XML	editor:	before	reformat

Having	correctly	formatted	XML	(like	that	shown	in	Figure	11-11)	makes	it
easier	to	understand	element	relationships	and	find	particular	attributes	you	may
need	to	modify.

Figure	11-11.	XML	editor:	after	reformat

Editor	Preferences	menu
The	Editor	Preferences	menu,	shown	in	Figure	11-12,	allows	you	to	change	the
format	that	the	editor	uses.	This	is	valuable,	for	instance,	if	your	company	has
unique	coding	standards.	Another	important	setting	causes	the	system	to
automatically	format	your	code	when	you	save	it.	I	recommend	you	set	this
value,	so	you	can	ensure	you	are	performing	the	formatting	operations	on	all	of
your	files.

Figure	11-12.	XML	editor:	preferences

There	are	two	preferences	worth	highlighting.	You	can	access	them	from
Window	→	Preference	→	Android	→	Editor	on	Windows	and	Linux,	and	from
ADT	→	Preference	→	Android	→	Editor	on	Mac	OS	X.

This	menu	contains	a	variety	of	useful	options	that	allow	you	to	customize

Editor	functionality	further.	Some	of	the	more	useful	ones	include:

Configure	style	(spacing,	line	wrapping,	etc.)	of	formatting

Modify	the	default	order	of	the	attributes	(there	are	a	few	alternate	options,
and	you	can	create	a	custom	sort	order	as	well)

Specify	if	you	would	like	the	format	operation	to	be	run	on	every	save

Working	with	Graphics
In	the	beginning	of	the	chapter,	I	described	how	Android	uses	multiple	resources
to	support	different	device	resolutions.	Supplying	each	of	the	proper	resolution
images	is	one	of	the	most	important	ways	to	ensure	that	your	app	looks	good
everywhere.	If	the	system	is	not	able	to	find	an	image	resource	matching	its
preferred	resolution,	it	will	find	the	next	closest	resolution	and	scale	it	to	fit.	This
can	result	in	unexpected	visual	artifacts,	and	can	significantly	effect	the
responsiveness	of	your	app,	as	image	rescaling	can	be	memory	and	CPU
intensive.

It	can	be	difficult	to	understand	what	size	each	of	the	images	can	be,	the	names
of	the	folders,	and	other	information	associated	with	this	way	of	doing	things.	In
my	experience,	this	is	one	of	the	bigger	frustrations	for	designers	and
developers.

There	are	two	great	ways	of	dealing	with	the	complexities	of	manipulating
image	resources:	the	Android	Asset	tool,	and	the	use	of	Nine-patch	images.

The	Asset	Tool
The	Asset	tool	automatically	creates	the	appropriate	resolution	resources	and
places	them	in	your	project.	Launch	it	by	entering	Ctrl+N	on	Windows	or	Linux
and	Command+N	on	Mac	OS	X.

From	the	New	wizard	launcher,	expand	the	Android	section	and	select	Android
Icon	Set,	as	shown	in	Figure	11-13.

Figure	11-13.	Launching	the	Android	Icon	Set	generator

A	screen	(Figure	11-14)	prompts	you	to	specify	the	type	of	resource	you	want	to
generate.	There	are	different	sizes	for	images,	depending	on	whether	they	are
intended	to	be	used	in	notifications,	on	the	Action	Bar,	or	elsewhere	on	the
screen.	You	will	need	to	specify	the	type	of	icon	that	should	be	created.

Figure	11-14.	Specifying	options	to	customize	icons

Next,	you	will	specify	the	name	of	the	icon,	and	the	project	where	you	would
like	it	created.	When	the	tool	is	done,	it	will	create	all	the	appropriate	images
and	place	them	in	the	correct	folders	in	this	project.

The	last	screen	(Figure	11-15)	is	where	you	can	actually	generate	the	icon	asset.
You	can	generate	an	icon	with	text,	modify	the	appearance	of	it,	and	change	the
colors	of	the	foreground	or	background.	You	can	even	use	clip	art	(either	your
own,	which	you	can	import,	or	icons	supplied	in	the	tool	itself)	to	generate
specific	designs.	When	you	have	configured	the	look	of	your	icon,	click	the
Finish	button.	The	res	folder	in	your	project	will	now	have	PNG	files	with	your
design	at	the	correct	resolution.

Figure	11-15.	Creating	an	icon	set

TIP
I	have	found	an	excellent	way	to	work	with	my	design	team.	When	I	create	my	source	code,	I
use	the	Asset	Studio	to	create	sample	icons.	Then,	when	I	request	real	icons	from	the	graphic
artists,	I	just	copy	the	res	folder	out	of	my	projects	and	give	it	to	them.	I	ask	them	to	replace
the	sample	images	with	their	own.	Since	they	know	the	names	and	sizes	of	each	of	the
resources	they	need	to	supply,	this	eliminates	communication	errors.	The	best	part	is	that,
when	it	is	time	to	integrate	the	real	images	back	into	the	project,	all	I	have	to	do	is	copy	the	res
folder	with	the	correct	resources	back	into	my	code,	and	I’m	done!

Using	NinePatch	Images
Android	lets	you	supply	your	image	assets	as	Nine-patch	images.	This	format

allows	you	to	define	lines	along	the	edges	of	an	image,	which	control	how	it	is
scaled	by	the	system.	The	placement	of	black	lines	informs	the	framework
whether	that	section	of	the	image	will	be	grown/shrunk	by	zooming	it,	or	should
be	kept	unchanged.	A	good	example	of	when	it’s	useful	to	provide	this	type	of
image	is	when	creating	a	styled	button	to	use	throughout	your	app.	If	you	use	a
NinePatchDrawable	as	the	background	for	your	buttons,	it	will	stretch	and	scale
to	look	uniform	across	all	of	them.

To	use	a	NinePatchDrawable,	you	must	slice	your	image	resource	into	nine
regions.	There	is	a	center	container	for	your	content,	then	four	corners	and	four
sides	that	will	be	scaled	by	the	system.	It	can	be	a	little	challenging	to
understand	this	concept	at	first	so	if	you	would	like	to	brush	up	on	the	topic,	the
drawable	documentation	is	a	great	place	to	start.

Specify	how	the	Nine-patch	image	is	scaled	by	drawing	black	lines	on	the	sides
of	the	image.	These	specify	two	things:

Stretch	regions
Defines	which	pixels	of	the	image	will	be	copied	to	stretch	the	image.	These
lines	are	drawn	on	the	top	and	left.

Content	padding
Defines	the	area	within	the	image	that	the	contents	will	occupy.	These	will
be	the	lines	on	the	bottom	and	right.

The	draw9patch	command-line	tool	makes	it	easy	to	create	and	edit	these
images.	Just	type	draw9patch	at	the	command	line	to	bring	up	the	“Draw	9-
patch”	tool,	which	provides	a	way	to	visualize	the	effects	of	scaling	on	your
image	when	you	are	defining	it.

Start	by	dragging	and	dropping	an	image	on	the	palette.	This	launches	the	editor
(see	Figure	11-16).

http://bit.ly/13oIJzY

Figure	11-16.	Editing	Nine-patch	drawables	using	the	visual	editor

Then	use	the	mouse	to	draw	the	lines	that	specify	the	various	regions.	Check	the
“Show	patches”	and	“Show	content”	options	at	the	bottom	of	the	screen	to
visualize	exactly	how	the	system	will	scale	your	image.	You	can	change	the
black	lines	to	show:

Stretch	regions
Shown	by	the	pink	box	in	the	center	of	the	pane	on	the	left.

Content	padding
Shows	how	much	space	is	available	for	your	content,	via	the	purple	box	in
the	right	side	pane.

Asset	Studio	Website
It	is	worth	noting	an	excellent	open	source	project	called	Asset	Studio	that
automates	many	of	the	procedures	we	discussed	in	this	section.	The	home	page
(shown	in	Figure	11-17)	shows	some	of	the	things	you	can	do.	This	site

http://bit.ly/14sqRrh

automates	many	of	the	things	the	tools	do,	including	generating	multiple	image
resources,	editing	Nine-patch	images,	and	others.	It	also	has	some	additional
functionality	not	available	elsewhere,	including	generating	screenshots	such	as
device	frames	for	marketing,	or	generating	styles	for	commonly	used	resources
—specifically	the	Action	Bar.

Figure	11-17.	Android	Asset	Studio	website

Chapter	12.	Using	the	Graphical
Editor

By	far	the	easiest	and	most	productive	way	to	design	a	user	interface	(UI)	in
Android	apps	is	to	use	the	Graphical	Layout	tools.	In	the	past,	these	have	been
difficult	to	use,	sometimes	creating	code	that	was	hard	to	understand	and	had
other	practical	limitations.	But	the	tools	have	improved	over	successive	releases.
They	are	getting	close	to	the	standard	set	used	by	GUI	builders	for	Windows	or
iOS,	and	now	work	better	than	the	Android	alternative	(manually	editing	XML
files).	They	make	it	easy	to	generate	the	user	interface,	refactor	existing	layouts,
visualize	your	UI	on	multiple	environments,	and	much	more.	They	can	make
development	more	efficient	and	ensure	that	you	are	creating	well-formed	layout
code.

Generating	Layouts	Using	the	Graphical	Layout
Editor
If	editing	XML	isn’t	your	thing,	there	is	a	graphical	tool	that	allows	you	to	drag
and	drop	UI	components	to	construct	a	layout.	You	will	use	this	to	create	your
basic	layouts,	then	modify	the	XML	to	fine-tune	your	layouts.

The	Graphical	Layout	editor	(see	Figure	12-1)	can	be	accessed	by	selecting	the
appropriate	tab	(on	the	bottom	left)	of	any	Android	layout.xml	file.	Selecting	this
tab	presents	you	with	a	perspective	containing	the	tools	you	can	use	to	construct
your	interface.	Switch	back	to	the	XML	view	by	selecting	the	tab	showing	the
layout	filename.	The	two	views	are	kept	in	sync	when	you	save	the	file.

Figure	12-1.	Visual	editor,	full	view

This	tool	has	a	few	different	components	that	work	together	to	provide	a
comprehensive	visual	editing	environment.	We	will	discuss	each	in	detail	in	this
chapter.

Palette
On	the	left	is	the	panel	that	contains	the	widgets	you	can	drag	onto	the
canvas.	The	palette	contains	rendered	views	of	the	components	available,
making	it	easy	to	find	the	component	you	want.

Canvas
This	is	the	component	in	the	middle	of	the	screen.	When	you	drag	elements
onto	this	canvas,	a	view	will	be	rendered	to	show	how	it	will	look.	There	are
many	different	options	available	in	this	tool	that	allow	you	to	determine	how
your	UI	will	look	on	different	devices.	XREF	discusses	these	in	detail.

Outline
This	panel	(on	the	top	right)	provides	a	hierarchical	view	of	your	layout,
displayed	as	an	ordered	list.

Properties	editor
This	window	(on	the	bottom	right)	allows	you	to	modify	attributes	of	your
widgets.

Configuration	chooser
The	list	of	menus	on	the	top	of	the	canvas	allow	you	to	configure	how	the
view	is	rendered.	These	allow	you	to	render	different	views	of	your	UI,	right
in	the	tool.	This	is	easier	and	quicker	than	trying	to	duplicate	UI	in	different
configurations	using	emulators.

Palette
On	the	left	side	of	the	tool	is	the	palette.	It	contains	categories	of	widgets	and	UI
components	that	are	available	to	drag	onto	the	canvas.	You	can	select	a	category
heading	to	display	the	view	types	in	that	group.

You	will	notice	that	the	widgets	are	rendered	according	to	the	currently	defined
style.	The	dark	bottom	part	contains	any	custom	views	you	have	defined	in	your
project	(see	Figure	12-2).	ADT	automatically	makes	them	available	via	this	tool
(you	may	have	to	press	the	Refresh	button	if	they	don’t	display	automatically).

Figure	12-2.	Palette

The	palette	contains	a	large	variety	of	components	that	are	preconfigured	to
perform	certain	actions.	Find	the	appropriate	component	and	drag	it	to	your
canvas	to	place	a	properly	configured	UI	component	on	your	interface.	For
example,	if	you	wanted	to	add	a	Password	field	to	a	form,	you	would	locate	the
component	from	the	Text	Fields	category	(see	Figure	12-3)	and	drag	it	onto	your
canvas.	When	you	look	at	the	XML,	you	will	see	that	a	default	value	is	defined
for	ems	(which	is	a	property	used	to	control	text	size),	and	the	inputType	is	set	to
textPassword	(which	masks	the	values	the	user	enters).

Figure	12-3.	Graphical	editor:	password	example

Canvas
This	is	where	you	can	drag	widgets	from	the	palette	and	drop	them	to	create
your	UI.	The	canvas	renders	a	preview	of	your	app	in	real	time	based	on	the
widgets	you	add.	You	can	then	modify	the	preview	to	visualize	your	app	on
multiple	screen	sizes,	orientations,	and	other	ways	using	the	configuration
chooser	(see	Configuration	Chooser).

To	add	a	view	to	your	UI,	find	it	in	the	palette	and	drag	it	onto	the	canvas.	You
can	also	add	Views	to	other	Views	(see	Views	and	ViewGroups)	by	dropping
them	onto	the	Outline	part	of	the	screen.	After	a	component	is	placed	on	the

canvas,	you	can	drag	it	around	to	reposition	it,	assuming	the	Parent	view
supports	the	move.

Just	as	when	you	are	editing	the	XML	directly,	you	can	use	Ctrl/Command+Z
to	undo	your	last	operation.	You	can	do	the	same	thing	from	the	Edit	→	Undo
menu.	Because	it	is	easy	to	undo	any	operations,	you	can	be	comfortable	that
any	changes	you	make	are	not	permanent	(so	feel	free	to	experiment	a	little).

When	you	drag	and	drop	a	component	from	the	palette	onto	the	canvas,
indicators	appear	that	show	you	the	alignment	and	approximate	location	of	the
widget	on	your	UI.	This	allows	you	to	control	how	the	view	is	placed	in	the
parent.	Depending	on	the	type	of	parent	container,	you	can	control	the	alignment
and	placement	of	the	view	you	are	creating.	In	Figure	12-4,	for	instance,	you	are
placing	a	Button	into	a	RelativeLayout.	A	pop-up	in	the	figure	shows	the
alignment	(in	this	case,	centerHorizontal="true")	with	an	arrow	tying	the
component	to	its	parent.	Understanding	the	relationships	among	views	helps	you
a	great	deal	in	controlling	layouts,	and	getting	this	feedback	visually	is	much
easier	than	trying	to	decipher	XML	files.

Figure	12-4.	Viewing	extents	while	dragging	items	onto	the	canvas

Layout	Actions
At	the	top	of	the	canvas	are	two	rows	of	buttons.	The	top	one	is	the
configuration	chooser	(see	Configuration	Chooser),	and	the	bottom	one	is	the
layout	actions	bar	(see	Figure	12-5).	This	bar	offers	context-sensitive	options
(meaning	they	will	change	based	on	what	you	currently	have	selected)	relating	to
the	currently	selected	view	and	its	parent.

Some	of	the	common	options	available	here	include	changing	the	gravity,
layout_width,	and	layout_margins.	For	example,	in	Figure	12-5	I	selected	a
Button	in	a	LinearLayout.	The	bar	shows	actions	related	to	the	LinearLayout,
such	as	a	toggle	to	change	the	orientation	from	vertical	to	horizontal.	Some	other

available	options	might	include	a	control	to	specify	how	children	are	aligned,
actions	to	control	the	child’s	layout	attributes	(like	layout_width),	or	a	button
to	change	the	layout’s	margins.

Figure	12-5.	Viewing	the	layout	options	available

Context-Sensitive	Menu
You	might	be	surprised	by	the	functionality	hiding	when	you	rightclick	on	any
element	in	the	canvas.	You	are	presented	with	a	menu	of	context-sensitive
options	(see	Figure	12-6).	These	provide	a	variety	of	shortcuts	to	useful
functionality,	including:

Changing	widget	properties,	including	a	menu	to	navigate	based	on	Java
package	structure	within	Android	source	code	(as	an	alternative	to	the	full-
blown	properties	editor,	Properties	Editor).

Creating	or	previewing	animations.	If	you	have	enabled	animation	on	a
component,	this	allows	you	to	view	it	from	the	canvas.

Performing	most	of	the	refactor	operations	we	discussed	in	Refactor	menu.

Exporting	a	screenshot	that	contains	a	preview	of	your	app,	rendered	to
appear	on	the	device	you	are	currently	showing.

Figure	12-6.	Launching	the	context-sensitive	menu

Outline	View
This	tool	(shown	in	Figure	12-7)	provides	a	visual	representation	of	your	layout

elements.	It	organizes	them	into	a	clear	hierarchy	that	is	easy	to	navigate.	This
view	offers	additional	functionality	that	allows	you	to	drag	and	drop	the
elements	within	the	outline.	It	has	a	lot	of	the	same	functionality	as	the	canvas,
but	provides	a	different	view	that	makes	it	easier	to	use	for	ordering,	along	with
selection	operations.

Figure	12-7.	Viewing	the	Outline

Properties	Editor
In	addition	to	the	rightclick	approach	to	changing	view	properties,	you	can	also
use	the	View	Properties	tab.	This	tab	on	the	bottom	right	will	list	context-
sensitive	properties	you	can	use	to	set	various	attributes	on	the	view	you	have
selected.	This	is	generally	easier	than	editing	the	XML	directly,	because	the
editor	provides	lookup	tools	to	help	you	find	the	attribute	you	need	to	set.

The	properties	editor	shows	a	list	of	all	the	various	properties	options	available
for	the	currently	selected	view.	If	a	property	is	already	set,	the	value	will	be
listed	in	the	column	on	the	right.	If	you	would	like	to	change	the	value,	or	add	a
new	one,	click	within	the	cell	to	launch	a	list	of	options	or	a	dialog	to	select	your
new	value.

In	the	example	in	Figure	12-8,	I	show	how	I	could	change	the	color	property	for
the	text	of	the	Button	I	selected.	When	I	click	on	the	property,	a	dialog	is
presented	that	allows	me	to	locate	a	system	or	project	resource	that	defines	a
new	color.	I	can	then	start	to	type	the	name	of	a	color	to	search	for	a	resource	I
have	defined.

Figure	12-8.	Viewing	the	Properties	editor

Configuration	Chooser
This	set	of	tools	(Figure	12-9),	which	appears	at	the	top	of	the	editor,	allows	you
to	see	a	visual	rendering	of	your	layout	in	various	configurations.	This	is	a	great
way	to	test	your	layouts	against	a	variety	of	different	configurations,	and	is	much
easier	that	creating	emulators	or	finding	devices	for	each	of	these	options.	While
this	won’t	replace	real	testing	across	different	devices,	it’s	a	great	way	to	get
instant	feedback	about	your	UI	while	you	are	creating	it.

Figure	12-9.	Viewing	the	Configuration	chooser

There	are	a	variety	of	options	for	changing	the	way	your	UI	is	rendered.	It	is
worth	exploring	each	of	the	options,	as	there	are	a	lot	of	different	ways	to
customize	your	canvas.

Configuration	menu
This	button	()	lets	you	save	a	particular	configuration	of	the	tool	itself.	In
addition	to	defining	a	custom	configuration,	there	are	existing
configurations,	such	as	“Preview	All	Screen	Sizes,”	which	will	show	how
the	screen	will	look	on	every	device	you	have	configured,	and	“Preview	All
Locales,”	which	shows	how	it	will	look	in	the	various	languages	and	local
settings	you	have	configured.

Screen
You	can	control	the	screen	size	using	this	button	().	I	cover	this	in
more	detail	following	this	list.

Orientation
This	option	()	allows	you	to	change	screen	orientation,	or	change	to
special	modes	(such	as	Car	Dock	or	Night	Mode).

Theme
This	selection	()	applies	a	theme	to	your	UI.	It	presents	a	list	of	all
theme	resources	available	(both	from	the	system	and	your	project).	Selecting
any	of	them	applies	the	styling	to	your	UI.

Activity
This	selection	()	changes	the	Activity	class	that	would	provide
context	for	your	layout.

Localization
This	option	()	applies	any	changes	supported	by	your	project	for
internationalization.	If	you	have	alternative	resources	(strings	in	strings.xml,
images,	etc.)	for	multiple	countries,	you	will	be	provided	with	a	list	of	these
and	be	able	to	switch	between	them.

SDK
This	selection	()	show	how	your	app	looks	on	devices	with	different
versions	of	the	Android	OS.	This	option	is	important	to	test	because	the	UI
changes	a	lot	with	each	release.	The	SDK	you	select	does	not	need	to	be	the
one	you	are	targeting.

The	option	for	changing	the	screen	size	is	a	great	example	of	how	useful	this
tool	can	be.	As	you	know,	Android	applications	need	to	run	on	a	large	variety	of
different	devices,	and	it	can	be	challenging	to	test	each	of	these	configurations.
This	tool	provides	the	capability	to	check	multiple	resolutions	of	your	layout.
You	can	quickly	switch	between	different	device	configurations,	and	instantly
see	how	your	UI	will	render.

To	change	the	screen	size	and	resolution	in	the	visual	editor,	use	the	option	in	the
top	bar	(see	Figure	12-10)	that	allows	you	to	view	your	layout	on	a	variety	of
preset	screen	sizes.	The	list	includes	any	AVDs	you’ve	created	at	the	top,	then	a
variety	of	other	devices	below.	You	can	select	any	of	the	devices	from	the	list,
and	the	rendering	of	your	UI	will	be	updated	to	show	how	it	would	appear	in	that
configuration.

I	already	mentioned	the	option	at	the	bottom	named	Preview	All	Screens.	It
renders,	in	one	view,	your	UI	the	way	it	will	look	on	a	variety	of	different
devices	(Figure	12-11).	The	tool	actually	updates	each	of	the	various	views	in
real	time,	which	means	that	you	can	see	the	impact	of	any	changes	you	make	on
a	variety	of	different	screen	sizes	at	the	same	time.	In	the	example	below,	I
adjusted	the	top	Button	to	move	it	to	the	left.	You	will	notice	that	the	smaller
screens	on	the	right	are	updated	to	reflect	this	UI	change.

Figure	12-10.	Setting	screen	resolution	in	the	visual	editor

Figure	12-11.	Previewing	all	screen	sizes

NOTE
If	you	are	using	resource	qualifiers	(see	Resources)	to	enable	different	layouts	(for	size	or
orientation-specific	UIs),	you	need	to	modify	each	one	independently.	The	changes	you	make
in	this	tool	will	take	effect	only	on	the	layout.xml	file	you	are	currently	editing.	You	need	to
edit	each	of	your	alternate	layouts	independently	and	make	your	changes	in	each	of	those	files.

Chapter	13.	Optimizing	the	User
Interface

Earlier	chapters	presented	aids	for	creating	dynamic	and	efficient	layouts.	The
tools	can	make	your	UI	good,	but	you’ll	probably	need	to	do	some	additional
work	to	make	your	UI	great.	This	chapter	discusses	the	various	tools	that	help
you	improve	the	efficiency	of	your	interface	code.	I	will	show	you	how	to	use
the	tools	to	eliminate:

Slow	or	jittery	redraw	rates

A	nonresponsive,	poorly	performing	UI

Introduction	to	UI	Performance
In	addition	to	the	content	covered	in	Chapter	11,	there	are	a	few	concepts
relating	to	how	Android	builds	user	interfaces	that	are	important	to	understand.

How	Android	Draws	Views,	and	How	It	Affects	UI
Performance
When	an	activity	gets	started,	it	asks	the	framework	to	draw	its	UI	from	its
layout	definitions.	The	UI	is	drawn	by	walking	the	View	tree	and	rendering	each
ViewGroup.	Then	each	ViewGroup	requests	each	of	its	children	to	be	drawn
until	all	Views	in	the	hierarchy	have	been	rendered.	The	tree	is	traversed	in
order,	which	means	that	parents	are	drawn	before	their	children,	with	the	final
order	determined	by	where	they	appear	in	the	tree.

Twopass	layout
The	runtime	draws	the	layout	through	a	twopass	process	via	the	View	tree,
visualized	in	Figure	13-1.	For	each	View	rendering,	the	system	must	perform
two	operations:	a	measure	pass	and	a	layout	pass.	The	measure	pass	collects

dimension	specifications	and	the	layout	pass	positions	the	Views	on	the	screen.

Measure	pass
This	pass	traverses	the	entire	View	tree	to	determine	dimension
specifications	for	each	View.	The	size	and	position	of	a	ViewGroup	depends
on	the	number	and	size	of	the	Views	it	contains.	The	measure	pass	calculates
sizes	based	on	the	relationships	between	a	ViewGroup	and	its	related	Views.
The	system	will	do	a	series	of	measurement	passes.	At	the	end,	the	system
knows	the	size	required	for	each	View,	and	validates	that	they	can	be	placed
on	the	layout.

Layout	Pass
After	the	system	has	determined	the	proper	dimensions	for	a	requested
layout,	it	renders	the	items	to	the	screen.

Figure	13-1.	Twopass	layout	process

Nested	layouts	reduce	performance
Nested	layouts	can	be	a	big	source	of	performance	issues.	Overhead	is	involved
with	each	redraw	of	a	ViewGroup.	When	Android	redraws	a	component	on	the
screen,	it	must	redraw	every	component	and	hierarchy	it	contains.	The	OS	does	a
variety	of	complicated	measurement	and	placement	calculations	for	each	screen
draw.	Complex	nested	components	and	unnecessary	items	impact	performance
and	diminish	the	user	experience	with	a	slow	response.

There	are	a	few	tools	designed	to	help	isolate	Views	with	inefficient	hierarchies.
You	can	use	the	Developer	Tools	(see	Developer	Tools	Application)	to	visualize
problems,	Lint	(see	Lint)	to	find	and	fix	the	errors	in	XML	or	Java,	or	the
Hierarchy	Viewer	(see	Hierarchy	Viewer)	to	visualize	your	View	organization

and	determine	possible	optimizations.

Hierarchy	Viewer
It	is	important	to	have	a	good	understanding	of	the	View	elements	in	your
application.	Fortunately,	ADT	provides	a	collection	of	tools	called	the	Hierarchy
Viewer	that	allows	the	developer	to	visualize	these	elements	and	quickly	identify
problems.

Dealing	with	complicated	layouts	can	be	very	challenging.	It	can	be	hard	to
understand	deeply	nested	layouts,	or	find	and	remove	unused	layouts.	We	will
use	these	tools	to	create	a	diagram	of	the	View	hierarchy	of	a	layout,	which
allows	us	to	get	a	clearer	understanding	of	the	nature	of	all	the	components	in
our	layouts	and	how	their	relationships	might	be	optimized.	We	optimize	the
layouts	by	removing	unused	layouts	and	flattening	the	View	hierarchy	(which
has	a	positive	impact	on	performance).	These	tools	are	also	useful	when
debugging	slow	UIs,	as	you	can	navigate	to	a	specific	point	in	your	UI	and	get
measurements	about	the	actual	render	times	of	the	individual	widgets	in	your
apps.

Starting	the	Hierarchy	Viewer
To	start	the	tool,	you	first	need	to	deploy	your	application	to	a	running	device.
Then	use	the	preconfigured	Eclipse	perspective	that	organizes	a	collection	of
tools	into	a	single	dashboard.	Start	it	from	the	menu	through:	Window	→	Open
Perspective	→	Other	→	Hierarchy	View.	You	will	see	something	that	looks	like
Figure	13-2.

Figure	13-2.	Initial	Hierarchy	View	perspective

Loading	the	View	Hierarchy	into	the	Tools
To	begin	analyzing	your	UI,	navigate	in	your	test	app	to	the	specific	view	you
want	to	inspect.	Then:

1.	 Highlight	the	Window	tab	()	on	the	top	left.

2.	 Find	your	app	activity	in	the	list	and	highlight	it.

3.	 If	your	app	is	not	showing	up,	press	the	Refresh	button	()	to	renew	the	list
of	views.

4.	 Generate	the	View	by	pressing	Tree	View	button	().

A	progress	dialog	on	the	bottom	right	corner	will	indicate	that	the	View	is	being
generated.	When	complete,	your	view	will	look	similar	to	Figure	13-3.

Figure	13-3.	Hierarchy	loaded	into	tools

Navigating	the	Tree	Hierarchy
Notice	that	the	two	tabs	on	the	right	side	of	Figure	13-3	now	have	content	in
them.	There	are	two	different	ways	to	navigate	using	these	tools:

Tree	Overview	()
You	might	remember	from	Nested	layouts	reduce	performance	that	unused
views	can	be	detrimental	to	performance.	Figure	13-3	shows	a	high-level
overview	of	how	each	View	in	the	UI	is	being	rendered.	This	is	a	good	place
to	identify	unnecessary	components,	because	you	can	look	for	instances
where	a	component	has	only	one	descendant	(and	hence	you	can	drop	the
container,	and	just	use	the	View	directly).	I	highlight	how	to	find	these	in	the
example	at	the	end	of	this	section.

Layout	View	()

This	section	shows	a	wire-frame	rendering	of	your	Views.	You	can	click	any
individual	component	in	this	display	to	highlight	it	in	the	center	Tree	View.

Gathering	View	Information
The	center	column	named	Tree	View	()	is	the	main	tool	used	to	gather	detailed
information	about	your	UI.	To	start	getting	details,	click	on	any	View	within
your	hierarchy	to	bring	up	the	detailed	information	about	the	View,	which	will
look	like	Figure	13-4.	We	will	dig	into	each	of	the	things	you	can	do	here.

Figure	13-4.	Hierarchy	View:	Tree	View

The	information	displayed	when	you	click	on	the	node	contains	a	variety	of
details	about	the	View’s	rendering	characteristics	(and	its	children	when
appropriate).	This	display	contains	a	lot	of	great	information,	so	I	want	to	take	a
moment	to	explain	what	the	values	mean.

Measurement	information
The	middle	section	(see	Figure	13-5)	has	two	important	items:

The	number	of	Views	in	this	container.	This	example	shows	24,	which	is	a	lot
because	this	happens	to	be	the	main	node	in	the	tree.

Measure,	Layout,	and	Draw	times	for	this	node	(and	all	of	its	children).	Keep
in	mind	that	high	times	are	not	necessarily	evidence	of	an	issue,	especially	for
screens	with	a	lot	of	objects,	which	naturally	take	longer	to	render.

Figure	13-5.	Hierarchy	View:	node	measurements

Identification	and	performance	indicators
The	bottom	part	of	the	node	information	display	(see	Figure	13-6)	has	some
other	useful	information	that	you	can	use	to	quickly	identify	objects	within	your
hierarchy.	It	also	includes	performance	indicators	that	you	can	scan	to	quickly
understand	how	the	View	performs	(in	relation	to	all	other	Views	in	the	same
layout).	Information	you	can	find	here	includes:

Class	type	of	this	view	(in	this	case,	the	component	is	FrameLayout).

The	internal	ID	(i.e.,	how	this	View	is	referenced	in	the	R	class)	for	this	View.

The	android:id	used	when	the	element	was	created	in	the	XML.

The	three	colored	balls	indicate	the	rendering	speed	of	this	View	relative	to

other	objects	in	the	tree.	The	left	ball	shows	the	measure	time,	the	middle	one
shows	the	layout	time,	and	the	right	ball	represents	the	draw	time.	If	the	ball
is	red,	it	means	that	View	is	the	slowest	one	in	the	tree;	if	the	ball	is	yellow,
that	View	is	slower	than	50%	of	the	other	Views.	If	the	ball	is	green,	it	means
that	the	View	renders	faster	than	50%	of	the	other	Views	on	the	screen.	You
should	use	these	indicators	to	quickly	scan	your	UI	to	identify	the	problems
you	should	look	at	first.

The	number	on	the	bottom	right	indicates	the	index	of	this	View	within	its
parent.	In	this	case,	the	node	has	one	parent,	so	its	index	is	one	(if	this	were
the	top	node	in	the	hierarchy,	it	would	be	zero).

Figure	13-6.	Hierarchy	View:	node	identification	and	performance	indicators

Gathering	View	Rendering	Details
The	Tree	View	contains	detailed	information	about	exact	rendering	times.	You
will	see	the	exact	times	(in	milliseconds)	it	takes	to	measure,	lay	out,	and	draw	a
component.

Notice	the	three	colored	balls	at	the	bottom	of	the	screen.	This	is	a	quick	way	to
identify	particular	view	groups	that	may	not	be	rendering	efficiently.	The	balls
represent	the	same	cycles	(Measure,	Layout,	and	Draw,	in	order)	as	detailed	in
the	Tree	View	in	the	previous	section.	A	ball	will	be	green	if	everything	looks
good,	yellow	if	there	might	be	reason	for	concern,	and	red	if	there	is	definitely
something	to	fix.

In	addition	to	gathering	metrics	about	rendering,	there	are	a	variety	of	operations

you	can	do	on	a	selected	component:

Save	as	a	PNG	().

Capture	window	layers	as	a	Photoshop	document	().

Reload	the	View	Hierarchy	().

Display	the	selected	View	image	in	a	new	window	().

Invalidate	the	View	layout	for	the	current	window	().	This	marks	the	View
as	invalid,	and	it	will	be	redrawn	the	next	time	the	layout	view	is	refreshed.

Request	the	View	to	lay	out	().	This	marks	the	View	and	its	children	as
invalid,	so	they	will	be	redrawn	the	next	time	the	layout	view	is	refreshed.

Request	the	View	to	output	its	display	list	to	logcat	().

Example:	Debugging	a	UI	Using	the	Hierarchy	Viewer
Examples	in	this	section	show	how	to	find	common	problems,	reveal	a	poorly
implemented	UI,	and	identify	issues.	This	section	compares	two	different
screens	that	achieve	the	exact	same	UI	result.	They	look	exactly	the	same,	but
have	significantly	different	performance	characteristics	due	to	some	design
decisions.	I	am	going	to	step	through	how	you	would	use	the	Hierarchy	Viewer
to	analyze	their	performance	and	identify	issues.

Different	ways	to	design	a	UI
As	an	example,	I	have	created	two	different	XML	layouts.	They	have	the	exact
same	output	on	the	screen,	but	one	of	them	performs	significantly	worse	than	the
other	due	to	implementation	differences.	The	key	difference	is:

The	“bad”	layout	nests	many	different	LinearLayouts.	It	is	not	unusual	for
developers	to	use	LinearLayouts	for	complex	layouts,	but	this	often	creates
overly	complex	layout	files	and	poorly	performing	UIs.

The	“good”	layout	was	written	using	a	single	RelativeLayout,	and	all	the
other	Views	are	laid	out	within	this	single	container.	This	creates	simpler
layouts,	and	makes	them	perform	better.

Let’s	use	the	Outline	tool	to	show	the	format	of	the	code.	This	is	a	good	way	to
show	that	the	bad	outline	has	a	much	more	complex	and	deeply	nested	structure
than	the	good	outline.

The	“bad”	layout	nests	many	different	LinearLayouts.	It	is	not	unusual	for
developers	to	use	LinearLayouts	for	complex	layouts,	but	this	often	creates
overly	complex	layout	files	and	poorly	performing	UIs.	You	can	see	this
complexity	in	the	Outline	view	(Figure	13-7).

Figure	13-7.	Hierarchy	View:	bad	outline

Figure	13-8	shows	the	result	of	creating	simpler	layouts	and	making	them
perform	better:	a	much	cleaner	Outline	view.

Figure	13-8.	Hierarchy	View:	good	outline

Despite	the	big	difference	in	design,	the	“bad”	screen	(see	Figure	13-9)	and	the
“good”	screen	(see	Figure	13-10)	look	and	operate	in	exactly	the	same	way.

Figure	13-9.	Hierarchy	View:	bad	layout

Figure	13-10.	Hierarchy	View:	good	layout

Using	the	Tree	View	to	get	timing	information
To	understand	the	UI,	let’s	use	the	Tree	View	described	in	Gathering	View
Information	to	discover	how	long	it	is	taking	to	render	our	View.	Use	the	steps
described	in	Loading	the	View	Hierarchy	into	the	Tools	to	load	the	display	and
determine	how	the	UI	is	performing.	For	the	most	part,	you	need	to	get	a	feel	for
the	optimal	performance	number,	which	varies	based	on	the	complexity	of	the
particular	screen.	You	will	learn	what	the	optimal	numbers	are	through
experience,	and	you	generally	will	want	to	compare	the	layout	times	for	the
same	layout,	before	and	after	optimizations	(to	determine	whether	your	changes
are	beneficial).

In	our	example,	it	is	easy	to	see	that	the	“bad”	layout	is	a	poor	performer.	We
select	the	top	element	in	the	Tree	View	and	look	at	the	measurement	on	the
bottom.	This	shows	the	time	it	takes	to	draw	this	View.	In	this	case,	it	takes
24.483	ms	for	the	bad	UI	(see	Figure	13-11),	and	only	19.640	ms	for	the	good
one	(see	Figure	13-12).	There	is	a	20%	difference	between	the	two,	and	they
both	look	exactly	the	same.

It	is	worth	getting	multiple	measurements,	as	they	will	vary	each	time	you
generate	the	Hierarchy	View.

Figure	13-11.	Hierarchy	View:	bad	timing

Figure	13-12.	Hierarchy	View:	good	timing

Reviewing	the	structure	with	the	Tree	Overview
So	now	that	we	have	identified	the	poor	performance	of	the	UI,	let’s	next	take	a
look	at	its	general	structure.	Tree	Overview	makes	it	easy	to	look	at	a	high-level

overview	of	the	tree	hierarchy,	and	understand	when	a	View	has	a	complicated
structure.	The	more	complicated	structures	take	longer	to	render.	You	will	also
use	this	View	to	identify	when	a	hierarchy	is	too	deep.	Having	deep	hierarchies
causes	significant	performance	impact,	as	it	increases	the	time	it	takes	the
system	to	measure	the	components	before	laying	them	out.

Looking	at	the	two	different	structures,	it	is	easy	to	see	why	one	might	perform
better	than	the	other.	The	“good”	layout	is	basically	completely	flat	(see
Figure	13-13),	without	any	deep	hierarchies.	The	“bad”	layout	(see	Figure	13-
14)	has	a	lot	of	different	hierarchies,	and	some	of	them	are	even	a	few	levels
deep.	You	will	use	this	View	to	quickly	identify	overly	complicated	structures	by
looking	at	how	organized	they	appear.

Figure	13-13.	Hierarchy	View:	good	tree

Figure	13-14.	Hierarchy	View:	bad	tree

Using	the	Tree	tool	to	inspect	the	bad	UI
To	help	identify	the	exact	View	components	that	are	causing	slow	render
performance,	use	the	Tree	tool	(Figure	13-15)	to	check	the	different	nodes,
inspecting	their	performance	indicators.	Concentrate	on	the	nodes	with	red	or
yellow	performance	indicators,	which	can	indicate	slower	performance.

The	View	Hierarchy	window	also	helps	you	pinpoint	performance	issues.	By
looking	at	the	performance	indicators	for	each	node,	you	can	quickly	identify	the
objects	that	are	the	slowest	to	draw.	This	helps	to	identify	the	elements	to	focus
on.

NOTE
It	is	worth	noting	that	red	or	yellow	indicators	are	not	always	indicative	of	a	problem.	This	is
particularly	true	for	ViewGroup	objects,	which	have	more	children	and	are	more	complex	(and
thus	take	more	time	to	render).

When	I	look	at	the	bad	UI,	I	see	red	and	yellow	dots	on	many	different	nodes	(in
this	figure,	there	are	red	and	yellow	dots	on	a	variety	of	different	places	in	no
discernible	order).	On	a	high	level,	this	tells	me	the	entire	UI	is	problematic	and
that	the	issues	aren’t	isolated	to	one	particular	ViewGroup.	At	this	point,	I	know
this	layout	is	probably	overly	complex	and	is	a	candidate	for	a	complete
redesign.	Next,	I	will	inspect	the	particular	elements	with	red	dots	(in	this	case,
there	is	the	TextView	that	is	second	from	the	top,	and	the	EditText	that	is	on
the	bottom	to	the	very	right).	In	this	case,	both	these	elements	are	simple	object
types,	using	an	Android	base	class	(TextView).	If	these	were	custom	Views	(i.e.,
MyCustomTextView),	red	and	yellow	dots	would	point	to	good	places	to	spend
time	optimizing.	In	this	case,	because	these	are	Android	base	classes,	I	know	I
probably	should	spend	my	time	elsewhere.

You	can	also	use	this	tool	to	identify	unused	layouts	(if	you	didn’t	catch	them
earlier	using	Lint,	described	in	Fixing	Problems	Using	Lint).	Unused	layouts	in
your	hierarchy	are	a	common	problem	with	potentially	big	performance	impacts,
as	each	additional	ViewGroup	makes	the	measure	pass	described	in	Twopass
layout	take	more	time	(and	it’s	already	the	bulk	of	the	time	required	to	render	the
screen).	It	is	reasonably	easy	to	identify	unused	layouts.	In	this	case,	there	is	one

LinearLayout	(in	the	middle	towards	the	left)	that	doesn’t	show	any
performance	metrics	(there	is	just	a	blank	space	where	the	colored	balls	and
timing	information	would	be).	This	indicates	that	it	is	not	being	rendered	and
should	be	removed.

Figure	13-15.	Hierarchy	View:	bad	detail

Using	the	Tree	tool	to	inspect	the	good	UI
The	performance	indicators	in	the	good	UI	look	much	better	than	the	bad	one	in
the	Tree	View.	Most	of	the	indicators	in	Figure	13-16	are	green.	The

concentration	of	all	the	red	indicators	on	my	single	layout	indicates	that	I	don’t
need	to	worry	about	them—the	tool	has	just	identified	that	this	path	takes	the
most	time	to	render,	which	is	appropriate	because	it	is	the	only	path.

There	are	clearly	no	unused	layouts,	so	that	looks	great	as	well.	Overall,	this
layout	is	much	better,	which	is	easy	to	visualize	using	this	tool.

Figure	13-16.	Hierarchy	View:	good	detail

Fixing	Problems	Using	Lint

ADT	includes	a	static	code	analysis	tool	designed	to	check	source	code	for
potential	issues	and	identify	optimization	opportunities.	It	automatically
analyzes	source	code	for	a	variety	of	criteria.	You	have	likely	encountered	it
before,	as	it	is	involved	in	other	aspects	of	Android	development,	including
writing	the	business	logic	(Java	classes).

Lint	is	launched	by	pressing	the	little	red	button	on	the	far	right	of	the	Graphical
Editor	toolbar	(),	which	we	discussed	in	the	previous	chapter	(Chapter	12).	This
number	indicates	the	number	of	issues	Lint	has	identified.	Clicking	it	will	launch
the	Lint	tool	(Figure	13-17).	You	can	use	this	tool	to	organize	and	navigate	to	the
various	issues	it	identifies.	When	you	click	on	an	item,	the	bottom	will	show
additional	information	about	the	issue	(and	offer	suggestions	about	possible
fixes).

The	right	side	provides	a	few	buttons	that	allow	you	to	take	action	on	the	item.
You	can	opt	to	fix	it,	or	if	it	isn’t	important	to	your	particular	use	case,	you	can
tell	the	tool	to	ignore	it.	You	can	remove	instances	from	the	display,	specifying
whether	you	would	like	to	remove	just	one	instance	(“Suppress	Issue”),	all
instances	in	this	file	(“Suppress	in	Layout”),	or	all	instances	in	your	entire
project	(“Disable	Issue	Type”).

Figure	13-17.	Visual	Editor	using	Lint

Application	Exerciser	Monkey
The	Monkey	is	a	tool	you	run	on	your	device	to	generate	a	pseudorandom	stream
of	user	interactions	and	system-level	events.	It	is	used	to	stress-test	applications
by	providing	a	way	to	simulate	lots	of	random	interactions	in	a	repeatable
manner	while	collecting	metrics	about	crashes	or	memory	issues.	This	is	a	great
way	to	test	for	user	interactions	that	aren’t	the	“normal”	ones	that	you	expect
(and	are	already	testing	for).	You	can	think	of	it	as	a	tiny	virtual	primate,	whose
sole	job	is	to	punch	and	prod	your	application	in	an	effort	to	break	it.

Monkey	runs	on	your	device,	which	means	we	will	use	ADB	(see	Android
Debug	Bridge	(ADB))	and	shell	commands	to	run	it	remotely.	When	starting	it,
you	need	to	provide	your	package	name	and	the	number	of	events	you	want	to
trigger.	So	if	you	wanted	to	run	500	events	against	the	MyPackage	app,	the
command	would	look	like:

$ adb shell monkey -p com.foo.MyPackage 500

A	real	example	of	running	this	looks	like:

$ adb shell monkey -p com.tools.demo 500

// activityResuming(com.tools.demo)

// activityResuming(com.tools.demo)

Events injected: 500

Network stats: elapsed time=36972ms (36972ms mobile, 0ms wifi,

0ms not connected)

$

When	you	run	this	test,	you	can	watch	your	device	or	emulator.	You	will	notice
random	elements	of	your	UI	being	exercised	as	if	an	imaginary	monkey	were
pressing	on	your	app	at	random.

Grooming	the	Monkey
There	are	a	variety	of	ways	to	customize	the	Hierarchy	Viewer’s	test	and	report.
I	will	go	through	some	of	the	most	important	ones	in	this	section.	You	can	see	a
complete	list	of	all	options	by	typing:

$ adb shell monkey --help

Letting	the	Monkey	free
The	Monkey	starts	in	the	default	application	of	the	package	you	specified,	and
by	default	is	contained	within	that	package.	Any	event	that	launches	something
external	will	be	dropped.	This	is	generally	a	desired	behavior,	but	there	might	be
times	when	you	want	to	be	able	to	launch	other	packages.	This	can	be	done	by
providing	an	additional	package	argument	to	the	command:

$ adb shell monkey -p com.foo.MyPackage -p com.foo.MyPackage2 500

Specifying	event	types	and	frequency
It	is	possible	to	isolate	the	types	of	events	that	are	triggered.	You	can	specify	the
percentage	of	a	particular	event	that	should	be	run.	This	is	done	with	the	event
parameters.	So,	for	instance,	if	you	want	to	ensure	that	50	percent	of	the	events
are	touch	events	(a	down-up	event	in	a	single	place	on	the	screen),	enter	a
command	like:

$ adb shell monkey --pct-touch 50 -p com.foo.MyPackage 500

Verbosity	level
Depending	on	your	needs,	you	may	want	to	get	back	different	levels	of
information	from	a	test	run.	It	is	possible	to	set	the	verbosity	level	to	indicate
how	much	information	you	wish	to	receive.	There	are	three	possible	levels,
based	on	how	many	v’s	you	set.	Putting	a	single	v	(the	default)	provides	the	least
information—basically	just	information	about	startup,	test	completion,	and	final
results.	Putting	vv	will	also	output	information	during	the	test	run.	Lastly,
entering	vvv	provides	the	most	information,	including	details	about	activities
selected	or	not	selected	for	testing.

If	that	isn’t	enough	information	for	you,	you	can	also	include	the	hprof	argument
on	the	command	line.	This	will	dump	a	large	(~5MB)	file	that	can	be	used	by
traceview	(see	Chapter	10)	for	memory	profiling.

So	to	see	the	most	verbose	output,	enter:

$ adb shell monkey -vvv -hprof -p com.foo.MyPackage 500

Setting	a	seed	value
A	seed	value	allows	you	to	generate	the	same	set	of	random	events	over	and
over.	This	can	be	useful	when	you	need	to	duplicate	the	same	set	of	random
events	predictably	to	isolate	a	particular	bug.	If	you	rerun	the	Monkey	with	the
same	seed	number,	the	same	exact	events	will	be	executed	in	the	same	sequence.
The	seed	can	be	any	value,	and	determines	where	Monkey	starts	in	its	generation
of	pseudorandom	events.	So	we	could	choose	the	seed	number	334422	as
follows:

$ adb shell monkey -seed 334422 -p com.foo.MyPackage 500

Monkeyrunner
This	tool	(which	despite	the	similar	name	to	the	tool	we	just	discussed	is
completely	different)	is	designed	to	control	an	Android	device	from	outside	of
code,	simulating	how	a	real	user	would	interact.	It	provides	an	API	so	you	can
simulate	user	interactions	by	issuing	commands	through	a	script,	or	from	the

command	line.	This	is	a	powerful	tool	for	simulating	and	running	a	consistent	set
of	UI	interactions	in	a	repeatable	fashion.

The	monkeyrunner	tool	is	a	Java	program	that	can	be	found	with	the	rest	of	the
tools	in	the	${android.home}/tools	folder.	To	run	it,	create	a	set	of	instructions
you	would	like	to	simulate	and	feed	to	the	tool.	This	is	a	scripted	application,	so
we	need	to	give	the	tool	a	list	of	commands	in	order	for	it	to	run.	You	can	either
type	the	commands	one	at	a	time	in	interactive	mode	or	create	a	script	to	run	a
collection	of	commands	together.

You	can	do	a	lot	with	monkeyrunner,	which	provides	a	robust	automated	tooling
platform.	This	tool	makes	repeating	a	specific	UI	easy.	This	makes	it	easy	to
standardize	functional	tests,	which	can	be	run	across	a	variety	of	devices.

Using	Python	to	Create	the	Script
Rather	than	inventing	a	scripting	language	for	this	tool,	the	creators	chose	to	use
an	existing	language	named	Python.	Python	was	the	logical	choice	because	it	is
very	powerful	and	popular.	It	is	a	dynamic	programming	language	that	was
designed	to	focus	on	creating	clear,	readable	code	that	is	modular	and	extensible.
Python	combines	functional	and	object-oriented	programming	concepts	to	make
it	easy	to	express	procedural	programs.	It	is	beyond	the	scope	of	this	book	to
explain	the	details	of	the	Python	language	but	we	can	step	through	a	simple
monkeyrunner	script	to	show	how	it	can	be	used.	Even	if	you	don’t	know
Python,	you	should	be	able	to	follow	along.

Let’s	step	through	a	simple	example	that	shows	how	to	install	an	application,
launch	an	activity,	take	a	screenshot	of	the	menu	options,	and	then	store	the
screenshot	for	later	review.

#menu_script.py

Import the monkeyrunner modules we need from com.android.monkeyrunner

import MonkeyRunner, MonkeyDevice

Connect to a device

device = MonkeyRunner.waitForConnection()

Install an application to the device

device.installPackage('../ToolsDemo.apk')

Run a component

device.startActivity(component='com.tools.demo/.MainActivity')

Press and hold the 'MENU' button

device.press('KEYCODE_MENU', MonkeyDevice.DOWN)

Take a screenshot

screen1 = device.takeSnapshot()

Store the screenshot to the filesystem

screen1.writeToFile('screens/menu_buttons.png','png')

Release the 'MENU' button

device.press('KEYCODE_MENU', MonkeyDevice.UP)

You	can	run	this	script	by	starting	monkeyrunner	from	the	command	line	with
this	script	as	a	parameter:

$ {android.home}\tools\monkeyrunner menu_script.py

When	you	execute	this	command,	you	will	be	able	to	watch	the	actions	you
scripted	on	your	device	as	they	are	happening.

Thanks	for	Reading!
Well,	that’s	the	end	of	this	chapter	on	UI	performance,	and	the	end	of	the	book.
With	any	technology	that	changes	as	rapidly	as	Android	does,	there	will
frequently	be	updates	and	new	information.	There’s	a	website	with	pointers	on
that	at	http://www.mikewolfson.com.	And	finally,	I’d	like	to	thank	you	for
choosing	this	book	and	reading	it	all	the	way	to	the	end.	In	the	final	analysis,
programmers	don’t	write	books	for	fame	or	financial	reward.	We	write	them	to
share	our	hard-won	knowledge	and	make	the	path	of	other	programmers	a	little
bit	easier.	I	hope	that	this	book	fulfills	that	goal	for	you	(and	that	you
recommend	it	to	all	your	developer	friends!).

http://www.mikewolfson.com

Index

A	NOTE	ON	THE	DIGITAL	INDEX
A	link	in	an	index	entry	is	displayed	as	the	section	title	in	which	that	entry	appears.
Because	some	sections	have	multiple	index	markers,	it	is	not	unusual	for	an	entry	to	have
several	links	to	the	same	section.	Clicking	on	any	link	will	take	you	directly	to	the	place	in
the	text	in	which	the	marker	appears.

Symbols

*:s,	silencing	all	other	log	messages,	Filtering	the	logcat

A

accelerometer,	SensorSimulator	accelerometer	example,	Simulating	Sensor
Events	in	Real	Time

actions

Android	Actions,	in	Android	Studio	default	toolbar,	Toolbars

common,	in	Android	Studio,	Useful	Actions	in	Android	Studio

Telephony	Actions,	Emulator	Control	tab,	Simulating	Telephony
Operations

activities

Activity	option	in	Configuration	Chooser,	Configuration	Chooser

Don’t	keep	activities	option,	Developer	Options	Menu

log	messages	on,	Reading	logcat	output

Activity	Manager,	Using	the	Activity	Manager

ActivityManager:*	tag,	Getting	the	Most	Out	of	Logcat

ADB	(Android	Debug	Bridge),	Android	Debug	Bridge	(ADB)–Additional
Resources

functionality,	additional,	ADB	Does	a	Lot	More

issuing	commands,	Issuing	Commands

managing	applications	on	a	device,	Managing	applications	on	a
device

transferring	files,	Transferring	files

querying	for	device	instances,	Querying	for	Device	Instances

directing	command	to	specific	device,	Directing	a	command	to	a
specific	device

finding	connected	devices,	Find	connected	devices

resetting	the	server,	Resetting	the	ADB	Server

resources	for	learning	more	about,	Additional	Resources

shell	command,	The	Shell	Command–ADB	Does	a	Lot	More

interactive	mode,	Interactive	mode

one-off	mode,	One-off	mode

retrieving	system	data,	Retrieving	system	data

using	Activity	Manager,	Using	the	Activity	Manager

starting,	Starting	ADB

ADB	driver,	downloading,	Configuring	a	Device	for	Development

adb	logcat	command,	Verbose	logging

ADB	process,	resetting	from	Devices	tool,	The	Devices	Tool

ADT	(Android	Developer	Tools),	Preface,	Validating	the	installation

ADT	Preview	Channel,	ADT	Preview	Channel

development	process,	Development	Process	for	Android	Developer	Tools

File	Explorer,	File	Explorer

Gradle	integration,	documentation	on,	Gradle-Based	Build	Tools

leveraging	to	build	great	UIs,	Leveraging	ADT	to	Build	Great	UIs

Lint,	Lint

requirements	for,	Requirements	for	Android	Developer	Tools

ADT	Template	Format	Documentation,	Code	Templates

ADT	website,	Development	Process	for	Android	Developer	Tools

Analyzer	Tool,	Launching	the	DDMS	Perspective–Viewing	the	results	of
Analyzer	Tool

running,	Analyzer	Tool

viewing	results,	Viewing	the	results	of	Analyzer	Tool

Android	Attributes,	getting	information	about,	Stepping	through	the	code

android	create	avd	command,	Creating	AVDs	from	the	command	line

Android	Debug	Bridge	(see	ADB)

Android	Debug	Monitor,	Launching	the	DDMS	Perspective

Android	Developer	Tools	(see	ADT)

Android	devices	(see	devices)

Android	Document	website,	Configuring	a	Device	for	Development

Android	key,	The	Android	Key

Android	Manifest	Editor,	Properties	Editors

tabs,	Properties	Editors

Android	platforms

SDK	component,	SDK	Components

selecting	and	downloading	packages	for,	Installing	packages

Android	Plugin	for	NetBeans,	Using	a	Different	IDE

Android	Software	Development	Kit	(SDK)

bundled	with	Android	Studio,	Bundled	SDK

components,	SDK	Components

installing,	Installing	the	Android	Software	Development	Kit–Validating
the	installation

extracting	tools	to	Android	home,	Extracting	the	tools	to	Android
Home

installing	ADT	Bundle,	Installing	the	ADT	Bundle

setting	PATH	variable,	Setting	your	PATH	variable

unzipping	download	artifact,	Unzip	the	downloaded	artifact	to	the
Android	folder

Android	Studio,	Using	a	Different	IDE,	Developing	with	Android
Studio–Miscellaneous	Shortcuts

anatomy	of,	Anatomy	of	the	Android	Studio	IDE

navigation,	Navigation

panels,	Panels

status	bar,	Panels

toolbars,	Toolbars

useful	actions,	Useful	Actions	in	Android	Studio

creating	new	Android	components,	Creating	New	Android	Components

generating	an	APK,	Generating	an	APK

installing,	Installing	Android	Studio

bundled	SDK,	Bundled	SDK

default	project	location,	Default	Project	Location

interacting	with	Gradle,	Interacting	with	Gradle

interacting	with	Maven,	Interacting	with	Maven	and	Gradle

Layout	Designer,	Layout	Designer	and	Layout	Preview

Layout	Preview,	Layout	Preview

migrating	to,	from	Eclipse,	Migrating	from	Eclipse

new	structure	for	Android	project,	The	New	Structure	of	an	Android
Project

refactoring	and	code	generation,	Refactoring	and	Code	Generation

running	and	debugging	Android	projects,	Running	and	Debugging	an
Android	Project

tips	and	tricks,	Android	Studio	Tips	and	Tricks

miscellaneous	shortcuts,	Miscellaneous	Shortcuts

refactoring	and	code	generation	shortcuts,	Refactoring	and	Code
Generation

training	resources,	additional,	Miscellaneous	Shortcuts

Version	Control	System	(VCS)	integrations,	Version	Control	Integration

android	update	project	command,	Creating	the	Ant	build.xml	file,	Building
applications	from	multiple	source	libraries

Android	Virtual	Devices	(see	AVDs)

Ant,	Build	Tools

building	from	command	line	with,	Building	from	the	Command	Line
Using	Ant–Additional	Ant	Commands

building	app	to	release	to	Play	Store,	Building	an	App	to	Release	to
the	Play	Store

building	in	Debug	mode,	Building	in	Debug	Mode

more	Ant	commands,	Additional	Ant	Commands

setting	up	your	project,	Setting	Up	Your	Project

ant	debug	command,	Building	applications	from	multiple	source	libraries

ant	release	command,	Signing	an	app	with	a	custom	keystore,	Storing	the
password	information

Apache	Ant	home	page,	Building	from	the	Command	Line	Using	Ant

APKs	(Android	package	files)

generating	in	Android	Studio,	Generating	an	APK

packaging	for	release,	Packaging	an	APK	for	Release–Building	from	the
Command	Line	Using	Ant

Asset	Studio	project,	Asset	Studio	Website

Asset	tool,	The	Asset	Tool–Using	NinePatch	Images

creating	images,	The	Asset	Tool

selecting	icon	type,	The	Asset	Tool

AsyncTasks,	monitoring	with	logcat,	Determining	areas	to	monitor

attributes

defined,	Defining	Layouts	Using	XML

editing	attribute	values	in	XML	files,	Attribute	values

AVD	Command	Reference,	Emulator	Options

AVD	Manager

starting	the	emulator,	Starting	the	Emulator

AVD	launch	options,	AVD	launch	options

AVDs	(Android	Virtual	Devices),	Android	Virtual	Devices

creating,	Creating	AVDs

AVD	Manager,	AVD	Manager

from	command	line,	Creating	AVDs	from	the	command	line

location	of	AVD	files,	Location	of	the	AVD	files

emulator	options,	Emulator	Options

setting	up	emulator	using	snapshots,	Saving	and	retrieving	a	snapshot

snapshots	saved	state,	Saving	and	retrieving	a	snapshot

starting	the	emulator

from	command	line,	Starting	an	emulator	from	the	command	line

launch	from	snapshot,	Saving	and	retrieving	a	snapshot

B

boot	animation,	disabling	on	emulator,	Disabling	the	Boot	Animation,
Starting	an	emulator	from	the	command	line

breakpoints

setting	a	debug	point	in	source	code,	Setting	a	Debug	Point

setting	debug	points,	Setting	the	debug	points

build	file	(Gradle),	Build	File

build	tools,	Build	Tools–Using	the	Maven	Tools

advanced	packaging	steps,	Advanced	Packaging	Steps–Gradle-Based
Build	Tools

ProGuard,	ProGuard–Zipalign

Zipalign,	Zipalign

Android	Studio	interacting	with	Gradle,	Interacting	with	Gradle

Android	Studio	interacting	with	Maven,	Interacting	with	Maven

building	from	command	line	using	Ant,	Building	from	the	Command
Line	Using	Ant–Additional	Ant	Commands

additional	Ant	commands,	Additional	Ant	Commands

building	app	to	release	to	Play	Store,	Building	an	App	to	Release	to
the	Play	Store

building	in	Debug	mode,	Building	in	Debug	Mode

setting	up	your	project,	Setting	Up	Your	Project

compiling	your	code,	Compiling	Your	Code

Gradle-based,	Gradle-Based	Build	Tools–Using	the	Maven	Tools

build	file,	Build	File

build	tasks,	Build	Tasks

creating	multiple	build	variations,	Creating	Multiple	Build
Variations

generating	Gradle	build	from	Eclipse,	Generating	a	Gradle	Build
from	Eclipse

installing	Gradle,	Installing	Gradle

Maven,	Using	the	Maven	Tools

packaging	APK	for	release,	Packaging	an	APK	for	Release–Building
from	the	Command	Line	Using	Ant

signing	your	app,	Signing	Your	App–Signing	Your	App

build	type	(Gradle),	Installing	Gradle

build	variant	(Gradle),	Installing	Gradle

build.xml	file	(Ant),	creating,	Creating	the	Ant	build.xml	file

building	Android	apps

from	multiple	source	libraries,	Building	applications	from	multiple
source	libraries

steps	in	process,	Building	from	the	Command	Line	Using	Ant

C

canvas	(Graphical	Layout	editor),	Canvas–Outline	View

context-sensitive	menu,	Context-Sensitive	Menu

layout	actions,	Layout	Actions

certificates,	Signing	Your	App

code	completion,	XML	editor,	Code	completion

Code	Editor	(Eclipse),	Anatomy	of	the	Eclipse	Workspace

code	examples	from	this	book,	Using	Code	Examples

code	generation	and	refactoring	in	Android	Studio,	Android	Studio	Tips
and	Tricks

code	templates,	Code	Templates–Properties	Editors

accessing	menu	in	Eclipse,	Code	Templates

creating	Master/detail	flow,	Code	Templates–Properties	Editors

code	template	confirmation,	Code	Templates

Master/detail	wizard,	Code	Templates

viewing	results,	Code	Templates

creating	your	own,	Code	Templates

XML	editor,	Editing	XML	Files	Directly

command	line

building	from,	using	Ant,	Building	from	the	Command	Line	Using
Ant–Additional	Ant	Commands

creating	AVDs	from,	Creating	AVDs	from	the	command	line

draw9patch	tool,	Using	NinePatch	Images

starting	an	emulator	from,	Starting	an	emulator	from	the	command	line

using	development	tools	from,	Command-Line	Usage

using	lint	from,	Command-Line	Usage

excluding	issues,	Excluding	issues

compiling	your	code,	Compiling	Your	Code

Configuration	Chooser,	Configuration	Chooser–Configuration	Chooser

Preview	all	screens,	Configuration	Chooser

setting	screen	resolution,	Configuration	Chooser

configuration	parameters	for	AVDs,	AVD	Manager

context-sensitive	menu,	Graphical	Layout	editor,	Context-Sensitive	Menu

context-specific	options	in	Android	Studio,	Android	Studio	Tips	and	Tricks

convention	over	configuration,	Creating	Multiple	Build	Variations

Create	AVD	wizard,	AVD	Manager

custom	content	entered	in	log	statement,	Reading	logcat	output

D

Dalvik	Compatible	executables	(DEX	files),	Compiling	Your	Code

Dalvik	Debug	Monitor	Server	(see	DDMS)

DDMS	(Dalvik	Debug	Monitor	Server),	Dalvik	Debug	Monitor	Server
(DDMS)–Profile	panel

Analyzer	Tool,	Analyzer	Tool–Viewing	the	results	of	Analyzer	Tool

Heap	tool,	Heap

launching	DDMS	perspective,	Launching	the	DDMS	Perspective

specifying	location	for	emulator	to	simulate,	Simulating	Location	and
Routes

Threads	tool,	Threads

Traceview	tool,	Traceview–Profile	panel

DDMS	perspective,	Uncovering	Additional	Tools	and	Views

debug	key,	Signing	Your	App

Debug	mode,	Building	from	the	Command	Line	Using	Ant

building	in,	using	Ant,	Building	in	Debug	Mode

Debug	toolbar,	Resume	button,	Stepping	through	the	code

Debug.dumpHprofData()	method,	Generating	an	HPROF	File

debuggable,	setting	app	to,	Setting	Your	App	to	Debuggable

debugging,	Debugging–Lint

DDMS	(Dalvik	Debug	Monitor	Server),	Dalvik	Debug	Monitor	Server
(DDMS)–Profile	panel

Eclipse	Debug	Perspective,	The	Eclipse	Debug	Perspective

enabled	for	testing	apps	on	a	phone,	Configuring	a	Device	for
Development

example,	Debugging	Example–Lint

setting	debug	points,	Setting	the	debug	points

starting	the	debugger,	Starting	the	debugger

stepping	through	the	code,	Stepping	through	the	code–Lint

launched	from	Devices	tool,	The	Devices	Tool

setting	app	to	debuggable,	Setting	Your	App	to	Debuggable

setting	debug	point,	Setting	a	Debug	Point

validating	on	phone,	Configuring	a	Device	for	Development

dependencies

defining	project	dependencies	and	target	API,	Building	applications
from	multiple	source	libraries

listing	tasks	and	dependencies	in	Gradle,	Build	Tasks

managing	for	packages	selected	in	SDK	Manager,	Managing
dependencies

Developer	Settings	application,	Developer	Options	Menu–Developer
Options	Menu

Developer	Tools	application,	Developer	Tools	Application

development	tools	(see	tools)

development,	configuring	a	device	for,	Configuring	a	Device	for
Development

Device	Screen	Capture	(Devices	tool),	The	Devices	Tool

devices

configuring	for	development,	Configuring	a	Device	for	Development

querying	for	device	instances	in	ADB,	Querying	for	Device	Instances

directing	command	to	specific	device,	Directing	a	command	to	a
specific	device

finding	connected	devices,	Find	connected	devices

recording	sensor	interactions	on	physical	device,	Recording	Sensor
Scenarios

using	physical	device	for	development,	Using	a	Physical	Device	for
Development

capabilities	and	limitations,	Capabilities	and	Limitations

configuring	device	for	development,	Configuring	a	Physical	Device
for	Development

devices	command	(ADB),	Find	connected	devices

-s	option,	Directing	a	command	to	a	specific	device

Devices	tool

Devices	tab,	The	Devices	Tool

operations	launched	from	devices	tab,	The	Devices	Tool

physical	device	shown	in,	The	Devices	Tool

tracking	emulators	or	devices	hooked	to	your	computer,	The	Devices
Tool

documentation

Ant	commands,	Additional	Ant	Commands

Gradle,	Gradle-Based	Build	Tools

in	Android	SDK,	SDK	Components

using	alternative	resources,	Resources

using	NinePatchDrawables,	Using	NinePatch	Images

draw9patch	command-line	tool,	Using	NinePatch	Images

drawable	documentation,	Using	NinePatch	Images

drivers,	SDK	Components

Dump	HPROF	file	button,	Generating	an	HPROF	File

E

Eclipse	IDE,	Development	on	a	Variety	of	OS	Platforms,	Installing	the
Android	Software	Development	Kit,	Developing	with	Eclipse–Refactor
Menu

Android	Key,	The	Android	Key

Android	Studio	and,	Developing	with	Android	Studio

Build	Automatically	setting,	Compiling	Your	Code

code	templates,	Code	Templates–Properties	Editors

DDMS	perspective,	launching,	Simulating	Location	and	Routes,
Launching	the	DDMS	Perspective

Debug	Perspective,	The	Eclipse	Debug	Perspective

developing	without	using,	Developing	Without	Eclipse

generating	Gradle	build	from,	Generating	a	Gradle	Build	from	Eclipse

Initial	Hierarchy	View	perspective,	Starting	the	Hierarchy	Viewer

launching,	Validating	the	installation

logcat	viewer,	Logcat	Viewer	in	Eclipse

MAT,	installing	and	launching,	Installing	MAT	into	Eclipse

moving	to	Android	Studio	from	Eclipse,	Migrating	from	Eclipse

other	essential	shortcuts,	Other	Essential	Eclipse	Shortcuts

properties	editors,	Properties	Editors

Android	Manifest	Editor,	Properties	Editors

quick	outline	for	XML	or	Java	class,	Quick	Outline	for	XML–Other
Essential	Eclipse	Shortcuts

Refactor	menu,	Refactor	Menu

running	Lint,	Running	in	Eclipse

Java	and	XML	editor	integration,	Java	and	XML	editor	integration

Lint	Options	dialog,	Lint	toolbar	menu

Lint	toolbar	menu,	Lint	toolbar	menu

Quick	Fix	tool,	Quick	Fix	tool

starting	SDK	Manager,	Starting	the	SDK	Manager

starting	the	emulator,	Starting	the	Emulator

workspace	layout,	Anatomy	of	the	Eclipse	Workspace–Quick	Button

Code	Editor,	Anatomy	of	the	Eclipse	Workspace

Outline,	Anatomy	of	the	Eclipse	Workspace

Package	Explorer,	Anatomy	of	the	Eclipse	Workspace

Problems	tab,	Anatomy	of	the	Eclipse	Workspace

Quick	button,	Quick	Button

uncovering	additional	tools	and	views,	Uncovering	Additional	Tools
and	Views–Quick	Button

XML	formatter,	XML	Formatter

Editor	Preferences	menu	(XML	editor),	Editor	Preferences	menu

Emulator	Documentation,	Keyboard	Shortcuts

emulators,	Using	the	Emulator

advanced	configuration,	Advanced	Emulator	Configuration

dedicating	core	to	emulator	on	Windows,	On	Windows:	Dedicating	a
Core	to	the	Emulator

disabling	boot	animation,	Disabling	the	Boot	Animation

using	hardware	acceleration,	Using	Hardware
Acceleration–Disabling	the	Boot	Animation

Android	Virtual	Devices	(see	AVDs)

emulator	application,	The	Emulator	Application

emulator	options	for	AVDs,	Emulator	Options

keyboard	shortcuts,	Keyboard	Shortcuts

location	simulation,	Simulating	Location	and	Routes–Simulating
Telephony	Operations

starting	the	emulator,	Starting	the	Emulator–The	Emulator	Application

AVD	launch	options,	AVD	launch	options

enabling	options	to	launch	from	snapshot,	Saving	and	retrieving	a
snapshot

from	command	line,	Starting	an	emulator	from	the	command	line

saving	and	retrieving	a	snapshot,	Saving	and	retrieving	a	snapshot

using	AVD	Manager,	Starting	the	Emulator

using	snapshots	to	improve	performance,	Using	snapshots	to
improve	performance

tracking	using	Devices	tool,	The	Devices	Tool

using	for	development,	Using	an	Emulator	for	Development

supported	and	unsupported	features,	Supported	Features

events,	simulating,	Simulating	Events–Developer	Options	Menu

advanced	sensor	testing,	Advanced	Sensor	Testing–Recording	Sensor
Scenarios

recording	sensor	scenarios,	Recording	Sensor	Scenarios

SensorSimulator,	supported	sensors,	Supported	Sensors

simulating	sensor	events	in	real	time,	Simulating	Sensor	Events	in
Real	Time

changing	networking	parameters,	Changing	Networking	Parameters

location	and	routes,	Simulating	Location	and	Routes

telephony	operations,	Simulating	Telephony	Operations–Changing

Networking	Parameters

using	Developer	Settings	application,	Developer	Options
Menu–Developer	Options	Menu

using	device	with	sensor	emulation,	Using	a	Device	with	Sensor
Emulation

example	code	in	Android	SDK,	SDK	Components

Export	wizard,	Signing	Your	App

F

File	Explorer,	File	Explorer

files

File	Actions	in	Android	Studio,	Toolbars

transferring	between	your	computer	and	devices,	Transferring	files

filtering

applying	multiple	filter	expressions	to	logcat	command,	Getting	the
Most	Out	of	Logcat

logcat	output	using	custom	tags,	Filtering	the	logcat

logging	output	filter	based	on	log	tags,	Using	Tags	to	Filter	Output

logging	output	filter	based	on	logging	level,	Filtering	Based	on	Logging
Level

flavor	group	(Gradle),	Installing	Gradle

Force	GPU	Rendering	option,	Developer	Options	Menu

formatting

monitoring	with	logcat,	Determining	areas	to	monitor

XML	files,	using	XML	editor,	XML	formatting

G

garbage	collection,	Memory	Usage	in	Android

Google	APIs	(in	Android	SDK),	SDK	Components

GPU	rendering,	forcing,	Developer	Options	Menu

Gradle,	Interacting	with	Maven	and	Gradle,	Build	Tools,	Gradle-Based
Build	Tools–Using	the	Maven	Tools

build	file,	Build	File

build	tasks,	Build	Tasks

creating	multiple	build	variations,	Creating	Multiple	Build	Variations

documentation,	Gradle-Based	Build	Tools

generating	Gradle	build	from	Eclipse,	Generating	a	Gradle	Build	from
Eclipse

installing,	Installing	Gradle

interacting	with,	using	Android	Studio,	Interacting	with	Gradle

key	concepts	and	terms,	Installing	Gradle

gradle	command,	Build	Tasks

graphical	editor,	using,	Using	the	Graphical	Editor–Configuration	Chooser

canvas,	Canvas–Outline	View

context-sensitive	menu,	Context-Sensitive	Menu

layout	actions,	Layout	Actions

Configuration	Chooser,	Configuration	Chooser–Configuration	Chooser

generating	layouts	with	Graphical	Layout	editor,	Generating	Layouts
Using	the	Graphical	Layout	Editor

Lint,	Fixing	Problems	Using	Lint

Outline	view,	Outline	View

palette,	Palette

Properties	editor,	Properties	Editor–Configuration	Chooser

graphics	acceleration,	starting	emulator	with,	Starting	an	emulator	from
the	command	line

graphics,	working	with,	in	Android	UI,	Working	with	Graphics–Asset
Studio	Website

Asset	Studio	website,	Asset	Studio	Website

Asset	tool,	The	Asset	Tool

using	Nine-patch	images,	Using	NinePatch	Images

H

Hardware	Accelerated	Execution	Manager	(Intel	HAXM),	Using	Hardware
Acceleration–Disabling	the	Boot	Animation

benefits	and	limitations	of,	Benefits

configuring	an	AVD,	Configuring	an	AVD

downloading	components,	Downloading	the	components

installing	software,	Installing	the	HAXM	software

validating	that	it’s	running,	Validating	that	HAXM	is	running

hardware	capabilities,	Android	phones,	Requirements	for	Android
Developer	Tools

heap

Heap	tool,	Launching	the	DDMS	Perspective,	Heap

information	displayed	in	3	sections,	Viewing	heap	information

inspecting	with	Devices	tool,	The	Devices	Tool

Hierarchy	Viewer,	Hierarchy	Viewer

example,	debugging	a	UI	using,	Example:	Debugging	a	UI	Using	the
Hierarchy	Viewer–Fixing	Problems	Using	Lint

different	ways	to	design	a	UI,	Different	ways	to	design	a	UI

getting	timing	information	with	Tree	View,	Using	the	Tree	View	to
get	timing	information

inspecting	bad	UI	with	Tree	tool,	Using	the	Tree	tool	to	inspect	the
bad	UI

inspecting	good	UI	with	Tree	tool,	Using	the	Tree	tool	to	inspect	the
good	UI

reviewing	structure	with	Tree	Overview,	Reviewing	the	structure
with	the	Tree	Overview

gathering	view	information,	Gathering	View	Information

identification	and	performance	indicators,	Identification	and
performance	indicators

measurement	information,	Measurement	information

gathering	view	rendering	details,	Gathering	View	Rendering	Details

loading	view	hierarchy	into	tools,	Loading	the	View	Hierarchy	into	the
Tools

navigating	tree	hierarchy,	Navigating	the	Tree	Hierarchy

starting	up,	Starting	the	Hierarchy	Viewer

Hierarchy	Viewer	perspective,	Uncovering	Additional	Tools	and	Views

home	directory,	Android,	Extracting	the	tools	to	Android	Home

HPROF	file,	Memory	Analyzer	Tool	(MAT)

analyzing	using	MAT,	Using	MAT	to	Analyze	HRPOF	Files

I

IDEs	(Integrated	Development	Environments),	Development	on	a	Variety	of
OS	Platforms,	Getting	Started

(see	also	Android	Studio;	Eclipse	IDE)

developing	without	using,	Developing	Without	Eclipse

Eclipse	IDE	or	other	IDE,	Installing	the	Android	Software	Development
Kit

using	IDE	other	than	Eclipse,	Using	a	Different	IDE

install	command	(ADB),	Managing	applications	on	a	device

J

Java

compiling	your	code,	Compiling	Your	Code

Lint	Quick	Fix	in,	Quick	Fix	tool

Lint	warnings	in	Java	file,	Java	and	XML	editor	integration

signing	APK	with	standard	Java	tools,	Signing	Your	App

Java	keystore,	Signing	Your	App–Signing	Your	App

JDK	(Java	Developer	Kit),	Installing	Java

JRE	(Java	Runtime	Environment),	Installing	Java

JSON	parsing,	monitoring	with	logcat,	Determining	areas	to	monitor

JSON:*	tag,	Filtering	the	logcat

K

keyboard	shortcuts

Android	key,	The	Android	Key

Eclipse	Quick	Outline,	Quick	Outline	for	XML

emulator,	Keyboard	Shortcuts

in	Android	Studio,	Navigation,	Android	Studio	Tips	and	Tricks

miscellaneous	shortcuts	in	Android	Studio,	Miscellaneous	Shortcuts

navigating	within	XML	files,	Quick	Outline	for	XML

other	Eclipse	shortcuts,	Other	Essential	Eclipse	Shortcuts

Quick	Fix	feature	in	Eclipse,	Quick	Fix	tool

refactoring	and	code	generation	in	Android	Studio,	Refactoring	and
Code	Generation

setting	breakpoints	in	code,	Setting	a	Debug	Point

keystore

checking	or	validating	in	Build	wizard,	Signing	Your	App

creating	in	Build	wizard,	Signing	Your	App

password	information,	storing	in	Ant,	Storing	the	password	information

selection,	in	Build	wizard,	Signing	Your	App

signing	app	with	custom	keystore,	Signing	an	app	with	a	custom
keystore

L

layout

Android,	basic	concepts,	Android	Layout	Basic	Concepts

defining	layouts	using	XML,	Defining	Layouts	Using	XML

defining	layouts	using	XML/layout	basics	rendered,	Views	and
ViewGroups

leveraging	ADT	to	build	UIs,	Leveraging	ADT	to	Build	Great	UIs

resources,	Resources

Views	and	ViewGroups,	Views	and	ViewGroups

bad	and	good	layouts	for	Android	UI,	Different	ways	to	design	a	UI

defined,	Defining	Layouts	Using	XML

generating	using	Graphical	Layout	editor,	Generating	Layouts	Using	the
Graphical	Layout	Editor–Outline	View

inserting	new	layouts	into	XML	files,	Inserting	new	layouts	or	widgets

nested	layouts	reducing	performance,	Nested	layouts	reduce
performance

two-pass	layout	process,	Two-pass	layout

layout	actions	bar	(Graphical	Layout	editor),	Layout	Actions

Layout	Designer	(Android	Studio),	Layout	Designer

layout	files,	Defining	Layouts	Using	XML

Layout	Preview	(Android	Studio),	Layout	Preview

Layout	View	(Hierarchy	Viewer),	Navigating	the	Tree	Hierarchy

link	suspects	report	(MAT),	Viewing	a	Report

Lint,	Lint

command-line	usage,	Command-Line	Usage

--disable	command	as	permanent,	Excluding	issues

--enable	option,	Excluding	issues

excluding	issues,	Excluding	issues

fixing	UI	performance	problems,	Fixing	Problems	Using	Lint

listing	issues	currently	enabled,	using	lint	--list	command,	Lint

running	in	Eclipse,	Running	in	Eclipse

Java	and	XML	editor	integration,	Java	and	XML	editor	integration

Lint	Options	dialog,	Lint	toolbar	menu

Lint	toolbar	menu,	Lint	toolbar	menu

Quick	Fix	tool,	Quick	Fix	tool

Linux

Android	Framework	and,	The	Shell	Command

Android	home	directory,	Extracting	the	tools	to	Android	Home

keyboard	shortcuts	in	Android	Studio,	Refactoring	and	Code
Generation,	Refactoring	and	Code	Generation

minimum	requirements	for	Android	development,	Minimum
Requirements

navigation	shortcuts	in	Android	Studio,	Navigation

setting	breakpoints,	keyboard	shortcut,	Setting	a	Debug	Point

starting	SDK	Manager,	Starting	the	SDK	Manager

XML	formatter,	XML	Formatter

localization,	Configuration	Chooser

locations,	simulating,	Simulating	Location	and	Routes–Simulating
Telephony	Operations

log	tags,	Anatomy	of	a	Log	Message

creating	custom	tags	to	represent	logging	categories,	Creating	log
statements

using	in	multiple	filters	on	logcat	command,	Getting	the	Most	Out	of
Logcat

using	to	filter	output,	Using	Tags	to	Filter	Output

logcat,	Logcat

filtering	output	based	on	logging	level,	Filtering	Based	on	Logging	Level

filtering	output	using	log	tags,	Using	Tags	to	Filter	Output

filtering	verbose	system	logs	to	find	needed	information,	Logcat
Example–Debugging

creating	log	statements,	Creating	log	statements

determining	areas	to	monitor,	Determining	areas	to	monitor

filtering	output,	Filtering	the	logcat

verbose	logging,	Verbose	logging

getting	the	most	out	of,	Getting	the	Most	Out	of	Logcat

log	messages,	Anatomy	of	a	Log	Message

logcat	tool	in	Eclipse,	Logcat	Viewer	in	Eclipse

predefined	output	formats,	Predefined	Output	Formats

reading	output,	Reading	logcat	output

viewing	alternative	log	buffers,	Viewing	Alternative	Log	Buffers

viewing	logcat	file,	Viewing	the	Logcat	File

logging	level,	Anatomy	of	a	Log	Message

example	in	testing	of	ActivityManager,	Reading	logcat	output

filtering	based	on,	Filtering	Based	on	Logging	Level

M

Mac	OS	X,	Development	on	a	Variety	of	OS	Platforms

Android	home	directory,	Extracting	the	tools	to	Android	Home

minimum	requirements	for	Android	development,	Minimum
Requirements

navigation	shortcuts	in	Android	Studio,	Navigation

setting	breakpoints,	keyboard	shortcut,	Setting	a	Debug	Point

starting	SDK	Manager,	Starting	the	SDK	Manager

XML	formatter,	XML	Formatter

Manifest	Editor,	Properties	Editors

tabs,	Properties	Editors

Master/detail	flow,	generating	with	code	template,	Code
Templates–Properties	Editors

MAT	(Memory	Analyzer	Tool),	Memory	Analyzer	Tool	(MAT)–Viewing	a
Report

HPROF	file,	Generating	an	HPROF	File

installing	into	Eclipse,	Installing	MAT	into	Eclipse

launching	from	Eclipse,	Launching	MAT	from	Within	Eclipse

Overview	screen,	The	MAT	Overview	Screen

using	to	analyze	HPROF	files,	Using	MAT	to	Analyze	HRPOF	Files

viewing	a	report,	Viewing	a	Report

MAT	wizard,	launching,	Using	MAT	to	Analyze	HRPOF	Files

Maven,	Build	Tools

interacting	with,	using	Android	Studio,	Interacting	with	Maven	and
Gradle

learning	more	about	integration	with	Android,	Using	the	Maven	Tools

memory

Analyzer	Tool,	Launching	the	DDMS	Perspective

usage	in	Android,	Memory	Usage	in	Android

Memory	Analyzer	Tool	(see	MAT)

memory	leaks,	Memory	Usage	in	Android

monitoring	system	resources	(see	system	resources,	monitoring)

Monkey	tool,	Application	Exerciser	Monkey

monkeyrunner,	Monkeyrunner

N

navigation	shortcuts	in	Android	Studio,	Navigation

NetBeans	IDE,	Using	a	Different	IDE

network,	monitoring	with	logcat,	Determining	areas	to	monitor

NETWORK:*	tag,	Filtering	the	logcat

networking	parameters,	changing,	simulation	of,	Changing	Networking
Parameters

NinePatch	images,	Using	NinePatch	Images

Nurik,	Roman,	Code	Templates

O

obfuscation	of	code,	with	Proguard,	Logcat

Openintents.org,	SensorSimulator	project,	Advanced	Sensor	Testing

operating	systems

Android	development	on,	Development	on	a	Variety	of	OS	Platforms

minimum	hardware	requirements	for	Android	development,	Minimum
Requirements

optimizing	the	UI	(see	UI,	optimizing)

orientation,	Configuration	Chooser

Outline	view

in	Eclipse,	Anatomy	of	the	Eclipse	Workspace

in	graphical	editor,	Outline	View

OutOfMemory	exception,	Memory	Usage	in	Android

Overview	screen	(MAT),	The	MAT	Overview	Screen

P

Package	Explorer	(Eclipse),	Anatomy	of	the	Eclipse	Workspace

packaging	steps,	advanced,	Advanced	Packaging	Steps–Gradle-Based	Build
Tools

ProGuard,	ProGuard–Zipalign

Zipalign,	Zipalign

palette	(Graphical	Layout	editor),	Palette

panels	in	Android	Studio,	Panels

passwords

Graphical	editor,	password	example,	Palette

keystore	for	app	built	in	Ant,	Storing	the	password	information

PATH	environment	variable,	Setting	your	PATH	variable

performance,	UI,	Optimizing	the	User	Interface

(see	also	UI,	performance)

introduction	to,	Introduction	to	UI	Performance–Nested	layouts	reduce
performance

perspectives	(Eclipse),	Uncovering	Additional	Tools	and	Views

Pixel	Perfect	View,	Uncovering	Additional	Tools	and	Views

Platform	Tools,	SDK	Components

Play	Store

building	app	in	Ant	to	release	to	Play	Store,	Building	an	App	to	Release
to	the	Play	Store

packaging	an	APK	for	release	on,	Packaging	an	APK	for
Release–Building	from	the	Command	Line	Using	Ant

Pointer	Location,	Developer	Options	Menu

port	forwarding,	Using	a	Device	with	Sensor	Emulation

PowerManagerService:E	tag,	Getting	the	Most	Out	of	Logcat

Problems	tab	(Eclipse),	Anatomy	of	the	Eclipse	Workspace

process	ID	of	application	originating	log	message,	Reading	logcat	output

product	flavor	(Gradle),	Installing	Gradle

Profile	panel	(Traceview),	Profile	panel

ProGuard	tool,	Logcat,	ProGuard–Zipalign

configuring,	Configuring	ProGuard–Viewing	obfuscated	code

enabling,	Enabling	Proguard

viewing	obfuscated	code,	Viewing	obfuscated	code

project	files,	Android	Studio,	default	location,	Default	Project	Location

project.properties	file,	Building	applications	from	multiple	source	libraries

projects

new	file	structure	in	Android	Studio,	The	New	Structure	of	an	Android
Project

running	and	debugging	in	Android	Studio,	Running	and	Debugging	an
Android	Project

properties	editors,	Properties	Editors

Android	Manifest	Editor,	Properties	Editors

Properties	editor	in	Graphical	Layout	editor,	Properties
Editor–Configuration	Chooser

push	and	pull	commands	(ADT),	Transferring	files

Python,	using	to	create	monkeyrunner	script,	Using	Python	to	Create	the

Script

Q

Quick	button	(Eclipse),	Quick	Button

Quick	Fix	tool,	Lint	running	in	Eclipse,	Quick	Fix	tool

Quick	Outline

for	XML,	Quick	Outline	for	XML

in	Java	class,	Quick	Outline	for	XML

R

Refactor	menu,	Refactor	Menu

Extract	Style,	Refactor	Menu

renaming	item	IDs,	Refactor	Menu

refactoring

in	Android	Studio,	Android	Studio	Tips	and	Tricks

Refactor	menu	of	XML	editor,	Refactor	menu

Release	mode,	Building	from	the	Command	Line	Using	Ant

building	in,	using	Ant,	Building	an	App	to	Release	to	the	Play	Store

Reset	ADB	(Devices	tool),	The	Devices	Tool

resource	files,	Resources

resource	qualifiers,	Defining	Layouts	Using	XML

modifying	each	independently,	Configuration	Chooser

resources,	Monitoring	System	Resources,	Resources

(see	also	system	resources,	monitoring)

resource	limitations	for	mobile	apps,	Requirements	for	Android
Developer	Tools

S

sample	code	in	Android	SDK,	SDK	Components

scale	factor	(AVD	launch	option),	AVD	launch	options

scenarios,	recording	sensor	scenarios,	Recording	Sensor	Scenarios

screen	resolutions

setting	in	visual	editor,	Configuration	Chooser

supporting	multiple,	Resources

screens

controlling	screen	size	in	visual	editor,	Configuration	Chooser

multiple	screen	sizes	for	Android	devices,	Requirements	for	Android
Developer	Tools

Preview	All	Screens	in	graphical	editor,	Configuration	Chooser

Show	screen	updates,	Developer	Options	menu,	Developer	Options
Menu

SDK	Manager,	SDK	Manager–Reverting	to	released	tools

ADT	Preview	Channel,	ADT	Preview	Channel

enabling,	Enable	the	Preview	Channel

installing	Preview	Tools,	Installing	Preview	Tools

reverting	to	released	tools,	Reverting	to	released	tools

starting,	Starting	the	SDK	Manager

viewing	installed	and	available	components,	Viewing	Installed	and
Available	Components

deleting	and	updating	components,	Deleting	and	updating
components

installing	packages,	Installing	packages

managing	dependencies,	Managing	dependencies

selecting	packages,	Selecting	packages

SDK	option,	Configuration	Chooser,	Configuration	Chooser

SDK	Tools,	SDK	Components

SdkControllerSensor	app,	Using	a	Device	with	Sensor	Emulation

secure.properties	file,	Storing	the	password	information

self-signed	certificates,	Signing	Your	App

sensor	emulation,	using	device	with,	Using	a	Device	with	Sensor	Emulation

SensorRecordFromDevice.apk,	Recording	Sensor	Scenarios

SensorSimulator,	Advanced	Sensor	Testing

accelerometer	example,	Simulating	Sensor	Events	in	Real	Time

recording	sensor	scenarios,	Recording	Sensor	Scenarios

supported	sensors,	Supported	Sensors

Settings	app

Developer	Options,	Developer	Options	Menu

enabling	developer	options,	Developer	Tools	Application

USB	Debugging,	Configuring	a	Device	for	Development,	Configuring	a
Physical	Device	for	Development

shell	interface	(ADB),	The	Shell	Command–ADB	Does	a	Lot	More

interactive	mode,	Interactive	mode

one-off	mode,	One-off	mode

retrieving	system	data,	Retrieving	system	data

using	Activity	Manager,	Using	the	Activity	Manager

Show	screen	updates,	Developer	Options	Menu

signing	apps,	Signing	Your	App–Building	from	the	Command	Line	Using
Ant

simulating	events	(see	events,	simulating)

SMS	messaging,	simulating,	Simulating	Telephony	Operations–Changing
Networking	Parameters

snapshots

AVD	launch	option,	AVD	launch	options

AVD	snapshots	saved	state,	Saving	and	retrieving	a	snapshot

using	to	improve	emulator	performance,	Using	snapshots	to	improve
performance

saving	and	retrieving	a	snapshot,	Saving	and	retrieving	a	snapshot

Software	Development	Kit	(see	Android	Software	Development	Kit;	entries
beginning	with	SDK)

Sonatype,	resources	on	Maven,	Using	the	Maven	Tools

sourceset	(Gradle),	Installing	Gradle

stacktrace,	Viewing	the	results	of	Analyzer	Tool

related	to	a	single	thread,	Viewing	thread	information

Strict	Mode	Enabled,	Developer	Options	Menu

styles

defined,	Defining	Layouts	Using	XML

Extract	Style	in	Refactor	menu,	Refactor	Menu

syncing	Gradle	files	with	Android	app,	Interacting	with	Gradle

system	data,	retrieving	with	ADB	shell	command,	Retrieving	system	data

system	resources,	monitoring,	Monitoring	System	Resources–Viewing	a
Report

DDMS	(Dalvik	Debug	Monitor	Server),	Dalvik	Debug	Monitor	Server
(DDMS)–Profile	panel

MAT	(Memory	Analyzer	Tool),	Memory	Analyzer	Tool	(MAT)–Viewing
a	Report

memory	usage	in	Android,	Memory	Usage	in	Android

T

tasks	(Gradle),	Installing	Gradle,	Build	Tasks

telephony	operations,	simulating,	Simulating	Telephony
Operations–Changing	Networking	Parameters

testing	code,	Logcat–Quick	Fix	tool

debugging,	Debugging–Lint

Eclipse	Debug	Perspective,	The	Eclipse	Debug	Perspective

example,	Debugging	Example–Lint

setting	app	to	debuggable,	Setting	Your	App	to	Debuggable

setting	debug	point,	Setting	a	Debug	Point

filtering	logging	output	based	on	logging	level,	Filtering	Based	on
Logging	Level

filtering	logging	output	on	log	tags,	Using	Tags	to	Filter	Output

getting	the	most	out	of	logcat,	Getting	the	Most	Out	of	Logcat

log	messages,	Anatomy	of	a	Log	Message

logcat	example,	Logcat	Example–Debugging

creating	log	statements,	Creating	log	statements

determining	areas	to	monitor,	Determining	areas	to	monitor

filtering	logcat	output,	Filtering	the	logcat

verbose	logging	with	logcat,	Verbose	logging

predefined	output	formats	for	log	messages,	Predefined	Output	Formats

reading	logcat	output,	Reading	logcat	output

using	Lint,	Lint

command-line	usage,	Command-Line	Usage

running	Lint	in	Eclipse,	Running	in	Eclipse

using	logcat	viewer	in	Eclipse,	Logcat	Viewer	in	Eclipse

viewing	alternative	log	buffers,	Viewing	Alternative	Log	Buffers

viewing	logcat	files,	Viewing	the	Logcat	File

themes,	Defining	Layouts	Using	XML

Theme	option	in	Configuration	Chooser,	Configuration	Chooser

third-party	add-ons,	SDK	Components

Threads	tool,	Launching	the	DDMS	Perspective,	Threads

running,	Running	the	Threads	tool

viewing	thread	information,	Viewing	thread	information

Timeline	panel	(Traceview),	Traceview	output—timeline	panel	(top	section)

toolbars	in	Android	Studio,	Toolbars

tools

displaying	additional	tools	in	Eclipse,	Uncovering	Additional	Tools	and

Views

essential,	Essential	Tools

ADB	(Android	Debug	Bridge),	Android	Debug	Bridge
(ADB)–Additional	Resources

SDK	Manager,	SDK	Manager–Reverting	to	released	tools

Traceview	tool,	Launching	the	DDMS	Perspective,	Traceview–Profile	panel

output,	Timeline	panel,	Traceview	output—timeline	panel	(top	section)

Profile	panel,	Profile	panel

training	resources	for	Android	Studio,	Miscellaneous	Shortcuts

Tree	Overview	(Hierarchy	Viewer),	Navigating	the	Tree	Hierarchy

U

UI	(user	interface),	Working	with	the	User	Interface–Asset	Studio	Website

Android	layout,	basic	concepts,	Android	Layout	Basic	Concepts

defining	layouts	with	XML,	Defining	Layouts	Using	XML

leveraging	ADT	to	build	UIs,	Leveraging	ADT	to	Build	Great	UIs

resources,	Resources

Views	and	ViewGroups,	Views	and	ViewGroups

designing	using	Graphical	Layout	tools,	Using	the	Graphical

Editor–Configuration	Chooser

editing	XML	files	directly,	Editing	XML	Files	Directly–Working	with
Graphics

monitoring	with	logcat,	Determining	areas	to	monitor

optimizing,	Optimizing	the	User	Interface–Thanks	for	Reading!

application	exerciser	Monkey,	Application	Exerciser	Monkey

debugging	UI	with	Hierarchy	Viewer,	Example:	Debugging	a	UI
Using	the	Hierarchy	Viewer–Fixing	Problems	Using	Lint

fixing	problems	using	Lint,	Fixing	Problems	Using	Lint

Hierarchy	Viewer,	Hierarchy	Viewer–Gathering	View	Rendering
Details

UI	performance,	Introduction	to	UI	Performance–Nested	layouts
reduce	performance

using	monkeyrunner,	Monkeyrunner

working	with	graphics,	Working	with	Graphics–Asset	Studio	Website

Asset	Studio,	Asset	Studio	Website

Asset	tool,	The	Asset	Tool–Using	NinePatch	Images

using	Nine-patch	images,	Using	NinePatch	Images

UI	Thread,	Threads

UI:*	tag,	Getting	the	Most	Out	of	Logcat,	Filtering	the	logcat

uninstall	command	(ADB),	Managing	applications	on	a	device

USB	Debugging

enabling	on	Android	phone,	Configuring	a	Device	for	Development

enabling	on	physical	device,	Configuring	a	Physical	Device	for
Development

USB	drivers,	SDK	Components

V

Version	Control	System	(VCS)	integrations	with	Android	Studio,	Version
Control	Integration

ViewGroups,	Views	and	ViewGroups

views

adding	to	Eclipse	layout,	Uncovering	Additional	Tools	and	Views

drawing	of	Views	and	its	effect	on	UI	performance,	How	Android	Draws
Views,	and	How	It	Affects	UI	Performance

Views	base	class,	Android	layouts,	Views	and	ViewGroups

W

web	page	for	this	book,	How	to	Contact	Us

widgets,	Defining	Layouts	Using	XML

inserting	into	XML	files,	Inserting	new	layouts	or	widgets

Windows

Android	home	directory,	Extracting	the	tools	to	Android	Home

connecting	Android-powered	device	for	testing	with	ADB	driver,
Configuring	a	Device	for	Development

dedicating	a	core	to	the	emulator,	On	Windows:	Dedicating	a	Core	to	the
Emulator

keyboard	shortcuts	in	Android	Studio,	Refactoring	and	Code
Generation

minimum	requirements	for	Android	development,	Minimum
Requirements

navigation	shortcuts	in	Android	Studio,	Navigation

setting	breakpoints,	keyboard	shortcut,	Setting	a	Debug	Point

starting	SDK	Manager,	Starting	the	SDK	Manager

Windows	7	64-bit	OS,	Development	on	a	Variety	of	OS	Platforms

XML	formatter,	XML	Formatter

X

XML

automatically	created	by	Android	Studio	Layout	Designer,	Layout
Designer

defining	Android	layouts,	Defining	Layouts	Using	XML

editing	XML	files	directly,	Editing	XML	Files	Directly–Working	with
Graphics

code	completion,	Code	completion

editor	preferences,	Editor	Preferences	menu

formatting,	XML	formatting

inserting	new	layouts	or	widgets,	Inserting	new	layouts	or	widgets

Refactor	menu	of	XML	editor,	Refactor	menu

using	templates,	Editing	XML	Files	Directly

formatter,	XML	Formatter

layout	editor	in	Android	Studio	Layout	Preview,	Layout	Preview

Lint	Quick	Fix	in,	Quick	Fix	tool

Lint	warnings	in	XML	file,	Java	and	XML	editor	integration

quick	outline	for,	Quick	Outline	for	XML

XML	files

editing	directly

attribute	values,	Attribute	values

Z

Zipalign,	Zipalign

About	the	Author
Mike	Wolfson	is	a	passionate	mobile	designer/developer	working	out	of
Phoenix,	AZ.	He	has	been	in	the	software	field	for	almost	20	years,	and	with
Android	since	its	introduction.	Currently,	he	develops	Android	applications	for
the	health	care	field.	He	has	written	a	variety	of	successful	apps,	and	is	best
known	for	the	"Droid	Of	The	Day"	App.

Mike	has	spent	his	career	helping	others	learn	technology.	He	currently	runs	the
local	Google	Developer	Group,	and	has	been	a	lifelong	supporter	of	a	variety	of
other	group	learning	activities.	He	has	spoken	about	Android	and	mobile
development	at	a	variety	of	conferences	and	user	groups.

When	he	is	not	geeking	out	about	phones,	he	enjoys	the	outdoors
(snowboarding,	hiking,	scuba	diving),	collecting	PEZ	dispensers,	and	chasing
his	young	(but	quick)	daughter.

Colophon
The	animal	on	the	cover	of	Android	Developer	Tools	Essentials	is	a	cassowary
(genus	Casuarius),	a	large,	flightless	bird	that	is	native	to	the	rainforests	of	New
Guinea	and	Australia.	This	genus	consists	of	three	species:	one	is	extinct	and	the
rest	are	living	but	endangered.	It	is	estimated	that	only	1,500	cassowaries	exist	in
the	entirety	of	Australia.	Like	the	ostrich	and	the	emu,	the	cassowary	is	a	ratite,
or	flightless	bird.	Although	the	three	species	of	cassowary	differ	slightly	in	size,
the	Southern	cassowary	is	the	largest,	with	females	reaching	heights	of	six	and	a
half	feet.	Despite	their	enormous	size,	cassowaries	subsist	mainly	on	fruits	that
have	fallen	from	trees	and	will	occasionally	eat	fungus	or	insects	if	necessary.
They	swallow	their	food	whole,	sometimes	taking	in	entire	bananas	or	mangos
in	one	gulp.

All	species	of	cassowary	are	black	with	bright	blue	and	red	necks	and	hard
outgrowths	of	flesh	on	the	tops	of	their	heads	called	casques.	There	is	much
debate	about	what	purpose	the	casques	serve,	with	theories	ranging	from
protection	from	falling	fruit	to	an	amplifier	of	the	birds’	rumbling	calls.	It	is	also
possible	that	they	allow	the	bird	to	forge	ahead	through	dense	forest	growth,
with	the	casque	acting	as	a	battering	ram	to	clear	foliage	out	of	the	way.	The
thick	feathers	that	adorn	the	bird’s	body	are	also	thought	to	provide	protection
from	the	undergrowth	given	their	unique	two-quilled	design.

Female	cassowaries	are	much	larger	than	males	and	are	in	charge	of	initiating
breeding	and	courtship.	After	a	female	selects	a	mate,	they	court	for	almost	a
month	before	breeding.	The	female	will	create	a	nest	and	lay	the	eggs,	then
immediately	start	off	to	find	another	mate.	The	father	then	incubates	the	eggs
until	they	hatch	by	sitting	on	them	for	fifty	days.	Baby	cassowaries	are	born	with
tan	and	white	stripes	to	help	them	blend	in	with	the	detritus	on	the	rainforest
floor.	The	chicks	follow	their	father	around	for	about	ten	months	and	learn	how
to	forage	fruit	and	insects.	Eventually,	the	father	chases	the	chicks	away	so	that
they	can	start	life	on	their	own	and	he	can	breed	with	another	female.

Cassowaries	are	extremely	territorial,	so	in	the	wild	they	are	solitary	creatures.
Generally	they	are	shy	around	humans,	opting	to	run	away	rather	than	be
noticed.	However,	cassowaries	can	be	very	dangerous	to	people	and	other

animals	if	provoked.	Given	the	rate	at	which	human	civilization	is	encroaching
upon	cassowary	habitats,	run-ins	with	these	giant	birds	are	becoming	more	and
more	common.	In	2003,	150	attacks	involving	humans	were	reported,	and	75%
of	these	came	from	instances	of	people	trying	to	feed	the	birds.	The	cassowary’s
best	defense	is	its	dagger-like	claws,	one	on	each	center	toe,	which	can	grow	to
be	four	inches	long.	One	kick	from	a	cassowary’s	powerful	legs	can	slice	open
all	but	the	toughest	hides.	Especially	in	northern	Australia,	where	roads	bisect
the	rainforests,	encounters	with	cassowaries	are	on	the	rise.	Although	large
swaths	of	land	are	now	protected,	the	future	of	the	cassowary	is	as	unclear	as
that	of	the	rainforest;	both	must	contend	with	human	development	and	the
environmental	effects	of	global	warming.

The	cover	image	is	from	the	Dover	Pictorial	Archive.	The	cover	font	is	Adobe
ITC	Garamond.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe
Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

Special	Upgrade	Offer

If	you	purchased	this	ebook	from	a	retailer	other	than	O’Reilly,	you	can	upgrade
it	for	$4.99	at	oreilly.com	by	clicking	here.

http://opds.oreilly.com/buy/9781449328153.EBOOK?source=ibooks

Android	Developer	Tools	Essentials
Mike	Wolfson
Editor
Andy	Oram

Editor
Rachel	Roumeliotis

Revision	History

2013-08-13 First	release

Copyright	©	2013	Mike	Wolfson
O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are
also	available	for	most	titles	(http://my.safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Nutshell	Handbook,	the	Nutshell	Handbook	logo,	and	the	O’Reilly	logo	are	registered	trademarks	of
O’Reilly	Media,	Inc.	Android	Developer	Tools	Essentials,	the	image	of	a	cassowary,	and	related	trade	dress
are	trademarks	of	O’Reilly	Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	O’Reilly	Media,	Inc.,	was	aware	of	a
trademark	claim,	the	designations	have	been	printed	in	caps	or	initial	caps.

While	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions,	or	for	damages	resulting	from	the	use	of	the	information	contained
herein.

	

O’Reilly	Media
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472

2013-08-14T06:13:08-07:00

	

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

	Special Upgrade Offer
	Preface
	Requirements for Android Developer Tools
	Development Process for Android Developer Tools
	Development on a Variety of OS Platforms
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Getting Started
	Minimum Requirements
	Installing Java
	Installing the Android Software Development Kit
	Installing the ADT Bundle
	Downloading the ADT bundle
	Extracting the tools to Android Home
	Unzip the downloaded artifact to the Android folder
	Setting your PATH variable
	Validating the installation

	Developing Without Eclipse
	Command-Line Usage
	Using a Different IDE

	Configuring a Device for Development

	2. Essential Tools
	SDK Manager
	SDK Components
	Starting the SDK Manager
	Viewing Installed and Available Components
	Selecting packages
	Installing packages
	Deleting and updating components
	Managing dependencies

	ADT Preview Channel
	Enable the Preview Channel
	Installing Preview Tools
	Reverting to released tools

	Android Debug Bridge (ADB)
	Starting ADB
	Querying for Device Instances
	Find connected devices
	Directing a command to a specific device

	Issuing Commands
	Transferring files
	Managing applications on a device

	The Shell Command
	Interactive mode
	One-off mode
	Retrieving system data
	Using the Activity Manager

	ADB Does a Lot More
	Resetting the ADB Server
	Additional Resources

	3. Configuring Devices and Emulators
	Using a Physical Device for Development
	Capabilities and Limitations
	Capabilities
	Limitations

	Configuring a Physical Device for Development

	Using an Emulator for Development
	Supported Features
	Supported features
	Unsupported features

	Android Virtual Devices
	Creating AVDs
	AVD Manager
	Creating AVDs from the command line
	Location of the AVD files

	Emulator Options

	Advanced Emulator Configuration
	Using Hardware Acceleration
	Benefits
	Limitations
	Downloading the components
	Installing the HAXM software
	Configuring an AVD
	Validating that HAXM is running

	Disabling the Boot Animation
	On Windows: Dedicating a Core to the Emulator

	4. Using Devices and Emulators
	Using the Emulator
	Starting the Emulator
	AVD launch options
	Starting an emulator from the command line
	Using snapshots to improve performance
	Saving and retrieving a snapshot

	The Emulator Application
	The Devices Tool
	Keyboard Shortcuts

	File Explorer
	Developer Tools Application

	5. Developing with Eclipse
	Anatomy of the Eclipse Workspace
	Uncovering Additional Tools and Views
	Quick Button

	Code Templates
	Properties Editors
	XML Formatter
	The Android Key
	Quick Outline for XML
	Other Essential Eclipse Shortcuts
	Refactor Menu

	6. Developing with Android Studio
	Installing Android Studio
	Bundled SDK
	Default Project Location

	Anatomy of the Android Studio IDE
	Panels
	Toolbars
	Useful Actions in Android Studio
	Navigation

	The New Structure of an Android Project
	A Tour Around the New Structure
	Running and Debugging an Android Project

	Creating New Android Components
	Layout Designer and Layout Preview
	Layout Designer
	Layout Preview

	Generating an APK
	Interacting with Maven and Gradle
	Interacting with Maven
	Interacting with Gradle

	Version Control Integration
	Migrating from Eclipse
	Android Studio Tips and Tricks
	Refactoring and Code Generation
	Miscellaneous Shortcuts

	7. Testing Your Code
	Logcat
	Viewing the Logcat File
	Anatomy of a Log Message
	Reading logcat output

	Filtering Based on Logging Level
	Using Tags to Filter Output
	Getting the Most Out of Logcat
	Viewing Alternative Log Buffers
	Predefined Output Formats
	Logcat Viewer in Eclipse
	Logcat Example
	Determining areas to monitor
	Creating log statements
	Verbose logging
	Filtering the logcat

	Debugging
	Setting Your App to Debuggable
	Setting a Debug Point
	The Eclipse Debug Perspective
	Debugging Example
	Setting the debug points
	Starting the debugger
	Stepping through the code

	Lint
	Command-Line Usage
	Excluding issues

	Running in Eclipse
	Lint toolbar menu
	Java and XML editor integration
	Quick Fix tool

	8. Simulating Events
	Simulating Location and Routes
	Simulating Telephony Operations
	Changing Networking Parameters
	Using a Device with Sensor Emulation
	Advanced Sensor Testing
	Supported Sensors
	Simulating Sensor Events in Real Time
	Recording Sensor Scenarios

	Developer Options Menu

	9. Build Tools
	Compiling Your Code
	Packaging an APK for Release
	Signing Your App

	Building from the Command Line Using Ant
	Setting Up Your Project
	Creating the Ant build.xml file
	Building applications from multiple source libraries

	Building in Debug Mode
	Building an App to Release to the Play Store
	Signing an app with a custom keystore
	Storing the password information

	Additional Ant Commands

	Advanced Packaging Steps
	ProGuard
	Enabling Proguard
	Configuring ProGuard
	Viewing obfuscated code

	Zipalign

	Gradle-Based Build Tools
	Installing Gradle
	Creating Multiple Build Variations
	Example

	Build File
	Build Tasks
	Generating a Gradle Build from Eclipse

	Using the Maven Tools

	10. Monitoring System Resources
	Memory Usage in Android
	Dalvik Debug Monitor Server (DDMS)
	Launching the DDMS Perspective
	Analyzer Tool
	Running the tool
	Viewing the results of Analyzer Tool

	Threads
	Running the Threads tool
	Viewing thread information

	Heap
	Running the Heap tool
	Viewing heap information

	Traceview
	Traceview output—timeline panel (top section)
	Profile panel

	Memory Analyzer Tool (MAT)
	Generating an HPROF File
	HPROF File
	Installing MAT into Eclipse
	Launching MAT from Within Eclipse
	Using MAT to Analyze HRPOF Files
	The MAT Overview Screen
	Viewing a Report

	11. Working with the User Interface
	Android Layout Basic Concepts
	Defining Layouts Using XML
	Views and ViewGroups
	Resources
	Leveraging ADT to Build Great UIs

	Editing XML Files Directly
	Using Templates
	Editing XML Directly
	Code completion
	Inserting new layouts or widgets
	Attribute values
	Refactor menu
	XML formatting
	Editor Preferences menu

	Working with Graphics
	The Asset Tool
	Using Nine-Patch Images
	Asset Studio Website

	12. Using the Graphical Editor
	Generating Layouts Using the Graphical Layout Editor
	Palette
	Canvas
	Layout Actions
	Context-Sensitive Menu

	Outline View
	Properties Editor
	Configuration Chooser

	13. Optimizing the User Interface
	Introduction to UI Performance
	How Android Draws Views, and How It Affects UI Performance
	Two-pass layout
	Nested layouts reduce performance

	Hierarchy Viewer
	Starting the Hierarchy Viewer
	Loading the View Hierarchy into the Tools
	Navigating the Tree Hierarchy
	Gathering View Information
	Measurement information
	Identification and performance indicators

	Gathering View Rendering Details
	Example: Debugging a UI Using the Hierarchy Viewer
	Different ways to design a UI
	Using the Tree View to get timing information
	Reviewing the structure with the Tree Overview
	Using the Tree tool to inspect the bad UI
	Using the Tree tool to inspect the good UI

	Fixing Problems Using Lint
	Application Exerciser Monkey
	Grooming the Monkey
	Letting the Monkey free
	Specifying event types and frequency
	Verbosity level
	Setting a seed value

	Monkeyrunner
	Using Python to Create the Script

	Thanks for Reading!

	Index
	About the Author
	Colophon
	Special Upgrade Offer
	Copyright

