

Android	Studio	2.3	Development	Essentials	–	Android	7	Edition
©	2017	Neil	Smyth	/	Payload	Media,	Inc.	All	Rights	Reserved.
This	book	is	provided	for	personal	use	only.	Unauthorized	use,	reproduction
and/or	distribution	strictly	prohibited.	All	rights	reserved.
The	content	of	this	book	is	provided	for	informational	purposes	only.	Neither	the
publisher	nor	the	author	offers	any	warranties	or	representation,	express	or
implied,	with	regard	to	the	accuracy	of	information	contained	in	this	book,	nor
do	they	accept	any	liability	for	any	loss	or	damage	arising	from	any	errors	or
omissions.
This	book	contains	trademarked	terms	that	are	used	solely	for	editorial	purposes
and	to	the	benefit	of	the	respective	trademark	owner.	The	terms	used	within	this
book	are	not	intended	as	infringement	of	any	trademarks.
Rev:	1.0

Table	of	Contents
1.Introduction

1.1	Downloading	the	Code	Samples
1.2	Feedback
1.3	Errata

2.Setting	up	an	Android	Studio	Development	Environment
2.1	System	Requirements
2.2	Installing	the	Java	Development	Kit	(JDK)
2.2.1	Windows	JDK	Installation
2.2.2	Mac	OS	X	JDK	Installation
2.3	Linux	JDK	Installation
2.4	Downloading	the	Android	Studio	Package
2.5	Installing	Android	Studio
2.5.1	Installation	on	Windows
2.5.2	Installation	on	Mac	OS	X
2.5.3	Installation	on	Linux
2.6	The	Android	Studio	Setup	Wizard
2.7	Installing	Additional	Android	SDK	Packages
2.8	Making	the	Android	SDK	Tools	Command-line	Accessible
2.8.1	Windows	7
2.8.2	Windows	8.1
2.8.3	Windows	10
2.8.4	Linux
2.8.5	Mac	OS	X
2.9	Updating	the	Android	Studio	and	the	SDK
2.10	Summary

3.Creating	an	Example	Android	App	in	Android	Studio
3.1	Creating	a	New	Android	Project
3.2	Defining	the	Project	and	SDK	Settings
3.3	Creating	an	Activity
3.4	Modifying	the	Example	Application
3.5	Reviewing	the	Layout	and	Resource	Files
3.6	Summary

4.A	Tour	of	the	Android	Studio	User	Interface

4.1	The	Welcome	Screen
4.2	The	Main	Window
4.3	The	Tool	Windows
4.4	Android	Studio	Keyboard	Shortcuts
4.5	Switcher	and	Recent	Files	Navigation
4.6	Changing	the	Android	Studio	Theme
4.7	Summary

5.Creating	an	Android	Virtual	Device	(AVD)	in	Android	Studio
5.1	About	Android	Virtual	Devices
5.2	Creating	a	New	AVD
5.3	Starting	the	Emulator
5.4	Running	the	Application	in	the	AVD
5.5	Run/Debug	Configurations
5.6	Stopping	a	Running	Application
5.7	AVD	Command-line	Creation
5.8	Android	Virtual	Device	Configuration	Files
5.9	Moving	and	Renaming	an	Android	Virtual	Device
5.10	Summary

6.	Using	and	Configuring	the	Android	Studio	AVD	Emulator
6.1	The	Emulator	Environment
6.2	The	Emulator	Toolbar	Options
6.3	Working	in	Zoom	Mode
6.4	Resizing	the	Emulator	Window
6.5	Extended	Control	Options
6.5.1	Location
6.5.2	Cellular
6.5.3	Battery
6.5.4	Phone
6.5.5	Directional	Pad
6.5.6	Fingerprint
6.5.7	Virtual	Sensors
6.5.8	Settings
6.5.9	Help
6.6	Drag	and	Drop	Support
6.7	Configuring	Fingerprint	Emulation
6.8	Summary

7.Testing	Android	Studio	Apps	on	a	Physical	Android	Device

7.1	An	Overview	of	the	Android	Debug	Bridge	(ADB)
7.2	Enabling	ADB	on	Android	based	Devices
7.2.1	Mac	OS	X	ADB	Configuration
7.2.2	Windows	ADB	Configuration
7.2.3	Linux	adb	Configuration
7.3	Testing	the	adb	Connection
7.4	Summary

8.The	Basics	of	the	Android	Studio	Code	Editor
8.1	The	Android	Studio	Editor
8.2	Splitting	the	Editor	Window
8.3	Code	Completion
8.4	Statement	Completion
8.5	Parameter	Information
8.6	Code	Generation
8.7	Code	Folding
8.8	Quick	Documentation	Lookup
8.9	Code	Reformatting
8.10	Finding	Sample	Code
8.11	Summary

9.An	Overview	of	the	Android	Architecture
9.1	The	Android	Software	Stack
9.2	The	Linux	Kernel
9.3	Android	Runtime	–	ART
9.4	Android	Libraries
9.4.1	C/C++	Libraries
9.5	Application	Framework
9.6	Applications
9.7	Summary

10.The	Anatomy	of	an	Android	Application
10.1	Android	Activities
10.2	Android	Intents
10.3	Broadcast	Intents
10.4	Broadcast	Receivers
10.5	Android	Services
10.6	Content	Providers
10.7	The	Application	Manifest
10.8	Application	Resources

10.9	Application	Context
10.10	Summary

11.Understanding	Android	Application	and	Activity	Lifecycles
11.1	Android	Applications	and	Resource	Management
11.2	Android	Process	States
11.2.1	Foreground	Process
11.2.2	Visible	Process
11.2.3	Service	Process
11.2.4	Background	Process
11.2.5	Empty	Process
11.3	InterProcess	Dependencies
11.4	The	Activity	Lifecycle
11.5	The	Activity	Stack
11.6	Activity	States
11.7	Configuration	Changes
11.8	Handling	State	Change
11.9	Summary

12.Handling	Android	Activity	State	Changes
12.1	The	Activity	Class
12.2	Dynamic	State	vs.	Persistent	State
12.3	The	Android	Activity	Lifecycle	Methods
12.4	Activity	Lifetimes
12.5	Disabling	Configuration	Change	Restarts
12.6	Summary

13.Android	Activity	State	Changes	by	Example
13.1	Creating	the	State	Change	Example	Project
13.2	Designing	the	User	Interface
13.3	Overriding	the	Activity	Lifecycle	Methods
13.4	Filtering	the	LogCat	Panel
13.5	Running	the	Application
13.6	Experimenting	with	the	Activity
13.7	Summary

14.Saving	and	Restoring	the	State	of	an	Android	Activity
14.1	Saving	Dynamic	State
14.2	Default	Saving	of	User	Interface	State
14.3	The	Bundle	Class

14.4	Saving	the	State
14.5	Restoring	the	State
14.6	Testing	the	Application
14.7	Summary

15.Understanding	Android	Views,	View	Groups	and	Layouts
15.1	Designing	for	Different	Android	Devices
15.2	Views	and	View	Groups
15.3	Android	Layout	Managers
15.4	The	View	Hierarchy
15.5	Creating	User	Interfaces
15.6	Summary

16.A	Guide	to	the	Android	Studio	Layout	Editor	Tool
16.1	Basic	vs.	Empty	Activity	Templates
16.2	The	Android	Studio	Layout	Editor
16.3	Design	Mode
16.4	The	Palette
16.5	Pan	and	Zoom
16.6	Design	and	Layout	Views
16.7	Text	Mode
16.8	Setting	Properties
16.9	Configuring	Favorite	Attributes
16.10	Creating	a	Custom	Device	Definition
16.11	Changing	the	Current	Device
16.12	Summary

17.A	Guide	to	the	Android	ConstraintLayout
17.1	How	ConstraintLayout	Works
17.1.1	Constraints
17.1.2	Margins
17.1.3	Opposing	Constraints
17.1.4	Constraint	Bias
17.1.5	Chains
17.1.6	Chain	Styles
17.2	Baseline	Alignment
17.3	Working	with	Guidelines
17.4	Configuring	Widget	Dimensions
17.5	Ratios
17.6	ConstraintLayout	Advantages

17.7	ConstraintLayout	Availability
17.8	Summary

18.A	Guide	to	using	ConstraintLayout	in	Android	Studio
18.1	Design	and	Layout	Views
18.2	Autoconnect	Mode
18.3	Inference	Mode
18.4	Manipulating	Constraints	Manually
18.5	Deleting	Constraints
18.6	Adjusting	Constraint	Bias
18.7	Understanding	ConstraintLayout	Margins
18.8	The	Importance	of	Opposing	Constraints	and	Bias
18.9	Configuring	Widget	Dimensions
18.10	Adding	Guidelines
18.11	Widget	Group	Alignment
18.12	Converting	other	Layouts	to	ConstraintLayout
18.13	Summary

19.Working	with	ConstraintLayout	Chains	and	Ratios	in	Android	Studio
19.1	Creating	a	Chain
19.2	Changing	the	Chain	Style
19.3	Spread	Inside	Chain	Style
19.4	Packed	Chain	Style
19.5	Packed	Chain	Style	with	Bias
19.6	Weighted	Chain
19.7	Working	with	Ratios
19.8	Summary

20.An	Android	Studio	Layout	Editor	ConstraintLayout	Tutorial
20.1	An	Android	Studio	Layout	Editor	Tool	Example
20.2	Creating	a	New	Activity
20.3	Preparing	the	Layout	Editor	Environment
20.4	Adding	the	Widgets	to	the	User	Interface
20.5	Adding	the	Constraints
20.6	Testing	the	Layout
20.7	Using	the	Layout	Inspector
20.8	Using	the	Hierarchy	Viewer
20.9	Summary

21.Manual	XML	Layout	Design	in	Android	Studio

21.1	Manually	Creating	an	XML	Layout
21.2	Manual	XML	vs.	Visual	Layout	Design
21.3	Summary

22.Managing	Constraints	using	Constraint	Sets
22.1	Java	Code	vs.	XML	Layout	Files
22.2	Creating	Views
22.3	View	Properties
22.4	Constraint	Sets
22.4.1	Establishing	Connections
22.4.2	Applying	Constraints	to	a	Layout
22.4.3	Parent	Constraint	Connections
22.4.4	Sizing	Constraints
22.4.5	Constraint	Bias
22.4.6	Alignment	Constraints
22.4.7	Copying	and	Applying	Constraint	Sets
22.4.8	ConstraintLayout	Chains
22.4.9	Guidelines
22.4.10	Removing	Constraints
22.4.11	Scaling
22.4.12	Rotation
22.5	Summary

23.An	Android	ConstraintSet	Tutorial
23.1	Creating	the	Example	Project	in	Android	Studio
23.2	Adding	Views	to	an	Activity
23.3	Setting	View	Properties
23.4	Creating	View	IDs
23.5	Configuring	the	Constraint	Set
23.6	Adding	the	EditText	View
23.7	Converting	Density	Independent	Pixels	(dp)	to	Pixels	(px)
23.8	Summary

24.An	Overview	and	Example	of	Android	Event	Handling
24.1	Understanding	Android	Events
24.2	Using	the	android:onClick	Resource
24.3	Event	Listeners	and	Callback	Methods
24.4	An	Event	Handling	Example
24.5	Designing	the	User	Interface
24.6	The	Event	Listener	and	Callback	Method

24.7	Consuming	Events
24.8	Summary

25.	A	Guide	to	using	Instant	Run	in	Android	Studio
25.1	Introducing	Instant	Run
25.2	Understanding	Instant	Run	Swapping	Levels
25.3	Enabling	and	Disabling	Instant	Run
25.4	Using	Instant	Run
25.5	An	Instant	Run	Tutorial
25.6	Triggering	an	Instant	Run	Hot	Swap
25.7	Triggering	an	Instant	Run	Warm	Swap
25.8	Triggering	an	Instant	Run	Cold	Swap
25.9	The	Run	Button
25.10	Summary

26.Android	Touch	and	Multi-touch	Event	Handling
26.1	Intercepting	Touch	Events
26.2	The	MotionEvent	Object
26.3	Understanding	Touch	Actions
26.4	Handling	Multiple	Touches
26.5	An	Example	Multi-Touch	Application
26.6	Designing	the	Activity	User	Interface
26.7	Implementing	the	Touch	Event	Listener
26.8	Running	the	Example	Application
26.9	Summary

27.Detecting	Common	Gestures	using	the	Android	Gesture	Detector	Class
27.1	Implementing	Common	Gesture	Detection
27.2	Creating	an	Example	Gesture	Detection	Project
27.3	Implementing	the	Listener	Class
27.4	Creating	the	GestureDetectorCompat	Instance
27.5	Implementing	the	onTouchEvent()	Method
27.6	Testing	the	Application
27.7	Summary

28.Implementing	Custom	Gesture	and	Pinch	Recognition	on	Android
28.1	The	Android	Gesture	Builder	Application
28.2	The	GestureOverlayView	Class
28.3	Detecting	Gestures
28.4	Identifying	Specific	Gestures

28.5	Building	and	Running	the	Gesture	Builder	Application
28.6	Creating	a	Gestures	File
28.7	Extracting	the	Gestures	File	from	the	SD	Card
28.8	Creating	the	Example	Project
28.9	Adding	the	Gestures	File	to	the	Project
28.10	Designing	the	User	Interface
28.11	Loading	the	Gestures	File
28.12	Registering	the	Event	Listener
28.13	Implementing	the	onGesturePerformed	Method
28.14	Testing	the	Application
28.15	Configuring	the	GestureOverlayView
28.16	Intercepting	Gestures
28.17	Detecting	Pinch	Gestures
28.18	A	Pinch	Gesture	Example	Project
28.19	Summary

29.An	Introduction	to	Android	Fragments
29.1	What	is	a	Fragment?
29.2	Creating	a	Fragment
29.3	Adding	a	Fragment	to	an	Activity	using	the	Layout	XML	File
29.4	Adding	and	Managing	Fragments	in	Code
29.5	Handling	Fragment	Events
29.6	Implementing	Fragment	Communication
29.7	Summary

30.Using	Fragments	in	Android	Studio	-	An	Example
30.1	About	the	Example	Fragment	Application
30.2	Creating	the	Example	Project
30.3	Creating	the	First	Fragment	Layout
30.4	Creating	the	First	Fragment	Class
30.5	Creating	the	Second	Fragment	Layout
30.6	Adding	the	Fragments	to	the	Activity
30.7	Making	the	Toolbar	Fragment	Talk	to	the	Activity
30.8	Making	the	Activity	Talk	to	the	Text	Fragment
30.9	Testing	the	Application
30.10	Summary

31.Creating	and	Managing	Overflow	Menus	on	Android
31.1	The	Overflow	Menu
31.2	Creating	an	Overflow	Menu

31.3	Displaying	an	Overflow	Menu
31.4	Responding	to	Menu	Item	Selections
31.5	Creating	Checkable	Item	Groups
31.6	Menus	and	the	Android	Studio	Menu	Editor
31.7	Creating	the	Example	Project
31.8	Designing	the	Menu
31.9	Modifying	the	onOptionsItemSelected()	Method
31.10	Testing	the	Application
31.11	Summary

32.Animating	User	Interfaces	with	the	Android	Transitions	Framework
32.1	Introducing	Android	Transitions	and	Scenes
32.2	Using	Interpolators	with	Transitions
32.3	Working	with	Scene	Transitions
32.4	Custom	Transitions	and	TransitionSets	in	Code
32.5	Custom	Transitions	and	TransitionSets	in	XML
32.6	Working	with	Interpolators
32.7	Creating	a	Custom	Interpolator
32.8	Using	the	beginDelayedTransition	Method
32.9	Summary

33.An	Android	Transition	Tutorial	using	beginDelayedTransition
33.1	Creating	the	Android	Studio	TransitionDemo	Project
33.2	Preparing	the	Project	Files
33.3	Implementing	beginDelayedTransition	Animation
33.4	Customizing	the	Transition
33.5	Summary

34.Implementing	Android	Scene	Transitions	–	A	Tutorial
34.1	An	Overview	of	the	Scene	Transition	Project
34.2	Creating	the	Android	Studio	SceneTransitions	Project
34.3	Identifying	and	Preparing	the	Root	Container
34.4	Designing	the	First	Scene
34.5	Designing	the	Second	Scene
34.6	Entering	the	First	Scene
34.7	Loading	Scene	2
34.8	Implementing	the	Transitions
34.9	Adding	the	Transition	File
34.10	Loading	and	Using	the	Transition	Set
34.11	Configuring	Additional	Transitions

34.12	Summary
35.Working	with	the	Floating	Action	Button	and	Snackbar

35.1	The	Material	Design
35.2	The	Design	Library
35.3	The	Floating	Action	Button	(FAB)
35.4	The	Snackbar
35.5	Creating	the	Example	Project
35.6	Reviewing	the	Project
35.7	Changing	the	Floating	Action	Button
35.8	Adding	the	ListView	to	the	Content	Layout
35.9	Adding	Items	to	the	ListView
35.10	Adding	an	Action	to	the	Snackbar
35.11	Summary

36.Creating	a	Tabbed	Interface	using	the	TabLayout	Component
36.1	An	Introduction	to	the	ViewPager
36.2	An	Overview	of	the	TabLayout	Component
36.3	Creating	the	TabLayoutDemo	Project
36.4	Creating	the	First	Fragment
36.5	Duplicating	the	Fragments
36.6	Adding	the	TabLayout	and	ViewPager
36.7	Creating	the	Pager	Adapter
36.8	Performing	the	Initialization	Tasks
36.9	Testing	the	Application
36.10	Customizing	the	TabLayout
36.11	Displaying	Icon	Tab	Items
36.12	Summary

37.Working	with	the	RecyclerView	and	CardView	Widgets
37.1	An	Overview	of	the	RecyclerView
37.2	An	Overview	of	the	CardView
37.3	Adding	the	Libraries	to	the	Project
37.4	Summary

38.An	Android	RecyclerView	and	CardView	Tutorial
38.1	Creating	the	CardDemo	Project
38.2	Removing	the	Floating	Action	Button
38.3	Adding	the	RecyclerView	and	CardView	Libraries
38.4	Designing	the	CardView	Layout

38.5	Adding	the	RecyclerView
38.6	Creating	the	RecyclerView	Adapter
38.7	Adding	the	Image	Files
38.8	Initializing	the	RecyclerView	Component
38.9	Testing	the	Application
38.10	Responding	to	Card	Selections
38.11	Summary

39.Working	with	the	AppBar	and	Collapsing	Toolbar	Layouts
39.1	The	Anatomy	of	an	AppBar
39.2	The	Example	Project
39.3	Coordinating	the	RecyclerView	and	Toolbar
39.4	Introducing	the	Collapsing	Toolbar	Layout
39.5	Changing	the	Title	and	Scrim	Color
39.6	Summary

40.Implementing	an	Android	Navigation	Drawer
40.1	An	Overview	of	the	Navigation	Drawer
40.2	Opening	and	Closing	the	Drawer
40.3	Responding	to	Drawer	Item	Selections
40.4	Using	the	Navigation	Drawer	Activity	Template
40.5	Creating	the	Navigation	Drawer	Template	Project
40.6	The	Template	Layout	Resource	Files
40.7	The	Header	Coloring	Resource	File
40.8	The	Template	Menu	Resource	File
40.9	The	Template	Code
40.10	Running	the	App
40.11	Summary

41.An	Android	Studio	Master/Detail	Flow	Tutorial
41.1	The	Master/Detail	Flow
41.2	Creating	a	Master/Detail	Flow	Activity
41.3	The	Anatomy	of	the	Master/Detail	Flow	Template
41.4	Modifying	the	Master/Detail	Flow	Template
41.5	Changing	the	Content	Model
41.6	Changing	the	Detail	Pane
41.7	Modifying	the	WebsiteDetailFragment	Class
41.8	Modifying	the	WebsiteListActivity	Class
41.9	Adding	Manifest	Permissions
41.10	Running	the	Application

41.11	Summary
42.An	Overview	of	Android	Intents

42.1	An	Overview	of	Intents
42.2	Explicit	Intents
42.3	Returning	Data	from	an	Activity
42.4	Implicit	Intents
42.5	Using	Intent	Filters
42.6	Checking	Intent	Availability
42.7	Summary

43.Android	Explicit	Intents	–	A	Worked	Example
43.1	Creating	the	Explicit	Intent	Example	Application
43.2	Designing	the	User	Interface	Layout	for	ActivityA
43.3	Creating	the	Second	Activity	Class
43.4	Designing	the	User	Interface	Layout	for	ActivityB
43.5	Reviewing	the	Application	Manifest	File
43.6	Creating	the	Intent
43.7	Extracting	Intent	Data
43.8	Launching	ActivityB	as	a	Sub-Activity
43.9	Returning	Data	from	a	Sub-Activity
43.10	Testing	the	Application
43.11	Summary

44.Android	Implicit	Intents	–	A	Worked	Example
44.1	Creating	the	Android	Studio	Implicit	Intent	Example	Project
44.2	Designing	the	User	Interface
44.3	Creating	the	Implicit	Intent
44.4	Adding	a	Second	Matching	Activity
44.5	Adding	the	Web	View	to	the	UI
44.6	Obtaining	the	Intent	URL
44.7	Modifying	the	MyWebView	Project	Manifest	File
44.8	Installing	the	MyWebView	Package	on	a	Device
44.9	Testing	the	Application
44.10	Summary

45.Android	Broadcast	Intents	and	Broadcast	Receivers
45.1	An	Overview	of	Broadcast	Intents
45.2	An	Overview	of	Broadcast	Receivers
45.3	Obtaining	Results	from	a	Broadcast

45.4	Sticky	Broadcast	Intents
45.5	The	Broadcast	Intent	Example
45.6	Creating	the	Example	Application
45.7	Creating	and	Sending	the	Broadcast	Intent
45.8	Creating	the	Broadcast	Receiver
45.9	Configuring	a	Broadcast	Receiver	in	the	Manifest	File
45.10	Testing	the	Broadcast	Example
45.11	Listening	for	System	Broadcasts
45.12	Summary

46.A	Basic	Overview	of	Threads	and	Thread	Handlers
46.1	An	Overview	of	Threads
46.2	The	Application	Main	Thread
46.3	Thread	Handlers
46.4	A	Basic	Threading	Example
46.5	Creating	a	New	Thread
46.6	Implementing	a	Thread	Handler
46.7	Passing	a	Message	to	the	Handler
46.8	Summary

47.An	Overview	of	Android	Started	and	Bound	Services
47.1	Started	Services
47.2	Intent	Service
47.3	Bound	Service
47.4	The	Anatomy	of	a	Service
47.5	Controlling	Destroyed	Service	Restart	Options
47.6	Declaring	a	Service	in	the	Manifest	File
47.7	Starting	a	Service	Running	on	System	Startup
47.8	Summary

48.Implementing	an	Android	Started	Service	–	A	Worked	Example
48.1	Creating	the	Example	Project
48.2	Creating	the	Service	Class
48.3	Adding	the	Service	to	the	Manifest	File
48.4	Starting	the	Service
48.5	Testing	the	IntentService	Example
48.6	Using	the	Service	Class
48.7	Creating	the	New	Service
48.8	Modifying	the	User	Interface
48.9	Running	the	Application

48.10	Creating	a	New	Thread	for	Service	Tasks
48.11	Summary

49.Android	Local	Bound	Services	–	A	Worked	Example
49.1	Understanding	Bound	Services
49.2	Bound	Service	Interaction	Options
49.3	An	Android	Studio	Local	Bound	Service	Example
49.4	Adding	a	Bound	Service	to	the	Project
49.5	Implementing	the	Binder
49.6	Binding	the	Client	to	the	Service
49.7	Completing	the	Example
49.8	Testing	the	Application
49.9	Summary

50.Android	Remote	Bound	Services	–	A	Worked	Example
50.1	Client	to	Remote	Service	Communication
50.2	Creating	the	Example	Application
50.3	Designing	the	User	Interface
50.4	Implementing	the	Remote	Bound	Service
50.5	Configuring	a	Remote	Service	in	the	Manifest	File
50.6	Launching	and	Binding	to	the	Remote	Service
50.7	Sending	a	Message	to	the	Remote	Service
50.8	Summary

51.An	Android	7	Notifications	Tutorial
51.1	An	Overview	of	Notifications
51.2	Creating	the	NotifyDemo	Project
51.3	Designing	the	User	Interface
51.4	Creating	the	Second	Activity
51.5	Creating	and	Issuing	a	Basic	Notification
51.6	Launching	an	Activity	from	a	Notification
51.7	Adding	Actions	to	a	Notification
51.8	Adding	Sound	to	a	Notification
51.9	Bundled	Notifications
51.10	Summary

52.An	Android	7	Direct	Reply	Notification	Tutorial
52.1	Creating	the	DirectReply	Project
52.2	Designing	the	User	Interface
52.3	Building	the	RemoteInput	Object

52.4	Creating	the	PendingIntent
52.5	Creating	the	Reply	Action
52.6	Receiving	Direct	Reply	Input
52.7	Updating	the	Notification
52.8	Summary

53.Integrating	Firebase	Support	into	an	Android	Studio	Project
53.1	What	is	Firebase?
53.2	Signing	in	to	Firebase
53.3	Creating	the	FirebaseNotify	Project
53.4	Configuring	the	User	Interface
53.5	Connecting	the	Project	to	Firebase
53.6	Creating	a	New	Firebase	Project
53.7	The	google-services.json	File
53.8	Adding	the	Firebase	Libraries
53.9	Summary

54.An	Android	7	Firebase	Remote	Notification	Tutorial
54.1	Sending	a	Firebase	Notification
54.2	Receiving	the	Notification
54.3	Including	Custom	Data	within	the	Notification
54.4	Foreground	App	Notification	Handling
54.5	Summary

55.An	Introduction	to	Android	7	MultiWindow	Support
55.1	Split-Screen,	Freeform	and	Picture-in-Picture	Modes
55.2	Entering	MultiWindow	Mode
55.3	Checking	for	Freeform	Support
55.4	Enabling	MultiWindow	Support	in	an	App
55.5	Specifying	MultiWindow	Attributes
55.6	Detecting	MultiWindow	Mode	in	an	Activity
55.7	Receiving	MultiWindow	Notifications
55.8	Launching	an	Activity	in	MultiWindow	Mode
55.9	Configuring	Freeform	Activity	Size	and	Position
55.10	Summary

56.An	Android	Studio	MultiWindow	Split-Screen	and	Freeform	Tutorial
56.1	Creating	the	MultiWindow	Project
56.2	Designing	the	FirstActivity	User	Interface
56.3	Adding	the	Second	Activity

56.4	Launching	the	Second	Activity
56.5	Enabling	MultiWindow	Mode
56.6	Testing	MultiWindow	Support
56.7	Launching	the	Second	Activity	in	a	Different	Window
56.8	Changing	the	Freeform	Window	Position	and	Size
56.9	Summary

57.An	Overview	of	Android	SQLite	Databases
57.1	Understanding	Database	Tables
57.2	Introducing	Database	Schema
57.3	Columns	and	Data	Types
57.4	Database	Rows
57.5	Introducing	Primary	Keys
57.6	What	is	SQLite?
57.7	Structured	Query	Language	(SQL)
57.8	Trying	SQLite	on	an	Android	Virtual	Device	(AVD)
57.9	Android	SQLite	Java	Classes
57.9.1	Cursor
57.9.2	SQLiteDatabase
57.9.3	SQLiteOpenHelper
57.9.4	ContentValues
57.10	Summary

58.An	Android	TableLayout	and	TableRow	Tutorial
58.1	The	TableLayout	and	TableRow	Layout	Views
58.2	Creating	the	Database	Project
58.3	Adding	the	TableLayout	to	the	User	Interface
58.4	Configuring	the	TableRows
58.5	Adding	the	Button	Bar	to	the	Layout
58.6	Adjusting	the	Layout	Margins
58.7	Summary

59.An	Android	SQLite	Database	Tutorial
59.1	About	the	Database	Example
59.2	Creating	the	Data	Model
59.3	Implementing	the	Data	Handler
59.3.1	The	Add	Handler	Method
59.3.2	The	Query	Handler	Method
59.3.3	The	Delete	Handler	Method
59.4	Implementing	the	Activity	Event	Methods

59.5	Testing	the	Application
59.6	Summary

60.Understanding	Android	Content	Providers
60.1	What	is	a	Content	Provider?
60.2	The	Content	Provider
60.2.1	onCreate()
60.2.2	query()
60.2.3	insert()
60.2.4	update()
60.2.5	delete()
60.2.6	getType()
60.3	The	Content	URI
60.4	The	Content	Resolver
60.5	The	<provider>	Manifest	Element
60.6	Summary

61.Implementing	an	Android	Content	Provider	in	Android	Studio
61.1	Copying	the	Database	Project
61.2	Adding	the	Content	Provider	Package
61.3	Creating	the	Content	Provider	Class
61.4	Constructing	the	Authority	and	Content	URI
61.5	Implementing	URI	Matching	in	the	Content	Provider
61.6	Implementing	the	Content	Provider	onCreate()	Method
61.7	Implementing	the	Content	Provider	insert()	Method
61.8	Implementing	the	Content	Provider	query()	Method
61.9	Implementing	the	Content	Provider	update()	Method
61.10	Implementing	the	Content	Provider	delete()	Method
61.11	Declaring	the	Content	Provider	in	the	Manifest	File
61.12	Modifying	the	Database	Handler
61.13	Summary

62.Accessing	Cloud	Storage	using	the	Android	Storage	Access	Framework
62.1	The	Storage	Access	Framework
62.2	Working	with	the	Storage	Access	Framework
62.3	Filtering	Picker	File	Listings
62.4	Handling	Intent	Results
62.5	Reading	the	Content	of	a	File
62.6	Writing	Content	to	a	File
62.7	Deleting	a	File

62.8	Gaining	Persistent	Access	to	a	File
62.9	Summary

63.An	Android	Storage	Access	Framework	Example
63.1	About	the	Storage	Access	Framework	Example
63.2	Creating	the	Storage	Access	Framework	Example
63.3	Designing	the	User	Interface
63.4	Declaring	Request	Codes
63.5	Creating	a	New	Storage	File
63.6	The	onActivityResult()	Method
63.7	Saving	to	a	Storage	File
63.8	Opening	and	Reading	a	Storage	File
63.9	Testing	the	Storage	Access	Application
63.10	Summary

64.Implementing	Video	Playback	on	Android	using	the	VideoView	and
MediaController	Classes

64.1	Introducing	the	Android	VideoView	Class
64.2	Introducing	the	Android	MediaController	Class
64.3	Testing	Video	Playback
64.4	Creating	the	Video	Playback	Example
64.5	Designing	the	VideoPlayer	Layout
64.6	Configuring	the	VideoView
64.7	Adding	Internet	Permission
64.8	Adding	the	MediaController	to	the	Video	View
64.9	Setting	up	the	onPreparedListener
64.10	Summary

65.Video	Recording	and	Image	Capture	on	Android	using	Camera	Intents
65.1	Checking	for	Camera	Support
65.2	Calling	the	Video	Capture	Intent
65.3	Calling	the	Image	Capture	Intent
65.4	Creating	an	Android	Studio	Video	Recording	Project
65.5	Designing	the	User	Interface	Layout
65.6	Checking	for	the	Camera
65.7	Launching	the	Video	Capture	Intent
65.8	Handling	the	Intent	Return
65.9	Testing	the	Application
65.10	Summary

66.Making	Runtime	Permission	Requests	in	Android
66.1	Understanding	Normal	and	Dangerous	Permissions
66.2	Creating	the	Permissions	Example	Project
66.3	Checking	for	a	Permission
66.4	Requesting	Permission	at	Runtime
66.5	Providing	a	Rationale	for	the	Permission	Request
66.6	Testing	the	Permissions	App
66.7	Summary

67.Android	Audio	Recording	and	Playback	using	MediaPlayer	and
MediaRecorder

67.1	Playing	Audio
67.2	Recording	Audio	and	Video	using	the	MediaRecorder	Class
67.3	About	the	Example	Project
67.4	Creating	the	AudioApp	Project
67.5	Designing	the	User	Interface
67.6	Checking	for	Microphone	Availability
67.7	Performing	the	Activity	Initialization
67.8	Implementing	the	recordAudio()	Method
67.9	Implementing	the	stopAudio()	Method
67.10	Implementing	the	playAudio()	method
67.11	Configuring	and	Requesting	Permissions
67.12	Testing	the	Application
67.13	Summary

68.Working	with	the	Google	Maps	Android	API	in	Android	Studio
68.1	The	Elements	of	the	Google	Maps	Android	API
68.2	Creating	the	Google	Maps	Project
68.3	Obtaining	Your	Developer	Signature
68.4	Testing	the	Application
68.5	Understanding	Geocoding	and	Reverse	Geocoding
68.6	Adding	a	Map	to	an	Application
68.7	Requesting	Current	Location	Permission
68.8	Displaying	the	User’s	Current	Location
68.9	Changing	the	Map	Type
68.10	Displaying	Map	Controls	to	the	User
68.11	Handling	Map	Gesture	Interaction
68.11.1	Map	Zooming	Gestures
68.11.2	Map	Scrolling/Panning	Gestures

68.11.3	Map	Tilt	Gestures
68.11.4	Map	Rotation	Gestures
68.12	Creating	Map	Markers
68.13	Controlling	the	Map	Camera
68.14	Summary

69.Printing	with	the	Android	Printing	Framework
69.1	The	Android	Printing	Architecture
69.2	The	Print	Service	Plugins
69.3	Google	Cloud	Print
69.4	Printing	to	Google	Drive
69.5	Save	as	PDF
69.6	Printing	from	Android	Devices
69.7	Options	for	Building	Print	Support	into	Android	Apps
69.7.1	Image	Printing
69.7.2	Creating	and	Printing	HTML	Content
69.7.3	Printing	a	Web	Page
69.7.4	Printing	a	Custom	Document
69.8	Summary

70.An	Android	HTML	and	Web	Content	Printing	Example
70.1	Creating	the	HTML	Printing	Example	Application
70.2	Printing	Dynamic	HTML	Content
70.3	Creating	the	Web	Page	Printing	Example
70.4	Removing	the	Floating	Action	Button
70.5	Designing	the	User	Interface	Layout
70.6	Loading	the	Web	Page	into	the	WebView
70.7	Adding	the	Print	Menu	Option
70.8	Summary

71.A	Guide	to	Android	Custom	Document	Printing
71.1	An	Overview	of	Android	Custom	Document	Printing
71.1.1	Custom	Print	Adapters
71.2	Preparing	the	Custom	Document	Printing	Project
71.3	Creating	the	Custom	Print	Adapter
71.4	Implementing	the	onLayout()	Callback	Method
71.5	Implementing	the	onWrite()	Callback	Method
71.6	Checking	a	Page	is	in	Range
71.7	Drawing	the	Content	on	the	Page	Canvas
71.8	Starting	the	Print	Job

71.9	Testing	the	Application
71.10	Summary

72.An	Android	Fingerprint	Authentication	Tutorial
72.1	An	Overview	of	Fingerprint	Authentication
72.2	Creating	the	Fingerprint	Authentication	Project
72.3	Configuring	Device	Fingerprint	Authentication
72.4	Adding	the	Fingerprint	Permission	to	the	Manifest	File
72.5	Adding	the	Fingerprint	Icon
72.6	Designing	the	User	Interface
72.7	Accessing	the	Keyguard	and	Fingerprint	Manager	Services
72.8	Checking	the	Security	Settings
72.9	Accessing	the	Android	Keystore	and	KeyGenerator
72.10	Generating	the	Key
72.11	Initializing	the	Cipher
72.12	Creating	the	CryptoObject	Instance
72.13	Implementing	the	Fingerprint	Authentication	Handler	Class
72.14	Testing	the	Project
72.15	Summary

73.Handling	Different	Android	Devices	and	Displays
73.1	Handling	Different	Device	Displays
73.2	Creating	a	Layout	for	each	Display	Size
73.3	Creating	Layout	Variants	in	Android	Studio
73.4	Providing	Different	Images
73.5	Checking	for	Hardware	Support
73.6	Providing	Device	Specific	Application	Binaries
73.7	Summary

74.Signing	and	Preparing	an	Android	Application	for	Release
74.1	The	Release	Preparation	Process
74.2	Changing	the	Build	Variant
74.3	Enabling	ProGuard
74.4	Creating	a	Keystore	File
74.5	Generating	a	Private	Key
74.6	Creating	the	Application	APK	File
74.7	Register	for	a	Google	Play	Developer	Console	Account
74.8	Uploading	New	APK	Versions	to	the	Google	Play	Developer	Console
74.9	Analyzing	the	APK	File
74.10	Summary

75.	Integrating	Google	Play	In-app	Billing	into	an	Android	Application
75.1	Installing	the	Google	Play	Billing	Library
75.2	Creating	the	Example	In-app	Billing	Project
75.3	Adding	Billing	Permission	to	the	Manifest	File
75.4	Adding	the	IInAppBillingService.aidl	File	to	the	Project
75.5	Adding	the	Utility	Classes	to	the	Project
75.6	Designing	the	User	Interface
75.7	Implementing	the	“Click	Me”	Button
75.8	Google	Play	Developer	Console	and	Google	Wallet	Accounts
75.9	Obtaining	the	Public	License	Key	for	the	Application
75.10	Setting	Up	Google	Play	Billing	in	the	Application
75.11	Initiating	a	Google	Play	In-app	Billing	Purchase
75.12	Implementing	the	onActivityResult	Method
75.13	Implementing	the	Purchase	Finished	Listener
75.14	Consuming	the	Purchased	Item
75.15	Releasing	the	IabHelper	Instance
75.16	Modifying	the	Security.java	File
75.17	Testing	the	In-app	Billing	Application
75.18	Building	a	Release	APK
75.19	Creating	a	New	In-app	Product
75.20	Publishing	the	Application	to	the	Alpha	Distribution	Channel
75.21	Adding	In-app	Billing	Test	Accounts
75.22	Configuring	Group	Testing
75.23	Resolving	Problems	with	In-App	Purchasing
75.24	Summary

76.	An	Overview	of	Gradle	in	Android	Studio
76.1	An	Overview	of	Gradle
76.2	Gradle	and	Android	Studio
76.2.1	Sensible	Defaults
76.2.2	Dependencies
76.2.3	Build	Variants
76.2.4	Manifest	Entries
76.2.5	APK	Signing
76.2.6	ProGuard	Support
76.3	The	Top-level	Gradle	Build	File
76.4	Module	Level	Gradle	Build	Files
76.5	Configuring	Signing	Settings	in	the	Build	File
76.6	Running	Gradle	Tasks	from	the	Command-line

76.7	Summary
77.	An	Android	Studio	Gradle	Build	Variants	Example

77.1	Creating	the	Build	Variant	Example	Project
77.2	Adding	the	Build	Flavors	to	the	Module	Build	File
77.3	Adding	the	Flavors	to	the	Project	Structure
77.4	Adding	Resource	Files	to	the	Flavors
77.5	Testing	the	Build	Flavors
77.6	Build	Variants	and	Class	Files
77.7	Adding	Packages	to	the	Build	Flavors
77.8	Customizing	the	Activity	Classes
77.9	Summary

1.	Introduction

Fully	updated	for	Android	Studio	2.3	and	Android	7,	the	goal	of	this	book	is	to
teach	the	skills	necessary	to	develop	Android	based	applications	using	the
Android	Studio	Integrated	Development	Environment	(IDE)	and	the	Android	7
Software	Development	Kit	(SDK).
Beginning	with	the	basics,	this	book	provides	an	outline	of	the	steps	necessary	to
set	up	an	Android	development	and	testing	environment.	An	overview	of
Android	Studio	is	included	covering	areas	such	as	tool	windows,	the	code	editor
and	the	Layout	Editor	tool.	An	introduction	to	the	architecture	of	Android	is
followed	by	an	in-depth	look	at	the	design	of	Android	applications	and	user
interfaces	using	the	Android	Studio	environment.	More	advanced	topics	such	as
database	management,	content	providers	and	intents	are	also	covered,	as	are
touch	screen	handling,	gesture	recognition,	camera	access	and	the	playback	and
recording	of	both	video	and	audio.	This	edition	of	the	book	also	covers	printing,
transitions	and	cloud-based	file	storage.
The	concepts	of	material	design	are	also	covered	in	detail,	including	the	use	of
floating	action	buttons,	Snackbars,	tabbed	interfaces,	card	views,	navigation
drawers	and	collapsing	toolbars.
In	addition	to	covering	general	Android	development	techniques,	the	book	also
includes	Google	Play	specific	topics	such	as	implementing	maps	using	the
Google	Maps	Android	API,	in-app	billing	and	submitting	apps	to	the	Google
Play	Developer	Console.
The	key	new	features	of	Android	Studio	and	Android	7	are	also	covered	in	detail
including	the	new	Layout	Editor,	the	ConstraintLayout	and	ConstraintSet
classes,	constraint	chains,	direct	reply	notifications,	Firebase	remote
notifications	and	multiwindow	support.
Chapters	also	cover	advanced	features	of	Android	Studio	such	as	Gradle	build
configuration	and	the	implementation	of	build	variants	to	target	multiple
Android	device	types	from	a	single	project	code	base.
Assuming	you	already	have	some	Java	programming	experience,	are	ready	to
download	Android	Studio	and	the	Android	SDK,	have	access	to	a	Windows,
Mac	or	Linux	system	and	ideas	for	some	apps	to	develop,	you	are	ready	to	get
started.

1.1	Downloading	the	Code	Samples
The	source	code	and	Android	Studio	project	files	for	the	examples	contained	in
this	book	are	available	for	download	at:
http://www.ebookfrenzy.com/retail/androidstudio23/index.php
The	steps	to	load	a	project	from	the	code	samples	into	Android	Studio	are	as
follows:
1.							From	the	Welcome	to	Android	Studio	dialog,	select	the	Open	an	existing
Android	Studio	project	option.

2.							In	the	project	selection	dialog,	navigate	to	and	select	the	folder	containing
the	project	to	be	imported	and	click	on	OK.

1.2	Feedback
We	want	you	to	be	satisfied	with	your	purchase	of	this	book.	If	you	find	any
errors	in	the	book,	or	have	any	comments,	questions	or	concerns	please	contact
us	at	feedback@ebookfrenzy.com.

1.3	Errata
While	we	make	every	effort	to	ensure	the	accuracy	of	the	content	of	this	book,	it
is	inevitable	that	a	book	covering	a	subject	area	of	this	size	and	complexity	may
include	some	errors	and	oversights.	Any	known	issues	with	the	book	will	be
outlined,	together	with	solutions,	at	the	following	URL:
http://www.ebookfrenzy.com/errata/androidstudio23.html
In	the	event	that	you	find	an	error	not	listed	in	the	errata,	please	let	us	know	by
emailing	our	technical	support	team	at	feedback@ebookfrenzy.com.	They	are
there	to	help	you	and	will	work	to	resolve	any	problems	you	may	encounter.

http://www.ebookfrenzy.com/retail/androidstudio23/index.php
mailto:feedback@ebookfrenzy.com
http://www.ebookfrenzy.com/errata/androidstudio23.html
mailto:feedback@ebookfrenzy.com

2.	 Setting	 up	 an	 Android	 Studio	 Development
Environment

Before	any	work	can	begin	on	the	development	of	an	Android	application,	the
first	step	is	to	configure	a	computer	system	to	act	as	the	development	platform.
This	involves	a	number	of	steps	consisting	of	installing	the	Java	Development
Kit	(JDK)	and	the	Android	Studio	Integrated	Development	Environment	(IDE)
which	also	includes	the	Android	Software	Development	Kit	(SDK).
This	chapter	will	cover	the	steps	necessary	to	install	the	requisite	components	for
Android	application	development	on	Windows,	Mac	OS	X	and	Linux	based
systems.

2.1	System	Requirements
Android	application	development	may	be	performed	on	any	of	the	following
system	types:
·									Windows	7/8/10	(32-bit	or	64-bit)
·									Mac	OS	X	10.10	or	later	(Intel	based	systems	only)
·									Linux	systems	with	version	2.19	or	later	of	GNU	C	Library	(glibc)
·									Minimum	of	2GB	of	RAM	(8GB	is	preferred)
·									Approximately	4GB	of	available	disk	space
·									1280	x	800	minimum	screen	resolution

2.2	Installing	the	Java	Development	Kit	(JDK)
The	Android	SDK	was	developed	using	the	Java	programming	language.
Similarly,	Android	applications	are	also	developed	using	Java.	As	a	result,	the
Java	Development	Kit	(JDK)	is	the	first	component	that	must	be	installed.
Android	Studio	development	requires	the	installation	of	version	8	of	the
Standard	Edition	of	the	Java	Platform	Development	Kit.	Java	is	provided	in	both
development	(JDK)	and	runtime	(JRE)	packages.	For	the	purposes	of	Android
development,	the	JDK	must	be	installed.

2.2.1	Windows	JDK	Installation
For	Windows	systems,	the	JDK	may	be	obtained	from	Oracle	Corporation’s
website	using	the	following	URL:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

2133151.html
Assuming	that	a	suitable	JDK	is	not	already	installed	on	your	system,	download
version	8	of	the	JDK	package	that	matches	the	destination	computer	system.
Once	downloaded,	launch	the	installation	executable	and	follow	the	on	screen
instructions	to	complete	the	installation	process.

2.2.2	Mac	OS	X	JDK	Installation
Java	is	not	installed	by	default	on	recent	versions	of	Mac	OS	X.	To	confirm	the
presence	or	otherwise	of	Java,	open	a	Terminal	window	and	enter	the	following
command:

java	-version

Assuming	that	Java	is	currently	installed,	output	similar	to	the	following	will
appear	in	the	terminal	window:

java	version	"1.8.0_77"

Java(TM)	SE	Runtime	Environment	(build	1.8.0_77-b03)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.77-b03,	mixed	mode)

In	the	event	that	Java	is	not	installed,	issuing	the	“java”	command	in	the	terminal
window	will	result	in	the	appearance	of	a	message	which	reads	as	follows
together	with	a	dialog	on	the	desktop	providing	a	More	Info	button	which,	when
clicked	will	display	the	Oracle	Java	web	page:

No	Java	runtime	present,	requesting	install

On	the	Oracle	Java	web	page,	locate	and	download	the	Java	SE	8	JDK
installation	package	for	Mac	OS	X.
Open	the	downloaded	disk	image	(.dmg	file)	and	double-click	on	the	icon	to
install	the	Java	package	(Figure	2-1):

Figure	2-1

The	Java	for	OS	X	installer	window	will	appear	and	take	you	through	the	steps
involved	in	installing	the	JDK.	Once	the	installation	is	complete,	return	to	the
Terminal	window	and	run	the	following	command,	at	which	point	the	previously
outlined	Java	version	information	should	appear:

java	-version

2.3	Linux	JDK	Installation
First,	if	the	chosen	development	system	is	running	the	64-bit	version	of	Ubuntu
then	it	is	essential	that	a	32-bit	library	support	package	be	installed:

sudo	apt-get	install	lib32stdc++6

As	with	Windows	based	JDK	installation,	it	is	possible	to	install	the	JDK	on
Linux	by	downloading	the	appropriate	package	from	the	Oracle	web	site,	the
URL	for	which	is	as	follows:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html
Packages	are	provided	by	Oracle	in	RPM	format	(for	installation	on	Red	Hat
Linux	based	systems	such	as	Red	Hat	Enterprise	Linux,	Fedora	and	CentOS)	and
as	a	tar	archive	for	other	Linux	distributions	such	as	Ubuntu.
On	Red	Hat	based	Linux	systems,	download	the	.rpm	JDK	file	from	the	Oracle
web	site	and	perform	the	installation	using	the	rpm	command	in	a	terminal
window.	Assuming,	for	example,	that	the	downloaded	JDK	file	was	named	jdk-
8u77-linux-x64.rpm,	the	commands	to	perform	the	installation	would	read	as
follows:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

su

rpm	–ihv	jdk-8u77-linux-x64.rpm

To	install	using	the	compressed	tar	package	(tar.gz)	perform	the	following	steps:
1.	Create	the	directory	into	which	the	JDK	is	to	be	installed	(for	the	purposes	of
this	example	we	will	assume	homedemo/java).
2.	Download	the	appropriate	tar.gz	package	from	the	Oracle	web	site	into	the
directory.
3.	Execute	the	following	command	(where	<jdk-file>	is	replaced	by	the	name	of
the	downloaded	JDK	file):

tar	xvfz		<jdk-file>.tar.gz

4.	Remove	the	downloaded	tar.gz	file.
5.	Add	the	path	to	the	bin	directory	of	the	JDK	installation	to	your	$PATH
variable.	For	example,	assuming	that	the	JDK	ultimately	installed	into
homedemo/java/jdk1.8.0_77	the	following	would	need	to	be	added	to	your
$PATH	environment	variable:

homedemo/java/jdk1.8.0_77/bin

This	can	typically	be	achieved	by	adding	a	command	to	the	.bashrc	file	in	your
home	directory	(specifics	may	differ	depending	on	the	particular	Linux
distribution	in	use).	For	example,	change	directory	to	your	home	directory,	edit
the	.bashrc	file	contained	therein	and	add	the	following	line	at	the	end	of	the	file
(modifying	the	path	to	match	the	location	of	the	JDK	on	your	system):

export	PATH=homedemo/java/jdk1.8.0_77/bin:$PATH

Having	saved	the	change,	future	terminal	sessions	will	include	the	JDK	in	the
$PATH	environment	variable.

2.4	Downloading	the	Android	Studio	Package
Most	of	the	work	involved	in	developing	applications	for	Android	will	be
performed	using	the	Android	Studio	environment.	The	content	and	examples	in
this	book	were	created	based	on	Android	Studio	version	2.3.
Android	Studio	is	subject	to	frequent	updates	and	it	is	possible,	therefore,	that	a
more	recent	release	of	Android	Studio	is	now	available.	For	the	purposes	of
compatibility	with	the	tutorials	and	examples,	however,	it	is	recommended	that
this	book	be	used	with	Android	Studio	version	2.3	which	may	be	downloaded
from	the	following	web	page:

http://tools.android.com/download/studio/builds/2-3-0
From	this	page,	select	and	download	the	appropriate	package	for	your	platform
and	operating	system.

2.5	Installing	Android	Studio
Once	downloaded,	the	exact	steps	to	install	Android	Studio	differ	depending	on
the	operating	system	on	which	the	installation	is	being	performed.

2.5.1	Installation	on	Windows
Locate	the	downloaded	Android	Studio	installation	executable	file	(named
androidstudio-bundle-<version>.exe)	in	a	Windows	Explorer	window	and
double-click	on	it	to	start	the	installation	process,	clicking	the	Yes	button	in	the
User	Account	Control	dialog	if	it	appears.
Once	the	Android	Studio	setup	wizard	appears,	work	through	the	various	screens
to	configure	the	installation	to	meet	your	requirements	in	terms	of	the	file	system
location	into	which	Android	Studio	should	be	installed	and	whether	or	not	it
should	be	made	available	to	other	users	of	the	system.	When	prompted	to	select
the	components	to	install,	make	sure	that	the	Android	Studio,	Android	SDK	and
Android	Virtual	Device	options	are	all	selected.
Although	there	are	no	strict	rules	on	where	Android	Studio	should	be	installed
on	the	system,	the	remainder	of	this	book	will	assume	that	the	installation	was
performed	into	C:\Program	Files\Android\Android	Studio	and	that	the	Android
SDK	packages	have	been	installed	into	the	user’s	AppData\Local\Android\sdk
subfolder.	Once	the	options	have	been	configured,	click	on	the	Install	button	to
begin	the	installation	process.
On	versions	of	Windows	with	a	Start	menu,	the	newly	installed	Android	Studio
can	be	launched	from	the	entry	added	to	that	menu	during	the	installation.	The
executable	may	be	pinned	to	the	task	bar	for	easy	access	by	navigating	to	the
Android	Studio\bin	directory,	right-clicking	on	the	executable	and	selecting	the
Pin	to	Taskbar	menu	option.	Note	that	the	executable	is	provided	in	32-bit
(studio)	and	64-bit	(studio64)	executable	versions.	If	you	are	running	a	32-bit
system	be	sure	to	use	the	studio	executable.

2.5.2	Installation	on	Mac	OS	X
Android	Studio	for	Mac	OS	X	is	downloaded	in	the	form	of	a	disk	image	(.dmg)
file.	Once	the	androidstudio-ide-<version>.dmg	file	has	been	downloaded,
locate	it	in	a	Finder	window	and	double-click	on	it	to	open	it	as	shown	in	Figure

http://tools.android.com/download/studio/builds/2-3-0

2-2:

Figure	2-2

To	install	the	package,	simply	drag	the	Android	Studio	icon	and	drop	it	onto	the
Applications	folder.	The	Android	Studio	package	will	then	be	installed	into	the
Applications	folder	of	the	system,	a	process	which	will	typically	take	a	few
minutes	to	complete.
To	launch	Android	Studio,	locate	the	executable	in	the	Applications	folder	using
a	Finder	window	and	double-click	on	it.	When	attempting	to	launch	Android
Studio,	an	error	dialog	may	appear	indicating	that	the	JVM	cannot	be	found.	If
this	error	occurs,	it	will	be	necessary	to	download	and	install	the	Mac	OS	X	Java
6	JRE	package	on	the	system.	This	can	be	downloaded	from	Apple	using	the
following	link:
http://support.apple.com/kb/DL1572
Once	the	Java	for	OS	X	package	has	been	installed,	Android	Studio	should
launch	without	any	problems.
For	future	easier	access	to	the	tool,	drag	the	Android	Studio	icon	from	the	Finder
window	and	drop	it	onto	the	dock.

http://support.apple.com/kb/DL1572

2.5.3	Installation	on	Linux
Having	downloaded	the	Linux	Android	Studio	package,	open	a	terminal
window,	change	directory	to	the	location	where	Android	Studio	is	to	be	installed
and	execute	the	following	command:

unzip	<path	to	package>androidstudio-ide-<version>-linux.zip

Note	that	the	Android	Studio	bundle	will	be	installed	into	a	subdirectory	named
androidstudio.	Assuming,	therefore,	that	the	above	command	was	executed	in
homedemo,	the	software	packages	will	be	unpacked	into
homedemo/androidstudio.
To	launch	Android	Studio,	open	a	terminal	window,	change	directory	to	the
androidstudio/bin	subdirectory	and	execute	the	following	command:

./studio.sh

On	Linux	it	may	also	be	necessary	to	specify	the	location	of	the	Java
Development	Kit	using	the	following	steps:
1.							Launch	Android	Studio	and	create	a	new	project.
2.							Select	the	File	->	Other	Settings	->	Default	Project	Structure…	menu

option.
3.							Enter	the	full	path	to	the	directory	containing	the	JDK	into	the	JDK	Location

field.
4.							Click	Apply	followed	by	OK.

2.6	The	Android	Studio	Setup	Wizard
The	first	time	that	Android	Studio	is	launched	after	being	installed,	a	dialog	will
appear	providing	the	option	to	import	settings	from	a	previous	Android	Studio
version.	If	you	have	settings	from	a	previous	version	and	would	like	to	import
them	into	the	latest	installation,	select	the	appropriate	option	and	location.
Alternatively,	indicate	that	you	do	not	need	to	import	any	previous	settings	and
click	on	the	OK	button	to	proceed.
Next,	the	setup	wizard	may	appear	as	shown	in	Figure	2-3	though	this	dialog
does	not	appear	on	all	platforms:

Figure	2-3

If	the	wizard	appears,	click	on	the	Next	button,	choose	the	Standard	installation
option	and	click	on	Next	once	again.
Android	Studio	will	proceed	to	download	and	configure	the	latest	Android	SDK
and	some	additional	components	and	packages.	Once	this	process	has
completed,	click	on	the	Finish	button	in	the	Downloading	Components	dialog	at
which	point	the	Welcome	to	Android	Studio	screen	should	then	appear:

Figure	2-4

2.7	Installing	Additional	Android	SDK	Packages
The	steps	performed	so	far	have	installed	Java,	the	Android	Studio	IDE	and	the
current	set	of	default	Android	SDK	packages.	Before	proceeding,	it	is	worth
taking	some	time	to	verify	which	packages	are	installed	and	to	install	any
missing	or	updated	packages.
This	task	can	be	performed	using	the	Android	SDK	Settings	screen,	which	may
be	launched	from	within	the	Android	Studio	tool	by	selecting	the	Configure	->
SDK	Manager	option	from	within	the	Android	Studio	welcome	dialog.	Once
invoked,	the	Android	SDK	screen	of	the	default	settings	dialog	will	appear	as
shown	in	Figure	2-5:

Figure	2-5

Immediately	after	installing	Android	Studio	for	the	first	time	it	is	likely	that	only
the	latest	released	version	of	the	Android	SDK	has	been	installed.	To	install
preview	or	older	versions	of	the	Android	SDK	simply	select	the	checkboxes
corresponding	to	the	versions	and	click	on	the	Apply	button.
It	is	also	possible	that	updates	will	be	listed	as	being	available	for	the	latest
SDK.	To	access	detailed	information	about	the	packages	that	are	available	for
update,	enable	the	Show	Package	Details	option	located	in	the	lower	right-hand
corner	of	the	screen.	This	will	display	information	similar	to	that	shown	in
Figure	2-6:

Figure	2-6

The	above	figure	highlights	the	availability	of	an	update.	To	install	the	updates,
enable	the	checkbox	to	the	left	of	the	item	name	and	click	on	the	Apply	button.
In	addition	to	the	Android	SDK	packages,	a	number	of	tools	are	also	installed
for	building	Android	applications.	To	view	the	currently	installed	packages	and
check	for	updates,	remain	within	the	SDK	settings	screen	and	select	the	SDK
Tools	tab	as	shown	in	Figure	2-7:

Figure	2-7

Within	the	Android	SDK	Tools	screen,	make	sure	that	the	following	packages
are	listed	as	Installed	in	the	Status	column:
·									Android	SDK	Build-tools
·									Android	SDK	Tools
·									Android	SDK	Platform-tools
·									Android	Support	Repository
·									Android	Support	Library
·									Google	Repository
·									Google	USB	Driver	(Windows	only)
·									Intel	x86	Emulator	Accelerator	(HAXM	installer)
In	the	event	that	any	of	the	above	packages	are	listed	as	Not	Installed	or
requiring	an	update,	simply	select	the	checkboxes	next	to	those	packages	and
click	on	the	Apply	button	to	initiate	the	installation	process.
Once	the	installation	is	complete,	review	the	package	list	and	make	sure	that	the

selected	packages	are	now	listed	as	Installed	in	the	Status	column.	If	any	are
listed	as	Not	installed,	make	sure	they	are	selected	and	click	on	the	Install
packages…	button	again.
An	alternative	to	using	the	Android	SDK	settings	panel	is	to	access	the
Standalone	SDK	Manager	which	can	be	launched	using	the	link	in	the	lower
left-hand	corner	of	the	settings	screen.	The	Standalone	SDK	Manager	(Figure	2-
8)	provides	a	similar	list	of	packages	together	with	options	to	perform	update
and	installation	tasks:

Figure	2-8

2.8	Making	the	Android	SDK	Tools	Command-line	Accessible
Most	of	the	time,	the	underlying	tools	of	the	Android	SDK	will	be	accessed	from

within	the	Android	Studio	environment.	That	being	said,	however,	there	will
also	be	instances	where	it	will	be	useful	to	be	able	to	invoke	those	tools	from	a
command	prompt	or	terminal	window.	In	order	for	the	operating	system	on
which	you	are	developing	to	be	able	to	find	these	tools,	it	will	be	necessary	to
add	them	to	the	system’s	PATH	environment	variable.
Regardless	of	operating	system,	the	PATH	variable	needs	to	be	configured	to
include	the	following	paths	(where	<path_to_android_sdk_installation>
represents	the	file	system	location	into	which	the	Android	SDK	was	installed):

<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/platform-tools

The	location	of	the	SDK	on	your	system	can	be	identified	by	launching	the
Standalone	SDK	Manager	and	referring	to	the	Android	SDK	Location:	field
located	at	the	top	of	the	settings	panel	as	highlighted	in	Figure	2-9:

Figure	2-9

Once	the	location	of	the	SDK	has	been	identified,	the	steps	to	add	this	to	the
PATH	variable	are	operating	system	dependent:

2.8.1	Windows	7
1.							Right-click	on	Computer	in	the	desktop	start	menu	and	select	Properties

from	the	resulting	menu.
2.							In	the	properties	panel,	select	the	Advanced	System	Settings	link	and,	in	the

resulting	dialog,	click	on	the	Environment	Variables…	button.
3.							In	the	Environment	Variables	dialog,	locate	the	Path	variable	in	the	System
variables	list,	select	it	and	click	on	Edit….	Locate	the	end	of	the	current
variable	value	string	and	append	the	path	to	the	Android	platform	tools	to	the
end,	using	a	semicolon	to	separate	the	path	from	the	preceding	values.	For
example,	assuming	the	Android	SDK	was	installed	into
C:\Users\demo\AppData\Local\Android\sdk,	the	following	would	be
appended	to	the	end	of	the	current	Path	value:
;C:\Users\demo\AppData\Local\Android\sdk\platform-

tools;C:\Users\demo\AppData\Local\Android\sdk\tools

4.							Click	on	OK	in	each	dialog	box	and	close	the	system	properties	control
panel.

Once	the	above	steps	are	complete,	verify	that	the	path	is	correctly	set	by
opening	a	Command	Prompt	window	(Start	->	All	Programs	->	Accessories	->
Command	Prompt)	and	at	the	prompt	enter:

echo	%Path%

The	returned	path	variable	value	should	include	the	paths	to	the	Android	SDK
platform	tools	folders.	Verify	that	the	platform-tools	value	is	correct	by
attempting	to	run	the	adb	tool	as	follows:

adb

The	tool	should	output	a	list	of	command	line	options	when	executed.
Similarly,	check	the	tools	path	setting	by	attempting	to	launch	the	Android	SDK
Manager:

android

In	the	event	that	a	message	similar	to	the	following	message	appears	for	one	or
both	of	the	commands,	it	is	most	likely	that	an	incorrect	path	was	appended	to
the	Path	environment	variable:

'adb'	is	not	recognized	as	an	internal	or	external	command,

operable	program	or	batch	file.

2.8.2	Windows	8.1
1.							On	the	start	screen,	move	the	mouse	to	the	bottom	right-hand	corner	of
the	screen	and	select	Search	from	the	resulting	menu.	In	the	search	box,
enter	Control	Panel.	When	the	Control	Panel	icon	appears	in	the	results
area,	click	on	it	to	launch	the	tool	on	the	desktop.
2.							Within	the	Control	Panel,	use	the	Category	menu	to	change	the	display
to	Large	Icons.	From	the	list	of	icons	select	the	one	labeled	System.
3.							Follow	the	steps	outlined	for	Windows	7	starting	from	step	2	through	to
step	4.

Open	the	command	prompt	window	(move	the	mouse	to	the	bottom	right-hand
corner	of	the	screen,	select	the	Search	option	and	enter	cmd	into	the	search	box).
Select	Command	Prompt	from	the	search	results.
Within	the	Command	Prompt	window,	enter:

echo	%Path%

The	returned	path	variable	value	should	include	the	paths	to	the	Android	SDK
platform	tools	folders.	Verify	that	the	platform-tools	value	is	correct	by
attempting	to	run	the	adb	tool	as	follows:

adb

The	tool	should	output	a	list	of	command	line	options	when	executed.
Similarly,	check	the	tools	path	setting	by	attempting	to	launch	the	Android	SDK
Manager:

android

In	the	event	that	a	message	similar	to	the	following	message	appears	for	one	or
both	of	the	commands,	it	is	most	likely	that	an	incorrect	path	was	appended	to
the	Path	environment	variable:

'adb'	is	not	recognized	as	an	internal	or	external	command,

operable	program	or	batch	file.

2.8.3	Windows	10
Right-click	on	the	Start	menu,	select	System	from	the	resulting	menu	and	click
on	the	Advanced	system	settings	option	in	the	System	window.	Follow	the	steps
outlined	for	Windows	7	starting	from	step	2	through	to	step	4.

2.8.4	Linux
On	Linux	this	will	involve	once	again	editing	the	.bashrc	file.	Assuming	that	the
Android	SDK	bundle	package	was	installed	into	homedemo/Android/sdk,	the
export	line	in	the	.bashrc	file	would	now	read	as	follows:

export

PATH=homedemo/java/jdk1.7.0_10/bin:homedemo/Android/sdk/platform-

tools:homedemo/Android/sdk/tools:homedemo/androidstudio/bin:$PATH

Note	also	that	the	above	command	adds	the	androidstudio/bin	directory	to	the
PATH	variable.	This	will	enable	the	studio.sh	script	to	be	executed	regardless	of
the	current	directory	within	a	terminal	window.

2.8.5	Mac	OS	X
A	number	of	techniques	may	be	employed	to	modify	the	$PATH	environment
variable	on	Mac	OS	X.	Arguably	the	cleanest	method	is	to	add	a	new	file	in	the
etcpaths.d	directory	containing	the	paths	to	be	added	to	$PATH.	Assuming	an
Android	SDK	installation	location	of	Usersdemo/Library/Android/sdk,	the	path
may	be	configured	by	creating	a	new	file	named	android-sdk	in	the	etcpaths.d
directory	containing	the	following	lines:

Usersdemo/Library/Android/sdk/tools

Usersdemo/Library/Android/sdk/platform-tools

Note	that	since	this	is	a	system	directory	it	will	be	necessary	to	use	the	sudo
command	when	creating	the	file.	For	example:

sudo	vi	etcpaths.d/android-sdk

2.9	Updating	the	Android	Studio	and	the	SDK
From	time	to	time	new	versions	of	Android	Studio	and	the	Android	SDK	are
released.	New	versions	of	the	SDK	are	installed	using	the	Android	SDK
Manager.	Android	Studio	will	typically	notify	you	when	an	update	is	ready	to	be
installed.
To	manually	check	for	Android	Studio	updates,	click	on	the	Configure	->	Check
for	Updates	menu	option	within	the	Android	Studio	welcome	screen,	or	use	the
Help	->	Check	for	Update	menu	option	accessible	from	within	the	Android
Studio	main	window.

2.10	Summary
Prior	to	beginning	the	development	of	Android	based	applications,	the	first	step
is	to	set	up	a	suitable	development	environment.	This	consists	of	the	Java
Development	Kit	(JDK),	Android	SDKs,	and	Android	Studio	IDE.	In	this
chapter,	we	have	covered	the	steps	necessary	to	install	these	packages	on
Windows,	Mac	OS	X	and	Linux.

3.	Creating	an	Example	Android	App	in
Android	Studio
The	preceding	chapters	of	this	book	have	covered	the	steps	necessary	to
configure	an	environment	suitable	for	the	development	of	Android	applications
using	the	Android	Studio	IDE.	Before	moving	on	to	slightly	more	advanced
topics,	now	is	a	good	time	to	validate	that	all	of	the	required	development
packages	are	installed	and	functioning	correctly.	The	best	way	to	achieve	this
goal	is	to	create	an	Android	application	and	compile	and	run	it.	This	chapter	will
cover	the	creation	of	a	simple	Android	application	project	using	Android	Studio.
Once	the	project	has	been	created,	a	later	chapter	will	explore	the	use	of	the
Android	emulator	environment	to	perform	a	test	run	of	the	application.

3.1	Creating	a	New	Android	Project
The	first	step	in	the	application	development	process	is	to	create	a	new	project
within	the	Android	Studio	environment.	Begin,	therefore,	by	launching	Android
Studio	so	that	the	“Welcome	to	Android	Studio”	screen	appears	as	illustrated	in
Figure	3-1:

Figure	3-1

Once	this	window	appears,	Android	Studio	is	ready	for	a	new	project	to	be
created.	To	create	the	new	project,	simply	click	on	the	Start	a	new	Android
Studio	project	option	to	display	the	first	screen	of	the	New	Project	wizard	as
shown	in	Figure	3-2:

Figure	3-2

3.2	Defining	the	Project	and	SDK	Settings
In	the	New	Project	window,	set	the	Application	name	field	to	AndroidSample.
The	application	name	is	the	name	by	which	the	application	will	be	referenced
and	identified	within	Android	Studio	and	is	also	the	name	that	will	be	used	when
the	completed	application	goes	on	sale	in	the	Google	Play	store.

The	Package	Name	is	used	to	uniquely	identify	the	application	within	the
Android	application	ecosystem.	Although	this	can	be	set	to	any	string	that
uniquely	identifies	your	app,	it	is	traditionally	based	on	the	reversed	URL	of
your	domain	name	followed	by	the	name	of	the	application.	For	example,	if	your
domain	is	www.mycompany.com,	and	the	application	has	been	named
AndroidSample,	then	the	package	name	might	be	specified	as	follows:

com.mycompany.androidsample

If	you	do	not	have	a	domain	name	you	can	enter	any	other	string	into	the
Company	Domain	field,	or	you	may	use	ebookfrenzy.com	for	the	purposes	of
testing,	though	this	will	need	to	be	changed	before	an	application	can	be
published:

com.ebookfrenzy.androidsample

The	Project	location	setting	will	default	to	a	location	in	the	folder	named
AndroidStudioProjects	located	in	your	home	directory	and	may	be	changed	by
clicking	on	the	button	to	the	right	of	the	text	field	containing	the	current	path
setting.
Click	Next	to	proceed.	On	the	form	factors	screen,	enable	the	Phone	and	Tablet
option	and	set	the	minimum	SDK	setting	to	API	14:	Android	4.0
(IceCreamSandwich).	The	reason	for	selecting	an	older	SDK	release	is	that	this
ensures	that	the	finished	application	will	be	able	to	run	on	the	widest	possible
range	of	Android	devices.	The	higher	the	minimum	SDK	selection,	the	more	the
application	will	be	restricted	to	newer	Android	devices.	A	useful	chart	(Figure	3-
3)	can	be	viewed	by	clicking	on	the	Help	me	choose	link.	This	outlines	the
various	SDK	versions	and	API	levels	available	for	use	and	the	percentage	of
Android	devices	in	the	marketplace	on	which	the	application	will	run	if	that
SDK	is	used	as	the	minimum	level.	In	general	it	should	only	be	necessary	to
select	a	more	recent	SDK	when	that	release	contains	a	specific	feature	that	is
required	for	your	application.
To	help	in	the	decision	process,	selecting	an	API	level	from	the	chart	will
display	the	features	that	are	supported	at	that	level.

Figure	3-3

Since	the	project	is	not	intended	for	Google	TV,	Android	Auto	or	wearable
devices,	leave	the	remaining	options	disabled	before	clicking	Next.

3.3	Creating	an	Activity
The	next	step	is	to	define	the	type	of	initial	activity	that	is	to	be	created	for	the

application.	A	range	of	different	activity	types	is	available	when	developing
Android	applications.	The	Empty,	Master/Detail	Flow,	Google	Maps	and
Navigation	Drawer	options	will	be	covered	extensively	in	later	chapters.	For	the
purposes	of	this	example,	however,	simply	select	the	option	to	create	a	Basic
Activity.	The	Basic	Activity	option	creates	a	template	user	interface	consisting	of
an	app	bar,	menu,	content	area	and	a	single	floating	action	button.

Figure	3-4

With	the	Basic	Activity	option	selected,	click	Next.	On	the	final	screen	(Figure

3-5)	name	the	activity	and	title	AndroidSampleActivity.	The	activity	will	consist
of	a	single	user	interface	screen	layout	which,	for	the	purposes	of	this	example,
should	be	named	activity_android_sample	as	shown	in	Figure	3-5	and	with	a
menu	resource	named	menu_android_sample:

Figure	3-5

Finally,	click	on	Finish	to	initiate	the	project	creation	process.

3.4	Modifying	the	Example	Application
At	this	point,	Android	Studio	has	created	a	minimal	example	application	project
and	opened	the	main	window.

Figure	3-6

The	newly	created	project	and	references	to	associated	files	are	listed	in	the
Project	tool	window	located	on	the	left-hand	side	of	the	main	project	window.
The	Project	tool	window	has	a	number	of	modes	in	which	information	can	be
displayed.	By	default,	this	panel	will	be	in	Android	mode.	This	setting	is
controlled	by	the	menu	at	the	top	of	the	panel	as	highlighted	in	Figure	3-7.	If	the
panel	is	not	currently	in	Android	mode,	use	the	menu	to	switch	mode:

Figure	3-7

The	example	project	created	for	us	when	we	selected	the	option	to	create	an
activity	consists	of	a	user	interface	containing	a	label	that	will	read	“Hello
World!”	when	the	application	is	executed.
The	next	step	in	this	tutorial	is	to	modify	the	user	interface	of	our	application	so
that	it	displays	a	larger	text	view	object	with	a	different	message	to	the	one
provided	for	us	by	Android	Studio.
The	user	interface	design	for	our	activity	is	stored	in	a	file	named
activity_android_sample.xml	which,	in	turn,	is	located	under	app	->	res	->
layout	in	the	project	file	hierarchy.	This	layout	file	includes	the	app	bar	(also
known	as	an	action	bar)	that	appears	across	the	top	of	the	device	screen	(marked
A	in	Figure	3-8)	and	the	floating	action	button	(the	email	button	marked	B).	In
addition	to	these	items,	the	activity_android_sample.xml	layout	file	contains	a
reference	to	a	second	file	containing	the	content	layout	(marked	C):

Figure	3-8

By	default,	the	content	layout	is	contained	within	a	file	named
content_android_sample.xml	and	it	is	within	this	file	that	changes	to	the	layout
of	the	activity	are	made.	Using	the	Project	tool	window,	locate	this	file	as
illustrated	in	Figure	3-9:

Figure	3-9

Once	located,	double-click	on	the	file	to	load	it	into	the	user	interface	Layout
Editor	tool	which	will	appear	in	the	center	panel	of	the	Android	Studio	main
window:

Figure	3-10

In	the	toolbar	across	the	top	of	the	Layout	Editor	window	is	a	menu	(currently
set	to	Nexus	5	in	the	above	figure)	which	is	reflected	in	the	visual	representation
of	the	device	within	the	Layout	Editor	panel.	A	wide	range	of	other	device
options	are	available	for	selection	by	clicking	on	this	menu.
To	change	the	orientation	of	the	device	representation	between	landscape	and

portrait	simply	use	the	drop	down	menu	immediately	to	the	right	of	the	device
selection	menu	showing	the	 	icon.
As	can	be	seen	in	the	device	screen,	the	content	layout	already	includes	a	label
that	displays	a	“Hello	World!”	message.	Running	down	the	left-hand	side	of	the
panel	is	a	palette	containing	different	categories	of	user	interface	components
that	may	be	used	to	construct	a	user	interface,	such	as	buttons,	labels	and	text
fields.	It	should	be	noted,	however,	that	not	all	user	interface	components	are
obviously	visible	to	the	user.	One	such	category	consists	of	layouts.	Android
supports	a	variety	of	layouts	that	provide	different	levels	of	control	over	how
visual	user	interface	components	are	positioned	and	managed	on	the	screen.
Though	it	is	difficult	to	tell	from	looking	at	the	visual	representation	of	the	user
interface,	the	current	design	has	been	created	using	a	ConstraintLayout.	This	can
be	confirmed	by	reviewing	the	information	in	the	Component	Tree	panel	which,
by	default,	is	located	in	the	lower	left-hand	corner	of	the	Layout	Editor	panel
and	is	shown	in	Figure	3-11:

Figure	3-11

As	we	can	see	from	the	component	tree	hierarchy,	the	user	interface	layout
consists	of	a	ConstraintLayout	parent	with	a	single	child	in	the	form	of	a
TextView	object.
Before	proceeding,	check	that	the	Layout	Editor’s	Autoconnect	mode	is	enabled.
This	means	that	as	components	are	added	to	the	layout,	the	Layout	Editor	will
automatically	add	constraints	to	make	sure	the	components	are	correctly
positioned	for	different	screen	sizes	and	device	orientations	(a	topic	that	will	be
covered	in	much	greater	detail	in	future	chapters).	The	Autoconnect	button
appears	in	the	Layout	Editor	toolbar	and	is	represented	by	a	magnet	icon.	When
disabled	the	magnet	appears	with	a	diagonal	line	through	it	(Figure	3-12).	If
necessary,	re-enable	Autoconnect	mode	by	clicking	on	this	button.

Figure	3-12

The	next	step	in	modifying	the	application	is	to	delete	the	TextView	component
from	the	design.	Begin	by	clicking	on	the	TextView	object	within	the	user

from	the	design.	Begin	by	clicking	on	the	TextView	object	within	the	user
interface	view	so	that	it	appears	with	a	blue	border	around	it.	Once	selected,
press	the	Delete	key	on	the	keyboard	to	remove	the	object	from	the	layout.
The	Palette	panel	consists	of	two	columns	with	the	left-hand	column	containing
a	list	of	view	component	categories.	The	right-hand	column	lists	the	components
contained	within	the	currently	selected	category.	The	area	immediately	beneath
the	two	columns	serves	as	a	preview	area	where	a	rendering	of	the	currently
selected	view	type	is	displayed.	In	Figure	3-13,	for	example,	the	Button	view	is
currently	selected	within	the	Widgets	category:

Figure	3-13

Click	and	drag	the	Button	object	(either	from	the	Widgets	list,	or	the	preview
area)	and	drop	it	in	the	center	of	the	user	interface	design	when	the	marker	lines
appear	indicating	the	center	of	the	display:

Figure	3-14

The	next	step	is	to	change	the	text	that	is	currently	displayed	by	the	Button
component.	The	panel	located	to	the	right	of	the	design	area	is	the	Properties
panel.	This	panel	displays	the	attributes	assigned	to	the	currently	selected
component	in	the	layout.	Within	this	panel,	locate	the	text	property	and	change
the	current	value	from	“Button”	to	“Demo”	as	shown	in	Figure	3-15:

Figure	3-15

A	useful	shortcut	to	changing	the	text	property	of	a	component	is	to	double-click
on	it	in	the	layout.	This	will	automatically	locate	the	attribute	in	the	properties
panel	and	select	it	ready	for	editing.
The	second	text	property	with	a	wrench	next	to	it	allows	a	text	property	to	be	set
which	only	appears	within	the	Layout	Editor	tool	but	is	not	shown	at	runtime.
This	is	useful	for	testing	the	way	in	which	a	visual	component	and	the	layout
will	behave	with	different	settings	without	having	to	run	the	app	repeatedly.
At	this	point	it	is	important	to	explain	the	red	button	located	in	the	top	right-hand
corner	of	the	Layout	Editor	tool	as	indicated	in	Figure	3-16.	Obviously,	this	is
indicating	potential	problems	with	the	layout.	For	details	on	any	problems,	click
on	the	button:

Figure	3-16

When	clicked,	a	panel	(Figure	3-17)	will	appear	describing	the	nature	of	the
problems	and	offering	some	possible	corrective	measures:

Figure	3-17

Currently,	the	only	warning	listed	reads	as	follows:
Warning:	[I18N]	Hardcoded	string	“Demo”,	should	use	‘@string’

resource

This	I18N	message	is	informing	us	that	a	potential	issue	exists	with	regard	to	the
future	internationalization	of	the	project	(“I18N”	comes	from	the	fact	that	the
word	“internationalization”	begins	with	an	“I”,	ends	with	an	“N”	and	has	18
letters	in	between).	The	warning	is	reminding	us	that	when	developing	Android
applications,	attributes	and	values	such	as	text	strings	should	be	stored	in	the
form	of	resources	wherever	possible.	Doing	so	enables	changes	to	the
appearance	of	the	application	to	be	made	by	modifying	resource	files	instead	of
changing	the	application	source	code.	This	can	be	especially	valuable	when
translating	a	user	interface	to	a	different	spoken	language.	If	all	of	the	text	in	a
user	interface	is	contained	in	a	single	resource	file,	for	example,	that	file	can	be
given	to	a	translator	who	will	then	perform	the	translation	work	and	return	the
translated	file	for	inclusion	in	the	application.	This	enables	multiple	languages	to
be	targeted	without	the	necessity	for	any	source	code	changes	to	be	made.	In	this
instance,	we	are	going	to	create	a	new	resource	named	demostring	and	assign	to

it	the	string	“Demo”.
Click	on	the	Extract	string	resource	link	in	the	Issue	Explanation	panel	to
display	the	Extract	Resource	panel	(Figure	3-18).	Within	this	panel,	change	the
resource	name	field	to	demostring	and	leave	the	resource	value	set	to	Demo
before	clicking	on	the	OK	button.

Figure	3-18

It	is	also	worth	noting	that	the	string	could	also	have	been	assigned	to	a	resource
when	it	was	entered	into	the	Properties	panel.	This	involves	clicking	on	the
button	displaying	three	dots	to	the	right	of	the	property	field	in	the	Properties
panel	and	selecting	the	Add	new	resource	->	New	String	Value…	menu	option
from	the	resulting	Resources	dialog.	In	practice,	however,	it	is	often	quicker	to
simply	set	values	directly	into	the	Properties	panel	fields	for	any	widgets	in	the
layout,	then	work	sequentially	through	the	list	in	the	warnings	dialog	to	extract
any	necessary	resources	when	the	layout	is	complete.

3.5	Reviewing	the	Layout	and	Resource	Files
Before	moving	on	to	the	next	chapter,	we	are	going	to	look	at	some	of	the
internal	aspects	of	user	interface	design	and	resource	handling.	In	the	previous
section,	we	made	some	changes	to	the	user	interface	by	modifying	the

content_android_sample.xml	file	using	the	Layout	Editor	tool.	In	fact,	all	that
the	Layout	Editor	was	doing	was	providing	a	user-friendly	way	to	edit	the
underlying	XML	content	of	the	file.	In	practice,	there	is	no	reason	why	you
cannot	modify	the	XML	directly	in	order	to	make	user	interface	changes	and,	in
some	instances,	this	may	actually	be	quicker	than	using	the	Layout	Editor	tool.
At	the	bottom	of	the	Layout	Editor	panel	are	two	tabs	labeled	Design	and	Text
respectively.	To	switch	to	the	XML	view	simply	select	the	Text	tab	as	shown	in
Figure	3-19:

Figure	3-19

As	can	be	seen	from	the	structure	of	the	XML	file,	the	user	interface	consists	of
the	ConstraintLayout	component,	which	in	turn,	is	the	parent	of	the	Button
object.	We	can	also	see	that	the	text	property	of	the	Button	is	set	to	our
demostring	resource.	Although	varying	in	complexity	and	content,	all	user
interface	layouts	are	structured	in	this	hierarchical,	XML	based	way.

One	of	the	more	powerful	features	of	Android	Studio	can	be	found	to	the	right-
hand	side	of	the	XML	editing	panel.	If	the	panel	is	not	visible,	display	it	by
selecting	the	Preview	button	located	along	the	right-hand	edge	of	the	Android
Studio	window.	This	is	the	Preview	panel	and	shows	the	current	visual	state	of
the	layout.	As	changes	are	made	to	the	XML	layout,	these	will	be	reflected	in	the
preview	panel.	The	layout	may	also	be	modified	visually	from	within	the
Preview	panel	with	the	changes	appearing	in	the	XML	listing.	To	see	this	in
action,	modify	the	XML	layout	to	change	the	background	color	of	the
ConstraintLayout	to	a	shade	of	red	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

			

app:layout_behavior="@string/appbar_scrolling_view_behavior"

tools:context="com.ebookfrenzy.androidsample.AndroidSampleActivity"

				tools:showIn="@layout/activity_android_sample"

				android:background="#ff2438"	>

.

.

.

</android.support.constraint.ConstraintLayout>

Note	that	the	color	of	the	preview	changes	in	real-time	to	match	the	new	setting
in	the	XML	file.	Note	also	that	a	small	red	square	appears	in	the	left-hand
margin	(also	referred	to	as	the	gutter)	of	the	XML	editor	next	to	the	line
containing	the	color	setting.	This	is	a	visual	cue	to	the	fact	that	the	color	red	has
been	set	on	a	property.	Change	the	color	value	to	#a0ff28	and	note	that	both	the
small	square	in	the	margin	and	the	preview	change	to	green.
Finally,	use	the	Project	view	to	locate	the	app	->	res	->	values	->	strings.xml
file	and	double-click	on	it	to	load	it	into	the	editor.	Currently	the	XML	should
read	as	follows:

<resources>

				<string	name="app_name">AndroidSample</string>

				<string	name="action_settings">Settings</string>

				<string	name="demostring">Demo</string>

</resources>		

As	a	demonstration	of	resources	in	action,	change	the	string	value	currently

assigned	to	the	demostring	resource	to	“Hello”	and	then	return	to	the	Layout
Editor	tool	by	selecting	the	tab	for	the	layout	file	in	the	editor	panel.	Note	that
the	layout	has	picked	up	the	new	resource	value	for	the	welcome	string.
There	is	also	a	quick	way	to	access	the	value	of	a	resource	referenced	in	an	XML
file.	With	the	Layout	Editor	tool	in	Text	mode,	click	on	the
“@string/demostring”	property	setting	so	that	it	highlights	and	then	press	Ctrl+B
on	the	keyboard.	Android	Studio	will	subsequently	open	the	strings.xml	file	and
take	you	to	the	line	in	that	file	where	this	resource	is	declared.	Use	this
opportunity	to	revert	the	string	resource	back	to	the	original	“Demo”	text.
Resource	strings	may	also	be	edited	using	the	Android	Studio	Translations
Editor.	To	open	this	editor,	right-click	on	the	app	->	res	->	values	->	strings.xml
file	and	select	the	Open	Editor	menu	option.	This	will	display	the	Translation
Editor	in	the	main	panel	of	the	Android	Studio	window:

Figure	3-20

This	editor	allows	the	strings	assigned	to	resource	keys	to	be	edited	and	for
translations	for	multiple	languages	to	be	managed.	The	Order	a	translation…
link	may	also	be	used	to	order	a	translation	of	the	strings	contained	within	the
application	to	other	languages.	The	cost	of	the	translations	will	vary	depending
on	the	number	of	strings	involved.

3.6	Summary
While	not	excessively	complex,	a	number	of	steps	are	involved	in	setting	up	an
Android	development	environment.	Having	performed	those	steps,	it	is	worth
working	through	a	simple	example	to	make	sure	the	environment	is	correctly

working	through	a	simple	example	to	make	sure	the	environment	is	correctly
installed	and	configured.	In	this	chapter,	we	have	created	a	simple	application
and	then	used	the	Android	Studio	Layout	Editor	tool	to	modify	the	user	interface
layout.	In	doing	so,	we	explored	the	importance	of	using	resources	wherever
possible,	particularly	in	the	case	of	string	values,	and	briefly	touched	on	the
topic	of	layouts.	Finally,	we	looked	at	the	underlying	XML	that	is	used	to	store
the	user	interface	designs	of	Android	applications.
While	it	is	useful	to	be	able	to	preview	a	layout	from	within	the	Android	Studio
Layout	Editor	tool,	there	is	no	substitute	for	testing	an	application	by	compiling
and	running	it.	In	a	later	chapter	entitled	Creating	an	Android	Virtual	Device
(AVD)	in	Android	Studio,	the	steps	necessary	to	set	up	an	emulator	for	testing
purposes	will	be	covered	in	detail.	Before	running	the	application,	however,	the
next	chapter	will	take	a	small	detour	to	provide	a	guided	tour	of	the	Android
Studio	user	interface.

4.	A	Tour	of	the	Android	Studio	User
Interface
While	it	is	tempting	to	plunge	into	running	the	example	application	created	in
the	previous	chapter,	doing	so	involves	using	aspects	of	the	Android	Studio	user
interface	which	are	best	described	in	advance.
Android	Studio	is	a	powerful	and	feature	rich	development	environment	that	is,
to	a	large	extent,	intuitive	to	use.	That	being	said,	taking	the	time	now	to	gain
familiarity	with	the	layout	and	organization	of	the	Android	Studio	user	interface
will	considerably	shorten	the	learning	curve	in	later	chapters	of	the	book.	With
this	in	mind,	this	chapter	will	provide	an	initial	overview	of	the	various	areas
and	components	that	make	up	the	Android	Studio	environment.

4.1	The	Welcome	Screen
The	welcome	screen	(Figure	4-1)	is	displayed	any	time	that	Android	Studio	is
running	with	no	projects	currently	open	(open	projects	can	be	closed	at	any	time
by	selecting	the	File	->	Close	Project	menu	option).	If	Android	Studio	was
previously	exited	while	a	project	was	still	open,	the	tool	will	by-pass	the
welcome	screen	next	time	it	is	launched,	automatically	opening	the	previously
active	project.

Figure	4-1

In	addition	to	a	list	of	recent	projects,	the	Quick	Start	menu	provides	a	range	of
options	for	performing	tasks	such	as	opening,	creating	and	importing	projects
along	with	access	to	projects	currently	under	version	control.	In	addition,	the
Configure	menu	at	the	bottom	of	the	window	provides	access	to	the	SDK
Manager	along	with	a	vast	array	of	settings	and	configuration	options.	A	review
of	these	options	will	quickly	reveal	that	there	is	almost	no	aspect	of	Android
Studio	that	cannot	be	configured	and	tailored	to	your	specific	needs.
The	Configure	menu	also	includes	an	option	to	check	if	updates	to	Android
Studio	are	available	for	download.

4.2	The	Main	Window
When	a	new	project	is	created,	or	an	existing	one	opened,	the	Android	Studio
main	window	will	appear.	When	multiple	projects	are	open	simultaneously,	each
will	be	assigned	its	own	main	window.	The	precise	configuration	of	the	window
will	vary	depending	on	which	tools	and	panels	were	displayed	the	last	time	the
project	was	open,	but	will	typically	resemble	that	of	Figure	4-2.

Figure	4-2

The	various	elements	of	the	main	window	can	be	summarized	as	follows:
A	–	Menu	Bar	–	Contains	a	range	of	menus	for	performing	tasks	within	the

Android	Studio	environment.
B	–	Toolbar	–	A	selection	of	shortcuts	to	frequently	performed	actions.	The
toolbar	buttons	provide	quicker	access	to	a	select	group	of	menu	bar	actions.	The
toolbar	can	be	customized	by	right-clicking	on	the	bar	and	selecting	the
Customize	Menus	and	Toolbars…	menu	option.
C	–	Navigation	Bar	–	The	navigation	bar	provides	a	convenient	way	to	move
around	the	files	and	folders	that	make	up	the	project.	Clicking	on	an	element	in
the	navigation	bar	will	drop	down	a	menu	listing	the	subfolders	and	files	at	that
location	ready	for	selection.	This	provides	an	alternative	to	the	Project	tool
window.
D	–	Editor	Window	–	The	editor	window	displays	the	content	of	the	file	on
which	the	developer	is	currently	working.	What	gets	displayed	in	this	location,
however,	is	subject	to	context.	When	editing	code,	for	example,	the	code	editor
will	appear.	When	working	on	a	user	interface	layout	file,	on	the	other	hand,	the
user	interface	Layout	Editor	tool	will	appear.	When	multiple	files	are	open,	each
file	is	represented	by	a	tab	located	along	the	top	edge	of	the	editor	as	shown	in
Figure	4-3.

Figure	4-3

E	–	Status	Bar	–	The	status	bar	displays	informational	messages	about	the
project	and	the	activities	of	Android	Studio	together	with	the	tools	menu	button
located	in	the	far	left	corner.	Hovering	over	items	in	the	status	bar	will	provide	a
description	of	that	field.	Many	fields	are	interactive,	allowing	the	user	to	click	to
perform	tasks	or	obtain	more	detailed	status	information.
F	–	Project	Tool	Window	–	The	project	tool	window	provides	a	hierarchical
overview	of	the	project	file	structure	allowing	navigation	to	specific	files	and
folders	to	be	performed.	The	toolbar	can	be	used	to	display	the	project	in	a
number	of	different	ways.	The	default	setting	is	the	Android	view	which	is	the
mode	primarily	used	in	the	remainder	of	this	book.
The	project	tool	window	is	just	one	of	a	number	of	tool	windows	available
within	the	Android	Studio	environment.

4.3	The	Tool	Windows
In	addition	to	the	project	view	tool	window,	Android	Studio	also	includes	a
number	of	other	windows	which,	when	enabled,	are	displayed	along	the	bottom
and	sides	of	the	main	window.	The	tool	window	quick	access	menu	can	be
accessed	by	hovering	the	mouse	pointer	over	the	button	located	in	the	far	left-
hand	corner	of	the	status	bar	(Figure	4-4)	without	clicking	the	mouse	button.

Figure	4-4

Selecting	an	item	from	the	quick	access	menu	will	cause	the	corresponding	tool
window	to	appear	within	the	main	window.
Alternatively,	a	set	of	tool	window	bars	can	be	displayed	by	clicking	on	the
quick	access	menu	icon	in	the	status	bar.	These	bars	appear	along	the	left,	right
and	bottom	edges	of	the	main	window	(as	indicated	by	the	arrows	in	Figure	4-5)
and	contain	buttons	for	showing	and	hiding	each	of	the	tool	windows.	When	the
tool	window	bars	are	displayed,	a	second	click	on	the	button	in	the	status	bar
will	hide	them.

Figure	4-5

Clicking	on	a	button	will	display	the	corresponding	tool	window	while	a	second
click	will	hide	the	window.	Buttons	prefixed	with	a	number	(for	example	1:
Project)	indicate	that	the	tool	window	may	also	be	displayed	by	pressing	the	Alt
key	on	the	keyboard	(or	the	Command	key	for	Mac	OS	X)	together	with	the
corresponding	number.
The	location	of	a	button	in	a	tool	window	bar	indicates	the	side	of	the	window
against	which	the	window	will	appear	when	displayed.	These	positions	can	be
changed	by	clicking	and	dragging	the	buttons	to	different	locations	in	other
window	tool	bars.
Each	tool	window	has	its	own	toolbar	along	the	top	edge.	The	buttons	within
these	toolbars	vary	from	one	tool	to	the	next,	though	all	tool	windows	contain	a
settings	option,	represented	by	the	cog	icon,	which	allows	various	aspects	of	the
window	to	be	changed.	Figure	4-6	shows	the	settings	menu	for	the	project	view

window	to	be	changed.	Figure	4-6	shows	the	settings	menu	for	the	project	view
tool	window.	Options	are	available,	for	example,	to	undock	a	window	and	to
allow	it	to	float	outside	of	the	boundaries	of	the	Android	Studio	main	window
and	to	move	and	resize	the	tool	panel.

Figure	4-6

All	of	the	windows	also	include	a	far	right	button	on	the	toolbar	providing	an
additional	way	to	hide	the	tool	window	from	view.	A	search	of	the	items	within
a	tool	window	can	be	performed	simply	by	giving	that	window	focus	by	clicking
in	it	and	then	typing	the	search	term	(for	example	the	name	of	a	file	in	the
Project	tool	window).	A	search	box	will	appear	in	the	window’s	tool	bar	and
items	matching	the	search	highlighted.
Android	Studio	offers	a	wide	range	of	window	tool	windows,	the	most
commonly	used	of	which	are	as	follows:
Project	–	The	project	view	provides	an	overview	of	the	file	structure	that	makes
up	the	project	allowing	for	quick	navigation	between	files.	Generally,	double-
clicking	on	a	file	in	the	project	view	will	cause	that	file	to	be	loaded	into	the
appropriate	editing	tool.
Structure	–	The	structure	tool	provides	a	high	level	view	of	the	structure	of	the
source	file	currently	displayed	in	the	editor.	This	information	includes	a	list	of
items	such	as	classes,	methods	and	variables	in	the	file.	Selecting	an	item	from
the	structure	list	will	take	you	to	that	location	in	the	source	file	in	the	editor

window.
Captures	–	The	captures	tool	window	provides	access	to	performance	data	files
that	have	been	generated	by	the	monitoring	tools	contained	within	the	Android
Monitor	tool	window.
Favorites	–	A	variety	of	project	items	can	be	added	to	the	favorites	list.	Right-
clicking	on	a	file	in	the	project	view,	for	example,	provides	access	to	an	Add	to
Favorites	menu	option.	Similarly,	a	method	in	a	source	file	can	be	added	as	a
favorite	by	right-clicking	on	it	in	the	Structure	tool	window.	Anything	added	to	a
Favorites	list	can	be	accessed	through	this	Favorites	tool	window.
Build	Variants	–	The	build	variants	tool	window	provides	a	quick	way	to
configure	different	build	targets	for	the	current	application	project	(for	example
different	builds	for	debugging	and	release	versions	of	the	application,	or	multiple
builds	to	target	different	device	categories).
TODO	–	As	the	name	suggests,	this	tool	provides	a	place	to	review	items	that
have	yet	to	be	completed	on	the	project.	Android	Studio	compiles	this	list	by
scanning	the	source	files	that	make	up	the	project	to	look	for	comments	that
match	specified	TODO	patterns.	These	patterns	can	be	reviewed	and	changed	by
selecting	the	File	->	Settings…	menu	option	and	navigating	to	the	TODO	page
listed	under	Editor.
Messages	–	The	messages	tool	window	records	output	from	the	Gradle	build
system	(Gradle	is	the	underlying	system	used	by	Android	Studio	for	building	the
various	parts	of	projects	into	runnable	applications)	and	can	be	useful	for
identifying	the	causes	of	build	problems	when	compiling	application	projects.
Android	Monitor	–	The	Android	Monitor	tool	window	provides	access	to	the
Android	debugging	system.	Within	this	window	tasks	such	as	monitoring	log
output	from	a	running	application,	taking	screenshots	and	videos	of	the
application,	stopping	a	process	and	performing	basic	debugging	tasks	can	be
performed.	The	tool	also	includes	real-time	GPU,	networking,	memory	and	CPU
usage	monitors.
Android	Model	–	The	Android	Model	tool	window	provides	a	single	location	in
which	to	view	an	exhaustive	list	of	the	different	options	and	settings	configured
within	the	project.	These	can	range	from	the	more	obvious	settings	such	as	the
target	Android	SDK	version	to	more	obscure	values	such	as	build	configuration
rules.
Terminal	–	Provides	access	to	a	terminal	window	on	the	system	on	which
Android	Studio	is	running.	On	Windows	systems	this	is	the	Command	Prompt

interface,	while	on	Linux	and	Mac	OS	X	systems	this	takes	the	form	of	a
Terminal	prompt.
Run	–	The	run	tool	window	becomes	available	when	an	application	is	currently
running	and	provides	a	view	of	the	results	of	the	run	together	with	options	to
stop	or	restart	a	running	process.	If	an	application	is	failing	to	install	and	run	on
a	device	or	emulator,	this	window	will	typically	provide	diagnostic	information
relating	to	the	problem.
Event	Log	–	The	event	log	window	displays	messages	relating	to	events	and
activities	performed	within	Android	Studio.	The	successful	build	of	a	project,	for
example,	or	the	fact	that	an	application	is	now	running	will	be	reported	within
this	tool	window.
Gradle	Console	–	The	Gradle	console	is	used	to	display	all	output	from	the
Gradle	system	as	projects	are	built	from	within	Android	Studio.	This	will
include	information	about	the	success	or	otherwise	of	the	build	process	together
with	details	of	any	errors	or	warnings.
Gradle	–	The	Gradle	tool	window	provides	a	view	onto	the	Gradle	tasks	that
make	up	the	project	build	configuration.	The	window	lists	the	tasks	that	are
involved	in	compiling	the	various	elements	of	the	project	into	an	executable
application.	Right-click	on	a	top	level	Gradle	task	and	select	the	Open	Gradle
Config	menu	option	to	load	the	Gradle	build	file	for	the	current	project	into	the
editor.	Gradle	will	be	covered	in	greater	detail	later	in	this	book.

4.4	Android	Studio	Keyboard	Shortcuts
Android	Studio	includes	an	abundance	of	keyboard	shortcuts	designed	to	save
time	when	performing	common	tasks.	A	full	keyboard	shortcut	keymap	listing
can	be	viewed	and	printed	from	within	the	Android	Studio	project	window	by
selecting	the	Help	->	Keymap	Reference	menu	option.

4.5	Switcher	and	Recent	Files	Navigation
Another	useful	mechanism	for	navigating	within	the	Android	Studio	main
window	involves	the	use	of	the	Switcher.	Accessed	via	the	Ctrl-Tab	keyboard
shortcut,	the	switcher	appears	as	a	panel	listing	both	the	tool	windows	and
currently	open	files	(Figure	4-7).

Figure	4-7

Once	displayed,	the	switcher	will	remain	visible	for	as	long	as	the	Ctrl	key
remains	depressed.	Repeatedly	tapping	the	Tab	key	while	holding	down	the	Ctrl
key	will	cycle	through	the	various	selection	options,	while	releasing	the	Ctrl	key
causes	the	currently	highlighted	item	to	be	selected	and	displayed	within	the
main	window.
In	addition	to	the	switcher,	navigation	to	recently	opened	files	is	provided	by	the
Recent	Files	panel	(Figure	4-8).	This	can	be	accessed	using	the	Ctrl-E	keyboard
shortcut	(Cmd-E	on	Mac	OS	X).	Once	displayed,	either	the	mouse	pointer	can
be	used	to	select	an	option	or,	alternatively,	the	keyboard	arrow	keys	can	be	used
to	scroll	through	the	file	name	and	tool	window	options.	Pressing	the	Enter	key
will	select	the	currently	highlighted	item.

Figure	4-8

4.6	Changing	the	Android	Studio	Theme
The	overall	theme	of	the	Android	Studio	environment	may	be	changed	either
from	the	welcome	screen	using	the	Configure	->	Settings	option,	or	via	the	File	-
>	Settings…	menu	option	of	the	main	window.
Once	the	settings	dialog	is	displayed,	select	the	Appearance	option	in	the	left-
hand	panel	and	then	change	the	setting	of	the	Theme	menu	before	clicking	on	the
Apply	button.	The	themes	currently	available	consist	of	IntelliJ,	Windows	and
Darcula.	Figure	4-9	shows	an	example	of	the	main	window	with	the	Darcula
theme	selected:

Figure	4-9

4.7	Summary
The	primary	elements	of	the	Android	Studio	environment	consist	of	the
welcome	screen	and	main	window.	Each	open	project	is	assigned	its	own	main
window	which,	in	turn,	consists	of	a	menu	bar,	toolbar,	editing	and	design	area,
status	bar	and	a	collection	of	tool	windows.	Tool	windows	appear	on	the	sides
and	bottom	edges	of	the	main	window	and	can	be	accessed	either	using	the	quick
access	menu	located	in	the	status	bar,	or	via	the	optional	tool	window	bars.

access	menu	located	in	the	status	bar,	or	via	the	optional	tool	window	bars.
There	are	very	few	actions	within	Android	Studio	which	cannot	be	triggered	via
a	keyboard	shortcut.	A	keymap	of	default	keyboard	shortcuts	can	be	accessed	at
any	time	from	within	the	Android	Studio	main	window.

5.	Creating	an	Android	Virtual	Device
(AVD)	in	Android	Studio
In	the	course	of	developing	Android	apps	in	Android	Studio	it	will	be	necessary
to	compile	and	run	an	application	multiple	times.	An	Android	application	may
be	tested	by	installing	and	running	it	either	on	a	physical	device	or	in	an	Android
Virtual	Device	(AVD)	emulator	environment.	Before	an	AVD	can	be	used,	it
must	first	be	created	and	configured	to	match	the	specification	of	a	particular
device	model.	The	goal	of	this	chapter,	therefore,	is	to	work	through	the	steps
involved	in	creating	such	a	virtual	device	using	the	Nexus	9	tablet	as	a	reference
example.

5.1	About	Android	Virtual	Devices
AVDs	are	essentially	emulators	that	allow	Android	applications	to	be	tested
without	the	necessity	to	install	the	application	on	a	physical	Android	based
device.	An	AVD	may	be	configured	to	emulate	a	variety	of	hardware	features
including	options	such	as	screen	size,	memory	capacity	and	the	presence	or
otherwise	of	features	such	as	a	camera,	GPS	navigation	support	or	an
accelerometer.	As	part	of	the	standard	Android	Studio	installation,	a	number	of
emulator	templates	are	installed	allowing	AVDs	to	be	configured	for	a	range	of
different	devices.	Additional	templates	may	be	loaded	or	custom	configurations
created	to	match	any	physical	Android	device	by	specifying	properties	such	as
processor	type,	memory	capacity	and	the	size	and	pixel	density	of	the	screen.
Check	the	online	developer	documentation	for	your	device	to	find	out	if
emulator	definitions	are	available	for	download	and	installation	into	the	AVD
environment.
When	launched,	an	AVD	will	appear	as	a	window	containing	an	emulated
Android	device	environment.	Figure	5-1,	for	example,	shows	an	AVD	session
configured	to	emulate	the	Google	Nexus	9	model.
New	AVDs	are	created	and	managed	using	the	Android	Virtual	Device
Manager,	which	may	be	used	either	in	command-line	mode	or	with	a	more	user-
friendly	graphical	user	interface.

Figure	5-1

5.2	Creating	a	New	AVD
In	order	to	test	the	behavior	of	an	application	in	the	absence	of	a	physical	device,
it	will	be	necessary	to	create	an	AVD	for	a	specific	Android	device
configuration.
To	create	a	new	AVD,	the	first	step	is	to	launch	the	AVD	Manager.	This	can	be
achieved	from	within	the	Android	Studio	environment	by	selecting	the	Tools	->
Android	->	AVD	Manager	menu	option	from	within	the	main	window.
Alternatively,	the	tool	may	be	launched	from	a	terminal	or	command-line
prompt	using	the	following	command:

android	avd

Once	launched,	the	tool	will	appear	as	outlined	in	Figure	5-2.	Assuming	a	new
Android	Studio	installation,	only	a	Nexus	5	AVD	will	currently	be	listed:

Android	Studio	installation,	only	a	Nexus	5	AVD	will	currently	be	listed:

Figure	5-2

To	add	an	additional	AVD,	begin	by	clicking	on	the	Create	Virtual	Device
button	in	order	to	invoke	the	Virtual	Device	Configuration	dialog:

Figure	5-3

Within	the	dialog,	perform	the	following	steps	to	create	a	Nexus	9	compatible
emulator:
1.							From	the	Category	panel,	select	the	Tablet	option	to	display	the	list	of

available	Android	tablet	AVD	templates.
2.							Select	the	Nexus	9	device	option	and	click	Next.
3.							On	the	System	Image	screen,	select	the	latest	version	of	Android	(at	time	of

writing	this	is	Nougat,		API	level	25,	Android	7.1.1	with	Google	APIs)	for	the
x86_64	ABI.	Note	that	if	the	system	image	has	not	yet	been	installed	a
Download	link	will	be	provided	next	to	the	Release	Name.	Click	this	link	to
download	and	install	the	system	image	before	selecting	it.	If	the	image	you

need	is	not	listed,	click	on	the	x86	images	and	Other	images	tabs	to	view
alternative	lists.

4.							Click	Next	to	proceed	and	enter	a	descriptive	name	(for	example	Nexus	9
API	25)	into	the	name	field	or	simply	accept	the	default	name.

5.							Click	Finish	to	create	the	AVD.
With	the	AVD	created,	the	AVD	Manager	may	now	be	closed.	If	future
modifications	to	the	AVD	are	necessary,	simply	re-open	the	AVD	Manager,
select	the	AVD	from	the	list	and	click	on	the	pencil	icon	in	the	Actions	column
of	the	device	row	in	the	AVD	Manager.

5.3	Starting	the	Emulator
To	perform	a	test	run	of	the	newly	created	AVD	emulator,	simply	select	the
emulator	from	the	AVD	Manager	and	click	on	the	launch	button	(the	green
triangle	in	the	Actions	column).	The	emulator	will	appear	in	a	new	window	and,
after	a	short	period	of	time,	the	“android”	logo	will	appear	in	the	center	of	the
screen.	The	amount	of	time	it	takes	for	the	emulator	to	start	will	depend	on	the
configuration	of	both	the	AVD	and	the	system	on	which	it	is	running.	In	the
event	that	the	startup	time	on	your	system	is	considerable,	do	not	hesitate	to
leave	the	emulator	running.	The	system	will	detect	that	it	is	already	running	and
attach	to	it	when	applications	are	launched,	thereby	saving	considerable	amounts
of	startup	time.
The	emulator	probably	defaulted	to	appearing	in	landscape	orientation.	It	is
useful	to	be	aware	that	this	and	other	default	options	can	be	changed.	Within	the
AVD	Manager,	select	the	new	Nexus	9	entry	and	click	on	the	pencil	icon	in	the
Actions	column	of	the	device	row.	In	the	configuration	screen	locate	the	Startup
and	orientation	section	and	change	the	orientation	setting.	Exit	and	restart	the
emulator	session	to	see	this	change	take	effect.	More	details	on	the	emulator	are
covered	in	the	next	chapter	(Using	and	Configuring	the	Android	Studio	AVD
Emulator).
To	save	time	in	the	next	section	of	this	chapter,	leave	the	emulator	running
before	proceeding.

5.4	Running	the	Application	in	the	AVD
With	an	AVD	emulator	configured,	the	example	AndroidSample	application
created	in	the	earlier	chapter	now	can	be	compiled	and	run.	With	the
AndroidSample	project	loaded	into	Android	Studio,	simply	click	on	the	run
button	represented	by	a	green	triangle	located	in	the	Android	Studio	toolbar	as
shown	in	Figure	5-4	below,	select	the	Run	->	Run…	menu	option	or	use	the

Shift+F10	keyboard	shortcut:

Figure	5-4

By	default,	Android	Studio	will	respond	to	the	run	request	by	displaying	the
Select	Deployment	Target	dialog.	This	provides	the	option	to	execute	the
application	on	an	AVD	instance	that	is	already	running,	or	to	launch	a	new	AVD
session	specifically	for	this	application.	Figure	5-5	lists	the	previously	created
Nexus	9	AVD	as	a	running	device	as	a	result	of	the	steps	performed	in	the
preceding	section.	With	this	device	selected	in	the	dialog,	click	on	OK	to	install
and	run	the	application	on	the	emulator.

Figure	5-5

Once	the	application	is	installed	and	running,	the	user	interface	for	the
AndroidSampleActivity	class	will	appear	within	the	emulator:

Figure	5-6

In	the	event	that	the	activity	does	not	automatically	launch,	check	to	see	if	the
launch	icon	has	appeared	among	the	apps	on	the	emulator.	If	it	has,	simply	click
on	it	to	launch	the	application.	Once	the	run	process	begins,	the	Run	and
Android	Monitor	tool	windows	will	become	available.	The	Run	tool	window
will	display	diagnostic	information	as	the	application	package	is	installed	and
launched.	Figure	5-7	shows	the	Run	tool	window	output	from	a	successful
application	launch:

Figure	5-7

If	problems	are	encountered	during	the	launch	process,	the	Run	tool	will	provide
information	that	will	hopefully	help	to	isolate	the	cause	of	the	problem.
Assuming	that	the	application	loads	into	the	emulator	and	runs	as	expected,	we
have	safely	verified	that	the	Android	development	environment	is	correctly
installed	and	configured.

5.5	Run/Debug	Configurations
A	particular	project	can	be	configured	such	that	a	specific	device	or	emulator	is
used	automatically	each	time	it	is	run	from	within	Android	Studio.	This	avoids
the	necessity	to	make	a	selection	from	the	device	chooser	each	time	the
application	is	executed.	To	review	and	modify	the	Run/Debug	configuration,
click	on	the	button	to	the	left	of	the	run	button	in	the	Android	Studio	toolbar	and
select	the	Edit	Configurations…	option	from	the	resulting	menu:

Figure	5-8

In	the	Run/Debug	Configurations	dialog,	the	application	may	be	configured	to
always	use	a	preferred	emulator	by	selecting	Emulator	from	the	Target	menu
located	in	the	Deployment	Target	Options	section	and	selecting	the	emulator

from	the	drop	down	menu.	Figure	5-9,	for	example,	shows	the	AndroidSample
application	configured	to	run	by	default	on	the	previously	created	Nexus	9
emulator:

Figure	5-9

Be	sure	to	switch	the	Target	menu	setting	back	to	"Show	Device	Chooser
Dialog"	mode	before	moving	on	to	the	next	chapter	of	the	book.

5.6	Stopping	a	Running	Application
To	stop	a	running	application,	simply	click	on	stop	button	located	in	the	main
toolbar	as	shown	in	Figure	5-10:

Figure	5-10

An	app	may	also	be	terminated	using	the	Android	Monitor.	Begin	by	displaying
the	Android	Monitor	tool	window	either	using	the	window	bar	button,	or	via	the
quick	access	menu	(invoked	by	moving	the	mouse	pointer	over	the	button	in	the
left-hand	corner	of	the	status	bar	as	shown	in	Figure	5-11).

Figure	5-11

Once	the	Android	tool	window	appears,	select	the	androidsample	app	menu
highlighted	in	Figure	5-12	below:

Figure	5-12

With	the	process	selected,	stop	it	by	clicking	on	the	red	Terminate	Application
button	in	the	vertical	toolbar	to	the	left	of	the	process	list	indicated	by	the	arrow
in	the	above	figure.
An	alternative	to	using	the	Android	tool	window	is	to	open	the	Android	Device
Monitor.	This	can	be	launched	via	the	Tools	->	Android	->	Android	Device
Monitor	menu	option.	Once	launched,	the	process	may	be	selected	from	the	list
(Figure	5-13)	and	terminated	by	clicking	on	the	red	Stop	button	located	in	the
toolbar	above	the	list.

Figure	5-13

5.7	AVD	Command-line	Creation

As	previously	discussed,	in	addition	to	the	graphical	user	interface	it	is	also
possible	to	create	a	new	AVD	directly	from	the	command-line.	This	is	achieved
using	the	android	tool	in	conjunction	with	some	command-line	options.	Once
initiated,	the	tool	will	prompt	for	additional	information	before	creating	the	new
AVD.
Assuming	that	the	system	has	been	configured	such	that	the	Android	SDK	tools
directory	is	included	in	the	PATH	environment	variable,	a	list	of	available
targets	for	the	new	AVD	may	be	obtained	by	issuing	the	following	command	in
a	terminal	or	command	window:

android	list	targets

The	resulting	output	from	the	above	command	will	contain	a	list	of	Android
SDK	versions	that	are	available	on	the	system.	For	example:

Available	Android	targets:

id:	1	or	"Google	Inc.:Google	APIs:23"

					Name:	Google	APIs

					Type:	Add-On

					Vendor:	Google	Inc.

					Revision:	1

					Description:	Android	+	Google	APIs

					Based	on	Android	6.0	(API	level	23)

					Libraries:

						*	com.google.android.media.effects	(effects.jar)

										Collection	of	video	effects

						*	com.android.future.usb.accessory	(usb.jar)

										API	for	USB	Accessories

						*	com.google.android.maps	(maps.jar)

										API	for	Google	Maps

					Skins:	HVGA,	QVGA,	WQVGA400,	WQVGA432,	WSVGA,	WVGA800

(default),	WVGA854,	WXGA720,	WXGA800,	WXGA800-7in

	Tag/ABIs	:	google_apis/x86

id:	2	or	"android-25"

					Name:	Android	7.1.1

					Type:	Platform

					API	level:	25

					Revision:	3

					Skins:	HVGA,	QVGA,	WQVGA400,	WQVGA432,	WSVGA,	WVGA800

(default),	WVGA854,	WXGA720,	WXGA800,	WXGA800-7in

	Tag/ABIs	:	no	ABIs.

The	syntax	for	AVD	creation	is	as	follows:
android	create	avd	-n	<name>	-t	<targetID>	[-<option>	<value>]

For	example,	to	create	a	new	AVD	named	Nexus9	using	the	target	ID	for	the
Android	API	level	25	device	(in	this	case	ID	2)	using	the	default	x86_64	ABI,
the	following	command	may	be	used:

android	create	avd	–n	Nexus9	-t	2	--abi	"default/x86_64"

The	android	tool	will	create	the	new	AVD	to	the	specifications	required	for	a
basic	Android	7	device,	also	providing	the	option	to	create	a	custom
configuration	to	match	the	specification	of	a	specific	device	if	required.	Once	a
new	AVD	has	been	created	from	the	command	line,	it	may	not	show	up	in	the
Android	Device	Manager	tool	until	the	Refresh	button	is	clicked.
In	addition	to	the	creation	of	new	AVDs,	a	number	of	other	tasks	may	be
performed	from	the	command	line.	For	example,	a	list	of	currently	available
AVDs	may	be	obtained	using	the	list	avd	command	line	arguments:

android	list	avd

Available	Android	Virtual	Devices:

				Name:	Nexus9

				Path:	C:\Users\Neil\.android\avd\demotest.avd

		Target:	Android	7.1	(API	level	25)

	Tag/ABI:	default/x86_64

				Skin:	WVGA800

				Name:	Nexus_9_API_25

		Device:	Nexus	9	(Google)

				Path:	C:\Users\Neil\.android\avd\Nexus_9_API_25.avd

		Target:	Android	7.1	(API	level	25)

	Tag/ABI:	default/x86_64

				Skin:	nexus_9

		Sdcard:	100M

Similarly,	to	delete	an	existing	AVD,	simply	use	the	delete	option	as	follows:
android	delete	avd	–n	<avd	name>

5.8	Android	Virtual	Device	Configuration	Files
By	default,	the	files	associated	with	an	AVD	are	stored	in	the	.android/avd
subdirectory	of	the	user’s	home	directory,	the	structure	of	which	is	as	follows
(where	<avd	name>	is	replaced	by	the	name	assigned	to	the	AVD):

<avd	name>.avd/config.ini

<avd	name>.avd/userdata.img

<avd	name>.ini

The	config.ini	file	contains	the	device	configuration	settings	such	as	display

dimensions	and	memory	specified	during	the	AVD	creation	process.	These
settings	may	be	changed	directly	within	the	configuration	file	and	will	be
adopted	by	the	AVD	when	it	is	next	invoked.
The	<avd	name>.ini	file	contains	a	reference	to	the	target	Android	SDK	and	the
path	to	the	AVD	files.	Note	that	a	change	to	the	image.sysdir	value	in	the
config.ini	file	will	also	need	to	be	reflected	in	the	target	value	of	this	file.

5.9	Moving	and	Renaming	an	Android	Virtual	Device
The	current	name	or	the	location	of	the	AVD	files	may	be	altered	from	the
command	line	using	the	android	tool’s	move	avd	argument.	For	example,	to
rename	an	AVD	named	Nexus9	to	Nexus9B,	the	following	command	may	be
executed:

android	move	avd	-n	Nexus9	-r	Nexus9B

To	physically	relocate	the	files	associated	with	the	AVD,	the	following
command	syntax	should	be	used:

android	move	avd	-n	<avd	name>	-p	<path	to	new	location>

For	example,	to	move	an	AVD	from	its	current	file	system	location	to
tmpNexus9Test:

android	move	avd	-n	Nexus9	-p	tmpNexus9Test

Note	that	the	destination	directory	must	not	already	exist	prior	to	executing	the
command	to	move	an	AVD.

5.10	Summary
A	typical	application	development	process	follows	a	cycle	of	coding,	compiling
and	running	in	a	test	environment.	Android	applications	may	be	tested	on	either
a	physical	Android	device	or	using	an	Android	Virtual	Device	(AVD)	emulator.
AVDs	are	created	and	managed	using	the	Android	AVD	Manager	tool	which
may	be	used	either	as	a	command	line	tool	or	using	a	graphical	user	interface.
When	creating	an	AVD	to	simulate	a	specific	Android	device	model	it	is
important	that	the	virtual	device	be	configured	with	a	hardware	specification	that
matches	that	of	the	physical	device.

6.	Using	and	Configuring	the	Android
Studio	AVD	Emulator
The	Android	Virtual	Device	(AVD)	emulator	environment	bundled	with
Android	Studio	1.x	was	an	uncharacteristically	weak	point	in	an	otherwise
reputable	application	development	environment.	Regarded	by	many	developers
as	slow,	inflexible	and	unreliable,	the	emulator	was	long	overdue	for	an
overhaul.	Fortunately,	Android	Studio	2	introduced	an	enhanced	emulator
environment	providing	significant	improvements	in	terms	of	configuration
flexibility	and	overall	performance.	According	to	the	Android	Studio	team	at
Google,	launching	an	app	on	the	new	emulator	is	now	faster	than	running	on	a
physical	Android	device.	Not	only	does	the	emulator	contain	many	new
configuration	options,	these	changes	can	be	made	in	real-time	while	the
application	is	running.
Before	the	next	chapter	explores	testing	on	physical	Android	devices,	this
chapter	will	take	some	time	to	provide	an	overview	of	the	Android	Studio	AVD
emulator	and	highlight	many	of	the	configuration	features	that	are	available	to
customize	the	environment.

6.1	The	Emulator	Environment
When	launched,	the	emulator	displays	an	initial	splash	screen	during	the	loading
process	as	illustrated	in	Figure	6-1:

Figure	6-1

Once	loaded,	the	main	emulator	window	appears	containing	a	representation	of
the	chosen	device	type	(in	the	case	of	Figure	6-2	this	is	a	Nexus	5X	device):

Figure	6-2

Positioned	along	the	right-hand	edge	of	the	window	is	the	toolbar	providing
quick	access	to	the	emulator	controls	and	configuration	options.

6.2	The	Emulator	Toolbar	Options
The	emulator	toolbar	(Figure	6-3)	provides	access	to	a	range	of	options	relating
to	the	appearance	and	behavior	of	the	emulator	environment.

Figure	6-3

Each	button	in	the	toolbar	has	associated	with	it	a	keyboard	accelerator	which
can	be	identified	either	by	hovering	the	mouse	pointer	over	the	button	and
waiting	for	the	tooltip	to	appear,	or	via	the	help	option	of	the	extended	controls
panel.
Though	many	of	the	options	contained	within	the	toolbar	are	self-explanatory,
each	option	will	be	covered	for	the	sake	of	completeness:
·									Exit	/	Minimize	–	The	uppermost	‘x’	button	in	the	toolbar	exits	the	emulator

session	when	selected	while	the	‘-‘	option	minimizes	the	entire	window.
·									Power	–	The	Power	button	simulates	the	hardware	power	button	on	a

physical	Android	device.	Clicking	and	releasing	this	button	will	lock	the
device	and	turn	off	the	screen.	Clicking	and	holding	this	button	will	initiate
the	device	“Power	off”	request	sequence.

·									Volume	Up	/	Down	–	Two	buttons	that	control	the	audio	volume	of	playback
within	the	simulator	environment.

·									Rotate	Left/Right	–	Rotates	the	emulated	device	between	portrait	and
landscape	orientations.

·									Screenshot	–	Takes	a	screenshot	of	the	content	currently	displayed	on	the
device	screen.	The	captured	image	is	stored	at	the	location	specified	in	the
Settings	screen	of	the	extended	controls	panel	as	outlined	later	in	this	chapter.

·									Zoom	Mode	–	This	button	toggles	in	and	out	of	zoom	mode,	details	of	which
will	be	covered	later	in	this	chapter.

·									Back	–	Simulates	selection	of	the	standard	Android	“Back”	button.	As	with
the	Home	and	Overview	buttons	outlined	below,	the	same	results	can	be
achieved	by	selecting	the	actual	buttons	on	the	emulator	screen.

·									Home	–	Simulates	selection	of	the	standard	Android	“Home”	button.
·									Overview	–	Simulates	selection	of	the	standard	Android	“Overview”	button

which	displays	the	currently	running	apps	on	the	device.
·									Extended	Controls	–	Displays	the	extended	controls	panel,	allowing	for	the

configuration	of	options	such	as	simulated	location	and	telephony	activity,
battery	strength,	cellular	network	type	and	fingerprint	identification.

6.3	Working	in	Zoom	Mode
The	zoom	button	located	in	the	emulator	toolbar	switches	in	and	out	of	zoom
mode.	When	zoom	mode	is	active	the	toolbar	button	is	depressed	and	the	mouse
pointer	appears	as	a	magnifying	glass	when	hovering	over	the	device	screen.
Clicking	the	left	mouse	button	will	cause	the	display	to	zoom	in	relative	to	the
selected	point	on	the	screen,	with	repeated	clicking	increasing	the	zoom	level.
Conversely,	clicking	the	right	mouse	button	decreases	the	zoom	level.	Toggling
the	zoom	button	off	reverts	the	display	to	the	default	size.
Clicking	and	dragging	while	in	zoom	mode	will	define	a	rectangular	area	into
which	the	view	will	zoom	when	the	mouse	button	is	released.
While	in	zoom	mode	the	visible	area	of	the	screen	may	be	panned	using	the
horizontal	and	vertical	scrollbars	located	within	the	emulator	window.

6.4	Resizing	the	Emulator	Window
The	size	of	the	emulator	window	(and	the	corresponding	representation	of	the
device)	can	be	changed	at	any	time	by	clicking	and	dragging	on	any	of	the
corners	or	sides	of	the	window.

6.5	Extended	Control	Options
The	extended	controls	toolbar	button	displays	the	panel	illustrated	in	Figure	6-4.
By	default,	the	location	settings	will	be	displayed.	Selecting	a	different	category
from	the	left-hand	panel	will	display	the	corresponding	group	of	controls:

from	the	left-hand	panel	will	display	the	corresponding	group	of	controls:

Figure	6-4

6.5.1	Location
The	location	controls	allow	simulated	location	information	to	be	sent	to	the
emulator	in	the	form	of	decimal	or	sexigesimal	coordinates.	Location
information	can	take	the	form	of	a	single	location,	or	a	sequence	of	points
representing	movement	of	the	device,	the	latter	being	provided	via	a	file	in	either
GPS	Exchange	(GPX)	or	Keyhole	Markup	Language	(KML)	format.
A	single	location	is	transmitted	to	the	emulator	when	the	Send	button	is	clicked.
The	transmission	of	GPS	data	points	begins	once	the	“play”	button	located
beneath	the	data	table	is	selected.	The	speed	at	which	the	GPS	data	points	are	fed
to	the	emulator	can	be	controlled	using	the	speed	menu	adjacent	to	the	play
button.

6.5.2	Cellular
The	type	of	cellular	connection	being	simulated	can	be	changed	within	the

The	type	of	cellular	connection	being	simulated	can	be	changed	within	the
cellular	settings	screen.	Options	are	available	to	simulate	different	network	types
(CSM,	EDGE,	HSDPA	etc)	in	addition	to	a	range	of	voice	and	data	scenarios
such	as	roaming	and	denied	access.

6.5.3	Battery
A	variety	of	simulated	battery	state	and	charging	conditions	can	be	simulated	on
this	panel	of	the	extended	controls	screen,	including	battery	charge	level,	battery
health	and	whether	the	AC	charger	is	currently	connected.

6.5.4	Phone
The	phone	extended	controls	provide	two	very	simple	but	useful	simulations
within	the	emulator.	The	first	option	allows	for	the	simulation	of	an	incoming
call	from	a	designated	phone	number.	This	can	be	of	particular	use	when	testing
the	way	in	which	an	app	handles	high	level	interrupts	of	this	nature.
The	second	option	allows	the	receipt	of	text	messages	to	be	simulated	within	the
emulator	session.	As	in	the	real	world,	these	messages	appear	within	the
Message	app	and	trigger	the	standard	notifications	within	the	emulator.

6.5.5	Directional	Pad
A	directional	pad	(D-Pad)	is	an	additional	set	of	controls	either	built	into	an
Android	device	or	connected	externally	(such	as	a	game	controller)	that	provides
directional	controls	(left,	right,	up,	down).	The	directional	pad	settings	allow	D-
Pad	interaction	to	be	simulated	within	the	emulator.

6.5.6	Fingerprint
Many	Android	devices	are	now	supplied	with	built-in	fingerprint	detection
hardware.	The	AVD	emulator	makes	it	possible	to	test	fingerprint	authentication
without	the	need	to	test	apps	on	a	physical	device	containing	a	fingerprint
sensor.	Details	on	how	to	configure	fingerprint	testing	within	the	emulator	will
be	covered	in	detail	later	in	this	chapter.

6.5.7	Virtual	Sensors
The	virtual	sensors	option	allows	the	accelerometer	and	magnetometer	to	be
simulated	to	emulate	the	effects	of	the	physical	motion	of	a	device	such	as
rotation,	movement	and	tilting	through	yaw,	pitch	and	roll	settings.

6.5.8	Settings
The	settings	panel	provides	a	small	group	of	configuration	options.	Use	this
panel	to	choose	a	darker	theme	for	the	toolbar	and	extended	controls	panel,

panel	to	choose	a	darker	theme	for	the	toolbar	and	extended	controls	panel,
specify	a	file	system	location	into	which	screenshots	are	to	be	saved,	and	to
configure	the	emulator	window	to	appear	on	top	of	other	windows	on	the
desktop.

6.5.9	Help
The	Help	screen	contains	three	sub-panels	containing	a	list	of	keyboard
shortcuts,	links	to	access	the	emulator	online	documentation,	file	bugs	and	send
feedback,	and	emulator	version	information.

6.6	Drag	and	Drop	Support
An	Android	application	is	packaged	into	an	APK	file	when	it	is	built.	When
Android	Studio	built	and	ran	the	AndroidSample	app	created	earlier	in	this	book,
for	example,	the	application	was	compiled	and	packaged	into	an	APK	file.	That
APK	file	was	then	transferred	to	the	emulator	and	launched.
The	Android	Studio	emulator	also	supports	installation	of	apps	by	dragging	and
dropping	the	corresponding	APK	file	onto	the	emulator	window.	To	experience
this	in	action,	start	the	emulator,	open	Settings	and	select	the	Apps	option.
Within	the	list	of	installed	apps,	locate	and	select	the	AndroidSample	app	and,	in
the	app	detail	screen,	uninstall	the	app	from	the	emulator.
Open	the	file	system	navigation	tool	for	your	operating	system	(e.g.	Windows
Explorer	for	Windows	or	Finder	for	Mac	OS	X)	and	navigate	to	the	folder
containing	the	AndroidSample	project.	Within	this	folder	locate	the
app/build/outputs/apk	subfolder.	This	folder	should	contain	two	APK	files
named	app-debug.apk	and	app-debug-unaligned.apk.	Drag	the	app-debug.apk
file	and	drop	it	onto	the	emulator	window.	The	dialog	shown	in	(Figure	6-5)	will
subsequently	appear	as	the	APK	file	is	installed.

Figure	6-5

Once	the	APK	file	installation	has	completed,	locate	the	app	on	the	device	and
click	on	it	to	launch	it.
In	addition	to	APK	files,	any	other	type	of	file	such	as	image,	video	or	data	files
can	be	installed	onto	the	emulator	using	this	drag	and	drop	feature.	Such	files	are
added	to	the	SD	card	storage	area	of	the	emulator	where	they	may	subsequently

added	to	the	SD	card	storage	area	of	the	emulator	where	they	may	subsequently
be	accessed	from	within	app	code.

6.7	Configuring	Fingerprint	Emulation
The	emulator	allows	up	to	10	simulated	fingerprints	to	be	configured	and	used	to
test	fingerprint	authentication	within	Android	apps.	To	configure	simulated
fingerprints	begin	by	launching	the	emulator,	opening	the	Settings	app	and
selecting	the	Security	option.
Within	the	Security	settings	screen,	select	the	Use	fingerprint	option.	On	the
resulting	information	screen	click	on	the	Next	button	to	proceed	to	the
Fingerprint	setup	screen.	Before	fingerprint	security	can	be	enabled	a	backup
screen	unlocking	method	(such	as	a	PIN	number)	must	be	configured.	Click	on
the	Fingerprint	+	PIN	button,	enter	and	confirm	a	suitable	PIN	number	and
complete	the	PIN	entry	process.
Proceed	through	the	remaining	screens	until	the	Settings	app	requests	a
fingerprint	on	the	sensor.	At	this	point	display	the	extended	controls	dialog,
select	the	Fingerprint	category	in	the	left-hand	panel	and	make	sure	that	Finger
1	is	selected	in	the	main	settings	panel:

Figure	6-6

Click	on	the	Touch	Sensor	button	to	simulate	Finger	1	touching	the	fingerprint
sensor.	The	emulator	will	report	the	successful	addition	of	the	fingerprint:

Figure	6-7

To	add	additional	fingerprints	click	on	the	Add	Another	button	and	select	another
finger	from	the	extended	controls	panel	menu	before	clicking	on	the	Touch
Sensor	button	once	again.	The	topic	of	building	fingerprint	authentication	into	an
Android	app	is	covered	in	detail	in	the	chapter	entitled	An	Android	Fingerprint
Authentication	Tutorial.

6.8	Summary
Android	Studio	2	contains	a	new	and	improved	Android	Virtual	Device	emulator
environment	designed	to	make	it	easier	to	test	applications	without	the	need	to
run	on	a	physical	Android	device.	This	chapter	has	provided	a	brief	tour	of	the
emulator	and	highlighted	key	features	that	are	available	to	configure	and
customize	the	environment	to	simulate	different	testing	conditions.

7.	Testing	Android	Studio	Apps	on	a
Physical	Android	Device

Whilst	much	can	be	achieved	by	testing	applications	using	an	Android	Virtual
Device	(AVD),	there	is	no	substitute	for	performing	real	world	application
testing	on	a	physical	Android	device	and	there	are	a	number	of	Android	features
that	are	only	available	on	physical	Android	devices.
Communication	with	both	AVD	instances	and	connected	Android	devices	is
handled	by	the	Android	Debug	Bridge	(ADB).	In	this	chapter	we	will	work
through	the	steps	to	configure	the	adb	environment	to	enable	application	testing
on	a	physical	Android	device	with	Mac	OS	X,	Windows	and	Linux	based
systems.

7.1	An	Overview	of	the	Android	Debug	Bridge	(ADB)
The	primary	purpose	of	the	ADB	is	to	facilitate	interaction	between	a
development	system,	in	this	case	Android	Studio,	and	both	AVD	emulators	and
physical	Android	devices	for	the	purposes	of	running	and	debugging
applications.
The	ADB	consists	of	a	client,	a	server	process	running	in	the	background	on	the
development	system	and	a	daemon	background	process	running	in	either	AVDs
or	real	Android	devices	such	as	phones	and	tablets.
The	ADB	client	can	take	a	variety	of	forms.	For	example,	a	client	is	provided	in
the	form	of	a	command-line	tool	named	adb	located	in	the	Android	SDK
platform-tools	subdirectory.	Similarly,	Android	Studio	also	has	a	built-in	client.
A	variety	of	tasks	may	be	performed	using	the	adb	command-line	tool.	For
example,	a	listing	of	currently	active	virtual	or	physical	devices	may	be	obtained
using	the	devices	command-line	argument.	The	following	command	output
indicates	the	presence	of	an	AVD	on	the	system	but	no	physical	devices:

$	adb	devices

List	of	devices	attached

emulator-5554			device

7.2	Enabling	ADB	on	Android	based	Devices
Before	ADB	can	connect	to	an	Android	device,	that	device	must	first	be
configured	to	allow	the	connection.	On	phone	and	tablet	devices	running
Android	6.0	or	later,	the	steps	to	achieve	this	are	as	follows:

Android	6.0	or	later,	the	steps	to	achieve	this	are	as	follows:
1.							Open	the	Settings	app	on	the	device	and	select	the	About	tablet	or	About
phone	option.

2.							On	the	About	screen,	scroll	down	to	the	Build	number	field	(Figure	7-1)	and
tap	on	it	seven	times	until	a	message	appears	indicating	that	developer	mode
has	been	enabled.

Figure	7-1

3.							Return	to	the	main	Settings	screen	and	note	the	appearance	of	a	new	option
titled	Developer	options.	Select	this	option	and	locate	the	setting	on	the
developer	screen	entitled	USB	debugging.	Enable	the	switch	next	to	this	item
as	illustrated	in	Figure	7-2:

Figure	7-2

4.							Swipe	downward	from	the	top	of	the	screen	to	display	the	notifications	panel
(Figure	7-3)	and	note	that	the	device	is	currently	connected	for	debugging.

Figure	7-3

At	this	point,	the	device	is	now	configured	to	accept	debugging	connections
from	adb	on	the	development	system.	All	that	remains	is	to	configure	the
development	system	to	detect	the	device	when	it	is	attached.	While	this	is	a
relatively	straightforward	process,	the	steps	involved	differ	depending	on
whether	the	development	system	is	running	Windows,	Mac	OS	X	or	Linux.	Note
that	the	following	steps	assume	that	the	Android	SDK	platform-tools	directory	is
included	in	the	operating	system	PATH	environment	variable	as	described	in	the
chapter	entitled	Setting	up	an	Android	Studio	Development	Environment.

7.2.1	Mac	OS	X	ADB	Configuration
In	order	to	configure	the	ADB	environment	on	a	Mac	OS	X	system,	connect	the
device	to	the	computer	system	using	a	USB	cable,	open	a	terminal	window	and
execute	the	following	command:

android	update	adb

Next,	restart	the	adb	server	by	issuing	the	following	commands	in	the	terminal
window:

$	adb	kill-server

$	adb	start-server

*	daemon	not	running.	starting	it	now	on	port	5037	*

*	daemon	started	successfully	*

Once	the	server	is	successfully	running,	execute	the	following	command	to
verify	that	the	device	has	been	detected:

$	adb	devices

List	of	devices	attached

74CE000600000001								offline

If	the	device	is	listed	as	offline,	go	to	the	Android	device	and	check	for	the
presence	of	the	dialog	shown	in	Figure	7-4	seeking	permission	to	Allow	USB
debugging.	Enable	the	checkbox	next	to	the	option	that	reads	Always	allow	from
this	computer,	before	clicking	on	OK.	Repeating	the	adb	devices	command
should	now	list	the	device	as	being	available:

List	of	devices	attached

015d41d4454bf80c								device

In	the	event	that	the	device	is	not	listed,	try	logging	out	and	then	back	in	to	the
Mac	OS	X	desktop	and,	if	the	problem	persists,	rebooting	the	system.

7.2.2	Windows	ADB	Configuration
The	first	step	in	configuring	a	Windows	based	development	system	to	connect	to
an	Android	device	using	ADB	is	to	install	the	appropriate	USB	drivers	on	the
system.	The	USB	drivers	to	install	will	depend	on	the	model	of	Android	Device.
If	you	have	a	Google	Nexus	device,	then	it	will	be	necessary	to	install	and
configure	the	Google	USB	Driver	package	on	your	Windows	system.	Detailed
steps	to	achieve	this	are	outlined	on	the	following	web	page:
http://developer.android.com/sdk/win-usb.html
For	Android	devices	not	supported	by	the	Google	USB	driver,	it	will	be
necessary	to	download	the	drivers	provided	by	the	device	manufacturer.	A
listing	of	drivers	together	with	download	and	installation	information	can	be
obtained	online	at:
http://developer.android.com/tools/extras/oem-usb.html
With	the	drivers	installed	and	the	device	now	being	recognized	as	the	correct
device	type,	open	a	Command	Prompt	window	and	execute	the	following
command:

adb	devices

This	command	should	output	information	about	the	connected	device	similar	to
the	following:

List	of	devices	attached

HT4CTJT01906								offline

If	the	device	is	listed	as	offline	or	unauthorized,	go	to	the	device	display	and
check	for	the	dialog	shown	in	Figure	7-4	seeking	permission	to	Allow	USB
debugging.

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

Figure	7-4

Enable	the	checkbox	next	to	the	option	that	reads	Always	allow	from	this
computer,	before	clicking	on	OK.	Repeating	the	adb	devices	command	should
now	list	the	device	as	being	ready:

List	of	devices	attached

HT4CTJT01906				device

In	the	event	that	the	device	is	not	listed,	execute	the	following	commands	to
restart	the	ADB	server:

adb	kill-server

adb	start-server

If	the	device	is	still	not	listed,	try	executing	the	following	command:
android	update	adb

Note	that	it	may	also	be	necessary	to	reboot	the	system.

7.2.3	Linux	adb	Configuration
For	the	purposes	of	this	chapter,	we	will	once	again	use	Ubuntu	Linux	as	a
reference	example	in	terms	of	configuring	adb	on	Linux	to	connect	to	a	physical
Android	device	for	application	testing.

Begin	by	attaching	the	Android	device	to	a	USB	port	on	the	Ubuntu	Linux
system.	Once	connected,	open	a	Terminal	window	and	execute	the	Linux	lsusb
command	to	list	currently	available	USB	devices:

~$	lsusb

Bus	001	Device	003:	ID	18d1:4e44	asus	Nexus	7	[9999]

Bus	001	Device	001:	ID	1d6b:0001	Linux	Foundation	1.1	root	hub

Each	USB	device	detected	on	the	system	will	be	listed	along	with	a	vendor	ID
and	product	ID.	A	list	of	vendor	IDs	can	be	found	online	at
http://developer.android.com/tools/device.html#VendorIds.	The	above	output
shows	that	a	Google	Nexus	7	device	has	been	detected.	Make	a	note	of	the
vendor	and	product	ID	numbers	displayed	for	your	particular	device	(in	the
above	case	these	are	18D1	and	4E44	respectively).
Use	the	sudo	command	to	edit	the	51-android.rules	file	located	in	the
etcudev/rules.d	directory.	For	example:

sudo	gedit		etcudev/rules.d/51-android.rules

Within	the	editor,	add	the	appropriate	entry	for	the	Android	device,	replacing
<vendor_id>	and	<product_id>	with	the	vendor	and	product	IDs	returned
previously	by	the	lsusb	command:

SUBSYSTEM=="usb",	ATTR{idVendor}=="<vendor_id>",

ATTRS{idProduct}=="<product_id>",	MODE="0660",	OWNER="root",

GROUP="androidadb",	SYMLINK+="android%n"

Once	the	entry	has	been	added,	save	the	file	and	exit	from	the	editor.
Next,	use	an	editor	to	modify	(or	create	if	it	does	not	yet	exist)	the	adb_usb.ini
file:

gedit		~/.android/adb_usb.ini

Once	the	file	is	loaded	into	the	editor,	add	the	following	lines	(once	again
replacing	<vendor_id>	and	<product_id>	with	the	vendor	and	product	IDs
returned	previously	by	the	lsusb	command)	before	saving	the	file	and	exiting:

0x<vendor_id>

0x<product_id>

Using	the	above	syntax,	the	entries	for	the	Nexus	7	would,	for	example,	read:
0x18d1

0x4e44

The	final	task	is	to	create	the	androidadb	user	group	and	add	your	user	account
to	it.	To	achieve	this,	execute	the	following	commands	making	sure	to	replace

http://developer.android.com/tools/device.html#VendorIds

<user	name>	with	your	Ubuntu	user	account	name:
sudo	addgroup	--system	androidadb

sudo	adduser	<username>	androidadb

Once	the	above	changes	have	been	made,	reboot	the	Ubuntu	system.	Once	the
system	has	restarted,	open	a	Terminal	window,	start	the	adb	server	and	check	the
list	of	attached	devices:

$	adb	start-server

*	daemon	not	running.	starting	it	now	on	port	5037	*

*	daemon	started	successfully	*

$	adb	devices

List	of	devices	attached

015d41d4454bf80c								offline

If	the	device	is	listed	as	offline	or	unauthorized,	go	to	the	Android	device	and
check	for	the	dialog	shown	in	Figure	7-4	seeking	permission	to	Allow	USB
debugging.

7.3	Testing	the	adb	Connection
Assuming	that	the	adb	configuration	has	been	successful	on	your	chosen
development	platform,	the	next	step	is	to	try	running	the	test	application	created
in	the	chapter	entitled	Creating	an	Example	Android	App	in	Android	Studio	on
the	device.
Launch	Android	Studio,	open	the	AndroidSample	project	and,	once	the	project
has	loaded,	click	on	the	run	button	located	in	the	Android	Studio	toolbar	(Figure
7-5).

Figure	7-5

Assuming	that	the	project	has	not	previously	been	configured	to	run
automatically	in	an	emulator	environment,	the	deployment	target	selection
dialog	will	appear	with	the	connected	Android	device	listed	as	a	currently
running	device.	Figure	7-6,	for	example,	lists	a	Nexus	9	device	as	a	suitable
target	for	installing	and	executing	the	application.

Figure	7-6

To	make	this	the	default	device	for	testing,	enable	the	Use	same	device	for	future
launches	option.	With	the	device	selected,	click	on	the	OK	button	to	install	and
run	the	application	on	the	device.	As	with	the	emulator	environment,	diagnostic
output	relating	to	the	installation	and	launch	of	the	application	on	the	device	will
be	logged	in	the	Run	tool	window.

7.4	Summary
While	the	Android	Virtual	Device	emulator	provides	an	excellent	testing
environment,	it	is	important	to	keep	in	mind	that	there	is	no	real	substitute	for
making	sure	an	application	functions	correctly	on	a	physical	Android	device.
This,	after	all,	is	where	the	application	will	be	used	in	the	real	world.
By	default,	however,	the	Android	Studio	environment	is	not	configured	to	detect
Android	devices	as	a	target	testing	device.	It	is	necessary,	therefore,	to	perform
some	steps	in	order	to	be	able	to	load	applications	directly	onto	an	Android
device	from	within	the	Android	Studio	development	environment.	The	exact
steps	to	achieve	this	goal	differ	depending	on	the	development	platform	being
used.	In	this	chapter,	we	have	covered	those	steps	for	Linux,	Mac	OS	X	and
Windows	based	platforms.

8.	The	Basics	of	the	Android	Studio
Code	Editor

Developing	applications	for	Android	involves	a	considerable	amount	of
programming	work	which,	by	definition,	involves	typing,	reviewing	and
modifying	lines	of	code.	It	should	come	as	no	surprise	that	the	majority	of	a
developer’s	time	spent	using	Android	Studio	will	typically	involve	editing	code
within	the	editor	window.
The	modern	code	editor	needs	to	go	far	beyond	the	original	basics	of	typing,
deleting,	cutting	and	pasting.	Today	the	usefulness	of	a	code	editor	is	generally
gauged	by	factors	such	as	the	amount	by	which	it	reduces	the	typing	required	by
the	programmer,	ease	of	navigation	through	large	source	code	files	and	the
editor’s	ability	to	detect	and	highlight	programming	errors	in	real-time	as	the
code	is	being	written.	As	will	become	evident	in	this	chapter,	these	are	just	a	few
of	the	areas	in	which	the	Android	Studio	editor	excels.
While	not	an	exhaustive	overview	of	the	features	of	the	Android	Studio	editor,
this	chapter	aims	to	provide	a	guide	to	the	key	features	of	the	tool.	Experienced
programmers	will	find	that	some	of	these	features	are	common	to	most	code
editors	available	today,	while	a	number	are	unique	to	this	particular	editing
environment.

8.1	The	Android	Studio	Editor
The	Android	Studio	editor	appears	in	the	center	of	the	main	window	when	a
Java,	XML	or	other	text	based	file	is	selected	for	editing.	Figure	8-1,	for
example,	shows	a	typical	editor	session	with	a	Java	source	code	file	loaded:

Figure	8-1

The	elements	that	comprise	the	editor	window	can	be	summarized	as	follows:
A	–	Document	Tabs	–	Android	Studio	is	capable	of	holding	multiple	files	open
for	editing	at	any	one	time.	As	each	file	is	opened,	it	is	assigned	a	document	tab
displaying	the	file	name	in	the	tab	bar	located	along	the	top	edge	of	the	editor
window.	A	small	dropdown	menu	will	appear	in	the	far	right-hand	corner	of	the
tab	bar	when	there	is	insufficient	room	to	display	all	of	the	tabs.	Clicking	on	this
menu	will	drop	down	a	list	of	additional	open	files.	A	wavy	red	line	underneath
a	file	name	in	a	tab	indicates	that	the	code	in	the	file	contains	one	or	more	errors
that	need	to	be	addressed	before	the	project	can	be	compiled	and	run.
Switching	between	files	is	simply	a	matter	of	clicking	on	the	corresponding	tab
or	using	the	Alt-Left	and	Alt-Right	keyboard	shortcuts.	Navigation	between	files
may	also	be	performed	using	the	Switcher	mechanism	(accessible	via	the	Ctrl-
Tab	keyboard	shortcut).

To	detach	an	editor	panel	from	the	Android	Studio	main	window	so	that	it
appears	in	a	separate	window,	click	on	the	tab	and	drag	it	to	an	area	on	the
desktop	outside	of	the	main	window.	To	return	the	editor	to	the	main	window,
click	on	the	file	tab	in	the	separated	editor	window	and	drag	and	drop	it	onto	the
original	editor	tab	bar	in	the	main	window.
B	–	The	Editor	Gutter	Area	-	The	gutter	area	is	used	by	the	editor	to	display
informational	icons	and	controls.	Some	typical	items,	among	others,	which
appear	in	this	gutter	area	are	debugging	breakpoint	markers,	controls	to	fold	and
unfold	blocks	of	code,	bookmarks,	change	markers	and	line	numbers.	Line
numbers	are	switched	off	by	default	but	may	be	enabled	by	right-clicking	in	the
gutter	and	selecting	the	Show	Line	Numbers	menu	option.
C	–	The	Status	Bar	–	Though	the	status	bar	is	actually	part	of	the	main	window,
as	opposed	to	the	editor,	it	does	contain	some	information	about	the	currently
active	editing	session.	This	information	includes	the	current	position	of	the
cursor	in	terms	of	lines	and	characters	and	the	encoding	format	of	the	file	(UTF-
8,	ASCII	etc.).	Clicking	on	these	values	in	the	status	bar	allows	the
corresponding	setting	to	be	changed.	Clicking	on	the	line	number,	for	example,
displays	the	Go	to	Line	dialog.
D	–	The	Editor	Area	–	This	is	the	main	area	where	the	code	is	displayed,
entered	and	edited	by	the	user.	Later	sections	of	this	chapter	will	cover	the	key
features	of	the	editing	area	in	detail.
E	–	The	Validation	and	Marker	Sidebar	–	Android	Studio	incorporates	a
feature	referred	to	as	“on-the-fly	code	analysis”.	What	this	essentially	means	is
that	as	you	are	typing	code,	the	editor	is	analyzing	the	code	to	check	for
warnings	and	syntax	errors.	The	indicator	at	the	top	of	the	validation	sidebar	will
change	from	a	green	check	mark	(no	warnings	or	errors	detected)	to	a	yellow
square	(warnings	detected)	or	red	alert	icon	(errors	have	been	detected).	Clicking
on	this	indicator	will	display	a	popup	containing	a	summary	of	the	issues	found
with	the	code	in	the	editor	as	illustrated	in	Figure	8-2:

Figure	8-2

The	sidebar	also	displays	markers	at	the	locations	where	issues	have	been
detected	using	the	same	color	coding.	Hovering	the	mouse	pointer	over	a	marker
when	the	line	of	code	is	visible	in	the	editor	area	will	display	a	popup	containing
a	description	of	the	issue	(Figure	8-3):

Figure	8-3

Hovering	the	mouse	pointer	over	a	marker	for	a	line	of	code	which	is	currently
scrolled	out	of	the	viewing	area	of	the	editor	will	display	a	“lens”	overlay
containing	the	block	of	code	where	the	problem	is	located	(Figure	8-4)	allowing
it	to	be	viewed	without	the	necessity	to	scroll	to	that	location	in	the	editor:

Figure	8-4

It	is	also	worth	noting	that	the	lens	overlay	is	not	limited	to	warnings	and	errors
in	the	sidebar.	Hovering	over	any	part	of	the	sidebar	will	result	in	a	lens
appearing	containing	the	code	present	at	that	location	within	the	source	file.
Having	provided	an	overview	of	the	elements	that	comprise	the	Android	Studio
editor,	the	remainder	of	this	chapter	will	explore	the	key	features	of	the	editing
environment	in	more	detail.

environment	in	more	detail.

8.2	Splitting	the	Editor	Window
By	default,	the	editor	will	display	a	single	panel	showing	the	content	of	the
currently	selected	file.	A	particularly	useful	feature	when	working
simultaneously	with	multiple	source	code	files	is	the	ability	to	split	the	editor
into	multiple	panes.	To	split	the	editor,	right-click	on	a	file	tab	within	the	editor
window	and	select	either	the	Split	Vertically	or	Split	Horizontally	menu	option.
Figure	8-5,	for	example,	shows	the	splitter	in	action	with	the	editor	split	into
three	panels:

Figure	8-5

The	orientation	of	a	split	panel	may	be	changed	at	any	time	by	right-clicking	on
the	corresponding	tab	and	selecting	the	Change	Splitter	Orientation	menu
option.	Repeat	these	steps	to	unsplit	a	single	panel,	this	time	selecting	the
Unsplit	option	from	the	menu.	All	of	the	split	panels	may	be	removed	by	right-

clicking	on	any	tab	and	selecting	the	Unsplit	All	menu	option.
Window	splitting	may	be	used	to	display	different	files,	or	to	provide	multiple
windows	onto	the	same	file,	allowing	different	areas	of	the	same	file	to	be
viewed	and	edited	concurrently.

8.3	Code	Completion
The	Android	Studio	editor	has	a	considerable	amount	of	built-in	knowledge	of
Java	programming	syntax	and	the	classes	and	methods	that	make	up	the	Android
SDK,	as	well	as	knowledge	of	your	own	code	base.	As	code	is	typed,	the	editor
scans	what	is	being	typed	and,	where	appropriate,	makes	suggestions	with	regard
to	what	might	be	needed	to	complete	a	statement	or	reference.	When	a
completion	suggestion	is	detected	by	the	editor,	a	panel	will	appear	containing	a
list	of	suggestions.	In	Figure	8-6,	for	example,	the	editor	is	suggesting
possibilities	for	the	beginning	of	a	String	declaration:

Figure	8-6

If	none	of	the	auto	completion	suggestions	are	correct,	simply	keep	typing	and
the	editor	will	continue	to	refine	the	suggestions	where	appropriate.	To	accept
the	top	most	suggestion,	simply	press	the	Enter	or	Tab	key	on	the	keyboard.	To
select	a	different	suggestion,	use	the	arrow	keys	to	move	up	and	down	the	list,
once	again	using	the	Enter	or	Tab	key	to	select	the	highlighted	item.
Completion	suggestions	can	be	manually	invoked	using	the	Ctrl-Space	keyboard
sequence.	This	can	be	useful	when	changing	a	word	or	declaration	in	the	editor.
When	the	cursor	is	positioned	over	a	word	in	the	editor,	that	word	will
automatically	highlight.	Pressing	Ctrl-Space	will	display	a	list	of	alternate
suggestions.	To	replace	the	current	word	with	the	currently	highlighted	item	in

the	suggestion	list,	simply	press	the	Tab	key.
In	addition	to	the	real-time	auto	completion	feature,	the	Android	Studio	editor
also	offers	a	system	referred	to	as	Smart	Completion.	Smart	completion	is
invoked	using	the	Shift-Ctrl-Space	keyboard	sequence	and,	when	selected,	will
provide	more	detailed	suggestions	based	on	the	current	context	of	the	code.
Pressing	the	Shift-Ctrl-Space	shortcut	sequence	a	second	time	will	provide	more
suggestions	from	a	wider	range	of	possibilities.
Code	completion	can	be	a	matter	of	personal	preference	for	many	programmers.
In	recognition	of	this	fact,	Android	Studio	provides	a	high	level	of	control	over
the	auto	completion	settings.	These	can	be	viewed	and	modified	by	selecting	the
File	->	Settings…	menu	option	and	choosing	Editor	->	General	->	Code
Completion	from	the	settings	panel	as	shown	in	Figure	8-7:

Figure	8-7

8.4	Statement	Completion

Another	form	of	auto	completion	provided	by	the	Android	Studio	editor	is
statement	completion.	This	can	be	used	to	automatically	fill	out	the	parentheses
and	braces	for	items	such	as	methods	and	loop	statements.	Statement	completion
is	invoked	using	the	Shift-Ctrl-Enter	(Shift-Cmd-Enter	on	Mac	OS	X)	keyboard
sequence.	Consider	for	example	the	following	code:

protected	void	myMethod()

Having	typed	this	code	into	the	editor,	triggering	statement	completion	will
cause	the	editor	to	automatically	add	the	braces	to	the	method:

protected	void	myMethod()	{

}

8.5	Parameter	Information
It	is	also	possible	to	ask	the	editor	to	provide	information	about	the	argument
parameters	accepted	by	a	method.	With	the	cursor	positioned	between	the
brackets	of	a	method	call,	the	Ctrl-P	(Cmd-P	on	Mac	OS	X)	keyboard	sequence
will	display	the	parameters	known	to	be	accepted	by	that	method,	with	the	most
likely	suggestion	highlighted	in	bold:

Figure	8-8

8.6	Code	Generation
In	addition	to	completing	code	as	it	is	typed	the	editor	can,	under	certain
conditions,	also	generate	code	for	you.	The	list	of	available	code	generation
options	shown	in	Figure	8-9	can	be	accessed	using	the	Alt-Insert	keyboard
shortcut	when	the	cursor	is	at	the	location	in	the	file	where	the	code	is	to	be
generated.

Figure	8-9

For	the	purposes	of	an	example,	consider	a	situation	where	we	want	to	be
notified	when	an	Activity	in	our	project	is	about	to	be	destroyed	by	the	operating
system.	As	will	be	outlined	in	a	later	chapter	of	this	book,	this	can	be	achieved
by	overriding	the	onStop()	lifecycle	method	of	the	Activity	superclass.	To	have
Android	Studio	generate	a	stub	method	for	this,	simply	select	the	Override
Methods…	option	from	the	code	generation	list	and	select	the	onStop()	method
from	the	resulting	list	of	available	methods:

Figure	8-10

Having	selected	the	method	to	override,	clicking	on	OK	will	generate	the	stub
method	at	the	current	cursor	location	in	the	Java	source	file	as	follows:

@Override

protected	void	onStop()	{

							super.onStop();

}

8.7	Code	Folding
Once	a	source	code	file	reaches	a	certain	size,	even	the	most	carefully	formatted
and	well	organized	code	can	become	overwhelming	and	difficult	to	navigate.
Android	Studio	takes	the	view	that	it	is	not	always	necessary	to	have	the	content
of	every	code	block	visible	at	all	times.	Code	navigation	can	be	made	easier
through	the	use	of	the	code	folding	feature	of	the	Android	Studio	editor.	Code
folding	is	controlled	using	markers	appearing	in	the	editor	gutter	at	the
beginning	and	end	of	each	block	of	code	in	a	source	file.	Figure	8-11,	for
example,	highlights	the	start	and	end	markers	for	a	method	declaration	which	is
not	currently	folded:

Figure	8-11

Clicking	on	either	of	these	markers	will	fold	the	statement	such	that	only	the
signature	line	is	visible	as	shown	in	Figure	8-12:

Figure	8-12

To	unfold	a	collapsed	section	of	code,	simply	click	on	the	‘+’	marker	in	the
editor	gutter.	To	see	the	hidden	code	without	unfolding	it,	hover	the	mouse
pointer	over	the	“{…}”	indicator	as	shown	in	Figure	8-13.	The	editor	will	then
display	the	lens	overlay	containing	the	folded	code	block:

Figure	8-13

All	of	the	code	blocks	in	a	file	may	be	folded	or	unfolded	using	the	Ctrl-Shift-
Plus	and	Ctrl-Shift-Minus	keyboard	sequences.
By	default,	the	Android	Studio	editor	will	automatically	fold	some	code	when	a
source	file	is	opened.	To	configure	the	conditions	under	which	this	happens,
select	File	->	Settings…	and	choose	the	Editor	->	General	->	Code	Folding
entry	in	the	resulting	settings	panel	(Figure	8-14):

Figure	8-14

8.8	Quick	Documentation	Lookup
Context	sensitive	Java	and	Android	documentation	can	be	accessed	by	placing
the	cursor	over	the	declaration	for	which	documentation	is	required	and	pressing
the	Ctrl-Q	keyboard	shortcut	(Ctrl-J	on	Mac	OS	X).	This	will	display	a	popup
containing	the	relevant	reference	documentation	for	the	item.	Figure	8-15,	for
example,	shows	the	documentation	for	the	Android	Menu	class.

Figure	8-15

Once	displayed,	the	documentation	popup	can	be	moved	around	the	screen	as
needed.	Clicking	on	the	push	pin	icon	located	in	the	right-hand	corner	of	the
popup	title	bar	will	ensure	that	the	popup	remains	visible	once	focus	moves	back
to	the	editor,	leaving	the	documentation	visible	as	a	reference	while	typing	code.

8.9	Code	Reformatting
In	general,	the	Android	Studio	editor	will	automatically	format	code	in	terms	of
indenting,	spacing	and	nesting	of	statements	and	code	blocks	as	they	are	added.
In	situations	where	lines	of	code	need	to	be	reformatted	(a	common	occurrence,
for	example,	when	cutting	and	pasting	sample	code	from	a	web	site),	the	editor
provides	a	source	code	reformatting	feature	which,	when	selected,	will
automatically	reformat	code	to	match	the	prevailing	code	style.
To	reformat	source	code,	press	the	Ctrl-Alt-L	keyboard	shortcut	sequence.	To
display	the	Reformat	Code	dialog	(Figure	8-16)	use	the	Ctrl-Alt-Shift-L.	This
dialog	provides	the	option	to	reformat	only	the	currently	selected	code,	the	entire
source	file	currently	active	in	the	editor	or	only	code	that	has	changed	as	the
result	of	a	source	code	control	update.

Figure	8-16

The	full	range	of	code	style	preferences	can	be	changed	from	within	the	project

settings	dialog.	Select	the	File	->	Settings	menu	option	and	choose	Code	Style	in
the	left-hand	panel	to	access	a	list	of	supported	programming	and	markup
languages.	Selecting	a	language	will	provide	access	to	a	vast	array	of	formatting
style	options,	all	of	which	may	be	modified	from	the	Android	Studio	default	to
match	your	preferred	code	style.	To	configure	the	settings	for	the	Rearrange
code	option	in	the	above	dialog,	for	example,	unfold	the	Code	Style	section,
select	Java	and,	from	the	Java	settings,	select	the	Arrangement	tab.

8.10	Finding	Sample	Code
The	Android	Studio	editor	provides	a	way	to	access	sample	code	relating	to	the
currently	highlighted	entry	within	the	code	listing.	This	feature	can	be	useful	is
learning	how	a	particular	Android	class	or	method	is	used.	To	find	sample	code,
highlight	a	method	or	class	name	in	the	editor,	right-click	on	it	and	select	the
Find	Sample	Code	menu	option.	The	Find	Sample	Code	panel	(Figure	8-17)	will
appear	beneath	the	editor	with	a	list	of	matching	samples.	Selecting	a	sample
from	the	list	will	load	the	corresponding	code	into	the	right-hand	panel:

Figure	8-17

8.11	Summary
The	Android	Studio	editor	goes	to	great	length	to	reduce	the	amount	of	typing
needed	to	write	code	and	to	make	that	code	easier	to	read	and	navigate.	In	this
chapter	we	have	covered	a	number	of	the	key	editor	features	including	code
completion,	code	generation,	editor	window	splitting,	code	folding,	reformatting
and	documentation	lookup.

9.	An	Overview	of	the	Android	Architecture

So	far	in	this	book,	steps	have	been	taken	to	set	up	an	environment	suitable	for
the	development	of	Android	applications	using	Android	Studio.	An	initial	step
has	also	been	taken	into	the	process	of	application	development	through	the
creation	of	a	simple	Android	Studio	application	project.
Before	delving	further	into	the	practical	matters	of	Android	application
development,	however,	it	is	important	to	gain	an	understanding	of	some	of	the
more	abstract	concepts	of	both	the	Android	SDK	and	Android	development	in
general.	Gaining	a	clear	understanding	of	these	concepts	now	will	provide	a
sound	foundation	on	which	to	build	further	knowledge.
Starting	with	an	overview	of	the	Android	architecture	in	this	chapter,	and
continuing	in	the	next	few	chapters	of	this	book,	the	goal	is	to	provide	a	detailed
overview	of	the	fundamentals	of	Android	development.

9.1	The	Android	Software	Stack
Android	is	structured	in	the	form	of	a	software	stack	comprising	applications,	an
operating	system,	runtime	environment,	middleware,	services	and	libraries.	This
architecture	can,	perhaps,	best	be	represented	visually	as	outlined	in	Figure	9-1.
Each	layer	of	the	stack,	and	the	corresponding	elements	within	each	layer,	are
tightly	integrated	and	carefully	tuned	to	provide	the	optimal	application
development	and	execution	environment	for	mobile	devices.
The	remainder	of	this	chapter	will	work	through	the	different	layers	of	the
Android	stack,	starting	at	the	bottom	with	the	Linux	Kernel.

Figure	9-1

9.2	The	Linux	Kernel
Positioned	at	the	bottom	of	the	Android	software	stack,	the	Linux	Kernel
provides	a	level	of	abstraction	between	the	device	hardware	and	the	upper	layers
of	the	Android	software	stack.	Based	on	Linux	version	2.6,	the	kernel	provides
preemptive	multitasking,	low-level	core	system	services	such	as	memory,
process	and	power	management	in	addition	to	providing	a	network	stack	and
device	drivers	for	hardware	such	as	the	device	display,	Wi-Fi	and	audio.
The	original	Linux	kernel	was	developed	in	1991	by	Linus	Torvalds	and	was
combined	with	a	set	of	tools,	utilities	and	compilers	developed	by	Richard
Stallman	at	the	Free	Software	Foundation	to	create	a	full	operating	system
referred	to	as	GNU/Linux.	Various	Linux	distributions	have	been	derived	from
these	basic	underpinnings	such	as	Ubuntu	and	Red	Hat	Enterprise	Linux.
It	is	important	to	note,	however,	that	Android	uses	only	the	Linux	kernel.	That

It	is	important	to	note,	however,	that	Android	uses	only	the	Linux	kernel.	That
said,	it	is	worth	noting	that	the	Linux	kernel	was	originally	developed	for	use	in
traditional	computers	in	the	form	of	desktops	and	servers.	In	fact,	Linux	is	now
most	widely	deployed	in	mission	critical	enterprise	server	environments.	It	is	a
testament	to	both	the	power	of	today’s	mobile	devices	and	the	efficiency	and
performance	of	the	Linux	kernel	that	we	find	this	software	at	the	heart	of	the
Android	software	stack.

9.3	Android	Runtime	–	ART
When	an	Android	app	is	built	within	Android	Studio	it	is	compiled	into	an
intermediate	bytecode	format	(referred	to	as	DEX	format).	When	the	application
is	subsequently	loaded	onto	the	device,	the	Android	Runtime	(ART)	uses	a
process	referred	to	as	Ahead-of-Time	(AOT)	compilation	to	translate	the
bytecode	down	to	the	native	instructions	required	by	the	device	processor.	This
format	is	known	as	Executable	and	Linkable	Format	(ELF).
Each	time	the	application	is	subsequently	launched,	the	ELF	executable	version
is	run,	resulting	in	faster	application	performance	and	improved	battery	life.
This	contrasts	with	the	Just-in-Time	(JIT)	compilation	approach	used	in	older
Android	implementations	whereby	the	bytecode	was	translated	within	a	virtual
machine	(VM)	each	time	the	application	was	launched.

9.4	Android	Libraries
In	addition	to	a	set	of	standard	Java	development	libraries	(providing	support	for
such	general	purpose	tasks	as	string	handling,	networking	and	file	manipulation),
the	Android	development	environment	also	includes	the	Android	Libraries.
These	are	a	set	of	Java-based	libraries	that	are	specific	to	Android	development.
Examples	of	libraries	in	this	category	include	the	application	framework	libraries
in	addition	to	those	that	facilitate	user	interface	building,	graphics	drawing	and
database	access.
A	summary	of	some	key	core	Android	libraries	available	to	the	Android
developer	is	as	follows:
·									android.app	–	Provides	access	to	the	application	model	and	is	the

cornerstone	of	all	Android	applications.
·									android.content	–	Facilitates	content	access,	publishing	and	messaging

between	applications	and	application	components.
·									android.database	–	Used	to	access	data	published	by	content	providers	and

includes	SQLite	database	management	classes.
·									android.graphics	–	A	low-level	2D	graphics	drawing	API	including	colors,

points,	filters,	rectangles	and	canvases.
·									android.hardware	–	Presents	an	API	providing	access	to	hardware	such	as

the	accelerometer	and	light	sensor.
·									android.opengl	–	A	Java	interface	to	the	OpenGL	ES	3D	graphics	rendering

API.
·									android.os	–	Provides	applications	with	access	to	standard	operating	system

services	including	messages,	system	services	and	interprocess
communication.

·									android.media	–	Provides	classes	to	enable	playback	of	audio	and	video.
·									android.net	–	A	set	of	APIs	providing	access	to	the	network	stack.	Includes
android.net.wifi,	which	provides	access	to	the	device’s	wireless	stack.

·									android.print	–	Includes	a	set	of	classes	that	enable	content	to	be	sent	to
configured	printers	from	within	Android	applications.

·									android.provider	–	A	set	of	convenience	classes	that	provide	access	to
standard	Android	content	provider	databases	such	as	those	maintained	by	the
calendar	and	contact	applications.

·									android.text	–	Used	to	render	and	manipulate	text	on	a	device	display.
·									android.util	–	A	set	of	utility	classes	for	performing	tasks	such	as	string	and

number	conversion,	XML	handling	and	date	and	time	manipulation.
·									android.view	–	The	fundamental	building	blocks	of	application	user

interfaces.
·									android.widget	-	A	rich	collection	of	pre-built	user	interface	components

such	as	buttons,	labels,	list	views,	layout	managers,	radio	buttons	etc.
·									android.webkit	–	A	set	of	classes	intended	to	allow	web-browsing

capabilities	to	be	built	into	applications.
Having	covered	the	Java-based	libraries	in	the	Android	runtime,	it	is	now	time	to
turn	our	attention	to	the	C/C++	based	libraries	contained	in	this	layer	of	the
Android	software	stack.

9.4.1	C/C++	Libraries
The	Android	runtime	core	libraries	outlined	in	the	preceding	section	are	Java-
based	and	provide	the	primary	APIs	for	developers	writing	Android	applications.
It	is	important	to	note,	however,	that	the	core	libraries	do	not	actually	perform
much	of	the	actual	work	and	are,	in	fact,	essentially	Java	“wrappers”	around	a
set	of	C/C++	based	libraries.	When	making	calls,	for	example,	to	the
android.opengl	library	to	draw	3D	graphics	on	the	device	display,	the	library
actually	ultimately	makes	calls	to	the	OpenGL	ES	C++	library	which,	in	turn,
works	with	the	underlying	Linux	kernel	to	perform	the	drawing	tasks.
C/C++	libraries	are	included	to	fulfill	a	wide	and	diverse	range	of	functions

C/C++	libraries	are	included	to	fulfill	a	wide	and	diverse	range	of	functions
including	2D	and	3D	graphics	drawing,	Secure	Sockets	Layer	(SSL)
communication,	SQLite	database	management,	audio	and	video	playback,
bitmap	and	vector	font	rendering,	display	subsystem	and	graphic	layer
management	and	an	implementation	of	the	standard	C	system	library	(libc).
In	practice,	the	typical	Android	application	developer	will	access	these	libraries
solely	through	the	Java	based	Android	core	library	APIs.	In	the	event	that	direct
access	to	these	libraries	is	needed,	this	can	be	achieved	using	the	Android	Native
Development	Kit	(NDK),	the	purpose	of	which	is	to	call	the	native	methods	of
non-Java	programming	languages	(such	as	C	and	C++)	from	within	Java	code
using	the	Java	Native	Interface	(JNI).

9.5	Application	Framework
The	Application	Framework	is	a	set	of	services	that	collectively	form	the
environment	in	which	Android	applications	run	and	are	managed.	This
framework	implements	the	concept	that	Android	applications	are	constructed
from	reusable,	interchangeable	and	replaceable	components.	This	concept	is
taken	a	step	further	in	that	an	application	is	also	able	to	publish	its	capabilities
along	with	any	corresponding	data	so	that	they	can	be	found	and	reused	by	other
applications.
The	Android	framework	includes	the	following	key	services:
·									Activity	Manager	–	Controls	all	aspects	of	the	application	lifecycle	and

activity	stack.
·									Content	Providers	–	Allows	applications	to	publish	and	share	data	with

other	applications.
·									Resource	Manager	–	Provides	access	to	non-code	embedded	resources	such

as	strings,	color	settings	and	user	interface	layouts.
·									Notifications	Manager	–	Allows	applications	to	display	alerts	and

notifications	to	the	user.
·									View	System	–	An	extensible	set	of	views	used	to	create	application	user

interfaces.
·									Package	Manager	–	The	system	by	which	applications	are	able	to	find	out

information	about	other	applications	currently	installed	on	the	device.
·									Telephony	Manager	–	Provides	information	to	the	application	about	the

telephony	services	available	on	the	device	such	as	status	and	subscriber
information.

·									Location	Manager	–	Provides	access	to	the	location	services	allowing	an
application	to	receive	updates	about	location	changes.

9.6	Applications
Located	at	the	top	of	the	Android	software	stack	are	the	applications.	These
comprise	both	the	native	applications	provided	with	the	particular	Android
implementation	(for	example	web	browser	and	email	applications)	and	the	third
party	applications	installed	by	the	user	after	purchasing	the	device.

9.7	Summary
A	good	Android	development	knowledge	foundation	requires	an	understanding
of	the	overall	architecture	of	Android.	Android	is	implemented	in	the	form	of	a
software	stack	architecture	consisting	of	a	Linux	kernel,	a	runtime	environment
and	corresponding	libraries,	an	application	framework	and	a	set	of	applications.
Applications	are	predominantly	written	in	Java	and	compiled	down	to	bytecode
format	within	the	Android	Studio	build	environment.	When	the	application	is
subsequently	installed	on	a	device,	this	bytecode	is	compiled	down	by	the
Android	Runtime	(ART)	to	the	native	format	used	by	the	CPU.	The	key	goals	of
the	Android	architecture	are	performance	and	efficiency,	both	in	application
execution	and	in	the	implementation	of	reuse	in	application	design.

10.	The	Anatomy	of	an	Android	Application

Regardless	of	your	prior	programming	experiences,	be	it	Windows,	Mac	OS	X,
Linux	or	even	iOS	based,	the	chances	are	good	that	Android	development	is
quite	unlike	anything	you	have	encountered	before.
The	objective	of	this	chapter,	therefore,	is	to	provide	an	understanding	of	the
high-level	concepts	behind	the	architecture	of	Android	applications.	In	doing	so,
we	will	explore	in	detail	both	the	various	components	that	can	be	used	to
construct	an	application	and	the	mechanisms	that	allow	these	to	work	together	to
create	a	cohesive	application.

10.1	Android	Activities
Those	familiar	with	object-oriented	programming	languages	such	as	Java,	C++
or	C#	will	be	familiar	with	the	concept	of	encapsulating	elements	of	application
functionality	into	classes	that	are	then	instantiated	as	objects	and	manipulated	to
create	an	application.	Since	Android	applications	are	written	in	Java,	this	is	still
very	much	the	case.	Android,	however,	also	takes	the	concept	of	reusable
components	to	a	higher	level.
Android	applications	are	created	by	bringing	together	one	or	more	components
known	as	Activities.	An	activity	is	a	single,	standalone	module	of	application
functionality	that	usually	correlates	directly	to	a	single	user	interface	screen	and
its	corresponding	functionality.	An	appointments	application	might,	for	example,
have	an	activity	screen	that	displays	appointments	set	up	for	the	current	day.	The
application	might	also	utilize	a	second	activity	consisting	of	a	screen	where	new
appointments	may	be	entered	by	the	user.
Activities	are	intended	as	fully	reusable	and	interchangeable	building	blocks	that
can	be	shared	amongst	different	applications.	An	existing	email	application,	for
example,	might	contain	an	activity	specifically	for	composing	and	sending	an
email	message.	A	developer	might	be	writing	an	application	that	also	has	a
requirement	to	send	an	email	message.	Rather	than	develop	an	email
composition	activity	specifically	for	the	new	application,	the	developer	can
simply	use	the	activity	from	the	existing	email	application.
Activities	are	created	as	subclasses	of	the	Android	Activity	class	and	must	be
implemented	so	as	to	be	entirely	independent	of	other	activities	in	the
application.	In	other	words,	a	shared	activity	cannot	rely	on	being	called	at	a

known	point	in	a	program	flow	(since	other	applications	may	make	use	of	the
activity	in	unanticipated	ways)	and	one	activity	cannot	directly	call	methods	or
access	instance	data	of	another	activity.	This,	instead,	is	achieved	using	Intents
and	Content	Providers.
By	default,	an	activity	cannot	return	results	to	the	activity	from	which	it	was
invoked.	If	this	functionality	is	required,	the	activity	must	be	specifically	started
as	a	sub-activity	of	the	originating	activity.

10.2	Android	Intents
Intents	are	the	mechanism	by	which	one	activity	is	able	to	launch	another	and
implement	the	flow	through	the	activities	that	make	up	an	application.	Intents
consist	of	a	description	of	the	operation	to	be	performed	and,	optionally,	the	data
on	which	it	is	to	be	performed.
Intents	can	be	explicit,	in	that	they	request	the	launch	of	a	specific	activity	by
referencing	the	activity	by	class	name,	or	implicit	by	stating	either	the	type	of
action	to	be	performed	or	providing	data	of	a	specific	type	on	which	the	action	is
to	be	performed.	In	the	case	of	implicit	intents,	the	Android	runtime	will	select
the	activity	to	launch	that	most	closely	matches	the	criteria	specified	by	the
Intent	using	a	process	referred	to	as	Intent	Resolution.

10.3	Broadcast	Intents
Another	type	of	Intent,	the	Broadcast	Intent,	is	a	system	wide	intent	that	is	sent
out	to	all	applications	that	have	registered	an	“interested”	Broadcast	Receiver.
The	Android	system,	for	example,	will	typically	send	out	Broadcast	Intents	to
indicate	changes	in	device	status	such	as	the	completion	of	system	start	up,
connection	of	an	external	power	source	to	the	device	or	the	screen	being	turned
on	or	off.
A	Broadcast	Intent	can	be	normal	(asynchronous)	in	that	it	is	sent	to	all
interested	Broadcast	Receivers	at	more	or	less	the	same	time,	or	ordered	in	that
it	is	sent	to	one	receiver	at	a	time	where	it	can	be	processed	and	then	either
aborted	or	allowed	to	be	passed	to	the	next	Broadcast	Receiver.

10.4	Broadcast	Receivers
Broadcast	Receivers	are	the	mechanism	by	which	applications	are	able	to
respond	to	Broadcast	Intents.	A	Broadcast	Receiver	must	be	registered	by	an
application	and	configured	with	an	Intent	Filter	to	indicate	the	types	of	broadcast
in	which	it	is	interested.	When	a	matching	intent	is	broadcast,	the	receiver	will

be	invoked	by	the	Android	runtime	regardless	of	whether	the	application	that
registered	the	receiver	is	currently	running.	The	receiver	then	has	5	seconds	in
which	to	complete	any	tasks	required	of	it	(such	as	launching	a	Service,	making
data	updates	or	issuing	a	notification	to	the	user)	before	returning.	Broadcast
Receivers	operate	in	the	background	and	do	not	have	a	user	interface.

10.5	Android	Services
Android	Services	are	processes	that	run	in	the	background	and	do	not	have	a
user	interface.	They	can	be	started	and	subsequently	managed	from	activities,
Broadcast	Receivers	or	other	Services.	Android	Services	are	ideal	for	situations
where	an	application	needs	to	continue	performing	tasks	but	does	not	necessarily
need	a	user	interface	to	be	visible	to	the	user.	Although	Services	lack	a	user
interface,	they	can	still	notify	the	user	of	events	using	notifications	and	toasts
(small	notification	messages	that	appear	on	the	screen	without	interrupting	the
currently	visible	activity)	and	are	also	able	to	issue	Intents.
Services	are	given	a	higher	priority	by	the	Android	runtime	than	many	other
processes	and	will	only	be	terminated	as	a	last	resort	by	the	system	in	order	to
free	up	resources.	In	the	event	that	the	runtime	does	need	to	kill	a	Service,
however,	it	will	be	automatically	restarted	as	soon	as	adequate	resources	once
again	become	available.	A	Service	can	reduce	the	risk	of	termination	by
declaring	itself	as	needing	to	run	in	the	foreground.	This	is	achieved	by	making
a	call	to	startForeground().	This	is	only	recommended	for	situations	where
termination	would	be	detrimental	to	the	user	experience	(for	example,	if	the	user
is	listening	to	audio	being	streamed	by	the	Service).
Example	situations	where	a	Service	might	be	a	practical	solution	include,	as
previously	mentioned,	the	streaming	of	audio	that	should	continue	when	the
application	is	no	longer	active,	or	a	stock	market	tracking	application	that	needs
to	notify	the	user	when	a	share	hits	a	specified	price.

10.6	Content	Providers
Content	Providers	implement	a	mechanism	for	the	sharing	of	data	between
applications.	Any	application	can	provide	other	applications	with	access	to	its
underlying	data	through	the	implementation	of	a	Content	Provider	including	the
ability	to	add,	remove	and	query	the	data	(subject	to	permissions).	Access	to	the
data	is	provided	via	a	Universal	Resource	Identifier	(URI)	defined	by	the
Content	Provider.	Data	can	be	shared	in	the	form	of	a	file	or	an	entire	SQLite
database.
The	native	Android	applications	include	a	number	of	standard	Content	Providers

The	native	Android	applications	include	a	number	of	standard	Content	Providers
allowing	applications	to	access	data	such	as	contacts	and	media	files.
The	Content	Providers	currently	available	on	an	Android	system	may	be	located
using	a	Content	Resolver.

10.7	The	Application	Manifest
The	glue	that	pulls	together	the	various	elements	that	comprise	an	application	is
the	Application	Manifest	file.	It	is	within	this	XML	based	file	that	the
application	outlines	the	activities,	services,	broadcast	receivers,	data	providers
and	permissions	that	make	up	the	complete	application.

10.8	Application	Resources
In	addition	to	the	manifest	file	and	the	Dex	files	that	contain	the	byte	code,	an
Android	application	package	will	also	typically	contain	a	collection	of	resource
files.	These	files	contain	resources	such	as	the	strings,	images,	fonts	and	colors
that	appear	in	the	user	interface	together	with	the	XML	representation	of	the	user
interface	layouts.	By	default,	these	files	are	stored	in	the	/res	subdirectory	of	the
application	project’s	hierarchy.

10.9	Application	Context
When	an	application	is	compiled,	a	class	named	R	is	created	that	contains
references	to	the	application	resources.	The	application	manifest	file	and	these
resources	combine	to	create	what	is	known	as	the	Application	Context.	This
context,	represented	by	the	Android	Context	class,	may	be	used	in	the
application	code	to	gain	access	to	the	application	resources	at	runtime.	In
addition,	a	wide	range	of	methods	may	be	called	on	an	application’s	context	to
gather	information	and	make	changes	to	the	application’s	environment	at
runtime.

10.10	Summary
A	number	of	different	elements	can	be	brought	together	in	order	to	create	an
Android	application.	In	this	chapter,	we	have	provided	a	high-level	overview	of
activities,	Services,	Intents	and	Broadcast	Receivers	together	with	an	overview
of	the	manifest	file	and	application	resources.
Maximum	reuse	and	interoperability	are	promoted	through	the	creation	of
individual,	standalone	modules	of	functionality	in	the	form	of	activities	and
intents,	while	data	sharing	between	applications	is	achieved	by	the
implementation	of	content	providers.
While	activities	are	focused	on	areas	where	the	user	interacts	with	the

While	activities	are	focused	on	areas	where	the	user	interacts	with	the
application	(an	activity	essentially	equating	to	a	single	user	interface	screen),
background	processing	is	typically	handled	by	Services	and	Broadcast
Receivers.
The	components	that	make	up	the	application	are	outlined	for	the	Android
runtime	system	in	a	manifest	file	which,	combined	with	the	application’s
resources,	represents	the	application’s	context.
Much	has	been	covered	in	this	chapter	that	is	most	likely	new	to	the	average
developer.	Rest	assured,	however,	that	extensive	exploration	and	practical	use	of
these	concepts	will	be	made	in	subsequent	chapters	to	ensure	a	solid	knowledge
foundation	on	which	to	build	your	own	applications.

11.	Understanding	Android	Application	 and	Activity
Lifecycles

In	the	preceding	few	chapters	we	have	learned	that	Android	applications	run
within	processes	and	that	they	are	comprised	of	multiple	components	in	the	form
of	activities,	Services	and	Broadcast	Receivers.	The	goal	of	this	chapter	is	to
expand	on	this	knowledge	by	looking	at	the	lifecycle	of	applications	and
activities	within	the	Android	runtime	system.
Regardless	of	the	fanfare	about	how	much	memory	and	computing	power
resides	in	the	mobile	devices	of	today	compared	to	the	desktop	systems	of
yesterday,	it	is	important	to	keep	in	mind	that	these	devices	are	still	considered
to	be	“resource	constrained”	by	the	standards	of	modern	desktop	and	laptop
based	systems,	particularly	in	terms	of	memory.	As	such,	a	key	responsibility	of
the	Android	system	is	to	ensure	that	these	limited	resources	are	managed
effectively	and	that	both	the	operating	system	and	the	applications	running	on	it
remain	responsive	to	the	user	at	all	times.	In	order	to	achieve	this,	Android	is
given	full	control	over	the	lifecycle	and	state	of	both	the	processes	in	which	the
applications	run,	and	the	individual	components	that	comprise	those
applications.
An	important	factor	in	developing	Android	applications,	therefore,	is	to	gain	an
understanding	of	both	the	application	and	activity	lifecycle	management	models
of	Android,	and	the	ways	in	which	an	application	can	react	to	the	state	changes
that	are	likely	to	be	imposed	upon	it	during	its	execution	lifetime.

11.1	Android	Applications	and	Resource	Management
Each	running	Android	application	is	viewed	by	the	operating	system	as	a
separate	process.	If	the	system	identifies	that	resources	on	the	device	are
reaching	capacity	it	will	take	steps	to	terminate	processes	to	free	up	memory.
When	making	a	determination	as	to	which	process	to	terminate	in	order	to	free
up	memory,	the	system	takes	into	consideration	both	the	priority	and	state	of	all
currently	running	processes,	combining	these	factors	to	create	what	is	referred	to
by	Google	as	an	importance	hierarchy.	Processes	are	then	terminated	starting
with	the	lowest	priority	and	working	up	the	hierarchy	until	sufficient	resources
have	been	liberated	for	the	system	to	function.

11.2	Android	Process	States

Processes	host	applications	and	applications	are	made	up	of	components.	Within
an	Android	system,	the	current	state	of	a	process	is	defined	by	the	highest-
ranking	active	component	within	the	application	that	it	hosts.	As	outlined	in
Figure	11-1,	a	process	can	be	in	one	of	the	following	five	states	at	any	given
time:

Figure	11-1

11.2.1	Foreground	Process
These	processes	are	assigned	the	highest	level	of	priority.	At	any	one	time,	there
are	unlikely	to	be	more	than	one	or	two	foreground	processes	active	and	these
are	usually	the	last	to	be	terminated	by	the	system.	A	process	must	meet	one	or
more	of	the	following	criteria	to	qualify	for	foreground	status:

·									Hosts	an	activity	with	which	the	user	is	currently	interacting.
·									Hosts	a	Service	connected	to	the	activity	with	which	the	user	is
interacting.
·									Hosts	a	Service	that	has	indicated,	via	a	call	to	startForeground(),	that
termination	would	be	disruptive	to	the	user	experience.
·									Hosts	a	Service	executing	either	its	onCreate(),	onResume()	or	onStart()
callbacks.
·									Hosts	a	Broadcast	Receiver	that	is	currently	executing	its	onReceive()
method.

11.2.2	Visible	Process
A	process	containing	an	activity	that	is	visible	to	the	user	but	is	not	the	activity
with	which	the	user	is	interacting	is	classified	as	a	“visible	process”.	This	is
typically	the	case	when	an	activity	in	the	process	is	visible	to	the	user	but

typically	the	case	when	an	activity	in	the	process	is	visible	to	the	user	but
another	activity,	such	as	a	partial	screen	or	dialog,	is	in	the	foreground.	A
process	is	also	eligible	for	visible	status	if	it	hosts	a	Service	that	is,	itself,	bound
to	a	visible	or	foreground	activity.

11.2.3	Service	Process
Processes	that	contain	a	Service	that	has	already	been	started	and	is	currently
executing.

11.2.4	Background	Process
A	process	that	contains	one	or	more	activities	that	are	not	currently	visible	to	the
user,	and	does	not	host	a	Service	that	qualifies	for	Service	Process	status.
Processes	that	fall	into	this	category	are	at	high	risk	of	termination	in	the	event
that	additional	memory	needs	to	be	freed	for	higher	priority	processes.	Android
maintains	a	dynamic	list	of	background	processes,	terminating	processes	in
chronological	order	such	that	processes	that	were	the	least	recently	in	the
foreground	are	killed	first.

11.2.5	Empty	Process
Empty	processes	no	longer	contain	any	active	applications	and	are	held	in
memory	ready	to	serve	as	hosts	for	newly	launched	applications.	This	is
somewhat	analogous	to	keeping	the	doors	open	and	the	engine	running	on	a	bus
in	anticipation	of	passengers	arriving.	Such	processes	are,	obviously,	considered
the	lowest	priority	and	are	the	first	to	be	killed	to	free	up	resources.

11.3	InterProcess	Dependencies
The	situation	with	regard	to	determining	the	highest	priority	process	is	slightly
more	complex	than	outlined	in	the	preceding	section	for	the	simple	reason	that
processes	can	often	be	inter-dependent.	As	such,	when	making	a	determination
as	to	the	priority	of	a	process,	the	Android	system	will	also	take	into
consideration	whether	the	process	is	in	some	way	serving	another	process	of
higher	priority	(for	example,	a	service	process	acting	as	the	content	provider	for
a	foreground	process).	As	a	basic	rule,	the	Android	documentation	states	that	a
process	can	never	be	ranked	lower	than	another	process	that	it	is	currently
serving.

11.4	The	Activity	Lifecycle
As	we	have	previously	determined,	the	state	of	an	Android	process	is	determined
largely	by	the	status	of	the	activities	and	components	that	make	up	the

application	that	it	hosts.	It	is	important	to	understand,	therefore,	that	these
activities	also	transition	through	different	states	during	the	execution	lifetime	of
an	application.	The	current	state	of	an	activity	is	determined,	in	part,	by	its
position	in	something	called	the	Activity	Stack.

11.5	The	Activity	Stack
For	each	application	that	is	running	on	an	Android	device,	the	runtime	system
maintains	an	Activity	Stack.	When	an	application	is	launched,	the	first	of	the
application’s	activities	to	be	started	is	placed	onto	the	stack.	When	a	second
activity	is	started,	it	is	placed	on	the	top	of	the	stack	and	the	previous	activity	is
pushed	down.	The	activity	at	the	top	of	the	stack	is	referred	to	as	the	active	(or
running)	activity.	When	the	active	activity	exits,	it	is	popped	off	the	stack	by	the
runtime	and	the	activity	located	immediately	beneath	it	in	the	stack	becomes	the
current	active	activity.	The	activity	at	the	top	of	the	stack	might,	for	example,
simply	exit	because	the	task	for	which	it	is	responsible	has	been	completed.
Alternatively,	the	user	may	have	selected	a	“Back”	button	on	the	screen	to	return
to	the	previous	activity,	causing	the	current	activity	to	be	popped	off	the	stack	by
the	runtime	system	and	therefore	destroyed.	A	visual	representation	of	the
Android	Activity	Stack	is	illustrated	in	Figure	11-2:

Figure	11-2

As	shown	in	the	diagram,	new	activities	are	pushed	on	to	the	top	of	the	stack
when	they	are	started.	The	current	active	activity	is	located	at	the	top	of	the	stack
until	it	is	either	pushed	down	the	stack	by	a	new	activity,	or	popped	off	the	stack
when	it	exits	or	the	user	navigates	to	the	previous	activity.	In	the	event	that
resources	become	constrained,	the	runtime	will	kill	activities,	starting	with	those
at	the	bottom	of	the	stack.
The	Activity	Stack	is	what	is	referred	to	in	programming	terminology	as	a	Last-
In-First-Out	(LIFO)	stack	in	that	the	last	item	to	be	pushed	onto	the	stack	is	the
first	to	be	popped	off.

11.6	Activity	States
An	activity	can	be	in	one	of	a	number	of	different	states	during	the	course	of	its
execution	within	an	application:
·									Active	/	Running	–	The	activity	is	at	the	top	of	the	Activity	Stack,	is	the

foreground	task	visible	on	the	device	screen,	has	focus	and	is	currently
interacting	with	the	user.	This	is	the	least	likely	activity	to	be	terminated	in
the	event	of	a	resource	shortage.

·									Paused	–	The	activity	is	visible	to	the	user	but	does	not	currently	have	focus
(typically	because	this	activity	is	partially	obscured	by	the	current	active
activity).	Paused	activities	are	held	in	memory,	remain	attached	to	the
window	manager,	retain	all	state	information	and	can	quickly	be	restored	to
active	status	when	moved	to	the	top	of	the	Activity	Stack.

·									Stopped	–	The	activity	is	currently	not	visible	to	the	user	(in	other	words	it	is
totally	obscured	on	the	device	display	by	other	activities).	As	with	paused
activities,	it	retains	all	state	and	member	information,	but	is	at	higher	risk	of
termination	in	low	memory	situations.

·									Killed	–	The	Activity	has	been	terminated	by	the	runtime	system	in	order	to
free	up	memory	and	is	no	longer	present	on	the	Activity	Stack.	Such	activities
must	be	restarted	if	required	by	the	application.

11.7	Configuration	Changes
So	far	in	this	chapter,	we	have	looked	at	two	of	the	causes	for	the	change	in	state
of	an	Android	activity,	namely	the	movement	of	an	activity	between	the
foreground	and	background,	and	termination	of	an	activity	by	the	runtime
system	in	order	to	free	up	memory.	In	fact,	there	is	a	third	scenario	in	which	the
state	of	an	activity	can	dramatically	change	and	this	involves	a	change	to	the
device	configuration.

By	default,	any	configuration	change	that	impacts	the	appearance	of	an	activity
(such	as	rotating	the	orientation	of	the	device	between	portrait	and	landscape,	or
changing	a	system	font	setting)	will	cause	the	activity	to	be	destroyed	and
recreated.	The	reasoning	behind	this	is	that	such	changes	affect	resources	such	as
the	layout	of	the	user	interface	and	simply	destroying	and	recreating	impacted
activities	is	the	quickest	way	for	an	activity	to	respond	to	the	configuration
change.	It	is,	however,	possible	to	configure	an	activity	so	that	it	is	not	restarted
by	the	system	in	response	to	specific	configuration	changes.

11.8	Handling	State	Change
If	nothing	else,	it	should	be	clear	from	this	chapter	that	an	application	and,	by
definition,	the	components	contained	therein	will	transition	through	many	states
during	the	course	of	its	lifespan.	Of	particular	importance	is	the	fact	that	these
state	changes	(up	to	and	including	complete	termination)	are	imposed	upon	the
application	by	the	Android	runtime	subject	to	the	actions	of	the	user	and	the
availability	of	resources	on	the	device.
In	practice,	however,	these	state	changes	are	not	imposed	entirely	without	notice
and	an	application	will,	in	most	circumstances,	be	notified	by	the	runtime	system
of	the	changes	and	given	the	opportunity	to	react	accordingly.	This	will	typically
involve	saving	or	restoring	both	internal	data	structures	and	user	interface	state,
thereby	allowing	the	user	to	switch	seamlessly	between	applications	and
providing	at	least	the	appearance	of	multiple,	concurrently	running	applications.
The	steps	involved	in	gracefully	handling	state	changes	will	be	covered	in	detail
in	the	next	chapter	entitled	Handling	Android	Activity	State	Changes.

11.9	Summary
Mobile	devices	are	typically	considered	to	be	resource	constrained,	particularly
in	terms	of	onboard	memory	capacity.	Consequently,	a	prime	responsibility	of
the	Android	operating	system	is	to	ensure	that	applications,	and	the	operating
system	in	general,	remain	responsive	to	the	user.
Applications	are	hosted	on	Android	within	processes.	Each	application,	in	turn,
is	made	up	of	components	in	the	form	of	activities	and	Services.
The	Android	runtime	system	has	the	power	to	terminate	both	processes	and
individual	activities	in	order	to	free	up	memory.	Process	state	is	taken	into
consideration	by	the	runtime	system	when	deciding	whether	a	process	is	a
suitable	candidate	for	termination.	The	state	of	a	process	is	largely	dependent
upon	the	status	of	the	activities	hosted	by	that	process.
The	key	message	of	this	chapter	is	that	an	application	moves	through	a	variety	of

The	key	message	of	this	chapter	is	that	an	application	moves	through	a	variety	of
states	during	its	execution	lifespan	and	has	very	little	control	over	its	destiny
within	the	Android	runtime	environment.	Those	processes	and	activities	that	are
not	directly	interacting	with	the	user	run	a	higher	risk	of	termination	by	the
runtime	system.	An	essential	element	of	Android	application	development,
therefore,	involves	the	ability	of	an	application	to	respond	to	state	change
notifications	from	the	operating	system,	a	topic	that	is	covered	in	the	next
chapter.

12.	Handling	Android	Activity	State	Changes

Based	on	the	information	outlined	in	the	chapter	entitled	Understanding	Android
Application	and	Activity	Lifecycles	it	is	now	evident	that	the	activities	that	make
up	an	application	pass	through	a	variety	of	different	states	during	the	course	of
the	application’s	lifespan.	The	change	from	one	state	to	the	other	is	imposed	by
the	Android	runtime	system	and	is,	therefore,	largely	beyond	the	control	of	the
activity	itself.	That	said,	in	most	instances	the	runtime	will	provide	the	activity
in	question	with	a	notification	of	the	impending	state	change,	thereby	giving	it
time	to	react	accordingly.	In	most	cases,	this	will	involve	saving	or	restoring
data	relating	to	the	state	of	the	activity	and	its	user	interface.
The	primary	objective	of	this	chapter	is	to	provide	a	high-level	overview	of	the
ways	in	which	an	activity	may	be	notified	of	a	state	change	and	to	outline	the
areas	where	it	is	advisable	to	save	or	restore	state	information.	Having	covered
this	information,	the	chapter	will	then	touch	briefly	on	the	subject	of	activity
lifetimes.

12.1	The	Activity	Class
With	few	exceptions,	activities	in	an	application	are	created	as	subclasses	of
either	the	Android	Activity	class,	or	another	class	that	is,	itself,	subclassed	from
the	Activity	class	(for	example	the	AppCompatActivity	or	FragmentActivity
classes).
Consider,	for	example,	the	simple	AndroidSample	project	created	in	Creating	an
Example	Android	App	in	Android	Studio.	Load	this	project	into	the	Android
Studio	environment	and	locate	the	AndroidSampleActvity.java	file	(located	in
app	->	java	->	com.<your	domain>.androidsample).	Having	located	the	file,
double-click	on	it	to	load	it	into	the	editor	where	it	should	read	as	follows:

package	com.ebookfrenzy.androidsample;

import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

public	class	AndroidSampleActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_android_sample);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

							FloatingActionButton	fab	=

														(FloatingActionButton)	findViewById(R.id.fab);

								fab.setOnClickListener(new	View.OnClickListener()	{

												@Override

												public	void	onClick(View	view)	{

																Snackbar.make(view,

														"Replace	with	your	own	action",

Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

												}

								});

				}

				@Override

				public	boolean	onCreateOptionsMenu(Menu	menu)	{

								//	Inflate	the	menu;	this	adds	items	to	the	action	bar

if	it	is	present.

								getMenuInflater().inflate(R.menu.menu_android_sample,

menu);

								return	true;

				}

				@Override

				public	boolean	onOptionsItemSelected(MenuItem	item)	{

								//	Handle	action	bar	item	clicks	here.	The	action	bar

will

								//	automatically	handle	clicks	on	the	Home/Up	button,

so	long

								//	as	you	specify	a	parent	activity	in

AndroidManifest.xml.

								int	id	=	item.getItemId();

								//noinspection	SimplifiableIfStatement

								if	(id	==	R.id.action_settings)	{

												return	true;

								}

								return	super.onOptionsItemSelected(item);

				}

}

When	the	project	was	created,	we	instructed	Android	Studio	also	to	create	an
initial	activity	named	AndroidSampleActivity.	As	is	evident	from	the	above	code,
the	AndroidSampleActivity	class	extends,	and	is	therefore	a	subclass	of,	the
AppCompatActivity	class.
A	review	of	the	reference	documentation	for	the	AppCompatActivity	class
would	reveal	that	it	is	itself	a	subclass	of	the	Activity	class.	This	can	be	verified
within	the	Android	Studio	editor	using	the	Hierarchy	tool	window.	With	the
AndroidSampleActivity.java	file	loaded	into	the	editor,	click	on
AppCompatActivity	in	the	public	class	declaration	line	and	press	the	Ctrl-H
keyboard	shortcut.	The	hierarchy	tool	window	will	subsequently	appear
displaying	the	class	hierarchy	for	the	selected	class.	As	illustrated	in	Figure	12-1,
AppCompatActivity	is	clearly	subclassed	from	the	FragmentActivity	class	which
is	itself	ultimately	a	subclass	of	the	Activity	class:

Figure	12-1

The	Activity	class	and	its	subclasses	contain	a	range	of	methods	that	are
intended	to	be	called	by	the	Android	runtime	to	notify	an	activity	that	its	state	is
changing.	For	the	purposes	of	this	chapter,	we	will	refer	to	these	as	the	activity
lifecycle	methods.	An	activity	class	simply	needs	to	override	these	methods	and
implement	the	necessary	functionality	within	them	in	order	to	react	accordingly
to	state	changes.
One	such	method	is	named	onCreate()	and,	turning	once	again	to	the	above	code
fragment,	we	can	see	that	this	method	has	already	been	overridden	and

implemented	for	us	in	the	AndroidSampleActivity	class.	In	a	later	section	we	will
explore	in	detail	both	onCreate()	and	the	other	relevant	lifecycle	methods	of	the
Activity	class.

12.2	Dynamic	State	vs.	Persistent	State
A	key	objective	of	Activity	lifecycle	management	is	ensuring	that	the	state	of	the
activity	is	saved	and	restored	at	appropriate	times.	When	talking	about	state	in
this	context	we	mean	the	data	that	is	currently	being	held	within	the	activity	and
the	appearance	of	the	user	interface.	The	activity	might,	for	example,	maintain	a
data	model	in	memory	that	needs	to	be	saved	to	a	database,	content	provider	or
file.	Such	state	information,	because	it	persists	from	one	invocation	of	the
application	to	another,	is	referred	to	as	the	persistent	state.
The	appearance	of	the	user	interface	(such	as	text	entered	into	a	text	field	but	not
yet	committed	to	the	application’s	internal	data	model)	is	referred	to	as	the
dynamic	state,	since	it	is	typically	only	retained	during	a	single	invocation	of	the
application	(and	also	referred	to	as	user	interface	state	or	instance	state).
Understanding	the	differences	between	these	two	states	is	important	because
both	the	ways	they	are	saved,	and	the	reasons	for	doing	so,	differ.
The	purpose	of	saving	the	persistent	state	is	to	avoid	the	loss	of	data	that	may
result	from	an	activity	being	killed	by	the	runtime	system	while	in	the
background.	The	dynamic	state,	on	the	other	hand,	is	saved	and	restored	for
reasons	that	are	slightly	more	complex.
Consider,	for	example,	that	an	application	contains	an	activity	(which	we	will
refer	to	as	Activity	A)	containing	a	text	field	and	some	radio	buttons.	During	the
course	of	using	the	application,	the	user	enters	some	text	into	the	text	field	and
makes	a	selection	from	the	radio	buttons.	Before	performing	an	action	to	save
these	changes,	however,	the	user	then	switches	to	another	activity	causing
Activity	A	to	be	pushed	down	the	Activity	Stack	and	placed	into	the	background.
After	some	time,	the	runtime	system	ascertains	that	memory	is	low	and
consequently	kills	Activity	A	to	free	up	resources.	As	far	as	the	user	is	concerned,
however,	Activity	A	was	simply	placed	into	the	background	and	is	ready	to	be
moved	to	the	foreground	at	any	time.	On	returning	Activity	A	to	the	foreground
the	user	would,	quite	reasonably,	expect	the	entered	text	and	radio	button
selections	to	have	been	retained.	In	this	scenario,	however,	a	new	instance	of
Activity	A	will	have	been	created	and,	if	the	dynamic	state	was	not	saved	and
restored,	the	previous	user	input	lost.
The	main	purpose	of	saving	dynamic	state,	therefore,	is	to	give	the	perception	of
seamless	switching	between	foreground	and	background	activities,	regardless	of

seamless	switching	between	foreground	and	background	activities,	regardless	of
the	fact	that	activities	may	actually	have	been	killed	and	restarted	without	the
user’s	knowledge.
The	mechanisms	for	saving	persistent	and	dynamic	state	will	become	clearer	in
the	following	sections	of	this	chapter.

12.3	The	Android	Activity	Lifecycle	Methods
As	previously	explained,	the	Activity	class	contains	a	number	of	lifecycle
methods	which	act	as	event	handlers	when	the	state	of	an	Activity	changes.	The
primary	methods	supported	by	the	Android	Activity	class	are	as	follows:
·									onCreate(Bundle	savedInstanceState)	–	The	method	that	is	called	when	the

activity	is	first	created	and	the	ideal	location	for	most	initialization	tasks	to	be
performed.	The	method	is	passed	an	argument	in	the	form	of	a	Bundle	object
that	may	contain	dynamic	state	information	(typically	relating	to	the	state	of
the	user	interface)	from	a	prior	invocation	of	the	activity.

·									onRestart()	–	Called	when	the	activity	is	about	to	restart	after	having
previously	been	stopped	by	the	runtime	system.

·									onStart()	–	Always	called	immediately	after	the	call	to	the	onCreate()	or
onRestart()	methods,	this	method	indicates	to	the	activity	that	it	is	about	to
become	visible	to	the	user.	This	call	will	be	followed	by	a	call	to	onResume()
if	the	activity	moves	to	the	top	of	the	activity	stack,	or	onStop()	in	the	event
that	it	is	pushed	down	the	stack	by	another	activity.

·									onResume()	–	Indicates	that	the	activity	is	now	at	the	top	of	the	activity	stack
and	is	the	activity	with	which	the	user	is	currently	interacting.

·									onPause()	–	Indicates	that	a	previous	activity	is	about	to	become	the
foreground	activity.	This	call	will	be	followed	by	a	call	to	either	the
onResume()	or	onStop()	method	depending	on	whether	the	activity	moves
back	to	the	foreground	or	becomes	invisible	to	the	user.	Steps	may	be	taken
within	this	method	to	store	persistent	state	information	not	yet	saved	by	the
app.	To	avoid	delays	in	switching	between	activities,	time	consuming
operations	such	as	storing	data	to	a	database	or	performing	network
operations	should	be	avoided	within	this	method.	This	method	should	also
ensure	that	any	CPU	intensive	tasks	such	as	animation	are	stopped.

·									onStop()	–	The	activity	is	now	no	longer	visible	to	the	user.	The	two	possible
scenarios	that	may	follow	this	call	are	a	call	to	onRestart()	in	the	event	that
the	activity	moves	to	the	foreground	again,	or	onDestroy()	if	the	activity	is
being	terminated.

·									onDestroy()	–	The	activity	is	about	to	be	destroyed,	either	voluntarily

because	the	activity	has	completed	its	tasks	and	has	called	the	finish()	method
or	because	the	runtime	is	terminating	it	either	to	release	memory	or	due	to	a
configuration	change	(such	as	the	orientation	of	the	device	changing).	It	is
important	to	note	that	a	call	will	not	always	be	made	to	onDestroy()	when	an
activity	is	terminated.

·									onConfigurationChanged()	–	Called	when	a	configuration	change	occurs
for	which	the	activity	has	indicated	it	is	not	to	be	restarted.	The	method	is
passed	a	Configuration	object	outlining	the	new	device	configuration	and	it	is
then	the	responsibility	of	the	activity	to	react	to	the	change.

In	addition	to	the	lifecycle	methods	outlined	above,	there	are	two	methods
intended	specifically	for	saving	and	restoring	the	dynamic	state	of	an	activity:
·									onRestoreInstanceState(Bundle	savedInstanceState)	–	This	method	is

called	immediately	after	a	call	to	the	onStart()	method	in	the	event	that	the
activity	is	restarting	from	a	previous	invocation	in	which	state	was	saved.	As
with	onCreate(),	this	method	is	passed	a	Bundle	object	containing	the
previous	state	data.	This	method	is	typically	used	in	situations	where	it	makes
more	sense	to	restore	a	previous	state	after	the	initialization	of	the	activity	has
been	performed	in	onCreate()	and	onStart().

·									onSaveInstanceState(Bundle	outState)	–	Called	before	an	activity	is
destroyed	so	that	the	current	dynamic	state	(usually	relating	to	the	user
interface)	can	be	saved.	The	method	is	passed	the	Bundle	object	into	which
the	state	should	be	saved	and	which	is	subsequently	passed	through	to	the
onCreate()	and	onRestoreInstanceState()	methods	when	the	activity	is
restarted.	Note	that	this	method	is	only	called	in	situations	where	the	runtime
ascertains	that	dynamic	state	needs	to	be	saved.

When	overriding	the	above	methods	in	an	activity,	it	is	important	to	remember
that,	with	the	exception	of	onRestoreInstanceState()	and	onSaveInstanceState(),
the	method	implementation	must	include	a	call	to	the	corresponding	method	in
the	Activity	super	class.	For	example,	the	following	method	overrides	the
onRestart()	method	but	also	includes	a	call	to	the	super	class	instance	of	the
method:

protected	void	onRestart()	{

							super.onRestart();

							Log.i(TAG,	"onRestart");

}

Failure	to	make	this	super	class	call	in	method	overrides	will	result	in	the
runtime	throwing	an	exception	during	execution	of	the	activity.	While	calls	to

the	super	class	in	the	onRestoreInstanceState()	and	onSaveInstanceState()	are
optional	(they	can,	for	example,	be	omitted	when	implementing	custom	save	and
restoration	behavior)	there	are	considerable	benefits	to	using	them,	a	subject	that
will	be	covered	in	the	chapter	entitled	Saving	and	Restoring	the	User	Interface
State	of	an	Android	Activity.

12.4	Activity	Lifetimes
The	final	topic	to	be	covered	involves	an	outline	of	the	entire,	visible	and
foreground	lifetimes	through	which	an	activity	will	transition	during	execution:
·									Entire	Lifetime	–The	term	“entire	lifetime”	is	used	to	describe	everything

that	takes	place	within	an	activity	between	the	initial	call	to	the	onCreate()
method	and	the	call	to	onDestroy()	prior	to	the	activity	terminating.

·									Visible	Lifetime	–	Covers	the	periods	of	execution	of	an	activity	between	the
call	to	onStart()	and	onStop().	During	this	period	the	activity	is	visible	to	the
user	though	may	not	be	the	activity	with	which	the	user	is	currently
interacting.

·									Foreground	Lifetime	–	Refers	to	the	periods	of	execution	between	calls	to
the	onResume()	and	onPause()	methods.

It	is	important	to	note	that	an	activity	may	pass	through	the	foreground	and
visible	lifetimes	multiple	times	during	the	course	of	the	entire	lifetime.
The	concepts	of	lifetimes	and	lifecycle	methods	are	illustrated	in	Figure	12-2:

Figure	12-2

12.5	Disabling	Configuration	Change	Restarts
As	previously	outlined,	an	activity	may	indicate	that	it	is	not	to	be	restarted	in
the	event	of	certain	configuration	changes.	This	is	achieved	by	adding	an
android:configChanges	directive	to	the	manifest	file	of	the	activity.	The
following	manifest	file	excerpt,	for	example,	indicates	that	the	activity	should
not	be	restarted	in	the	event	of	configuration	changes	relating	to	orientation	or
device-wide	font	size:

<activity	android:name=".DemoActivity"

										android:configChanges="orientation|fontScale"

										android:label="@string/app_name">

12.6	Summary
All	activities	are	derived	from	the	Android	Activity	class	which,	in	turn,	contains
a	number	of	event	methods	that	are	designed	to	be	called	by	the	runtime	system
when	the	state	of	an	activity	changes.	By	overriding	these	methods,	an	activity
can	respond	to	state	changes	and,	where	necessary,	take	steps	to	save	and	restore
the	current	state	of	both	the	activity	and	the	application.	Activity	state	can	be
thought	of	as	taking	two	forms.	The	persistent	state	refers	to	data	that	needs	to	be
stored	between	application	invocations	(for	example	to	a	file	or	database).
Dynamic	state,	on	the	other	hand,	relates	instead	to	the	current	appearance	of	the
user	interface.
In	this	chapter,	we	have	highlighted	the	lifecycle	methods	available	to	activities
and	covered	the	concept	of	activity	lifetimes.	In	the	next	chapter,	entitled
Android	Activity	State	Changes	–	An	Example	Application,	we	will	implement
an	example	application	that	puts	much	of	this	theory	into	practice.

13.	Android	Activity	State	Changes	by	Example

The	previous	chapters	have	discussed	in	some	detail	the	different	states	and
lifecycles	of	the	activities	that	comprise	an	Android	application.	In	this	chapter,
we	will	put	the	theory	of	handling	activity	state	changes	into	practice	through	the
creation	of	an	example	application.	The	purpose	of	this	example	application	is	to
provide	a	real	world	demonstration	of	an	activity	as	it	passes	through	a	variety	of
different	states	within	the	Android	runtime.
In	the	next	chapter,	entitled	Saving	and	Restoring	the	State	of	an	Android
Activity,	the	example	project	constructed	in	this	chapter	will	be	extended	to
demonstrate	the	saving	and	restoration	of	dynamic	activity	state.

13.1	Creating	the	State	Change	Example	Project
The	first	step	in	this	exercise	is	to	create	the	new	project.	Begin	by	launching
Android	Studio	and,	if	necessary,	closing	any	currently	open	projects	using	the
File	->	Close	Project	menu	option	so	that	the	Welcome	screen	appears.
Select	the	Start	a	new	Android	Studio	project	quick	start	option	from	the
welcome	screen	and,	within	the	resulting	new	project	dialog,	enter	StateChange
into	the	Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain
setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	a	Basic	Activity	named
StateChangeActivity,	a	corresponding	layout	named	activity_state_change	and	a
menu	resource	named	menu_state_change.
Upon	completion	of	the	project	creation	process,	the	StateChange	project	should
be	listed	in	the	Project	tool	window	located	along	the	left-hand	edge	of	the
Android	Studio	main	window	with	the	content_state_change.xml	layout	file	pre-
loaded	into	the	Layout	Editor	as	illustrated	in	Figure	13-1:

Figure	13-1

The	next	action	to	take	involves	the	design	of	the	content	area	of	the	user
interface	for	the	activity.	This	is	stored	in	a	file	named	content_state_change.xml

which	should	already	be	loaded	into	the	Layout	Editor	tool.	If	it	is	not,	navigate
to	it	in	the	project	tool	window	where	it	can	be	found	in	the	app	->	res	->	layout
folder.	Once	located,	double-clicking	on	the	file	will	load	it	into	the	Android
Studio	Layout	Editor	tool.

13.2	Designing	the	User	Interface
With	the	user	interface	layout	loaded	into	the	Layout	Editor	tool,	it	is	now	time
to	design	the	user	interface	for	the	example	application.	Instead	of	the	“Hello
world!”	TextView	currently	present	in	the	user	interface	design,	the	activity
actually	requires	an	EditText	view.	Select	the	TextView	object	in	the	Layout
Editor	canvas	and	press	the	Delete	key	on	the	keyboard	to	remove	it	from	the
design.
From	the	Palette	located	on	the	left	side	of	the	Layout	Editor,	select	the	Text
category	and,	from	the	list	of	text	components,	click	and	drag	a	Plain	Text
component	over	to	the	visual	representation	of	the	device	screen.	Move	the
component	to	the	center	of	the	display	so	that	the	center	guidelines	appear	and
drop	it	into	place	so	that	the	layout	resembles	that	of	Figure	13-2.

Figure	13-2

When	using	the	TextView	widget	it	is	necessary	to	specify	an	input	type	for	the
view.	This	simply	defines	the	type	of	text	or	data	that	will	be	entered	by	the	user.
For	example,	if	the	input	type	is	set	to	Phone,	the	user	will	be	restricted	to
entering	numerical	digits	into	the	view.	Alternatively,	if	the	input	type	is	set	to
TextCapCharacters,	the	input	will	default	to	upper	case	characters.	Input	type
settings	may	also	be	combined.
For	the	purposes	of	this	example,	we	will	set	the	input	type	to	support	general
text	input.	To	do	so,	select	the	TextView	widget	in	the	layout	and	locate	the

inputType	entry	within	the	Properties	tool	window.	Click	on	the	current	setting
to	open	the	list	of	options	and,	within	the	list,	switch	off	textPersonName	and
enable	text	before	clicking	on	the	OK	button.
By	default	the	TextView	is	displaying	text	which	reads	“Name”.	Remaining
within	the	Properties	panel,	delete	this	from	the	text	property	field	so	that	the
view	is	blank	within	the	layout.

13.3	Overriding	the	Activity	Lifecycle	Methods
At	this	point,	the	project	contains	a	single	activity	named	StateChangeActivity,
which	is	derived	from	the	Android	AppCompatActivity	class.	The	source	code
for	this	activity	is	contained	within	the	StateChangeActivity.java	file	which
should	already	be	open	in	an	editor	session	and	represented	by	a	tab	in	the	editor
tab	bar.	In	the	event	that	the	file	is	no	longer	open,	navigate	to	it	in	the	Project
tool	window	panel	(app	->	java	->	com.ebookfrenzy.statechange	->
StateChangeActivity)	and	double-click	on	it	to	load	the	file	into	the	editor.	Once
loaded	the	code	should	read	as	follows:

package	com.ebookfrenzy.statechange;

import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

public	class	StateChangeActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_state_change);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

								FloatingActionButton	fab	=

														(FloatingActionButton)	findViewById(R.id.fab);

								fab.setOnClickListener(new	View.OnClickListener()	{

												@Override

												public	void	onClick(View	view)	{

																Snackbar.make(view,	"Replace	with	your	own

action",

																						Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

												}

								});

				}

				@Override

				public	boolean	onCreateOptionsMenu(Menu	menu)	{

								//	Inflate	the	menu;	this	adds	items	to	the	action	bar

if	it	is	present.

								getMenuInflater().inflate(R.menu.menu_state_change,

menu);

								return	true;

				}

				@Override

				public	boolean	onOptionsItemSelected(MenuItem	item)	{

								//	Handle	action	bar	item	clicks	here.	The	action	bar

will

								//	automatically	handle	clicks	on	the	Home/Up	button,

so	long

								//	as	you	specify	a	parent	activity	in

AndroidManifest.xml.

								int	id	=	item.getItemId();

								//noinspection	SimplifiableIfStatement

								if	(id	==	R.id.action_settings)	{

												return	true;

								}

								return	super.onOptionsItemSelected(item);

				}

}

So	far	the	only	lifecycle	method	overridden	by	the	activity	is	the	onCreate()
method	which	has	been	implemented	to	call	the	super	class	instance	of	the
method	before	setting	up	the	user	interface	for	the	activity.	We	will	now	modify
this	method	so	that	it	outputs	a	diagnostic	message	in	the	Android	Studio	LogCat
panel	each	time	it	executes.	For	this,	we	will	use	the	Log	class,	which	requires
that	we	import	android.util.Log	and	declare	a	tag	that	will	enable	us	to	filter
these	messages	in	the	log	output:

package	com.ebookfrenzy.statechange;

import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.util.Log;

public	class	StateChangeActivity	extends	AppCompatActivity	{

				private	static	final	String	TAG	=	"StateChange";

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_state_change);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

								FloatingActionButton	fab	=	(FloatingActionButton)

findViewById(R.id.fab);

								fab.setOnClickListener(new	View.OnClickListener()	{

												@Override

												public	void	onClick(View	view)	{

																Snackbar.make(view,	"Replace	with	your	own

action",

																						Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

												}

								});

								Log.i(TAG,	"onCreate");

				}

The	next	task	is	to	override	some	more	methods,	with	each	one	containing	a
corresponding	log	call.	These	override	methods	may	be	added	manually	or
generated	using	the	Alt-Insert	keyboard	shortcut	as	outlined	in	the	chapter
entitled	The	Basics	of	the	Android	Studio	Code	Editor.	Note	that	the	Log	calls
will	still	need	to	be	added	manually	if	the	methods	are	being	auto-generated:

				@Override

				protected	void	onStart()	{

								super.onStart();

								Log.i(TAG,	"onStart");

				}

				@Override

				protected	void	onResume()	{

								super.onResume();

								Log.i(TAG,	"onResume");

				}

				@Override

				protected	void	onPause()	{

								super.onPause();

								Log.i(TAG,	"onPause");

				}

				@Override

				protected	void	onStop()	{

								super.onStop();

								Log.i(TAG,	"onStop");

				}

				@Override

				protected	void	onRestart()	{

								super.onRestart();

								Log.i(TAG,	"onRestart");

				}

				@Override

				protected	void	onDestroy()	{

								super.onDestroy();

								Log.i(TAG,	"onDestroy");

				}

				@Override

				protected	void	onSaveInstanceState(Bundle	outState)	{

								super.onSaveInstanceState(outState);

								Log.i(TAG,	"onSaveInstanceState");

				}

				@Override

				protected	void	onRestoreInstanceState(Bundle

savedInstanceState)	{

								super.onRestoreInstanceState(savedInstanceState);

								Log.i(TAG,	"onRestoreInstanceState");

				}

13.4	Filtering	the	LogCat	Panel
The	purpose	of	the	code	added	to	the	overridden	methods	in
StateChangeActivity.java	is	to	output	logging	information	to	the	LogCat	panel
within	the	Android	Monitor	tool	window.	This	output	can	be	configured	to
display	all	events	relating	to	the	device	or	emulator	session,	or	restricted	to	those
events	that	relate	to	the	currently	selected	app.	The	output	can	also	be	further
restricted	to	only	those	log	events	that	match	a	specified	filter.
Display	the	Android	Monitor	tool	window	and	click	on	the	filter	menu	(marked
as	B	in	Figure	13-3)	to	review	the	available	options.	When	this	menu	is	set	to
Show	only	selected	application,	only	those	messages	relating	to	the	app	selected
in	the	menu	marked	as	A	will	be	displayed	in	the	LogCat	panel.	Choosing	No
Filter,	on	the	other	hand,	will	display	all	the	messages	generated	by	the	device	or
emulator.

Figure	13-3

Before	running	the	application,	it	is	worth	demonstrating	the	creation	of	a	filter
which,	when	selected,	will	further	restrict	the	log	output	to	ensure	that	only	those
log	messages	containing	the	tag	declared	in	our	activity	are	displayed.
From	the	filter	menu,	select	the	Edit	Filter	Configuration	menu	option.	In	the
Create	New	Logcat	Filter	dialog	(Figure	13-4),	name	the	filter	Lifecycle	and,	in
the	Log	Tag	field,	enter	the	Tag	value	declared	in	StateChangeActivity.java	(in
the	above	code	example	this	was	StateChange).

Figure	13-4

Enter	the	package	identifier	in	the	Package	Name	field	and,	when	the	changes
are	complete,	click	on	the	OK	button	to	create	the	filter	and	dismiss	the	dialog.
Instead	of	listing	No	Filters,	the	newly	created	filter	should	now	be	selected	in
the	Android	tool	window.

13.5	Running	the	Application
For	optimal	results,	the	application	should	be	run	on	a	physical	Android	device,
details	of	which	can	be	found	in	the	chapter	entitled	Testing	Android	Studio
Apps	on	a	Physical	Android	Device.	With	the	device	configured	and	connected
to	the	development	computer,	click	on	the	run	button	represented	by	a	green
triangle	located	in	the	Android	Studio	toolbar	as	shown	in	Figure	13-5	below,
select	the	Run	->	Run…	menu	option	or	use	the	Shift+F10	keyboard	shortcut:

Figure	13-5

Select	the	physical	Android	device	from	the	Choose	Device	dialog	if	it	appears
(assuming	that	you	have	not	already	configured	it	to	be	the	default	target).	After
Android	Studio	has	built	the	application	and	installed	it	on	the	device	it	should
start	up	and	be	running	in	the	foreground.
A	review	of	the	LogCat	panel	should	indicate	which	methods	have	so	far	been
triggered	(taking	care	to	ensure	that	the	Lifecycle	filter	created	in	the	preceding

section	is	selected	to	filter	out	log	events	that	are	not	currently	of	interest	to	us):

Figure	13-6

13.6	Experimenting	with	the	Activity
With	the	diagnostics	working,	it	is	now	time	to	exercise	the	application	with	a
view	to	gaining	an	understanding	of	the	activity	lifecycle	state	changes.	To	begin
with,	consider	the	initial	sequence	of	log	events	in	the	LogCat	panel:

onCreate

onStart

onResume

Clearly,	the	initial	state	changes	are	exactly	as	outlined	in	Figure	12-2.	Note,
however,	that	a	call	was	not	made	to	onRestoreInstanceState()	since	the	Android
runtime	detected	that	there	was	no	state	to	restore	in	this	situation.
Tap	on	the	Home	icon	in	the	bottom	status	bar	on	the	device	display	and	note	the
sequence	of	method	calls	reported	in	the	log	as	follows:

onPause

onSaveInstanceState

onStop

In	this	case,	the	runtime	has	noticed	that	the	activity	is	no	longer	in	the
foreground,	is	not	visible	to	the	user	and	has	stopped	the	activity,	but	not	without
providing	an	opportunity	for	the	activity	to	save	the	dynamic	state.	Depending
on	whether	the	runtime	ultimately	destroyed	the	activity	or	simply	restarted	it,
the	activity	will	either	be	notified	it	has	been	restarted	via	a	call	to	onRestart()	or
will	go	through	the	creation	sequence	again	when	the	user	returns	to	the	activity.
As	outlined	in	Understanding	Android	Application	and	Activity	Lifecycles,	the
destruction	and	recreation	of	an	activity	can	be	triggered	by	making	a
configuration	change	to	the	device,	such	as	rotating	from	portrait	to	landscape.
To	see	this	in	action,	simply	rotate	the	device	while	the	StateChange	application

is	in	the	foreground.	When	using	the	emulator,	device	rotation	may	be	simulated
using	the	rotation	button	located	in	the	emulator	toolbar.	The	resulting	sequence
of	method	calls	in	the	log	should	read	as	follows:

onPause

onSaveInstanceState

onStop

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly,	the	runtime	system	has	given	the	activity	an	opportunity	to	save	state
before	being	destroyed	and	restarted.

13.7	Summary
The	old	adage	that	a	picture	is	worth	a	thousand	words	holds	just	as	true	for
examples	when	learning	a	new	programming	paradigm.	In	this	chapter,	we	have
created	an	example	Android	application	for	the	purpose	of	demonstrating	the
different	lifecycle	states	through	which	an	activity	is	likely	to	pass.	In	the	course
of	developing	the	project	in	this	chapter,	we	also	looked	at	a	mechanism	for
generating	diagnostic	logging	information	from	within	an	activity.
In	the	next	chapter,	we	will	extend	the	StateChange	example	project	to
demonstrate	how	to	save	and	restore	an	activity’s	dynamic	state.

14.	Saving	and	Restoring	the	State	of	an
Android	Activity

If	the	previous	few	chapters	have	achieved	their	objective,	it	should	now	be	a
little	clearer	as	to	the	importance	of	saving	and	restoring	the	state	of	a	user
interface	at	particular	points	in	the	lifetime	of	an	activity.
In	this	chapter,	we	will	extend	the	example	application	created	in	Android
Activity	State	Changes	–	An	Example	Application	to	demonstrate	the	steps
involved	in	saving	and	restoring	state	when	an	activity	is	destroyed	and	recreated
by	the	runtime	system.
A	key	component	of	saving	and	restoring	dynamic	state	involves	the	use	of	the
Android	SDK	Bundle	class,	a	topic	that	will	also	be	covered	in	this	chapter.

14.1	Saving	Dynamic	State
An	activity,	as	we	have	already	learned,	is	given	the	opportunity	to	save
dynamic	state	information	via	a	call	from	the	runtime	system	to	the	activity’s
implementation	of	the	onSaveInstanceState()	method.	Passed	through	as	an
argument	to	the	method	is	a	reference	to	a	Bundle	object	into	which	the	method
will	need	to	store	any	dynamic	data	that	needs	to	be	saved.	The	Bundle	object	is
then	stored	by	the	runtime	system	on	behalf	of	the	activity	and	subsequently
passed	through	as	an	argument	to	the	activity’s	onCreate()	and
onRestoreInstanceState()	methods	if	and	when	they	are	called.	The	data	can	then
be	retrieved	from	the	Bundle	object	within	these	methods	and	used	to	restore	the
state	of	the	activity.

14.2	Default	Saving	of	User	Interface	State
In	the	previous	chapter,	the	diagnostic	output	from	the	StateChange	example
application	showed	that	an	activity	goes	through	a	number	of	state	changes	when
the	device	on	which	it	is	running	is	rotated	sufficiently	to	trigger	an	orientation
change.
Launch	the	StateChange	application	once	again,	this	time	entering	some	text	into
the	EditText	field	prior	to	performing	the	device	rotation.	Having	rotated	the
device,	the	following	state	change	sequence	should	appear	in	the	LogCat
window:

onPause

onSaveInstanceState

onStop

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly	this	has	resulted	in	the	activity	being	destroyed	and	recreated.	A	review
of	the	user	interface	of	the	running	application,	however,	should	show	that	the
text	entered	into	the	EditText	field	has	been	preserved.	Given	that	the	activity
was	destroyed	and	recreated,	and	that	we	did	not	add	any	specific	code	to	make
sure	the	text	was	saved	and	restored,	this	behavior	requires	some	explanation.
In	actual	fact	most	of	the	view	widgets	included	with	the	Android	SDK	already
implement	the	behavior	necessary	to	automatically	save	and	restore	state	when
an	activity	is	restarted.	The	only	requirement	to	enable	this	behavior	is	for	the
onSaveInstanceState()	and	onRestoreInstanceState()	override	methods	in	the
activity	to	include	calls	to	the	equivalent	methods	of	the	super	class:

@Override

protected	void	onSaveInstanceState(Bundle	outState)	{

			super.onSaveInstanceState(outState);

}

@Override

protected	void	onRestoreInstanceState(Bundle

savedInstanceState)	{

			super.onRestoreInstanceState(savedInstanceState);

}

The	automatic	saving	of	state	for	a	user	interface	view	can	be	disabled	in	the
XML	layout	file	by	setting	the	android:saveEnabled	property	to	false.	For	the
purposes	of	an	example,	we	will	disable	the	automatic	state	saving	mechanism
for	the	EditText	view	in	the	user	interface	layout	and	then	add	code	to	the
application	to	manually	save	and	restore	the	state	of	the	view.
To	configure	the	EditText	view	such	that	state	will	not	be	saved	and	restored	in
the	event	that	the	activity	is	restarted,	edit	the	content_state_change.xml	file	so
that	the	entry	for	the	view	reads	as	follows	(note	that	the	XML	can	be	edited
directly	by	clicking	on	the	Text	tab	on	the	bottom	edge	of	the	Layout	Editor
panel):

<EditText

				android:id="@+id/editText"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:ems="10"

				android:inputType="text"

				android:saveEnabled="false"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintTop_toTopOf="parent"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintRight_toRightOf="parent"	/>

After	making	the	change,	run	the	application,	enter	text	and	rotate	the	device	to
verify	that	the	text	is	no	longer	saved	and	restored	before	proceeding.

14.3	The	Bundle	Class
For	situations	where	state	needs	to	be	saved	beyond	the	default	functionality
provided	by	the	user	interface	view	components,	the	Bundle	class	provides	a
container	for	storing	data	using	a	key-value	pair	mechanism.	The	keys	take	the
form	of	string	values,	while	the	values	associated	with	those	keys	can	be	in	the
form	of	a	primitive	value	or	any	object	that	implements	the	Android	Parcelable
interface.	A	wide	range	of	classes	already	implements	the	Parcelable	interface.
Custom	classes	may	be	made	“parcelable”	by	implementing	the	set	of	methods
defined	in	the	Parcelable	interface	details	of	which	can	be	found	in	the	Android
documentation	at:
http://developer.android.com/reference/android/os/Parcelable.html
The	Bundle	class	also	contains	a	set	of	methods	that	can	be	used	to	get	and	set
key-value	pairs	for	a	variety	of	data	types	including	both	primitive	types
(including	Boolean,	char,	double	and	float	values)	and	objects	(such	as	Strings
and	CharSequences).
For	the	purposes	of	this	example,	and	having	disabled	the	automatic	saving	of
text	for	the	EditText	view,	we	need	to	make	sure	that	the	text	entered	into	the
EditText	field	by	the	user	is	saved	into	the	Bundle	object	and	subsequently
restored.	This	will	serve	as	a	demonstration	of	how	to	manually	save	and	restore
state	within	an	Android	application	and	will	be	achieved	using	the
putCharSequence()	and	getCharSequence()	methods	of	the	Bundle	class
respectively.

14.4	Saving	the	State
The	first	step	in	extending	the	StateChange	application	is	to	make	sure	that	the
text	entered	by	the	user	is	extracted	from	the	EditText	component	within	the
onSaveInstanceState()	method	of	the	StateChangeActivity	activity,	and	then

http://developer.android.com/reference/android/os/Parcelable.html

saved	as	a	key-value	pair	into	the	Bundle	object.
In	order	to	extract	the	text	from	the	EditText	object	we	first	need	to	identify	that
object	in	the	user	interface.	Clearly,	this	involves	bridging	the	gap	between	the
Java	code	for	the	activity	(contained	in	the	StateChangeActivity.java	source	code
file)	and	the	XML	representation	of	the	user	interface	(contained	within	the
content_state_change.xml	resource	file).	In	order	to	extract	the	text	entered	into
the	EditText	component	we	need	to	gain	access	to	that	user	interface	object.
Each	component	within	a	user	interface	has	associated	with	it	a	unique	identifier.
By	default,	the	Layout	Editor	tool	constructs	the	ID	for	a	newly	added
component	from	the	object	type.	If	more	than	one	view	of	the	same	type	is
contained	in	the	layout	the	type	name	is	followed	by	a	sequential	number
(though	this	can,	and	should,	be	changed	to	something	more	meaningful	by	the
developer).	As	can	be	seen	by	checking	the	Component	Tree	panel	within	the
Android	Studio	main	window	when	the	content_state_change.xml	file	is	selected
and	the	Layout	Editor	tool	displayed,	the	EditText	component	has	been	assigned
the	ID	editText:

Figure	14-1

As	outlined	in	the	chapter	entitled	The	Anatomy	of	an	Android	Application,	all	of
the	resources	that	make	up	an	application	are	compiled	into	a	class	named	R.
Amongst	those	resources	are	those	that	define	layouts,	including	the	layout	for
our	current	activity.	Within	the	R	class	is	a	subclass	named	layout,	which
contains	the	layout	resources,	and	within	that	subclass	is	our
content_state_change	layout.	With	this	knowledge,	we	can	make	a	call	to	the
findViewById()	method	of	our	activity	object	to	get	a	reference	to	the	editText
object	as	follows:

final	EditText	textBox	=	(EditText)

findViewById(R.id.editText);

Having	obtained	a	reference	to	the	EditText	object	and	assigned	it	to	textBox,	we
can	now	obtain	the	text	that	it	contains	by	calling	the	object’s	getText()	method,
which,	in	turn,	returns	the	current	text	in	the	form	of	a	CharSequence	object:

CharSequence	userText	=	textBox.getText();

Finally,	we	can	save	the	text	using	the	Bundle	object’s	putCharSequence()

method,	passing	through	the	key	(this	can	be	any	string	value	but	in	this
instance,	we	will	declare	it	as	“savedText”)	and	the	userText	object	as
arguments:

outState.putCharSequence("savedText",	userText);

Bringing	this	all	together	gives	us	a	modified	onSaveInstanceState()	method	in
the	StateChangeActivity.java	file	that	reads	as	follows	(noting	also	the	additional
import	directive	for	android.widget.EditText):

package	com.ebookfrenzy.statechange;

import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.util.Log;

import	android.widget.EditText;

public	class	StateChangeActivity	extends	AppCompatActivity	{

.

.

.

							protected	void	onSaveInstanceState(Bundle	outState)	{

														super.onSaveInstanceState(outState);

														Log.i(TAG,	"onSaveInstanceState");

													

														final	EditText	textBox	=

																						(EditText)	findViewById(R.id.editText);

														CharSequence	userText	=	textBox.getText();

														outState.putCharSequence("savedText",	userText);

							}

.

.

.

Now	that	steps	have	been	taken	to	save	the	state,	the	next	phase	is	to	ensure	that
it	is	restored	when	needed.

14.5	Restoring	the	State
The	saved	dynamic	state	can	be	restored	in	those	lifecycle	methods	that	are
passed	the	Bundle	object	as	an	argument.	This	leaves	the	developer	with	the

choice	of	using	either	onCreate()	or	onRestoreInstanceState().	The	method	to
use	will	depend	on	the	nature	of	the	activity.	In	instances	where	state	is	best
restored	after	the	activity’s	initialization	tasks	have	been	performed,	the
onRestoreInstanceState()	method	is	generally	more	suitable.	For	the	purposes	of
this	example	we	will	add	code	to	the	onRestoreInstanceState()	method	to	extract
the	saved	state	from	the	Bundle	using	the	“savedText”	key.	We	can	then	display
the	text	on	the	editText	component	using	the	object’s	setText()	method:

@Override

protected	void	onRestoreInstanceState(Bundle

savedInstanceState)	{

			super.onRestoreInstanceState(savedInstanceState);

			Log.i(TAG,	"onRestoreInstanceState");

			final	EditText	textBox	=

								(EditText)	findViewById(R.id.editText);

	

			CharSequence	userText	=

															

savedInstanceState.getCharSequence("savedText");

	

			textBox.setText(userText);

}

14.6	Testing	the	Application
All	that	remains	is	once	again	to	build	and	run	the	StateChange	application.
Once	running	and	in	the	foreground,	touch	the	EditText	component	and	enter
some	text	before	rotating	the	device	to	another	orientation.	Whereas	the	text
changes	were	previously	lost,	the	new	text	is	retained	within	the	editText
component	thanks	to	the	code	we	have	added	to	the	activity	in	this	chapter.
Having	verified	that	the	code	performs	as	expected,	comment	out	the
super.onSaveInstanceState()	and	super.onRestoreInstanceState()	calls	from	two
methods,	relaunch	the	app	and	note	that	the	text	is	still	preserved	after	a	device
rotation.	The	default	save	and	restoration	system	has	essentially	been	replaced
by	a	custom	implementation,	thereby	providing	a	way	to	dynamically	and
selectively	save	and	restore	state	within	an	activity.

14.7	Summary
The	saving	and	restoration	of	dynamic	state	in	an	Android	application	is	simply
a	matter	of	implementing	the	appropriate	code	in	the	appropriate	lifecycle
methods.	For	most	user	interface	views,	this	is	handled	automatically	by	the

Activity	super	class.	In	other	instances,	this	typically	consists	of	extracting
values	and	settings	within	the	onSaveInstanceState()	method	and	saving	the	data
as	key-value	pairs	within	the	Bundle	object	passed	through	to	the	activity	by	the
runtime	system.
State	can	be	restored	in	either	the	onCreate()	or	the	onRestoreInstanceState()
methods	of	the	activity	by	extracting	values	from	the	Bundle	object	and	updating
the	activity	based	on	the	stored	values.
In	this	chapter,	we	have	used	these	techniques	to	update	the	StateChange	project
so	that	the	Activity	retains	changes	through	the	destruction	and	subsequent
recreation	of	an	activity.

15.	Understanding	Android	Views,	View	Groups	and
Layouts

With	the	possible	exception	of	listening	to	streaming	audio,	a	user’s	interaction
with	an	Android	device	is	primarily	visual	and	tactile	in	nature.	All	of	this
interaction	takes	place	through	the	user	interfaces	of	the	applications	installed	on
the	device,	including	both	the	built-in	applications	and	any	third	party
applications	installed	by	the	user.	It	should	come	as	no	surprise,	therefore,	that	a
key	element	of	developing	Android	applications	involves	the	design	and	creation
of	user	interfaces.
Within	this	chapter,	the	topic	of	Android	user	interface	structure	will	be	covered,
together	with	an	overview	of	the	different	elements	that	can	be	brought	together
to	make	up	a	user	interface;	namely	Views,	View	Groups	and	Layouts.

15.1	Designing	for	Different	Android	Devices
The	term	“Android	device”	covers	a	vast	array	of	tablet	and	smartphone
products	with	different	screen	sizes	and	resolutions.	As	a	result,	application	user
interfaces	must	now	be	carefully	designed	to	ensure	correct	presentation	on	as
wide	a	range	of	display	sizes	as	possible.	A	key	part	of	this	is	ensuring	that	the
user	interface	layouts	resize	correctly	when	run	on	different	devices.	This	can
largely	be	achieved	through	careful	planning	and	the	use	of	the	layout	managers
outlined	in	this	chapter.
It	is	also	important	to	keep	in	mind	that	the	majority	of	Android	based
smartphones	and	tablets	can	be	held	by	the	user	in	both	portrait	and	landscape
orientations.	A	well-designed	user	interface	should	be	able	to	adapt	to	such
changes	and	make	sensible	layout	adjustments	to	utilize	the	available	screen
space	in	each	orientation.

15.2	Views	and	View	Groups
Every	item	in	a	user	interface	is	a	subclass	of	the	Android	View	class	(to	be
precise	android.view.View).	The	Android	SDK	provides	a	set	of	pre-built	views
that	can	be	used	to	construct	a	user	interface.	Typical	examples	include	standard
items	such	as	the	Button,	CheckBox,	ProgressBar	and	TextView	classes.	Such
views	are	also	referred	to	as	widgets	or	components.	For	requirements	that	are
not	met	by	the	widgets	supplied	with	the	SDK,	new	views	may	be	created	either
by	subclassing	and	extending	an	existing	class,	or	creating	an	entirely	new

component	by	building	directly	on	top	of	the	View	class.
A	view	can	also	be	comprised	of	multiple	other	views	(otherwise	known	as	a
composite	view).	Such	views	are	subclassed	from	the	Android	ViewGroup	class
(android.view.ViewGroup)	which	is	itself	a	subclass	of	View.	An	example	of
such	a	view	is	the	RadioGroup,	which	is	intended	to	contain	multiple
RadioButton	objects	such	that	only	one	can	be	in	the	“on”	position	at	any	one
time.	In	terms	of	structure,	composite	views	consist	of	a	single	parent	view
(derived	from	the	ViewGroup	class	and	otherwise	known	as	a	container	view	or
root	element)	that	is	capable	of	containing	other	views	(known	as	child	views).
Another	category	of	ViewGroup	based	container	view	is	that	of	the	layout
manager.

15.3	Android	Layout	Managers
In	addition	to	the	widget	style	views	discussed	in	the	previous	section,	the	SDK
also	includes	a	set	of	views	referred	to	as	layouts.	Layouts	are	container	views
(and,	therefore,	subclassed	from	ViewGroup)	designed	for	the	sole	purpose	of
controlling	how	child	views	are	positioned	on	the	screen.
The	Android	SDK	includes	the	following	layout	views	that	may	be	used	within
an	Android	user	interface	design:
·									ConstraintLayout	–	Introduced	in	Android	7,	use	of	this	layout	manager	is

recommended	for	most	layout	requirements.	ConstraintLayout	allows	the
positioning	and	behavior	of	the	views	in	a	layout	to	be	defined	by	simple
constraint	settings	assigned	to	each	child	view.	The	flexibility	of	this	layout
allows	complex	layouts	to	be	quickly	and	easily	created	without	the	necessity
to	nest	other	layout	types	inside	each	other,	resulting	in	improved	layout
performance.	ConstraintLayout	is	also	tightly	integrated	into	the	Android
Studio	Layout	Editor	tool.	Unless	otherwise	stated,	this	is	the	layout	of	choice
for	the	majority	of	examples	in	this	book.	

·									LinearLayout	–	Positions	child	views	in	a	single	row	or	column	depending
on	the	orientation	selected.	A	weight	value	can	be	set	on	each	child	to	specify
how	much	of	the	layout	space	that	child	should	occupy	relative	to	other
children.

·									TableLayout	–	Arranges	child	views	into	a	grid	format	of	rows	and	columns.
Each	row	within	a	table	is	represented	by	a	TableRow	object	child,	which,	in
turn,	contains	a	view	object	for	each	cell.

·									FrameLayout	–	The	purpose	of	the	FrameLayout	is	to	allocate	an	area	of
screen,	typically	for	the	purposes	of	displaying	a	single	view.	If	multiple	child

views	are	added	they	will,	by	default,	appear	on	top	of	each	other	positioned
in	the	top	left-hand	corner	of	the	layout	area.	Alternate	positioning	of
individual	child	views	can	be	achieved	by	setting	gravity	values	on	each
child.	For	example,	setting	a	center_vertical	gravity	on	a	child	will	cause	it	to
be	positioned	in	the	vertical	center	of	the	containing	FrameLayout	view.

·									RelativeLayout	–The	RelativeLayout	allows	child	views	to	be	positioned
relative	both	to	each	other	and	the	containing	layout	view	through	the
specification	of	alignments	and	margins	on	child	views.	For	example,	child
View	A	may	be	configured	to	be	positioned	in	the	vertical	and	horizontal
center	of	the	containing	RelativeLayout	view.	View	B,	on	the	other	hand,
might	also	be	configured	to	be	centered	horizontally	within	the	layout	view,
but	positioned	30	pixels	above	the	top	edge	of	View	A,	thereby	making	the
vertical	position	relative	to	that	of	View	A.	The	RelativeLayout	manager	can
be	of	particular	use	when	designing	a	user	interface	that	must	work	on	a
variety	of	screen	sizes	and	orientations.

·									AbsoluteLayout	–	Allows	child	views	to	be	positioned	at	specific	X	and	Y
coordinates	within	the	containing	layout	view.	Use	of	this	layout	is
discouraged	since	it	lacks	the	flexibility	to	respond	to	changes	in	screen	size
and	orientation.

·									GridLayout	–	The	GridLayout	is	a	relatively	new	layout	manager	that	was
introduced	as	part	of	Android	4.0.	A	GridLayout	instance	is	divided	by
invisible	lines	that	form	a	grid	containing	rows	and	columns	of	cells.	Child
views	are	then	placed	in	cells	and	may	be	configured	to	cover	multiple	cells
both	horizontally	and	vertically	allowing	a	wide	range	of	layout	options	to	be
quickly	and	easily	implemented.	Gaps	between	components	in	a	GridLayout
may	be	implemented	by	placing	a	special	type	of	view	called	a	Space	view
into	adjacent	cells,	or	by	setting	margin	parameters.

·									CoordinatorLayout	–	Introduced	as	part	of	the	Android	Design	Support
Library	with	Android	5.0,	the	CoordinatorLayout	is	designed	specifically	for
coordinating	the	appearance	and	behavior	of	the	app	bar	across	the	top	of	an
application	screen	with	other	view	elements.	When	creating	a	new	activity
using	the	Basic	Activity	template,	the	parent	view	in	the	main	layout	will	be
implemented	using	a	CoordinatorLayout	instance.	This	layout	manager	will
be	covered	in	greater	detail	starting	with	the	chapter	entitled	Working	with	the
Floating	Action	Button	and	Snackbar.

When	considering	the	use	of	layouts	in	the	user	interface	for	an	Android
application	it	is	worth	keeping	in	mind	that,	as	will	be	outlined	in	the	next
section,	these	can	be	nested	within	each	other	to	create	a	user	interface	design	of
just	about	any	necessary	level	of	complexity.

just	about	any	necessary	level	of	complexity.

15.4	The	View	Hierarchy
Each	view	in	a	user	interface	represents	a	rectangular	area	of	the	display.	A	view
is	responsible	for	what	is	drawn	in	that	rectangle	and	for	responding	to	events
that	occur	within	that	part	of	the	screen	(such	as	a	touch	event).
A	user	interface	screen	is	comprised	of	a	view	hierarchy	with	a	root	view
positioned	at	the	top	of	the	tree	and	child	views	positioned	on	branches	below.
The	child	of	a	container	view	appears	on	top	of	its	parent	view	and	is
constrained	to	appear	within	the	bounds	of	the	parent	view’s	display	area.
Consider,	for	example,	the	user	interface	illustrated	in	Figure	15-1:

Figure	15-1

In	addition	to	the	visible	button	and	checkbox	views,	the	user	interface	actually
includes	a	number	of	layout	views	that	control	how	the	visible	views	are
positioned.	Figure	15-2	shows	an	alternative	view	of	the	user	interface,	this	time
highlighting	the	presence	of	the	layout	views	in	relation	to	the	child	views:

Figure	15-2

As	was	previously	discussed,	user	interfaces	are	constructed	in	the	form	of	a
view	hierarchy	with	a	root	view	at	the	top.	This	being	the	case,	we	can	also

view	hierarchy	with	a	root	view	at	the	top.	This	being	the	case,	we	can	also
visualize	the	above	user	interface	example	in	the	form	of	the	view	tree	illustrated
in	Figure	15-3:

Figure	15-3

The	view	hierarchy	diagram	gives	probably	the	clearest	overview	of	the
relationship	between	the	various	views	that	make	up	the	user	interface	shown	in
Figure	15-1.	When	a	user	interface	is	displayed	to	the	user,	the	Android	runtime
walks	the	view	hierarchy,	starting	at	the	root	view	and	working	down	the	tree	as
it	renders	each	view.

15.5	Creating	User	Interfaces
With	a	clearer	understanding	of	the	concepts	of	views,	layouts	and	the	view
hierarchy,	the	following	few	chapters	will	focus	on	the	steps	involved	in	creating
user	interfaces	for	Android	activities.	In	fact,	there	are	three	different	approaches
to	user	interface	design:	using	the	Android	Studio	Layout	Editor	tool,
handwriting	XML	layout	resource	files	or	writing	Java	code,	each	of	which	will
be	covered.

15.6	Summary
Each	element	within	a	user	interface	screen	of	an	Android	application	is	a	view
that	is	ultimately	subclassed	from	the	android.view.View	class.	Each	view
represents	a	rectangular	area	of	the	device	display	and	is	responsible	both	for
what	appears	in	that	rectangle	and	for	handling	events	that	take	place	within	the
view’s	bounds.	Multiple	views	may	be	combined	to	create	a	single	composite
view.	The	views	within	a	composite	view	are	children	of	a	container	view	which
is	generally	a	subclass	of	android.view.ViewGroup	(which	is	itself	a	subclass	of
android.view.View).	A	user	interface	is	comprised	of	views	constructed	in	the
form	of	a	view	hierarchy.
The	Android	SDK	includes	a	range	of	pre-built	views	that	can	be	used	to	create
a	user	interface.	These	include	basic	components	such	as	text	fields	and	buttons,
in	addition	to	a	range	of	layout	managers	that	can	be	used	to	control	the
positioning	of	child	views.	In	the	event	that	the	supplied	views	do	not	meet	a
specific	requirement,	custom	views	may	be	created,	either	by	extending	or
combining	existing	views,	or	by	subclassing	android.view.View	and	creating	an
entirely	new	class	of	view.
User	interfaces	may	be	created	using	the	Android	Studio	Layout	Editor	tool,
handwriting	XML	layout	resource	files	or	by	writing	Java	code.	Each	of	these
approaches	will	be	covered	in	the	chapters	that	follow.

16.	A	Guide	to	the	Android	Studio
Layout	Editor	Tool
It	is	difficult	to	think	of	an	Android	application	concept	that	does	not	require
some	form	of	user	interface.	Most	Android	devices	come	equipped	with	a	touch
screen	and	keyboard	(either	virtual	or	physical)	and	taps	and	swipes	are	the
primary	form	of	interaction	between	the	user	and	application.	Invariably	these
interactions	take	place	through	the	application’s	user	interface.
A	well	designed	and	implemented	user	interface,	an	important	factor	in	creating
a	successful	and	popular	Android	application,	can	vary	from	simple	to	extremely
complex,	depending	on	the	design	requirements	of	the	individual	application.
Regardless	of	the	level	of	complexity,	the	Android	Studio	Layout	Editor	tool
significantly	simplifies	the	task	of	designing	and	implementing	Android	user
interfaces.

16.1	Basic	vs.	Empty	Activity	Templates
As	outlined	in	the	chapter	entitled	The	Anatomy	of	an	Android	Application,
Android	applications	are	made	up	of	one	or	more	activities.	An	activity	is	a
standalone	module	of	application	functionality	that	usually	correlates	directly	to
a	single	user	interface	screen.	As	such,	when	working	with	the	Android	Studio
Layout	Editor	we	are	invariably	working	on	the	layout	for	an	activity.
When	creating	a	new	Android	Studio	project,	a	number	of	different	templates
are	available	to	be	used	as	the	starting	point	for	the	user	interface	of	the	main
activity.	The	most	basic	of	these	templates	are	the	Basic	Activity	and	Empty
Activity	templates.	Although	these	seem	similar	at	first	glance,	there	are	actually
considerable	differences	between	the	two	options.
The	Empty	Activity	template	creates	a	single	layout	file	consisting	of	a
ConstraintLayout	manager	instance	containing	a	TextView	object	as	shown	in
Figure	16-1:

Figure	16-1

The	Basic	Activity,	on	the	other	hand,	consists	of	two	layout	files.	The	top	level
layout	file	has	a	CoordinatorLayout	as	the	root	view,	a	configurable	app	bar,	a
menu	preconfigured	with	a	single	menu	item	(A	in	Figure	16-2),	a	floating
action	button	(B)	and	a	reference	to	the	second	layout	file	in	which	the	layout	for
the	content	area	of	the	activity	user	interface	is	declared:

Figure	16-2

Clearly	the	Empty	Activity	template	is	useful	if	you	need	neither	a	floating
action	button	nor	a	menu	in	your	activity	and	do	not	need	the	special	app	bar
behavior	provided	by	the	CoordinatorLayout	such	as	options	to	make	the	app	bar
and	toolbar	collapse	from	view	during	certain	scrolling	operations	(a	topic
covered	in	the	chapter	entitled	Working	with	the	AppBar	and	Collapsing	Toolbar
Layouts).	The	Basic	Activity	is	useful,	however,	in	that	it	provides	these
elements	by	default.	In	fact,	it	is	often	quicker	to	create	a	new	activity	using	the
Basic	Activity	template	and	delete	the	elements	you	do	not	require	than	to	use
the	Empty	Activity	template	and	manually	implement	behavior	such	as

collapsing	toolbars,	a	menu	or	floating	action	button.
Since	not	all	of	the	examples	in	this	book	require	the	features	of	the	Basic
Activity	template,	however,	most	of	the	examples	in	this	chapter	will	use	the
Empty	Activity	template	unless	the	example	requires	one	or	other	of	the	features
provided	by	the	Basic	Activity	template.
For	future	reference,	if	you	need	a	menu	but	not	a	floating	action	button,	use	the
Basic	Activity	and	follow	these	steps	to	delete	the	floating	action	button:
1.							Double-click	on	the	main	activity	layout	file	located	in	the	Project	tool

window	under	app	->	res	->	layout	to	load	it	into	the	Layout	Editor.	This	will
be	the	layout	file	prefixed	with	activity_	and	not	the	content	file	prefixed	with
content_.

2.							With	the	layout	loaded	into	the	Layout	Editor	tool,	select	the	floating	action
button	and	tap	the	keyboard	Delete	key	to	remove	the	object	from	the	layout.

3.							Locate	and	edit	the	Java	code	for	the	activity	(located	under	app	->	java	->
<package	name>	->	<activity	class	name>	and	remove	the	floating	action
button	code	from	the	onCreate	method	as	follows:
@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_main);

				Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

				setSupportActionBar(toolbar);

				FloatingActionButton	fab	=

								(FloatingActionButton)	findViewById(R.id.fab);

				fab.setOnClickListener(new	View.OnClickListener()	{

								@Override

								public	void	onClick(View	view)	{

												Snackbar.make(view,	"Replace	with	your	own	action",

																		Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

								}

				});

}

If	you	need	a	floating	action	button	but	no	menu,	use	the	Basic	Activity	template
and	follow	these	steps:
1.							Edit	the	activity	class	file	and	delete	the	onCreateOptionsMenu	and
onOptionsItemSelected	methods.

2.							Select	the	res	->	menu	item	in	the	Project	tool	window	and	tap	the	keyboard

Delete	key	to	remove	the	folder	and	corresponding	menu	resource	files	from
the	project.

16.2	The	Android	Studio	Layout	Editor
As	has	been	demonstrated	in	previous	chapters,	the	Layout	Editor	tool	provides
a	“what	you	see	is	what	you	get”	(WYSIWYG)	environment	in	which	views	can
be	selected	from	a	palette	and	then	placed	onto	a	canvas	representing	the	display
of	an	Android	device.	Once	a	view	has	been	placed	on	the	canvas,	it	can	be
moved,	deleted	and	resized	(subject	to	the	constraints	of	the	parent	view).
Further,	a	wide	variety	of	properties	relating	to	the	selected	view	may	be
modified	using	the	Properties	panel.
Under	the	surface,	the	Layout	Editor	tool	actually	constructs	an	XML	resource
file	containing	the	definition	of	the	user	interface	that	is	being	designed.	As
such,	the	Layout	Editor	tool	operates	in	two	distinct	modes	referred	to	as	Design
mode	and	Text	mode.

16.3	Design	Mode
In	design	mode,	the	user	interface	can	be	visually	manipulated	by	directly
working	with	the	view	palette	and	the	graphical	representation	of	the	layout.
Figure	16-3	highlights	the	key	areas	of	the	Android	Studio	Layout	Editor	tool	in
design	mode:

Figure	16-3

A	–	Palette	–	The	palette	provides	access	to	the	range	of	view	components
provided	by	the	Android	SDK.	These	are	grouped	into	categories	for	easy
navigation.	Items	may	be	added	to	the	layout	by	dragging	a	view	component
from	the	palette	or	preview	panel	and	dropping	it	at	the	desired	position	on	the
layout.
B	–	Device	Screen	–	The	device	screen	provides	a	visual	“what	you	see	is	what
you	get”	representation	of	the	user	interface	layout	as	it	is	being	designed.	This

layout	allows	for	direct	manipulation	of	the	design	in	terms	of	allowing	views	to
be	selected,	deleted,	moved	and	resized.	The	device	model	represented	by	the
layout	can	be	changed	at	any	time	using	a	menu	located	in	the	toolbar.
C	–	Component	Tree	–	As	outlined	in	the	previous	chapter	(Understanding
Android	Views,	View	Groups	and	Layouts)	user	interfaces	are	constructed	using
a	hierarchical	structure.	The	component	tree	provides	a	visual	overview	of	the
hierarchy	of	the	user	interface	design.	Selecting	an	element	from	the	component
tree	will	cause	the	corresponding	view	in	the	layout	to	be	selected.	Similarly,
selecting	a	view	from	the	device	screen	layout	will	select	that	view	in	the
component	tree	hierarchy.
D	–	Properties	–	All	of	the	component	views	listed	in	the	palette	have
associated	with	them	a	set	of	properties	that	can	be	used	to	adjust	the	behavior
and	appearance	of	that	view.	The	Layout	Editor’s	properties	panel	provides
access	to	the	properties	of	the	currently	selected	view	in	the	layout	allowing
changes	to	be	made.
E	–	Toolbar	–	The	Layout	Editor	toolbar	provides	quick	access	to	a	wide	range
of	options	including,	amongst	other	options,	the	ability	to	zoom	in	and	out	of	the
device	screen	layout,	change	the	device	model	currently	displayed,	rotate	the
layout	between	portrait	and	landscape	and	switch	to	a	different	Android	SDK
API	level.	The	toolbar	also	has	a	set	of	context	sensitive	buttons	which	will
appear	when	relevant	view	types	are	selected	in	the	device	screen	layout.
F	–	Mode	Switching	Tabs	–	The	tabs	located	along	the	lower	edge	of	the
Layout	Editor	provide	a	way	to	switch	back	and	forth	between	the	Layout	Editor
tool’s	text	and	design	modes.

16.4	The	Palette
The	Layout	Editor	palette	is	organized	into	three	panels	designed	to	make	it	easy
to	locate	and	preview	view	components	for	addition	to	a	layout	design.	The
category	panel	(marked	A	in	Figure	16-4)	lists	the	different	categories	of	view
components	supported	by	the	Android	SDK.	When	a	category	is	selected	from
the	list,	the	second	panel	(B)	updates	to	display	a	list	of	the	components	that	fall
into	that	category.	Finally,	selecting	a	component	from	the	list	causes	a
rendering	of	that	component	to	appear	within	the	preview	panel	(C):

Figure	16-4

To	add	a	component	from	the	palette	onto	the	layout	canvas,	simply	select	the
item	either	from	the	component	list	or	the	preview	panel,	drag	it	to	the	desired
location	on	the	canvas	and	drop	it	into	place.
A	search	for	a	specific	component	within	the	currently	selected	category	may	be
initiated	by	clicking	on	the	search	button	(marked	D	in	Figure	16-4	above)	in	the
palette	toolbar	and	typing	in	the	component	name.	As	characters	are	typed,
matching	results	will	appear	in	real-time	within	the	component	list	panel.	If	you
are	unsure	of	the	category	in	which	the	component	resides,	simply	select	the	All
category	either	before	or	during	the	search	operation.

16.5	Pan	and	Zoom
When	first	opened,	the	Layout	Editor	will	size	the	layout	canvas	so	that	it	fits
within	the	available	space.	Zooming	in	and	out	of	the	layout	can	be	achieved
using	the	plus	and	minus	buttons	located	in	the	editor	toolbar.	When	the	view	is
zoomed	in,	it	can	be	useful	to	pan	around	the	layout	to	locate	a	particular	area	of
the	design.	Although	this	can	be	achieved	using	the	scrollbars,	another	option	is
to	use	the	pan	menu	bar	button	highlighted	in	Figure	16-5.	Once	selected,	a	pan
and	zoom	panel	will	appear	containing	a	lens	which	can	be	moved	to	alter	the
currently	visible	area	of	the	layout.

currently	visible	area	of	the	layout.

Figure	16-5

16.6	Design	and	Layout	Views
When	the	Layout	Editor	tool	is	in	Design	mode,	the	layout	can	be	viewed	in	two
different	ways.	The	view	shown	in	Figure	16-3	above	is	the	Design	view	and
shows	the	layout	and	widgets	as	they	will	appear	in	the	running	app.	A	second
mode,	referred	to	as	Layout	or	Blueprint	view	can	be	shown	either	instead	of,	or
concurrently	with	the	Design	view.	Three	toolbar	buttons	(highlighted	in	Figure
16-6)	provide	options	to	display	the	Design,	Blueprint,	or	both	views:

Figure	16-6

Whether	to	display	the	layout	view,	design	view	or	both	is	a	matter	of	personal
preference.	A	good	approach	is	to	begin	with	both	displayed	as	shown	in	Figure
16-7:

Figure	16-7

16.7	Text	Mode
It	is	important	to	keep	in	mind	when	using	the	Android	Studio	Layout	Editor
tool	that	all	it	is	really	doing	is	providing	a	user	friendly	approach	to	creating
XML	layout	resource	files.	At	any	time	during	the	design	process,	the
underlying	XML	can	be	viewed	and	directly	edited	simply	by	clicking	on	the
Text	tab	located	at	the	bottom	of	the	Layout	Editor	tool	panel.	To	return	to
design	mode,	simply	click	on	the	Design	tab.
Figure	16-8	highlights	the	key	areas	of	the	Android	Studio	Layout	Editor	tool	in
text	mode:

Figure	16-8

A	–	Editor	–	The	editor	panel	displays	the	XML	that	makes	up	the	current	user
interface	layout	design.	This	is	the	full	Android	Studio	editor	environment
containing	all	of	the	features	previously	outlined	in	the	The	Basics	of	the
Android	Studio	Code	Editor	chapter	of	this	book.
B	–	Preview	–	As	changes	are	made	to	the	XML	in	the	editor,	these	changes	are
visually	reflected	in	the	preview	window.	This	provides	instant	visual	feedback
on	the	XML	changes	as	they	are	made	in	the	editor,	thereby	avoiding	the	need	to
switch	back	and	forth	between	text	and	design	mode	to	see	changes.	The
preview	also	allows	direct	manipulation	and	design	of	the	layout	just	as	if	the

layout	were	in	Design	mode,	with	visual	changes	being	reflected	in	the	editor
panel	in	real-time.	As	with	Design	mode,	both	the	Design	and	Layout	views	may
be	displayed	using	the	toolbar	buttons	highlighted	in	Figure	16-6	above.
C	–	Toolbar	–	The	toolbar	in	text	mode	provides	access	to	the	same	functions
available	in	design	mode.
D	-	Mode	Switching	Tabs	–	The	tabs	located	along	the	lower	edge	of	the
Layout	Editor	provide	a	way	to	switch	back	and	forth	between	the	Layout	Editor
tool’s	Text	and	Design	modes.

16.8	Setting	Properties
The	Properties	panel	provides	access	to	all	of	the	available	settings	for	the
currently	selected	component.	By	default,	the	properties	panel	shows	the	most
commonly	changed	properties	for	the	currently	selected	component	in	the
layout.	Figure	16-9,	for	example,	shows	this	subset	of	properties	for	the
TextView	widget:

Figure	16-9

To	access	all	of	the	properties	for	the	currently	selected	widget,	click	on	the
button	highlighted	in	Figure	16-10,	or	using	the	View	all	properties	link	at	the
bottom	of	the	properties	panel:

Figure	16-10

A	search	for	a	specific	property	may	also	be	performed	by	selecting	the	search

button	in	the	toolbar	of	the	properties	tool	window	and	typing	in	the	property
name.	Select	the	View	all	properties	button	or	link	either	before	or	during	a
search	to	ensure	that	all	of	the	properties	for	the	currently	selected	component
are	included	in	the	results.
Some	properties	contain	a	button	displaying	three	dots.	This	indicates	that	a
settings	dialog	is	available	to	assist	in	selecting	a	suitable	property	value.	To
display	the	dialog,	simply	click	on	the	button.	Properties	for	which	a	finite
number	of	valid	options	are	available	will	present	a	drop	down	menu	(Figure	16-
11)	from	which	a	selection	may	be	made.

Figure	16-11

16.9	Configuring	Favorite	Attributes
The	properties	included	on	the	initial	subset	property	list	may	be	extended	by
configuring	favorite	attributes.	To	add	a	property	to	the	favorites	list,	display	all
the	properties	for	the	currently	selected	component	and	hover	the	mouse	pointer
so	that	it	is	positioned	to	the	far	left	of	the	property	entry	within	the	property	tool
window.	A	star	icon	will	appear	to	the	left	of	the	property	name	which,	when
clicked,	will	add	the	property	to	the	favorites	list.	Figure	16-12,	for	example,
shows	the	alpha,	background	and	autoText	properties	for	a	TextView	widget
configured	as	favorite	attributes:

Figure	16-12

Once	added	as	favorites,	the	properties	will	be	listed	beneath	the	Favorite

Attributes	section	in	the	subject	properties	list:

Figure	16-13

16.10	Creating	a	Custom	Device	Definition
The	device	menu	in	the	Layout	Editor	toolbar	(Figure	16-14)	provides	a	list	of
preconfigured	device	types	which,	when	selected,	will	appear	as	the	device
screen	canvas.	In	addition	to	the	preconfigured	device	types,	any	AVD	instances
that	have	previously	been	configured	within	the	Android	Studio	environment
will	also	be	listed	within	the	menu.	To	add	additional	device	configurations,
display	the	device	menu,	select	the	Add	Device	Definition…	option	and	follow
the	steps	outlined	in	the	chapter	entitled	Creating	an	Android	Virtual	Device
(AVD)	in	Android	Studio.

Figure	16-14

16.11	Changing	the	Current	Device
As	an	alternative	to	the	device	selection	menu,	the	current	device	format	may	be
changed	by	clicking	on	the	resize	handle	located	next	to	the	bottom	right-hand
corner	of	the	device	screen	(indicated	in	Figure	16-15)	and	dragging	to	select	an
alternate	device	display	format.	As	the	screen	resizes,	markers	will	appear
indicating	the	various	size	options	and	orientations	available	for	selection:

Figure	16-15

16.12	Summary
A	key	part	of	developing	Android	applications	involves	the	creation	of	the	user
interface.	Within	the	Android	Studio	environment,	this	is	performed	using	the
Layout	Editor	tool	which	operates	in	two	modes.	In	design	mode,	view
components	are	selected	from	a	palette	and	positioned	on	a	layout	representing
an	Android	device	screen	and	configured	using	a	list	of	properties.	In	text	mode,

an	Android	device	screen	and	configured	using	a	list	of	properties.	In	text	mode,
the	underlying	XML	that	represents	the	user	interface	layout	can	be	directly
edited,	with	changes	reflected	in	a	preview	screen.	These	modes	combine	to
provide	an	extensive	and	intuitive	user	interface	design	environment.

17.	A	Guide	to	the	Android	ConstraintLayout

As	discussed	in	the	chapter	entitled	Understanding	Android	Views,	View	Groups
and	Layouts,	Android	provides	a	number	of	layout	managers	for	the	purpose	of
designing	user	interfaces.	With	Android	7,	Google	has	introduced	a	new	layout
that	is	intended	to	address	many	of	the	shortcomings	of	the	older	layout
managers.	This	new	layout,	called	ConstraintLayout,	combines	a	simple,
expressive	and	flexible	layout	system	with	powerful	features	built	into	the
Android	Studio	Layout	Editor	tool	to	ease	the	creation	of	responsive	user
interface	layouts	that	adapt	automatically	to	different	screen	sizes	and	changes	in
device	orientation.
This	chapter	will	outline	the	basic	concepts	of	ConstraintLayout	while	the	next
chapter	will	provide	a	detailed	overview	of	how	constraint-based	layouts	can	be
created	using	ConstraintLayout	within	the	Android	Studio	Layout	Editor	tool.

17.1	How	ConstraintLayout	Works
In	common	with	all	other	layouts,	ConstraintLayout	is	responsible	for	managing
the	positioning	and	sizing	behavior	of	the	visual	components	(also	referred	to	as
widgets)	it	contains.	It	does	this	based	on	the	constraint	connections	that	are	set
on	each	child	widget.
In	order	to	fully	understand	and	use	ConstraintLayout,	it	is	important	to	gain	an
appreciation	of	the	following	key	concepts:
·									Constraints
·									Margins
·									Opposing	Constraints
·									Constraint	Bias
·									Chains
·									Chain	Styles

17.1.1	Constraints
Constraints	are	essentially	sets	of	rules	that	dictate	the	way	in	which	a	widget	is
aligned	and	distanced	in	relation	to	other	widgets,	the	sides	of	the	containing
ConstraintLayout	and	special	elements	called	guidelines.	Constraints	also	dictate
how	the	user	interface	layout	of	an	activity	will	respond	to	changes	in	device
orientation,	or	when	displayed	on	devices	of	differing	screen	sizes.	In	order	to	be
adequately	configured,	a	widget	must	have	sufficient	constraint	connections	such

that	it’s	position	can	be	resolved	by	the	ConstraintLayout	layout	engine	in	both
the	horizontal	and	vertical	planes.

17.1.2	Margins
A	margin	is	a	form	of	constraint	that	specifies	a	fixed	distance.	Consider	a
Button	object	that	needs	to	be	positioned	near	the	top	right-hand	corner	of	the
device	screen.	This	might	be	achieved	by	implementing	margin	constraints	from
the	top	and	right-hand	edges	of	the	Button	connected	to	the	corresponding	sides
of	the	parent	ConstraintLayout	as	illustrated	in	Figure	7-1:

Figure	17-1

As	indicated	in	the	above	diagram,	each	of	these	constraint	connections	has
associated	with	it	a	margin	value	dictating	the	fixed	distances	of	the	widget	from
two	sides	of	the	parent	layout.	Under	this	configuration,	regardless	of	screen	size
or	the	device	orientation,	the	Button	object	will	always	be	positioned	20	and	25
device-independent	pixels	(dp)	from	the	top	and	right-hand	edges	of	the	parent
ConstraintLayout	respectively	as	specified	by	the	two	constraint	connections.
While	the	above	configuration	will	be	acceptable	for	some	situations,	it	does	not
provide	any	flexibility	in	terms	of	allowing	the	ConstraintLayout	layout	engine
to	adapt	the	position	of	the	widget	in	order	to	respond	to	device	rotation	and	to
support	screens	of	different	sizes.	To	add	this	responsiveness	to	the	layout	it	is
necessary	to	implement	opposing	constraints.

17.1.3	Opposing	Constraints
Two	constraints	operating	along	the	same	axis	on	a	single	widget	are	referred	to
as	opposing	constraints.	In	other	words,	a	widget	with	constraints	on	both	its	left
and	right-hand	sides	is	considered	to	have	horizontally	opposing	constraints.
Figure	17-2,	for	example,	illustrates	the	addition	of	both	horizontally	and

vertically	opposing	constraints	to	the	previous	layout:

Figure	17-2

The	key	point	to	understand	here	is	that	once	opposing	constraints	are
implemented	on	a	particular	axis,	the	positioning	of	the	widget	becomes
percentage	rather	than	coordinate	based.	Instead	of	being	fixed	at	20dp	from	the
top	of	the	layout,	for	example,	the	widget	is	now	positioned	at	a	point	30%	from
the	top	of	the	layout.	In	different	orientations	and	when	running	on	larger	or
smaller	screens,	the	Button	will	always	be	in	the	same	location	relative	to	the
dimensions	of	the	parent	layout.
It	is	now	important	to	understand	that	the	layout	outlined	in	Figure	17-2	has	been
implemented	using	not	only	opposing	constraints,	but	also	by	applying
constraint	bias.

17.1.4	Constraint	Bias
It	has	now	been	established	that	a	widget	in	a	ConstraintLayout	can	potentially
be	subject	to	opposing	constraint	connections.	By	default,	opposing	constraints
are	equal,	resulting	in	the	corresponding	widget	being	centered	along	the	axis	of
opposition.	Figure	17-3,	for	example,	shows	a	widget	centered	within	the
containing	ConstraintLayout	using	opposing	horizontal	and	vertical	constraints:

Figure	17-3

To	allow	for	the	adjustment	of	widget	position	in	the	case	of	opposing
constraints,	the	ConstraintLayout	implements	a	feature	known	as	constraint	bias.
Constraint	bias	allows	the	positioning	of	a	widget	along	the	axis	of	opposition	to
be	biased	by	a	specified	percentage	in	favor	of	one	constraint.	Figure	17-4,	for
example,	shows	the	previous	constraint	layout	with	a	75%	horizontal	bias	and
10%	vertical	bias:

Figure	17-4

The	next	chapter,	entitled	A	Guide	to	using	ConstraintLayout	in	Android	Studio,
will	cover	these	concepts	in	greater	detail	and	explain	how	these	features	have
been	integrated	into	the	Android	Studio	Layout	Editor	tool.	In	the	meantime,
however,	a	few	more	areas	of	the	ConstraintLayout	class	need	to	be	covered.

17.1.5	Chains
ConstraintLayout	chains	provide	a	way	for	the	layout	behavior	of	two	or	more
widgets	to	be	defined	as	a	group.	Chains	can	be	declared	in	either	the	vertical	or
horizontal	axis	and	configured	to	define	how	the	widgets	in	the	chain	are	spaced
and	sized.
Widgets	are	chained	when	connected	together	by	bi-directional	constraints.

Widgets	are	chained	when	connected	together	by	bi-directional	constraints.
Figure	17-5,	for	example,	illustrates	three	widgets	chained	in	this	way:

Figure	17-5

The	first	element	in	the	chain	is	the	chain	head	which	translates	to	the	top
widget	in	a	vertical	chain	or,	in	the	case	of	a	horizontal	chain,	the	left-most
widget.	The	layout	behavior	of	the	entire	chain	is	primarily	configured	by	setting
attributes	on	the	chain	head	widget.

17.1.6	Chain	Styles
The	layout	behavior	of	a	ConstraintLayout	chain	is	dictated	by	the	chain	style
setting	applied	to	the	chain	head	widget.	The	ConstraintLayout	class	currently
supports	the	following	chain	layout	styles:
·									Spread	Chain	–	The	widgets	contained	within	the	chain	are	distributed

evenly	across	the	available	space.	This	is	the	default	behavior	for	chains.

Figure	17-6

·									Spread	Inside	Chain	–	The	widgets	contained	within	the	chain	are	spread
evenly	between	the	chain	head	and	the	last	widget	in	the	chain.	The	head	and
last	widgets	are	not	included	in	the	distribution	of	spacing.

Figure	17-7

·									Weighted	Chain	–	Allows	the	space	taken	up	by	each	widget	in	the	chain	to

be	defined	via	weighting	properties.

Figure	17-8

·									Packed	Chain	–	The	widgets	that	make	up	the	chain	are	packed	together
without	any	spacing.	A	bias	may	be	applied	to	control	the	horizontal	or
vertical	positioning	of	the	chain	in	relation	to	the	parent	container.

Figure	17-9

17.2	Baseline	Alignment
So	far,	this	chapter	has	only	referred	to	constraints	that	dictate	alignment	relative
to	the	sides	of	a	widget	(typically	referred	to	as	side	constraints).	A	common
requirement,	however,	is	for	a	widget	to	be	aligned	relative	to	the	content	that	it
displays	rather	than	the	boundaries	of	the	widget	itself.	To	address	this	need,
ConstraintLayout	provides	baseline	alignment	support.
As	an	example,	assume	that	the	previous	theoretical	layout	from	Figure	17-1
requires	a	TextView	widget	to	be	positioned	40dp	to	the	left	of	the	Button.	In
this	case,	the	TextView	needs	to	be	baseline	aligned	with	the	Button	view.	This
means	that	the	text	within	the	Button	needs	to	be	vertically	aligned	with	the	text
within	the	TextView.	The	additional	constraints	for	this	layout	would	need	to	be
connected	as	illustrated	in	Figure	17-10:

Figure	17-10

The	TextView	is	now	aligned	vertically	along	the	baseline	of	the	Button	and
positioned	40dp	horizontally	from	the	Button	object’s	left-hand	edge.

17.3	Working	with	Guidelines
Guidelines	are	special	elements	available	within	the	ConstraintLayout	that
provide	an	additional	target	to	which	constraints	may	be	connected.	Multiple
guidelines	may	be	added	to	a	ConstraintLayout	instance	which	may,	in	turn,	be
configured	in	horizontal	or	vertical	orientations.	Once	added,	constraint
connections	may	be	established	from	widgets	in	the	layout	to	the	guidelines.
This	is	particularly	useful	when	multiple	widgets	need	to	be	aligned	along	an
axis.	In	Figure	17-11,	for	example,	three	Button	objects	contained	within	a
ConstraintLayout	are	constrained	along	a	vertical	guideline:

Figure	17-11

17.4	Configuring	Widget	Dimensions
Controlling	the	dimensions	of	a	widget	is	a	key	element	of	the	user	interface
design	process.	The	ConstraintLayout	provides	three	options	which	can	be	set	on
individual	widgets	to	manage	sizing	behavior.	These	settings	are	configured
individually	for	height	and	width	dimensions:
·									Fixed	–	The	widget	is	fixed	to	specified	dimensions.
·									Match	Constraints	–Allows	the	widget	to	be	resized	by	the	layout	engine	to

satisfy	the	prevailing	constraints.	Also	referred	to	as	the	AnySize	or
MATCH_CONSTRAINT	option.

·									Wrap	Content	–	The	size	of	the	widget	is	dictated	by	the	content	it	contains
(i.e.	text	or	graphics).

17.5	Ratios
The	dimensions	of	a	widget	may	be	defined	using	ratio	settings.	A	widget	could,
for	example,	be	constrained	using	a	ratio	setting	such	that,	regardless	of	any
resizing	behavior,	the	width	is	always	twice	the	height	dimension.

17.6	ConstraintLayout	Advantages
ConstraintLayout	provides	a	level	of	flexibility	that	allows	many	of	the	features
of	older	layouts	to	be	achieved	with	a	single	layout	instance	where	it	would
previously	have	been	necessary	to	nest	multiple	layouts.	This	has	the	benefit	of
avoiding	the	problems	inherent	in	layout	nesting	by	allowing	so	called	“flat”	or
“shallow”	layout	hierarchies	to	be	designed	leading	both	to	less	complex	layouts
and	improved	user	interface	rendering	performance	at	runtime.
ConstraintLayout	was	also	implemented	with	a	view	to	addressing	the	wide
range	of	Android	device	screen	sizes	available	on	the	market	today.	The
flexibility	of	ConstraintLayout	makes	it	easier	for	user	interfaces	to	be	designed
that	respond	and	adapt	to	the	device	on	which	the	app	is	running.
Finally,	as	will	be	demonstrated	in	the	chapter	entitled	A	Guide	to	using
ConstraintLayout	in	Android	Studio,	the	Android	Studio	Layout	Editor	tool	was
entirely	rewritten	for	Android	Studio	2.2	specifically	to	add	features	for
ConstraintLayout-based	user	interface	design.

17.7	ConstraintLayout	Availability
Although	introduced	with	Android	7,	ConstraintLayout	is	provided	as	a	separate
support	library	from	the	main	Android	SDK	and	is	compatible	with	older
Android	versions	as	far	back	as	API	Level	9	(Gingerbread).	This	allows	apps

Android	versions	as	far	back	as	API	Level	9	(Gingerbread).	This	allows	apps
that	make	use	of	this	new	layout	to	run	on	devices	running	much	older	versions
of	Android.

17.8	Summary
ConstraintLayout	is	a	layout	manager	introduced	with	Android	7.	It	is	designed
to	ease	the	creation	of	flexible	layouts	that	adapt	to	the	size	and	orientation	of
the	many	Android	devices	now	on	the	market.	ConstraintLayout	uses	constraints
to	control	the	alignment	and	positioning	of	widgets	in	relation	to	the	parent
ConstraintLayout	instance,	guidelines	and	the	other	widgets	in	the	layout.
ConstraintLayout	is	the	default	layout	for	newly	created	Android	Studio	projects
and	is	the	recommended	choice	when	designing	user	interface	layouts.	With	this
simple	yet	flexible	approach	to	layout	management,	complex	and	responsive
user	interfaces	can	be	implemented	with	surprising	ease.

18.	A	Guide	to	using	ConstraintLayout
in	Android	Studio
As	mentioned	more	than	once	in	previous	chapters,	Google	has	made	significant
changes	to	the	Android	Studio	Layout	Editor	tool,	many	of	which	were	made
solely	to	support	user	interface	layout	design	using	ConstraintLayout.	Now	that
the	basic	concepts	of	ConstraintLayout	have	been	outlined	in	the	previous
chapter,	this	chapter	will	explore	these	concepts	in	more	detail	while	also
outlining	the	ways	in	which	the	Layout	Editor	tool	allows	ConstraintLayout-
based	user	interfaces	to	be	designed	and	implemented.

18.1	Design	and	Layout	Views
The	chapter	entitled	A	Guide	to	the	Android	Studio	Layout	Editor	Tool	explained
that	the	Android	Studio	Layout	Editor	tool	provides	two	ways	to	view	the	user
interface	layout	of	an	activity	in	the	form	of	Design	and	Layout	(also	known	as
blueprint)	views.	These	views	of	the	layout	may	be	displayed	individually	or,	as
in	Figure	18-1,	side	by	side:

Figure	18-1

The	Design	view	(positioned	on	the	left	in	the	above	figure)	presents	a	“what
you	see	is	what	you	get”	representation	of	the	layout,	wherein	the	layout	appears
as	it	will	within	the	running	app.	The	Layout	view,	on	the	other	hand,	displays	a
blueprint	style	of	view	where	the	widgets	are	represented	by	shaded	outlines.	As
can	be	seen	in	Figure	18-1	above,	Layout	view	also	displays	the	constraint
connections	(in	this	case	opposing	constraints	used	to	center	a	button	within	the
layout).	These	constraints	are	also	overlaid	onto	the	Design	view	when	a	specific
widget	in	the	layout	is	selected	as	illustrated	in	Figure	18-2:

Figure	18-2

The	appearance	of	constraint	connections	in	both	views	can	be	toggled	using	the
toolbar	button	highlighted	in	Figure	18-3:

Figure	18-3

In	addition	to	the	two	modes	of	displaying	the	user	interface	layout,	the	Layout

In	addition	to	the	two	modes	of	displaying	the	user	interface	layout,	the	Layout
Editor	tool	also	provides	three	different	ways	of	establishing	the	constraints
required	for	a	specific	layout	design.

18.2	Autoconnect	Mode
Autoconnect,	as	the	name	suggests,	automatically	establishes	constraint
connections	as	items	are	added	to	the	layout.	Autoconnect	mode	may	be	enabled
and	disabled	using	the	toolbar	button	indicated	in	Figure	18-4:

Figure	18-4

Autoconnect	mode	uses	algorithms	to	decide	the	best	constraints	to	establish
based	on	the	position	of	the	widget	and	the	widget’s	proximity	to	both	the	sides
of	the	parent	layout	and	other	elements	in	the	layout.	In	the	event	that	any	of	the
automatic	constraint	connections	fail	to	provide	the	desired	behavior,	these	may
be	changed	manually	as	outlined	later	in	this	chapter.

18.3	Inference	Mode
Inference	mode	uses	a	heuristic	approach	involving	algorithms	and	probabilities
to	automatically	implement	constraint	connections	after	widgets	have	already
been	added	to	the	layout.	This	mode	is	usually	used	when	the	Autoconnect
feature	has	been	turned	off	and	objects	have	been	added	to	the	layout	without
any	constraint	connections.	This	allows	the	layout	to	be	designed	simply	by
dragging	and	dropping	objects	from	the	palette	onto	the	layout	canvas	and
making	size	and	positioning	changes	until	the	layout	appears	as	required.	In
essence	this	involves	“painting”	the	layout	without	worrying	about	constraints.
Inference	mode	may	also	be	used	at	any	time	during	the	design	process	to	fill	in
missing	constraints	within	a	layout.
Constraints	are	automatically	added	to	a	layout	when	the	Infer	constraints	button
(Figure	18-5)	is	clicked:

Figure	18-5

As	with	Autoconnect	mode,	there	is	always	the	possibility	that	the	Layout	Editor

As	with	Autoconnect	mode,	there	is	always	the	possibility	that	the	Layout	Editor
tool	will	infer	incorrect	constraints,	though	these	may	be	modified	and	corrected
manually.

18.4	Manipulating	Constraints	Manually
The	third	option	for	implementing	constraint	connections	is	to	do	so	manually.
When	doing	so,	it	will	be	helpful	to	understand	the	various	handles	that	appear
around	a	widget	within	the	Layout	Editor	tool.	Consider,	for	example,	the	widget
shown	in	Figure	18-6:

Figure	18-6

Clearly	the	spring-like	lines	(A)	represent	established	constraint	connections
leading	from	the	sides	of	the	widget	to	the	targets.	The	small	square	markers	(B)
in	each	corner	of	the	object	are	resize	handles	which,	when	clicked	and	dragged,
serve	to	resize	the	widget.	The	small	circle	handles	(C)	located	on	each	side	of
the	widget	are	the	side	constraint	anchors.	To	create	a	constraint	connection,
click	on	the	handle	and	drag	the	resulting	line	to	the	element	to	which	the
constraint	is	to	be	connected	(such	as	a	guideline	or	the	side	of	either	the	parent
layout	or	another	widget)	as	outlined	in	Figure	18-7.	When	connecting	to	the
side	of	another	widget,	simply	drag	the	line	to	the	side	constraint	handle	of	that
widget	and,	when	it	turns	green,	release	the	line.

Figure	18-7

An	additional	marker	indicates	the	anchor	point	for	baseline	constraints	whereby
the	content	within	the	widget	(as	opposed	to	outside	edges)	is	used	as	the
alignment	point.	To	display	this	marker,	simply	click	on	the	button	displaying

alignment	point.	To	display	this	marker,	simply	click	on	the	button	displaying
the	letters	‘ab’	(referenced	by	marker	D	in	Figure	18-6).	To	establish	a	constraint
connection	from	a	baseline	constraint	handle,	simply	hover	the	mouse	pointer
over	the	handle	until	it	begins	to	flash	before	clicking	and	dragging	to	the	target
(such	as	the	baseline	anchor	of	another	widget	as	shown	in	Figure	18-8).	When
the	destination	anchor	begins	to	flash	green,	release	the	mouse	button	to	make
the	constraint	connection:

Figure	18-8

To	hide	the	baseline	anchors,	simply	click	on	the	baseline	button	a	second	time.

18.5	Deleting	Constraints
To	delete	an	individual	constraint,	simply	click	within	the	anchor	to	which	it	is
connected.	The	constraint	will	then	be	deleted	from	the	layout	(when	hovering
over	the	anchor	it	will	glow	red	to	indicate	that	clicking	will	perform	a	deletion):

Figure	18-9

Alternatively,	remove	all	of	the	constraints	on	a	widget	by	selecting	it	and
clicking	on	the	Delete	All	Constraints	button	which	appears	next	to	the	widget
when	it	is	selected	in	the	layout	as	highlighted	in	Figure	18-10:

Figure	18-10

To	remove	all	of	the	constraints	from	every	widget	in	a	layout,	right-click	on	the

layout	and	select	the	Clear	all	constraints	option	from	the	resulting	menu,	or	use
the	toolbar	button	highlighted	in	Figure	18-11:

Figure	18-11

18.6	Adjusting	Constraint	Bias
In	the	previous	chapter,	the	concept	of	using	bias	settings	to	favor	one	opposing
constraint	over	another	was	outlined.	Bias	within	the	Android	Studio	Layout
Editor	tool	is	adjusted	using	the	Inspector	located	in	the	Properties	tool	window
and	shown	in	Figure	18-12.	The	two	sliders	indicated	by	the	arrows	in	the	figure
are	used	to	control	the	bias	of	the	vertical	and	horizontal	opposing	constraints	of
the	currently	selected	widget.

Figure	18-12

18.7	Understanding	ConstraintLayout	Margins
Constraints	can	be	used	in	conjunction	with	margins	to	implement	fixed	gaps
between	a	widget	and	another	element	(such	as	another	widget,	a	guideline	or
the	side	of	the	parent	layout).	Consider,	for	example,	the	horizontal	constraints
applied	to	the	Button	object	in	Figure	18-13:

Figure	18-13

As	currently	configured,	horizontal	constraints	run	to	the	left	and	right	edges	of
the	parent	ConstraintLayout.	As	such,	the	widget	has	opposing	horizontal
constraints	indicating	that	the	ConstraintLayout	layout	engine	has	some
discretion	in	terms	of	the	actual	positioning	of	the	widget	at	runtime.	This	allows
the	layout	some	flexibility	to	accommodate	different	screen	sizes	and	device
orientation.	The	horizontal	bias	setting	is	also	able	to	control	the	position	of	the
widget	right	up	to	the	right-hand	side	of	the	layout.	Figure	18-14,	for	example,
shows	the	same	button	with	100%	horizontal	bias	applied:

Figure	18-14

ConstraintLayout	margins	can	appear	at	the	end	of	constraint	connections	and
represent	a	fixed	gap	into	which	the	widget	cannot	be	moved	even	when
adjusting	bias	or	in	response	to	layout	changes	elsewhere	in	the	activity.	In
Figure	18-15,	the	right-hand	constraint	now	includes	a	50dp	margin	into	which
the	widget	cannot	be	moved	even	though	the	bias	is	still	set	at	100%.

Figure	18-15

Existing	margin	values	on	a	widget	can	be	modified	from	within	the	Inspector.
As	can	be	seen	in	Figure	18-16,	a	dropdown	menu	is	being	used	to	change	the
right-hand	margin	on	the	currently	selected	widget	to	16dp.	Alternatively,
clicking	on	the	current	value	also	allows	a	number	to	be	typed	into	the	field.

Figure	18-16

The	default	margin	for	new	constraints	can	be	changed	at	any	time	using	the
option	in	the	toolbar	highlighted	in	Figure	18-17:

Figure	18-17

Margin	constraints	can	also	be	created	by	clicking	in	the	constraint	handle	of	a
widget,	pressing	and	holding	the	Ctrl	key	and	then	dragging	the	line	to	the	target.
Once	released,	the	margin	constraint	will	be	set	at	a	fixed	distance	based	on	the
current	position	of	the	widget:

Figure	18-18

18.8	The	Importance	of	Opposing	Constraints	and	Bias
As	discussed	in	the	previous	chapter,	opposing	constraints,	margins	and	bias
form	the	cornerstone	of	responsive	layout	design	in	Android	when	using	the
ConstraintLayout.	When	a	widget	is	constrained	without	opposing	constraint
connections,	those	constraints	are	essentially	margin	constraints.	This	is
indicated	visually	within	the	Layout	Editor	tool	by	solid	straight	lines
accompanied	by	margin	measurements	as	shown	in	Figure	18-19.

Figure	18-19

The	above	constraints	essentially	fix	the	widget	at	that	position.	The	result	of
this	is	that	if	the	device	is	rotated	to	landscape	orientation,	the	widget	will	no
longer	be	visible	since	the	vertical	constraint	pushes	it	beyond	the	top	edge	of
the	device	screen	(as	is	the	case	in	Figure	18-7).	A	similar	problem	will	arise	if
the	app	is	run	on	a	device	with	a	smaller	screen	than	that	used	during	the	design
process.

Figure	18-20

When	opposing	constraints	are	implemented,	the	constraint	connection	is
represented	by	the	spring-like	jagged	line	(the	spring	metaphor	is	intended	to
indicate	that	the	position	of	the	widget	is	not	fixed	to	absolute	X	and	Y
coordinates):

Figure	18-21

In	the	above	layout,	vertical	and	horizontal	bias	settings	have	been	configured
such	that	the	widget	will	always	be	positioned	90%	of	the	distance	from	the
bottom	and	35%	from	the	left-hand	edge	of	the	parent	layout.	When	rotated,
therefore,	the	widget	is	still	visible	and	positioned	in	the	same	location	relative
to	the	dimensions	of	the	screen:

Figure	18-22

When	designing	a	responsive	and	adaptable	user	interface	layout,	it	is	important
to	take	into	consideration	both	bias	and	opposing	constraints	when	manually
designing	a	user	interface	layout	and	making	corrections	to	automatically	created
constraints.

18.9	Configuring	Widget	Dimensions
The	inner	dimensions	of	a	widget	within	a	ConstraintLayout	can	also	be
configured	using	the	Inspector.	As	outlined	in	the	previous	chapter,	widget
dimensions	can	be	set	to	wrap	content,	fixed	or	match	constraints	modes.	The
prevailing	settings	for	each	dimension	on	the	currently	selected	widget	are
shown	within	the	square	representing	the	widget	in	the	Inspector	as	illustrated	in
Figure	18-23:

Figure	18-23

In	the	above	figure,	both	the	horizontal	and	vertical	dimensions	are	set	to	wrap
content	mode	(indicated	by	the	inward	pointing	chevrons).	The	inspector	uses
the	following	visual	indicators	to	represent	the	three	dimension	modes:

	
Fixed	Size	

	
	

	
Match	Constraints	

	
	

	
Wrap	Content	

	
	

To	change	the	current	setting,	simply	click	on	the	indicator	to	cycle	through	the
three	different	settings.
In	addition,	the	size	of	a	widget	can	be	expanded	either	horizontally	or	vertically
to	the	maximum	amount	allowed	by	the	constraints	and	other	widgets	in	the
layout	using	the	Expand	horizontally	and	Expand	vertically	buttons.	These	are
accessible	by	right	clicking	on	a	widget	within	the	layout	and	selecting	the
option	from	the	resulting	menu	(Figure	18-24).	When	used,	the	currently
selected	widget	will	increase	in	size	horizontally	or	vertically	to	fill	the	available
space	around	it.

Figure	18-24

18.10	Adding	Guidelines
Guidelines	provide	additional	elements	to	which	constraints	may	be	anchored.
Guidelines	are	added	by	right-clicking	on	the	layout	and	selecting	either	the	Add
Vertical	Guideline	or	Add	Horizontal	Guideline	menu	option	or	using	the	toolbar
menu	options	as	shown	in	Figure	18-25:

Figure	18-25

Once	added,	a	guideline	will	appear	as	a	dashed	line	in	the	layout	and	may	be
moved	simply	by	clicking	and	dragging	the	line.	To	establish	a	constraint
connection	to	a	guideline,	click	in	the	constraint	handler	of	a	widget	and	drag	to
the	guideline	before	releasing.	In	Figure	18-26,	the	left	sides	of	two	Buttons	are
connected	by	constraints	to	a	vertical	guideline.
The	position	of	a	vertical	guideline	can	be	specified	as	an	absolute	distance	from
either	the	left	or	the	right	of	the	parent	layout	(or	the	top	or	bottom	for	a
horizontal	guideline).	The	vertical	guideline	in	the	above	figure,	for	example,	is
positioned	97dp	from	the	left-hand	edge	of	the	parent.

Figure	18-26

Alternatively,	the	guideline	may	be	positioned	as	a	percentage	of	overall	width
or	height	of	the	parent	layout.	To	switch	between	these	three	modes,	select	the
guideline	and	click	on	the	circle	at	the	top	or	start	of	the	guideline	(depending	on
whether	the	guideline	is	vertical	or	horizontal).	Figure	18-27,	for	example,
shows	a	guideline	positioned	based	on	percentage:

Figure	18-27

18.11	Widget	Group	Alignment
The	Android	Studio	Layout	Editor	tool	provides	a	range	of	alignment	actions
that	can	be	performed	when	two	or	more	widgets	are	selected	in	the	layout.
Simply	shift-click	on	each	of	the	widgets	to	be	included	in	the	action,	right-click
on	the	layout	and	make	a	selection	from	the	many	options	displayed	in	the	menu:

Figure	18-28

As	shown	in	Figure	18-29	below,	these	options	are	also	available	as	buttons	in
the	Layout	Editor	toolbar:

Figure	18-29

18.12	Converting	other	Layouts	to	ConstraintLayout
For	existing	user	interface	layouts	that	make	use	of	one	or	more	of	the	other
Android	layout	classes	(such	as	RelativeLayout	or	LinearLayout),	the	Layout
Editor	tool	provides	an	option	to	convert	the	user	interface	to	use	the
ConstraintLayout.
When	the	Layout	Editor	tool	is	open	and	in	Design	mode,	the	Component	Tree
panel	is	displayed	beneath	the	Palette.	To	convert	a	layout	to	ConstraintLayout,
locate	it	within	the	Component	Tree,	right-click	on	it	and	select	the	Convert
<current	layout>	to	Constraint	Layout	menu	option:

Figure	18-30

When	this	menu	option	is	selected,	Android	Studio	will	convert	the	selected
layout	to	a	ConstraintLayout	and	use	inference	to	establish	constraints	designed
to	match	the	layout	behavior	of	the	original	layout	type.

18.13	Summary
A	redesigned	Layout	Editor	tool	combined	with	ConstraintLayout	makes
designing	complex	user	interface	layouts	with	Android	Studio	a	relatively	fast
and	intuitive	process.	This	chapter	has	covered	the	concepts	of	constraints,
margins	and	bias	in	more	detail	while	also	exploring	the	ways	in	which

margins	and	bias	in	more	detail	while	also	exploring	the	ways	in	which
ConstraintLayout-based	design	has	been	integrated	into	the	Layout	Editor	tool.

19.	Working	with	ConstraintLayout
Chains	and	Ratios	in	Android	Studio
The	previous	chapters	have	introduced	the	key	features	of	the	ConstraintLayout
class	and	outlined	the	best	practices	for	ConstraintLayout-based	user	interface
design	within	the	Android	Studio	Layout	Editor.	Although	the	concepts	of
ConstraintLayout	chains	and	ratios	were	outlined	in	the	chapter	entitled	A	Guide
to	the	Android	ConstraintLayout,	we	have	not	yet	addressed	how	to	make	use	of
these	features	within	the	Layout	Editor.	The	focus	of	this	chapter,	therefore,	is	to
provide	practical	steps	on	how	to	create	and	manage	chains	and	ratios	when
using	the	ConstraintLayout	class.

19.1	Creating	a	Chain
Although	improved	support	for	chains	is	expected	in	future	editions	of	Android
Studio,	the	current	Android	Studio	2.3	release	does	not	provide	extensive
support	for	visually	creating	ConstraintLayout	chains	within	the	Layout	Editor
tool.	That	being	said,	chains	may	be	implemented	by	adding	a	few	lines	to	the
XML	layout	resource	file	of	an	activity	or	by	using	a	shortcut	involving	use	of
the	Layout	Editor	Design	mode	Center	Horizontally	or	Center	Vertically	menu
options.
Consider	a	layout	consisting	of	three	Button	widgets	constrained	so	as	to	be
positioned	in	the	top-left,	top-center	and	top-right	of	the	ConstraintLayout	parent
as	illustrated	in	Figure	19-1:

Figure	19-1

To	represent	such	a	layout,	the	XML	resource	layout	file	might	contain	the
following	entries	for	the	button	widgets:

<Button

				android:text="Button1"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button1"

				app:layout_constraintTop_toTopOf="parent"

				android:layout_marginLeft="8dp"

				android:layout_marginTop="16dp"

				android:layout_marginStart="16dp"

				app:layout_constraintLeft_toLeftOf="parent"	/>

<Button

				android:text="Button2"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button2"

				android:layout_marginTop="16dp"

				app:layout_constraintTop_toTopOf="parent"

				app:layout_constraintRight_toLeftOf="@+id/button3"

				android:layout_marginRight="8dp"

				app:layout_constraintLeft_toRightOf="@+id/button1"

				android:layout_marginLeft="8dp"	/>

<Button

				android:text="Button3"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button3"

				app:layout_constraintTop_toTopOf="parent"

				android:layout_marginTop="16dp"

				android:layout_marginRight="16dp"

				android:layout_marginEnd="16dp"

				app:layout_constraintRight_toRightOf="parent"	/>

As	currently	configured,	there	are	no	bi-directional	constraints	to	group	these
widgets	into	a	chain.	To	address	this,	additional	constraints	need	to	be	added
from	the	right-hand	side	of	button1	to	the	left	side	of	button2,	and	from	the	left
side	of	button3	to	the	right	side	of	button2	as	follows:

<Button

				android:text="Button1"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button1"

				app:layout_constraintTop_toTopOf="parent"

				android:layout_marginLeft="8dp"

				android:layout_marginTop="16dp"

				android:layout_marginStart="16dp"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintRight_toLeftOf="@id/button2"	/>

<Button

				android:text="Button2"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button2"

				android:layout_marginTop="16dp"

				app:layout_constraintTop_toTopOf="parent"

				app:layout_constraintRight_toLeftOf="@+id/button3"

				android:layout_marginRight="8dp"

				app:layout_constraintLeft_toRightOf="@+id/button1"

				android:layout_marginLeft="8dp"	/>

<Button

				android:text="Button3"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button3"

				app:layout_constraintTop_toTopOf="parent"

				android:layout_marginTop="16dp"

				android:layout_marginRight="16dp"

				android:layout_marginEnd="16dp"

				app:layout_constraintRight_toRightOf="parent"

				app:layout_constraintLeft_toRightOf="@id/button2"	/>

With	these	changes,	the	widgets	now	have	bi-directional	horizontal	constraints
configured.	This	essentially	constitutes	a	ConstraintLayout	chain	which	is
represented	visually	within	the	Layout	Editor	by	chain	connections	as	shown	in
Figure	19-2	below.	Note	that	in	this	configuration	the	chain	has	defaulted	to	the
spread	chain	style.

Figure	19-2

Although	the	bi-directional	constraints	have	been	added	manually	via	the	XML
code	in	this	example,	it	is	also	useful	to	know	that	bi-directional	constraints	may
also	be	added	by	selecting	all	of	the	widgets	to	be	included	in	the	chain,	right-
clicking	on	one	of	the	widgets	and	selecting	either	the	Center	Horizontally	or
Center	Vertically	menu	option	(depending	on	whether	a	horizontal	or	vertical
chain	is	being	created).

19.2	Changing	the	Chain	Style
If	no	chain	style	is	configured,	the	ConstraintLayout	will	default	to	the	spread
chain	style.	The	chain	style	can	be	altered	by	selecting	any	of	the	widgets	in	the
chain	and	clicking	on	the	chain	button	as	highlighted	in	Figure	19-3:

Figure	19-3

Each	time	the	chain	button	is	clicked	the	style	will	switch	to	another	setting	in
the	order	of	spread,	spread	inside	and	packed.
Alternatively,	the	style	may	be	specified	in	the	properties	tool	window	by
clicking	on	the	View	all	properties	link,	unfolding	the	Constraints	section	and
changing	either	the	layoutConstraintHorizontal_chainStyle	or
layoutConstraintVertical_chainStyle	property	depending	on	the	orientation	of
the	chain:

Figure	19-4

19.3	Spread	Inside	Chain	Style
Figure	19-5	illustrates	the	effect	of	changing	the	chain	style	to	spread	inside
chain	style	using	the	above	techniques:

Figure	19-5

19.4	Packed	Chain	Style
Using	the	same	technique,	changing	the	chain	style	property	to	packed	causes
the	layout	to	change	as	shown	in	Figure	19-6:

Figure	19-6

19.5	Packed	Chain	Style	with	Bias
The	positioning	of	the	packed	chain	may	be	influenced	by	applying	a	bias	value.
The	bias	can	be	any	value	between	0.0	and	1.0,	with	0.5	representing	the	center
of	the	parent.	Bias	is	controlled	by	selecting	the	chain	head	widget	and	assigning
a	value	to	the	layout_constraintHorizontal_bias	or
layout_constraintVertical_bias	attribute	in	the	Properties	panel.	Figure	19-7
shows	a	packed	chain	with	a	horizontal	bias	setting	of	0.2:

Figure	19-7

19.6	Weighted	Chain
The	final	area	of	chains	to	explore	involves	weighting	of	the	individual	widgets
to	control	how	much	space	each	widget	in	the	chain	occupies	within	the
available	space.	A	weighted	chain	may	only	be	implemented	using	the	spread
chain	style	and	any	widget	within	the	chain	that	is	to	respond	to	the	weight
property	must	have	the	corresponding	dimension	property	(height	for	a	vertical
chain	and	width	for	a	horizontal	chain)	configured	for	match	constraint	mode.
Match	constraint	mode	for	a	widget	dimension	may	be	configured	by	selecting

the	widget,	displaying	the	Properties	panel	and	changing	the	dimension	to	0dp.
In	Figure	19-8,	for	example,	the	layout_width	constraint	for	button1	has	been	set
to	0dp	to	indicate	that	the	width	of	the	widget	is	to	be	determined	based	on	the
prevailing	constraint	settings:

Figure	19-8

Assuming	that	the	spread	chain	style	has	been	selected,	and	all	three	buttons
have	been	configured	such	that	the	width	dimension	is	set	to	match	the
constraints,	the	widgets	in	the	chain	will	expand	equally	to	fill	the	available
space:

Figure	19-9

The	amount	of	space	occupied	by	each	widget	relative	to	the	other	widgets	in	the
chain	can	be	controlled	by	adding	weight	properties	to	the	widgets.	Figure	19-10
shows	the	effect	of	setting	the	layout_constraintHorizontal_weight	property	to	4
on	button1,	and	to	2	on	both	button2	and	button3:

Figure	19-10

As	a	result	of	these	weighting	values,	button1	occupies	half	of	the	space	(4/8),
while	button2	and	button3	each	occupy	one	quarter	(2/8)	of	the	space.

19.7	Working	with	Ratios
ConstraintLayout	ratios	allow	one	dimension	of	a	widget	to	be	sized	relative	to
the	widget’s	other	dimension	(otherwise	known	as	aspect	ratio).	An	aspect	ratio
setting	could,	for	example,	be	applied	to	an	ImageView	to	ensure	that	its	width	is
always	twice	its	height.
A	dimension	ratio	constraint	is	configured	by	setting	the	constrained	dimension
to	match	constraint	mode	(by	setting	the	dimension	to	0dp	as	outlined	in	the
previous	section)	and	configuring	the	layout_constraintDimensionRatio	attribute
on	that	widget	to	the	required	ratio.	This	ratio	value	may	be	specified	either	as	a
float	value	or	a	width:height	ratio	setting.	The	following	XML	excerpt,	for
example,	configures	a	ratio	of	2:1	on	an	ImageView	widget:

<ImageView

								android:layout_width="0dp"

								android:layout_height="100dp"

								android:id="@+id/imageView"

								app:layout_constraintDimensionRatio="2:1"	/>

The	above	example	demonstrates	how	to	configure	a	ratio	when	only	one
dimension	is	set	to	match	constraints.	A	ratio	may	also	be	applied	when	both
dimensions	are	set	to	match	constraint	mode.	This	involves	specifying	the	ratio
preceded	with	either	an	H	or	a	W	to	indicate	which	of	the	dimensions	is
constrained	relative	to	the	other.
Consider,	for	example,	the	following	XML	excerpt	for	an	ImageView	object:

<ImageView

				android:layout_width="0dp"

				android:layout_height="0dp"

				android:id="@+id/imageView"

				app:layout_constraintBottom_toBottomOf="parent"

				app:layout_constraintRight_toRightOf="parent"

				app:layout_constraintLeft_toLeftOf="parent"

				app:layout_constraintTop_toTopOf="parent"

				app:layout_constraintDimensionRatio="W,1:3"	/>

In	the	above	example	the	height	will	be	defined	subject	to	the	constraints	applied
to	it.	In	this	case	constraints	have	been	configured	such	that	it	is	attached	to	the
top	and	bottom	of	the	parent	view,	essentially	stretching	the	widget	to	fill	the
entire	height	of	the	parent.	The	width	dimension,	on	the	other	hand,	has	been
constrained	to	be	one	third	of	the	ImageView’s	height	dimension.	Consequently,
whatever	size	screen	or	orientation	the	layout	appears	on,	the	ImageView	will
always	be	the	same	height	as	the	parent	and	the	width	one	third	of	that	height.
The	same	results	may	also	be	achieved	without	the	need	to	manually	edit	the
XML	resource	file.	Whenever	a	widget	dimension	is	set	to	match	constraint
mode,	a	ratio	control	toggle	appears	in	the	Inspector	area	of	the	property	panel.
Figure	19-11,	for	example,	shows	the	layout	width	and	height	properties	of	a
button	widget	set	to	match	constraint	mode	and	100dp	respectively,	and
highlights	the	ratio	control	toggle	in	the	widget	sizing	preview:

Figure	19-11

By	default	the	ratio	sizing	control	is	toggled	off.	Clicking	on	the	control	enables
the	ratio	constraint	and	displays	an	additional	field	where	the	ratio	may	be
changed:

Figure	19-12

19.8	Summary
Both	chains	and	ratios	are	powerful	features	of	the	ConstraintLayout	class
intended	to	provide	additional	options	for	designing	flexible	and	responsive	user
interface	layouts	within	Android	applications.	As	outlined	in	this	chapter,	the
Android	Studio	Layout	Editor	has	been	enhanced	for	Android	Studio	2.3	to
make	it	easier	to	use	these	features	during	the	user	interface	design	process.

20.	 An	 Android	 Studio	 Layout	 Editor
ConstraintLayout	Tutorial

By	far	the	easiest	and	most	productive	way	to	design	a	user	interface	for	an
Android	application	is	to	make	use	of	the	Android	Studio	Layout	Editor	tool.
The	goal	of	this	chapter	is	to	provide	an	overview	of	how	to	create	a
ConstraintLayout-based	user	interface	using	this	approach.	The	exercise
included	in	this	chapter	will	also	be	used	as	an	opportunity	to	outline	the	creation
of	an	activity	starting	with	a	“bare-bones”	Android	Studio	project.
Having	covered	the	use	of	the	Android	Studio	Layout	Editor,	the	chapter	will
also	introduce	the	Layout	Inspector	and	Hierarchy	Viewer	tools.

20.1	An	Android	Studio	Layout	Editor	Tool	Example
The	first	step	in	this	phase	of	the	example	is	to	create	a	new	Android	Studio
project.	Begin,	therefore,	by	launching	Android	Studio	and	closing	any
previously	opened	projects	by	selecting	the	File	->	Close	Project	menu	option.
Within	the	Android	Studio	welcome	screen	click	on	the	Start	a	new	Android
Studio	project	quick	start	option	to	display	the	first	screen	of	the	new	project
dialog.
Enter	LayoutSample	into	the	Application	name	field	and	ebookfrenzy.com	as	the
Company	Domain	setting	before	clicking	on	the	Next	button	and	set	the
minimum	SDK	to	API	14:	Android	4.0	(IceCreamSandwich).
In	previous	examples,	we	have	requested	that	Android	Studio	create	a	template
activity	for	the	project.	We	will,	however,	be	using	this	tutorial	to	learn	how	to
create	an	entirely	new	activity	and	corresponding	layout	resource	file	manually,
so	click	Next	once	again	and	make	sure	that	the	Add	No	Activity	option	is
selected	before	clicking	on	Finish	to	create	the	new	project.

20.2	Creating	a	New	Activity
Once	the	project	creation	process	is	complete,	the	Android	Studio	main	window
should	appear	with	no	tool	windows	open.
The	next	step	in	the	project	is	to	create	a	new	activity.	This	will	be	a	valuable
learning	exercise	since	there	are	many	instances	in	the	course	of	developing
Android	applications	where	new	activities	need	to	be	created	from	the	ground
up.

Begin	by	displaying	the	Project	tool	window	using	the	Alt-1	keyboard	shortcut.
Once	displayed,	unfold	the	hierarchy	by	clicking	on	the	right	facing	arrows	next
to	the	entries	in	the	Project	window.	The	objective	here	is	to	gain	access	to	the
app	->	java	->	com.ebookfrenzy.layoutsample	folder	in	the	project	hierarchy.
Once	the	package	name	is	visible,	right-click	on	it	and	select	the	New	->	Activity
->	Empty	Activity	menu	option	as	illustrated	in	Figure	20-1:

Figure	20-1

In	the	resulting	New	Activity	dialog,	name	the	new	activity	LayoutSampleActivity
and	the	layout	activity_layout_sample.	The	activity	will,	of	course,	need	a	layout
resource	file	so	make	sure	that	the	Generate	Layout	File	option	is	enabled.
In	order	for	an	application	to	be	able	to	run	on	a	device	it	needs	to	have	an
activity	designated	as	the	launcher	activity.	Without	a	launcher	activity,	the
operating	system	will	not	know	which	activity	to	start	up	when	the	application
first	launches	and	the	application	will	fail	to	start.	Since	this	example	only	has
one	activity,	it	needs	to	be	designated	as	the	launcher	activity	for	the	application
so	make	sure	that	the	Launcher	Activity	option	is	enabled	before	clicking	on	the
Finish	button.
At	this	point	Android	Studio	should	have	added	two	files	to	the	project.	The	Java
source	code	file	for	the	activity	should	be	located	in	the	app	->	java	->
com.ebookfrenzy.layoutsample	folder.
In	addition,	the	XML	layout	file	for	the	user	interface	should	have	been	created
in	the	app	->	res	->	layout	folder.	Note	that	the	Empty	Activity	template	was
chosen	for	this	activity	so	the	layout	is	contained	entirely	within	the
activity_layout_sample.xml	file	and	there	is	no	separate	content	layout	file.
Finally,	the	new	activity	should	have	been	added	to	the	AndroidManifest.xml	file
and	designated	as	the	launcher	activity.	The	manifest	file	can	be	found	in	the
project	window	under	the	app	->	manifests	folder	and	should	contain	the
following	XML:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.layoutsample">

						

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:roundIcon="@mipmap/ic_launcher_round"

								android:supportsRtl="true"

								android:theme="@style/AppTheme">

								<activity	android:name=".LayoutSampleActivity">

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

					android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

20.3	Preparing	the	Layout	Editor	Environment
Locate	and	double-click	on	the	activity_layout_sample.xml	layout	file	located	in
the	app	->	res	->	layout	folder	to	load	it	into	the	Layout	Editor	tool.	Since	the
purpose	of	this	tutorial	is	to	gain	experience	with	the	use	of	constraints,	turn	off
the	Autoconnect	feature	using	the	button	located	in	the	Layout	Editor	toolbar.
Once	disabled,	the	button	will	appear	with	a	line	through	as	is	the	case	in	Figure
20-2:

Figure	20-2

The	user	interface	design	will	also	make	use	of	the	ImageView	object	to	display
an	image.	Before	proceeding,	this	image	should	be	added	to	the	project	ready	for
use	later	in	the	chapter.	This	file	is	named	galaxys6.png	and	can	be	found	in	the
project_icons	folder	of	the	sample	code	download	available	from	the	following
URL:
http://www.ebookfrenzy.com/retail/androidstudio23/index.php
Locate	this	image	in	the	file	system	navigator	for	your	operating	system	and
copy	the	image	file.	Right-click	on	the	app	->	res	->	drawable	entry	in	the
Project	tool	window	and	select	Paste	from	the	menu	to	add	the	file	to	the	folder.
When	the	copy	dialog	appears,	click	on	OK	to	accept	the	default	settings.

Figure	20-3

20.4	Adding	the	Widgets	to	the	User	Interface
From	within	the	Images	palette	category,	drag	an	ImageView	object	into	the
center	of	the	display	view.	Note	that	horizontal	and	vertical	dashed	lines	appear

http://www.ebookfrenzy.com/retail/androidstudio23/index.php

indicating	the	center	axes	of	the	display.	When	centered,	release	the	mouse
button	to	drop	the	view	into	position.	Once	placed	within	the	layout,	the
Resources	dialog	will	appear	seeking	the	image	to	be	displayed	within	the	view.
In	the	search	bar	located	at	the	top	of	the	dialog,	enter	“galaxy”	to	locate	the
galaxys6.png	resource	as	illustrated	in	Figure	20-4.

Figure	20-4

Select	the	image	and	click	on	OK	to	assign	it	to	the	ImageView	object.	If
necessary,	adjust	the	size	of	the	ImageView	using	the	resize	handles	and
reposition	it	in	the	center	of	the	layout.	At	this	point	the	layout	should	match
Figure	20-5:

Figure	20-5

Click	and	drag	a	TextView	object	from	the	Widgets	section	of	the	palette	and
position	it	so	that	it	appears	above	the	ImageView	as	illustrated	in	Figure	20-6.
Using	the	Properties	panel,	change	the	textSize	property	to	24sp,	the
textAlignment	setting	to	center	and	the	text	to	“Samsung	Galaxy	S6”.

Figure	20-6

Next,	add	three	Button	widgets	along	the	bottom	of	the	layout	and	set	the	text
properties	of	these	views	to	“Buy	Now”,	“Pricing”	and	“Details”.	The	completed
layout	should	now	match	Figure	20-7:

Figure	20-7

At	this	point,	the	widgets	are	not	sufficiently	constrained	for	the	layout	engine	to
be	able	to	position	and	size	the	widgets	at	runtime.	Were	the	app	to	run	now,	all
of	the	widgets	would	be	positioned	in	the	top	left-hand	corner	of	the	display.
With	the	widgets	added	to	the	layout,	use	the	device	rotation	button	located	in
the	Layout	Editor	toolbar	(indicated	by	the	arrow	in	Figure	20-8)	to	view	the
user	interface	in	landscape	orientation:

Figure	20-8

The	absence	of	constraints	results	in	a	layout	that	fails	to	adapt	to	the	change	in
device	orientation,	leaving	the	content	off	center	and	with	part	of	the	image	and
all	three	buttons	positioned	beyond	the	viewable	area	of	the	screen.	Clearly	some
work	still	needs	to	be	done	to	make	this	into	a	responsive	user	interface.

20.5	Adding	the	Constraints
Constraints	are	the	key	to	creating	layouts	that	can	adapt	to	device	orientation
changes	and	different	screen	sizes.	Begin	by	rotating	the	layout	back	to	portrait
orientation	and	selecting	the	TextView	widget	located	above	the	ImageView.
With	the	widget	selected,	establish	constraints	from	the	left,	right	and	top	sides
of	the	TextView	to	the	corresponding	sides	of	the	parent	ConstraintLayout	as
shown	in	Figure	20-9:

Figure	20-9

With	the	TextView	widget	constrained,	select	the	ImageView	instance	and
establish	opposing	constraints	on	the	left	and	right-hand	sides	with	each
connected	to	the	corresponding	sides	of	the	parent	layout.	Next,	establish	a
constraint	connection	from	the	top	of	the	ImageView	to	the	bottom	of	the
TextView	and	from	the	bottom	of	the	ImageView	to	the	top	of	the	center	Button
widget.	If	necessary,	click	and	drag	the	ImageView	so	that	it	is	still	positioned	in
the	vertical	center	of	the	layout.
With	the	ImageView	still	selected,	use	the	Inspector	in	the	properties	panel	to
change	the	top	and	bottom	margins	on	the	ImageView	to	24	and	8	respectively
and	to	change	both	the	widget	height	and	width	dimension	properties	to	0dp	so
that	the	widget	will	resize	to	match	the	constraints.	These	settings	will	allow	the
layout	engine	to	enlarge	and	reduce	the	size	of	the	ImageView	when	necessary
to	accommodate	layout	changes:

Figure	20-10

Figure	20-11,	shows	the	currently	implemented	constraints	for	the	ImageView	in
relation	to	the	other	elements	in	the	layout:

relation	to	the	other	elements	in	the	layout:

Figure	20-11

The	final	task	is	to	add	constraints	to	the	three	Button	widgets.	For	this	example,
the	buttons	will	be	placed	in	a	chain.	Begin	by	turning	on	Autoconnect	within
the	Layout	Editor	by	clicking	the	toolbar	button	highlighted	in	Figure	20-2.
Next,	click	on	the	Buy	Now	button	and	then	shift-click	on	the	other	two	buttons
so	that	all	three	are	selected.	Right-click	on	the	Buy	Now	button	and	select	the
Center	Horizontally	menu	option	from	the	resulting	menu.	As	discussed	in	the
previous	chapter,	this	is	a	useful	shortcut	for	adding	bi-directional	constraints
between	the	widgets	when	creating	a	chain.	By	default,	the	chain	will	be

displayed	using	the	spread	style	which	is	the	correct	behavior	for	this	example.
Finally,	establish	a	constraint	between	the	bottom	of	the	Buy	Now	button	and	the
bottom	of	the	layout.	Repeat	this	step	for	the	remaining	buttons.
On	completion	of	these	steps	the	buttons	should	be	constrained	as	outlined	in
Figure	20-12:

Figure	20-12

20.6	Testing	the	Layout
With	the	constraints	added	to	the	layout,	rotate	the	screen	into	landscape
orientation	and	verify	that	the	layout	adapts	to	accommodate	the	new	screen
dimensions.
While	the	Layout	Editor	tool	provides	a	useful	visual	environment	in	which	to
design	user	interface	layouts,	when	it	comes	to	testing	there	is	no	substitute	for
testing	the	running	app.	Launch	the	app	on	a	physical	Android	device	or
emulator	session	and	verify	that	the	user	interface	reflects	the	layout	created	in
the	Layout	Editor.	Figure	20-13,	for	example,	shows	the	running	app	in
landscape	orientation:

Figure	20-13

The	very	simple	user	interface	design	is	now	complete.	Designing	a	more
complex	user	interface	layout	is	a	continuation	of	the	steps	outlined	above.
Simply	drag	and	drop	views	onto	the	display,	position,	constrain	and	set
properties	as	needed.

20.7	Using	the	Layout	Inspector
The	hierarchy	of	components	that	make	up	a	user	interface	layout	may	be
viewed	at	any	time	using	the	Layout	Inspector	feature	of	the	Android	Monitor
tool	window.	In	order	to	access	this	information	the	app	must	be	running	on	a
device	or	emulator.	Once	the	app	is	running,	select	the	Android	Monitor	tool
window	tab	(marked	A	in	Figure	20-14)	and,	once	displayed,	click	on	the	Layout
Inspector	button	(B)	to	display	the	inspector	panels.
The	left	most	panel	(C)	shows	the	hierarchy	of	components	that	make	up	the
user	interface	layout.	The	center	panel	(D)	shows	a	visual	representation	of	the
layout	design.	Clicking	on	a	widget	in	the	visual	layout	will	cause	that	item	to
highlight	in	the	hierarchy	list	making	it	easy	to	find	where	a	visual	component	is
situated	relative	to	the	overall	layout	hierarchy.
Finally,	the	rightmost	panel	(marked	E	in	Figure	20-14)	contains	all	of	the
property	settings	for	the	currently	selected	component,	allowing	for	in-depth
analysis	of	the	component’s	internal	configuration.

Figure	20-14

20.8	Using	the	Hierarchy	Viewer
Another	useful	tool	for	closely	inspecting	the	view	hierarchy	of	an	activity	is	the
Hierarchy	Viewer.	The	main	purpose	of	the	tool	is	to	provide	a	detailed
overview	of	the	entire	view	tree	for	activities	within	currently	running
applications	and	to	provide	some	insight	into	the	layout	rendering	performance.
The	hierarchy	viewer	can	only	be	used	to	inspect	applications	that	are	either
running	within	an	Android	emulator,	or	on	a	device	running	a	development
version	of	Android.	To	run	the	tool	on	the	LayoutSample	application	created	in
this	chapter,	launch	the	application	on	an	Android	Virtual	Device	emulator	and

wait	until	it	has	loaded	and	is	visible	on	the	emulator	display.	Once	running,
select	the	Tools	->	Android	->	Android	Device	Monitor	menu	option.	In	the
DDMS	window,	select	the	Window	->	Open	Perspective…	menu	option	and
choose	Hierarchy	View	from	the	resulting	dialog	before	clicking	on	the	OK
button.
When	the	Hierarchy	Viewer	appears,	it	will	consist	of	a	number	of	different
panels.	The	left-hand	panel,	illustrated	in	Figure	20-15,	lists	all	the	windows
currently	active	on	the	device	or	emulator	such	as	the	navigation	bar,	status	bar
and	launcher.	The	window	listed	in	bold	is	the	current	foreground	window,
which	should,	in	this	case,	be	LayoutSampleActivity.

Figure	20-15

Double-clicking	on	the	layout	sample	window	will	cause	the	hierarchy	to	load
into	the	Tree	View	panel	as	shown	in	Figure	20-16	(note	that	there	may	be	a
short	delay	between	selection	of	the	window	and	the	hierarchy	diagram
appearing):

Figure	20-16

While	it	is	possible	to	zoom	in	and	out	of	the	tree	view	using	the	scale	at	the
bottom	of	the	panel	or	by	spinning	the	mouse	wheel,	in	most	cases	the	tree	will
be	too	large	to	view	entirely	within	the	Tree	View	panel.	To	move	the	view
window	around	the	tree	simply	click	and	drag	in	the	Tree	View	panel,	or	move
the	lens	within	the	Tree	Overview	panel	(Figure	20-17):

Figure	20-17

When	reviewing	the	tree	view,	keep	in	mind	that	some	views	in	addition	to	those
included	in	the	activity	layout	will	be	displayed.	These	are	the	views	and	layouts
that,	for	example,	display	the	action	bar	across	the	top	of	the	screen	and	provide
an	area	for	the	activity	to	be	displayed.
Selecting	a	node	in	the	Tree	View	will	cause	the	corresponding	element	in	the
user	interface	representation	to	be	highlighted	in	red	in	the	Layout	View.	In
Figure	20-18	the	ConstraintLayout	view	is	currently	selected:

Figure	20-18

Similarly,	selecting	views	from	the	Layout	View	will	cause	the	corresponding

Similarly,	selecting	views	from	the	Layout	View	will	cause	the	corresponding
node	in	the	Tree	View	to	highlight	and	move	into	view.
Additional	information	about	a	view	can	be	obtained	by	selecting	the	node
within	the	Tree	View.	A	panel	will	then	popup	next	to	the	node	and	can	be
dismissed	by	performing	a	right-click	on	the	node.	Double-clicking	on	a	node
will	display	a	dialog	containing	a	rendering	of	how	the	view	appears	within	the
application	user	interface.	Figure	20-19,	for	example,	shows	a	button	from	the
LayoutSample	application:

Figure	20-19

Options	are	also	available	within	the	tool	to	perform	tasks	such	as	invalidating	a
selected	layout	view	(thereby	forcing	it	to	be	redrawn)	and	to	save	the	tree	view
as	a	PNG	image	file.	The	hierarchy	viewer	can	also	be	used	to	display
information	about	the	speed	with	which	the	child	views	of	a	selected	node	are
rendered	when	the	user	interface	is	created.	To	display	this	performance
information,	select	the	node	to	act	as	the	root	view	and	click	on	the	toolbar
button	indicated	in	Figure	20-20.

Figure	20-20

When	enabled,	the	colored	dots	within	the	nodes	indicate	the	performance	in
each	category	(measure,	layout	and	draw)	with	red	indicating	slower
performance	for	the	view	relative	to	other	views	in	the	activity.	Container	views
with	larger	numbers	of	child	views	may	display	red	status	simply	because	the
view	has	to	wait	for	each	child	to	render.	This	is	not	necessarily	an	indication	of
a	performance	problem	with	that	view.

Figure	20-21

20.9	Summary
The	Layout	Editor	tool	in	Android	Studio	has	been	tightly	integrated	with	the
ConstraintLayout	class	introduced	in	Android	7.	This	chapter	has	worked
through	the	creation	of	an	example	user	interface	intended	to	outline	the	ways	in
which	a	ConstraintLayout-based	user	interface	can	be	implemented	using	the
Layout	Editor	tool	in	terms	of	adding	widgets	and	setting	constraints.	This
chapter	also	introduced	the	Layout	Inspector	and	Hierarchy	Viewer	tools,	both
of	which	are	useful	for	analyzing	the	structural	composition	of	a	user	interface
layout.

21.	Manual	XML	Layout	Design	in
Android	Studio
While	the	design	of	layouts	using	the	Android	Studio	Layout	Editor	tool	greatly
improves	productivity,	it	is	still	possible	to	create	XML	layouts	by	manually
editing	the	underlying	XML.	This	chapter	will	introduce	the	basics	of	the
Android	XML	layout	file	format.

21.1	Manually	Creating	an	XML	Layout
The	structure	of	an	XML	layout	file	is	actually	quite	straightforward	and	follows
the	hierarchical	approach	of	the	view	tree.	The	first	line	of	an	XML	resource	file
should	ideally	include	the	following	standard	declaration:

<?xml	version="1.0"	encoding="utf-8"?>

This	declaration	should	be	followed	by	the	root	element	of	the	layout,	typically	a
container	view	such	as	a	layout	manager.	This	is	represented	by	both	opening
and	closing	tags	and	any	properties	that	need	to	be	set	on	the	view.	The
following	XML,	for	example,	declares	a	ConstraintLayout	view	as	the	root
element,	assigns	the	ID	activity_main	and	sets	match_parent	properties	such	that
it	fills	all	the	available	space	of	the	device	display:

<android.support.constraint.ConstraintLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:id="@+id/activity_main"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingLeft="16dp"

				android:paddingRight="16dp"

				android:paddingTop="16dp"

				android:paddingBottom="16dp"

				tools:context="com.ebookfrenzy.myapplication.MainActivity">

</android.support.constraint.ConstraintLayout>

Note	that	the	layout	element	is	also	configured	with	padding	on	each	side	of
16dp	(density	independent	pixels).	Any	specification	of	spacing	in	an	Android
layout	must	be	specified	using	one	of	the	following	units	of	measurement:
·									in	–	Inches.

·									mm	–	Millimeters.
·									pt	–	Points	(1/72	of	an	inch).
·									dp	–	Density-independent	pixels.	An	abstract	unit	of	measurement	based	on

the	physical	density	of	the	device	display	relative	to	a	160dpi	display
baseline.

·									sp	–	Scale-independent	pixels.	Similar	to	dp	but	scaled	based	on	the	user’s
font	preference.

·									px	–	Actual	screen	pixels.	Use	is	not	recommended	since	different	displays
will	have	different	pixels	per	inch.	Use	dp	in	preference	to	this	unit.

Any	children	that	need	to	be	added	to	the	ConstraintLayout	parent	must	be
nested	within	the	opening	and	closing	tags.	In	the	following	example	a	Button
widget	has	been	added	as	a	child	of	the	ConstraintLayout:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:id="@+id/activity_main"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingLeft="16dp"

				android:paddingRight="16dp"

				android:paddingTop="16dp"

				android:paddingBottom="16dp"

				tools:context="com.ebookfrenzy.myapplication.MainActivity">

				<Button

								android:text="Button"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:id="@+id/button"	/>

</android.support.constraint.ConstraintLayout>

As	currently	implemented,	the	button	has	no	constraint	connections.	At	runtime,
therefore,	the	button	will	appear	in	the	top	left-hand	corner	of	the	screen	(though
indented	16dp	by	the	padding	assigned	to	the	parent	layout).	If	opposing
constraints	are	added	to	the	sides	of	the	button,	however,	it	will	appear	centered
within	the	layout:

<Button

				android:text="Button"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button"

				app:layout_constraintLeft_toLeftOf="@+id/activity_main"

				app:layout_constraintTop_toTopOf="@+id/activity_main"

				app:layout_constraintRight_toRightOf="@+id/activity_main"

				app:layout_constraintBottom_toBottomOf="@+id/activity_main"

/>

Note	that	each	of	the	constraints	is	attached	to	the	element	named	activity_main
which	is,	in	this	case,	the	parent	ConstraintLayout	instance.
To	add	a	second	widget	to	the	layout,	simply	embed	it	within	the	body	of
ConstraintLayout	element.	The	following	modification,	for	example,	adds	a
TextView	widget	to	the	layout:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:id="@+id/activity_main"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:paddingLeft="16dp"

				android:paddingRight="16dp"

				android:paddingTop="16dp"

				android:paddingBottom="16dp"

				tools:context="com.ebookfrenzy.myapplication.MainActivity">

				<Button

								android:text="Button"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:id="@+id/button"

								app:layout_constraintLeft_toLeftOf="@+id/activity_main"

								app:layout_constraintTop_toTopOf="@+id/activity_main"

							

app:layout_constraintRight_toRightOf="@+id/activity_main"

							

app:layout_constraintBottom_toBottomOf="@+id/activity_main"	/>

				<TextView

								android:text="TextView"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:id="@+id/textView"	/>

			

</android.support.constraint.ConstraintLayout>

Once	again,	the	absence	of	constraints	on	the	newly	added	TextView	will	cause
it	to	appear	in	the	top	left-hand	corner	of	the	layout	at	runtime.	The	following
modifications	add	opposing	constraints	connected	to	the	parent	layout	to	center
the	widget	horizontally,	together	with	a	constraint	connecting	the	bottom	of	the
TextView	to	the	top	of	the	button	with	a	margin	of	72dp:

<TextView

				android:text="TextView"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/textView"

				app:layout_constraintLeft_toLeftOf="@+id/activity_main"

				app:layout_constraintRight_toRightOf="@+id/activity_main"

				app:layout_constraintBottom_toTopOf="@+id/button"

				android:layout_marginBottom="72dp"	/>

Also,	note	that	the	Button	and	TextView	views	have	a	number	of	properties
declared.	Both	views	have	been	assigned	IDs	and	configured	to	display	text
strings	represented	by	string	resources	named	button_string	and	text_string
respectively.	Additionally,	the	wrap_content	height	and	width	properties	have
been	declared	on	both	objects	so	that	they	are	sized	to	accommodate	the	content
(in	this	case	the	text	referenced	by	the	string	resource	value).
Viewed	from	within	the	Preview	panel	of	the	Layout	Editor	in	Text	mode,	the
above	layout	will	be	rendered	as	shown	in	Figure	21-1:

Figure	21-1

21.2	Manual	XML	vs.	Visual	Layout	Design
When	to	write	XML	manually	as	opposed	to	using	the	Layout	Editor	tool	in
design	mode	is	a	matter	of	personal	preference.	There	are,	however,	advantages
to	using	design	mode.
First,	design	mode	will	generally	be	quicker	given	that	it	avoids	the	necessity	to
type	lines	of	XML.	Additionally,	design	mode	avoids	the	need	to	learn	the
intricacies	of	the	various	property	values	of	the	Android	SDK	view	classes.
Rather	than	continually	refer	to	the	Android	documentation	to	find	the	correct
keywords	and	values,	most	properties	can	be	located	by	referring	to	the
Properties	panel.
All	the	advantages	of	design	mode	aside,	it	is	important	to	keep	in	mind	that	the
two	approaches	to	user	interface	design	are	in	no	way	mutually	exclusive.	As	an
application	developer,	it	is	quite	likely	that	you	will	end	up	creating	user
interfaces	within	design	mode	while	performing	fine-tuning	and	layout	tweaks	of
the	design	by	directly	editing	the	generated	XML	resources.	Both	views	of	the

the	design	by	directly	editing	the	generated	XML	resources.	Both	views	of	the
interface	design	are,	after	all,	displayed	side	by	side	within	the	Android	Studio
environment	making	it	easy	to	work	seamlessly	on	both	the	XML	and	the	visual
layout.

21.3	Summary
The	Android	Studio	Layout	Editor	tool	provides	a	visually	intuitive	method	for
designing	user	interfaces.	Using	a	drag	and	drop	paradigm	combined	with	a	set
of	property	editors,	the	tool	provides	considerable	productivity	benefits	to	the
application	developer.
User	interface	designs	may	also	be	implemented	by	manually	writing	the	XML
layout	resource	files,	the	format	of	which	is	well	structured	and	easily
understood.
The	fact	that	the	Layout	Editor	tool	generates	XML	resource	files	means	that
these	two	approaches	to	interface	design	can	be	combined	to	provide	a	“best	of
both	worlds”	approach	to	user	interface	development.

22.	Managing	Constraints	using	Constraint	Sets

Up	until	this	point	in	the	book,	all	user	interface	design	tasks	have	been
performed	using	the	Android	Studio	Layout	Editor	tool,	either	in	text	or	design
mode.	An	alternative	to	writing	XML	resource	files	or	using	the	Android	Studio
Layout	Editor	is	to	write	Java	code	to	directly	create,	configure	and	manipulate
the	view	objects	that	comprise	the	user	interface	of	an	Android	activity.	Within
the	context	of	this	chapter,	we	will	explore	some	of	the	advantages	and
disadvantages	of	writing	Java	code	to	create	a	user	interface	before	describing
some	of	the	key	concepts	such	as	view	properties	and	the	creation	and
management	of	layout	constraints.
In	the	next	chapter,	an	example	project	will	be	created	and	used	to	demonstrate
some	of	the	typical	steps	involved	in	this	approach	to	Android	user	interface
creation.

22.1	Java	Code	vs.	XML	Layout	Files
There	are	a	number	of	key	advantages	to	using	XML	resource	files	to	design	a
user	interface	as	opposed	to	writing	Java	code.	In	fact,	Google	goes	to
considerable	lengths	in	the	Android	documentation	to	extol	the	virtues	of	XML
resources	over	Java	code.	As	discussed	in	the	previous	chapter,	one	key
advantage	to	the	XML	approach	includes	the	ability	to	use	the	Android	Studio
Layout	Editor	tool,	which,	itself,	generates	XML	resources.	A	second	advantage
is	that	once	an	application	has	been	created,	changes	to	user	interface	screens
can	be	made	by	simply	modifying	the	XML	file,	thereby	avoiding	the	necessity
to	recompile	the	application.	Also,	even	when	hand	writing	XML	layouts,	it	is
possible	to	get	instant	feedback	on	the	appearance	of	the	user	interface	using	the
preview	feature	of	the	Android	Studio	Layout	Editor	tool.	In	order	to	test	the
appearance	of	a	Java	created	user	interface	the	developer	will,	inevitably,
repeatedly	cycle	through	a	loop	of	writing	code,	compiling	and	testing	in	order
to	complete	the	design	work.
In	terms	of	the	strengths	of	the	Java	coding	approach	to	layout	creation,	perhaps
the	most	significant	advantage	that	Java	has	over	XML	resource	files	comes	into
play	when	dealing	with	dynamic	user	interfaces.	XML	resource	files	are
inherently	most	useful	when	defining	static	layouts,	in	other	words	layouts	that
are	unlikely	to	change	significantly	from	one	invocation	of	an	activity	to	the
next.	Java	code,	on	the	other	hand,	is	ideal	for	creating	user	interfaces
dynamically	at	runtime.	This	is	particularly	useful	in	situations	where	the	user

dynamically	at	runtime.	This	is	particularly	useful	in	situations	where	the	user
interface	may	appear	differently	each	time	the	activity	executes	subject	to
external	factors.
A	knowledge	of	working	with	user	interface	components	in	Java	code	can	also
be	useful	when	dynamic	changes	to	a	static	XML	resource	based	layout	need	to
be	performed	in	real-time	as	the	activity	is	running.
Finally,	some	developers	simply	prefer	to	write	Java	code	than	to	use	layout
tools	and	XML,	regardless	of	the	advantages	offered	by	the	latter	approaches.

22.2	Creating	Views
As	previously	established,	the	Android	SDK	includes	a	toolbox	of	view	classes
designed	to	meet	most	of	the	basic	user	interface	design	needs.	The	creation	of	a
view	in	Java	is	simply	a	matter	of	creating	instances	of	these	classes,	passing
through	as	an	argument	a	reference	to	the	activity	with	which	that	view	is	to	be
associated.
The	first	view	(typically	a	container	view	to	which	additional	child	views	can	be
added)	is	displayed	to	the	user	via	a	call	to	the	setContentView()	method	of	the
activity.	Additional	views	may	be	added	to	the	root	view	via	calls	to	the	object’s
addView()	method.
When	working	with	Java	code	to	manipulate	views	contained	in	XML	layout
resource	files,	it	is	necessary	to	obtain	the	ID	of	the	view.	The	same	rule	holds
true	for	views	created	in	Java.	As	such,	it	is	necessary	to	assign	an	ID	to	any
view	for	which	certain	types	of	access	will	be	required	in	subsequent	Java	code.
This	is	achieved	via	a	call	to	the	setId()	method	of	the	view	object	in	question.	In
later	code,	the	ID	for	a	view	may	be	obtained	via	a	subsequent	call	to	the
object’s	getId()	method.

22.3	View	Properties
Each	view	class	has	associated	with	it	a	range	of	properties.	These	property
settings	are	set	directly	on	the	view	instances	and	generally	define	how	the	view
object	will	appear	or	behave.	Examples	of	properties	are	the	text	that	appears	on
a	Button	object,	or	the	background	color	of	a	ConstraintLayout	view.	Each	view
class	within	the	Android	SDK	has	a	pre-defined	set	of	methods	that	allow	the
user	to	set	and	get	these	property	values.	The	Button	class,	for	example,	has	a
setText()	method	which	can	be	called	from	within	Java	code	to	set	the	text
displayed	on	the	button	to	a	specific	string	value.	The	background	color	of	a
ConstraintLayout	object,	on	the	other	hand,	can	be	set	with	a	call	to	the	object’s
setBackgroundColor()	method.

22.4	Constraint	Sets
While	property	settings	are	internal	to	view	objects	and	dictate	how	a	view
appears	and	behaves,	constraint	sets	are	used	to	control	how	a	view	appears
relative	to	its	parent	view	and	other	sibling	views.	Every	ConstraintLayout
instance	has	associated	with	it	a	set	of	constraints	that	define	how	its	child	views
are	positioned	and	constrained.
The	key	to	working	with	constraint	sets	in	Java	code	is	the	ConstraintSet	class.
This	class	contains	a	range	of	methods	that	allow	tasks	such	as	creating,
configuring	and	applying	constraints	to	a	ConstraintLayout	instance.	In	addition,
the	current	constraints	for	a	ConstraintLayout	instance	may	be	copied	into	a
ConstraintSet	object	and	used	to	apply	the	same	constraints	to	other	layouts
(with	or	without	modifications).
A	ConstraintSet	instance	is	created	just	like	any	other	Java	object:

ConstraintSet	set	=	new	ConstraintSet();

Once	a	constraint	set	has	been	created,	methods	can	be	called	on	the	instance	to
perform	a	wide	range	of	tasks.

22.4.1	Establishing	Connections
The	connect()	method	of	the	ConstraintSet	class	is	used	to	establish	constraint
connections	between	views.	The	following	code	configures	a	constraint	set	in
which	the	left-hand	side	of	a	Button	view	is	connected	to	the	right-hand	side	of
an	EditText	view	with	a	margin	of	70dp:

set.connect(button1.getId(),	ConstraintSet.LEFT,

														editText1.getId(),	ConstraintSet.RIGHT,	70);

22.4.2	Applying	Constraints	to	a	Layout
Once	the	constraint	set	is	configured,	it	must	be	applied	to	a	ConstraintLayout
instance	before	it	will	take	effect.	A	constraint	set	is	applied	via	a	call	to	the
applyTo()	method,	passing	through	a	reference	to	the	layout	object	to	which	the
settings	are	to	be	applied:

set.applyTo(myLayout);

22.4.3	Parent	Constraint	Connections
Connections	may	also	be	established	between	a	child	view	and	its	parent
ConstraintLayout	by	referencing	the	ConstraintSet.PARENT_ID	constant.	In	the
following	example,	the	constraint	set	is	configured	to	connect	the	top	edge	of	a
Button	view	to	the	top	of	the	parent	layout	with	a	margin	of	100dp:

set.connect(button1.getId(),	ConstraintSet.TOP,

																		ConstraintSet.PARENT_ID,	ConstraintSet.TOP,

100);

22.4.4	Sizing	Constraints
A	number	of	methods	are	available	for	controlling	the	sizing	behavior	of	views.
The	following	code,	for	example,	sets	the	horizontal	size	of	a	Button	view	to
wrap_content	and	the	vertical	size	of	an	ImageView	instance	to	a	maximum	of
250dp:

set.constrainWidth(button1.getId(),

ConstraintSet.WRAP_CONTENT);

set.constrainMaxHeight(imageView1.getId(),	250);

22.4.5	Constraint	Bias
As	outlined	in	the	chapter	entitled	A	Guide	to	using	ConstraintLayout	in	Android
Studio,	when	a	view	has	opposing	constraints	it	is	centered	along	the	axis	of	the
constraints	(i.e.	horizontally	or	vertically).	This	centering	can	be	adjusted	by
applying	a	bias	along	the	particular	axis	of	constraint.	When	using	the	Android
Studio	Layout	Editor,	this	is	achieved	using	the	controls	in	the	properties	tool
window.	When	working	with	a	constraint	set,	however,	bias	can	be	added	using
the	setHorizontalBias()	and	setVerticalBias()	methods,	referencing	the	view	ID
and	the	bias	as	a	floating	point	value	between	0	and	1.
The	following	code,	for	example,	constrains	the	left	and	right-hand	sides	of	a
Button	to	the	corresponding	sides	of	the	parent	layout	before	applying	a	25%
horizontal	bias:

set.connect(button1.getId(),	ConstraintSet.LEFT,

																ConstraintSet.PARENT_ID,	ConstraintSet.LEFT,

0);

set.connect(button1.getId(),	ConstraintSet.RIGHT,

																ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,

0);

set.setHorizontalBias(button1.getId(),	0.25f);

22.4.6	Alignment	Constraints
Alignments	may	also	be	applied	using	a	constraint	set.	The	full	set	of	alignment
options	available	with	the	Android	Studio	Layout	Editor	may	also	be	configured
using	a	constraint	set	via	the	centerVertically()	and	centerHorizontally()
methods,	both	of	which	take	a	variety	of	arguments	depending	on	the	alignment
being	configured.	In	addition,	the	center()	method	may	be	used	to	center	a	view
between	two	other	views.
In	the	code	below,	button2	is	positioned	so	that	it	is	aligned	horizontally	with

In	the	code	below,	button2	is	positioned	so	that	it	is	aligned	horizontally	with
button1:

set.centerHorizontally(button2.getId(),	button1.getId());

22.4.7	Copying	and	Applying	Constraint	Sets
The	current	constraint	set	for	a	ConstraintLayout	instance	may	be	copied	into	a
constraint	set	object	using	the	clone()	method.	The	following	line	of	code,	for
example,	copies	the	constraint	settings	from	a	ConstraintLayout	instance	named
myLayout	into	a	constraint	set	object:

set.clone(myLayout);

Once	copied,	the	constraint	set	may	be	applied	directly	to	another	layout	or,	as	in
the	following	example,	modified	before	being	applied	to	the	second	layout:

ConstraintSet	set	=	new	ConstraintSet();

set.clone(myLayout);

set.constrainWidth(button1.getId(),

ConstraintSet.WRAP_CONTENT);

set.applyTo(mySecondLayout);

22.4.8	ConstraintLayout	Chains
Vertical	and	horizontal	chains	may	also	be	created	within	a	constraint	set	using
the	createHorizontalChain()	and	createVerticalChain()	methods.	The	syntax	for
using	these	methods	is	as	follows:

createHorizontalChain(int	leftId,	int	leftSide,	int	rightId,

					int	rightSide,	int[]	chainIds,	float[]	weights,	int

style);

createVerticalChain(int	topId,	int	topSide,	int	bottomId,

					int	bottomSide,	int[]	chainIds,	float[]	weights,	int

style)

Based	on	the	above	syntax,	the	following	example	creates	a	horizontal	spread
chain	that	starts	with	button1	and	ends	with	button4.	In	between	these	views	are
button2	and	button3	with	weighting	set	to	zero	for	both:

int[]	chainViews	=	{button2.getId(),	button3.getId()};

float[]	chainWeights	=	{0,	0};

set.createHorizontalChain(button1.getId(),	ConstraintSet.LEFT,

																										button4.getId(),	ConstraintSet.RIGHT,

																										chainViews,	chainWeights,

																										ConstraintSet.CHAIN_SPREAD);

A	view	can	be	removed	from	a	chain	by	passing	the	ID	of	the	view	to	be
removed	through	to	either	the	removeFromHorizontalChain()	or
removeFromVerticalChain()	methods.	A	view	may	be	added	to	an	existing	chain
using	either	the	addToHorizontalChain()	or	addToVerticalChain()	methods.	In
both	cases	the	methods	take	as	arguments	the	IDs	of	the	views	between	which
the	new	view	is	to	be	inserted	as	follows:

set.addToHorizontalChain	(newViewId,	leftViewId,	rightViewId);

22.4.9	Guidelines
Guidelines	are	added	to	a	constraint	set	using	the	create()	method	and	then
positioned	using	the	setGuidelineBegin(),	setGuidelineEnd()	or
setGuidelinePercent()	methods.	In	the	following	code,	a	vertical	guideline	is
created	and	positioned	50%	across	the	width	of	the	parent	layout.	The	left	side	of
a	button	view	is	then	connected	to	the	guideline	with	no	margin:

set.create(R.id.myGuidelineId,

ConstraintSet.VERTICAL_GUIDELINE);

set.setGuidelinePercent(R.id.myGuidelineId,	0.5f);

set.connect(button.getId(),	ConstraintSet.LEFT,

											R.id.myGuidelineId,	ConstraintSet.RIGHT,	0);

set.applyTo(layout);

22.4.10	Removing	Constraints
A	constraint	may	be	removed	from	a	view	in	a	constraint	set	using	the	clear()
method,	passing	through	as	arguments	the	view	ID	and	the	anchor	point	for
which	the	constraint	is	to	be	removed:

set.clear(button.getId(),	ConstraintSet.LEFT);

Similarly,	all	of	the	constraints	on	a	view	may	be	removed	in	a	single	step	by
referencing	only	the	view	in	the	clear()	method	call:

set.clear(button.getId()

22.4.11	Scaling
The	scale	of	a	view	within	a	layout	may	be	adjusted	using	the	ConstraintSet
setScaleX()	and	setScaleY()	methods	which	take	as	arguments	the	view	on	which
the	operation	is	to	be	performed	together	with	a	float	value	indicating	the	scale.
In	the	following	code,	a	button	object	is	scaled	to	twice	its	original	width	and
half	the	height:

set.setScaleX(myButton.getId(),	2f);

set.setScaleY(myButton.getId(),	0.5f);

22.4.12	Rotation
A	view	may	be	rotated	on	either	the	X	or	Y	axis	using	the	setRotationX()	and
setRotationY()	methods	respectively	both	of	which	must	be	passed	the	ID	of	the
view	to	be	rotated	and	a	float	value	representing	the	degree	of	rotation	to	be
performed.	The	pivot	point	on	which	the	rotation	is	to	take	place	may	be	defined
via	a	call	to	the	setTransformPivot(),	setTransformPivotX()	and
setTransformPivotY()	methods.	The	following	code	rotates	a	button	view	30
degrees	on	the	Y	axis	using	a	pivot	point	located	at	point	500,	500:

set.setTransformPivot(button.getId(),	500,	500);

set.setRotationY(button.getId(),	30);

set.applyTo(layout);

Having	covered	the	theory	of	constraint	sets	and	user	interface	creation	from
within	Java	code,	the	next	chapter	will	work	through	the	creation	of	an	example
application	with	the	objective	of	putting	this	theory	into	practice.	For	more
details	on	the	ConstraintSet	class,	refer	to	the	reference	guide	at	the	following
URL:
https://developer.android.com/reference/android/support/constraint/ConstraintSet.html

22.5	Summary
As	an	alternative	to	writing	XML	layout	resource	files	or	using	the	Android
Studio	Layout	Editor	tool,	Android	user	interfaces	may	also	be	dynamically
created	in	Java	code.
Creating	layouts	in	Java	code	consists	of	creating	instances	of	view	classes	and
setting	properties	on	those	objects	to	define	required	appearance	and	behavior.
How	a	view	is	positioned	and	sized	relative	to	its	ConstraintLayout	parent	view
and	any	sibling	views	is	defined	through	the	use	of	constraint	sets.	A	constraint
set	is	represented	by	an	instance	of	the	ConstraintSet	class	which,	once	created,
can	be	configured	using	a	wide	range	of	method	calls	to	perform	tasks	such	as
establishing	constraint	connections,	controlling	view	sizing	behavior	and
creating	chains.
With	the	basics	of	the	ConstraintSet	class	covered	in	this	chapter,	the	next
chapter	will	work	through	a	tutorial	that	puts	these	features	to	practical	use.

https://developer.android.com/reference/android/support/constraint/ConstraintSet.html

23.	An	Android	ConstraintSet	Tutorial

The	previous	chapter	introduced	the	basic	concepts	of	creating	and	modifying
user	interface	layouts	in	Java	code	using	the	ConstraintLayout	and	ConstraintSet
classes.	This	chapter	will	take	these	concepts	and	put	them	into	practice	through
the	creation	of	an	example	layout	created	entirely	in	Java	code	and	without	using
the	Android	Studio	Layout	Editor	tool.

23.1	Creating	the	Example	Project	in	Android	Studio
Launch	Android	Studio	and	select	the	Start	a	new	Android	Studio	project	option
from	the	quick	start	menu	in	the	welcome	screen.
In	the	new	project	configuration	dialog,	enter	JavaLayout	into	the	Application
name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting	before	clicking
on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
JavaLayoutActivity	with	a	corresponding	layout	named	activity_java_layout.
Once	the	project	has	been	created,	the	JavaLayoutActivity.java	file	should
automatically	load	into	the	editing	panel.	As	we	have	come	to	expect,	Android
Studio	has	created	a	template	activity	and	overridden	the	onCreate()	method,
providing	an	ideal	location	for	Java	code	to	be	added	to	create	a	user	interface.

23.2	Adding	Views	to	an	Activity
The	onCreate()	method	is	currently	designed	to	use	a	resource	layout	file	for	the
user	interface.	Begin,	therefore,	by	deleting	this	line	from	the	method:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_java_layout);

}

The	next	modification	to	the	onCreate()	method	is	to	write	some	Java	code	to
add	a	ConstraintLayout	object	with	a	single	Button	view	child	to	the	activity.
This	involves	the	creation	of	new	instances	of	the	ConstraintLayout	and	Button
classes.	The	Button	view	then	needs	to	be	added	as	a	child	to	the
ConstraintLayout	view	which,	in	turn,	is	displayed	via	a	call	to	the

setContentView()	method	of	the	activity	instance:
package	com.ebookfrenzy.javalayout;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.support.constraint.ConstraintSet;

import	android.support.constraint.ConstraintLayout;

import	android.widget.Button;

import	android.widget.EditText;

	

public	class	JavaLayoutActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								Button	myButton	=	new	Button(this);

								ConstraintLayout	myLayout	=	new	ConstraintLayout(this);

								myLayout.addView(myButton);

								setContentView(myLayout);

				}

}

When	new	instances	of	user	interface	objects	are	created	in	this	way,	the
constructor	methods	must	be	passed	the	context	within	which	the	object	is	being
created	which,	in	this	case,	is	the	current	activity.	Since	the	above	code	resides
within	the	activity	class,	the	context	is	simply	referenced	by	the	standard	Java
this	keyword:

Button	myButton	=	new	Button(this);

Once	the	above	additions	have	been	made,	compile	and	run	the	application
(either	on	a	physical	device	or	an	emulator).	Once	launched,	the	visible	result
will	be	a	button	containing	no	text	appearing	in	the	top	left-hand	corner	of	the
ConstraintLayout	view	as	shown	in	Figure	23-1:

Figure	23-1

23.3	Setting	View	Properties
For	the	purposes	of	this	exercise,	we	need	the	background	of	the
ConstraintLayout	view	to	be	blue	and	the	Button	view	to	display	text	that	reads
“Press	Me”	on	a	yellow	background.	Both	of	these	tasks	can	be	achieved	by
setting	properties	on	the	views	in	the	Java	code	as	outlined	in	the	following	code
fragment:

.

.

import	android.graphics.Color;

public	class	JavaLayoutActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								Button	myButton	=	new	Button(this);

								myButton.setText("Press	Me");

								myButton.setBackgroundColor(Color.YELLOW);

								ConstraintLayout	myLayout	=	new	ConstraintLayout(this);

								myLayout.setBackgroundColor(Color.BLUE);

								myLayout.addView(myButton);

								setContentView(myLayout);

				}

}

When	the	application	is	now	compiled	and	run,	the	layout	will	reflect	the
property	settings	such	that	the	layout	will	appear	with	a	blue	background	and	the
button	will	display	the	assigned	text	on	a	yellow	background.

23.4	Creating	View	IDs
When	the	layout	is	complete	it	will	consist	of	a	Button	and	an	EditText	view.
Before	these	views	can	be	referenced	within	the	methods	of	the	ConstraintSet
class,	they	must	be	assigned	unique	view	IDs.	The	first	step	in	this	process	is	to
create	a	new	resource	file	containing	these	ID	values.
Right	click	on	the	app	->	res	->	values	folder,	select	the	New	->	Values
resource	file	menu	option	and	name	the	new	resource	file	id.xml.	With	the
resource	file	created,	edit	it	so	that	it	reads	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<resources>

				<item	name="myButton"	type="id"	/>

				<item	name="myEditText"	type="id"	/>

</resources>

At	this	point	in	the	tutorial,	only	the	Button	has	been	created,	so	edit	the
onCreate()	method	to	assign	the	corresponding	ID	to	the	object:

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				Button	myButton	=	new	Button(this);

				myButton.setText("Press	Me");

				myButton.setBackgroundColor(Color.YELLOW);

				myButton.setId(R.id.myButton);

.

.

}

23.5	Configuring	the	Constraint	Set
In	the	absence	of	any	constraints,	the	ConstraintLayout	view	has	placed	the
Button	view	in	the	top	left	corner	of	the	display.	In	order	to	instruct	the	layout
view	to	place	the	button	in	a	different	location,	in	this	case	centered	both
horizontally	and	vertically,	it	will	be	necessary	to	create	a	ConstraintSet
instance,	initialize	it	with	the	appropriate	settings	and	apply	it	to	the	parent
layout.
For	this	example,	the	button	needs	to	be	configured	so	that	the	width	and	height
are	constrained	to	the	size	of	the	text	it	is	displaying	and	the	view	centered
within	the	parent	layout.	Edit	the	onCreate()	method	once	more	to	make	these
changes:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				Button	myButton	=	new	Button(this);

				myButton.setText("Press	Me");

				myButton.setBackgroundColor(Color.YELLOW);

				myButton.setId(R.id.myButton);

				ConstraintLayout	myLayout	=	new	ConstraintLayout(this);

				myLayout.setBackgroundColor(Color.BLUE);

				myLayout.addView(myButton);

				setContentView(myLayout);

				ConstraintSet	set	=	new	ConstraintSet();

	

				set.constrainHeight(myButton.getId(),

																									ConstraintSet.WRAP_CONTENT);

				set.constrainWidth(myButton.getId(),

																									ConstraintSet.WRAP_CONTENT);

	

				set.connect(myButton.getId(),	ConstraintSet.LEFT,

																		ConstraintSet.PARENT_ID,	ConstraintSet.LEFT,

0);

				set.connect(myButton.getId(),	ConstraintSet.RIGHT,

																		ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,

0);

				set.connect(myButton.getId(),	ConstraintSet.TOP,

																		ConstraintSet.PARENT_ID,	ConstraintSet.TOP,

0);

				set.connect(myButton.getId(),	ConstraintSet.BOTTOM,

																		ConstraintSet.PARENT_ID,

ConstraintSet.BOTTOM,	0);

	

				set.applyTo(myLayout);

}

With	the	initial	constraints	configured,	compile	and	run	the	application	and
verify	that	the	Button	view	now	appears	in	the	center	of	the	layout:

Figure	23-2

23.6	Adding	the	EditText	View

The	next	item	to	be	added	to	the	layout	is	the	EditText	view.	The	first	step	is	to
create	the	EditText	object,	assign	it	the	ID	as	declared	in	the	id.xml	resource	file
and	add	it	to	the	layout.	The	code	changes	to	achieve	these	steps	now	need	to	be
made	to	the	onCreate()	method	as	follows:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				Button	myButton	=	new	Button(this);

				myButton.setText("Press	Me");

				myButton.setBackgroundColor(Color.YELLOW);

				myButton.setId(R.id.myButton);

				EditText	myEditText	=	new	EditText(this);

				myEditText.setId(R.id.myEditText);

				ConstraintLayout	myLayout	=	new	ConstraintLayout(this);

				myLayout.setBackgroundColor(Color.BLUE);

				myLayout.addView(myButton);

				myLayout.addView(myEditText);

				setContentView(myLayout);

.

.

}

The	EditText	widget	is	intended	to	be	sized	subject	to	the	content	it	is
displaying,	centered	horizontally	within	the	layout	and	positioned	70dp	above
the	existing	Button	view.	Add	code	to	the	onCreate()	method	so	that	it	reads	as
follows:

.

.

.

set.connect(myButton.getId(),	ConstraintSet.LEFT,

														ConstraintSet.PARENT_ID,	ConstraintSet.LEFT,	0);

set.connect(myButton.getId(),	ConstraintSet.RIGHT,

														ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,	0);

set.connect(myButton.getId(),	ConstraintSet.TOP,

														ConstraintSet.PARENT_ID,	ConstraintSet.TOP,	0);

set.connect(myButton.getId(),	ConstraintSet.BOTTOM,

														ConstraintSet.PARENT_ID,	ConstraintSet.BOTTOM,

0);

set.constrainHeight(myEditText.getId(),

																									ConstraintSet.WRAP_CONTENT);

set.constrainWidth(myEditText.getId(),

																									ConstraintSet.WRAP_CONTENT);

set.connect(myEditText.getId(),	ConstraintSet.LEFT,

														ConstraintSet.PARENT_ID,	ConstraintSet.LEFT,	0);

set.connect(myEditText.getId(),	ConstraintSet.RIGHT,

														ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,	0);

set.connect(myEditText.getId(),	ConstraintSet.BOTTOM,

														myButton.getId(),	ConstraintSet.TOP,	70);

set.applyTo(myLayout);

A	test	run	of	the	application	should	show	the	EditText	field	centered	above	the
button	with	a	margin	of	70dp.

23.7	Converting	Density	Independent	Pixels	(dp)	to	Pixels	(px)
The	next	task	in	this	exercise	is	to	set	the	width	of	the	EditText	view	to	200dp.
As	outlined	in	the	chapter	entitled	Designing	an	Android	User	Interface	using
the	Graphical	Layout	Tool,	when	setting	sizes	and	positions	in	user	interface
layouts	it	is	better	to	use	density	independent	pixels	(dp)	rather	than	pixels	(px).
In	order	to	set	a	position	using	dp	it	is	necessary	to	convert	a	dp	value	to	a	px
value	at	runtime,	taking	into	consideration	the	density	of	the	device	display.	In
order,	therefore,	to	set	the	width	of	the	EditText	view	to	200dp,	the	following
code	needs	to	be	added	to	the	onCreate()	method:

package	com.ebookfrenzy.javalayout;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.support.constraint.ConstraintLayout;

import	android.support.constraint.ConstraintSet;

import	android.widget.Button;

import	android.widget.EditText;

import	android.graphics.Color;

import	android.content.res.Resources;

import	android.util.TypedValue;

public	class	JavaLayoutActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								Button	myButton	=	new	Button(this);

								myButton.setText("Press	Me");

								myButton.setBackgroundColor(Color.YELLOW);

								myButton.setId(R.id.myButton);

								EditText	myEditText	=	new	EditText(this);

								myEditText.setId(R.id.myEditText);

								Resources	r	=	getResources();

								int	px	=	(int)	TypedValue.applyDimension(

																TypedValue.COMPLEX_UNIT_DIP,	200,

																r.getDisplayMetrics());

	

								myEditText.setWidth(px);

.

.

}

Compile	and	run	the	application	one	more	time	and	note	that	the	width	of	the
EditText	view	has	changed	as	illustrated	in	Figure	23-3:

Figure	23-3

23.8	Summary

The	example	activity	created	in	this	chapter	has,	of	course,	created	a	similar	user
interface	(the	change	in	background	color	and	view	type	notwithstanding)	as	that
created	in	the	earlier	Manual	XML	Layout	Design	in	Android	Studio	chapter.	If
nothing	else,	this	chapter	should	have	provided	an	appreciation	of	the	level	to
which	the	Android	Studio	Layout	Editor	tool	and	XML	resources	shield	the
developer	from	many	of	the	complexities	of	creating	Android	user	interface
layouts.
There	are,	however,	instances	where	it	makes	sense	to	create	a	user	interface	in
Java.	This	approach	is	most	useful,	for	example,	when	creating	dynamic	user
interface	layouts.

24.	An	Overview	and	Example	of
Android	Event	Handling

Much	has	been	covered	in	the	previous	chapters	relating	to	the	design	of	user
interfaces	for	Android	applications.	An	area	that	has	yet	to	be	covered,	however,
involves	the	way	in	which	a	user’s	interaction	with	the	user	interface	triggers	the
underlying	activity	to	perform	a	task.	In	other	words,	we	know	from	the	previous
chapters	how	to	create	a	user	interface	containing	a	button	view,	but	not	how	to
make	something	happen	within	the	application	when	it	is	touched	by	the	user.
The	primary	objective	of	this	chapter,	therefore,	is	to	provide	an	overview	of
event	handling	in	Android	applications	together	with	an	Android	Studio	based
example	project.

24.1	Understanding	Android	Events
Events	in	Android	can	take	a	variety	of	different	forms,	but	are	usually	generated
in	response	to	an	external	action.	The	most	common	form	of	events,	particularly
for	devices	such	as	tablets	and	smartphones,	involve	some	form	of	interaction
with	the	touch	screen.	Such	events	fall	into	the	category	of	input	events.
The	Android	framework	maintains	an	event	queue	into	which	events	are	placed
as	they	occur.	Events	are	then	removed	from	the	queue	on	a	first-in,	first-out
(FIFO)	basis.	In	the	case	of	an	input	event	such	as	a	touch	on	the	screen,	the
event	is	passed	to	the	view	positioned	at	the	location	on	the	screen	where	the
touch	took	place.	In	addition	to	the	event	notification,	the	view	is	also	passed	a
range	of	information	(depending	on	the	event	type)	about	the	nature	of	the	event
such	as	the	coordinates	of	the	point	of	contact	between	the	user’s	fingertip	and
the	screen.
In	order	to	be	able	to	handle	the	event	that	it	has	been	passed,	the	view	must
have	in	place	an	event	listener.	The	Android	View	class,	from	which	all	user
interface	components	are	derived,	contains	a	range	of	event	listener	interfaces,
each	of	which	contains	an	abstract	declaration	for	a	callback	method.	In	order	to
be	able	to	respond	to	an	event	of	a	particular	type,	a	view	must	register	the
appropriate	event	listener	and	implement	the	corresponding	callback.	For
example,	if	a	button	is	to	respond	to	a	click	event	(the	equivalent	to	the	user
touching	and	releasing	the	button	view	as	though	clicking	on	a	physical	button)
it	must	both	register	the	View.onClickListener	event	listener	(via	a	call	to	the

target	view’s	setOnClickListener()	method)	and	implement	the	corresponding
onClick()	callback	method.	In	the	event	that	a	“click”	event	is	detected	on	the
screen	at	the	location	of	the	button	view,	the	Android	framework	will	call	the
onClick()	method	of	that	view	when	that	event	is	removed	from	the	event	queue.
It	is,	of	course,	within	the	implementation	of	the	onClick()	callback	method	that
any	tasks	should	be	performed	or	other	methods	called	in	response	to	the	button
click.

24.2	Using	the	android:onClick	Resource
Before	exploring	event	listeners	in	more	detail	it	is	worth	noting	that	a	shortcut
is	available	when	all	that	is	required	is	for	a	callback	method	to	be	called	when	a
user	“clicks”	on	a	button	view	in	the	user	interface.	Consider	a	user	interface
layout	containing	a	button	view	named	button1	with	the	requirement	that	when
the	user	touches	the	button,	a	method	called	buttonClick()	declared	in	the
activity	class	is	called.	All	that	is	required	to	implement	this	behavior	is	to	write
the	buttonClick()	method	(which	takes	as	an	argument	a	reference	to	the	view
that	triggered	the	click	event)	and	add	a	single	line	to	the	declaration	of	the
button	view	in	the	XML	file.	For	example:

<Button

								android:id="@+id/button1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:onClick="buttonClick"

								android:text="Click	me"	/>

This	provides	a	simple	way	to	capture	click	events.	It	does	not,	however,	provide
the	range	of	options	offered	by	event	handlers,	which	are	the	topic	of	the	rest	of
this	chapter.	When	working	within	Android	Studio	Layout	Editor,	the	onClick
property	can	be	found	and	configured	in	the	Properties	panel	when	a	suitable
view	type	is	selected	in	the	device	screen	layout.

24.3	Event	Listeners	and	Callback	Methods
In	the	example	activity	outlined	later	in	this	chapter	the	steps	involved	in
registering	an	event	listener	and	implementing	the	callback	method	will	be
covered	in	detail.	Before	doing	so,	however,	it	is	worth	taking	some	time	to
outline	the	event	listeners	that	are	available	in	the	Android	framework	and	the
callback	methods	associated	with	each	one.
·									onClickListener	–	Used	to	detect	click	style	events	whereby	the	user	touches

and	then	releases	an	area	of	the	device	display	occupied	by	a	view.

Corresponds	to	the	onClick()	callback	method	which	is	passed	a	reference	to
the	view	that	received	the	event	as	an	argument.

·									onLongClickListener	–	Used	to	detect	when	the	user	maintains	the	touch
over	a	view	for	an	extended	period.	Corresponds	to	the	onLongClick()
callback	method	which	is	passed	as	an	argument	the	view	that	received	the
event.

·									onTouchListener	–	Used	to	detect	any	form	of	contact	with	the	touch	screen
including	individual	or	multiple	touches	and	gesture	motions.	Corresponding
with	the	onTouch()	callback,	this	topic	will	be	covered	in	greater	detail	in	the
chapter	entitled	Android	Touch	and	Multi-touch	Event	Handling.	The
callback	method	is	passed	as	arguments	the	view	that	received	the	event	and	a
MotionEvent	object.

·									onCreateContextMenuListener	–	Listens	for	the	creation	of	a	context	menu
as	the	result	of	a	long	click.	Corresponds	to	the	onCreateContextMenu()
callback	method.	The	callback	is	passed	the	menu,	the	view	that	received	the
event	and	a	menu	context	object.

·									onFocusChangeListener	–	Detects	when	focus	moves	away	from	the	current
view	as	the	result	of	interaction	with	a	track-ball	or	navigation	key.
Corresponds	to	the	onFocusChange()	callback	method	which	is	passed	the
view	that	received	the	event	and	a	Boolean	value	to	indicate	whether	focus
was	gained	or	lost.

·									onKeyListener	–	Used	to	detect	when	a	key	on	a	device	is	pressed	while	a
view	has	focus.	Corresponds	to	the	onKey()	callback	method.	Passed	as
arguments	are	the	view	that	received	the	event,	the	KeyCode	of	the	physical
key	that	was	pressed	and	a	KeyEvent	object.

24.4	An	Event	Handling	Example
In	the	remainder	of	this	chapter,	we	will	work	through	the	creation	of	a	simple
Android	Studio	project	designed	to	demonstrate	the	implementation	of	an	event
listener	and	corresponding	callback	method	to	detect	when	the	user	has	clicked
on	a	button.	The	code	within	the	callback	method	will	update	a	text	view	to
indicate	that	the	event	has	been	processed.
Create	a	new	project	in	Android	Studio,	entering	EventExample	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named

EventExampleActivity	with	corresponding	layout	file	named
activity_event_example.

24.5	Designing	the	User	Interface
The	user	interface	layout	for	the	EventExampleActivity	class	in	this	example	is	to
consist	of	a	ConstraintLayout,	a	Button	and	a	TextView	as	illustrated	in	Figure
24-1.

Figure	24-1

Locate	and	select	the	activity_event_example.xml	file	created	by	Android	Studio
(located	in	the	Project	tool	window	under	app	->	res	->	layouts)	and	double-
click	on	it	to	load	it	into	the	Layout	Editor	tool.
Make	sure	that	Autoconnect	is	enabled,	then	drag	a	Button	widget	from	the
palette	and	move	it	so	that	it	is	positioned	in	the	horizontal	center	of	the	layout
and	beneath	the	existing	TextView	widget.	When	correctly	positioned,	drop	the
widget	into	place	so	that	appropriate	constraints	are	added	by	the	autoconnect
system.

Figure	24-2

With	the	Button	widget	selected,	use	the	Properties	panel	to	set	the	text	property
to	Press	Me.	Using	the	square	red	button	located	in	the	top	right-hand	corner	of
the	Layout	Editor	(Figure	24-3),	display	the	warnings	list	dialog	and	click	the
link	to	extract	the	text	string	on	the	button	to	a	resource	named	press_me:

Figure	24-3

Select	the	“Hello	World!”	TextView	widget	and	use	the	Properties	panel	to	set
the	ID	to	statusText.	Repeat	this	step	to	change	the	ID	of	the	Button	widget	to
myButton.
With	the	user	interface	layout	now	completed,	the	next	step	is	to	register	the
event	listener	and	callback	method.

24.6	The	Event	Listener	and	Callback	Method
For	the	purposes	of	this	example,	an	onClickListener	needs	to	be	registered	for
the	myButton	view.	This	is	achieved	by	making	a	call	to	the
setOnClickListener()	method	of	the	button	view,	passing	through	a	new

onClickListener	object	as	an	argument	and	implementing	the	onClick()	callback
method.	Since	this	is	a	task	that	only	needs	to	be	performed	when	the	activity	is
created,	a	good	location	is	the	onCreate()	method	of	the	EventExampleActivity
class.
If	the	EventExampleActivity.java	file	is	already	open	within	an	editor	session,
select	it	by	clicking	on	the	tab	in	the	editor	panel.	Alternatively	locate	it	within
the	Project	tool	window	by	navigating	to	(app	->	java	->
com.ebookfrenzy.eventexample	->	EventExampleActivity)	and	double-click	on	it
to	load	it	into	the	code	editor.	Once	loaded,	locate	the	template	onCreate()
method	and	modify	it	to	obtain	a	reference	to	the	button	view,	register	the	event
listener	and	implement	the	onClick()	callback	method:

package	com.ebookfrenzy.eventexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.Button;

import	android.widget.TextView;

public	class	EventExample	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_event_example);

								Button	button	=	(Button)findViewById(R.id.myButton);

	

								button.setOnClickListener(

																new	Button.OnClickListener()	{

																				public	void	onClick(View	v)	{

	

																				}

																}

);

				}

.

.

.

}

The	above	code	has	now	registered	the	event	listener	on	the	button	and
implemented	the	onClick()	method.	If	the	application	were	to	be	run	at	this

point,	however,	there	would	be	no	indication	that	the	event	listener	installed	on
the	button	was	working	since	there	is,	as	yet,	no	code	implemented	within	the
body	of	the	onClick()	callback	method.	The	goal	for	the	example	is	to	have	a
message	appear	on	the	TextView	when	the	button	is	clicked,	so	some	further
code	changes	need	to	be	made:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_event_example);

													

							Button	button	=	(Button)findViewById(R.id.myButton);

							

						button.setOnClickListener(

														new	Button.OnClickListener()	{

																						public	void	onClick(View	v)	{

																								TextView	statusText	=

																				

						(TextView)findViewById(R.id.statusText);

																								statusText.setText("Button	clicked");

																						}

														}

);

}

Complete	this	phase	of	the	tutorial	by	compiling	and	running	the	application	on
either	an	AVD	emulator	or	physical	Android	device.	On	touching	and	releasing
the	button	view	(otherwise	known	as	“clicking”)	the	text	view	should	change	to
display	the	“Button	clicked”	text.

24.7	Consuming	Events
The	detection	of	standard	clicks	(as	opposed	to	long	clicks)	on	views	is	a	very
simple	case	of	event	handling.	The	example	will	now	be	extended	to	include	the
detection	of	long	click	events	which	occur	when	the	user	clicks	and	holds	a	view
on	the	screen	and,	in	doing	so,	cover	the	topic	of	event	consumption.
Consider	the	code	for	the	onClick()	method	in	the	above	section	of	this	chapter.
The	callback	is	declared	as	void	and,	as	such,	does	not	return	a	value	to	the
Android	framework	after	it	has	finished	executing.
The	onLongClick()	callback	method	of	the	onLongClickListener	interface,	on	the
other	hand,	is	required	to	return	a	Boolean	value	to	the	Android	framework.	The
purpose	of	this	return	value	is	to	indicate	to	the	Android	runtime	whether	or	not
the	callback	has	consumed	the	event.	If	the	callback	returns	a	true	value,	the

event	is	discarded	by	the	framework.	If,	on	the	other	hand,	the	callback	returns	a
false	value	the	Android	framework	will	consider	the	event	still	to	be	active	and
will	consequently	pass	it	along	to	the	next	matching	event	listener	that	is
registered	on	the	same	view.
As	with	many	programming	concepts	this	is,	perhaps,	best	demonstrated	with	an
example.	The	first	step	is	to	add	an	event	listener	and	callback	method	for	long
clicks	to	the	button	view	in	the	example	activity:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_event_example);

													

							Button	button	=	(Button)findViewById(R.id.myButton);

							

						button.setOnClickListener(

														new	Button.OnClickListener()	{

																						public	void	onClick(View	v)	{

																								TextView	statusText	=

																					(TextView)findViewById(R.id.statusText);

																					statusText.setText("Button	clicked");

																						}

														}

);

							

								button.setOnLongClickListener(

																new	Button.OnLongClickListener()	{

																						public	boolean	onLongClick(View	v)	{

																								TextView	statusText	=

																											

(TextView)findViewById(R.id.statusText);

																								statusText.setText("Long	button

click");

																								return	true;

																}

														}

);

				}

Clearly,	when	a	long	click	is	detected,	the	onLongClick()	callback	method	will
display	“Long	button	click”	on	the	text	view.	Note,	however,	that	the	callback
method	also	returns	a	value	of	true	to	indicate	that	it	has	consumed	the	event.
Run	the	application	and	press	and	hold	the	Button	view	until	the	“Long	button
click”	text	appears	in	the	text	view.	On	releasing	the	button,	the	text	view
continues	to	display	the	“Long	button	click”	text	indicating	that	the	onClick()

callback	method	was	not	called.
Next,	modify	the	code	such	that	the	onLongClick()	method	now	returns	a	false
value:

button.setOnLongClickListener(

																						new	Button.OnLongClickListener()	{

																														public	boolean	onLongClick(View

v)	{

																																					TextView	myTextView	=

(TextView)findViewById(R.id.myTextView);

																														myTextView.setText("Long	button

click");

																														return	false;

																														}

																						}

);

Once	again,	compile	and	run	the	application	and	perform	a	long	click	on	the
button	until	the	long	click	message	appears.	Upon	releasing	the	button	this	time,
however,	note	that	the	onClick()	callback	is	also	triggered	and	the	text	changes
to	“Button	click”.	This	is	because	the	false	value	returned	by	the	onLongClick()
callback	method	indicated	to	the	Android	framework	that	the	event	was	not
consumed	by	the	method	and	was	eligible	to	be	passed	on	to	the	next	registered
listener	on	the	view.	In	this	case,	the	runtime	ascertained	that	the
onClickListener	on	the	button	was	also	interested	in	events	of	this	type	and
subsequently	called	the	onClick()	callback	method.

24.8	Summary
A	user	interface	is	of	little	practical	use	if	the	views	it	contains	do	not	do
anything	in	response	to	user	interaction.	Android	bridges	the	gap	between	the
user	interface	and	the	back	end	code	of	the	application	through	the	concepts	of
event	listeners	and	callback	methods.	The	Android	View	class	defines	a	set	of
event	listeners,	which	can	be	registered	on	view	objects.	Each	event	listener	also
has	associated	with	it	a	callback	method.
When	an	event	takes	place	on	a	view	in	a	user	interface,	that	event	is	placed	into
an	event	queue	and	handled	on	a	first	in,	first	out	basis	by	the	Android	runtime.
If	the	view	on	which	the	event	took	place	has	registered	a	listener	that	matches
the	type	of	event,	the	corresponding	callback	method	is	called.	The	callback
method	then	performs	any	tasks	required	by	the	activity	before	returning.	Some
callback	methods	are	required	to	return	a	Boolean	value	to	indicate	whether	the
event	needs	to	be	passed	on	to	any	other	event	listeners	registered	on	the	view	or
discarded	by	the	system.

discarded	by	the	system.
Having	covered	the	basics	of	event	handling,	the	next	chapter	will	explore	in
some	depth	the	topic	of	touch	events	with	a	particular	emphasis	on	handling
multiple	touches.

25.	A	Guide	to	using	Instant	Run	in
Android	Studio
Now	that	some	of	the	basic	concepts	of	Android	development	using	Android
Studio	have	been	covered,	now	is	a	good	time	to	introduce	the	Android	Studio
Instant	Run	feature.	As	all	experienced	developers	know,	every	second	spent
waiting	for	an	app	to	compile	and	run	is	time	better	spent	writing	and	refining
code.

25.1	Introducing	Instant	Run
Prior	to	the	introduction	of	Instant	Run,	each	time	a	change	to	a	project	needed
to	be	tested	Android	Studio	would	recompile	the	code,	convert	it	to	Dex	format,
generate	the	APK	package	file	and	install	it	on	the	device	or	emulator.	Having
performed	these	steps	the	app	would	finally	be	launched	ready	for	testing.	Even
on	a	fast	development	system	this	is	a	process	that	takes	a	considerable	amount
of	time	to	complete.	It	is	not	uncommon	for	it	to	take	a	minute	or	more	for	this
process	to	complete	for	a	large	application.
Instant	Run,	in	contrast,	allows	many	code	and	resource	changes	within	a	project
to	be	reflected	nearly	instantaneously	within	the	app	while	it	is	already	running
on	a	device	or	emulator	session.
Consider,	for	the	purposes	of	an	example,	an	app	being	developed	in	Android
Studio	which	has	already	been	launched	on	a	device	or	emulator.	If	changes	are
made	to	resource	settings	or	the	code	within	a	method,	Instant	Run	will	push	the
updated	code	and	resources	to	the	running	app	and	dynamically	“swap”	the
changes.	The	changes	are	then	reflected	in	the	running	app	without	the	need	to
build,	deploy	and	relaunch	the	entire	app.	In	many	cases,	this	allows	changes	to
be	tested	in	a	fraction	of	the	time	it	would	take	without	Instant	Run.

25.2	Understanding	Instant	Run	Swapping	Levels
Not	all	project	changes	are	fully	supported	by	Instant	Run	and	different	changes
result	in	a	different	level	of	“swap”	being	performed.	There	are	three	levels	of
Instant	Run	support,	referred	to	as	hot,	warm	and	cold	swapping:
·									Hot	Swapping	–	Hot	swapping	occurs	when	the	code	within	an	existing

method	implementation	is	changed.	The	new	method	implementation	is	used
next		time	it	is	called	by	the	app.	A	hot	swap	occurs	instantaneously	and,	if
configured,	is	accompanied	by	a	toast	message	on	the	device	screen	that	reads

“Applied	code	changes	without	activity	restart”.
·									Warm	Swapping	–	When	a	change	is	made	to	a	resource	file	of	the	project

(for	example	a	layout	change	or	the	modification	of	a	string	or	color	resource
setting)	an	Instant	Run	warm	swap	is	performed.	A	warm	swap	involves	the
restarting	of	the	currently	running	activity.	Typically	the	screen	will	flicker	as
the	activity	restarts.	A	warm	swap	is	reported	on	the	device	screen	by	a	toast
message	that	reads	“Applied	changes,	restarted	activity”.

·									Cold	Swapping	–	Structural	code	changes	such	as	the	addition	of	a	new
method,	a	change	to	the	signature	of	an	existing	method	or	a	change	to	the
class	hierarchy	of	the	project	triggers	a	cold	swap	in	which	the	entire	app	is
restarted.	In	some	conditions,	such	as	the	addition	of	new	image	resources	to
the	project,	the	application	package	file	(APK)	will	also	be	reinstalled	during
the	swap.

25.3	Enabling	and	Disabling	Instant	Run
Instant	Run	is	enabled	and	disabled	via	the	Android	Studio	Settings	screen.	To
view	the	current	settings	begin	by	selecting	the	File	->	Settings…	menu	option.
Within	the	Settings	dialog	select	the	Build,	Execution,	Deployment	entry	in	the
left-hand	panel	followed	by	Instant	Run	as	shown	in	Figure	25-1:

Figure	25-1

The	options	provided	in	the	panel	apply	only	to	the	current	project.	Each	new
project	will	start	with	the	default	settings.	The	first	option	controls	whether	or

not	Instant	Run	is	enabled	by	default	each	time	the	project	is	opened	in	Android
Studio.	The	Restart	activity	on	code	changes	option	forces	Instant	Run	to	restart
the	current	activity	every	time	a	change	is	made,	regardless	of	whether	a	hot
swap	could	have	been	performed.	The	next	option	controls	whether	or	not
messages	are	displayed	within	Android	Studio	and	the	app	indicating	the	type	of
Instant	Run	level	performed.	Finally,	an	option	is	provided	to	allow	additional
log	information	to	be	provided	to	Google	to	help	in	improving	the	reliability	of
the	Instant	Run	feature.

25.4	Using	Instant	Run
When	a	project	has	been	loaded	into	Android	Studio,	but	is	not	yet	running	on	a
device	or	emulator,	it	can	be	launched	as	usual	using	either	the	run	(marked	A	in
Figure	25-2)	or	debug	(B)	button	located	in	the	toolbar:

Figure	25-2

After	the	app	has	launched	and	is	running,	Android	Studio	will	indicate	the
availability	of	Instant	Run	by	enabling	the	Apply	Changes	button	located
immediately	to	the	right	of	the	run	button	as	highlighted	in	Figure	25-3:

Figure	25-3

When	it	is	enabled,	clicking	on	the	Apply	Changes	button	will	use	Instant	Run	to
update	the	running	app.

25.5	An	Instant	Run	Tutorial
Begin	by	launching	Android	Studio	and	creating	a	new	project.	Within	the	New
Project	dialog,	enter	InstantRunDemo	into	the	Application	name	field	and
ebookfrenzy.com	as	the	Company	Domain	setting	before	clicking	on	the	Next
button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	23:	Android	6.0	(Marshmallow).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	a	Basic	Activity	named
InstantRunDemoActivity	with	a	corresponding	layout	named

activity_instant_run_demo.
Click	on	the	Finish	button	to	initiate	the	project	creation	process.

25.6	Triggering	an	Instant	Run	Hot	Swap
Begin	by	clicking	on	the	run	button	and	selecting	a	suitable	emulator	or	physical
device	as	the	run	target.	After	clicking	the	run	button,	track	the	amount	of	time
before	the	example	app	appears	on	the	device	or	emulator.
Once	running,	click	on	the	action	button	(the	button	displaying	an	envelope	icon
located	in	the	lower	right-hand	corner	of	the	screen).	Note	that	a	Snackbar
instance	appears	displaying	text	which	reads	“Replace	with	your	own	action”	as
shown	in	Figure	25-4:

Figure	25-4

Once	the	app	is	running,	the	Apply	Changes	button	should	have	been	enabled
indicating	the	availability	of	Instant	Run.	To	see	this	in	action,	edit	the
InstantRunDemoActivity.java	file,	locate	the	onCreate	method	and	modify	the
action	code	so	that	a	different	message	is	displayed	when	the	action	button	is
selected:

FloatingActionButton	fab	=	(FloatingActionButton)

findViewById(R.id.fab);

fab.setOnClickListener(new	View.OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

								Snackbar.make(view,	"Instant	Run	is	Amazing!",

																														Snackbar.LENGTH_LONG)

																.setAction("Action",	null).show();

				}

});

With	the	code	change	implemented,	click	on	the	Apply	Changes	button	and	note
that	the	toast	message	appears	within	a	few	seconds	indicating	the	app	has	been
updated.	Tap	the	action	button	and	note	that	the	new	message	is	now	displayed

updated.	Tap	the	action	button	and	note	that	the	new	message	is	now	displayed
in	the	Snackbar.	Instant	Run	has	successfully	performed	a	hot	swap.

25.7	Triggering	an	Instant	Run	Warm	Swap
Any	resource	change	should	result	in	Instant	Run	performing	a	warm	swap.
Within	Android	Studio	select	the	app	->	res	->	layout	->
content_instant_run_demo.xml	layout	file.	With	the	Layout	Editor	tool	in	Design
mode,	select	the	ConstraintLayout	view	within	the	Component	Tree	panel,
switch	the	Properties	tool	window	to	expert	mode	and	locate	the	background
property.	Click	on	the	button	displaying	three	dots	next	to	the	background
property	text	field,	select	a	color	from	the	Resources	dialog	and	click	on	OK.
With	the	background	color	of	the	activity	content	modified,	click	on	the	Apply
Changes	button	once	again.	This	time	a	warm	swap	will	be	performed	and	the
currently	running	activity	should	quickly	restart	to	adopt	the	new	background
color	setting.

25.8	Triggering	an	Instant	Run	Cold	Swap
As	previously	described,	a	cold	swap	triggers	a	complete	restart	of	the	running
app.	To	experience	an	Instant	Run	cold	swap,	edit	the
InstantRunDemoActivity.java	file	and	add	a	new	method	after	the	onCreate
method	as	follows:

public	void	demoMethod()	{

							

}

Click	on	the	Apply	Changes	button	and	note	that	the	app	now	has	to	terminate
and	restart	to	accommodate	the	addition	of	the	new	method.	Within	Android
Studio	a	message	will	appear	indicating	that	the	app	was	restarted	due	to	a
method	being	added:

Figure	25-5

25.9	The	Run	Button
When	no	apps	are	running,	the	run	button	appears	as	shown	in	Figure	25-3.
When	an	app	is	running,	however,	an	additional	green	dot	appears	in	the	bottom
right-hand	corner	of	the	button	as	shown	in	Figure	25-6	below:

Figure	25-6

Although	the	Instant	Run	feature	has	improved	significantly	since	being
introduced	it	can	still	occasionally	produce	unexpected	results	when	performing
hot	or	warm	swaps.	It	is	worth	being	aware,	therefore,	that	clicking	the	run
button	when	an	app	is	currently	running	will	force	a	cold	swap	to	be	performed
regardless	of	the	changes	made	to	the	project.

25.10	Summary
Instant	Run	is	a	feature	introduced	with	Android	Studio	2	designed	to
significantly	accelerate	the	code,	build	and	run	cycle.	Using	a	swapping
mechanism,	Instant	Run	is	able	to	push	updates	to	the	running	application,	in
many	cases	without	the	need	to	reinstall	or	even	restart	the	app.	Instant	Run
provides	a	number	of	different	levels	of	support	depending	on	the	nature	of	the
modification	being	applied	to	the	project.	These	levels	are	referred	to	as	hot,
warm	and	cold	swapping.	This	chapter	has	introduced	the	concepts	of	Instant
Run	and	worked	through	some	demonstrations	of	the	different	levels	of
swapping.

26.	Android	Touch	and	Multi-touch	Event	Handling

Most	Android	based	devices	use	a	touch	screen	as	the	primary	interface	between
user	and	device.	The	previous	chapter	introduced	the	mechanism	by	which	a
touch	on	the	screen	translates	into	an	action	within	a	running	Android
application.	There	is,	however,	much	more	to	touch	event	handling	than
responding	to	a	single	finger	tap	on	a	view	object.	Most	Android	devices	can,	for
example,	detect	more	than	one	touch	at	a	time.	Nor	are	touches	limited	to	a
single	point	on	the	device	display.	Touches	can,	of	course,	be	dynamic	as	the
user	slides	one	or	more	points	of	contact	across	the	surface	of	the	screen.
Touches	can	also	be	interpreted	by	an	application	as	a	gesture.	Consider,	for
example,	that	a	horizontal	swipe	is	typically	used	to	turn	the	page	of	an	eBook,
or	how	a	pinching	motion	can	be	used	to	zoom	in	and	out	of	an	image	displayed
on	the	screen.
The	objective	of	this	chapter	is	to	highlight	the	handling	of	touches	that	involve
motion	and	to	explore	the	concept	of	intercepting	multiple	concurrent	touches.
The	topic	of	identifying	distinct	gestures	will	be	covered	in	the	next	chapter.

26.1	Intercepting	Touch	Events
Touch	events	can	be	intercepted	by	a	view	object	through	the	registration	of	an
onTouchListener	event	listener	and	the	implementation	of	the	corresponding
onTouch()	callback	method.	The	following	code,	for	example,	ensures	that	any
touches	on	a	ConstraintLayout	view	instance	named	myLayout	result	in	a	call	to
the	onTouch()	method:

myLayout.setOnTouchListener(

							new	ConstraintLayout.OnTouchListener()	{

														public	boolean	onTouch(View	v,	MotionEvent	m)	{

																						//	Perform	tasks	here				

																											

																						return	true;

														}

							}

);

As	indicated	in	the	code	example,	the	onTouch()	callback	is	required	to	return	a
Boolean	value	indicating	to	the	Android	runtime	system	whether	or	not	the	event
should	be	passed	on	to	other	event	listeners	registered	on	the	same	view	or
discarded.	The	method	is	passed	both	a	reference	to	the	view	on	which	the	event

was	triggered	and	an	object	of	type	MotionEvent.

26.2	The	MotionEvent	Object
The	MotionEvent	object	passed	through	to	the	onTouch()	callback	method	is	the
key	to	obtaining	information	about	the	event.	Information	contained	within	the
object	includes	the	location	of	the	touch	within	the	view	and	the	type	of	action
performed.	The	MotionEvent	object	is	also	the	key	to	handling	multiple	touches.

26.3	Understanding	Touch	Actions
An	important	aspect	of	touch	event	handling	involves	being	able	to	identify	the
type	of	action	performed	by	the	user.	The	type	of	action	associated	with	an	event
can	be	obtained	by	making	a	call	to	the	getActionMasked()	method	of	the
MotionEvent	object	which	was	passed	through	to	the	onTouch()	callback
method.	When	the	first	touch	on	a	view	occurs,	the	MotionEvent	object	will
contain	an	action	type	of	ACTION_DOWN	together	with	the	coordinates	of	the
touch.	When	that	touch	is	lifted	from	the	screen,	an	ACTION_UP	event	is
generated.	Any	motion	of	the	touch	between	the	ACTION_DOWN	and
ACTION_UP	events	will	be	represented	by	ACTION_MOVE	events.
When	more	than	one	touch	is	performed	simultaneously	on	a	view,	the	touches
are	referred	to	as	pointers.	In	a	multi-touch	scenario,	pointers	begin	and	end	with
event	actions	of	type	ACTION_POINTER_DOWN	and
ACTION_POINTER_UP	respectively.	In	order	to	identify	the	index	of	the
pointer	that	triggered	the	event,	the	getActionIndex()	callback	method	of	the
MotionEvent	object	must	be	called.

26.4	Handling	Multiple	Touches
The	chapter	entitled	An	Overview	and	Example	of	Android	Event	Handling
began	exploring	event	handling	within	the	narrow	context	of	a	single	touch
event.	In	practice,	most	Android	devices	possess	the	ability	to	respond	to
multiple	consecutive	touches	(though	it	is	important	to	note	that	the	number	of
simultaneous	touches	that	can	be	detected	varies	depending	on	the	device).
As	previously	discussed,	each	touch	in	a	multi-touch	situation	is	considered	by
the	Android	framework	to	be	a	pointer.	Each	pointer,	in	turn,	is	referenced	by	an
index	value	and	assigned	an	ID.	The	current	number	of	pointers	can	be	obtained
via	a	call	to	the	getPointerCount()	method	of	the	current	MotionEvent	object.
The	ID	for	a	pointer	at	a	particular	index	in	the	list	of	current	pointers	may	be
obtained	via	a	call	to	the	MotionEvent	getPointerId()	method.	For	example,	the
following	code	excerpt	obtains	a	count	of	pointers	and	the	ID	of	the	pointer	at

index	0:
public	boolean	onTouch(View	v,	MotionEvent	m)	{

							int	pointerCount	=	m.getPointerCount();

							int	pointerId	=	m.getPointerId(0);

							return	true;

}

Note	that	the	pointer	count	will	always	be	greater	than	or	equal	to	1	when	an
onTouch()	method	is	called	(since	at	least	one	touch	must	have	occurred	for	the
callback	to	be	triggered).
A	touch	on	a	view,	particularly	one	involving	motion	across	the	screen,	will
generate	a	stream	of	events	before	the	point	of	contact	with	the	screen	is	lifted.
As	such,	it	is	likely	that	an	application	will	need	to	track	individual	touches	over
multiple	touch	events.	While	the	ID	of	a	specific	touch	gesture	will	not	change
from	one	event	to	the	next,	it	is	important	to	keep	in	mind	that	the	index	value
will	change	as	other	touch	events	come	and	go.	When	working	with	a	touch
gesture	over	multiple	events,	therefore,	it	is	essential	that	the	ID	value	be	used	as
the	touch	reference	in	order	to	make	sure	the	same	touch	is	being	tracked.	When
calling	methods	that	require	an	index	value,	this	should	be	obtained	by
converting	the	ID	for	a	touch	to	the	corresponding	index	value	via	a	call	to	the
findPointerIndex()	method	of	the	MotionEvent	object.

26.5	An	Example	Multi-Touch	Application
The	example	application	created	in	the	remainder	of	this	chapter	will	track	up	to
two	touch	gestures	as	they	move	across	a	layout	view.	As	the	events	for	each
touch	are	triggered,	the	coordinates,	index	and	ID	for	each	touch	will	be
displayed	on	the	screen.
Create	a	new	project	in	Android	Studio,	entering	MotionEvent	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
MotionEventActivity	with	a	corresponding	layout	file	named
activity_motion_event.
Click	on	the	Finish	button	to	initiate	the	project	creation	process.

26.6	Designing	the	Activity	User	Interface

The	user	interface	for	the	application’s	sole	activity	is	to	consist	of	a
ConstraintLayout	view	containing	two	TextView	objects.	Within	the	Project	tool
window,	navigate	to	app	->	res	->	layout	and	double-click	on	the
activity_motion_event.xml	layout	resource	file	to	load	it	into	the	Android	Studio
Layout	Editor	tool.
Select	and	delete	the	default	“Hello	World!”	TextView	widget	and	then,	with
autoconnect	enabled,	drag	and	drop	a	new	TextView	widget	so	that	it	is	centered
horizontally	and	positioned	at	the	16dp	margin	line	on	the	top	edge	of	the	layout:

Figure	26-1

Drag	a	second	TextView	widget	and	position	and	constrain	it	so	that	it	is
distanced	by	a	32dp	margin	from	the	bottom	of	the	first	widget:

Figure	26-2

Using	the	Properties	tool	window,	change	the	IDs	for	the	TextView	widgets	to
textView1	and	textView2	respectively.	Change	the	text	displayed	on	the	widgets
to	read	“Touch	One	Status”	and	“Touch	Two	Status”	and	extract	the	strings	to
resources	using	the	red	warning	button	in	the	top	right-hand	corner	of	the	Layout
Editor.

26.7	Implementing	the	Touch	Event	Listener
In	order	to	receive	touch	event	notifications	it	will	be	necessary	to	register	a
touch	listener	on	the	layout	view	within	the	onCreate()	method	of	the
MotionEventActivity	activity	class.	Select	the	MotionEventActivity.java	tab	from
the	Android	Studio	editor	panel	to	display	the	source	code.	Within	the

onCreate()	method,	add	code	to	identify	the	ConstraintLayout	view	object,
register	the	touch	listener	and	implement	the	onTouch()	callback	method	which,
in	this	case,	is	going	to	call	a	second	method	named	handleTouch()	to	which	is
passed	the	MotionEvent	object:

package	com.ebookfrenzy.motionevent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.MotionEvent;

import	android.view.View;

import	android.support.constraint.ConstraintLayout;

import	android.widget.TextView;

public	class	MotionEventActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_motion_event);

								ConstraintLayout	myLayout	=

								

(ConstraintLayout)findViewById(R.id.activity_motion_event);

	

								myLayout.setOnTouchListener(

																new	ConstraintLayout.OnTouchListener()	{

																				public	boolean	onTouch(View	v,

																																						MotionEvent	m)	{

																								handleTouch(m);

																								return	true;

																				}

																}

);			

			}

.

.

.

}

The	final	task	before	testing	the	application	is	to	implement	the	handleTouch()
method	called	by	the	onTouch()	callback	method.	The	code	for	this	method
reads	as	follows:

void	handleTouch(MotionEvent	m)

{

							TextView	textView1	=

(TextView)findViewById(R.id.textView1);

							TextView	textView2	=

(TextView)findViewById(R.id.textView2);

						

							int	pointerCount	=	m.getPointerCount();

						

							for	(int	i	=	0;	i	<	pointerCount;	i++)

							{

														int	x	=	(int)	m.getX(i);

														int	y	=	(int)	m.getY(i);													

														int	id	=	m.getPointerId(i);

														int	action	=	m.getActionMasked();

															int	actionIndex	=	m.getActionIndex();

														String	actionString;

													

													

														switch	(action)

														{

																						case	MotionEvent.ACTION_DOWN:

																														actionString	=	"DOWN";

																														break;

																						case	MotionEvent.ACTION_UP:

																														actionString	=	"UP";

																													break;	

																						case	MotionEvent.ACTION_POINTER_DOWN:

																														actionString	=	"PNTR	DOWN";

																														break;

																						case	MotionEvent.ACTION_POINTER_UP:

																														actionString	=	"PNTR	UP";

																														break;

																						case	MotionEvent.ACTION_MOVE:

																														actionString	=	"MOVE";

																														break;

																						default:

																														actionString	=	"";

														}

													

														String	touchStatus	=	"Action:	"	+	actionString	+

"	Index:	"	+	actionIndex	+	"	ID:	"	+	id	+	"	X:	"	+	x	+	"	Y:	"	+

y;

													

														if	(id	==	0)

																						textView1.setText(touchStatus);

														else

																						textView2.setText(touchStatus);

							}

}

Before	compiling	and	running	the	application,	it	is	worth	taking	the	time	to	walk
through	this	code	systematically	to	highlight	the	tasks	that	are	being	performed.
The	code	begins	by	obtaining	references	to	the	two	TextView	objects	in	the	user
interface	and	identifying	how	many	pointers	are	currently	active	on	the	view:

TextView	textView1	=	(TextView)findViewById(R.id.textView1);

TextView	textView2	=	(TextView)findViewById(R.id.textView2);

						

int	pointerCount	=	m.getPointerCount();

Next,	the	pointerCount	variable	is	used	to	initiate	a	for	loop	which	performs	a
set	of	tasks	for	each	active	pointer.	The	first	few	lines	of	the	loop	obtain	the	X
and	Y	coordinates	of	the	touch	together	with	the	corresponding	event	ID,	action
type	and	action	index.	Lastly,	a	string	variable	is	declared:

for	(int	i	=	0;	i	<	pointerCount;	i++)

{

														int	x	=	(int)	m.getX(i);

														int	y	=	(int)	m.getY(i);													

														int	id	=	m.getPointerId(i);

														int	action	=	m.getActionMasked();

														int	actionIndex	=	m.getActionIndex();

														String	actionString;

Since	action	types	equate	to	integer	values,	a	switch	statement	is	used	to	convert
the	action	type	to	a	more	meaningful	string	value,	which	is	stored	in	the
previously	declared	actionString	variable:

switch	(action)

														{

																						case	MotionEvent.ACTION_DOWN:

																														actionString	=	"DOWN";

																														break;

																						case	MotionEvent.ACTION_UP:

																														actionString	=	"UP";

																														break;	

																						case	MotionEvent.ACTION_POINTER_DOWN:

																														actionString	=	"PNTR	DOWN";

																														break;

																						case	MotionEvent.ACTION_POINTER_UP:

																														actionString	=	"PNTR	UP";

																														break;

																						case	MotionEvent.ACTION_MOVE:

																														actionString	=	"MOVE";

																														break;

																						default:

																														actionString	=	"";

														}

Lastly,	the	string	message	is	constructed	using	the	actionString	value,	the	action
index,	touch	ID	and	X	and	Y	coordinates.	The	ID	value	is	then	used	to	decide
whether	the	string	should	be	displayed	on	the	first	or	second	TextView	object:

String	touchStatus	=	"Action:	"	+	actionString	+	"	Index:	"

									+	actionIndex	+	"	ID:	"	+	id	+	"	X:	"	+	x	+	"	Y:	"	+

y;

													

														if	(id	==	0)

																						textView1.setText(touchStatus);

															else

																						textView2.setText(touchStatus);

26.8	Running	the	Example	Application
Since	the	Android	emulator	environment	does	not	support	multi-touch,	compile
and	run	the	application	on	a	physical	Android	device.	Once	launched,
experiment	with	single	and	multiple	touches	on	the	screen	and	note	that	the	text
views	update	to	reflect	the	events	as	illustrated	in	Figure	26-3:

Figure	26-3

26.9	Summary
Activities	receive	notifications	of	touch	events	by	registering	an
onTouchListener	event	listener	and	implementing	the	onTouch()	callback
method	which,	in	turn,	is	passed	a	MotionEvent	object	when	called	by	the
Android	runtime.	This	object	contains	information	about	the	touch	such	as	the
type	of	touch	event,	the	coordinates	of	the	touch	and	a	count	of	the	number	of
touches	currently	in	contact	with	the	view.
When	multiple	touches	are	involved,	each	point	of	contact	is	referred	to	as	a
pointer	with	each	assigned	an	index	and	an	ID.	While	the	index	of	a	touch	can

pointer	with	each	assigned	an	index	and	an	ID.	While	the	index	of	a	touch	can
change	from	one	event	to	another,	the	ID	will	remain	unchanged	until	the	touch
ends.
This	chapter	has	worked	through	the	creation	of	an	example	Android	application
designed	to	display	the	coordinates	and	action	type	of	up	to	two	simultaneous
touches	on	a	device	display.
Having	covered	touches	in	general,	the	next	chapter	(entitled	Detecting	Common
Gestures	using	the	Android	Gesture	Detector	Class)	will	look	further	at	touch
screen	event	handling	through	the	implementation	of	gesture	recognition.

27.	Detecting	Common	Gestures	using
the	Android	Gesture	Detector	Class

The	term	“gesture”	is	used	to	define	a	contiguous	sequence	of	interactions
between	the	touch	screen	and	the	user.	A	typical	gesture	begins	at	the	point	that
the	screen	is	first	touched	and	ends	when	the	last	finger	or	pointing	device	leaves
the	display	surface.	When	correctly	harnessed,	gestures	can	be	implemented	as	a
form	of	communication	between	user	and	application.	Swiping	motions	to	turn
the	pages	of	an	eBook,	or	a	pinching	movement	involving	two	touches	to	zoom
in	or	out	of	an	image	are	prime	examples	of	the	ways	in	which	gestures	can	be
used	to	interact	with	an	application.
The	Android	SDK	provides	mechanisms	for	the	detection	of	both	common	and
custom	gestures	within	an	application.	Common	gestures	involve	interactions
such	as	a	tap,	double	tap,	long	press	or	a	swiping	motion	in	either	a	horizontal	or
a	vertical	direction	(referred	to	in	Android	nomenclature	as	a	fling).
The	goal	of	this	chapter	is	to	explore	the	use	of	the	Android	GestureDetector
class	to	detect	common	gestures	performed	on	the	display	of	an	Android	device.
The	next	chapter,	entitled	Implementing	Custom	Gesture	and	Pinch	Recognition
on	Android,	will	cover	the	detection	of	more	complex,	custom	gestures	such	as
circular	motions	and	pinches.

27.1	Implementing	Common	Gesture	Detection
When	a	user	interacts	with	the	display	of	an	Android	device,	the	onTouchEvent()
method	of	the	currently	active	application	is	called	by	the	system	and	passed
MotionEvent	objects	containing	data	about	the	user’s	contact	with	the	screen.
This	data	can	be	interpreted	to	identify	if	the	motion	on	the	screen	matches	a
common	gesture	such	as	a	tap	or	a	swipe.	This	can	be	achieved	with	very	little
programming	effort	by	making	use	of	the	Android	GestureDetectorCompat
class.	This	class	is	designed	specifically	to	receive	motion	event	information
from	the	application	and	to	trigger	method	calls	based	on	the	type	of	common
gesture,	if	any,	detected.
The	basic	steps	in	detecting	common	gestures	are	as	follows:
1.							Declaration	of	a	class	which	implements	the

GestureDetector.OnGestureListener	interface	including	the	required
onFling(),	onDown(),onScroll(),	onShowPress(),	onSingleTapUp()	and

onLongPress()	callback	methods.	Note	that	this	can	be	either	an	entirely	new
class,	or	the	enclosing	activity	class.	In	the	event	that	double	tap	gesture
detection	is	required,	the	class	must	also	implement	the
GestureDetector.OnDoubleTapListener	interface	and	include	the
corresponding	onDoubleTap()	method.

2.							Creation	of	an	instance	of	the	Android	GestureDetectorCompat	class,
passing	through	an	instance	of	the	class	created	in	step	1	as	an	argument.

3.							An	optional	call	to	the	setOnDoubleTapListener()	method	of	the
GestureDetectorCompat	instance	to	enable	double	tap	detection	if	required.

4.							Implementation	of	the	onTouchEvent()	callback	method	on	the	enclosing
activity	which,	in	turn,	must	call	the	onTouchEvent()	method	of	the
GestureDetectorCompat	instance,	passing	through	the	current	motion	event
object	as	an	argument	to	the	method.

Once	implemented,	the	result	is	a	set	of	methods	within	the	application	code	that
will	be	called	when	a	gesture	of	a	particular	type	is	detected.	The	code	within
these	methods	can	then	be	implemented	to	perform	any	tasks	that	need	to	be
performed	in	response	to	the	corresponding	gesture.
In	the	remainder	of	this	chapter,	we	will	work	through	the	creation	of	an
example	project	intended	to	put	the	above	steps	into	practice.

27.2	Creating	an	Example	Gesture	Detection	Project
The	goal	of	this	project	is	to	detect	the	full	range	of	common	gestures	currently
supported	by	the	GestureDetectorCompat	class	and	to	display	status	information
to	the	user	indicating	the	type	of	gesture	that	has	been	detected.
Create	a	new	project	in	Android	Studio,	entering	CommonGestures	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
CommonGesturesActivity	with	a	corresponding	layout	resource	file	named
activity_common_gestures.
Click	on	the	Finish	button	to	initiate	the	project	creation	process.
Once	the	new	project	has	been	created,	navigate	to	the	app	->	res	->	layout	->
activity_common_gestures.xml	file	in	the	Project	tool	window	and	double-click
on	it	to	load	it	into	the	Layout	Editor	tool.

Within	the	Layout	Editor	tool,	select	the	“Hello,	World!”	TextView	component
and,	in	the	Properties	tool	window,	enter	gestureStatusText	as	the	ID.

27.3	Implementing	the	Listener	Class
As	previously	outlined,	it	is	necessary	to	create	a	class	that	implements	the
GestureDetector.OnGestureListener	interface	and,	if	double	tap	detection	is
required,	the	GestureDetector.OnDoubleTapListener	interface.	While	this	can	be
an	entirely	new	class,	it	is	also	perfectly	valid	to	implement	this	within	the
current	activity	class.	For	the	purposes	of	this	example,	therefore,	we	will
modify	the	CommonGesturesActivity	class	to	implement	these	listener
interfaces.	Edit	the	CommonGesturesActivity.java	file	so	that	it	reads	as	follows
to	declare	the	interfaces	and	to	extract	and	store	a	reference	to	the	TextView
component	in	the	user	interface:

package	com.ebookfrenzy.commongestures;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.GestureDetector;

import	android.widget.TextView;

	

public	class	CommonGesturesActivity	extends	AppCompatActivity

								implements	GestureDetector.OnGestureListener,

								GestureDetector.OnDoubleTapListener

{

				private	TextView	gestureText;

			

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_common_gestures);

								gestureText	=

																(TextView)findViewById(R.id.gestureStatusText);

				}

.

.

.

}

Declaring	that	the	class	implements	the	listener	interfaces	mandates	that	the
corresponding	methods	also	be	implemented	in	the	class:

package	com.ebookfrenzy.commongestures;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.GestureDetector;

import	android.widget.TextView;

import	android.view.MotionEvent;

public	class	CommonGesturesActivity	extends	AppCompatActivity

								implements	GestureDetector.OnGestureListener,

								GestureDetector.OnDoubleTapListener	{

				private	TextView	gestureText;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_common_gestures);

								gestureText	=

																(TextView)findViewById(R.id.gestureStatusText);

				}

				@Override

				public	boolean	onDown(MotionEvent	event)	{

								gestureText.setText	("onDown");

								return	true;

				}

	

				@Override

				public	boolean	onFling(MotionEvent	event1,	MotionEvent

event2,

																											float	velocityX,	float	velocityY)	{

								gestureText.setText("onFling");

								return	true;

				}

	

				@Override

				public	void	onLongPress(MotionEvent	event)	{

								gestureText.setText("onLongPress");

				}

				@Override

				public	boolean	onScroll(MotionEvent	e1,	MotionEvent	e2,

																												float	distanceX,	float	distanceY)	{

								gestureText.setText("onScroll");

								return	true;

				}

	

				@Override

				public	void	onShowPress(MotionEvent	event)	{

								gestureText.setText("onShowPress");

				}

	

				@Override

				public	boolean	onSingleTapUp(MotionEvent	event)	{

								gestureText.setText("onSingleTapUp");

								return	true;

				}

	

				@Override

				public	boolean	onDoubleTap(MotionEvent	event)	{

								gestureText.setText("onDoubleTap");

								return	true;

				}

	

				@Override

				public	boolean	onDoubleTapEvent(MotionEvent	event)	{

								gestureText.setText("onDoubleTapEvent");

								return	true;

				}

	

				@Override

				public	boolean	onSingleTapConfirmed(MotionEvent	event)	{

								gestureText.setText("onSingleTapConfirmed");

								return	true;

				}

.

.

.

}

Note	that	many	of	these	methods	return	true.	This	indicates	to	the	Android
Framework	that	the	event	has	been	consumed	by	the	method	and	does	not	need
to	be	passed	to	the	next	event	handler	in	the	stack.

27.4	Creating	the	GestureDetectorCompat	Instance
With	the	activity	class	now	updated	to	implement	the	listener	interfaces,	the	next
step	is	to	create	an	instance	of	the	GestureDetectorCompat	class.	Since	this	only
needs	to	be	performed	once	at	the	point	that	the	activity	is	created,	the	best	place
for	this	code	is	in	the	onCreate()	method.	Since	we	also	want	to	detect	double

taps,	the	code	also	needs	to	call	the	setOnDoubleTapListener()	method	of	the
GestureDetectorCompat	instance:

package	com.ebookfrenzy.commongestures;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.GestureDetector;

import	android.widget.TextView;

import	android.view.MotionEvent;

import	android.support.v4.view.GestureDetectorCompat;

public	class	CommonGesturesActivity	extends	AppCompatActivity

								implements	GestureDetector.OnGestureListener,

								GestureDetector.OnDoubleTapListener	{

				private	TextView	gestureText;

				private	GestureDetectorCompat	gDetector;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_common_gestures);

								gestureText	=

																(TextView)findViewById(R.id.gestureStatusText);

								this.gDetector	=	new	GestureDetectorCompat(this,this);

								gDetector.setOnDoubleTapListener(this);

				}

.

.

}

27.5	Implementing	the	onTouchEvent()	Method
If	the	application	were	to	be	compiled	and	run	at	this	point,	nothing	would
happen	if	gestures	were	performed	on	the	device	display.	This	is	because	no
code	has	been	added	to	intercept	touch	events	and	to	pass	them	through	to	the
GestureDetectorCompat	instance.	In	order	to	achieve	this,	it	is	necessary	to
override	the	onTouchEvent()	method	within	the	activity	class	and	implement	it
such	that	it	calls	the	onTouchEvent()	method	of	the	GestureDetectorCompat
instance.	Remaining	in	the	CommonGesturesActivity.java	file,	therefore,
implement	this	method	so	that	it	reads	as	follows:

@Override

public	boolean	onTouchEvent(MotionEvent	event)	{

								this.gDetector.onTouchEvent(event);

								//	Be	sure	to	call	the	superclass	implementation

								return	super.onTouchEvent(event);

}

27.6	Testing	the	Application
Compile	and	run	the	application	on	either	a	physical	Android	device	or	an	AVD
emulator.	Once	launched,	experiment	with	swipes,	presses,	scrolling	motions
and	double	and	single	taps.	Note	that	the	text	view	updates	to	reflect	the	events
as	illustrated	in	Figure	27-1:

Figure	27-1

27.7	Summary
Any	physical	contact	between	the	user	and	the	touch	screen	display	of	a	device

Any	physical	contact	between	the	user	and	the	touch	screen	display	of	a	device
can	be	considered	a	“gesture”.	Lacking	the	physical	keyboard	and	mouse	pointer
of	a	traditional	computer	system,	gestures	are	widely	used	as	a	method	of
interaction	between	user	and	application.	While	a	gesture	can	be	comprised	of
just	about	any	sequence	of	motions,	there	is	a	widely	used	set	of	gestures	with
which	users	of	touch	screen	devices	have	become	familiar.	A	number	of	these
so-called	“common	gestures”	can	be	easily	detected	within	an	application	by
making	use	of	the	Android	Gesture	Detector	classes.	In	this	chapter,	the	use	of
this	technique	has	been	outlined	both	in	theory	and	through	the	implementation
of	an	example	project.
Having	covered	common	gestures	in	this	chapter,	the	next	chapter	will	look	at
detecting	a	wider	range	of	gesture	types	including	the	ability	to	both	design	and
detect	your	own	gestures.

28.	Implementing	Custom	Gesture	and
Pinch	Recognition	on	Android

The	previous	chapter	looked	at	the	steps	involved	in	detecting	what	are	referred
to	as	“common	gestures”	from	within	an	Android	application.	In	practice,
however,	a	gesture	can	conceivably	involve	just	about	any	sequence	of	touch
motions	on	the	display	of	an	Android	device.	In	recognition	of	this	fact,	the
Android	SDK	allows	custom	gestures	of	just	about	any	nature	to	be	defined	by
the	application	developer	and	used	to	trigger	events	when	performed	by	the	user.
This	is	a	multistage	process,	the	details	of	which	are	the	topic	of	this	chapter.

28.1	The	Android	Gesture	Builder	Application
The	Android	SDK	allows	developers	to	design	custom	gestures	which	are	then
stored	in	a	gesture	file	bundled	with	an	Android	application	package.	These
custom	gesture	files	are	most	easily	created	using	the	Gesture	Builder
application	which	is	bundled	with	the	samples	package	supplied	as	part	of	the
Android	SDK.	The	creation	of	a	gestures	file	involves	launching	the	Gesture
Builder	application,	either	on	a	physical	device	or	emulator,	and	“drawing”	the
gestures	that	will	need	to	be	detected	by	the	application.	Once	the	gestures	have
been	designed,	the	file	containing	the	gesture	data	can	be	pulled	off	the	SD	card
of	the	device	or	emulator	and	added	to	the	application	project.	Within	the
application	code,	the	file	is	then	loaded	into	an	instance	of	the	GestureLibrary
class	where	it	can	be	used	to	search	for	matches	to	any	gestures	performed	by
the	user	on	the	device	display.

28.2	The	GestureOverlayView	Class
In	order	to	facilitate	the	detection	of	gestures	within	an	application,	the	Android
SDK	provides	the	GestureOverlayView	class.	This	is	a	transparent	view	that	can
be	placed	over	other	views	in	the	user	interface	for	the	sole	purpose	of	detecting
gestures.

28.3	Detecting	Gestures
Gestures	are	detected	by	loading	the	gestures	file	created	using	the	Gesture
Builder	app	and	then	registering	a	GesturePerformedListener	event	listener	on
an	instance	of	the	GestureOverlayView	class.	The	enclosing	class	is	then
declared	to	implement	both	the	OnGesturePerformedListener	interface	and	the

corresponding	onGesturePerformed	callback	method	required	by	that	interface.
In	the	event	that	a	gesture	is	detected	by	the	listener,	a	call	to	the
onGesturePerformed	callback	method	is	triggered	by	the	Android	runtime
system.

28.4	Identifying	Specific	Gestures
When	a	gesture	is	detected,	the	onGesturePerformed	callback	method	is	called
and	passed	as	arguments	a	reference	to	the	GestureOverlayView	object	on	which
the	gesture	was	detected,	together	with	a	Gesture	object	containing	information
about	the	gesture.
With	access	to	the	Gesture	object,	the	GestureLibrary	can	then	be	used	to
compare	the	detected	gesture	to	those	contained	in	the	gestures	file	previously
loaded	into	the	application.	The	GestureLibrary	reports	the	probability	that	the
gesture	performed	by	the	user	matches	an	entry	in	the	gestures	file	by	calculating
a	prediction	score	for	each	gesture.	A	prediction	score	of	1.0	or	greater	is
generally	accepted	to	be	a	good	match	between	a	gesture	stored	in	the	file	and
that	performed	by	the	user	on	the	device	display.

28.5	Building	and	Running	the	Gesture	Builder	Application
The	Gesture	Builder	application	is	bundled	by	default	with	the	AVD	emulator
profile	for	most	versions	of	the	SDK.	It	is	not,	however,	pre-installed	on	most
physical	Android	devices.	If	the	utility	is	pre-installed,	it	will	be	listed	along
with	the	other	apps	installed	in	the	device	or	AVD	instance.	In	the	event	that	it	is
not	installed,	the	source	code	for	the	utility	is	included	with	the	sample	code
provided	with	this	book.	If	you	have	not	already	done	so,	download	this	now
using	the	following	link:
http://www.ebookfrenzy.com/retail/androidstudio23/index.php
The	source	code	for	the	Gesture	Builder	application	is	located	within	this	archive
in	a	folder	named	GestureBuilder.
The	GestureBuilder	project	is	based	on	Android	5.0.1	(API	21)	so	use	the	SDK
Manager	tool	once	again	to	ensure	that	this	version	of	the	Android	SDK	is
installed	before	proceeding.
From	the	Android	Studio	welcome	screen	select	the	Import	project	option.
Alternatively,	from	the	Android	Studio	main	window	for	an	existing	project,
select	the	File	->	New	->	Import	Project…	menu	option	and,	within	the
resulting	dialog,	navigate	to	and	select	the	GestureBuilder	folder	within	the
samples	directory	and	click	on	OK.	At	this	point,	Android	Studio	will	import	the

http://www.ebookfrenzy.com/retail/androidstudio23/index.php

project	into	the	designated	folder	and	convert	it	to	match	the	Android	Studio
project	file	and	build	structure.
Once	imported,	install	and	run	the	GestureBuilder	utility	on	an	Android	device
attached	to	the	development	system.

28.6	Creating	a	Gestures	File
Once	the	Gesture	Builder	application	has	loaded,	it	should	indicate	that	no
gestures	have	yet	been	created.	To	create	a	new	gesture,	click	on	the	Add	gesture
button	located	at	the	bottom	of	the	device	screen,	enter	the	name	Circle	Gesture
into	the	Name	text	box	and	then	“draw”	a	gesture	using	a	circular	motion	on	the
screen	as	illustrated	in	Figure	28-1.	Assuming	that	the	gesture	appears	as
required	(represented	by	the	yellow	line	on	the	device	screen),	click	on	the	Done
button	to	add	the	gesture	to	the	gestures	file:

Figure	28-1

After	the	gesture	has	been	saved,	the	Gesture	Builder	app	will	display	a	list	of
currently	defined	gestures,	which,	at	this	point,	will	consist	solely	of	the	new
Circle	Gesture.
Repeat	the	gesture	creation	process	to	add	a	further	gesture	to	the	file.	This
should	involve	a	two-stroke	gesture	creating	an	X	on	the	screen	named	X
Gesture.	When	creating	gestures	involving	multiple	strokes,	be	sure	to	allow	as
little	time	as	possible	between	each	stroke	so	that	the	builder	knows	that	the

strokes	are	part	of	the	same	gesture.	Once	this	gesture	has	been	added,	the	list
within	the	Gesture	Builder	application	should	resemble	that	outlined	in	Figure
28-2:

Figure	28-2

28.7	Extracting	the	Gestures	File	from	the	SD	Card
As	each	gesture	was	created	within	the	Gesture	Builder	application,	it	was	added
to	a	file	named	gestures	located	on	the	SD	Card	of	the	emulator	or	device	on
which	the	app	was	running.	Before	this	file	can	be	added	to	an	Android	Studio
project,	however,	it	must	first	be	pulled	off	the	SD	Card	and	saved	to	the	local
file	system.	This	is	most	easily	achieved	by	using	the	adb	command-line	tool.
Open	a	Terminal	or	Command	Prompt	window,	therefore,	and	execute	the
following	command:

adb	devices

In	the	event	that	the	adb	command	is	not	found,	refer	to	Setting	up	an	Android
Studio	Development	Environment	for	guidance	on	adding	this	to	the	PATH
environment	variable	of	your	system.
Once	executed,	the	command	will	list	all	active	physical	devices	and	AVD
instances	attached	to	the	system.	The	following	output,	for	example,	indicates
that	both	a	physical	device	and	one	AVD	emulator	have	been	detected	on	the
development	computer	system:

List	of	devices	attached

HT4CTJT01906				device

emulator-5554			device

In	order	to	pull	the	gestures	file	from	the	emulator	in	the	above	example	and
place	it	into	the	current	working	directory	of	the	Terminal	or	Command	Prompt
window,	the	following	command	would	need	to	be	executed:

adb	-s	emulator-5554	pull	sdcardgestures	.

Alternatively,	the	gestures	file	can	be	pulled	from	a	device	connected	via	adb

Alternatively,	the	gestures	file	can	be	pulled	from	a	device	connected	via	adb
using	the	following	command	(where	the	–d	flag	is	used	to	indicate	a	physical
device):

adb	-d	pull	sdcardgestures	.

Once	the	gestures	file	has	been	created	and	pulled	off	the	SD	Card,	it	is	ready	to
be	added	to	an	Android	Studio	project	as	a	resource	file.	The	next	step,
therefore,	is	to	create	a	new	project.

28.8	Creating	the	Example	Project
Create	a	new	project	in	Android	Studio,	entering	CustomGestures	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
CustomGesturesActivity	with	a	corresponding	layout	file	named
activity_custom_gestures.
Click	on	the	Finish	button	to	initiate	the	project	creation	process.

28.9	Adding	the	Gestures	File	to	the	Project
Within	the	Android	Studio	Project	tool	window,	locate	and	right-click	on	the	res
folder	(located	under	app)	and	select	New	->	Directory	from	the	resulting	menu.
In	the	New	Directory	dialog,	enter	raw	as	the	folder	name	and	click	on	the	OK
button.	Using	the	appropriate	file	explorer	utility	for	your	operating	system	type,
locate	the	gestures	file	previously	pulled	from	the	SD	Card	and	copy	and	paste	it
into	the	new	raw	folder	in	the	Project	tool	window.

28.10	Designing	the	User	Interface
This	example	application	calls	for	a	very	simple	user	interface	consisting	of	a
LinearLayout	view	with	a	GestureOverlayView	layered	on	top	of	it	to	intercept
any	gestures	performed	by	the	user.	Locate	the	app	->	res	->	layout	->
activity_custom_gestures.xml	file	and	double-click	on	it	to	load	it	into	the
Layout	Editor	tool.
Once	loaded,	switch	to	Text	mode	and	modify	the	XML	so	that	it	reads	as
follows:

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout

				android:orientation="vertical"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				xmlns:android="http://schemas.android.com/apk/res/android">

				<android.gesture.GestureOverlayView

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:id="@+id/gOverlay"

								android:layout_gravity="center_horizontal">

							

				</android.gesture.GestureOverlayView>

</LinearLayout>

28.11	Loading	the	Gestures	File
Now	that	the	gestures	file	has	been	added	to	the	project,	the	next	step	is	to	write
some	code	so	that	the	file	is	loaded	when	the	activity	starts	up.	For	the	purposes
of	this	project,	the	code	to	achieve	this	will	be	placed	in	the	onCreate()	method
of	the	CustomGesturesActivity	class	located	in	the	CustomGesturesActivity.java
source	file	as	follows:

package	com.ebookfrenzy.customgestures;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.gesture.GestureLibraries;

import	android.gesture.GestureLibrary;

import	android.gesture.GestureOverlayView;		

import

android.gesture.GestureOverlayView.OnGesturePerformedListener;

public	class	CustomGesturesActivity	extends	AppCompatActivity

								implements	OnGesturePerformedListener	{

				private	GestureLibrary	gLibrary;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_custom_gestures);

								gLibrary	=

																GestureLibraries.fromRawResource(this,

																						R.raw.gestures);

								if	(!gLibrary.load())	{

												finish();

								}

				}

.

.

.

}

In	addition	to	some	necessary	import	directives,	the	above	code	changes	to	the
onCreate()	method	also	create	a	GestureLibrary	instance	named	gLibrary	and
then	loads	into	it	the	contents	of	the	gestures	file	located	in	the	raw	resources
folder.	The	activity	class	has	also	been	modified	to	implement	the
OnGesturePerformedListener	interface,	which	requires	the	implementation	of
the	onGesturePerformed	callback	method	(which	will	be	created	in	a	later
section	of	this	chapter).

28.12	Registering	the	Event	Listener
In	order	for	the	activity	to	receive	notification	that	the	user	has	performed	a
gesture	on	the	screen,	it	is	necessary	to	register	the	OnGesturePerformedListener
event	listener	on	the	gLayout	view,	a	reference	to	which	can	be	obtained	using
the	findViewById	method	as	outlined	in	the	following	code	fragment:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_custom_gestures);

													

							gLibrary	=

													GestureLibraries.fromRawResource(this,

R.raw.gestures);

						if	(!gLibrary.load())	{

												finish();

						}	

							

						GestureOverlayView	gOverlay	=

																(GestureOverlayView)

findViewById(R.id.gOverlay);

						gOverlay.addOnGesturePerformedListener(this);

}

28.13	Implementing	the	onGesturePerformed	Method
All	that	remains	before	an	initial	test	run	of	the	application	can	be	performed	is
to	implement	the	OnGesturePerformed	callback	method.	This	is	the	method
which	will	be	called	when	a	gesture	is	performed	on	the	GestureOverlayView
instance:

package	com.ebookfrenzy.customgestures;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.gesture.GestureLibraries;

import	android.gesture.GestureLibrary;

import	android.gesture.GestureOverlayView;

import

android.gesture.GestureOverlayView.OnGesturePerformedListener;

import	android.gesture.Prediction;

import	android.widget.Toast;

import	android.gesture.Gesture;

import	java.util.ArrayList;

public	class	CustomGesturesActivity	extends	AppCompatActivity

implements	OnGesturePerformedListener	{

				private	GestureLibrary	gLibrary;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_custom_gestures);

								gLibrary	=

																GestureLibraries.fromRawResource(this,

																						R.raw.gestures);

								if	(!gLibrary.load())	{

												finish();

								}

								GestureOverlayView	gOverlay	=

																(GestureOverlayView)

findViewById(R.id.gOverlay);

								gOverlay.addOnGesturePerformedListener(this);

				}

	

				public	void	onGesturePerformed(GestureOverlayView	overlay,

Gesture

												gesture)	{

								ArrayList<Prediction>	predictions	=

																gLibrary.recognize(gesture);

	

								if	(predictions.size()	>	0	&&	predictions.get(0).score

>	1.0)

								{

	

												String	action	=	predictions.get(0).name;

	

												Toast.makeText(this,	action,

Toast.LENGTH_SHORT).show();

								}

				}

.

.

.

}

When	a	gesture	on	the	gesture	overlay	view	object	is	detected	by	the	Android
runtime,	the	onGesturePerformed	method	is	called.	Passed	through	as	arguments
are	a	reference	to	the	GestureOverlayView	object	on	which	the	gesture	was
detected	together	with	an	object	of	type	Gesture.	The	Gesture	class	is	designed
to	hold	the	information	that	defines	a	specific	gesture	(essentially	a	sequence	of
timed	points	on	the	screen	depicting	the	path	of	the	strokes	that	comprise	a
gesture).
The	Gesture	object	is	passed	through	to	the	recognize()	method	of	our	gLibrary
instance,	the	purpose	of	which	is	to	compare	the	current	gesture	with	each
gesture	loaded	from	the	gestures	file.	Once	this	task	is	complete,	the	recognize()
method	returns	an	ArrayList	object	containing	a	Prediction	object	for	each
comparison	performed.	The	list	is	ranked	in	order	from	the	best	match	(at
position	0	in	the	array)	to	the	worst.	Contained	within	each	prediction	object	is
the	name	of	the	corresponding	gesture	from	the	gestures	file	and	a	prediction
score	indicating	how	closely	it	matches	the	current	gesture.
The	code	in	the	above	method,	therefore,	takes	the	prediction	at	position	0	(the
closest	match)	makes	sure	it	has	a	score	of	greater	than	1.0	and	then	displays	a
Toast	message	(an	Android	class	designed	to	display	notification	pop	ups	to	the
user)	displaying	the	name	of	the	matching	gesture.

28.14	Testing	the	Application
Build	and	run	the	application	on	either	an	emulator	or	a	physical	Android	device
and	perform	the	circle	and	swipe	gestures	on	the	display.	When	performed,	the
toast	notification	should	appear	containing	the	name	of	the	gesture	that	was
performed.	Note	that	when	a	gesture	is	recognized,	it	is	outlined	on	the	display
with	a	bright	yellow	line	while	gestures	about	which	the	overlay	is	uncertain
appear	as	a	faded	yellow	line.	While	useful	during	development,	this	is	probably
not	ideal	for	a	real	world	application.	Clearly,	therefore,	there	is	still	some	more
configuration	work	to	do.

configuration	work	to	do.

28.15	Configuring	the	GestureOverlayView
By	default,	the	GestureOverlayView	is	configured	to	display	yellow	lines	during
gestures.	The	color	used	to	draw	recognized	and	unrecognized	gestures	can	be
defined	via	the	android:gestureColor	and	android:uncertainGestureColor
properties.	For	example,	to	hide	the	gesture	lines,	modify	the
activity_custom_gestures.xml	file	in	the	example	project	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout

				android:orientation="vertical"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				xmlns:android="http://schemas.android.com/apk/res/android">

				<android.gesture.GestureOverlayView

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								android:id="@+id/gOverlay"

								android:layout_gravity="center_horizontal"

								android:gestureColor="#00000000"

								android:uncertainGestureColor="#00000000"	>

				</android.gesture.GestureOverlayView>

</LinearLayout>

On	re-running	the	application,	gestures	should	now	be	invisible	(since	they	are
drawn	in	white	on	the	white	background	of	the	LinearLayout	view).

28.16	Intercepting	Gestures
The	GestureOverlayView	is,	as	previously	described,	a	transparent	overlay	that
may	be	positioned	over	the	top	of	other	views.	This	leads	to	the	question	as	to
whether	events	intercepted	by	the	gesture	overlay	should	then	be	passed	on	to
the	underlying	views	when	a	gesture	has	been	recognized.	This	is	controlled	via
the	android:eventsInterceptionEnabled	property	of	the	GestureOverlayView
instance.	When	set	to	true,	the	gesture	events	are	not	passed	to	the	underlying
views	when	a	gesture	is	recognized.	This	can	be	a	particularly	useful	setting
when	gestures	are	being	performed	over	a	view	that	might	be	configured	to
scroll	in	response	to	certain	gestures.	Setting	this	property	to	true	will	avoid
gestures	also	being	interpreted	as	instructions	to	the	underlying	view	to	scroll	in
a	particular	direction.

28.17	Detecting	Pinch	Gestures
Before	moving	on	from	touch	handling	in	general	and	gesture	recognition	in

Before	moving	on	from	touch	handling	in	general	and	gesture	recognition	in
particular,	the	last	topic	of	this	chapter	is	that	of	handling	pinch	gestures.	While
it	is	possible	to	create	and	detect	a	wide	range	of	gestures	using	the	steps
outlined	in	the	previous	sections	of	this	chapter	it	is,	in	fact,	not	possible	to
detect	a	pinching	gesture	(where	two	fingers	are	used	in	a	stretching	and
pinching	motion,	typically	to	zoom	in	and	out	of	a	view	or	image)	using	the
techniques	discussed	so	far.
The	simplest	method	for	detecting	pinch	gestures	is	to	use	the	Android
ScaleGestureDetector	class.	In	general	terms,	detecting	pinch	gestures	involves
the	following	three	steps:
1.							Declaration	of	a	new	class	which	implements	the

SimpleOnScaleGestureListener	interface	including	the	required	onScale(),
onScaleBegin()	and	onScaleEnd()	callback	methods.

2.							Creation	of	an	instance	of	the	ScaleGestureDetector	class,	passing	through
an	instance	of	the	class	created	in	step	1	as	an	argument.

3.							Implementing	the	onTouchEvent()	callback	method	on	the	enclosing	activity
which,	in	turn,	calls	the	onTouchEvent()	method	of	the	ScaleGestureDetector
class.

In	the	remainder	of	this	chapter,	we	will	create	a	very	simple	example	designed
to	demonstrate	the	implementation	of	pinch	gesture	recognition.

28.18	A	Pinch	Gesture	Example	Project
Create	a	new	project	in	Android	Studio,	entering	PinchExample	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
PinchExampleActivity	with	a	layout	resource	file	named	activity_pinch_example.
Within	the	activity_pinch_example.xml	file,	select	the	default	TextView	object
and	use	the	Properties	tool	window	to	set	the	ID	to	myTextView.
Locate	and	load	the	PinchExampleActivity.java	file	into	the	Android	Studio
editor	and	modify	the	file	as	follows:

package	com.ebookfrenzy.pinchexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.MotionEvent;

import	android.view.ScaleGestureDetector;

import

android.view.ScaleGestureDetector.SimpleOnScaleGestureListener;

import	android.widget.TextView;

public	class	PinchExampleActivity	extends	AppCompatActivity	{

				TextView	scaleText;

				ScaleGestureDetector	scaleGestureDetector;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_pinch_example);

								scaleText	=	(TextView)findViewById(R.id.myTextView);

	

								scaleGestureDetector	=

																new	ScaleGestureDetector(this,

																								new	MyOnScaleGestureListener());

				}

				@Override

				public	boolean	onTouchEvent(MotionEvent	event)	{

								scaleGestureDetector.onTouchEvent(event);

								return	true;

				}

	

				public	class	MyOnScaleGestureListener	extends

												SimpleOnScaleGestureListener	{

	

								@Override

								public	boolean	onScale(ScaleGestureDetector	detector)	{

	

												float	scaleFactor	=	detector.getScaleFactor();

	

												if	(scaleFactor	>	1)	{

																scaleText.setText("Zooming	Out");

												}	else	{

																scaleText.setText("Zooming	In");

												}

												return	true;

								}

	

								@Override

								public	boolean	onScaleBegin(ScaleGestureDetector

detector)	{

												return	true;

								}

	

								@Override

								public	void	onScaleEnd(ScaleGestureDetector	detector)	{

	

								}

				}

.

.

.					

}

The	code	begins	by	declaring	TextView	and	ScaleGestureDetector	variables.	A
new	class	named	MyOnScaleGestureListener	is	declared	which	extends	the
Android	SimpleOnScaleGestureListener	class.	This	interface	requires	that	three
methods	(onScale(),	onScaleBegin()	and	onScaleEnd())	be	implemented.	In	this
instance	the	onScale()	method	identifies	the	scale	factor	and	displays	a	message
on	the	text	view	indicating	the	type	of	pinch	gesture	detected.
Within	the	onCreate()	method,	a	reference	to	the	text	view	object	is	obtained	and
assigned	to	the	scaleText	variable.	Next,	a	new	ScaleGestureDetector	instance	is
created,	passing	through	a	reference	to	the	enclosing	activity	and	an	instance	of
our	new	MyOnScaleGestureListener	class	as	arguments.	Finally,	an
onTouchEvent()	callback	method	is	implemented	for	the	activity,	which	simply
calls	the	corresponding	onTouchEvent()	method	of	the	ScaleGestureDetector
object,	passing	through	the	MotionEvent	object	as	an	argument.
Compile	and	run	the	application	on	an	emulator	or	physical	Android	device	and
perform	pinching	gestures	on	the	screen,	noting	that	the	text	view	displays	either
the	zoom	in	or	zoom	out	message	depending	on	the	pinching	motion.	Pinching
gestures	may	be	simulated	within	the	emulator	by	holding	down	the	Ctrl	key	and
clicking	and	dragging	the	mouse	pointer	as	shown	in	Figure	28-3:

Figure	28-3

28.19	Summary
A	gesture	is	essentially	the	motion	of	points	of	contact	on	a	touch	screen
involving	one	or	more	strokes	and	can	be	used	as	a	method	of	communication
between	user	and	application.	Android	allows	gestures	to	be	designed	using	the
Gesture	Builder	application.	Once	created,	gestures	can	be	saved	to	a	gestures
file	and	loaded	into	an	activity	at	application	runtime	using	the	GestureLibrary.
Gestures	can	be	detected	on	areas	of	the	display	by	overlaying	existing	views
with	instances	of	the	transparent	GestureOverlayView	class	and	implementing	an
OnGesturePerformedListener	event	listener.	Using	the	GestureLibrary,	a	ranked
list	of	matches	between	a	gesture	performed	by	the	user	and	the	gestures	stored
in	a	gestures	file	may	be	generated,	using	a	prediction	score	to	decide	whether	a
gesture	is	a	close	enough	match.
Pinch	gestures	may	be	detected	through	the	implementation	of	the
ScaleGestureDetector	class,	an	example	of	which	was	also	provided	in	this
chapter.

29.	An	Introduction	to	Android	Fragments

As	you	progress	through	the	chapters	of	this	book	it	will	become	increasingly
evident	that	many	of	the	design	concepts	behind	the	Android	system	were
conceived	with	the	goal	of	promoting	reuse	of,	and	interaction	between,	the
different	elements	that	make	up	an	application.	One	such	area	that	will	be
explored	in	this	chapter	involves	the	use	of	Fragments.
This	chapter	will	provide	an	overview	of	the	basics	of	fragments	in	terms	of
what	they	are	and	how	they	can	be	created	and	used	within	applications.	The
next	chapter	will	work	through	a	tutorial	designed	to	show	fragments	in	action
when	developing	applications	in	Android	Studio,	including	the	implementation
of	communication	between	fragments.

29.1	What	is	a	Fragment?
A	fragment	is	a	self-contained,	modular	section	of	an	application’s	user	interface
and	corresponding	behavior	that	can	be	embedded	within	an	activity.	Fragments
can	be	assembled	to	create	an	activity	during	the	application	design	phase,	and
added	to	or	removed	from	an	activity	during	application	runtime	to	create	a
dynamically	changing	user	interface.
Fragments	may	only	be	used	as	part	of	an	activity	and	cannot	be	instantiated	as
standalone	application	elements.	That	being	said,	however,	a	fragment	can	be
thought	of	as	a	functional	“sub-activity”	with	its	own	lifecycle	similar	to	that	of
a	full	activity.
Fragments	are	stored	in	the	form	of	XML	layout	files	and	may	be	added	to	an
activity	either	by	placing	appropriate	<fragment>	elements	in	the	activity’s
layout	file,	or	directly	through	code	within	the	activity’s	class	implementation.
Before	starting	to	use	Fragments	in	an	Android	application,	it	is	important	to	be
aware	that	Fragments	were	not	introduced	to	Android	until	version	3.0	of	the
Android	SDK.	An	application	that	uses	Fragments	must,	therefore,	make	use	of
the	android-support-v4	Android	Support	Library	in	order	to	be	compatible	with
older	Android	versions.	The	steps	to	achieve	this	will	be	covered	in	the	next
chapter,	entitled	Using	Fragments	in	Android	Studio	-	A	Worked	Example.

29.2	Creating	a	Fragment
The	two	components	that	make	up	a	fragment	are	an	XML	layout	file	and	a
corresponding	Java	class.	The	XML	layout	file	for	a	fragment	takes	the	same

corresponding	Java	class.	The	XML	layout	file	for	a	fragment	takes	the	same
format	as	a	layout	for	any	other	activity	layout	and	can	contain	any	combination
and	complexity	of	layout	managers	and	views.	The	following	XML	layout,	for
example,	is	for	a	fragment	consisting	simply	of	a	RelativeLayout	with	a	red
background	containing	a	single	TextView:

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:background="@color/red"	>

						

				<TextView

								android:id="@+id/textView1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_centerHorizontal="true"

								android:layout_centerVertical="true"

								android:text="@string/fragone_label_text"

								android:textAppearance="?

android:attr/textAppearanceLarge"	/>

</RelativeLayout>

The	corresponding	class	to	go	with	the	layout	must	be	a	subclass	of	the	Android
Fragment	class.	If	the	application	is	to	be	compatible	with	devices	running
versions	of	Android	predating	version	3.0	then	the	class	file	must	import
android.support.v4.app.Fragment.	The	class	should,	at	a	minimum,	override	the
onCreateView()	method	which	is	responsible	for	loading	the	fragment	layout.
For	example:

package	com.example.myfragmentdemo;

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

public	class	FragmentOne	extends	Fragment	{

				@Override

				public	View	onCreateView(LayoutInflater	inflater,

													ViewGroup	container,

														Bundle	savedInstanceState)	{

								//	Inflate	the	layout	for	this	fragment

								return	inflater.inflate(R.layout.fragment_one_layout,

																			container,	false);

				}

}

In	addition	to	the	onCreateView()	method,	the	class	may	also	override	the
standard	lifecycle	methods.
Note	that	in	order	to	make	the	above	fragment	compatible	with	Android	versions
prior	to	version	3.0,	the	Fragment	class	from	the	v4	support	library	has	been
imported.
Once	the	fragment	layout	and	class	have	been	created,	the	fragment	is	ready	to
be	used	within	application	activities.

29.3	Adding	a	Fragment	to	an	Activity	using	the	Layout	XML
File
Fragments	may	be	incorporated	into	an	activity	either	by	writing	Java	code	or	by
embedding	the	fragment	into	the	activity’s	XML	layout	file.	Regardless	of	the
approach	used,	a	key	point	to	be	aware	of	is	that	when	the	support	library	is
being	used	for	compatibility	with	older	Android	releases,	any	activities	using
fragments	must	be	implemented	as	a	subclass	of	FragmentActivity	instead	of	the
AppCompatActivity	class:

package	com.example.myfragmentdemo;

import	android.os.Bundle;

import	android.support.v4.app.FragmentActivity;

import	android.view.Menu;

public	class	FragmentDemoActivity	extends	FragmentActivity	{

							@Override

							protected	void	onCreate(Bundle	savedInstanceState)	{

														super.onCreate(savedInstanceState);

														setContentView(R.layout.activity_fragment_demo);

							}

							@Override

							public	boolean	onCreateOptionsMenu(Menu	menu)	{

													

getMenuInflater().inflate(R.menu.activity_fragment_demo,

																									menu);

														return	true;

							}

}

Fragments	are	embedded	into	activity	layout	files	using	the	<fragment>	element.
The	following	example	layout	embeds	the	fragment	created	in	the	previous
section	of	this	chapter	into	an	activity	layout:

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				tools:context=".FragmentDemoActivity"	>

				<fragment

								android:id="@+id/fragment_one"

							

android:name="com.example.myfragmentdemo.myfragmentdemo.FragmentOne"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_alignParentLeft="true"

								android:layout_centerVertical="true"

								tools:layout="@layout/fragment_one_layout"	/>

			

</RelativeLayout>

The	key	properties	within	the	<fragment>	element	are	android:name,	which
must	reference	the	class	associated	with	the	fragment,	and	tools:layout,	which
must	reference	the	XML	resource	file	containing	the	layout	of	the	fragment.
Once	added	to	the	layout	of	an	activity,	fragments	may	be	viewed	and
manipulated	within	the	Android	Studio	Layout	Editor	tool.	Figure	29-1,	for
example,	shows	the	above	layout	with	the	embedded	fragment	within	the
Android	Studio	Layout	Editor:

Figure	29-1

29.4	Adding	and	Managing	Fragments	in	Code
The	ease	of	adding	a	fragment	to	an	activity	via	the	activity’s	XML	layout	file
comes	at	the	cost	of	the	activity	not	being	able	to	remove	the	fragment	at
runtime.	In	order	to	achieve	full	dynamic	control	of	fragments	during	runtime,
those	activities	must	be	added	via	code.	This	has	the	advantage	that	the
fragments	can	be	added,	removed	and	even	made	to	replace	one	another
dynamically	while	the	application	is	running.
When	using	code	to	manage	fragments,	the	fragment	itself	will	still	consist	of	an
XML	layout	file	and	a	corresponding	class.	The	difference	comes	when	working
with	the	fragment	within	the	hosting	activity.	There	is	a	standard	sequence	of
steps	when	adding	a	fragment	to	an	activity	using	code:

1.							Create	an	instance	of	the	fragment’s	class.

2.							Pass	any	additional	intent	arguments	through	to	the	class.
3.							Obtain	a	reference	to	the	fragment	manager	instance.
4.							Call	the	beginTransaction()	method	on	the	fragment	manager	instance.
This	returns	a	fragment	transaction	instance.
5.							Call	the	add()	method	of	the	fragment	transaction	instance,	passing
through	as	arguments	the	resource	ID	of	the	view	that	is	to	contain	the
fragment	and	the	fragment	class	instance.
6.							Call	the	commit()	method	of	the	fragment	transaction.

The	following	code,	for	example,	adds	a	fragment	defined	by	the	FragmentOne
class	so	that	it	appears	in	the	container	view	with	an	ID	of	LinearLayout1:

FragmentOne	firstFragment	=	new	FragmentOne();													

firstFragment.setArguments(getIntent().getExtras());					

FragmentManager	fragManager	=

getSupportFragmentManager();									

FragmentTransaction	transaction	=

fragManager.beginTransaction();									

transaction.add(R.id.LinearLayout1,	firstFragment);

transaction.commit();	

The	above	code	breaks	down	each	step	into	a	separate	statement	for	the	purposes
of	clarity.	The	last	four	lines	can,	however,	be	abbreviated	into	a	single	line	of
code	as	follows:

getSupportFragmentManager().beginTransaction()

								.add(R.id.LinearLayout1,	firstFragment).commit();

Once	added	to	a	container,	a	fragment	may	subsequently	be	removed	via	a	call
to	the	remove()	method	of	the	fragment	transaction	instance,	passing	through	a
reference	to	the	fragment	instance	that	is	to	be	removed:

transaction.remove(firstFragment);

Similarly,	one	fragment	may	be	replaced	with	another	by	a	call	to	the	replace()
method	of	the	fragment	transaction	instance.	This	takes	as	arguments	the	ID	of
the	view	containing	the	fragment	and	an	instance	of	the	new	fragment.	The
replaced	fragment	may	also	be	placed	on	what	is	referred	to	as	the	back	stack	so
that	it	can	be	quickly	restored	in	the	event	that	the	user	navigates	back	to	it.	This
is	achieved	by	making	a	call	to	the	addToBackStack()	method	of	the	fragment
transaction	object	before	making	the	commit()	method	call:

FragmentTwo	secondFragment	=	new	FragmentTwo();

transaction.replace(R.id.LinearLayout1,	secondFragment);

transaction.addToBackStack(null);

transaction.commit();

29.5	Handling	Fragment	Events
As	previously	discussed,	a	fragment	is	very	much	like	a	sub-activity	with	its	own
layout,	class	and	lifecycle.	The	view	components	(such	as	buttons	and	text
views)	within	a	fragment	are	able	to	generate	events	just	like	those	in	a	regular
activity.	This	raises	the	question	as	to	which	class	receives	an	event	from	a	view
in	a	fragment;	the	fragment	itself,	or	the	activity	in	which	the	fragment	is
embedded.	The	answer	to	this	question	depends	on	how	the	event	handler	is
declared.
In	the	chapter	entitled	An	Overview	and	Example	of	Android	Event	Handling,
two	approaches	to	event	handling	were	discussed.	The	first	method	involved
configuring	an	event	listener	and	callback	method	within	the	code	of	the	activity.
For	example:

Button	button	=	(Button)findViewById(R.id.myButton);

							

button.setOnClickListener(

								new	Button.OnClickListener()	{

														public	void	onClick(View	v)	{

																								//	Code	to	be	performed	when

																								//	the	button	is	clicked

																						}

														}

);

In	the	case	of	intercepting	click	events,	the	second	approach	involved	setting	the
android:onClick	property	within	the	XML	layout	file:

<Button

				android:id="@+id/button1"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:onClick="onClick"

				android:text="Click	me"	/>

The	general	rule	for	events	generated	by	a	view	in	a	fragment	is	that	if	the	event
listener	was	declared	in	the	fragment	class	using	the	event	listener	and	callback
method	approach,	then	the	event	will	be	handled	first	by	the	fragment.	If	the
android:onClick	resource	is	used,	however,	the	event	will	be	passed	directly	to
the	activity	containing	the	fragment.

29.6	Implementing	Fragment	Communication
Once	one	or	more	fragments	are	embedded	within	an	activity,	the	chances	are

Once	one	or	more	fragments	are	embedded	within	an	activity,	the	chances	are
good	that	some	form	of	communication	will	need	to	take	place	both	between	the
fragments	and	the	activity,	and	between	one	fragment	and	another.	In	fact,	good
practice	dictates	that	fragments	do	not	communicate	directly	with	one	another.
All	communication	should	take	place	via	the	encapsulating	activity.
In	order	for	an	activity	to	communicate	with	a	fragment,	the	activity	must
identify	the	fragment	object	via	the	ID	assigned	to	it	using	the	findViewById()
method.	Once	this	reference	has	been	obtained,	the	activity	can	simply	call	the
public	methods	of	the	fragment	object.
Communicating	in	the	other	direction	(from	fragment	to	activity)	is	a	little	more
complicated.	In	the	first	instance,	the	fragment	must	define	a	listener	interface,
which	is	then	implemented	within	the	activity	class.	For	example,	the	following
code	declares	an	interface	named	ToolbarListener	on	a	fragment	class	named
ToolbarFragment.	The	code	also	declares	a	variable	in	which	a	reference	to	the
activity	will	later	be	stored:

public	class	ToolbarFragment	extends	Fragment	{

							ToolbarListener	activityCallback;

	

							public	interface	ToolbarListener	{

															public	void	onButtonClick(int	position,	String

text);

							}

.

.

}

The	above	code	dictates	that	any	class	that	implements	the	ToolbarListener
interface	must	also	implement	a	callback	method	named	onButtonClick	which,
in	turn,	accepts	an	integer	and	a	String	as	arguments.
Next,	the	onAttach()	method	of	the	fragment	class	needs	to	be	overridden	and
implemented.	This	method	is	called	automatically	by	the	Android	system	when
the	fragment	has	been	initialized	and	associated	with	an	activity.	The	method	is
passed	a	reference	to	the	activity	in	which	the	fragment	is	contained.	The	method
must	store	a	local	reference	to	this	activity	and	verify	that	it	implements	the
ToolbarListener	interface:

@Override

public	void	onAttach(Context	context)	{

				super.onAttach(context);

				try	{

							activityCallback	=	(ToolbarListener)	activity;

				}	catch	(ClassCastException	e)	{

								throw	new	ClassCastException(activity.toString()

																+	"	must	implement	ToolbarListener");

				}

}

Upon	execution	of	this	example,	a	reference	to	the	activity	will	be	stored	in	the
local	activityCallback	variable,	and	an	exception	will	be	thrown	if	that	activity
does	not	implement	the	ToolbarListener	interface.
The	next	step	is	to	call	the	callback	method	of	the	activity	from	within	the
fragment.	When	and	how	this	happens	is	entirely	dependent	on	the
circumstances	under	which	the	activity	needs	to	be	contacted	by	the	fragment.
The	following	code,	for	example,	calls	the	callback	method	on	the	activity	when
a	button	is	clicked:

public	void	buttonClicked	(View	view)	{

			activityCallback.onButtonClick(arg1,	arg2);

}

All	that	remains	is	to	modify	the	activity	class	so	that	it	implements	the
ToolbarListener	interface.	For	example:

public	class	FragmentExampleActivity	extends	FragmentActivity

implements

ToolbarFragment.ToolbarListener	{

							public	void	onButtonClick(String	arg1,	int	arg2)	{

						//	Implement	code	for	callback	method

							}

.

.

}

As	we	can	see	from	the	above	code,	the	activity	declares	that	it	implements	the
ToolbarListener	interface	of	the	ToolbarFragment	class	and	then	proceeds	to
implement	the	onButtonClick()	method	as	required	by	the	interface.

29.7	Summary
Fragments	provide	a	powerful	mechanism	for	creating	reusable	modules	of	user
interface	layout	and	application	behavior,	which,	once	created,	can	be	embedded
in	activities.	A	fragment	consists	of	a	user	interface	layout	file	and	a	class.
Fragments	may	be	utilized	in	an	activity	either	by	adding	the	fragment	to	the
activity’s	layout	file,	or	by	writing	code	to	manage	the	fragments	at	runtime.
Fragments	added	to	an	activity	in	code	can	be	removed	and	replaced

Fragments	added	to	an	activity	in	code	can	be	removed	and	replaced
dynamically	at	runtime.	All	communication	between	fragments	should	be
performed	via	the	activity	within	which	the	activities	are	embedded.
Having	covered	the	basics	of	fragments	in	this	chapter,	the	next	chapter	will
work	through	a	tutorial	designed	to	reinforce	the	techniques	outlined	in	this
chapter.

30.	Using	Fragments	in	Android	Studio	-
An	Example

As	outlined	in	the	previous	chapter,	fragments	provide	a	convenient	mechanism
for	creating	reusable	modules	of	application	functionality	consisting	of	both
sections	of	a	user	interface	and	the	corresponding	behavior.	Once	created,
fragments	can	be	embedded	within	activities.
Having	explored	the	overall	theory	of	fragments	in	the	previous	chapter,	the
objective	of	this	chapter	is	to	create	an	example	Android	application	using
Android	Studio	designed	to	demonstrate	the	actual	steps	involved	in	both
creating	and	using	fragments,	and	also	implementing	communication	between
one	fragment	and	another	within	an	activity.

30.1	About	the	Example	Fragment	Application
The	application	created	in	this	chapter	will	consist	of	a	single	activity	and	two
fragments.	The	user	interface	for	the	first	fragment	will	contain	a	toolbar	of	sorts
consisting	of	an	EditText	view,	a	SeekBar	and	a	Button,	all	contained	within	a
RelativeLayout	view.	The	second	fragment	will	consist	solely	of	a	TextView
object,	also	contained	within	a	RelativeLayout	view.
The	two	fragments	will	be	embedded	within	the	main	activity	of	the	application
and	communication	implemented	such	that	when	the	button	in	the	first	fragment
is	pressed,	the	text	entered	into	the	EditText	view	will	appear	on	the	TextView
of	the	second	fragment	using	a	font	size	dictated	by	the	position	of	the	SeekBar
in	the	first	fragment.
Since	this	application	is	intended	to	work	on	earlier	versions	of	Android,	it	will
also	be	necessary	to	make	use	of	the	appropriate	Android	support	library.

30.2	Creating	the	Example	Project
Create	a	new	project	in	Android	Studio,	entering	FragmentExample	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named

FragmentExampleActivity	with	a	corresponding	layout	resource	file	named
activity_fragment_example.
Click	the	Finish	button	to	begin	the	project	creation	process.

30.3	Creating	the	First	Fragment	Layout
The	next	step	is	to	create	the	user	interface	for	the	first	fragment	that	will	be
used	within	our	activity.
This	user	interface	will,	of	course,	reside	in	an	XML	layout	file	so	begin	by
navigating	to	the	layout	folder	located	under	app	->	res	in	the	Project	tool
window.	Once	located,	right-click	on	the	layout	entry	and	select	the	New	->
Layout	resource	file	menu	option	as	illustrated	in	Figure	30-1:

Figure	30-1

In	the	resulting	dialog,	name	the	layout	toolbar_fragment	and	change	the	root
element	from	LinearLayout	to	RelativeLayout	before	clicking	on	OK	to	create
the	new	resource	file.
The	new	resource	file	will	appear	within	the	Layout	Editor	tool	ready	to	be
designed.	Switch	the	Layout	Editor	to	Text	mode	and	modify	the	XML	so	that	it
reads	as	outlined	in	the	following	listing	to	add	three	new	view	elements	to	the
layout:

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent">

				<Button

								android:id="@+id/button1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_below="@+id/seekBar1"

								android:layout_centerHorizontal="true"

								android:layout_marginTop="17dp"

								android:text="Change	Text"	/>

	

				<EditText

								android:id="@+id/editText1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_alignParentTop="true"

								android:layout_centerHorizontal="true"

								android:layout_marginTop="16dp"

								android:ems="10"

								android:inputType="text"	>

								<requestFocus	/>

				</EditText>

	

				<SeekBar

								android:id="@+id/seekBar1"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_alignParentStart="true"

								android:layout_below="@+id/editText1"

								android:layout_marginTop="14dp"

								android:layout_alignParentLeft="true"	/>

</RelativeLayout>

Once	the	changes	have	been	made,	switch	the	Layout	Editor	tool	back	to	Design
mode	and	click	on	the	red	warning	button	in	the	top	right-hand	corner	of	the
design	area.	Select	the	I18N	warning,	click	the	Extract	string	resource	link	and
assign	the	string	to	a	resource	named	change_text.
Upon	completion	of	these	steps,	the	user	interface	layout	should	resemble	that	of
Figure	30-2:

Figure	30-2

With	the	layout	for	the	first	fragment	implemented,	the	next	step	is	to	create	a
class	to	go	with	it.

30.4	Creating	the	First	Fragment	Class
In	addition	to	a	user	interface	layout,	a	fragment	also	needs	to	have	a	class

associated	with	it	to	do	the	actual	work	behind	the	scenes.	Add	a	class	for	this
purpose	to	the	project	by	unfolding	the	app	->	java	folder	under	the
FragmentExample	project	in	the	Project	tool	window	and	right-clicking	on	the
package	name	given	to	the	project	when	it	was	created	(in	this	instance
com.ebookfrenzy.fragmentexample).	From	the	resulting	menu,	select	the	New	->
Java	Class	option.	In	the	resulting	Create	New	Class	dialog,	name	the	class
ToolbarFragment	and	click	on	OK	to	create	the	new	class.
Once	the	class	has	been	created,	it	should,	by	default,	appear	in	the	editing	panel
where	it	will	read	as	follows:

package	com.ebookfrenzy.fragmentexample;

/**

	*	Created	by	<name>	on	<date>.

	*/

public	class	ToolbarFragment	{

}

For	the	time	being,	the	only	changes	to	this	class	are	the	addition	some	import
directives	and	the	overriding	of	the	onCreateView()	method	to	make	sure	the
layout	file	is	inflated	and	displayed	when	the	fragment	is	used	within	an	activity.
The	class	declaration	also	needs	to	indicate	that	the	class	extends	the	Android
Fragment	class:

package	com.ebookfrenzy.fragmentexample;

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

public	class	ToolbarFragment	extends	Fragment	{

				@Override

				public	View	onCreateView(LayoutInflater	inflater,

																													ViewGroup	container,	Bundle

																														savedInstanceState)	{

	

								//	Inflate	the	layout	for	this	fragment

								View	view	=	

inflater.inflate(R.layout.toolbar_fragment,

																container,	false);

								return	view;

				}

}

Later	in	this	chapter,	more	functionality	will	be	added	to	this	class.	Before	that,
however,	we	need	to	create	the	second	fragment.

30.5	Creating	the	Second	Fragment	Layout
Add	a	second	new	Android	XML	layout	resource	file	to	the	project,	once	again
selecting	a	RelativeLayout	as	the	root	element.	Name	the	layout	text_fragment
and	click	OK.	When	the	layout	loads	into	the	Layout	Editor	tool,	change	to	Text
mode	and	modify	the	XML	to	add	a	TextView	to	the	fragment	layout	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent">

				<TextView

								android:id="@+id/textView1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_centerHorizontal="true"

								android:layout_centerVertical="true"

								android:text="Fragment	Two"

								android:textAppearance="?

android:attr/textAppearanceLarge"	/>

	

</RelativeLayout>

Once	the	XML	changes	have	been	made,	switch	back	to	Design	mode,	extract
the	string	to	a	resource	named	fragment_two.	Upon	completion	of	these	steps,
the	user	interface	layout	for	this	second	fragment	should	resemble	that	of	Figure
30-3:

Figure	30-3

As	with	the	first	fragment,	this	one	will	also	need	to	have	a	class	associated	with
it.	Right-click	on	app	->	java	->	com.ebookfrenzy.fragmentexample	in	the
Project	tool	window.	From	the	resulting	menu,	select	the	New	->	Java	Class
option.	Name	the	fragment	TextFragment	and	click	OK	to	create	the	class.
Edit	the	new	TextFragment.java	class	file	and	modify	it	to	implement	the
onCreateView()	method	and	designate	the	class	as	extending	the	Android
Fragment	class:

package	com.ebookfrenzy.fragmentexample;

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

public	class	TextFragment	extends	Fragment	{

			

				@Override

				public	View	onCreateView(LayoutInflater	inflater,

																													ViewGroup	container,

																													Bundle	savedInstanceState)	{

								View	view	=	inflater.inflate(R.layout.text_fragment,

																container,	false);

	

								return	view;

				}

}

Now	that	the	basic	structure	of	the	two	fragments	has	been	implemented,	they
are	ready	to	be	embedded	in	the	application’s	main	activity.

30.6	Adding	the	Fragments	to	the	Activity
The	main	activity	for	the	application	has	associated	with	it	an	XML	layout	file
named	activity_fragment_example.xml.	For	the	purposes	of	this	example,	the
fragments	will	be	added	to	the	activity	using	the	<fragment>	element	within	this
file.	Using	the	Project	tool	window,	navigate	to	the	app	->	res	->	layout	section
of	the	FragmentExample	project	and	double-click	on	the
activity_fragment_example.xml	file	to	load	it	into	the	Android	Studio	Layout
Editor	tool.
With	the	Layout	Editor	tool	in	Design	mode,	select	and	delete	the	default
TextView	object	from	the	layout	and	select	the	Layouts	category	in	the	palette.
Drag	the	<fragment>	component	from	the	list	of	layouts	and	drop	it	onto	the
layout	so	that	it	is	centered	horizontally	and	positioned	such	that	the	dashed	line
appears	indicating	the	top	layout	margin:

Figure	30-4

On	dropping	the	fragment	onto	the	layout,	a	dialog	will	appear	displaying	a	list
of	Fragments	available	within	the	current	project	as	illustrated	in	Figure	30-5:

Figure	30-5

Select	the	ToolbarFragment	entry	from	the	list	and	click	on	the	OK	button	to
dismiss	the	Fragments	dialog.	Once	added,	a	message	panel	will	appear	(Figure
30-6)	indicating	that	the	Layout	Editor	tool	needs	to	know	which	fragment	to
display	during	the	preview	session.	Display	the	ToolbarFragment	fragment	by
clicking	on	the	Use	@layout/toolbar_fragment	link	within	the	message:

Figure	30-6

Click	and	drag	another	<fragment>	entry	from	the	panel	and	positioning	it	so

that	it	is	centered	horizontally	and	positioned	beneath	the	bottom	edge	of	the
first	fragment.	When	prompted,	select	the	TextFragment	entry	from	the	fragment
dialog	before	clicking	on	the	OK	button.	When	the	rendering	message	appears,
click	on	the	Use	@layout/text_fragment	option.	Establish	a	constraint	connection
between	the	top	edge	of	the	TextFragment	and	the	bottom	edge	of	the
ToolbarFragment.
Note	that	the	fragments	are	now	visible	in	the	layout	as	demonstrated	in	Figure
30-7:

Figure	30-7

Before	proceeding	to	the	next	step,	select	the	TextFragment	instance	in	the
layout	and,	within	the	Properties	tool	window,	change	the	ID	of	the	fragment	to
text_fragment.

30.7	Making	the	Toolbar	Fragment	Talk	to	the	Activity
When	the	user	touches	the	button	in	the	toolbar	fragment,	the	fragment	class	is
going	to	need	to	get	the	text	from	the	EditText	view	and	the	current	value	of	the
SeekBar	and	send	them	to	the	text	fragment.	As	outlined	in	An	Introduction	to
Android	Fragments,	fragments	should	not	communicate	with	each	other	directly,
instead	using	the	activity	in	which	they	are	embedded	as	an	intermediary.
The	first	step	in	this	process	is	to	make	sure	that	the	toolbar	fragment	responds
to	the	button	being	clicked.	We	also	need	to	implement	some	code	to	keep	track
of	the	value	of	the	SeekBar	view.	For	the	purposes	of	this	example,	we	will
implement	these	listeners	within	the	ToolbarFragment	class.	Select	the

ToolbarFragment.java	file	and	modify	it	so	that	it	reads	as	shown	in	the
following	listing:

package	com.ebookfrenzy.fragmentexample;

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

import	android.content.Context;

import	android.widget.Button;

import	android.widget.EditText;

import	android.widget.SeekBar;

import	android.widget.SeekBar.OnSeekBarChangeListener;

public	class	ToolbarFragment	extends	Fragment	implements

OnSeekBarChangeListener	{

				private	static	int	seekvalue	=	10;

				private	static	EditText	edittext;

	

				@Override

				public	View	onCreateView(LayoutInflater	inflater,

																													ViewGroup	container,	Bundle

																														savedInstanceState)	{

								//	Inflate	the	layout	for	this	fragment

								View	view	=	

inflater.inflate(R.layout.toolbar_fragment,

																container,	false);

								edittext	=	(EditText)

view.findViewById(R.id.editText1);

								final	SeekBar	seekbar	=

																(SeekBar)	view.findViewById(R.id.seekBar1);

	

								seekbar.setOnSeekBarChangeListener(this);

	

								final	Button	button	=

																(Button)	view.findViewById(R.id.button1);

								button.setOnClickListener(new	View.OnClickListener()	{

												public	void	onClick(View	v)	{

																buttonClicked(v);

												}

								});

								return	view;

				}

				public	void	buttonClicked	(View	view)	{

	

				}

	

				@Override

				public	void	onProgressChanged(SeekBar	seekBar,	int

progress,

																																		boolean	fromUser)	{

								seekvalue	=	progress;

				}

	

				@Override

				public	void	onStartTrackingTouch(SeekBar	arg0)	{

	

				}

	

				@Override

				public	void	onStopTrackingTouch(SeekBar	arg0)	{

	

				}

}

Before	moving	on,	we	need	to	take	some	time	to	explain	the	above	code
changes.	First,	the	class	is	declared	as	implementing	the
OnSeekBarChangeListener	interface.	This	is	because	the	user	interface	contains
a	SeekBar	instance	and	the	fragment	needs	to	receive	notifications	when	the	user
slides	the	bar	to	change	the	font	size.	Implementation	of	the
OnSeekBarChangeListener	interface	requires	that	the	onProgressChanged(),
onStartTrackingTouch()	and	onStopTrackingTouch()	methods	be	implemented.
These	methods	have	been	implemented	but	only	the	onProgressChanged()
method	is	actually	required	to	perform	a	task,	in	this	case	storing	the	new	value
in	a	variable	named	seekvalue	which	has	been	declared	at	the	start	of	the	class.
Also	declared	is	a	variable	in	which	to	store	a	reference	to	the	EditText	object.
The	onCreateView()	method	has	been	modified	to	obtain	references	to	the
EditText,	SeekBar	and	Button	views	in	the	layout.	Once	a	reference	to	the	button
has	been	obtained	it	is	used	to	set	up	an	onClickListener	on	the	button	which	is
configured	to	call	a	method	named	buttonClicked()	when	a	click	event	is
detected.	This	method	is	also	then	implemented,	though	at	this	point	it	does	not
do	anything.

The	next	phase	of	this	process	is	to	set	up	the	listener	that	will	allow	the
fragment	to	call	the	activity	when	the	button	is	clicked.	This	follows	the
mechanism	outlined	in	the	previous	chapter:

public	class	ToolbarFragment	extends	Fragment	implements

OnSeekBarChangeListener	{

						

									private	static	int	seekvalue	=	10;

									private	static	EditText	edittext;

													

									ToolbarListener	activityCallback;

													

									public	interface	ToolbarListener	{

															public	void	onButtonClick(int	position,	String

text);

									}

								

									@Override

									public	void	onAttach(Context	context)	{

															super.onAttach(context);

															try	{

																			activityCallback	=	(ToolbarListener)

context;

															}	catch	(ClassCastException	e)	{

																			throw	new

ClassCastException(context.toString()

																							+	"	must	implement	ToolbarListener");

															}

										}

	

										@Override

											public	View	onCreateView(LayoutInflater	inflater,

														ViewGroup	container,	Bundle	savedInstanceState)	{

															//	Inflate	the	layout	for	this	fragment

														

															View	view	=	

																					

inflater.inflate(R.layout.toolbar_fragment,

																														container,	false);

														

															edittext	=	(EditText)

																						view.findViewById(R.id.editText1);

															final	SeekBar	seekbar	=

																						(SeekBar)

view.findViewById(R.id.seekBar1);

														

															seekbar.setOnSeekBarChangeListener(this);

														

															final	Button	button	=

																	(Button)	view.findViewById(R.id.button1);

															button.setOnClickListener(new

View.OnClickListener()	{

																			public	void	onClick(View	v)	{

																							buttonClicked(v);

																			}

															});

														

															return	view;

										}

										public	void	buttonClicked	(View	view)	{

																	activityCallback.onButtonClick(seekvalue,

																						edittext.getText().toString());

										}

.

.

.

}

The	above	implementation	will	result	in	a	method	named	onButtonClick()
belonging	to	the	activity	class	being	called	when	the	button	is	clicked	by	the
user.	All	that	remains,	therefore,	is	to	declare	that	the	activity	class	implements
the	newly	created	ToolbarListener	interface	and	to	implement	the
onButtonClick()	method.
Since	the	Android	Support	Library	is	being	used	for	fragment	support	in	earlier
Android	versions,	the	activity	also	needs	to	be	changed	to	subclass	from
FragmentActivity	instead	of	AppCompatActivity.	Bringing	these	requirements
together	results	in	the	following	modified	FragmentExampleActivity.java	file:

package	com.ebookfrenzy.fragmentexample;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v4.app.FragmentActivity;

import	android.os.Bundle;

public	class	FragmentExampleActivity	extends	FragmentActivity

implements	ToolbarFragment.ToolbarListener	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_fragment_example);

				}

	

				public	void	onButtonClick(int	fontsize,	String	text)	{

	

				}

.

.

.

}

With	the	code	changes	as	they	currently	stand,	the	toolbar	fragment	will	detect
when	the	button	is	clicked	by	the	user	and	call	a	method	on	the	activity	passing
through	the	content	of	the	EditText	field	and	the	current	setting	of	the	SeekBar
view.	It	is	now	the	job	of	the	activity	to	communicate	with	the	Text	Fragment
and	to	pass	along	these	values	so	that	the	fragment	can	update	the	TextView
object	accordingly.

30.8	Making	the	Activity	Talk	to	the	Text	Fragment
As	outlined	in	An	Introduction	to	Android	Fragments,	an	activity	can
communicate	with	a	fragment	by	obtaining	a	reference	to	the	fragment	class
instance	and	then	calling	public	methods	on	the	object.	As	such,	within	the
TextFragment	class	we	will	now	implement	a	public	method	named
changeTextProperties()	which	takes	as	arguments	an	integer	for	the	font	size	and
a	string	for	the	new	text	to	be	displayed.	The	method	will	then	use	these	values
to	modify	the	TextView	object.	Within	the	Android	Studio	editing	panel,	locate
and	modify	the	TextFragment.java	file	to	add	this	new	method	and	to	add	code
to	the	onCreateView()	method	to	obtain	the	ID	of	the	TextView	object:

package	com.ebookfrenzy.fragmentexample;

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

import	android.widget.TextView;

public	class	TextFragment	extends	Fragment	{

				private	static	TextView	textview;

				@Override

				public	View	onCreateView(LayoutInflater	inflater,

																													ViewGroup	container,

																													Bundle	savedInstanceState)	{

								View	view	=	inflater.inflate(R.layout.text_fragment,

																container,	false);

								textview	=	(TextView)

view.findViewById(R.id.textView1);

								return	view;

				}

				public	void	changeTextProperties(int	fontsize,	String	text)

				{

								textview.setTextSize(fontsize);

								textview.setText(text);

				}

}

When	the	TextFragment	fragment	was	placed	in	the	layout	of	the	activity,	it	was
given	an	ID	of	text_fragment.	Using	this	ID,	it	is	now	possible	for	the	activity	to
obtain	a	reference	to	the	fragment	instance	and	call	the	changeTextProperties()
method	on	the	object.	Edit	the	FragmentExampleActivity.java	file	and	modify
the	onButtonClick()	method	as	follows:

public	void	onButtonClick(int	fontsize,	String	text)	{

			TextFragment	textFragment	=

				(TextFragment)

					

getSupportFragmentManager().findFragmentById(R.id.text_fragment);

	

			textFragment.changeTextProperties(fontsize,	text);

}

30.9	Testing	the	Application
With	the	coding	for	this	project	now	complete,	the	last	remaining	task	is	to	run
the	application.	When	the	application	is	launched,	the	main	activity	will	start	and
will,	in	turn,	create	and	display	the	two	fragments.	When	the	user	touches	the
button	in	the	toolbar	fragment,	the	onButtonClick()	method	of	the	activity	will	be
called	by	the	toolbar	fragment	and	passed	the	text	from	the	EditText	view	and
the	current	value	of	the	SeekBar.	The	activity	will	then	call	the
changeTextProperties()	method	of	the	second	fragment,	which	will	modify	the
TextView	to	reflect	the	new	text	and	font	size:

Figure	30-8

30.10	Summary
The	goal	of	this	chapter	was	to	work	through	the	creation	of	an	example	project

The	goal	of	this	chapter	was	to	work	through	the	creation	of	an	example	project
intended	specifically	to	demonstrate	the	steps	involved	in	using	fragments	within
an	Android	application.	Topics	covered	included	the	use	of	the	Android	Support
Library	for	compatibility	with	Android	versions	predating	the	introduction	of
fragments,	the	inclusion	of	fragments	within	an	activity	layout	and	the
implementation	of	inter-fragment	communication.

31.	 Creating	 and	 Managing	 Overflow	 Menus	 on
Android

An	area	of	user	interface	design	that	has	not	yet	been	covered	in	this	book	relates
to	the	concept	of	menus	within	an	Android	application.	Menus	provide	a
mechanism	for	offering	additional	choices	to	the	user	beyond	the	view
components	that	are	present	in	the	user	interface	layout.	While	there	are	a
number	of	different	menu	systems	available	to	the	Android	application
developer,	this	chapter	will	focus	on	the	more	commonly	used	Overflow	menu.
The	chapter	will	cover	the	creation	of	menus	both	manually	via	XML	and
visually	using	the	Android	Studio	Layout	Editor	tool.

31.1	The	Overflow	Menu
The	overflow	menu	(also	referred	to	as	the	options	menu)	is	a	menu	that	is
accessible	to	the	user	from	the	device	display	and	allows	the	developer	to
include	other	application	options	beyond	those	included	in	the	user	interface	of
the	application.	The	location	of	the	overflow	menu	is	dependent	upon	the
version	of	Android	that	is	running	on	the	device.	On	a	device	running	Android
2.3.3,	for	example,	the	overflow	menu	is	represented	by	the	menu	icon	located	in
the	center	(between	the	back	and	search	buttons)	of	the	bottom	soft	key	toolbar
as	illustrated	in	Figure	31-1:

Figure	31-1

With	the	Android	4.0	release	and	later,	on	the	other	hand,	the	overflow	menu
button	is	located	in	the	top	right-hand	corner	(Figure	31-2)	in	the	action	toolbar
represented	by	the	stack	of	three	squares:

Figure	31-2

31.2	Creating	an	Overflow	Menu
The	items	in	a	menu	can	be	declared	within	an	XML	file,	which	is	then	inflated
and	displayed	to	the	user	on	demand.	This	involves	the	use	of	the	<menu>
element,	containing	an	<item>	sub-element	for	each	menu	item.	The	following
XML,	for	example,	defines	a	menu	consisting	of	two	menu	items	relating	to
color	choices:

<menu

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				tools:context=

											".MenuExampleActivity"	>

				<item

								android:id="@+id/menu_red"

								android:orderInCategory="1"

								app:showAsAction="never"

								android:title="@string/red_string"/>

							<item

								android:id="@+id/menu_green"

								android:orderInCategory="2"

								app:showAsAction="never"

								android:title="@string/green_string"/>

</menu>

In	the	above	XML,	the	android:orderInCategory	property	dictates	the	order	in
which	the	menu	items	will	appear	within	the	menu	when	it	is	displayed.	The
app:showAsAction	property,	on	the	other	hand,	controls	the	conditions	under
which	the	corresponding	item	appears	as	an	item	within	the	action	bar	itself.	If
set	to	ifRoom,	for	example,	the	item	will	appear	in	the	action	bar	if	there	is
enough	room.	Figure	31-3	shows	the	effect	of	setting	this	property	to	ifRoom	for
both	menu	items:

Figure	31-3

This	property	should	be	used	sparingly	to	avoid	over	cluttering	the	action	bar.
By	default,	a	menu	XML	file	is	created	by	Android	Studio	when	a	new	Android
application	project	is	created.	This	file	is	located	in	the	app	->	res	->	menu
project	folder	and	contains	a	single	menu	item	entitled	“Settings”:

<menu

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				tools:context=".MainActivity">

							<item	android:id="@+id/action_settings"

												android:title="@string/action_settings"

												android:orderInCategory="100"

												app:showAsAction="never"	/>

</menu>

This	menu	is	already	configured	to	be	displayed	when	the	user	selects	the
overflow	menu	on	the	user	interface	when	the	app	is	running,	so	simply	modify
this	one	to	meet	your	needs.

31.3	Displaying	an	Overflow	Menu
An	overflow	menu	is	created	by	overriding	the	onCreateOptionsMenu()	method
of	the	corresponding	activity	and	then	inflating	the	menu’s	XML	file.	For
example,	the	following	code	creates	the	menu	contained	within	a	menu	XML
file	named	menu_menu_example:

@Override

public	boolean	onCreateOptionsMenu(Menu	menu)	{

							getMenuInflater().inflate(R.menu.menu_menu_example,

menu);

							return	true;

}

As	with	the	menu	XML	file,	Android	Studio	will	already	have	overridden	this
method	in	the	main	activity	of	a	newly	created	Android	application	project.	In

method	in	the	main	activity	of	a	newly	created	Android	application	project.	In
the	event	that	an	overflow	menu	is	not	required	in	your	activity,	either	remove	or
comment	out	this	method.

31.4	Responding	to	Menu	Item	Selections
Once	a	menu	has	been	implemented,	the	question	arises	as	to	how	the
application	receives	notification	when	the	user	makes	menu	item	selections.	All
that	an	activity	needs	to	do	to	receive	menu	selection	notifications	is	to	override
the	onOptionsItemSelected()	method.	Passed	as	an	argument	to	this	method	is	a
reference	to	the	selected	menu	item.	The	getItemId()	method	may	then	be	called
on	the	item	to	obtain	the	ID	which	may,	in	turn,	be	used	to	identify	which	item
was	selected.	For	example:

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

							switch	(item.getItemId())	{

								case	R.id.menu_red:

												//	Red	item	was	selected

												return	true;

								case	R.id.menu_green:

												//	Green	item	was	selected

												return	true;

								default:

												return	super.onOptionsItemSelected(item);

							}

}

31.5	Creating	Checkable	Item	Groups
In	addition	to	configuring	independent	menu	items,	it	is	also	possible	to	create
groups	of	menu	items.	This	is	of	particular	use	when	creating	checkable	menu
items	whereby	only	one	out	of	a	number	of	choices	can	be	selected	at	any	one
time.	Menu	items	can	be	assigned	to	a	group	by	wrapping	them	in	the	<group>
tag.	The	group	is	declared	as	checkable	using	the	android:checkableBehavior
property,	setting	the	value	to	either	single,	all	or	none.	The	following	XML
declares	that	two	menu	items	make	up	a	group	wherein	only	one	item	may	be
selected	at	any	given	time:

<menu

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto">

				<group	android:checkableBehavior="single">

								<item

												android:id="@+id/menu_red"

												android:title="@string/red_string"/>

								<item

												android:id="@+id/menu_green"

												android:title="@string/green_string"/>

				</group>

</menu>

When	a	menu	group	is	configured	to	be	checkable,	a	small	circle	appears	next	to
the	item	in	the	menu	as	illustrated	in	Figure	31-4.	It	is	important	to	be	aware	that
the	setting	and	unsetting	of	this	indicator	does	not	take	place	automatically.	It	is,
therefore,	the	responsibility	of	the	application	to	check	and	uncheck	the	menu
item.

Figure	31-4

Continuing	the	color	example	used	previously	in	this	chapter,	this	would	be
implemented	as	follows:

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

								switch	(item.getItemId())	{

												case	R.id.menu_red:

																if	(item.isChecked())	item.setChecked(false);

																else	item.setChecked(true);

																return	true;

												case	R.id.menu_green:

																if	(item.isChecked())	item.setChecked(false);

																else	item.setChecked(true);

																return	true;

												default:

																return	super.onOptionsItemSelected(item);

								}

}

31.6	Menus	and	the	Android	Studio	Menu	Editor
Prior	to	the	introduction	of	Android	Studio	2.2,	the	only	way	to	construct	a	menu
was	to	manually	edit	the	XML	content	of	the	menu	resource	file	as	outlined

above.	Android	Studio	now	allows	menus	to	be	designed	visually	simply	by
loading	the	menu	resource	file	into	the	Menu	Editor	tool,	dragging	and	dropping
menu	elements	from	a	palette	and	setting	properties.	This	considerably	eases	the
menu	design	process,	though	it	is	important	to	be	aware	that	it	is	still	necessary
to	write	the	code	in	the	onOptionsItemSelected()	method	to	implement	the	menu
behavior.
To	visually	design	a	menu,	locate	the	menu	resource	file	and	double-click	on	it
to	load	it	into	the	Menu	Editor	tool.	Figure	31-5,	for	example,	shows	the	default
menu	resource	file	for	a	basic	activity	loaded	into	the	Menu	Editor:

Figure	31-5

The	palette	(A)	contains	items	that	can	be	added	to	the	menu	contained	in	the
design	area	(C).	The	Component	Tree	(B)	is	a	useful	tool	for	identifying	the
hierarchical	structure	of	the	menu.	The	Properties	panel	(D)	contains	a	subset	of
common	properties	for	the	currently	selected	item.	The	view	all	properties	link
(E)	may	be	used	to	access	the	full	list	of	properties.
New	elements	may	be	added	to	the	menu	by	dragging	and	dropping	objects
either	onto	the	layout	canvas	or	the	Component	Tree.	When	working	with	menus

either	onto	the	layout	canvas	or	the	Component	Tree.	When	working	with	menus
in	the	Layout	Editor	tool,	it	will	sometimes	be	easier	to	drop	the	items	onto	the
Component	Tree	since	this	provides	greater	control	over	where	the	item	is
placed	within	the	tree.	This	is	of	particular	use,	for	example,	when	adding	items
to	a	group.
Although	the	Menu	Editor	provides	a	visual	approach	to	constructing	menus,	the
underlying	menu	is	still	stored	in	XML	format	which	may	be	viewed	and	edited
manually	by	switching	from	Design	to	Text	mode	using	the	tab	marked	F	in	the
above	figure.

31.7	Creating	the	Example	Project
To	see	the	overflow	menu	in	action,	create	a	new	project	in	Android	Studio,
entering	MenuExample	into	the	Application	name	field	and	ebookfrenzy.com	as
the	Company	Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	a	basic	activity	named
MenuExampleActivity	with	corresponding	layout	and	menu	resource	files	named
activity_menu_example	and	menu_menu_example.
When	the	project	has	been	created,	navigate	to	the	app	->	res	->	layout	folder	in
the	Project	tool	window	and	double-click	on	the	content_menu_example.xml	file
to	load	it	into	the	Android	Studio	Menu	Editor	tool.	Switch	the	tool	to	Design
mode,	select	the	ConstraintLayout	from	the	Component	Tree	panel	and	enter
layoutView	into	the	ID	field	of	the	Properties	panel.

31.8	Designing	the	Menu
Within	the	Project	tool	window,	locate	the	project’s	app	->	res	->	menu	->
menu_menu_example.xml	file	and	double-click	on	it	to	load	it	into	the	Layout
Editor	tool.	Select	and	delete	the	default	Settings	menu	item	added	by	Android
Studio	so	that	the	menu	currently	has	no	items.
From	the	palette,	click	and	drag	a	menu	group	object	onto	the	title	bar	of	the
layout	canvas	as	highlighted	in	Figure	31-6:

Figure	31-6

Although	the	group	item	has	been	added,	it	will	be	invisible	within	the	layout.
To	verify	the	presence	of	the	element,	refer	to	the	Component	Tree	panel	where
the	group	will	be	listed	as	a	child	of	the	menu:

Figure	31-7

Select	the	group	entry	in	the	Component	Tree	and,	referring	to	the	Properties
panel,	set	the	checkableBehavior	property	to	single	so	that	only	one	group	menu
item	can	be	selected	at	any	one	time:

Figure	31-8

Next,	drag	and	drop	four	item	elements	from	the	palette	and	drop	them	onto	the
group	element	in	the	Component	Tree.	Select	the	first	item	and	use	the
Properties	panel	to	change	the	title	to	“Red”	and	the	ID	to	menu_red:

Figure	31-9

Repeat	these	steps	for	the	remaining	three	menu	items	setting	the	titles	to
“Green”,	“Yellow”	and	“Blue”	with	matching	IDs	of	menu_green,	menu_yellow
and	menu_blue.	Use	the	red	warning	button	in	the	top	right-hand	corner	of	editor
panel	to	extract	the	strings	to	resources.
On	completion	of	these	steps,	the	menu	layout	should	match	that	shown	in
Figure	31-10	below:

Figure	31-10

Switch	the	Layout	Editor	tool	to	Text	mode	and	review	the	XML	representation
of	the	menu	which	should	match	the	following	listing:

<menu

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

			

tools:context="com.ebookfrenzy.menuexample.MenuExampleActivity">

				<group	android:checkableBehavior="single">

								<item	android:title="@string/red_string"

												android:id="@+id/menu_red"	/>

								<item	android:title="@string/green_string"

												android:id="@+id/menu_green"	/>

								<item	android:title="@string/yellow_string"

												android:id="@+id/menu_yellow"	/>

								<item	android:title="@string/blue_string"

												android:id="@+id/menu_blue"	/>

				</group>

</menu>

31.9	Modifying	the	onOptionsItemSelected()	Method
When	items	are	selected	from	the	menu,	the	overridden
onOptionsItemsSelected()	method	of	the	application’s	activity	will	be	called.	The
role	of	this	method	will	be	to	identify	which	item	was	selected	and	change	the
background	color	of	the	layout	view	to	the	corresponding	color.	Locate	and
double-click	on	the	app	->	java	->	com.ebookfrenzy.menuexample	->
MenuExampleActivity	file	and	modify	the	method	as	follows:

package	com.ebookfrenzy.menuexample;

import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.support.constraint.ConstraintLayout;

public	class	MenuExampleActivity	extends	AppCompatActivity	{

.

.

.

				@Override

				public	boolean	onOptionsItemSelected(MenuItem	item)	{

							

								ConstraintLayout	mainLayout	=

																(ConstraintLayout)

findViewById(R.id.layoutView);

	

								switch	(item.getItemId())	{

												case	R.id.menu_red:

																if	(item.isChecked())	item.setChecked(false);

																else	item.setChecked(true);

															

mainLayout.setBackgroundColor(android.graphics.Color.RED);

																return	true;

												case	R.id.menu_green:

																if	(item.isChecked())	item.setChecked(false);

																else	item.setChecked(true);

															

mainLayout.setBackgroundColor(android.graphics.Color.GREEN);

																return	true;

												case	R.id.menu_yellow:

																if	(item.isChecked())	item.setChecked(false);

																else	item.setChecked(true);

															

mainLayout.setBackgroundColor(android.graphics.Color.YELLOW);

																return	true;

												case	R.id.menu_blue:

																if	(item.isChecked())	item.setChecked(false);

																else	item.setChecked(true);

															

mainLayout.setBackgroundColor(android.graphics.Color.BLUE);

																return	true;

												default:

																return	super.onOptionsItemSelected(item);

								}

				}

.

.

}

31.10	Testing	the	Application
Build	and	run	the	application	on	either	an	emulator	or	physical	Android	device.
Using	the	overflow	menu,	select	menu	items	and	verify	that	the	layout
background	color	changes	appropriately.	Note	that	the	currently	selected	color	is
displayed	as	the	checked	item	in	the	menu.

Figure	31-11

31.11	Summary
On	earlier	versions	of	Android,	the	overflow	menu	is	accessible	from	the	soft
key	toolbar	at	the	bottom	of	the	screen.	On	Android	4.0	and	later,	the	menu	is
accessed	from	the	far	right	of	the	actions	toolbar	at	the	top	of	the	display.	This
menu	provides	a	location	for	applications	to	provide	additional	options	to	the
user.
The	structure	of	the	menu	is	most	easily	defined	within	an	XML	file	and	the
application	activity	receives	notifications	of	menu	item	selections	by	overriding
and	implementing	the	onOptionsItemSelected()	method.

32.	Animating	User	Interfaces	with	the
Android	Transitions	Framework

The	Android	Transitions	framework	was	introduced	as	part	of	the	Android	4.4
KitKat	release	and	is	designed	to	make	it	easy	for	you,	as	an	Android	developer,
to	add	animation	effects	to	the	views	that	make	up	the	screens	of	your
applications.	As	will	be	outlined	in	both	this	and	subsequent	chapters,	animated
effects	such	as	making	the	views	in	a	user	interface	gently	fade	in	and	out	of
sight	and	glide	smoothly	to	new	positions	on	the	screen	can	be	implemented
with	just	a	few	simple	lines	of	code	when	using	the	Transitions	framework	in
Android	Studio.

32.1	Introducing	Android	Transitions	and	Scenes
Transitions	allow	the	changes	made	to	the	layout	and	appearance	of	the	views	in
a	user	interface	to	be	animated	during	application	runtime.	While	there	are	a
number	of	different	ways	to	implement	Transitions	from	within	application
code,	perhaps	the	most	powerful	mechanism	involves	the	use	of	Scenes.	A	scene
represents	either	the	entire	layout	of	a	user	interface	screen,	or	a	subset	of	the
layout	(represented	by	a	ViewGroup).
To	implement	transitions	using	this	approach,	scenes	are	defined	that	reflect	the
two	different	user	interface	states	(these	can	be	thought	of	as	the	“before”	and
“after”	scenes).	One	scene,	for	example,	might	consist	of	a	TextEdit,	Button	and
TextView	positioned	near	the	top	of	the	screen.	The	second	scene	might	remove
the	Button	view	and	move	the	remaining	TextEdit	and	TextView	objects	to	the
bottom	of	the	screen	to	make	room	for	the	introduction	of	a	MapView	instance.
Using	the	transition	framework,	the	changes	between	these	two	scenes	can	be
animated	so	that	the	Button	fades	from	view,	the	TextEdit	and	TextView	slide	to
the	new	locations	and	the	map	gently	fades	into	view.
Scenes	can	be	created	in	code	from	ViewGroups,	or	implemented	in	layout
resource	files	that	are	loaded	into	Scene	instances	at	application	runtime.
Transitions	can	also	be	implemented	dynamically	from	within	application	code.
Using	this	approach,	scenes	are	created	by	referencing	collections	of	user
interface	views	in	the	form	of	ViewGroups	with	transitions	then	being
performed	on	those	elements	using	the	TransitionManager	class,	which	provides
a	range	of	methods	for	triggering	and	managing	the	transitions	between	scenes.

Perhaps	the	simplest	form	of	transition	involves	the	use	of	the
beginDelayedTransition()	method	of	the	TransitionManager	class.	When	called
and	passed	the	ViewGroup	representing	a	scene,	any	subsequent	changes	to	any
views	within	that	scene	(such	as	moving,	resizing,	adding	or	deleting	views)	will
be	animated	by	the	Transition	framework.
The	actual	animation	is	handled	by	the	Transition	framework	via	instances	of	the
Transition	class.	Transition	instances	are	responsible	for	detecting	changes	to	the
size,	position	and	visibility	of	the	views	within	a	scene	and	animating	those
changes	accordingly.
By	default,	transitions	will	be	animated	using	a	set	of	criteria	defined	by	the
AutoTransition	class.	Custom	transitions	can	be	created	either	via	settings	in
XML	transition	files	or	directly	within	code.	Multiple	transitions	can	be
combined	together	in	a	TransitionSet	and	configured	to	be	performed	either	in
parallel	or	sequentially.

32.2	Using	Interpolators	with	Transitions
The	Transitions	framework	makes	extensive	use	of	the	Android	Animation
framework	to	implement	animation	effects.	This	fact	is	largely	incidental	when
using	transitions	since	most	of	this	work	happens	behind	the	scenes,	thereby
shielding	the	developer	from	some	of	the	complexities	of	the	Animation
framework.	One	area	where	some	knowledge	of	the	Animation	framework	is
beneficial	when	using	Transitions,	however,	involves	the	concept	of
interpolators.
Interpolators	are	a	feature	of	the	Android	Animation	framework	that	allow
animations	to	be	modified	in	a	number	of	pre-defined	ways.	At	present	the
Animation	framework	provides	the	following	interpolators,	all	of	which	are
available	for	use	in	customizing	transitions:
·									AccelerateDecelerateInterpolator	–	By	default,	animation	is	performed	at	a

constant	rate.	The	AccelerateDecelerateInterpolator	can	be	used	to	cause	the
animation	to	begin	slowly	and	then	speed	up	in	the	middle	before	slowing
down	towards	the	end	of	the	sequence.

·									AccelerateInterpolator	–	As	the	name	suggests,	the	AccelerateInterpolator
begins	the	animation	slowly	and	accelerates	at	a	specified	rate	with	no
deceleration	at	the	end.

·									AnticipateInterpolator	–	The	AnticipateInterpolator	provides	an	effect
similar	to	that	of	a	sling	shot.	The	animated	view	moves	in	the	opposite
direction	to	the	configured	animation	for	a	short	distance	before	being	flung

forward	in	the	correct	direction.	The	amount	of	backward	force	can	be
controlled	through	the	specification	of	a	tension	value.

·									AnticipateOvershootInterpolator	–	Combines	the	effect	provided	by	the
AnticipateInterpolator	with	the	animated	object	overshooting	and	then
returning	to	the	destination	position	on	the	screen.

·									BounceInterpolator	–	Causes	the	animated	view	to	bounce	on	arrival	at	its
destination	position.

·									CycleInterpolator	–	Configures	the	animation	to	be	repeated	a	specified
number	of	times.

·									DecelerateInterpolator	–	The	DecelerateInterpolator	causes	the	animation	to
begin	quickly	and	then	decelerate	by	a	specified	factor	as	it	nears	the	end.

·									LinearInterpolator	–	Used	to	specify	that	the	animation	is	to	be	performed
at	a	constant	rate.

·									OvershootInterpolator	–	Causes	the	animated	view	to	overshoot	the
specified	destination	position	before	returning.	The	overshoot	can	be
configured	by	specifying	a	tension	value.

As	will	be	demonstrated	in	this	and	later	chapters,	interpolators	can	be	specified
both	in	code	and	XML	files.

32.3	Working	with	Scene	Transitions
Scenes	can	be	represented	by	the	content	of	an	Android	Studio	XML	layout	file.
The	following	XML,	for	example,	could	be	used	to	represent	a	scene	consisting
of	three	button	views	within	a	RelativeLayout	parent:

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				android:id="@+id/RelativeLayout1"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"	>

				<Button

								android:id="@+id/button1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_alignParentLeft="true"

								android:layout_alignParentTop="true"

								android:onClick="goToScene2"

								android:text="@string/one_string"	/>

				<Button

								android:id="@+id/button2"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_alignParentRight="true"

								android:layout_alignParentTop="true"

								android:onClick="goToScene1"

								android:text="@string/two_string"	/>

				<Button

								android:id="@+id/button3"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_centerHorizontal="true"

								android:layout_centerVertical="true"

								android:text="@string/three_string"	/>

</RelativeLayout>

Assuming	that	the	above	layout	resides	in	a	file	named	scene1_layout.xml
located	in	the	res/layout	folder	of	the	project,	the	layout	can	be	loaded	into	a
scene	using	the	getSceneForLayout()	method	of	the	Scene	class.	For	example:

Scene	scene1	=	Scene.getSceneForLayout(rootContainer,

																R.layout.scene1_layout,	this);

Note	that	the	method	call	requires	a	reference	to	the	root	container.	This	is	the
view	at	the	top	of	the	view	hierarchy	in	which	the	scene	is	to	be	displayed.
To	display	a	scene	to	the	user	without	any	transition	animation,	the	enter()
method	is	called	on	the	scene	instance:

scene1.enter();

Transitions	between	two	scenes	using	the	default	AutoTransition	class	can	be
triggered	using	the	go()	method	of	the	TransitionManager	class:

TransitionManager.go(scene2);

Scene	instances	can	be	created	easily	in	code	by	bundling	the	view	elements	into
one	or	more	ViewGroups	and	then	creating	a	scene	from	those	groups.	For
example:

Scene	scene1	=	Scene(viewGroup1);

Scene	scene2	=	Scene(viewGroup2,	viewGroup3);

32.4	Custom	Transitions	and	TransitionSets	in	Code
The	examples	outlined	so	far	in	this	chapter	have	used	the	default	transition
settings	in	which	resizing,	fading	and	motion	are	animated	using	preconfigured

behavior.	These	can	be	modified	by	creating	custom	transitions	which	are	then
referenced	during	the	transition	process.	Animations	are	categorized	as	either
change	bounds	(relating	to	changes	in	the	position	and	size	of	a	view)	and	fade
(relating	to	the	visibility	or	otherwise	of	a	view).
A	single	Transition	can	be	created	as	follows:

Transition	myChangeBounds	=	new	ChangeBounds();

This	new	transition	can	then	be	used	when	performing	a	transition:
TransitionManager.go(scene2,	myChangeBounds);

Multiple	transitions	may	be	bundled	together	into	a	TransitionSet	instance.	The
following	code,	for	example,	creates	a	new	TransitionSet	object	consisting	of
both	change	bounds	and	fade	transition	effects:

TransitionSet	myTransition	=	new	TransitionSet();

myTransition.addTransition(new	ChangeBounds());

myTransition.addTransition(new	Fade());

Transitions	can	be	configured	to	target	specific	views	(referenced	by	view	ID).
For	example,	the	following	code	will	configure	the	previous	fade	transition	to
target	only	the	view	with	an	ID	that	matches	myButton1:

TransitionSet	myTransition	=	new	TransitionSet();

myTransition.addTransition(new	ChangeBounds());

Transition	fade	=	new	Fade();

fade.addTarget(R.id.myButton1);

myTransition.addTransition(fade);

Additional	aspects	of	the	transition	may	also	be	customized,	such	as	the	duration
of	the	animation.	The	following	code	specifies	the	duration	over	which	the
animation	is	to	be	performed:

Transition	changeBounds	=	new	ChangeBounds();

changeBounds.setDuration(2000);

As	with	Transition	instances,	once	a	TransitionSet	instance	has	been	created,	it
can	be	used	in	a	transition	via	the	TransitionManager	class.	For	example:

TransitionManager.go(scene1,	myTransition);

32.5	Custom	Transitions	and	TransitionSets	in	XML
While	custom	transitions	can	be	implemented	in	code,	it	is	often	easier	to	do	so
via	XML	transition	files	using	the	<fade>	and	<changeBounds>	tags	together
with	some	additional	options.	The	following	XML	includes	a	single
changeBounds	transition:

<?xml	version="1.0"	encoding="utf-8"?>

<changeBounds/>

As	with	the	code	based	approach	to	working	with	transitions,	each	transition
entry	in	a	resource	file	may	be	customized.	The	XML	below,	for	example,
configures	a	duration	for	a	change	bounds	transition:

<changeBounds	android:duration="5000"	>

Multiple	transitions	may	be	bundled	together	using	the	<transitionSet>	element:
<?xml	version="1.0"	encoding="utf-8"?>

<transitionSet

		xmlns:android="http://schemas.android.com/apk/res/android"	>

		<fade

				android:duration="2000"

				android:fadingMode="fade_out"	/>

		<changeBounds

				android:duration="5000"	>

				

				<targets>

						<target	android:targetId="@id/button2"	/>

				</targets>

					

		</changeBounds>

		<fade

				android:duration="2000"

				android:fadingMode="fade_in"	/>

</transitionSet>

Transitions	contained	within	an	XML	resource	file	should	be	stored	in	the
res/transition	folder	of	the	project	in	which	they	are	being	used	and	must	be
inflated	before	being	referenced	in	the	code	of	an	application.	The	following
code,	for	example,	inflates	the	transition	resources	contained	within	a	file	named
transition.xml	and	assigns	the	results	to	a	reference	named	myTransition:

Transition	myTransition	=	TransitionInflater.from(this)

				.inflateTransition(R.transition.transition);

Once	inflated,	the	new	transition	can	be	referenced	in	the	usual	way:
TransitionManager.go(scene1,	myTransition);

By	default,	transition	effects	within	a	TransitionSet	are	performed	in	parallel.	To
instruct	the	Transition	framework	to	perform	the	animations	sequentially,	add

the	appropriate	android:transitionOrdering	property	to	the	transitionSet	element
of	the	resource	file:

<?xml	version="1.0"	encoding="utf-8"?>

<transitionSet

		xmlns:android="http://schemas.android.com/apk/res/android"

		android:transitionOrdering="sequential">

				<fade

						android:duration="2000"

						android:fadingMode="fade_out"	/>

				<changeBounds

						android:duration="5000"	>

		</changeBounds>

</transitionSet>

Change	the	value	from	“sequential”	to	“together”	to	indicate	that	the	animation
sequences	are	to	be	performed	in	parallel.

32.6	Working	with	Interpolators
As	previously	discussed,	interpolators	can	be	used	to	modify	the	behavior	of	a
transition	in	a	variety	of	ways	and	may	be	specified	either	in	code	or	via	the
settings	within	a	transition	XML	resource	file.
When	working	in	code,	new	interpolator	instances	can	be	created	by	calling	the
constructor	method	of	the	required	interpolator	class	and,	where	appropriate,
passing	through	values	to	further	modify	the	interpolator	behavior:
·									AccelerateDecelerateInterpolator()
·									AccelerateInterpolator(float	factor)
·									AnticipateInterpolator(float	tension)
·									AnticipateOvershootInterpolator(float	tension)
·									BounceInterpolator()
·									CycleInterpolator(float	cycles)
·									DecelerateInterpolator(float	factor)
·									LinearInterpolator()
·									OvershootInterpolator(float	tension)
Once	created,	an	interpolator	instance	can	be	attached	to	a	transition	using	the
setInterpolator()	method	of	the	Transition	class.	The	following	code,	for
example,	adds	a	bounce	interpolator	to	a	change	bounds	transition:

Transition	changeBounds	=	new	ChangeBounds();

changeBounds.setInterpolator(new	BounceInterpolator());

Similarly,	the	following	code	adds	an	accelerate	interpolator	to	the	same
transition,	specifying	an	acceleration	factor	of	1.2:

changeBounds.setInterpolator(new	AccelerateInterpolator(1.2f));

In	the	case	of	XML	based	transition	resources,	a	default	interpolator	is	declared
using	the	following	syntax:

android:interpolator="@android:anim/<interpolator_element>"

In	the	above	syntax,	<interpolator_element>	must	be	replaced	by	the	resource
ID	of	the	corresponding	interpolator	selected	from	the	following	list:
·									accelerate_decelerate_interpolator
·									accelerate_interpolator
·									anticipate_interpolator
·									anticipate_overshoot_interpolator
·									bounce_interpolator
·									cycle_interpolator
·									decelerate_interpolator
·									linear_interpolator
·									overshoot_interpolator
The	following	XML	fragment,	for	example,	adds	a	bounce	interpolator	to	a
change	bounds	transition	contained	within	a	transition	set:

<?xml	version="1.0"	encoding="utf-8"?>

<transitionSet

		xmlns:android="http://schemas.android.com/apk/res/android"

		android:transitionOrdering="sequential">

		<changeBounds

				android:interpolator="@android:anim/bounce_interpolator"

				android:duration="2000"	/>

		<fade

				android:duration="1000"

				android:fadingMode="fade_in"	/>

</transitionSet>

This	approach	to	adding	interpolators	to	transitions	within	XML	resources	works
well	when	the	default	behavior	of	the	interpolator	is	required.	The	task	becomes
a	little	more	complex	when	the	default	behavior	of	an	interpolator	needs	to	be
changed.	Take,	for	example,	the	cycle	interpolator.	The	purpose	of	this

interpolator	is	to	make	an	animation	or	transition	repeat	a	specified	number	of
times.	In	the	absence	of	a	cycles	attribute	setting,	the	cycle	interpolator	will
perform	only	one	cycle.	Unfortunately,	there	is	no	way	to	directly	specify	the
number	of	cycles	(or	any	other	interpolator	attribute	for	that	matter)	when	adding
an	interpolator	using	the	above	technique.	Instead,	a	custom	interpolator	must	be
created	and	then	referenced	within	the	transition	file.

32.7	Creating	a	Custom	Interpolator
A	custom	interpolator	must	be	declared	in	a	separate	XML	file	and	stored	within
the	res/anim	folder	of	the	project.	The	name	of	the	XML	file	will	be	used	by	the
Android	system	as	the	resource	ID	for	the	custom	interpolator.
Within	the	custom	interpolator	XML	resource	file,	the	syntax	should	read	as
follows:

<?xml	version="1.0"	encoding="utf-8"?>

<interpolatorElement

xmlns:android="http://schemas.android.com/apk/res/android"

android:attribute="value"	/>

In	the	above	syntax,	interpolatorElement	must	be	replaced	with	the	element
name	of	the	required	interpolator	selected	from	the	following	list:
·									accelerateDecelerateInterpolator
·									accelerateInterpolator
·									anticipateInterpolator
·									anticipateOvershootInterpolator
·									bounceInterpolator
·									cycleInterpolator
·									decelerateInterpolator
·									linearInterpolator
·									overshootInterpolator
The	attribute	keyword	is	replaced	by	the	name	attribute	of	the	interpolator	for
which	the	value	is	to	be	changed	(for	example	tension	to	change	the	tension
attribute	of	an	overshoot	interpolator).	Finally,	value	represents	the	value	to	be
assigned	to	the	specified	attribute.	The	following	XML,	for	example,	contains	a
custom	cycle	interpolator	configured	to	cycle	7	times:

<?xml	version="1.0"	encoding="utf-8"?>

<cycleInterpolator

xmlns:android="http://schemas.android.com/apk/res/android"

android:cycles="7"	/>

Assuming	that	the	above	XML	was	stored	in	a	resource	file	named	my_cycle.xml
stored	in	the	res/anim	project	folder,	the	custom	interpolator	could	be	added	to	a
transition	resource	file	using	the	following	XML	syntax:

<changeBounds

		xmlns:android="http://schemas.android.com/apk/res/android"

		android:duration="5000"

		android:interpolator="@anim/my_cycle"	>

32.8	Using	the	beginDelayedTransition	Method
Perhaps	the	simplest	form	of	Transition	based	user	interface	animation	involves
the	use	of	the	beginDelayedTransition()	method	of	the	TransitionManager	class.
This	method	is	passed	a	reference	to	the	root	view	of	the	viewgroup	representing
the	scene	for	which	animation	is	required.	Subsequent	changes	to	the	views
within	that	sub	view	will	then	be	animated	using	the	default	transition	settings:

myLayout	=	(ViewGroup)	findViewById(R.id.myLayout);

TransitionManager.beginDelayedTransition(myLayout);

//	Make	changes	to	the	scene

If	behavior	other	than	the	default	animation	behavior	is	required,	simply	pass	a
suitably	configured	Transition	or	TransitionSet	instance	through	to	the	method
call:

TransitionManager.beginDelayedTransition(myLayout,

myTransition);

32.9	Summary
The	Android	4.4	KitKat	SDK	release	introduced	the	Transition	Framework,	the
purpose	of	which	is	to	simplify	the	task	of	adding	animation	to	the	views	that
make	up	the	user	interface	of	an	Android	application.	With	some	simple
configuration	and	a	few	lines	of	code,	animation	effects	such	as	movement,
visibility	and	resizing	of	views	can	be	animated	by	making	use	of	the	Transition
framework.	A	number	of	different	approaches	to	implementing	transitions	are
available	involving	a	combination	of	Java	code	and	XML	resource	files.	The
animation	effects	of	transitions	may	also	be	enhanced	through	the	use	of	a	range
of	interpolators.
Having	covered	some	of	the	theory	of	Transitions	in	Android,	the	next	two
chapters	will	put	this	theory	into	practice	by	working	through	some	example
Android	Studio	based	transition	implementations.

33.	 An	 Android	 Transition	 Tutorial	 using
beginDelayedTransition

The	previous	chapter,	entitled	Animating	User	Interfaces	with	the	Android
Transitions	Framework,	provided	an	introduction	to	the	animation	of	user
interfaces	using	the	Android	Transitions	framework.	This	chapter	uses	a	tutorial
based	approach	to	demonstrate	Android	transitions	in	action	using	the
beginDelayedTransition()	method	of	the	TransitionManager	class.
The	next	chapter	will	create	a	more	complex	example	that	uses	layout	files	and
transition	resource	files	to	animate	the	transition	from	one	scene	to	another
within	an	application.

33.1	Creating	the	Android	Studio	TransitionDemo	Project
Create	a	new	project	in	Android	Studio,	entering	TransitionDemo	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
TransitionDemoActivity	with	a	layout	resource	file	named
activity_transition_demo.

33.2	Preparing	the	Project	Files
The	first	example	transition	animation	will	be	implemented	through	the	use	of
the	beginDelayedTransition()	method	of	the	TransitionManager	class.	If
Android	Studio	does	not	automatically	load	the	file,	locate	and	double-click	on
the	app	->	res	->	layout	->	activity_transition_demo.xml	file	in	the	Project	tool
window	panel	to	load	it	into	the	Layout	Editor	tool.
Switch	the	Layout	Editor	to	Design	mode,	drag	a	Button	from	the	Widget
section	of	the	Layout	Editor	palette	and	position	it	in	the	top	left-hand	corner	of
the	device	screen	layout.	Once	positioned,	select	the	button	and	use	the
Properties	tool	window	to	specify	an	ID	value	of	myButton.
Select	the	ConstraintLayout	entry	in	the	Component	Tree	tool	window	and	use
the	Properties	window	to	set	the	ID	to	myLayout.

33.3	Implementing	beginDelayedTransition	Animation
The	objective	for	the	initial	phase	of	this	tutorial	is	to	implement	a	touch	handler

The	objective	for	the	initial	phase	of	this	tutorial	is	to	implement	a	touch	handler
so	that	when	the	user	taps	on	the	layout	view	the	button	view	moves	to	the	lower
right-hand	corner	of	the	screen.
Open	the	TransitionDemoActivity.java	file	(located	in	the	Project	tool	window
under	app	->	java	->	com.ebookfrenzy.transitiondemo)	and	modify	the
onCreate()	method	to	implement	the	onTouch	handler:

package	com.ebookfrenzy.transitiondemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.support.constraint.ConstraintLayout;

import	android.support.constraint.ConstraintSet;

import	android.view.MotionEvent;

import	android.widget.Button;

import	android.view.View;

public	class	TransitionDemoActivity	extends	AppCompatActivity	{

				ConstraintLayout	myLayout;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_transition_demo);

								myLayout	=	(ConstraintLayout)

findViewById(R.id.myLayout);

	

								myLayout.setOnTouchListener(

																new	ConstraintLayout.OnTouchListener()	{

																				public	boolean	onTouch(View	v,

																																											MotionEvent	m)	{

																								handleTouch();

																								return	true;

																				}

																}

);

				}

}

The	above	code	simply	sets	up	a	touch	listener	on	the	ConstraintLayout

container	and	configures	it	to	call	a	method	named	handleTouch()	when	a	touch
is	detected.	The	next	task,	therefore,	is	to	implement	the	handleTouch()	method
as	follows:

public	void	handleTouch()	{

				Button	button	=	(Button)	findViewById(R.id.myButton);

				button.setMinimumWidth(500);

				button.setMinimumHeight(350);

				ConstraintSet	set	=	new	ConstraintSet();

				set.connect(R.id.myButton,	ConstraintSet.BOTTOM,

										ConstraintSet.PARENT_ID,	ConstraintSet.BOTTOM,	0);

				set.connect(R.id.myButton,	ConstraintSet.RIGHT,

										ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,	0);

				set.constrainWidth(R.id.myButton,

ConstraintSet.WRAP_CONTENT);

				set.applyTo(myLayout);

}

This	method	obtains	a	reference	to	the	button	view	in	the	user	interface	layout
and	sets	new	minimum	height	and	width	properties	so	that	the	button	increases
in	size.
A	ConstraintSet	object	is	then	created	and	configured	with	constraints	that	will
position	the	button	in	the	lower	right-hand	corner	of	the	parent	layout.	This
constraint	set	is	then	applied	to	the	layout.
Test	the	code	so	far	by	compiling	and	running	the	application.	Once	launched,
touch	the	background	(not	the	button)	and	note	that	the	button	moves	and	resizes
as	illustrated	in	Figure	33-1:

Figure	33-1

Although	the	layout	changes	took	effect,	they	did	so	instantly	and	without	any
form	of	animation.	This	is	where	the	call	to	the	beginDelayedTransition()
method	of	the	TransitionManager	class	comes	in.	All	that	is	needed	to	add
animation	to	this	layout	change	is	the	addition	of	a	single	line	of	code	before	the
layout	changes	are	implemented.	Remaining	within	the

TransitionDemoActivity.java	file,	modify	the	code	as	follows:
package	com.ebookfrenzy.transitiondemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.support.constraint.ConstraintLayout;

import	android.support.constraint.ConstraintSet;

import	android.view.MotionEvent;

import	android.view.View;

import	android.widget.Button;

import	android.transition.TransitionManager;

public	class	TransitionDemoActivity	extends	AppCompatActivity	{

				ConstraintLayout	myLayout;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_transition_demo);

								myLayout	=	(ConstraintLayout)

findViewById(R.id.myLayout);

								myLayout.setOnTouchListener(

																new	ConstraintLayout.OnTouchListener()	{

																				public	boolean	onTouch(View	v,

																																											MotionEvent	m)	{

																								handleTouch();

																								return	true;

																				}

																}

);

				}

				public	void	handleTouch()	{

								Button	button	=	(Button)	findViewById(R.id.myButton);

								TransitionManager.beginDelayedTransition(myLayout);

								ConstraintSet	set	=	new	ConstraintSet();

								button.setMinimumWidth(500);

								button.setMinimumHeight(350);

							

								set.connect(R.id.myButton,	ConstraintSet.BOTTOM,

														ConstraintSet.PARENT_ID,	ConstraintSet.BOTTOM,

0);

								set.connect(R.id.myButton,	ConstraintSet.RIGHT,

														ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,	0);

								set.constrainWidth(R.id.myButton,

ConstraintSet.WRAP_CONTENT);

							

								set.applyTo(myLayout);

				}

}

.

.

.

}

Compile	and	run	the	application	once	again	and	note	that	the	transition	is	now
animated.

33.4	Customizing	the	Transition
The	final	task	in	this	example	is	to	modify	the	changeBounds	transition	so	that	it
is	performed	over	a	longer	duration	and	incorporates	a	bounce	effect	when	the
view	reaches	its	new	screen	location.	This	involves	the	creation	of	a	Transition
instance	with	appropriate	duration	interpolator	settings	which	is,	in	turn,	passed
through	as	an	argument	to	the	beginDelayedTransition()	method:

.

.

import	android.transition.ChangeBounds;

import	android.transition.Transition;

import	android.view.animation.BounceInterpolator;

.

.

public	void	handleTouch()	{

				Button	button	=	(Button)	findViewById(R.id.myButton);

				Transition	changeBounds	=	new	ChangeBounds();

				changeBounds.setDuration(3000);

				changeBounds.setInterpolator(new	BounceInterpolator());

				TransitionManager.beginDelayedTransition(myLayout,

												changeBounds);

				TransitionManager.beginDelayedTransition(myLayout);

				ConstraintSet	set	=	new	ConstraintSet();

				button.setMinimumWidth(500);

				button.setMinimumHeight(350);

				set.connect(R.id.myButton,	ConstraintSet.BOTTOM,

											ConstraintSet.PARENT_ID,	ConstraintSet.BOTTOM,	0);

				set.connect(R.id.myButton,	ConstraintSet.RIGHT,

											ConstraintSet.PARENT_ID,	ConstraintSet.RIGHT,	0);

				set.constrainWidth(R.id.myButton,

ConstraintSet.WRAP_CONTENT);

				set.applyTo(myLayout);

}

When	the	application	is	now	executed,	the	animation	will	slow	to	match	the	new
duration	setting	and	the	button	will	bounce	on	arrival	at	the	bottom	right-hand
corner	of	the	display.

33.5	Summary
The	most	basic	form	of	transition	animation	involves	the	use	of	the
beginDelayedTransition()	method	of	the	TransitionManager	class.	Once	called,
any	changes	in	size	and	position	of	the	views	in	the	next	user	interface	rendering
frame,	and	within	a	defined	view	group,	will	be	animated	using	the	specified
transitions.	This	chapter	has	worked	through	a	simple	Android	Studio	example
that	demonstrates	the	use	of	this	approach	to	implementing	transitions.

34.	Implementing	Android	Scene
Transitions	–	A	Tutorial
This	chapter	will	build	on	the	theory	outlined	in	the	chapter	entitled	Animating
User	Interfaces	with	the	Android	Transitions	Framework	by	working	through
the	creation	of	a	project	designed	to	demonstrate	transitioning	from	one	scene	to
another	using	the	Android	Transition	framework.

34.1	An	Overview	of	the	Scene	Transition	Project
The	application	created	in	this	chapter	will	consist	of	two	scenes,	each
represented	by	an	XML	layout	resource	file.	A	transition	will	then	be	used	to
animate	the	changes	from	one	scene	to	another.	The	first	scene	will	consist	of
three	button	views.	The	second	scene	will	contain	two	of	the	buttons	from	the
first	scene	positioned	at	different	locations	on	the	screen.	The	third	button	will
be	absent	from	the	second	scene.	Once	the	transition	has	been	implemented,
movement	of	the	first	two	buttons	will	be	animated	with	a	bounce	effect.	The
third	button	will	gently	fade	into	view	as	the	application	transitions	back	to	the
first	scene	from	the	second.

34.2	Creating	the	Android	Studio	SceneTransitions	Project
Create	a	new	project	in	Android	Studio,	entering	SceneTransitions	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
SceneTransitionsActivity	with	a	corresponding	layout	file	named
activity_scene_transitions.

34.3	Identifying	and	Preparing	the	Root	Container
When	working	with	transitions	it	is	important	to	identify	the	root	container	for
the	scenes.	This	is	essentially	the	parent	layout	container	into	which	the	scenes
are	going	to	be	displayed.	When	the	project	was	created,	Android	Studio	created
a	layout	resource	file	in	the	app	->	res	->	layout	folder	named
activity_scene_transitions.xml	and	containing	a	single	layout	container	and
TextView.	When	the	application	is	launched,	this	is	the	first	layout	that	will	be
displayed	to	the	user	on	the	device	screen	and	for	the	purposes	of	this	example,	a

RelativeLayout	manager	within	this	layout	will	act	as	the	root	container	for	the
two	scenes.
Begin	by	locating	the	activity_scene_transitions.xml	layout	resource	file	and
loading	it	into	the	Android	Studio	Layout	Editor	tool.	Switch	to	Text	mode	and
replace	the	existing	XML	with	the	following	to	implement	the	RelativeLayout
with	an	ID	of	rootContainer:

<?xml	version="1.0"	encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:id="@+id/rootContainer"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

tools:context="com.ebookfrenzy.scenetransitions.SceneTransitionsActivity">

</RelativeLayout>

34.4	Designing	the	First	Scene
The	first	scene	is	going	to	consist	of	a	layout	containing	three	button	views.
Create	this	layout	resource	file	by	right-clicking	on	the	app	->	res	->	layout
entry	in	the	Project	tool	window	and	selecting	the	New	->	Layout	resource	file…
menu	option.	In	the	resulting	dialog,	name	the	file	scene1_layout	and	enter
android.support.constraint.ConstraintLayout	as	the	root	element	before	clicking
on	OK.
When	the	newly	created	layout	file	has	loaded	into	the	Layout	Editor	tool,	check
that	Autoconnect	mode	is	enabled,	drag	a	Button	view	from	the	Widgets	section
of	the	palette	onto	the	layout	canvas	and	position	it	in	the	top	left-hand	corner	of
the	layout	view	so	that	the	dashed	margin	guidelines	appear	as	illustrated	in
Figure	34-1.	Drop	the	Button	view	at	this	position,	select	it	and	change	the	text
value	in	the	Properties	tool	window	to	“One”.

Figure	34-1

Drag	a	second	Button	view	from	the	palette	and	position	it	in	the	top	right-hand
corner	of	the	layout	view	so	that	the	margin	guidelines	appear.	Repeating	the
steps	for	the	first	button,	assign	text	that	reads	“Two”	to	the	button.
Drag	a	third	Button	view	and	position	it	so	that	it	is	centered	both	horizontally
and	vertically	within	the	layout,	this	time	configuring	the	button	text	to	read
“Three”.
Click	on	the	red	warning	button	in	the	top	right-hand	corner	of	the	Layout	Editor
and	work	through	the	list	of	I18N	warnings,	extracting	the	three	button	strings	to
resource	values.
On	completion	of	the	above	steps,	the	layout	for	the	first	scene	should	resemble
that	shown	in	Figure	34-2:

Figure	34-2

Select	the	“One”	button	and,	using	the	properties	tool	window,	configure	the
onClick	attribute	to	call	a	method	named	goToScene2.	Repeat	this	steps	for	the
“Two”	button,	this	time	entering	a	method	named	goToScene1	into	the	onClick
field.

34.5	Designing	the	Second	Scene
The	second	scene	is	simply	a	modified	version	of	the	first	scene.	The	first	and
second	buttons	will	still	be	present	but	will	be	located	in	the	bottom	right	and
left-hand	corners	of	the	layout	respectively.	The	third	button,	on	the	other	hand,
will	no	longer	be	present	in	the	second	scene.

will	no	longer	be	present	in	the	second	scene.
For	the	purposes	of	avoiding	duplicated	effort,	the	layout	file	for	the	second
scene	will	be	created	by	copying	and	modifying	the	scene1_layout.xml	file.
Within	the	Project	tool	window,	locate	the	app	->	res	->	layout	->
scene1_layout.xml	file,	right-click	on	it	and	select	the	Copy	menu	option.	Right-
click	on	the	layout	folder,	this	time	selecting	the	Paste	menu	option	and	change
the	name	of	the	file	to	scene2_layout.xml	when	prompted	to	do	so.
Double-click	on	the	new	scene2_layout.xml	file	to	load	it	into	the	Layout	Editor
tool	and	switch	to	Design	mode	if	necessary.	Right-click	on	the	layout	and	select
the	Clear	all	Constraints	option	from	the	resulting	menu.
Select	and	delete	the	“Three”	button	and	move	the	first	and	second	buttons	to	the
bottom	right	and	bottom	left	locations	as	illustrated	in	Figure	34-3:

Figure	34-3

34.6	Entering	the	First	Scene
If	the	application	were	to	be	run	now,	only	the	blank	layout	represented	by	the
activity_scene_transitions.xml	file	would	be	displayed.	Some	code	must,
therefore,	be	added	to	the	onCreate()	method	located	in	the
SceneTransitionsActivity.java	file	so	that	the	first	scene	is	presented	when	the
activity	is	created.	This	can	be	achieved	as	follows:

package	com.ebookfrenzy.scenetransitions;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.transition.Scene;

import	android.transition.Transition;

import	android.transition.TransitionManager;

import	android.view.ViewGroup;

import	android.view.View;

public	class	SceneTransitionsActivity	extends	AppCompatActivity

{

				ViewGroup	rootContainer;

				Scene	scene1;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_scene_transitions);

								rootContainer	=

																(ViewGroup)	findViewById(R.id.rootContainer);

	

								scene1	=	Scene.getSceneForLayout(rootContainer,

																R.layout.scene1_layout,	this);

	

								scene1.enter();

				}

.

.

}

The	code	added	to	the	activity	class	declares	some	variables	in	which	to	store
references	to	the	root	container	and	first	scene	and	obtains	a	reference	to	the	root
container	view.	The	getSceneForLayout()	method	of	the	Scene	class	is	then	used
to	create	a	scene	from	the	layout	contained	in	the	scene1_layout.xml	file	to
convert	that	layout	into	a	scene.	The	scene	is	then	entered	via	the	enter()	method
call	so	that	it	is	displayed	to	the	user.
Compile	and	run	the	application	at	this	point	and	verify	that	scene	1	is	displayed
after	the	application	has	launched.

34.7	Loading	Scene	2
Before	implementing	the	transition	between	the	first	and	second	scene	it	is	first
necessary	to	add	some	code	to	load	the	layout	from	the	scene2_layout.xml	file

into	a	Scene	instance.	Remaining	in	the	SceneTransitionsActivity.java	file,
therefore,	add	this	code	as	follows:

public	class	SceneTransitionsActivity	extends	AppCompatActivity

{

				ViewGroup	rootContainer;

				Scene	scene1;

				Scene	scene2;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_scene_transitions);

								rootContainer	=

																(ViewGroup)	findViewById(R.id.rootContainer);

								scene1	=	Scene.getSceneForLayout(rootContainer,

																R.layout.scene1_layout,	this);

								scene2	=	Scene.getSceneForLayout(rootContainer,

																R.layout.scene2_layout,	this);

								scene1.enter();

				}

.

.

}

34.8	Implementing	the	Transitions
The	first	and	second	buttons	have	been	configured	to	call	methods	named
goToScene2	and	goToScene1	respectively	when	selected.	As	the	method	names
suggest,	it	is	the	responsibility	of	these	methods	to	trigger	the	transitions
between	the	two	scenes.	Add	these	two	methods	within	the
SceneTransitionsActivity.java	file	so	that	they	read	as	follows:

public	void	goToScene2	(View	view)

{

							TransitionManager.go(scene2);

}

						

public	void	goToScene1	(View	view)

{

							TransitionManager.go(scene1);

}

Run	the	application	and	note	that	selecting	the	first	two	buttons	causes	the	layout
to	switch	between	the	two	scenes.	Since	we	have	yet	to	configure	any
transitions,	these	layout	changes	are	not	yet	animated.

34.9	Adding	the	Transition	File
All	of	the	transition	effects	for	this	project	will	be	implemented	within	a	single
transition	XML	resource	file.	As	outlined	in	the	chapter	entitled	Animating	User
Interfaces	with	the	Android	Transitions	Framework,	transition	resource	files
must	be	placed	in	the	app	->	res	->	transition	folder	of	the	project.	Begin,
therefore,	by	right-clicking	on	the	res	folder	in	the	Project	tool	window	and
selecting	the	New	->	Directory	menu	option.	In	the	resulting	dialog,	name	the
new	folder	transition	and	click	on	the	OK	button.	Right-click	on	the	new
transition	folder,	this	time	selecting	the	New	->	File	option	and	name	the	new
file	transition.xml.
With	the	newly	created	transition.xml	file	selected	and	loaded	into	the	editing
panel,	add	the	following	XML	content	to	add	a	transition	set	that	enables	the
change	bounds	transition	animation	with	a	duration	attribute	setting:

<?xml	version="1.0"	encoding="utf-8"?>

<transitionSet

		xmlns:android="http://schemas.android.com/apk/res/android">

				<changeBounds

								android:duration="2000">

				</changeBounds>

</transitionSet>

34.10	Loading	and	Using	the	Transition	Set
Although	a	transition	resource	file	has	been	created	and	populated	with	a	change
bounds	transition,	this	will	have	no	effect	until	some	code	is	added	to	load	the
transitions	into	a	TransitionManager	instance	and	reference	it	in	the	scene
changes.	The	changes	to	achieve	this	are	as	follows:

package	com.ebookfrenzy.scenetransitions;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.transition.Scene;

import	android.transition.Transition;

import	android.transition.TransitionInflater;

import	android.transition.TransitionManager;

import	android.view.ViewGroup;

import	android.view.View;

public	class	SceneTransitionsActivity	extends	AppCompatActivity

{

							ViewGroup	rootContainer;

							Scene	scene1;

							Scene	scene2;

							Transition	transitionMgr;

							@Override

							protected	void	onCreate(Bundle	savedInstanceState)	{

														super.onCreate(savedInstanceState);

													

setContentView(R.layout.activity_scene_transitions);

													

														rootContainer	=

																					(ViewGroup)

findViewById(R.id.rootContainer);

													

														transitionMgr	=	TransitionInflater.from(this)

																									

.inflateTransition(R.transition.transition);

													

														scene1	=	Scene.getSceneForLayout(rootContainer,

																R.layout.scene1_layout,	this);

													

														scene2	=	Scene.getSceneForLayout(rootContainer,

																R.layout.scene2_layout,	this);

													

														scene1.enter();

							}

							public	void	goToScene2	(View	view)

							{

														TransitionManager.go(scene2,	transitionMgr);

							}

						

							public	void	goToScene1	(View	view)

							{

														TransitionManager.go(scene1,	transitionMgr);

							}

.

.

}

When	the	application	is	now	run	the	two	buttons	will	gently	glide	to	their	new
positions	during	the	transition.

34.11	Configuring	Additional	Transitions
With	the	transition	file	integrated	into	the	project,	any	number	of	additional
transitions	may	be	added	to	the	file	without	the	need	to	make	any	further
changes	to	the	Java	source	code	of	the	activity.	Take,	for	example,	the	following
changes	to	the	transition.xml	file	to	add	a	bounce	interpolator	to	the	change
bounds	transition,	introduce	a	fade-in	transition	targeted	at	the	third	button	and
to	change	the	transitions	such	that	they	are	performed	sequentially:

<?xml	version="1.0"	encoding="utf-8"?>

<transitionSet

		xmlns:android="http://schemas.android.com/apk/res/android"

		android:transitionOrdering="sequential"	>

							<fade

									android:duration="2000"

									android:fadingMode="fade_in">

									

									<targets>

												<target	android:targetId="@id/button3"	/>

									</targets>

						</fade>

			

			

				<changeBounds			

								android:duration="2000"

							

android:interpolator="@android:anim/bounce_interpolator">

				</changeBounds>			

</transitionSet>

Buttons	one	and	two	will	now	bounce	on	arriving	at	the	end	destinations	and
button	three	will	gently	fade	back	into	view	when	transitioning	to	scene	1	from
scene	2.
Take	some	time	to	experiment	with	different	transitions	and	interpolators	by
making	changes	to	the	transition.xml	file	and	re-running	the	application.

34.12	Summary
Scene	based	transitions	provide	a	flexible	approach	to	animating	user	interface
layout	changes	within	an	Android	application.	This	chapter	has	demonstrated	the
steps	involved	in	animating	the	transition	between	the	scenes	represented	by	two
layout	resource	files.	In	addition,	the	example	also	used	a	transition	XML
resource	file	to	configure	the	transition	animation	effects	between	the	two
scenes.

35.	Working	with	the	Floating	Action
Button	and	Snackbar
One	of	the	objectives	of	this	chapter	is	to	provide	an	overview	of	the	concepts	of
material	design.	Originally	introduced	as	part	of	Android	5.0,	material	design	is
a	set	of	design	guidelines	that	dictate	how	the	Android	user	interface,	and	that	of
the	apps	running	on	Android,	appear	and	behave.
As	part	of	the	implementation	of	the	material	design	concepts,	Google	also
introduced	the	Android	Design	Support	Library.	This	library	contains	a	number
of	different	components	that	allow	many	of	the	key	features	of	material	design	to
be	built	into	Android	applications.	Two	of	these	components,	the	floating	action
button	and	Snackbar,	will	also	be	covered	in	this	chapter	prior	to	introducing
many	of	the	other	components	in	subsequent	chapters.

35.1	The	Material	Design
The	overall	appearance	of	the	Android	environment	is	defined	by	the	principles
of	material	design.	Material	design	was	created	by	the	Android	team	at	Google
and	dictates	that	the	elements	that	make	up	the	user	interface	of	Android	and	the
apps	that	run	on	it	appear	and	behave	in	a	certain	way	in	terms	of	behavior,
shadowing,	animation	and	style.	One	of	the	tenets	of	the	material	design	is	that
the	elements	of	a	user	interface	appear	to	have	physical	depth	and	a	sense	that
items	are	constructed	in	layers	of	physical	material.	A	button,	for	example,
appears	to	be	raised	above	the	surface	of	the	layout	in	which	it	resides	through
the	use	of	shadowing	effects.	Pressing	the	button	causes	the	button	to	flex	and
lift	as	though	made	of	a	thin	material	that	ripples	when	released.
Material	design	also	dictates	the	layout	and	behavior	of	many	standard	user
interface	elements.	A	key	example	is	the	way	in	which	the	app	bar	located	at	the
top	of	the	screen	should	appear	and	the	way	in	which	it	should	behave	in	relation
to	scrolling	activities	taking	place	within	the	main	content	of	the	activity.
In	fact,	material	design	covers	a	wide	range	of	areas	from	recommended	color
styles	to	the	way	in	which	objects	are	animated.	A	full	description	of	the
material	design	concepts	and	guidelines	can	be	found	online	at	the	following	link
and	is	recommended	reading	for	all	Android	developers:
https://www.google.com/design/spec/material-design/introduction.html

35.2	The	Design	Library

https://www.google.com/design/spec/material-design/introduction.html

Many	of	the	building	blocks	needed	to	implement	Android	applications	that
adopt	the	principles	of	material	design	are	contained	within	the	Android	Design
Support	Library.	This	library	contains	a	collection	of	user	interface	components
that	can	be	included	in	Android	applications	to	implement	much	of	the	look,	feel
and	behavior	of	material	design.	Two	of	the	components	from	this	library,	the
floating	action	button	and	Snackbar,	will	be	covered	in	this	chapter,	while	others
will	be	introduced	in	later	chapters.

35.3	The	Floating	Action	Button	(FAB)
The	floating	action	button	is	a	button	which	appears	to	float	above	the	surface	of
the	user	interface	of	an	app	and	is	generally	used	to	promote	the	most	common
action	within	a	user	interface	screen.	A	floating	action	button	might,	for
example,	be	placed	on	a	screen	to	allow	the	user	to	add	an	entry	to	a	list	of
contacts	or	to	send	an	email	from	within	the	app.	Figure	35-1,	for	example,
highlights	the	floating	action	button	that	allows	the	user	to	add	a	new	contact
within	the	standard	Android	Contacts	app:

Figure	35-1

To	conform	with	the	material	design	guidelines,	there	are	a	number	of	rules	that

To	conform	with	the	material	design	guidelines,	there	are	a	number	of	rules	that
should	be	followed	when	using	floating	action	buttons.	Floating	action	buttons
must	be	circular	and	can	be	either	56	x	56dp	(Default)	or	40	x	40dp	(Mini)	in
size.	The	button	should	be	positioned	a	minimum	of	16dp	from	the	edge	of	the
screen	on	phones	and	24dp	on	desktops	and	tablet	devices.	Regardless	of	the
size,	the	button	must	contain	an	interior	icon	that	is	24x24dp	in	size	and	it	is
recommended	that	each	user	interface	screen	have	only	one	floating	action
button.
Floating	action	buttons	can	be	animated	or	designed	to	morph	into	other	items
when	touched.	A	floating	action	button	could,	for	example,	rotate	when	tapped
or	morph	into	another	element	such	as	a	toolbar	or	panel	listing	related	actions.

35.4	The	Snackbar
The	Snackbar	component	provides	a	way	to	present	the	user	with	information	in
the	form	of	a	panel	that	appears	at	the	bottom	of	the	screen	as	shown	in	Figure
35-2.	Snackbar	instances	contain	a	brief	text	message	and	an	optional	action
button	which	will	perform	a	task	when	tapped	by	the	user.	Once	displayed,	a
Snackbar	will	either	timeout	automatically	or	can	be	removed	manually	by	the
user	via	a	swiping	action.	During	the	appearance	of	the	Snackbar	the	app	will
continue	to	function	and	respond	to	user	interactions	in	the	normal	manner.

Figure	35-2

In	the	remainder	of	this	chapter	an	example	application	will	be	created	that
makes	use	of	the	basic	features	of	the	floating	action	button	and	Snackbar	to	add
entries	to	a	list	of	items.

35.5	Creating	the	Example	Project
Create	a	new	project	in	Android	Studio,	entering	FabExample	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).
Although	it	is	possible	to	manually	add	a	floating	action	button	to	an	activity,	it

is	much	easier	to	use	the	Basic	Activity	template	which	includes	a	floating
action	button	by	default.	Continue	to	proceed	through	the	screens,	therefore,
requesting	the	creation	of	a	Basic	Activity	named	FabExampleActivity	with
corresponding	layout	and	menu	files	named	activity_fab_example	and
menu_fab_example	respectively.
Click	on	the	Finish	button	to	initiate	the	project	creation	process.

35.6	Reviewing	the	Project
Since	the	Basic	Activity	template	was	selected,	the	activity	contains	two	layout
files.	The	activity_fab_example.xml	file	consists	of	a	CoordinatorLayout
manager	containing	entries	for	an	app	bar,	a	toolbar	and	a	floating	action	button.
The	content_fab_example.xml	file	represents	the	layout	of	the	content	area	of	the
activity	and	contains	a	ConstraintLayout	instance	and	a	TextView.	This	file	is
embedded	into	the	activity_fab_example.xml	file	via	the	following	include
directive:

<include	layout="@layout/content_fab_example"	/>

The	floating	action	button	element	within	the	activity_fab_example.xml	file
reads	as	follows:

<android.support.design.widget.FloatingActionButton

				android:id="@+id/fab"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_gravity="bottom|end"

				android:layout_margin="@dimen/fab_margin"

				android:src="@android:drawable/ic_dialog_email"	/>

This	declares	that	the	button	is	to	appear	in	the	bottom	right-hand	corner	of	the
screen	with	margins	represented	by	the	fab_margin	identifier	in	the
values/dimens.xml	file	(which	in	this	case	is	set	to	16dp).	The	XML	further
declares	that	the	interior	icon	for	the	button	is	to	take	the	form	of	the	standard
drawable	built-in	email	icon.
The	blank	template	has	also	configured	the	floating	action	button	to	display	a
Snackbar	instance	when	tapped	by	the	user.	The	code	to	implement	this	can	be
found	in	the	onCreate()	method	of	the	FabExampleActivity.java	file	and	reads	as
follows:

FloatingActionButton	fab	=

														(FloatingActionButton)	findViewById(R.id.fab);

fab.setOnClickListener(new	View.OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

								Snackbar.make(view,	"Replace	with	your	own	action",

														Snackbar.LENGTH_LONG)

																.setAction("Action",	null).show();

				}

});

The	code	obtains	a	reference	to	the	floating	action	button	via	the	button’s	ID	and
adds	to	it	an	onClickListener	handler	to	be	called	when	the	button	is	tapped.	This
method	simply	displays	a	Snackbar	instance	configured	with	a	message	but	no
actions.
Finally,	open	the	module	level	build.gradle	file	(Gradle	Scripts	->	build.gradle
(Module:	App))	and	note	that	the	Android	design	support	library	has	been	added
as	a	dependency:

compile	'com.android.support:design:25.1.0'

When	the	project	is	compiled	and	run	the	floating	action	button	will	appear	at
the	bottom	of	the	screen	as	shown	in	Figure	35-3:

Figure	35-3

Tapping	the	floating	action	button	will	trigger	the	onClickListener	handler
method	causing	the	Snackbar	to	appear	at	the	bottom	of	the	screen:

Figure	35-4

When	the	Snackbar	appears	on	a	narrower	device	(as	is	the	case	in	Figure	35-4
above)	note	that	the	floating	action	button	is	moved	up	to	make	room	for	the
Snackbar	to	appear.	This	is	handled	for	us	automatically	by	the
CoordinatorLayout	container	in	the	activity_fab_example.xml	layout	resource
file.

35.7	Changing	the	Floating	Action	Button
Since	the	objective	of	this	example	is	to	configure	the	floating	action	button	to
add	entries	to	a	list,	the	email	icon	currently	displayed	on	the	button	needs	to	be
changed	to	something	more	indicative	of	the	action	being	performed.	The	icon
that	will	be	used	for	the	button	is	named	ic_add_entry.png	and	can	be	found	in
the	project_icons	folder	of	the	sample	code	download	available	from	the
following	URL:
http://www.ebookfrenzy.com/retail/androidstudio23/index.php
Locate	this	image	in	the	file	system	navigator	for	your	operating	system	and
copy	the	image	file.	Right-click	on	the	app	->	res	->	drawable	entry	in	the
Project	tool	window	and	select	Paste	from	the	menu	to	add	the	file	to	the	folder:

Figure	35-5

Next,	edit	the	activity_fab_example.xml	file	and	change	the	image	source	for	the
icon	from	@android:drawable/ic_dialog_email	to	@drawable/ic_add_entry	as
follows:

<android.support.design.widget.FloatingActionButton

				android:id="@+id/fab"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:layout_gravity="bottom|end"

				android:layout_margin="@dimen/fab_margin"

				android:src="@drawable/ic_add_entry"	/>

Within	the	layout	preview,	the	interior	icon	for	the	button	will	have	changed	to	a
plus	sign.
The	background	color	of	the	floating	action	button	is	defined	by	the	accentColor
property	of	the	prevailing	theme	used	by	the	application.	The	color	assigned	to
this	value	is	declared	in	the	colors.xml	file	located	under	app	->	res	->	values	in

http://www.ebookfrenzy.com/retail/androidstudio23/index.php

the	Project	tool	window.	Instead	of	editing	this	XML	file	directly	a	better
approach	is	to	use	the	Android	Studio	Theme	Editor.
Select	the	Tools	->	Android	->	Theme	Editor	menu	option	to	display	the	Theme
Editor	as	illustrated	in	Figure	35-6:

Figure	35-6

Click	on	the	color	swatch	for	the	colorAccent	setting	(highlighted	in	the	figure
above)	to	display	the	color	resource	dialog.	Within	the	color	resource	dialog,

enter	holo_orange_light	into	the	search	field	and	select	the	color	from	the	list:

Figure	35-7

Click	on	the	OK	button	to	apply	the	new	accentColor	setting	and	return	to	the
activity_fab_example.xml	and	verify	that	the	floating	action	button	now	appears
with	an	orange	background.

35.8	Adding	the	ListView	to	the	Content	Layout
The	next	step	in	this	tutorial	is	to	add	the	ListView	instance	to	the
content_fab_example.xml	file.	The	ListView	class	provides	a	way	to	display
items	in	a	list	format	and	can	be	found	in	the	Containers	section	of	the	Layout
Editor	tool	palette.
Load	the	content_fab_example.xml	file	into	the	Layout	Editor	tool,	select	Design
mode	if	necessary,	and	select	and	delete	the	default	TextView	object.	Locate	the
ListView	object	in	the	Containers	category	of	the	palette	and,	with	autoconnect
mode	enabled,	drag	and	drop	it	onto	the	center	of	the	layout	canvas.	Select	the
ListView	object	and	change	the	ID	to	listView	within	the	Properties	tool
window.	The	Layout	Editor	should	have	sized	the	ListView	to	fill	the	entire

container	and	established	constraints	on	all	four	edges	as	illustrated	in	Figure	35-
8:

Figure	35-8

35.9	Adding	Items	to	the	ListView
Each	time	the	floating	action	button	is	tapped	by	the	user,	a	new	item	will	be
added	to	the	ListView	in	the	form	of	the	prevailing	time	and	date.	To	achieve
this,	some	changes	need	to	be	made	to	the	FabExampleActivity.java	file.
Begin	by	modifying	the	onCreate()	method	to	obtain	a	reference	to	the	ListView
instance	and	to	initialize	an	adapter	instance	to	allow	us	to	add	items	to	the	list	in

the	form	of	an	array:
import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.widget.ArrayAdapter;

import	android.widget.ListView;					

	

import	java.util.ArrayList;

public	class	FabExampleActivity	extends	AppCompatActivity	{

				ArrayList<String>	listItems	=	new	ArrayList<String>();

				ArrayAdapter<String>	adapter;

				private	ListView	myListView;

			

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_fab_example);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

							

								myListView	=	(ListView)	findViewById(R.id.listView);

	

								adapter	=	new	ArrayAdapter<String>(this,

																android.R.layout.simple_list_item_1,

																listItems);

								myListView.setAdapter(adapter);

							

								FloatingActionButton	fab	=	(FloatingActionButton)

																														findViewById(R.id.fab);

								fab.setOnClickListener(new	View.OnClickListener()	{

												@Override

												public	void	onClick(View	view)	{

																Snackbar.make(view,	"Replace	with	your	own

action",

																						Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

												}

								});

				}

.

.

.

}

The	ListView	needs	an	array	of	items	to	display,	an	adapter	to	manage	the	items
in	that	array	and	a	layout	definition	to	dictate	how	items	are	to	be	presented	to
the	user.
In	the	above	code	changes,	the	items	are	stored	in	an	ArrayList	instance	assigned
to	an	adapter	that	takes	the	form	of	an	ArrayAdapter.	The	items	added	to	the	list
will	be	displayed	in	the	ListView	using	the	simple_list_item_1	layout,	a	built-in
layout	that	is	provided	with	Android	to	display	simple	string	based	items	in	a
ListView	instance.
Next,	edit	the	onClickListener	code	for	the	floating	action	button	to	display	a
different	message	in	the	Snackbar	and	to	call	a	method	to	add	an	item	to	the	list:

FloatingActionButton	fab	=	(FloatingActionButton)

																														findViewById(R.id.fab);

fab.setOnClickListener(new	View.OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

								addListItem();

								Snackbar.make(view,	"Item	added	to	list",

														Snackbar.LENGTH_LONG)

																.setAction("Action",	null).show();

				}

});

Remaining	within	the	FabExampleActivity.java	file,	add	the	addListItem()
method	as	follows:

package	com.ebookfrenzy.fabexample;

.

.

.

import	java.text.SimpleDateFormat;

import	java.util.Date;

import	java.util.Locale;

public	class	FabExampleActivity	extends	AppCompatActivity	{

.

.

				private	void	addListItem()	{

	

								SimpleDateFormat	dateformat	=

																new	SimpleDateFormat("HH:mm:ss	MM/dd/yyyy",

																								Locale.US);

								listItems.add(dateformat.format(new	Date()));

								adapter.notifyDataSetChanged();

				}

.

.

}

The	code	in	the	addListItem()	method	identifies	and	formats	the	current	date	and
time	and	adds	it	to	the	list	items	array.	The	array	adapter	assigned	to	the
ListView	is	then	notified	that	the	list	data	has	changed,	causing	the	ListView	to
update	to	display	the	latest	list	items.
Compile	and	run	the	app	and	test	that	tapping	the	floating	action	button	adds
new	time	and	date	entries	to	the	ListView,	displaying	the	Snackbar	each	time	as
shown	in	Figure	35-9:

Figure	35-9

35.10	Adding	an	Action	to	the	Snackbar

The	final	task	in	this	project	is	to	add	an	action	to	the	Snackbar	that	allows	the
user	to	undo	the	most	recent	addition	to	the	list.	Edit	the
FabExampleActivity.java	file	and	modify	the	Snackbar	creation	code	to	add	an
action	titled	“Undo”	configured	with	an	onClickListener	named
undoOnClickListener:

fab.setOnClickListener(new	View.OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

								addListItem();

								Snackbar.make(view,	"Item	added	to	list",

														Snackbar.LENGTH_LONG)

																.setAction("Undo",	undoOnClickListener).show();

				}

});

Within	the	FabExampleActivity.java	file	add	the	listener	handler:
View.OnClickListener	undoOnClickListener	=	new

View.OnClickListener()	{

				@Override

				public	void	onClick(View	view)	{

								listItems.remove(listItems.size()	-1);

								adapter.notifyDataSetChanged();

								Snackbar.make(view,	"Item	removed",

Snackbar.LENGTH_LONG)

																.setAction("Action",	null).show();

				}

};

The	code	in	the	onClick	method	identifies	the	location	of	the	last	item	in	the	list
array	and	removes	it	from	the	list	before	triggering	the	list	view	to	perform	an
update.	A	new	Snackbar	is	then	displayed	indicating	that	the	last	item	has	been
removed	from	the	list.
Run	the	app	once	again	and	add	some	items	to	the	list.	On	the	final	addition,	tap
the	Undo	button	in	the	Snackbar	(Figure	35-10)	to	remove	the	last	item	from	the
list:

Figure	35-10

It	is	also	worth	noting	that	the	Undo	button	appears	using	the	same	color
assigned	to	the	accentColor	property	via	the	Theme	Editor	earlier	in	the	chapter.

35.11	Summary
This	chapter	has	provided	a	general	overview	of	material	design,	the	floating
action	button	and	Snackbar	before	working	through	an	example	project	that
makes	use	of	these	features
Both	the	floating	action	button	and	the	Snackbar	are	part	of	the	material	design
approach	to	user	interface	implementation	in	Android.	The	floating	action	button
provides	a	way	to	promote	the	most	common	action	within	a	particular	screen	of
an	Android	application.	The	Snackbar	provides	a	way	for	an	application	to	both
present	information	to	the	user	and	also	allow	the	user	to	take	action	upon	it.

36.	Creating	a	Tabbed	Interface	using
the	TabLayout	Component
The	previous	chapter	outlined	the	concept	of	material	design	in	Android	and
introduced	two	of	the	components	provided	by	the	design	support	library	in	the
form	of	the	floating	action	button	and	the	Snackbar.	This	chapter	will
demonstrate	how	to	use	another	of	the	design	library	components,	the
TabLayout,	which	can	be	combined	with	the	ViewPager	class	to	create	a	tab
based	interface	within	an	Android	activity.

36.1	An	Introduction	to	the	ViewPager
Although	not	part	of	the	design	support	library,	the	ViewPager	is	a	useful
companion	class	when	used	in	conjunction	with	the	TabLayout	component	to
implement	a	tabbed	user	interface.	The	primary	role	of	the	ViewPager	is	to	allow
the	user	to	flip	through	different	pages	of	information	where	each	page	is	most
typically	represented	by	a	layout	fragment.	The	fragments	that	are	associated
with	the	ViewPager	are	managed	by	an	instance	of	the	FragmentPagerAdapter
class.
At	a	minimum	the	pager	adapter	assigned	to	a	ViewPager	must	implement	two
methods.	The	first,	named	getCount(),	must	return	the	total	number	of	page
fragments	available	to	be	displayed	to	the	user.	The	second	method,	getItem(),	is
passed	a	page	number	and	must	return	the	corresponding	fragment	object	ready
to	be	presented	to	the	user.

36.2	An	Overview	of	the	TabLayout	Component
As	previously	discussed,	TabLayout	is	one	of	the	components	introduced	as	part
of	material	design	and	is	included	in	the	design	support	library.	The	purpose	of
the	TabLayout	is	to	present	the	user	with	a	row	of	tabs	which	can	be	selected	to
display	different	pages	to	the	user.	The	tabs	can	be	fixed	or	scrollable,	whereby
the	user	can	swipe	left	or	right	to	view	more	tabs	than	will	currently	fit	on	the
display.	The	information	displayed	on	a	tab	can	be	text-based,	an	image	or	a
combination	of	text	and	images.	Figure	36-1,	for	example,	shows	the	tab	bar	for
the	Android	phone	app	consisting	of	three	tabs	displaying	images:

Figure	36-1

Figure	36-2,	on	the	other	hand,	shows	a	TabLayout	configuration	consisting	of
four	tabs	displaying	text	in	a	scrollable	configuration:

Figure	36-2

The	remainder	of	this	chapter	will	work	through	the	creation	of	an	example
project	that	demonstrates	the	use	of	the	TabLayout	component	together	with	a
ViewPager	and	four	fragments.

36.3	Creating	the	TabLayoutDemo	Project
Create	a	new	project	in	Android	Studio,	entering	TabLayoutDemo	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).
Continue	through	the	configuration	screens	requesting	the	creation	of	a	Basic
Activity	named	TabLayoutDemoActivity	with	corresponding	layout	and	menu
files	named	activity_tab_layout_demo	and	menu_tab_layout_demo	respectively.
Click	on	the	Finish	button	to	initiate	the	project	creation	process.
Once	the	project	has	been	created,	load	the	content_tab_layout_demo.xml	file
into	the	Layout	Editor	tool,	select	“Hello	World”	TextView	object,	and	then
delete	it.

36.4	Creating	the	First	Fragment
Each	of	the	tabs	on	the	TabLayout	will	display	a	different	fragment	when
selected.	Create	the	first	of	these	fragments	by	right-clicking	on	the	app	->	java
->	com.ebookfrenzy.tablayoutdemo	entry	in	the	Project	tool	window	and
selecting	the	New	->	Fragment	->	Fragment	(Blank)	option.	In	the	resulting
dialog,	enter	Tab1Fragment	into	the	Fragment	Name:	field	and	fragment_tab1
into	the	Fragment	Layout	Name:	field.	Enable	the	Create	layout	XML?	option

and	disable	both	the	Include	fragment	factory	methods?	and	Include	interface
callbacks?	options	before	clicking	on	the	Finish	button	to	create	the	new
fragment:

Figure	36-3

Load	the	newly	created	fragment_tab1.xml	file	(located	under	app	->	res	->
layout)	into	the	Layout	Editor	tool,	right-click	on	the	FrameLayout	entry	in	the
Component	Tree	panel	and	select	the	Convert	FrameLayout	to	ConstraintLayout
menu	option.	In	the	resulting	dialog,	verify	that	all	conversion	options	are

selected	before	clicking	on	OK.
Once	the	layout	has	been	converted	to	a	ConstraintLayout,	delete	the	TextView
from	the	layout.	From	the	Palette,	locate	the	TextView	widget	and	drag	and	drop
it	so	that	it	is	positioned	in	the	center	of	the	layout.	Edit	the	text	property	on	the
object	so	that	it	reads	“Tab	1	Fragment”	and	set	the	layout_width	property	to
wrap_content.	Extract	the	string	to	a	resource	named	tab_1_fragment,	at	which
point	the	layout	should	match	that	of	Figure	36-4:

Figure	36-4

36.5	Duplicating	the	Fragments
So	far,	the	project	contains	one	of	the	four	required	fragments.	Instead	of

So	far,	the	project	contains	one	of	the	four	required	fragments.	Instead	of
creating	the	remaining	three	fragments	using	the	previous	steps	it	would	be
quicker	to	duplicate	the	first	fragment.	Each	fragment	consists	of	a	layout	XML
file	and	a	Java	class	file,	each	of	which	needs	to	be	duplicated.
Right-click	on	the	fragment_tab1.xml	file	in	the	Project	tool	window	and	select
the	Copy	option	from	the	resulting	menu.	Right-click	on	the	layout	entry,	this
time	selecting	the	Paste	option.	In	the	resulting	dialog,	name	the	new	layout	file
fragment_tab2.xml	before	clicking	the	OK	button.	Edit	the	new
fragment_tab2.xml	file	and	change	the	text	on	the	Text	View	to	“Tab	2
Fragment”,	following	the	usual	steps	to	extract	the	string	to	a	resource	named
tab_2_fragment.
To	duplicate	the	Tab1Fragment	class	file,	right-click	on	the	class	listed	under
app	->	java	->	com.ebookfrenzy.tablayoutdemo	and	select	Copy.	Right-click	on
the	com.ebookfrenzy.tablayoutdemo	entry	and	select	Paste.	In	the	Copy	Class
dialog,	enter	Tab2Fragment	into	the	New	name:	field	and	click	on	OK.	Edit	the
new	Tab2Fragment.java	file	and	change	the	onCreateView()	method	to	inflate
the	fragment_tab2	layout	file:

@Override

public	View	onCreateView(LayoutInflater	inflater,	ViewGroup

container,

																									Bundle	savedInstanceState)	{

				//	Inflate	the	layout	for	this	fragment

				return	inflater.inflate(R.layout.fragment_tab2,	container,

false);

}

Perform	the	above	duplication	steps	twice	more	to	create	the	fragment	layout
and	class	files	for	the	remaining	two	fragments.	On	completion	of	these	steps	the
project	structure	should	match	that	of	Figure	36-5:

Figure	36-5

36.6	Adding	the	TabLayout	and	ViewPager
With	the	fragment	creation	process	now	complete,	the	next	step	is	to	add	the
TabLayout	and	ViewPager	to	the	main	activity	layout	file.	Edit	the
activity_tab_layout_demo.xml	file	and	add	these	elements	as	outlined	in	the
following	XML	listing.	Note	that	the	TabLayout	component	is	embedded	into
the	AppBarLayout	element	while	the	ViewPager	is	placed	after	the
AppBarLayout:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:fitsSystemWindows="true"

				tools:context=".TabLayoutDemoActivity">

				<android.support.design.widget.AppBarLayout

								android:layout_width="match_parent"

								android:layout_height="wrap_content"		

								android:theme="@style/AppTheme.AppBarOverlay">

								<android.support.v7.widget.Toolbar

												android:id="@+id/toolbar"

												android:layout_width="match_parent"

												android:layout_height="?attr/actionBarSize"

												android:background="?attr/colorPrimary"

												app:popupTheme="@style/AppTheme.PopupOverlay"	/>

								<android.support.design.widget.TabLayout

												android:id="@+id/tab_layout"

												android:layout_width="match_parent"

												android:layout_height="wrap_content"

												app:tabMode="fixed"

												app:tabGravity="fill"/>

	

				</android.support.design.widget.AppBarLayout>

				<android.support.v4.view.ViewPager

								android:id="@+id/pager"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

							

app:layout_behavior="@string/appbar_scrolling_view_behavior"	

				/>

			

				<include	layout="@layout/content_tab_layout_demo"	/>

				<android.support.design.widget.FloatingActionButton

								android:id="@+id/fab"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:layout_gravity="bottom|end"

								android:layout_margin="@dimen/fab_margin"

								android:src="@android:drawable/ic_dialog_email"	/>

</android.support.design.widget.CoordinatorLayout>

36.7	Creating	the	Pager	Adapter
This	example	will	use	the	ViewPager	approach	to	handling	the	fragments
assigned	to	the	TabLayout	tabs.	With	the	ViewPager	added	to	the	layout
resource	file,	a	new	class	which	subclasses	FragmentPagerAdapter	needs	to	be
added	to	the	project	to	manage	the	fragments	that	will	be	displayed	when	the	tab
items	are	selected	by	the	user.
Add	a	new	class	to	the	project	by	right-clicking	on	the
com.ebookfrenzy.tablayoutdemo	entry	in	the	Project	tool	window	and	selecting
the	New	->	Java	Class	menu	option.	In	the	new	class	dialog,	enter

TabPagerAdapter	into	the	Name:	field	and	click	OK.
Edit	the	TabPagerAdapter.java	file	so	that	it	reads	as	follows:

package	com.ebookfrenzy.tablayoutdemo;

import	android.support.v4.app.Fragment;

import	android.support.v4.app.FragmentManager;

import	android.support.v4.app.FragmentPagerAdapter;

public	class	TabPagerAdapter	extends	FragmentPagerAdapter	{

				int	tabCount;

	

				public	TabPagerAdapter(FragmentManager	fm,	int

numberOfTabs)	{

								super(fm);

								this.tabCount	=	numberOfTabs;

				}

	

				@Override

				public	Fragment	getItem(int	position)	{

	

								switch	(position)	{

												case	0:

																Tab1Fragment	tab1	=	new	Tab1Fragment();

																return	tab1;

												case	1:

																Tab2Fragment	tab2	=	new	Tab2Fragment();

																return	tab2;

												case	2:

																Tab3Fragment	tab3	=	new	Tab3Fragment();

																return	tab3;

												case	3:

																Tab4Fragment	tab4	=	new	Tab4Fragment();

																return	tab4;

												default:

																return	null;

								}

				}

	

				@Override

				public	int	getCount()	{

								return	tabCount;

				}

}

The	class	is	declared	as	extending	the	FragmentPagerAdapter	class	and	a
constructor	is	implemented	allowing	the	number	of	pages	required	to	be	passed
to	the	class	when	an	instance	is	created.	The	getItem()	method	will	be	called
when	a	specific	page	is	required.	A	switch	statement	is	used	to	identify	the	page
number	being	requested	and	to	return	a	corresponding	fragment	instance.
Finally,	the	getCount()	method	simply	returns	the	count	value	passed	through
when	the	object	instance	was	created.

36.8	Performing	the	Initialization	Tasks
The	remaining	tasks	involve	initializing	the	TabLayout,	ViewPager	and
TabPagerAdapter	instances.	All	of	these	tasks	will	be	performed	in	the
onCreate()	method	of	the	TabLayoutDemoActivity.java	file.	Edit	this	file	and
modify	the	onCreate()	method	so	that	it	reads	as	follows:

package	com.ebookfrenzy.tablayoutdemo;

import	android.os.Bundle;

import	android.support.design.widget.FloatingActionButton;

import	android.support.design.widget.Snackbar;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.View;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.support.design.widget.TabLayout;

import	android.support.v4.view.PagerAdapter;

import	android.support.v4.view.ViewPager;

public	class	TabLayoutDemoActivity	extends	AppCompatActivity	{

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_tab_layout_demo);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

								TabLayout	tabLayout	=

														(TabLayout)	findViewById(R.id.tab_layout);

	

								tabLayout.addTab(tabLayout.newTab().setText("Tab	1

Item"));

								tabLayout.addTab(tabLayout.newTab().setText("Tab	2

Item"));

								tabLayout.addTab(tabLayout.newTab().setText("Tab	3

Item"));

								tabLayout.addTab(tabLayout.newTab().setText("Tab	4

Item"));

	

								final	ViewPager	viewPager	=

														(ViewPager)	findViewById(R.id.pager);

								final	PagerAdapter	adapter	=	new	TabPagerAdapter

																(getSupportFragmentManager(),

																														tabLayout.getTabCount());

								viewPager.setAdapter(adapter);

	

								viewPager.addOnPageChangeListener(new

													

TabLayout.TabLayoutOnPageChangeListener(tabLayout));

								tabLayout.addOnTabSelectedListener(new

														TabLayout.OnTabSelectedListener()	{

												@Override

												public	void	onTabSelected(TabLayout.Tab	tab)	{

																viewPager.setCurrentItem(tab.getPosition());

												}

	

												@Override

												public	void	onTabUnselected(TabLayout.Tab	tab)	{

	

												}

	

												@Override

												public	void	onTabReselected(TabLayout.Tab	tab)	{

	

												}

	

								});

.

.

.

				}

.

.

.

}

The	code	begins	by	obtaining	a	reference	to	the	TabLayout	object	that	was
added	to	the	activity_tab_layout_demo.xml	file	and	creating	four	tabs,	assigning
the	text	to	appear	on	each:

TabLayout	tabLayout	=

							(TabLayout)	findViewById(R.id.tab_layout);

tabLayout.addTab(tabLayout.newTab().setText("Tab	1	Item"));

tabLayout.addTab(tabLayout.newTab().setText("Tab	2	Item"));

tabLayout.addTab(tabLayout.newTab().setText("Tab	3	Item"));

tabLayout.addTab(tabLayout.newTab().setText("Tab	4	Item"));

A	reference	to	the	ViewPager	instance	in	the	layout	file	is	then	obtained	and	an
instance	of	the	TabPagerAdapter	class	created.	Note	that	the	code	to	create	the
TabPagerAdapter	instance	passes	through	the	number	of	tabs	that	have	been
assigned	to	the	TabLayout	component.	The	TabPagerAdapter	instance	is	then
assigned	as	the	adapter	for	the	ViewPager	and	the	TabLayout	component	added
to	the	page	change	listener:

final	ViewPager	viewPager	=	(ViewPager)

findViewById(R.id.pager);

final	PagerAdapter	adapter	=	new	TabPagerAdapter

																(getSupportFragmentManager(),

																						tabLayout.getTabCount());

viewPager.setAdapter(adapter);

viewPager.addOnPageChangeListener(new

							TabLayout.TabLayoutOnPageChangeListener(tabLayout));

Finally,	the	onTabSelectedListener	is	configured	on	the	TabLayout	instance	and
the	onTabSelected()	method	implemented	to	set	the	current	page	on	the
ViewPager	based	on	the	currently	selected	tab	number.	For	the	sake	of
completeness	the	other	listener	methods	are	added	as	stubs:

tabLayout.setOnTabSelectedListener(new

																						TabLayout.OnTabSelectedListener()

{

							@Override

							public	void	onTabSelected(TabLayout.Tab	tab)	{

														viewPager.setCurrentItem(tab.getPosition());

							}

							@Override

							public	void	onTabUnselected(TabLayout.Tab	tab)	{

							}

							@Override

							public	void	onTabReselected(TabLayout.Tab	tab)	{

							}

});

36.9	Testing	the	Application
Compile	and	run	the	app	on	a	device	or	emulator	and	make	sure	that	selecting	a
tab	causes	the	corresponding	fragment	to	appear	in	the	content	area	of	the
screen:

Figure	36-6

36.10	Customizing	the	TabLayout
The	TabLayout	in	this	example	project	is	configured	using	fixed	mode.	This
mode	works	well	for	a	limited	number	of	tabs	with	short	titles.	A	greater	number
of	tabs	or	longer	titles	can	quickly	become	a	problem	when	using	fixed	mode	as
illustrated	by	Figure	36-7:

Figure	36-7

In	an	effort	to	fit	the	tabs	into	the	available	display	width	the	TabLayout	has
used	multiple	lines	of	text.	Even	so,	the	second	line	is	clearly	truncated	making	it
impossible	to	see	the	full	title.	The	best	solution	to	this	problem	is	to	switch	the
TabLayout	to	scrollable	mode.	In	this	mode	the	titles	appear	in	full	length,
single	line	format	allowing	the	user	to	swipe	to	scroll	horizontally	through	the
available	items	as	demonstrated	in	Figure	36-8:

Figure	36-8

To	switch	a	TabLayout	to	scrollable	mode,	simply	change	the	app:tabMode
property	in	the	activity_tab_layout_demo.xml	layout	resource	file	from	“fixed”
to	“scrollable”:

<android.support.design.widget.TabLayout

				android:id="@+id/tab_layout"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				app:tabMode="scrollable"

				app:tabGravity="fill"/>

</android.support.design.widget.AppBarLayout>

When	in	fixed	mode,	the	TabLayout	may	be	configured	to	control	how	the	tab
items	are	displayed	to	take	up	the	available	space	on	the	screen.	This	is
controlled	via	the	app:tabGravity	property,	the	results	of	which	are	more
noticeable	on	wider	displays	such	as	tablets	in	landscape	orientation.	When	set
to	“fill”,	for	example,	the	items	will	be	distributed	evenly	across	the	width	of	the

TabLayout	as	shown	in	Figure	36-9:

Figure	36-9

Changing	the	property	value	to	“center”	will	cause	the	items	to	be	positioned
relative	to	the	center	of	the	tab	bar:

Figure	36-10

Before	proceeding	to	the	final	step	in	this	chapter,	revert	the	tabMode	and
tabGravity	properties	in	the	activity_tab_layout_demo.xml	file	to	“fixed”	and
“fill”	respectively.

36.11	Displaying	Icon	Tab	Items
The	last	step	in	this	tutorial	is	to	replace	the	text	based	tabs	with	icons.	To
achieve	this,	modify	the	onCreate()	method	in	the	TabLayoutDemoActivity.java
file	to	assign	some	built-in	drawable	icons	to	the	tab	items:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_tab_layout_demo);

				Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

				setSupportActionBar(toolbar);

				TabLayout	tabLayout	=	(TabLayout)

findViewById(R.id.tab_layout);

				tabLayout.addTab(tabLayout.newTab().setIcon(

																						android.R.drawable.ic_dialog_email));

				tabLayout.addTab(tabLayout.newTab().setIcon(

																						android.R.drawable.ic_dialog_dialer));

				tabLayout.addTab(tabLayout.newTab().setIcon(

																						android.R.drawable.ic_dialog_map));

				tabLayout.addTab(tabLayout.newTab().setIcon(

																						android.R.drawable.ic_dialog_info));

				final	ViewPager	viewPager	=

														(ViewPager)	findViewById(R.id.pager);

.

.

.

}

Instead	of	using	the	setText()	method	of	the	tab	item,	the	code	is	now	calling	the
setIcon()	method	and	passing	through	a	drawable	icon	reference.	When
compiled	and	run,	the	tab	bar	should	now	appear	as	shown	in	Figure	36-11.	Note
if	using	Instant	Run	that	it	will	be	necessary	to	trigger	a	warm	swap	using	Ctrl-
Shift-R	for	the	changes	to	take	effect:

Figure	36-11

36.12	Summary
TabLayout	is	one	of	the	components	introduced	as	part	of	the	Android	material
design	implementation.	The	purpose	of	the	TabLayout	component	is	to	present	a
series	of	tab	items	which,	when	selected,	display	different	content	to	the	user.
The	tab	items	can	display	text,	images	or	a	combination	of	both.	When
combined	with	the	ViewPager	class	and	fragments,	tab	layouts	can	be	created
with	relative	ease,	with	each	tab	item	selection	displaying	a	different	fragment.

37.	 Working	 with	 the	 RecyclerView	 and	 CardView
Widgets

The	RecyclerView	and	CardView	widgets	work	together	to	provide	scrollable
lists	of	information	to	the	user	in	which	the	information	is	presented	in	the	form
of	individual	cards.	Details	of	both	classes	will	be	covered	in	this	chapter	before
working	through	the	design	and	implementation	of	an	example	project.

37.1	An	Overview	of	the	RecyclerView
Much	like	the	ListView	class	outlined	in	the	chapter	entitled	Working	with	the
Floating	Action	Button	and	Snackbar,	the	purpose	of	the	RecyclerView	is	to
allow	information	to	be	presented	to	the	user	in	the	form	of	a	scrollable	list.	The
RecyclerView,	however,	provides	a	number	of	advantages	over	the	ListView.	In
particular,	the	RecyclerView	is	significantly	more	efficient	in	the	way	it
manages	the	views	that	make	up	a	list,	essentially	reusing	existing	views	that
make	up	list	items	as	they	scroll	off	the	screen	instead	if	creating	new	ones
(hence	the	name	“recycler”).	This	both	increases	the	performance	and	reduces
the	resources	used	by	a	list,	a	feature	that	is	of	particular	benefit	when	presenting
large	amounts	of	data	to	the	user.
Unlike	the	ListView,	the	RecyclerView	also	provides	a	choice	of	three	built-in
layout	managers	to	control	the	way	in	which	the	list	items	are	presented	to	the
user:
·									LinearLayoutManager	–	The	list	items	are	presented	as	either	a	horizontal

or	vertical	scrolling	list.

Figure	37-1

·									GridLayoutManager	–	The	list	items	are	presented	in	grid	format.	This
manager	is	best	used	when	the	list	items	of	are	of	uniform	size.

Figure	37-2

·									StaggeredGridLayoutManager	-	The	list	items	are	presented	in	a	staggered
grid	format.	This	manager	is	best	used	when	the	list	items	are	not	of	uniform
size.

Figure	37-3

For	situations	where	none	of	the	three	built-in	managers	provide	the	necessary
layout,	custom	layout	managers	may	be	implemented	by	subclassing	the
RecyclerView.LayoutManager	class.
Each	list	item	displayed	in	a	RecyclerView	is	created	as	an	instance	of	the
ViewHolder	class.	The	ViewHolder	instance	contains	everything	necessary	for
the	RecyclerView	to	display	the	list	item,	including	the	information	to	be
displayed	and	the	view	layout	used	to	display	the	item.
As	with	the	ListView,	the	RecyclerView	depends	on	an	adapter	to	act	as	the
intermediary	between	the	RecyclerView	instance	and	the	data	that	is	to	be
displayed	to	the	user.	The	adapter	is	created	as	a	subclass	of	the
RecyclerView.Adapter	class	and	must,	at	a	minimum,	implement	the	following
methods,	which	will	be	called	at	various	points	by	the	RecyclerView	object	to
which	the	adapter	is	assigned:
·									getItemCount()	–	This	method	must	return	a	count	of	the	number	of	items

that	are	to	be	displayed	in	the	list.
·									onCreateViewHolder()	–	This	method	creates	and	returns	a	ViewHolder

object	initialized	with	the	view	that	is	to	be	used	to	display	the	data.	This
view	is	typically	created	by	inflating	the	XML	layout	file.

·									onBindViewHolder()	–	This	method	is	passed	the	ViewHolder	object
created	by	the	onCreateViewHolder()	method	together	with	an	integer	value

indicating	the	list	item	that	is	about	to	be	displayed.	Contained	within	the
ViewHolder	object	is	the	layout	assigned	by	the	onCreateViewHolder()
method.	It	is	the	responsibility	of	the	onBindViewHolder()	method	to
populate	the	views	in	the	layout	with	the	text	and	graphics	corresponding	to
the	specified	item	and	to	return	the	object	to	the	RecyclerView	where	it	will
be	presented	to	the	user.

Adding	a	RecyclerView	to	a	layout	is	simply	a	matter	of	adding	the	appropriate
element	to	the	XML	layout	file	of	the	activity	in	which	it	is	to	appear.	For
example:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

				android:layout_height="match_parent"

android:fitsSystemWindows="true"

				tools:context=".CardStuffActivity">

				<android.support.v7.widget.RecyclerView

								android:id="@+id/recycler_view"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

							

app:layout_behavior="@string/appbar_scrolling_view_behavior"/>

				<android.support.design.widget.AppBarLayout

android:layout_height="wrap_content"

								android:layout_width="match_parent"

android:theme="@style/AppTheme.AppBarOverlay">

								<android.support.v7.widget.Toolbar

android:id="@+id/toolbar"

												android:layout_width="match_parent"

android:layout_height="?attr/actionBarSize"

												android:background="?attr/colorPrimary"

app:popupTheme="@style/AppTheme.PopupOverlay"	/>

				</android.support.design.widget.AppBarLayout>

.

.

.

}

In	the	above	example	the	RecyclerView	has	been	embedded	into	the
CoordinatorLayout	of	a	main	activity	layout	file	along	with	the	AppBar	and
Toolbar.	This	provides	some	additional	features,	such	as	configuring	the	Toolbar
and	AppBar	to	scroll	off	the	screen	when	the	user	scrolls	up	within	the
RecyclerView	(a	topic	covered	in	more	detail	in	the	chapter	entitled	Working
with	the	AppBar	and	Collapsing	Toolbar	Layouts).

37.2	An	Overview	of	the	CardView
The	CardView	class	is	a	user	interface	view	that	allows	information	to	be
presented	in	groups	using	a	card	metaphor.	Cards	are	usually	presented	in	lists
using	a	RecyclerView	instance	and	may	be	configured	to	appear	with	shadow
effects	and	rounded	corners.	Figure	37-4,	for	example,	shows	three	CardView
instances	configured	to	display	a	layout	consisting	of	an	ImageView	and	two
TextViews:

Figure	37-4

The	user	interface	layout	to	be	presented	with	a	CardView	instance	is	defined
within	an	XML	layout	resource	file	and	loaded	into	the	CardView	at	runtime.
The	CardView	layout	can	contain	a	layout	of	any	complexity	using	the	standard
layout	managers	such	as	RelativeLayout	and	LinearLayout.	The	following	XML
layout	file	represents	a	card	view	layout	consisting	of	a	RelativeLayout	and	a
single	ImageView.	The	card	is	configured	to	be	elevated	to	create	shadowing
effect	and	to	appear	with	rounded	corners:

<?xml	version="1.0"	encoding="utf-8"?>

				<android.support.v7.widget.CardView

								xmlns:card_view="http://schemas.android.com/apk/res-

auto"

							

xmlns:android="http://schemas.android.com/apk/res/android"

								android:id="@+id/card_view"

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:layout_margin="5dp"

								card_view:cardCornerRadius="12dp"

								card_view:cardElevation="3dp"

								card_view:contentPadding="4dp">

								<RelativeLayout

												android:layout_width="match_parent"

												android:layout_height="wrap_content"

												android:padding="16dp"	>

												<ImageView

																android:layout_width="100dp"

																android:layout_height="100dp"

																android:id="@+id/item_image"

																android:layout_alignParentLeft="true"

																android:layout_alignParentTop="true"

																android:layout_marginRight="16dp"	/>

								</RelativeLayout>

</android.support.v7.widget.CardView>

When	combined	with	the	RecyclerView	to	create	a	scrollable	list	of	cards,	the
onCreateViewHolder()	method	of	the	recycler	view	inflates	the	layout	resource
file	for	the	card,	assigns	it	to	the	ViewHolder	instance	and	returns	it	to	the
RecyclerView	instance.

37.3	Adding	the	Libraries	to	the	Project
In	order	to	use	the	RecyclerView	and	CardView	components,	the	corresponding
libraries	must	be	added	to	the	Gradle	build	dependencies	for	the	project.	Within
the	module	level	build.gradle	file,	therefore,	the	following	lines	need	to	be
added	to	the	dependencies	section:

dependencies	{

.

.

				compile	'com.android.support:recyclerview-v7:25.2.0'

				compile	'com.android.support:cardview-v7:25.2.0'

}

37.4	Summary
This	chapter	has	introduced	the	Android	RecyclerView	and	CardView
components.	The	RecyclerView	provides	a	resource	efficient	way	to	display
scrollable	lists	of	views	within	an	Android	app.	The	CardView	is	useful	when

scrollable	lists	of	views	within	an	Android	app.	The	CardView	is	useful	when
presenting	groups	of	data	(such	as	a	list	of	names	and	addresses)	in	the	form	of
cards.	As	previously	outlined,	and	demonstrated	in	the	tutorial	contained	in	the
next	chapter,	the	RecyclerView	and	CardView	are	particularly	useful	when
combined.

38.	An	Android	RecyclerView	and	CardView	Tutorial

In	this	chapter	an	example	project	will	be	created	that	makes	use	of	both	the
CardView	and	RecyclerView	components	to	create	a	scrollable	list	of	cards.	The
completed	app	will	display	a	list	of	cards	containing	images	and	text.	In	addition
to	displaying	the	list	of	cards,	the	project	will	be	implemented	such	that	selecting
a	card	causes	a	messages	to	be	displayed	to	the	user	indicating	which	card	was
tapped.

38.1	Creating	the	CardDemo	Project
Create	a	new	project	in	Android	Studio,	entering	CardDemo	into	the	Application
name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting	before	clicking
on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich)	and
continue	to	proceed	through	the	screens.
In	the	next	chapter,	the	scroll	handling	features	of	the	AppBar,	Toolbar	and
CoordinatorLayout	layout	will	be	demonstrated	using	this	project.	On	the
activity	selection	screen,	therefore,	request	the	creation	of	a	Basic	Activity
named	CardDemoActivity	with	corresponding	layout	and	menu	files	named
activity_card_demo	and	menu_card_demo	respectively.	Click	on	the	Finish
button	to	initiate	the	project	creation	process.
Once	the	project	has	been	created,	load	the	content_card_demo.xml	file	into	the
Layout	Editor	tool	and	select	and	delete	the	“Hello	World”	TextView	object.

38.2	Removing	the	Floating	Action	Button
Since	the	Basic	Activity	was	selected,	the	layout	includes	a	floating	action
button	which	is	not	required	for	this	project.	Load	the	activity_card_demo.xml
layout	file	into	the	Layout	Editor	tool,	select	the	floating	action	button	and	tap
the	keyboard	delete	key	to	remove	the	object	from	the	layout.	Edit	the
CardDemoActivity.java	file	and	remove	the	floating	action	button	code	from	the
onCreate	method	as	follows:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_card_demo);

				Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

				setSupportActionBar(toolbar);

				FloatingActionButton	fab	=

								(FloatingActionButton)	findViewById(R.id.fab);

				fab.setOnClickListener(new	View.OnClickListener()	{

								@Override

								public	void	onClick(View	view)	{

												Snackbar.make(view,	"Replace	with	your	own	action",

																		Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

								}

				});

}

38.3	Adding	the	RecyclerView	and	CardView	Libraries
Within	the	Project	tool	window	locate	and	select	the	module	level	build.gradle
file	and	modify	the	dependencies	section	of	the	file	to	add	the	support	library
dependencies	for	the	RecyclerView	and	CardView:

dependencies	{

.

.

.

				compile	'com.android.support:appcompat-v7:25.2.0'

				compile	'com.android.support.constraint:constraint-

layout:1.0.0'

				compile	'com.android.support:design:25.1.0'

				compile	'com.android.support:recyclerview-v7:25.2.0'

				compile	'com.android.support:cardview-v7:25.2.0'

				testCompile	'junit:junit:4.12'

}

When	prompted	to	do	so,	resync	the	new	Gradle	build	configuration	by	clicking
on	the	Sync	Now	link	in	the	warning	bar.

38.4	Designing	the	CardView	Layout
The	layout	of	the	views	contained	within	the	cards	will	be	defined	within	a
separate	XML	layout	file.	Within	the	Project	tool	window	right	click	on	the	app
->	res	->	layout	entry	and	select	the	New	->	Layout	resource	file	menu	option.
In	the	New	Resource	Dialog	enter	card_layout	into	the	File	name:	field	and
android.support.v7.widget.CardView	into	the	root	element	field	before	clicking
on	the	OK	button.
Load	the	card_layout.xml	file	into	the	Layout	Editor	tool,	switch	to	Text	mode
and	modify	the	layout	so	that	it	reads	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.v7.widget.CardView

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:card_view="http://schemas.android.com/apk/res-auto"

				android:layout_width="match_parent"

				android:layout_height="wrap_content"

				android:id="@+id/card_view"

				android:layout_margin="5dp"

				card_view:cardBackgroundColor="#81C784"

				card_view:cardCornerRadius="12dp"

				card_view:cardElevation="3dp"

				card_view:contentPadding="4dp"	>

				<RelativeLayout

								android:layout_width="match_parent"

								android:layout_height="wrap_content"

								android:padding="16dp"	>

	

								<ImageView

												android:layout_width="100dp"

												android:layout_height="100dp"

												android:id="@+id/item_image"

												android:layout_alignParentStart="true"

												android:layout_alignParentLeft="true"

												android:layout_alignParentTop="true"

												android:layout_marginEnd="16dp"

												android:layout_marginRight="16dp"	/>

	

								<TextView

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:id="@+id/item_title"

												android:layout_toEndOf="@+id/item_image"

												android:layout_toRightOf="@+id/item_image"

												android:layout_alignParentTop="true"

												android:textSize="30sp"	/>

	

								<TextView

												android:layout_width="wrap_content"

												android:layout_height="wrap_content"

												android:id="@+id/item_detail"

												android:layout_toEndOf="@+id/item_image"

												android:layout_toRightOf="@+id/item_image"

												android:layout_below="@+id/item_title"	/>

	

				</RelativeLayout>

</android.support.v7.widget.CardView>

38.5	Adding	the	RecyclerView
Select	the	activity_card_demo.xml	layout	file	and	modify	it	to	add	the
RecyclerView	component	immediately	before	the	AppBarLayout:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:fitsSystemWindows="true"

				tools:contextcom.ebookfrenzy.carddemo.CardDemoActivity">

				<android.support.v7.widget.RecyclerView

								android:id="@+id/recycler_view"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

			

app:layout_behavior="@string/appbar_scrolling_view_behavior"	/>

			

				<android.support.design.widget.AppBarLayout

								android:layout_height="wrap_content"

								android:layout_width="match_parent"

								android:theme="@style/AppTheme.AppBarOverlay">

.

.

.

38.6	Creating	the	RecyclerView	Adapter
As	outlined	in	the	previous	chapter,	the	RecyclerView	needs	to	have	an	adapter
to	handle	the	creation	of	the	list	items.	Add	this	new	class	to	the	project	by	right-
clicking	on	the	app	->	java	->	com.ebookfrenzy.carddemo	entry	in	the	Project
tool	window	and	selecting	the	New	->	Java	Class	menu	option.	In	the	Create
New	Class	dialog,	enter	RecyclerAdapter	into	the	Name:	field	before	clicking	on
the	OK	button	to	create	the	new	Java	class	file.
Edit	the	new	RecyclerAdapter.java	file	to	add	some	import	directives	and	to
declare	that	the	class	now	extends	RecyclerView.Adapter.	Rather	than	create	a
separate	class	to	provide	the	data	to	be	displayed,	some	basic	arrays	will	also	be
added	to	the	adapter	to	act	as	the	data	for	the	app:

package	com.ebookfrenzy.carddemo;

import	android.support.v7.widget.RecyclerView;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

import	android.widget.ImageView;

import	android.widget.TextView;

public	class	RecyclerAdapter	extends

RecyclerView.Adapter<RecyclerAdapter.ViewHolder>	{

				private	String[]	titles	=	{"Chapter	One",

												"Chapter	Two",

												"Chapter	Three",

												"Chapter	Four",

												"Chapter	Five",

												"Chapter	Six",

												"Chapter	Seven",

												"Chapter	Eight"};

	

				private	String[]	details	=	{"Item	one	details",

												"Item	two	details",	"Item	three	details",

												"Item	four	details",	"Item	file	details",

												"Item	six	details",	"Item	seven	details",

												"Item	eight	details"};

	

			private	int[]	images	=	{	R.drawable.android_image_1,

																														R.drawable.android_image_2,

																														R.drawable.android_image_3,

																														R.drawable.android_image_4,

																														R.drawable.android_image_5,

																														R.drawable.android_image_6,

																														R.drawable.android_image_7,

																														R.drawable.android_image_8	};

}

Within	the	RecyclerAdapter	class	we	now	need	our	own	implementation	of	the
ViewHolder	class	configured	to	reference	the	view	elements	in	the
card_layout.xml	file.	Remaining	within	the	RecyclerAdapter.java	file	implement
this	class	as	follows:

.

.

.

public	class	RecyclerAdapter		extends

RecyclerView.Adapter<RecyclerAdapter.ViewHolder>	{

.

.

.

			class	ViewHolder	extends	RecyclerView.ViewHolder	{

	

								public	ImageView	itemImage;

								public	TextView	itemTitle;

								public	TextView	itemDetail;

	

								public	ViewHolder(View	itemView)	{

												super(itemView);

												itemImage	=

														

(ImageView)itemView.findViewById(R.id.item_image);

												itemTitle	=

														

(TextView)itemView.findViewById(R.id.item_title);

												itemDetail	=	

														

(TextView)itemView.findViewById(R.id.item_detail);

								}

				}

.

.

.

}

The	ViewHolder	class	contains	an	ImageView	and	two	TextView	variables
together	with	a	constructor	method	that	initializes	those	variables	with	references
to	the	three	view	items	in	the	card_layout.xml	file.
The	next	item	to	be	added	to	the	RecyclerAdapter.java	file	is	the	implementation
of	the	onCreateViewHolder()	method:

@Override

public	ViewHolder	onCreateViewHolder(ViewGroup	viewGroup,	int

i)	{

				View	v	=	LayoutInflater.from(viewGroup.getContext())

																.inflate(R.layout.card_layout,	viewGroup,

false);

				ViewHolder	viewHolder	=	new	ViewHolder(v);

				return	viewHolder;

}

This	method	will	be	called	by	the	RecyclerView	to	obtain	a	ViewHolder	object.
It	inflates	the	view	hierarchy	card_layout.xml	file	and	creates	an	instance	of	our
ViewHolder	class	initialized	with	the	view	hierarchy	before	returning	it	to	the
RecyclerView.

The	purpose	of	the	onBindViewHolder()	method	is	to	populate	the	view
hierarchy	within	the	ViewHolder	object	with	the	data	to	be	displayed.	It	is
passed	the	ViewHolder	object	and	an	integer	value	indicating	the	list	item	that	is
to	be	displayed.	This	method	should	now	be	added,	using	the	item	number	as	an
index	into	the	data	arrays.	This	data	is	then	displayed	on	the	layout	views	using
the	references	created	in	the	constructor	method	of	the	ViewHolder	class:

@Override

public	void	onBindViewHolder(ViewHolder	viewHolder,	int	i)	{

				viewHolder.itemTitle.setText(titles[i]);

				viewHolder.itemDetail.setText(details[i]);

				viewHolder.itemImage.setImageResource(images[i]);

}

The	final	requirement	for	the	adapter	class	is	an	implementation	of	the	getItem()
method	which,	in	this	case,	simply	returns	the	number	of	items	in	the	titles	array:

@Override

public	int	getItemCount()	{

				return	titles.length;

}

38.7	Adding	the	Image	Files
In	addition	to	the	two	TextViews,	the	card	layout	also	contains	an	ImageView	on
which	the	Recycler	adapter	has	been	configured	to	display	images.	Before	the
project	can	be	tested	these	images	must	be	added.	The	images	that	will	be	used
for	the	project	are	named	android_image_<n>.jpg	and	can	be	found	in	the
project_icons	folder	of	the	sample	code	download	available	from	the	following
URL:
http://www.ebookfrenzy.com/retail/androidstudio23/index.php
Locate	these	images	in	the	file	system	navigator	for	your	operating	system	and
select	and	copy	the	eight	images.	Right	click	on	the	app	->	res	->	drawable
entry	in	the	Project	tool	window	and	select	Paste	to	add	the	files	to	the	folder:

http://www.ebookfrenzy.com/retail/androidstudio23/index.php

Figure	38-1

38.8	Initializing	the	RecyclerView	Component
At	this	point	the	project	consists	of	a	RecyclerView	instance,	an	XML	layout	file
for	the	CardView	instances	and	an	adapter	for	the	RecyclerView.	The	last	step
before	testing	the	progress	so	far	is	to	initialize	the	RecyclerView	with	a	layout
manager,	create	an	instance	of	the	adapter	and	assign	that	instance	to	the
RecyclerView	object.	For	the	purposes	of	this	example,	the	RecyclerView	will
be	configured	to	use	the	LinearLayoutManager	layout	option.	Edit	the
CardDemoActivity.java	file	and	modify	the	onCreate()	method	to	implement	this
initialization	code:

package	com.ebookfrenzy.carddemo;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.support.v7.widget.LinearLayoutManager;

import	android.support.v7.widget.RecyclerView;

	

public	class	CardDemoActivity	extends	AppCompatActivity	{

				RecyclerView	recyclerView;

				RecyclerView.LayoutManager	layoutManager;

				RecyclerView.Adapter	adapter;

	

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_card_demo);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

								recyclerView	=

														(RecyclerView)	findViewById(R.id.recycler_view);

								layoutManager	=	new	LinearLayoutManager(this);

								recyclerView.setLayoutManager(layoutManager);

	

								adapter	=	new	RecyclerAdapter();

								recyclerView.setAdapter(adapter);

				}

.

.

}

38.9	Testing	the	Application
Compile	and	run	the	app	on	a	physical	device	or	emulator	session	and	scroll
through	the	different	card	items	in	the	list:

Figure	38-2

38.10	Responding	to	Card	Selections

The	last	phase	of	this	project	is	to	make	the	cards	in	the	list	selectable	so	that
clicking	on	a	card	triggers	an	event	within	the	app.	For	this	example,	the	cards
will	be	configured	to	present	a	message	on	the	display	when	tapped	by	the	user.
To	respond	to	clicks,	the	ViewHolder	class	needs	to	be	modified	to	assign	an
onClickListener	on	each	item	view.	Edit	the	RecyclerAdapter.java	file	and
modify	the	ViewHolder	class	declaration	so	that	it	reads	as	follows:

import	android.support.design.widget.Snackbar;

.

.

.

class	ViewHolder	extends	RecyclerView.ViewHolder{

				public	int	currentItem;

				public	ImageView	itemImage;

				public	TextView	itemTitle;

				public	TextView	itemDetail;

				public	ViewHolder(View	itemView)	{

								super(itemView);

								itemImage	=

(ImageView)itemView.findViewById(R.id.item_image);

								itemTitle	=

(TextView)itemView.findViewById(R.id.item_title);

								itemDetail	=

																

(TextView)itemView.findViewById(R.id.item_detail);

								itemView.setOnClickListener(new	View.OnClickListener()

{

												@Override	public	void	onClick(View	v)	{

	

												}

								});

				}

}

Within	the	body	of	the	onClick	handler,	code	can	now	be	added	to	display	a
message	indicating	that	the	card	has	been	clicked.	Given	that	the	actions
performed	as	a	result	of	a	click	will	likely	depend	on	which	card	was	tapped	it	is
also	important	to	identify	the	selected	card.	This	information	can	be	obtained	via
a	call	to	the	getAdapterPosition()	method	of	the	RecyclerView.ViewHolder
class.	Remaining	within	the	RecyclerAdapter.java	file,	add	code	to	the	onClick
handler	so	it	reads	as	follows:

@override

public	void	onClick(View	v)	{

				int	position	=	getAdapterPosition();

	

				Snackbar.make(v,	"Click	detected	on	item	"	+	position,

												Snackbar.LENGTH_LONG)

												.setAction("Action",	null).show();

							}

});

The	last	task	is	to	enable	the	material	design	ripple	effect	that	appears	when
items	are	tapped	within	Android	applications.	This	simply	involves	the	addition
of	some	properties	to	the	declaration	of	the	CardView	instance	in	the
card_layout.xml	file	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.v7.widget.CardView

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:card_view="http://schemas.android.com/apk/res-auto"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:id="@+id/card_view"

				android:layout_margin="5dp"

				card_view:cardBackgroundColor="#81C784"

				card_view:cardCornerRadius="12dp"

				card_view:cardElevation="3dp"

				card_view:contentPadding="4dp"

				android:foreground="?selectableItemBackground"

				android:clickable="true"	>

Run	the	app	once	again	and	verify	that	tapping	a	card	in	the	list	triggers	both	the
standard	ripple	effect	at	the	point	of	contact	and	the	appearance	of	a	Snackbar
reporting	the	number	of	the	selected	item.

38.11	Summary
This	chapter	has	worked	through	the	steps	involved	in	combining	the	CardView
and	RecyclerView	components	to	display	a	scrollable	list	of	card	based	items.
The	example	also	covered	the	detection	of	clicks	on	list	items,	including	the
identification	of	the	selected	item	and	the	enabling	of	the	ripple	effect	visual
feedback	on	the	tapped	CardView	instance.

39.	Working	with	the	AppBar	and
Collapsing	Toolbar	Layouts
In	this	chapter	we	will	be	exploring	the	ways	in	which	the	app	bar	within	an
activity	layout	can	be	customized	and	made	to	react	to	the	scrolling	events
taking	place	within	other	views	on	the	screen.	By	making	use	of	the
CoordinatorLayout	in	conjunction	with	the	AppBarLayout	and
CollapsingToolbarLayout	containers,	the	app	bar	can	be	configured	to	display	an
image	and	to	animate	in	and	out	of	view.	An	upward	scrolling	motion	on	a	list,
for	example,	can	be	configured	so	that	the	app	bar	recedes	from	view	and	then
reappears	when	a	downward	scrolling	motion	is	performed.
Beginning	with	an	overview	of	the	elements	that	can	comprise	an	app	bar,	this
chapter	will	then	work	through	a	variety	of	examples	of	app	bar	configuration.

39.1	The	Anatomy	of	an	AppBar
The	app	bar	is	the	area	that	appears	at	the	top	of	the	display	when	an	app	is
running	and	can	be	configured	to	contain	a	variety	of	different	items	including
the	status	bar,	toolbar,	tab	bar	and	a	flexible	space	area.	Figure	39-1,	for
example,	shows	an	app	bar	containing	a	status	bar,	toolbar	and	tab	bar:

Figure	39-1

The	flexible	space	area	can	be	filled	by	a	blank	background	color,	or	as	shown	in
Figure	39-2,	an	image	displayed	on	an	ImageView	object:

Figure	39-2

As	will	be	demonstrated	in	the	remainder	of	this	chapter,	if	the	main	content	area
of	the	activity	user	interface	layout	contains	scrollable	content,	the	elements	of
the	app	bar	can	be	configured	to	expand	and	contract	as	the	content	on	the	screen
is	scrolled.

39.2	The	Example	Project
For	the	purposes	of	this	example,	changes	will	be	made	to	the	CardDemo	project
created	in	the	previous	chapter	entitled	An	Android	RecyclerView	and	CardView
Tutorial.	Begin	by	launching	Android	Studio	and	loading	this	project.
Once	the	project	has	loaded,	run	the	app	and	note	when	scrolling	the	list
upwards	that	the	toolbar	remains	visible	as	shown	in	Figure	39-3:

Figure	39-3

The	first	step	is	to	make	some	configuration	changes	so	that	the	toolbar	contracts
during	an	upward	scrolling	motion,	and	then	expands	on	a	downward	scroll.

39.3	Coordinating	the	RecyclerView	and	Toolbar
Load	the	activity_card_demo.xml	file	into	the	Layout	Editor	tool,	switch	to	text
mode	and	review	the	XML	layout	design,	the	hierarchy	of	which	is	represented
by	the	diagram	in	Figure	39-4:

Figure	39-4

At	the	top	level	of	the	hierarchy	is	the	CoordinatorLayout	which,	as	the	name
suggests,	coordinates	the	interactions	between	the	various	child	view	elements	it
contains.	As	highlighted	in	Working	with	the	Floating	Action	Button	and
Snackbar,	for	example,	the	CoordinatorLayout	automatically	slides	the	floating
action	button	upwards	to	accommodate	the	appearance	of	a	Snackbar	when	it
appears,	then	moves	the	button	back	down	after	the	bar	is	dismissed.

The	CoordinatorLayout	can	similarly	be	used	to	cause	elements	of	the	app	bar	to
slide	in	and	out	of	view	based	on	the	scrolling	action	of	certain	views	within	the
view	hierarchy.	One	such	element	within	the	layout	hierarchy	shown	in	Figure
39-4	is	the	RecyclerView.	To	achieve	this	coordinated	behavior,	it	is	necessary
to	set	properties	on	both	the	element	on	which	scrolling	takes	place	and	the
elements	with	which	the	scrolling	is	to	be	coordinated.
On	the	scrolling	element	(in	this	case	the	RecyclerView)	the
android:layout_behavior	property	must	be	set	to
appbar_scrolling_view_behavior.	Within	the	activity_card_demo.xml	file,	locate
the	RecyclerView	element	and	note	that	this	property	was	already	set	in	the
previous	chapter:

<android.support.v7.widget.RecyclerView

				android:id="@+id/recycler_view"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

			

app:layout_behavior="@string/appbar_scrolling_view_behavior"	/>

The	only	child	of	AppBarLayout	in	the	view	hierarchy	is	the	Toolbar.	To	make
the	toolbar	react	to	the	scroll	events	taking	place	in	the	RecyclerView	the
app:layout_scrollFlags	property	must	be	set	on	this	element.	The	value	assigned
to	this	property	will	depend	on	the	nature	of	the	interaction	required	and	must
consist	of	one	or	more	of	the	following:
·									scroll	–	Indicates	that	the	view	is	to	be	scrolled	off	the	screen.	If	this	is	not

set	the	view	will	remain	pinned	at	the	top	of	the	screen	during	scrolling
events.

·									enterAlways	–	When	used	in	conjunction	with	the	scroll	option,	an	upward
scrolling	motion	will	cause	the	view	to	retract.	Any	downward	scrolling
motion	in	this	mode	will	cause	the	view	to	reappear.

·									enterAlwaysCollapsed	–	When	set	on	a	view,	that	view	will	not	expand
from	the	collapsed	state	until	the	downward	scrolling	motion	reaches	the	limit
of	the	list.	If	the	minHeight	property	is	set,	the	view	will	appear	during	the
initial	scrolling	motion	but	only	until	the	minimum	height	is	reached.	It	will
then	remain	at	that	height	and	will	not	expand	fully	until	the	top	of	the	list	is
reached.	Note	this	option	only	works	when	used	in	conjunction	with	both	the
enterAlways	and	scroll	options.	For	example:
app:layout_scrollFlags="scroll|enterAlways|enterAlwaysCollapsed"

android:minHeight="20dp"

·									exitUntilCollapsed	–	When	set,	the	view	will	collapse	during	an	upward

scrolling	motion	until	the	minHeight	threshold	is	met,	at	which	point	it	will
remain	at	that	height	until	the	scroll	direction	changes.

For	the	purposes	of	this	example,	the	scroll	and	enterAlways	options	will	be	set
on	the	Toolbar	as	follows:

<android.support.v7.widget.Toolbar

				android:id="@+id/toolbar"

				android:layout_width="match_parent"

				android:layout_height="?attr/actionBarSize"

				android:background="?attr/colorPrimary"

				app:popupTheme="@style/AppTheme.PopupOverlay"

				app:layout_scrollFlags="scroll|enterAlways"	/>

With	the	appropriate	properties	set,	run	the	app	once	again	and	make	an	upward
scrolling	motion	in	the	RecyclerView	list.	This	should	cause	the	toolbar	to
collapse	out	of	view	(Figure	39-5).	A	downward	scrolling	motion	should	cause
the	toolbar	to	reappear.

Figure	39-5

39.4	Introducing	the	Collapsing	Toolbar	Layout
The	CollapsingToolbarLayout	container	enhances	the	standard	toolbar	by
providing	a	greater	range	of	options	and	level	of	control	over	the	collapsing	of
the	app	bar	and	its	children	in	response	to	coordinated	scrolling	actions.	The
CollapsingToolbarLayout	class	is	intended	to	be	added	as	a	child	of	the
AppBarLayout	and	provides	features	such	as	automatically	adjusting	the	font
size	of	the	toolbar	title	as	the	toolbar	collapses	and	expands.	A	parallax	mode
allows	designated	content	in	the	app	bar	to	fade	from	view	as	it	collapses	while	a
pin	mode	allows	elements	of	the	app	bar	to	remain	in	fixed	position	during	the
contraction.
A	scrim	option	is	also	available	to	designate	the	color	to	which	the	toolbar

should	transition	during	the	collapse	sequence.
To	see	these	features	in	action,	the	app	bar	contained	in	the
activity_card_demo.xml	file	will	be	modified	to	use	the
CollapsingToolbarLayout	class	together	with	the	addition	of	an	ImageView	to
better	demonstrate	the	effect	of	parallax	mode.	The	new	view	hierarchy	that
makes	use	of	the	CollapsingToolbarLayout	is	represented	by	the	diagram	in
Figure	39-6:

Figure	39-6

Load	the	activity_card_demo.xml	file	into	the	Layout	Editor	tool	in	Text	mode
and	modify	the	layout	so	that	it	reads	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

				xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:fitsSystemWindows="true"

				tools:context=".CardDemoActivity">

				<android.support.v7.widget.RecyclerView

								android:id="@+id/recycler_view"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

							

app:layout_behavior="@string/appbar_scrolling_view_behavior"/>

				<android.support.design.widget.AppBarLayout

								android:layout_height="200dp"

								android:layout_width="match_parent"

								android:theme="@style/AppTheme.AppBarOverlay">

								<android.support.design.widget.CollapsingToolbarLayout

												android:id="@+id/collapsing_toolbar"

												android:layout_width="match_parent"

												android:layout_height="match_parent"

												app:layout_scrollFlags="scroll|enterAlways"

												android:fitsSystemWindows="true"

												app:contentScrim="?attr/colorPrimary"

												app:expandedTitleMarginStart="48dp"

												app:expandedTitleMarginEnd="64dp">

	

												<ImageView

																android:id="@+id/backdrop"

																android:layout_width="match_parent"

																android:layout_height="200dp"

																android:scaleType="centerCrop"

																android:fitsSystemWindows="true"

																app:layout_collapseMode="parallax"

																android:src="@drawable/appbar_image"	/>

								<android.support.v7.widget.Toolbar

												android:id="@+id/toolbar"

												android:layout_width="match_parent"

												android:layout_height="?attr/actionBarSize"

												android:background="?attr/colorPrimary"

												app:popupTheme="@style/AppTheme.PopupOverlay"

												app:layout_scrollFlags="scroll|enterAlways"

												app:layout_collapseMode="pin"	/>

							

</android.support.design.widget.CollapsingToolbarLayout>

				</android.support.design.widget.AppBarLayout>

				<include	layout="@layout/content_card_demo"	/>

</android.support.design.widget.CoordinatorLayout>

In	addition	to	adding	the	new	elements	to	the	layout	above,	the	background	color
property	setting	has	been	removed.	This	change	has	the	advantage	of	providing	a
transparent	toolbar	allowing	more	of	the	image	to	be	visible	in	the	app	bar.

transparent	toolbar	allowing	more	of	the	image	to	be	visible	in	the	app	bar.
Using	the	file	system	navigator	for	your	operating	system,	locate	the
appbar_image.jpg	image	file	in	the	project_icons	folder	of	the	code	sample
download	for	the	book	and	copy	it.	Right-click	on	the	app	->	res	->	drawable
entry	in	the	Project	tool	window	and	select	Paste	from	the	resulting	menu.
When	run,	the	app	bar	should	appear	as	illustrated	in	Figure	39-7:

Figure	39-7

Scrolling	the	list	upwards	will	cause	the	app	bar	to	gradually	collapse.	During
the	contraction,	the	image	will	fade	to	the	color	defined	by	the	scrim	property
while	the	title	text	font	size	reduces	at	a	corresponding	rate	until	only	the	toolbar
is	visible:

Figure	39-8

The	toolbar	has	remained	visible	during	the	initial	stages	of	the	scrolling	motion
(the	toolbar	will	also	recede	from	view	if	the	upward	scrolling	motion	continues)
as	the	flexible	area	collapses	because	the	toolbar	element	in	the
activity_card_demo.xml	file	was	configured	to	use	pin	mode:

app:layout_collapseMode="pin"

Had	the	collapse	mode	been	set	to	parallax	the	toolbar	would	have	retracted

Had	the	collapse	mode	been	set	to	parallax	the	toolbar	would	have	retracted
along	with	the	image	view.
Continuing	the	upward	scrolling	motion	will	cause	the	toolbar	to	also	collapse
leaving	only	the	status	bar	visible:

Figure	39-9

Since	the	scroll	flags	property	for	the	CollapsingToolbarLayout	element	includes
the	enterAlways	option,	a	downward	scrolling	motion	will	cause	the	app	bar	to
expand	once	again.
To	fix	the	toolbar	in	place	so	that	it	no	longer	recedes	from	view	during	the
upward	scrolling	motion,	replace	enterAlways	with	exitUntilCollapsed	in	the
layout_scrollFlags	property	of	the	CollapsingToolbarLayout	element	in	the
activity_card_demo.xml	file	as	follows:

<android.support.design.widget.CollapsingToolbarLayout

				android:id="@+id/collapsing_toolbar"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				app:layout_scrollFlags="scroll|exitUntilCollapsed"

				android:fitsSystemWindows="true"

				app:contentScrim="?attr/colorPrimary"

				app:expandedTitleMarginStart="48dp"

				app:expandedTitleMarginEnd="64dp">

39.5	Changing	the	Title	and	Scrim	Color
As	a	final	task,	edit	the	CardDemoActivity.java	file	and	add	some	code	to	the
onCreate()	method	to	change	the	title	text	on	the	collapsing	layout	manager
instance	and	to	set	a	different	scrim	color	(note	that	the	scrim	color	may	also	be
set	within	the	layout	resource	file):

package	com.ebookfrenzy.carddemo;

import	android.graphics.Color;

import	android.os.Bundle;

import	android.support.v7.widget.LinearLayoutManager;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.RecyclerView;

import	android.support.v7.widget.Toolbar;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.support.design.widget.CollapsingToolbarLayout;

import	android.graphics.Color;

.

.

.

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_card_demo);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

								CollapsingToolbarLayout	collapsingToolbarLayout	=

				(CollapsingToolbarLayout)

findViewById(R.id.collapsing_toolbar);

	

								collapsingToolbarLayout.setTitle("My	Toolbar	Title");

							

collapsingToolbarLayout.setContentScrimColor(Color.GREEN);

								recyclerView	=

											(RecyclerView)	findViewById(R.id.recycler_view);

								layoutManager	=	new	LinearLayoutManager(this);

								recyclerView.setLayoutManager(layoutManager);

								adapter	=	new	RecyclerAdapter();

								recyclerView.setAdapter(adapter);

				}

Run	the	app	one	last	time	and	note	that	the	new	title	appears	in	the	app	bar	and
that	scrolling	now	causes	the	toolbar	to	transition	to	green	as	it	retracts	from
view.

39.6	Summary
The	app	bar	that	appears	at	the	top	of	most	Android	apps	can	consist	of	a	number
of	different	elements	including	a	toolbar,	tab	layout	and	even	an	image	view.
When	embedded	in	a	CoordinatorLayout	parent,	a	number	of	different	options

When	embedded	in	a	CoordinatorLayout	parent,	a	number	of	different	options
are	available	to	control	the	way	in	which	the	app	bar	behaves	in	response	to
scrolling	events	in	the	main	content	of	the	activity.	For	greater	control	over	this
behavior,	the	CollapsingToolbarLayout	manager	provides	a	range	of	additional
levels	of	control	over	the	way	the	app	bar	content	expands	and	contracts	in
relation	to	scrolling	activity.

40.	Implementing	an	Android	Navigation	Drawer

In	this,	the	final	of	this	series	of	chapters	dedicated	to	the	Android	material
design	components,	the	topic	of	the	navigation	drawer	will	be	covered.
Comprising	the	DrawerLayout,	NavigationView	and	ActionBarDrawerToggle
classes,	a	navigation	drawer	takes	the	form	of	a	panel	appearing	from	the	left-
hand	edge	of	screen	when	selected	by	the	user	and	containing	a	range	of	options
and	sub-options	which	can	be	selected	to	perform	tasks	within	the	application.

40.1	An	Overview	of	the	Navigation	Drawer
The	navigation	drawer	is	a	panel	that	slides	out	from	the	left	of	the	screen	and
contains	a	range	of	options	available	for	selection	by	the	user,	typically	intended
to	facilitate	navigation	to	some	other	part	of	the	application.	Figure	40-1,	for
example,	shows	the	navigation	drawer	built	into	the	Google	Play	app:

Figure	40-1

A	navigation	drawer	is	made	up	of	the	following	components:
·									An	instance	of	the	DrawerLayout	component.
·									An	instance	of	the	NavigationView	component	embedded	as	a	child	of	the

DrawerLayout.
·									A	menu	resource	file	containing	the	options	to	be	displayed	within	the

navigation	drawer.
·									An	optional	layout	resource	file	containing	the	content	to	appear	in	the	header

section	of	the	navigation	drawer.
·									A	listener	assigned	to	the	NavigationView	to	detect	when	an	item	has	been

selected	by	the	user.

·									An	ActionBarDrawerToggle	instance	to	connect	and	synchronize	the
navigation	drawer	to	the	app	bar.	The	ActionBarDrawerToggle	also	displays
the	drawer	indicator	in	the	app	bar	which	presents	the	drawer	when	tapped.

The	following	XML	listing	shows	an	example	navigation	drawer
implementation	which	also	contains	an	include	directive	for	a	second	layout	file
containing	the	standard	app	bar	layout.

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:id="@+id/drawer_layout"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:fitsSystemWindows="true"

				tools:openDrawer="start">

				<include

								layout="@layout/app_bar_main"

								android:layout_width="match_parent"

								android:layout_height="match_parent"	/>

				<android.support.design.widget.NavigationView

								android:id="@+id/nav_view"

								android:layout_width="wrap_content"

								android:layout_height="match_parent"

								android:layout_gravity="start"

								android:fitsSystemWindows="true"

								app:headerLayout="@layout/nav_header_main"

								app:menu="@menu/activity_main_drawer"	/>

</android.support.v4.widget.DrawerLayout>

40.2	Opening	and	Closing	the	Drawer
When	the	user	taps	the	drawer	indicator	in	the	app	bar,	the	drawer	will
automatically	appear.	Whether	the	drawer	is	currently	open	may	be	identified	via
a	call	to	the	isDrawerOpen()	method	of	the	DrawerLayout	object	passing
through	a	gravity	setting:

if	(drawer.isDrawerOpen(GravityCompat.START))	{

			//	Drawer	is	open

}

The	GravityCompat.START	setting	indicates	a	drawer	open	along	the	x-axis	of

the	layout.	An	open	drawer	may	be	closed	via	a	call	to	the	closeDrawer()
method:

drawer.closeDrawer(GravityCompat.START);

Conversely,	the	drawer	may	be	opened	using	the	openDrawer()	method:
drawer.openDrawer(GravityCompat.START);

40.3	Responding	to	Drawer	Item	Selections
Handling	selections	within	a	navigation	drawer	is	a	two-step	process.	The	first
step	is	to	specify	an	object	to	act	as	the	item	selection	listener.	This	is	achieved
by	obtaining	a	reference	to	the	NavigationView	instance	in	the	layout	and
making	a	call	to	its	setNavigationItemSelectedListener()	method,	passing
through	a	reference	to	the	object	that	is	to	act	as	the	listener.	Typically	the
listener	will	be	configured	to	be	the	current	activity,	for	example:

NavigationView	navigationView	=

														(NavigationView)	findViewById(R.id.nav_view);

navigationView.setNavigationItemSelectedListener(this);

The	second	step	is	to	implement	the	onNavigationItemSelected()	method	within
the	designated	listener.	This	method	is	called	each	time	a	selection	is	made
within	the	navigation	drawer	and	is	passed	a	reference	to	the	selected	menu	item
as	an	argument	which	can	then	be	used	to	extract	and	identify	the	selected	item
id:

@Override

public	boolean	onNavigationItemSelected(MenuItem	item)	{

				//	Handle	navigation	view	item	clicks	here.

				int	id	=	item.getItemId();

				}	else	if	(id	==	R.id.nav_slideshow)	{

				}	else	if	(id	==	R.id.nav_manage)	{

				}	else	if	(id	==	R.id.nav_share)	{

				}	else	if	(id	==	R.id.nav_send)	{

				}

				DrawerLayout	drawer	=

														(DrawerLayout)	findViewById(R.id.drawer_layout);

				drawer.closeDrawer(GravityCompat.START);

				return	true;

}

If	it	is	appropriate	to	do	so,	and	as	outlined	in	the	above	example,	it	is	also
important	to	close	the	drawer	after	the	item	has	been	selected.

40.4	Using	the	Navigation	Drawer	Activity	Template
While	it	is	possible	to	implement	a	navigation	drawer	within	any	activity,	the
easiest	approach	is	to	select	the	Navigation	Drawer	Activity	template	when
creating	a	new	project	or	adding	a	new	activity	to	an	existing	project:

Figure	40-2

This	template	creates	all	of	the	components	and	requirements	necessary	to
implement	a	navigation	drawer,	requiring	only	that	the	default	settings	be
adjusted	where	necessary.

40.5	Creating	the	Navigation	Drawer	Template	Project

Create	a	new	project	in	Android	Studio,	entering	NavDrawerDemo	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	a	Navigation	Drawer
Activity	named	NavDrawerActivity	with	a	corresponding	layout	file	named
activity_nav_drawer.	Click	on	the	Finish	button	to	initiate	the	project	creation
process.

40.6	The	Template	Layout	Resource	Files
Once	the	project	has	been	created,	it	will	contain	the	following	XML	resource
files	located	under	app	->	res	->	layout	in	the	Project	tool	window:
·									activity_nav_drawer.xml	–	This	is	the	top	level	layout	resource	file.	It

contains	the	DrawerLayout	container	and	the	NavigationView	child.	The
NavigationView	declaration	in	this	file	indicates	that	the	layout	for	the	drawer
header	is	contained	within	the	nav_header_nav_drawer.xml	file	and	that	the
menu	options	for	the	drawer	are	located	in	the
activity_nav_drawer_drawer.xml	file.	In	addition,	it	includes	a	reference	to
the	app_bar_nav_drawer.xml	file.

·									app_bar_nav_drawer.xml	–	This	layout	resource	file	is	included	by	the
activity_nav_drawer.xml	file	and	is	the	standard	app	bar	layout	file	built
within	a	CoordinatorLayout	container	as	covered	in	the	preceding	chapters.
As	with	previous	examples	this	file	also	contains	a	directive	to	include	the
content	file	which,	in	this	case,	is	named	content_nav_drawer.xml.

·									content_nav_drawer.xml	–	The	standard	layout	for	the	content	area	of	the
activity	layout.	This	layout	consists	of	a	ConstraintLayout	container	and	a
“Hello	World!”	TextView.

·									nav_header_nav_drawer.xml	–	Referenced	by	the	NavigationView	element
in	the	activity_nav_drawer.xml	file	this	is	a	placeholder	header	layout	for	the
drawer.

40.7	The	Header	Coloring	Resource	File
In	addition	to	the	layout	resource	files,	the	side_nav_bar.xml	file	located	under
app	->	drawable	may	be	modified	to	change	the	colors	applied	to	the	drawer
header.	By	default,	this	file	declares	a	rectangular	color	gradient	transitioning
horizontally	from	dark	to	light	green.

40.8	The	Template	Menu	Resource	File

The	menu	options	presented	within	the	navigation	drawer	can	be	found	in	the
activity_nav_drawer_drawer.xml	file	located	under	app	->	res	->	menu	in	the
project	tool	window.	By	default,	the	menu	consists	of	a	range	of	text	based	titles
with	accompanying	icons	(the	files	for	which	are	all	located	in	the	drawable
folder).	For	more	details	on	menu	resource	files,	refer	to	the	chapter	entitled
Creating	and	Managing	Overflow	Menus	on	Android.

40.9	The	Template	Code
The	onCreate()	method	located	in	the	NavDrawerActivity.java	file	performs
much	of	the	initialization	work	required	for	the	navigation	drawer:

DrawerLayout	drawer	=	(DrawerLayout)

findViewById(R.id.drawer_layout);

ActionBarDrawerToggle	toggle	=	new	ActionBarDrawerToggle(

																						this,	drawer,	toolbar,

																						R.string.navigation_drawer_open,

																						R.string.navigation_drawer_close);

drawer.setDrawerListener(toggle);

toggle.syncState();

NavigationView	navigationView	=	(NavigationView)

																						findViewById(R.id.nav_view);

navigationView.setNavigationItemSelectedListener(this);

The	code	obtains	a	reference	to	the	DrawerLayout	object	and	then	creates	an
ActionBarDrawerToggle	object,	initializing	it	with	a	reference	to	the	current
activity,	the	DrawerLayout	object,	the	toolbar	contained	within	the	app	bar	and
two	strings	describing	the	drawer	opening	and	closing	actions	for	accessibility
purposes.	The	ActionBarDrawerToggle	object	is	then	assigned	as	the	listener	for
the	drawer	and	synchronized.
The	code	then	obtains	a	reference	to	the	NavigationView	instance	before
declaring	the	current	activity	as	the	listener	for	any	item	selections	made	within
the	navigation	drawer.
Since	the	current	activity	is	now	declared	as	the	drawer	listener,	the
onNavigationItemSelected()	method	is	also	implemented	in	the
NavDrawerActivity.java	file.	The	implementation	of	this	method	in	the	activity
matches	that	outlined	earlier	in	this	chapter.
Finally,	an	additional	method	named	onBackPressed()	has	been	added	to	the

activity	by	Android	Studio.	This	method	is	added	to	handle	situations	whereby
the	activity	has	a	“back”	button	to	return	to	a	previous	activity	screen.	The	code
in	this	method	ensures	that	the	drawer	is	closed	before	the	app	switches	back	to
the	previous	activity	screen:

@Override

public	void	onBackPressed()	{

				DrawerLayout	drawer	=

														(DrawerLayout)	findViewById(R.id.drawer_layout);

				if	(drawer.isDrawerOpen(GravityCompat.START))	{

								drawer.closeDrawer(GravityCompat.START);

				}	else	{

								super.onBackPressed();

				}

}

40.10	Running	the	App
Compile	and	run	the	project	and	note	the	appearance	of	the	drawer	indicator	as
highlighted	in	Figure	40-3:

Figure	40-3

Tap	the	indicator	and	note	that	the	icon	rotates	as	the	navigation	drawer	appears:

Figure	40-4

40.11	Summary
The	navigation	drawer	is	a	panel	that	extends	from	the	left-hand	edge	of	an
activity	screen	when	an	indicator	is	selected	by	the	user.	The	drawer	contains
menu	options	available	for	selection	and	serves	as	a	useful	application
navigation	tool	that	conforms	to	the	material	design	guidelines.	Although	it	is
possible	to	add	a	navigation	drawer	to	any	activity,	the	quickest	technique	is	to
use	the	Android	Studio	Navigation	Drawer	Activity	template	and	then	customize
it	for	specific	requirements.	This	chapter	has	outlined	the	components	that	make
up	a	navigation	drawer	and	highlighted	how	these	are	implemented	within	the
template.

41.	An	Android	Studio	Master/Detail
Flow	Tutorial
This	chapter	will	explain	the	concept	of	the	Master/Detail	user	interface	design
before	exploring,	in	detail,	the	elements	that	make	up	the	Master/Detail	Flow
template	included	with	Android	Studio.	An	example	application	will	then	be
created	that	demonstrates	the	steps	involved	in	modifying	the	template	to	meet
the	specific	needs	of	the	application	developer.

41.1	The	Master/Detail	Flow
A	master/detail	flow	is	an	interface	design	concept	whereby	a	list	of	items
(referred	to	as	the	master	list)	is	displayed	to	the	user.	On	selecting	an	item	from
the	list,	additional	information	relating	to	that	item	is	then	presented	to	the	user
within	a	detail	pane.	An	email	application	might,	for	example,	consist	of	a
master	list	of	received	messages	consisting	of	the	address	of	the	sender	and	the
subject	of	the	message.	Upon	selection	of	a	message	from	the	master	list,	the
body	of	the	email	message	would	appear	within	the	detail	pane.
On	tablet	sized	Android	device	displays	in	landscape	orientation,	the	master	list
appears	in	a	narrow	vertical	panel	along	the	left-hand	edge	of	the	screen.	The
remainder	of	the	display	is	devoted	to	the	detail	pane	in	an	arrangement	referred
to	as	two-pane	mode.	Figure	41-1,	for	example,	shows	the	master/detail,	two-
pane	arrangement	with	master	items	listed	and	the	content	of	item	one	displayed
in	the	detail	pane:

Figure	41-1

On	smaller,	phone	sized	Android	devices,	the	master	list	takes	up	the	entire
screen	and	the	detail	pane	appears	on	a	separate	screen	which	appears	when	a
selection	is	made	from	the	master	list.	In	this	mode,	the	detail	screen	includes	an
action	bar	entry	to	return	to	the	master	list.	Figure	41-2	for	example,	illustrates
both	the	master	and	detail	screens	for	the	same	item	list	on	a	4”	phone	screen:

Figure	41-2

41.2	Creating	a	Master/Detail	Flow	Activity
In	the	next	section	of	this	chapter,	the	different	elements	that	comprise	the

In	the	next	section	of	this	chapter,	the	different	elements	that	comprise	the
Master/Detail	Flow	template	will	be	covered	in	some	detail.	This	is	best
achieved	by	creating	a	project	using	the	Master/Detail	Flow	template	to	use
while	working	through	the	information.	This	project	will	subsequently	be	used
as	the	basis	for	the	tutorial	at	the	end	of	the	chapter.
Create	a	new	project	in	Android	Studio,	entering	MasterDetailFlow	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	When
selecting	a	minimum	SDK	of	less	than	API	14,	Android	Studio	creates	a
Master/Detail	Flow	project	template	that	uses	an	outdated	and	less	efficient
approach	to	handling	the	list	of	items	displayed	in	the	master	panel.	After	the
project	has	been	created,	the	minSdkVersion	setting	in	the	build.gradle	(module:
app)	file	located	under	Gradle	Scripts	in	the	Project	tool	window	may	be
changed	to	target	older	Android	versions	if	required.
When	the	activity	configuration	screen	of	the	New	Project	dialog	appears,	select
the	Master/Detail	Flow	option	as	illustrated	in	Figure	41-3	before	clicking	on
Next	once	again:

Figure	41-3

The	next	screen	(Figure	41-4)	provides	the	opportunity	to	configure	the	objects
that	will	be	displayed	within	the	master/detail	activity.	In	the	tutorial	later	in	this
chapter,	the	master	list	will	contain	a	number	of	web	site	names	which,	when
selected,	will	load	the	chosen	web	site	into	a	web	view	within	the	detail	pane.
With	these	requirements	in	mind,	set	the	Object	Kind	field	to	“Website”,	and	the
Object	Kind	Plural	and	Title	settings	to	“Websites”.

Figure	41-4

Finally,	click	Finish	to	create	the	new	Master/Detail	Flow	based	application
project.

41.3	The	Anatomy	of	the	Master/Detail	Flow	Template
Once	a	new	project	has	been	created	using	the	Master/Detail	Flow	template,	a

number	of	Java	and	XML	layout	resource	files	will	have	been	created
automatically.	It	is	important	to	gain	an	understanding	of	these	different	files	in
order	to	be	able	to	adapt	the	template	to	specific	requirements.	A	review	of	the
project	within	the	Android	Studio	Project	tool	window	will	reveal	the	following
files,	where	<item>	is	replaced	by	the	Object	Kind	name	that	was	specified
when	the	project	was	created	(this	being	“Website”	in	the	case	of	the
MasterDetailFlow	example	project):
·									activity_<item>_list.xml	–	The	top	level	layout	file	for	the	master	list,	this

file	is	loaded	by	the	<item>ListActivity	class.	This	layout	contains	a	toolbar,	a
floating	action	button	and	includes	the	<item>_list.xml	file.

·									<item>ListActivity.java	–	The	activity	class	responsible	for	displaying	and
managing	the	master	list	(declared	in	the	activity_<item>_list.xml	file)	and
for	both	displaying	and	responding	to	the	selection	of	items	within	that	list.

·									<item>_list.xml–	The	layout	file	used	to	display	the	master	list	of	items	in
single-pane	mode	where	the	master	list	and	detail	pane	appear	on	different
screens.	This	file	consists	of	a	RecyclerView	object	configured	to	use	the
LinearLayoutManager.	The	RecyclerView	element	declares	that	each	item	in
the	master	list	is	to	be	displayed	using	the	layout	declared	within	the
<item>_list_content.xml	file.

·									<item>_list.xml	(w900dp)	–	The	layout	file	for	the	master	list	in	the	two-
pane	mode	used	on	tablets	in	landscape	(where	the	master	list	and	detail	pane
appear	side	by	side).	This	file	contains	a	horizontal	LinearLayout	parent
within	which	resides	a	RecyclerView	to	display	the	master	list,	and	a
FrameLayout	to	contain	the	content	of	the	detail	pane.		As	with	the	single-
pane	variant	of	this	file,	the	RecyclerView	element	declares	that	each	item	in
the	list	be	displayed	using	the	layout	contained	within	the
<item>_list_content.xml	file.

·									<item>_content_list.xml	–	This	file	contains	the	layout	to	be	used	for	each
item	in	the	master	list.	By	default,	this	consists	of	two	TextView	objects
embedded	in	a	horizontal	LinearLayout	but	may	be	changed	to	meet	specific
application	needs.

·									activity_<item>_detail.xml	–	The	top	level	layout	file	used	for	the	detail
pane	when	running	in	single-pane	mode.	This	layout	contains	an	app	bar,
collapsing	toolbar,	scrolling	view	and	a	floating	action	button.	At	runtime	this
layout	file	is	loaded	and	displayed	by	the	<item>DetailActivity	class.

·									<item>DetailActivity.java	–	This	class	displays	the	layout	defined	in	the

activity_<item>_detail.xml	file.	The	class	also	initializes	and	displays	the
fragment	containing	the	detail	content	defined	in	the	item_detail.xml	and
<item>DetailFragment.java	files.

·									<item>_detail.xml–	The	layout	file	that	accompanies	the
<item>DetailFragment	class	and	contains	the	layout	for	the	content	area	of
the	detail	pane.	By	default,	this	contains	a	single	TextView	object,	but	may	be
changed	to	meet	your	specific	application	needs.	In	single-pane	mode,	this
fragment	is	loaded	into	the	layout	defined	by	the	activity_<item>_detail.xml
file.	In	two-pane	mode,	this	layout	is	loaded	into	the	FrameLayout	area	of	the
<item>_list.xml	(w900dp)	file	so	that	it	appears	adjacent	to	the	master	list.

·									<item>DetailFragment.java	–	The	fragment	class	file	responsible	for
displaying	the	<item>_detail.xml	layout	and	populating	it	with	the	content	to
be	displayed	in	the	detail	pane.	This	fragment	is	initialized	and	displayed
within	the	<item>DetailActivity.java	file	to	provide	the	content	displayed
within	the	activity_<item>_detail.xml	layout	for	single-pane	mode	and	the
<item>_list.xml	(w900dp)	layout	for	two-pane	mode.

·									DummyContent.java	–	A	class	file	intended	to	provide	sample	data	for	the
template.	This	class	can	either	be	modified	to	meet	application	needs,	or
replaced	entirely.	By	default,	the	content	provided	by	this	class	simply
consists	of	a	number	of	string	items.

41.4	Modifying	the	Master/Detail	Flow	Template
While	the	structure	of	the	Master/Detail	Flow	template	can	appear	confusing	at
first,	the	concepts	will	become	clearer	as	the	default	template	is	modified	in	the
remainder	of	this	chapter.	As	will	become	evident,	much	of	the	functionality
provided	by	the	template	can	remain	unchanged	for	many	master/detail
implementation	requirements.
In	the	rest	of	this	chapter,	the	MasterDetailFlow	project	will	be	modified	such
that	the	master	list	displays	a	list	of	web	site	names	and	the	detail	pane	altered	to
contain	a	WebView	object	instead	of	the	current	TextView.	When	a	web	site	is
selected	by	the	user,	the	corresponding	web	page	will	subsequently	load	and
display	in	the	detail	pane.

41.5	Changing	the	Content	Model
The	content	for	the	example	as	it	currently	stands	is	defined	by	the
DummyContent	class	file.	Begin,	therefore,	by	selecting	the	DummyContent.java
file	(located	in	the	Project	tool	window	in	the	app	->	java	->

com.ebookfrenzy.masterdetailflow	->	dummy	folder)	and	reviewing	the	code.	At
the	bottom	of	the	file	is	a	declaration	for	a	class	named	DummyItem	which	is
currently	able	to	store	two	String	objects	representing	a	content	string	and	an	ID.
The	updated	project,	on	the	other	hand,	will	need	each	item	object	to	contain	an
ID	string,	a	string	for	the	web	site	name,	and	a	string	for	the	corresponding	URL
of	the	web	site.	To	add	these	features,	modify	the	DummyItem	class	so	that	it
reads	as	follows:

public	static	class	DummyItem	{

							public	String	id;

							public	String	website_name;

							public	String	website_url;

							public	DummyItem(String	id,	String	website_name,

													String	website_url)

							{

														this.id	=	id;

														this.website_name	=	website_name;

														this.website_url	=	website_url;

							}

																	

							@Override

							public	String	toString()	{

														return	website_name;

							}

}

Note	that	the	encapsulating	DummyContent	class	currently	contains	a	for	loop
that	adds	25	items	by	making	multiple	calls	to	methods	named
createDummyItem()	and	makeDetails().	Much	of	this	code	will	no	longer	be
required	and	should	be	deleted	from	the	class	as	follows:

public	static	Map<String,	DummyItem>	ITEM_MAP	=	new

HashMap<String,	DummyItem>();

private	static	final	int	COUNT	=	25;

	

static	{

				//	Add	some	sample	items.

				for	(int	i	=	1;	i	<=	COUNT;	i++)	{

								addItem(createDummyItem(i));

				}

}

	

private	static	void	addItem(DummyItem	item)	{

				ITEMS.add(item);

				ITEM_MAP.put(item.id,	item);

}

	

private	static	DummyItem	createDummyItem(int	position)	{

				return	new	DummyItem(String.valueOf(position),	"Item	"	+

position,	makeDetails(position));

}

	

private	static	String	makeDetails(int	position)	{

				StringBuilder	builder	=	new	StringBuilder();

				builder.append("Details	about	Item:	").append(position);

				for	(int	i	=	0;	i	<	position;	i++)	{

								builder.append("\nMore	details	information	here.");

				}

				return	builder.toString();

}

This	code	needs	to	be	modified	to	initialize	the	data	model	with	the	required	web
site	data:

public	static	final	Map<String,	DummyItem>	ITEM_MAP	=

										new	HashMap<String,	DummyItem>();

static	{

							//	Add	3	sample	items.

								addItem(new	DummyItem("1",	"eBookFrenzy",

																"http://www.ebookfrenzy.com"));

								addItem(new	DummyItem("2",	"Amazon",

																"http://www.amazon.com"));

							addItem(new	DummyItem("3",	"New	York	Times",

																"http://www.nytimes.com"));

}

The	code	now	takes	advantage	of	the	modified	DummyItem	class	to	store	an	ID,
web	site	name	and	URL	for	each	item.

41.6	Changing	the	Detail	Pane
The	detail	information	shown	to	the	user	when	an	item	is	selected	from	the
master	list	is	currently	displayed	via	the	layout	contained	in	the
website_detail.xml	file.	By	default,	this	contains	a	single	view	in	the	form	of	a
TextView.	Since	the	TextView	class	is	not	capable	of	displaying	a	web	page,
this	needs	to	be	changed	to	a	WebView	object	for	this	tutorial.	To	achieve	this,
navigate	to	the	app	->	res	->	layout	->	website_detail.xml	file	in	the	Project	tool
window	and	double-click	on	it	to	load	it	into	the	Layout	Editor	tool.	Switch	to
Text	mode	and	delete	the	current	XML	content	from	the	file.	Replace	this

content	with	the	following	XML:
<WebView

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:id="@+id/website_detail"

				tools:context=

							

"com.ebookfrenzy.masterdetailflow.WebsiteDetailFragment">

</WebView>

Switch	to	Design	mode	and	verify	that	the	layout	now	matches	that	shown	in
Figure	41-5:

Figure	41-5

41.7	Modifying	the	WebsiteDetailFragment	Class
At	this	point	the	user	interface	detail	pane	has	been	modified	but	the
corresponding	Java	class	is	still	designed	for	working	with	a	TextView	object

instead	of	a	WebView.	Load	the	source	code	for	this	class	by	double-clicking	on
the	WebsiteDetailFragment.java	file	in	the	Project	tool	window.
In	order	to	load	the	web	page	URL	corresponding	to	the	currently	selected	item
only	a	few	lines	of	code	need	to	be	changed.	Once	this	change	has	been	made,
the	code	should	read	as	follows	(note	also	the	addition	of	the	import	directive	for
the	android.webkit.WebView	library):

package	com.ebookfrenzy.masterdetailflow;

import	android.app.Activity;

import	android.support.design.widget.CollapsingToolbarLayout;

import	android.os.Bundle;

import	android.support.v4.app.Fragment;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

import	android.widget.TextView;

import	android.webkit.WebViewClient;

import	android.webkit.WebView;

import	android.webkit.WebResourceRequest;

import	com.ebookfrenzy.masterdetailflow.dummy.DummyContent;

public	class	WebSiteDetailFragment	extends	Fragment	{

.

.

.

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								if	(getArguments().containsKey(ARG_ITEM_ID))	{

												//	Load	the	dummy	content	specified	by	the	fragment

												//	arguments.	In	a	real-world	scenario,	use	a

Loader

												//	to	load	content	from	a	content	provider.

												mItem	=

DummyContent.ITEM_MAP.get(getArguments().getString(ARG_ITEM_ID));

												Activity	activity	=	this.getActivity();

												CollapsingToolbarLayout	appBarLayout	=

(CollapsingToolbarLayout)

activity.findViewById(R.id.toolbar_layout);

												if	(appBarLayout	!=	null)	{

																appBarLayout.setTitle(mItem.website_name);

												}

								}

				}

				@Override

				public	View	onCreateView(LayoutInflater	inflater,

														ViewGroup	container,	Bundle	savedInstanceState)	{

								View	rootView	=	inflater.inflate(

													R.layout.fragment_website_detail,	container,

false);

								//	Show	the	dummy	content	as	text	in	a	TextView.

								if	(mItem	!=	null)	{

												((WebView)

rootView.findViewById(R.id.website_detail))

																				.loadUrl(mItem.website_url);

												WebView	webView	=	(WebView)			

																	rootView.findViewById(R.id.website_detail);

												webView.setWebViewClient(new	WebViewClient(){

																@Override

																public	boolean	shouldOverrideUrlLoading(

																				WebView	view,	WebResourceRequest	request)	{

																				return	super.shouldOverrideUrlLoading(

																																	view,	request);

																}

												});

												webView.getSettings().setJavaScriptEnabled(true);

												webView.loadUrl(mItem.website_url);

								}

								return	rootView;

				}

}

The	above	changes	modify	the	onCreate()	method	to	display	the	web	site	name
on	the	app	bar:

appBarLayout.setTitle(mItem.website_name);

The	onCreateView()	method	is	then	modified	to	find	the	view	with	the	ID	of
website_detail	(this	was	formally	the	TextView	but	is	now	a	WebView)	and
extract	the	URL	of	the	web	site	from	the	selected	item.	An	instance	of	the
WebViewClient	class	is	created	and	assigned	the	shouldOverrideUrlLoading()
callback	method.	This	method	is	implemented	so	as	to	force	the	system	to	use
the	WebView	instance	to	load	the	page	instead	of	the	Chrome	browser.	Finally,
JavaScript	support	is	enabled	on	the	webView	instance	and	the	web	page	loaded.

41.8	Modifying	the	WebsiteListActivity	Class
A	minor	change	also	needs	to	be	made	to	the	WebsiteListActivity.java	file	to
make	sure	that	the	web	site	names	appear	in	the	master	list.	Edit	this	file,	locate
the	onBindViewHolder()	method	and	modify	the	setText()	method	call	to
reference	the	web	site	name	as	follows:

public	void	onBindViewHolder(final	ViewHolder	holder,	int

position)	{

				holder.mItem	=	mValues.get(position);

				holder.mIdView.setText(mValues.get(position).id);

			

holder.mContentView.setText(mValues.get(position).website_name);

.

.

.

}

41.9	Adding	Manifest	Permissions
The	final	step	is	to	add	internet	permission	to	the	application	via	the	manifest
file.	This	will	enable	the	WebView	object	to	access	the	internet	and	download
web	pages.	Navigate	to,	and	load	the	AndroidManifest.xml	file	in	the	Project	tool
window	(app	->	manifests),	and	double-click	on	it	to	load	it	into	the	editor.	Once
loaded,	add	the	appropriate	permission	line	to	the	file:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.example.masterdetailflow"	>

																																																											

				<uses-permission	android:name="android.permission.INTERNET"

/>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>.

.

.

41.10	Running	the	Application
Compile	and	run	the	application	on	a	suitably	configured	emulator	or	an	attached
Android	device.	Depending	on	the	size	of	the	display,	the	application	will	appear
either	in	small	screen	or	two-pane	mode.	Regardless,	the	master	list	should
appear	primed	with	the	names	of	the	three	web	sites	defined	in	the	content

appear	primed	with	the	names	of	the	three	web	sites	defined	in	the	content
model.	Selecting	an	item	should	cause	the	corresponding	web	site	to	appear	in
the	detail	pane	as	illustrated	in	two-pane	mode	in	Figure	41-6:

Figure	41-6

41.11	Summary
A	master/detail	user	interface	consists	of	a	master	list	of	items	which,	when
selected,	displays	additional	information	about	that	selection	within	a	detail
pane.	The	Master/Detail	Flow	is	a	template	provided	with	Android	Studio	that
allows	a	master/detail	arrangement	to	be	created	quickly	and	with	relative	ease.
As	demonstrated	in	this	chapter,	with	minor	modifications	to	the	default
template	files,	a	wide	range	of	master/detail	based	functionality	can	be
implemented	with	minimal	coding	and	design	effort.

42.	An	Overview	of	Android	Intents

By	this	stage	of	the	book,	it	should	be	clear	that	Android	applications	are
comprised,	among	other	things,	of	one	or	more	activities.	An	area	that	has	yet	to
be	covered	in	extensive	detail,	however,	is	the	mechanism	by	which	one	activity
can	trigger	the	launch	of	another	activity.	As	outlined	briefly	in	the	chapter
entitled	The	Anatomy	of	an	Android	Application,	this	is	achieved	primarily	by
using	Intents.
Prior	to	working	through	some	Android	Studio	based	example	implementations
of	intents	in	the	following	chapters,	the	goal	of	this	chapter	is	to	provide	an
overview	of	intents	in	the	form	of	explicit	intents	and	implicit	intents	together
with	an	introduction	to	intent	filters.

42.1	An	Overview	of	Intents
Intents	(android.content.Intent)	are	the	messaging	system	by	which	one	activity
is	able	to	launch	another	activity.	An	activity	can,	for	example,	issue	an	intent	to
request	the	launch	of	another	activity	contained	within	the	same	application.
Intents	also,	however,	go	beyond	this	concept	by	allowing	an	activity	to	request
the	services	of	any	other	appropriately	registered	activity	on	the	device	for	which
permissions	are	configured.	Consider,	for	example,	an	activity	contained	within
an	application	that	requires	a	web	page	to	be	loaded	and	displayed	to	the	user.
Rather	than	the	application	having	to	contain	a	second	activity	to	perform	this
task,	the	code	can	simply	send	an	intent	to	the	Android	runtime	requesting	the
services	of	any	activity	that	has	registered	the	ability	to	display	a	web	page.	The
runtime	system	will	match	the	request	to	available	activities	on	the	device	and
either	launch	the	activity	that	matches	or,	in	the	event	of	multiple	matches,	allow
the	user	to	decide	which	activity	to	use.
Intents	also	allow	for	the	transfer	of	data	from	the	sending	activity	to	the
receiving	activity.	In	the	previously	outlined	scenario,	for	example,	the	sending
activity	would	need	to	send	the	URL	of	the	web	page	to	be	displayed	to	the
second	activity.	Similarly,	the	receiving	activity	may	also	be	configured	to	return
data	to	the	sending	activity	when	the	required	tasks	are	completed.
Though	not	covered	until	later	chapters,	it	is	also	worth	highlighting	the	fact
that,	in	addition	to	launching	activities,	intents	are	also	used	to	launch	and
communicate	with	services	and	broadcast	receivers.

Intents	are	categorized	as	either	explicit	or	implicit.

42.2	Explicit	Intents
An	explicit	intent	requests	the	launch	of	a	specific	activity	by	referencing	the
component	name	(which	is	actually	the	Java	class	name)	of	the	target	activity.
This	approach	is	most	common	when	launching	an	activity	residing	in	the	same
application	as	the	sending	activity	(since	the	Java	class	name	is	known	to	the
application	developer).
An	explicit	intent	is	issued	by	creating	an	instance	of	the	Intent	class,	passing
through	the	activity	context	and	the	component	name	of	the	activity	to	be
launched.	A	call	is	then	made	to	the	startActivity()	method,	passing	the	intent
object	as	an	argument.	For	example,	the	following	code	fragment	issues	an	intent
for	the	activity	with	the	class	name	ActivityB	to	be	launched:

Intent	i	=	new	Intent(this,	ActivityB.class);

startActivity(i);

Data	may	be	transmitted	to	the	receiving	activity	by	adding	it	to	the	intent	object
before	it	is	started	via	calls	to	the	putExtra()	method	of	the	intent	object.	Data
must	be	added	in	the	form	of	key-value	pairs.	The	following	code	extends	the
previous	example	to	add	String	and	integer	values	with	the	keys	“myString”	and
“myInt”	respectively	to	the	intent:

Intent	i	=	new	Intent(this,	ActivityB.class);

i.putExtra("myString",	"This	is	a	message	for	ActivityB");

i.putExtra("myInt",	100);

						

startActivity(i);

The	data	is	received	by	the	target	activity	as	part	of	a	Bundle	object	which	can
be	obtained	via	a	call	to	getIntent().getExtras().	The	getIntent()	method	of	the
Activity	class	returns	the	intent	that	started	the	activity,	while	the	getExtras()
method	(of	the	Intent	class)	returns	a	Bundle	object	containing	the	data.	For
example,	to	extract	the	data	values	passed	to	ActivityB:

Bundle	extras	=	getIntent().getExtras();											

if	(extras	!=	null)	{

				String	myString	=	extras.getString("myString");

				int	myInt	=	extras.getInt("myInt");

}

When	using	intents	to	launch	other	activities	within	the	same	application,	it	is
essential	that	those	activities	be	listed	in	the	application	manifest	file.	The

following	AndroidManifest.xml	contents	are	correctly	configured	for	an
application	containing	activities	named	ActivityA	and	ActivityB:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.intent1.intent1"	>

				<application

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"	>

								<activity

												android:label="@string/app_name"

											

android:name="com.ebookfrenzy.intent1.intent1.ActivityA"	>

												<intent-filter>

														<action	android:name="android.intent.action.MAIN"

/>

														<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<activity

												android:name="ActivityB"

												android:label="ActivityB"	>

								</activity>

				</application>

</manifest>

42.3	Returning	Data	from	an	Activity
As	the	example	in	the	previous	section	stands,	while	data	is	transferred	to
ActivityB,	there	is	no	way	for	data	to	be	returned	to	the	first	activity	(which	we
will	call	ActivityA).	This	can,	however,	be	achieved	by	launching	ActivityB	as	a
sub-activity	of	ActivityA.	An	activity	is	started	as	a	sub-activity	by	starting	the
intent	with	a	call	to	the	startActivityForResult()	method	instead	of	using
startActivity().	In	addition	to	the	intent	object,	this	method	is	also	passed	a
request	code	value	which	can	be	used	to	identify	the	return	data	when	the	sub-
activity	returns.	For	example:

startActivityForResult(i,	REQUEST_CODE);

In	order	to	return	data	to	the	parent	activity,	the	sub-activity	must	implement	the
finish()	method,	the	purpose	of	which	is	to	create	a	new	intent	object	containing
the	data	to	be	returned,	and	then	calling	the	setResult()	method	of	the	enclosing
activity,	passing	through	a	result	code	and	the	intent	containing	the	return	data.

The	result	code	is	typically	RESULT_OK,	or	RESULT_CANCELED,	but	may
also	be	a	custom	value	subject	to	the	requirements	of	the	developer.	In	the	event
that	a	sub-activity	crashes,	the	parent	activity	will	receive	a
RESULT_CANCELED	result	code.
The	following	code,	for	example,	illustrates	the	code	for	a	typical	sub-activity
finish()	method:

	public	void	finish()	{

							Intent	data	=	new	Intent();

						

							data.putExtra("returnString1",	"Message	to	parent

activity");

							setResult(RESULT_OK,	data);

							super.finish();

}

In	order	to	obtain	and	extract	the	returned	data,	the	parent	activity	must
implement	the	onActivityResult()	method,	for	example:

protected	void	onActivityResult(int	requestCode,	int

resultCode,	Intent	data)

{

			String	returnString;

			if	(requestCode	==	REQUEST_CODE	&&	resultCode	==	RESULT_OK)

{

						if	(data.hasExtra("returnString1"))	{

												returnString	=

data.getExtras().getString("returnString1");

							}

			}

}

Note	that	the	above	method	checks	the	returned	request	code	value	to	make	sure
that	it	matches	that	passed	through	to	the	startActivityForResult()	method.	When
starting	multiple	sub-activities	it	is	especially	important	to	use	the	request	code
to	track	which	activity	is	currently	returning	results,	since	all	will	call	the	same
onActivityResult()	method	on	exit.

42.4	Implicit	Intents
Unlike	explicit	intents,	which	reference	the	Java	class	name	of	the	activity	to	be
launched,	implicit	intents	identify	the	activity	to	be	launched	by	specifying	the
action	to	be	performed	and	the	type	of	data	to	be	handled	by	the	receiving
activity.	For	example,	an	action	type	of	ACTION_VIEW	accompanied	by	the
URL	of	a	web	page	in	the	form	of	a	URI	object	will	instruct	the	Android	system
to	search	for,	and	subsequently	launch,	a	web	browser	capable	activity.	The

to	search	for,	and	subsequently	launch,	a	web	browser	capable	activity.	The
following	implicit	intent	will,	when	executed	on	an	Android	device,	result	in	the
designated	web	page	appearing	in	a	web	browser	activity:

Intent	i	=	new	Intent(Intent.ACTION_VIEW,

														Uri.parse("http://www.ebookfrenzy.com"));

When	the	above	implicit	intent	is	issued	by	an	activity,	the	Android	system	will
search	for	activities	on	the	device	that	have	registered	the	ability	to	handle
ACTION_VIEW	requests	on	http	scheme	data	using	a	process	referred	to	as
intent	resolution.	In	the	event	that	a	single	match	is	found,	that	activity	will	be
launched.	If	more	than	one	match	is	found,	the	user	will	be	prompted	to	choose
from	the	available	activity	options.

42.5	Using	Intent	Filters
Intent	filters	are	the	mechanism	by	which	activities	“advertise”	supported	actions
and	data	handling	capabilities	to	the	Android	intent	resolution	process.
Continuing	the	example	in	the	previous	section,	an	activity	capable	of	displaying
web	pages	would	include	an	intent	filter	section	in	its	manifest	file	indicating
support	for	the	ACTION_VIEW	type	of	intent	requests	on	http	scheme	data.
It	is	important	to	note	that	both	the	sending	and	receiving	activities	must	have
requested	permission	for	the	type	of	action	to	be	performed.	This	is	achieved	by
adding	<uses-permission>	tags	to	the	manifest	files	of	both	activities.	For
example,	the	following	manifest	lines	request	permission	to	access	the	internet
and	contacts	database:

<uses-permission

android:name="android.permission.READ_CONTACTS"	/>

<uses-permission	android:name="android.permission.INTERNET"/>

The	following	AndroidManifest.xml	file	illustrates	a	configuration	for	an	activity
named	WebViewActivity	with	intent	filters	and	permissions	enabled	for	internet
access:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfreny.WebView"

				android:versionCode="1"

				android:versionName="1.0"	>

				<uses-sdk	android:minSdkVersion="10"	/>

				<uses-permission	android:name="android.permission.INTERNET"

/>

			

				<application

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"	>

								<activity

												android:label="@string/app_name"

												android:name=".WebViewActivity"	>

												<intent-filter>

															<action

android:name="android.intent.action.VIEW"	/>

															<category

android:name="android.intent.category.DEFAULT"	/>

															<data	android:scheme="http"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

42.6	Checking	Intent	Availability
It	is	generally	unwise	to	assume	that	an	activity	will	be	available	for	a	particular
intent,	especially	since	the	absence	of	a	matching	action	will	typically	result	in
the	application	crashing.	Fortunately,	it	is	possible	to	identify	the	availability	of
an	activity	for	a	specific	intent	before	it	is	sent	to	the	runtime	system.	The
following	method	can	be	used	to	identify	the	availability	of	an	activity	for	a
specified	intent	action	type:

public	static	boolean	isIntentAvailable(Context	context,	String

action)	{

				final	PackageManager	packageManager	=

context.getPackageManager();

				final	Intent	intent	=	new	Intent(action);

				List<ResolveInfo>	list	=

												packageManager.queryIntentActivities(intent,

																				PackageManager.MATCH_DEFAULT_ONLY);

				return	list.size()	>	0;

}

42.7	Summary
Intents	are	the	messaging	mechanism	by	which	one	Android	activity	can	launch
another.	An	explicit	intent	references	a	specific	activity	to	be	launched	by
referencing	the	receiving	activity	by	class	name.	Explicit	intents	are	typically,
though	not	exclusively,	used	when	launching	activities	contained	within	the
same	application.	An	implicit	intent	specifies	the	action	to	be	performed	and	the

same	application.	An	implicit	intent	specifies	the	action	to	be	performed	and	the
type	of	data	to	be	handled,	and	lets	the	Android	runtime	find	a	matching	activity
to	launch.	Implicit	intents	are	generally	used	when	launching	activities	that
reside	in	different	applications.
An	activity	can	send	data	to	the	receiving	activity	by	bundling	data	into	the
intent	object	in	the	form	of	key-value	pairs.	Data	can	only	be	returned	from	an
activity	if	it	is	started	as	a	sub-activity	of	the	sending	activity.
Activities	advertise	capabilities	to	the	Android	intent	resolution	process	through
the	specification	of	intent-filters	in	the	application	manifest	file.	Both	sending
and	receiving	activities	must	also	request	appropriate	permissions	to	perform
tasks	such	as	accessing	the	device	contact	database	or	the	internet.
Having	covered	the	theory	of	intents,	the	next	few	chapters	will	work	through
the	creation	of	some	examples	in	Android	Studio	that	put	both	explicit	and
implicit	intents	into	action.

43.	Android	Explicit	Intents	–	A	Worked
Example

The	chapter	entitled	An	Overview	of	Android	Intents	covered	the	theory	of	using
intents	to	launch	activities.	This	chapter	will	put	that	theory	into	practice	through
the	creation	of	an	example	application.
The	example	Android	Studio	application	project	created	in	this	chapter	will
demonstrate	the	use	of	an	explicit	intent	to	launch	an	activity,	including	the
transfer	of	data	between	sending	and	receiving	activities.	The	next	chapter
(Android	Implicit	Intents	–	A	Worked	Example)	will	demonstrate	the	use	of
implicit	intents.

43.1	Creating	the	Explicit	Intent	Example	Application
Launch	Android	Studio	and	create	a	new	project,	entering	ExplicitIntent	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
ActivityA	with	a	corresponding	layout	named	activity_a.
Click	Finish	to	create	the	new	project.

43.2	Designing	the	User	Interface	Layout	for	ActivityA
The	user	interface	for	ActivityA	will	consist	of	a	ConstraintLayout	view
containing	EditText	(Plain	Text),	TextView	and	Button	views	named	editText1,
textView1	and	button1	respectively.	Using	the	Project	tool	window,	locate	the
activity_a.xml	resource	file	for	ActivityA	(located	under	app	->	res	->	layout)
and	double-click	on	it	to	load	it	into	the	Android	Studio	Layout	Editor	tool.
Select	and	delete	the	default	“Hello	World!”	TextView.
For	this	tutorial,	Inference	mode	will	be	used	to	add	constraints	after	the	layout
has	been	designed.	Begin,	therefore,	by	turning	off	the	Autoconnect	feature	of
the	Layout	Editor	using	the	toolbar	button	indicated	in	Figure	43-1:

Figure	43-1

Drag	a	TextView	widget	from	the	palette	and	drop	it	so	that	it	is	centered	within
the	layout	and	use	the	Properties	tool	window	to	assign	an	ID	of	textView1.
Drag	a	Button	object	from	the	palette	and	position	it	so	that	it	is	centered
horizontally	and	located	beneath	the	bottom	edge	of	the	TextView.	Change	the
text	property	so	that	it	reads	“Ask	Question”	and	configure	the	onClick	property
to	call	a	method	named	onClick().
Next,	add	an	Plain	Text	object	so	that	it	is	centered	horizontally	and	positioned
above	the	top	edge	of	the	TextView.	Using	the	Properties	tool	window,	remove
the	“Name”	string	assigned	to	the	text	property	and	set	the	ID	to	editText1.	With
the	layout	completed,	click	on	the	toolbar	Infer	constraints	button	to	add
appropriate	constraints:

Figure	43-2

Finally,	click	on	the	red	warning	button	in	the	top	right-hand	corner	of	the
Layout	Editor	window	and	use	the	resulting	panel	to	extract	the	“Ask	Question”
string	to	a	resource	named	ask_question.
Once	the	layout	is	complete,	the	user	interface	should	resemble	that	illustrated	in
Figure	43-3:

Figure	43-3

43.3	Creating	the	Second	Activity	Class
When	the	“Ask	Question”	button	is	touched	by	the	user,	an	intent	will	be	issued
requesting	that	a	second	activity	be	launched	into	which	an	answer	can	be
entered	by	the	user.	The	next	step,	therefore,	is	to	create	the	second	activity.
Within	the	Project	tool	window,	right-click	on	the	com.ebookfrenzy.explicitintent
package	name	located	in	app	->	java	and	select	the	New	->	Activity	->	Empty
Activity	menu	option	to	display	the	New	Android	Activity	dialog	as	shown	in

Figure	43-4:

Figure	43-4

Enter	ActivityB	into	the	Activity	Name	and	Title	fields	and	name	the	layout	file
activity_b.	Since	this	activity	will	not	be	started	when	the	application	is	launched
(it	will	instead	be	launched	via	an	intent	by	ActivityA	when	the	button	is
pressed),	it	is	important	to	make	sure	that	the	Launcher	Activity	option	is
disabled	before	clicking	on	the	Finish	button.

43.4	Designing	the	User	Interface	Layout	for	ActivityB

The	elements	that	are	required	for	the	user	interface	of	the	second	activity	are	a
Plain	Text	EditText,	TextView	and	Button	view.	With	these	requirements	in
mind,	load	the	activity_b.xml	layout	into	the	Layout	Editor	tool,	turn	off
Autoconnect	mode	in	the	Layout	Editor	toolbar	and	add	the	views.
During	the	design	process,	note	that	the	onClick	property	on	the	button	view	has
been	configured	to	call	a	method	named	onClick(),	and	the	TextView	and
EditText	views	have	been	assigned	IDs	textView1	and	editText1	respectively.
Once	completed,	the	layout	should	resemble	that	illustrated	in	Figure	43-5.	Note
that	the	text	on	the	button	(which	reads	“Answer	Question”)	has	been	extracted
to	a	string	resource	named	answer_question.
With	the	layout	complete,	click	on	the	Infer	constraints	toolbar	button	to	add	the
necessary	constraints	to	the	layout:

Figure	43-5

43.5	Reviewing	the	Application	Manifest	File
In	order	for	ActivityA	to	be	able	to	launch	ActivityB	using	an	intent,	it	is
necessary	that	an	entry	for	ActivityB	be	present	in	the	AndroidManifest.xml	file.
Locate	this	file	within	the	Project	tool	window	(app	->	manifests),	double-click
on	it	to	load	it	into	the	editor	and	verify	that	Android	Studio	has	automatically
added	an	entry	for	the	activity:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.explicitintent">

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme">

								<activity	android:name=".ActivityA">

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

									android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<activity	android:name=".ActivityB"></activity>

				</application>

</manifest>

With	the	second	activity	created	and	listed	in	the	manifest	file,	it	is	now	time	to
write	some	code	in	the	ActivityA	class	to	issue	the	intent.

43.6	Creating	the	Intent
The	objective	for	ActivityA	is	to	create	and	start	an	intent	when	the	user	touches
the	“Ask	Question”	button.	As	part	of	the	intent	creation	process,	the	question
string	entered	by	the	user	into	the	EditText	view	will	be	added	to	the	intent
object	as	a	key-value	pair.	When	the	user	interface	layout	was	created	for
ActivityA,	the	button	object	was	configured	to	call	a	method	named	onClick()
when	“clicked”	by	the	user.	This	method	now	needs	to	be	added	to	the	ActivityA
class	ActivityA.java	source	file	as	follows:

package	com.ebookfrenzy.explicitintent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.Intent;

import	android.view.View;

import	android.widget.EditText;

import	android.widget.TextView;

public	class	ActivityA	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_a);

				}

				public	void	onClick(View	view)	{

	

								Intent	i	=	new	Intent(this,	ActivityB.class);

	

								final	EditText	editText1	=	(EditText)

																findViewById(R.id.editText1);

								String	myString	=	editText1.getText().toString();

								i.putExtra("qString",	myString);

								startActivity(i);

				}	

}

The	code	for	the	onClick()	method	follows	the	techniques	outlined	in	An
Overview	of	Android	Intents.	First,	a	new	Intent	instance	is	created,	passing
through	the	current	activity	and	the	class	name	of	ActivityB	as	arguments.	Next,
the	text	entered	into	the	EditText	object	is	added	to	the	intent	object	as	a	key-
value	pair	and	the	intent	started	via	a	call	to	startActivity(),	passing	through	the
intent	object	as	an	argument.
Compile	and	run	the	application	and	touch	the	“Ask	Question”	button	to	launch
ActivityB	and	the	back	button	(located	in	the	toolbar	along	the	bottom	of	the
display)	to	return	to	ActivityA.

43.7	Extracting	Intent	Data
Now	that	ActivityB	is	being	launched	from	ActivityA,	the	next	step	is	to	extract
the	String	data	value	included	in	the	intent	and	assign	it	to	the	TextView	object
in	the	ActivityB	user	interface.	This	involves	adding	some	code	to	the

onCreate()	method	of	ActivityB	in	the	ActivityB.java	source	file:
package	com.ebookfrenzy.explicitintent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.Intent;

import	android.view.View;

import	android.widget.TextView;

import	android.widget.EditText;

public	class	ActivityB	extends	AppCompatActivity	{

							public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activityb);

							

								Bundle	extras	=	getIntent().getExtras();

														if	(extras	==	null)	{

																						return;

														}

													

														String	qString	=	extras.getString("qString");

													

														final	TextView	textView	=	(TextView)

																findViewById(R.id.textView1);														

														textView.setText(qString);											

				}

}

Compile	and	run	the	application	either	within	an	emulator	or	on	a	physical
Android	device.	Enter	a	question	into	the	text	box	in	ActivityA	before	touching
the	“Ask	Question”	button.	The	question	should	now	appear	on	the	TextView
component	in	the	ActivityB	user	interface.

43.8	Launching	ActivityB	as	a	Sub-Activity
In	order	for	ActivityB	to	be	able	to	return	data	to	ActivityA,	ActivityB	must	be
started	as	a	sub-activity	of	ActivityA.	This	means	that	the	call	to	startActivity()
in	the	ActivityA	onClick()	method	needs	to	be	replaced	with	a	call	to
startActivityForResult().	Unlike	the	startActivity()	method,	which	takes	only	the
intent	object	as	an	argument,	startActivityForResult()	requires	that	a	request
code	also	be	passed	through.	The	request	code	can	be	any	number	value	and	is
used	to	identify	which	sub-activity	is	associated	with	which	set	of	return	data.
For	the	purposes	of	this	example,	a	request	code	of	5	will	be	used,	giving	us	a

modified	ActivityA	class	that	reads	as	follows:
public	class	ActivityA	extends	AppCompatActivity	{

													

				private	static	final	int	request_code	=	5;

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

				}

			

				public	void	onClick(View	view)	{

						

														Intent	i	=	new	Intent(this,	ActivityB.class);

													

														final	EditText	editText1	=	(EditText)

																						findViewById(R.id.editText1);

														String	myString	=	editText1.getText().toString();

														i.putExtra("qString",	myString);

														startActivityForResult(i,	request_code);

							}

}

When	the	sub-activity	exits,	the	onActivityResult()	method	of	the	parent	activity
is	called	and	passed	as	arguments	the	request	code	associated	with	the	intent,	a
result	code	indicating	the	success	or	otherwise	of	the	sub-activity	and	an	intent
object	containing	any	data	returned	by	the	sub-activity.	Remaining	within	the
ActivityA	class	source	file,	implement	this	method	as	follows:

protected	void	onActivityResult(int	requestCode,	int

resultCode,	Intent	data)	{

if	((requestCode	==	request_code)	&&

																					(resultCode	==	RESULT_OK))	{

													

														TextView	textView1	=

																						(TextView)	findViewById(R.id.textView1);

																					

														String	returnString	=

																					data.getExtras().getString("returnData");

																					

														textView1.setText(returnString);					

}

}

The	code	in	the	above	method	begins	by	checking	that	the	request	code	matches
the	one	used	when	the	intent	was	issued	and	ensuring	that	the	activity	was
successful.	The	return	data	is	then	extracted	from	the	intent	and	displayed	on	the

successful.	The	return	data	is	then	extracted	from	the	intent	and	displayed	on	the
TextView	object.

43.9	Returning	Data	from	a	Sub-Activity
ActivityB	is	now	launched	as	a	sub-activity	of	ActivityA,	which	has,	in	turn,
been	modified	to	handle	data	returned	from	ActivityB.	All	that	remains	is	to
modify	ActivityB.java	to	implement	the	finish()	method	and	to	add	code	for	the
onClick()	method,	which	is	called	when	the	“Answer	Question”	button	is
touched.	The	finish()	method	is	triggered	when	an	activity	exits	(for	example
when	the	user	selects	the	back	button	on	the	device):

public	void	onClick(View	view)	{

														finish();

}

@Override

public	void	finish()	{

							Intent	data	=	new	Intent();

													

							EditText	editText1	=	(EditText)

findViewById(R.id.editText1);

													

							String	returnString	=	editText1.getText().toString();

							data.putExtra("returnData",	returnString);

						

							setResult(RESULT_OK,	data);

							super.finish();

}

All	that	the	finish()	method	needs	to	do	is	create	a	new	intent,	add	the	return	data
as	a	key-value	pair	and	then	call	the	setResult()	method,	passing	through	a	result
code	and	the	intent	object.	The	onClick()	method	simply	calls	the	finish()
method.

43.10	Testing	the	Application
Compile	and	run	the	application,	enter	a	question	into	the	text	field	on	ActivityA
and	touch	the	“Ask	Question”	button.	When	ActivityB	appears,	enter	the	answer
to	the	question	and	use	either	the	back	button	or	the	“Submit	Answer”	button	to
return	to	ActivityA	where	the	answer	should	appear	in	the	text	view	object.

43.11	Summary
Having	covered	the	basics	of	intents	in	the	previous	chapter,	the	goal	of	this
chapter	was	to	work	through	the	creation	of	an	application	project	in	Android
Studio	designed	to	demonstrate	the	use	of	explicit	intents	together	with	the

Studio	designed	to	demonstrate	the	use	of	explicit	intents	together	with	the
concepts	of	data	transfer	between	a	parent	activity	and	sub-activity.
The	next	chapter	will	work	through	an	example	designed	to	demonstrate	implicit
intents	in	action.

44.	Android	Implicit	Intents	–	A	Worked
Example

In	this	chapter,	an	example	application	will	be	created	in	Android	Studio
designed	to	demonstrate	a	practical	implementation	of	implicit	intents.	The	goal
will	be	to	create	and	send	an	intent	requesting	that	the	content	of	a	particular
web	page	be	loaded	and	displayed	to	the	user.	Since	the	example	application
itself	will	not	contain	an	activity	capable	of	performing	this	task,	an	implicit
intent	will	be	issued	so	that	the	Android	intent	resolution	algorithm	can	be
engaged	to	identify	and	launch	a	suitable	activity	from	another	application.	This
is	most	likely	to	be	an	activity	from	the	Chrome	web	browser	bundled	with	the
Android	operating	system.
Having	successfully	launched	the	built-in	browser,	a	new	project	will	be	created
that	also	contains	an	activity	capable	of	displaying	web	pages.	This	will	be
installed	onto	the	device	or	emulator	and	used	to	demonstrate	what	happens
when	two	activities	match	the	criteria	for	an	implicit	intent.

44.1	Creating	the	Android	Studio	Implicit	Intent	Example	Project
Launch	Android	Studio	and	create	a	new	project,	entering	ImplicitIntent	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
ImplicitIntentActivity	with	a	corresponding	layout	resource	file	named
activity_implicit_intent.
Click	Finish	to	create	the	new	project.

44.2	Designing	the	User	Interface
The	user	interface	for	the	ImplicitIntentActivity	class	is	very	simple,	consisting
solely	of	a	ConstraintLayout	and	a	Button	object.	Within	the	Project	tool
window,	locate	the	app	->	res	->	layout	->	activity_implicit_intent.xml	file	and
double-click	on	it	to	load	it	into	the	Layout	Editor	tool.
Delete	the	default	TextView	and,	with	Autoconnect	mode	enabled,	position	a

Button	widget	so	that	it	is	centered	within	the	layout.	Note	that	the	text	on	the
button	(“Show	Web	Page”)	has	been	extracted	to	a	string	resource	named
show_web_page.

Figure	44-1

With	the	Button	selected,	use	the	Properties	tool	window	to	configure	the
onClick	property	to	call	a	method	named	showWebPage()	and	set	the
layout_width	property	to	wrap_content.

44.3	Creating	the	Implicit	Intent

As	outlined	above,	the	implicit	intent	will	be	created	and	issued	from	within	a
method	named	showWebPage()	which,	in	turn,	needs	to	be	implemented	in	the
ImplicitIntentActivity	class,	the	code	for	which	resides	in	the
ImplicitIntentActivity.java	source	file.	Locate	this	file	in	the	Project	tool	window
and	double-click	on	it	to	load	it	into	an	editing	pane.	Once	loaded,	modify	the
code	to	add	the	showWebPage()	method	together	with	a	few	requisite	imports:

package	com.ebookfrenzy.implicitintent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.net.Uri;

import	android.content.Intent;

import	android.view.View;

public	class	ImplicitIntentActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_implicit_intent);

				}

				public	void	showWebPage(View	view)	{

								Intent	intent	=	new	Intent(Intent.ACTION_VIEW,

																Uri.parse("http://www.ebookfrenzy.com"));

	

								startActivity(intent);

				}

}

The	tasks	performed	by	this	method	are	actually	very	simple.	First,	a	new	intent
object	is	created.	Instead	of	specifying	the	class	name	of	the	intent,	however,	the
code	simply	indicates	the	nature	of	the	intent	(to	display	something	to	the	user)
using	the	ACTION_VIEW	option.	The	intent	object	also	includes	a	URI
containing	the	URL	to	be	displayed.	This	indicates	to	the	Android	intent
resolution	system	that	the	activity	is	requesting	that	a	web	page	be	displayed.
The	intent	is	then	issued	via	a	call	to	the	startActivity()	method.
Compile	and	run	the	application	on	either	an	emulator	or	a	physical	Android
device	and,	once	running,	touch	the	Show	Web	Page	button.	When	touched,	a
web	browser	view	should	appear	and	load	the	web	page	designated	by	the	URL.
A	successful	implicit	intent	has	now	been	executed.

44.4	Adding	a	Second	Matching	Activity
The	remainder	of	this	chapter	will	be	used	to	demonstrate	the	effect	of	the
presence	of	more	than	one	activity	installed	on	the	device	matching	the
requirements	for	an	implicit	intent.	To	achieve	this,	a	second	application	will	be
created	and	installed	on	the	device	or	emulator.	Begin,	therefore,	by	creating	a
new	project	within	Android	Studio	with	the	application	name	set	to	MyWebView,
using	the	same	SDK	configuration	options	used	when	creating	the	ImplicitIntent
project	earlier	in	this	chapter.	Select	an	Empty	Activity	and,	when	prompted,
name	the	activity	MyWebViewActivity	and	the	layout	and	resource	file
activity_my_web_view.

44.5	Adding	the	Web	View	to	the	UI
The	user	interface	for	the	sole	activity	contained	within	the	new	MyWebView
project	is	going	to	consist	of	an	instance	of	the	Android	WebView	widget.
Within	the	Project	tool	window,	locate	the	activity_my_web_view.xml	file,	which
contains	the	user	interface	description	for	the	activity,	and	double-click	on	it	to
load	it	into	the	Layout	Editor	tool.
With	the	Layout	Editor	tool	in	Design	mode,	select	the	default	TextView	widget
and	remove	it	from	the	layout	by	using	the	keyboard	delete	key.
Drag	and	drop	a	WebView	object	from	the	Containers	section	of	the	palette	onto
the	existing	ConstraintLayout	view	as	illustrated	in	Figure	44-2:

Figure	44-2

Before	continuing,	change	the	ID	of	the	WebView	instance	to	webView1.

44.6	Obtaining	the	Intent	URL
When	the	implicit	intent	object	is	created	to	display	a	web	browser	window,	the
URL	of	the	web	page	to	be	displayed	will	be	bundled	into	the	intent	object
within	a	Uri	object.	The	task	of	the	onCreate()	method	within	the
MyWebViewActivity	class	is	to	extract	this	Uri	from	the	intent	object,	convert	it
into	a	URL	string	and	assign	it	to	the	WebView	object.	To	implement	this

functionality,	modify	the	onCreate()	method	in	MyWebViewActivity.java	so	that
it	reads	as	follows:

package	com.ebookfrenzy.mywebview;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	java.net.URL;

import	android.net.Uri;

import	android.content.Intent;

import	android.webkit.WebView;				

public	class	MyWebViewActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_my_web_view);

								Intent	intent	=	getIntent();

	

								Uri	data	=	intent.getData();

								URL	url	=	null;

	

								try	{

												url	=	new	URL(data.getScheme(),

																				data.getHost(),

																				data.getPath());

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}

	

								WebView	webView	=	(WebView)

findViewById(R.id.webView1);

								webView.loadUrl(url.toString());

				}

}

The	new	code	added	to	the	onCreate()	method	performs	the	following	tasks:
·									Obtains	a	reference	to	the	intent	which	caused	this	activity	to	be	launched
·									Extracts	the	Uri	data	from	the	intent	object
·									Converts	the	Uri	data	to	a	URL	object
·									Obtains	a	reference	to	the	WebView	object	in	the	user	interface
·									Loads	the	URL	into	the	web	view,	converting	the	URL	to	a	String	in	the

process

The	coding	part	of	the	MyWebView	project	is	now	complete.	All	that	remains	is
to	modify	the	manifest	file.

44.7	Modifying	the	MyWebView	Project	Manifest	File
There	are	a	number	of	changes	that	must	be	made	to	the	MyWebView	manifest
file	before	it	can	be	tested.	In	the	first	instance,	the	activity	will	need	to	seek
permission	to	access	the	internet	(since	it	will	be	required	to	load	a	web	page).
This	is	achieved	by	adding	the	appropriate	permission	line	to	the	manifest	file:

<uses-permission	android:name="android.permission.INTERNET"	/>

Further,	a	review	of	the	contents	of	the	intent	filter	section	of	the
AndroidManifest.xml	file	for	the	MyWebView	project	will	reveal	the	following
settings:

<intent-filter>

								<action	android:name="android.intent.action.MAIN"	/>

								<category

android:name="android.intent.category.LAUNCHER"	/>

</intent-filter>

In	the	above	XML,	the	android.intent.action.MAIN	entry	indicates	that	this
activity	is	the	point	of	entry	for	the	application	when	it	is	launched	without	any
data	input.	The	android.intent.category.LAUNCHER	directive,	on	the	other
hand,	indicates	that	the	activity	should	be	listed	within	the	application	launcher
screen	of	the	device.
Since	the	activity	is	not	required	to	be	launched	as	the	entry	point	to	an
application,	cannot	be	run	without	data	input	(in	this	case	a	URL)	and	is	not
required	to	appear	in	the	launcher,	neither	the	MAIN	nor	LAUNCHER
directives	are	required	in	the	manifest	file	for	this	activity.
The	intent	filter	for	the	MyWebViewActivity	activity	does,	however,	need	to	be
modified	to	indicate	that	it	is	capable	of	handling	ACTION_VIEW	intent	actions
for	http	data	schemes.
Android	also	requires	that	any	activities	capable	of	handling	implicit	intents	that
do	not	include	MAIN	and	LAUNCHER	entries,	also	include	the	so-called
default	category	in	the	intent	filter.	The	modified	intent	filter	section	should
therefore	read	as	follows:

<intent-filter>

						<action	android:name="android.intent.action.VIEW"	/>

						<category	android:name="android.intent.category.DEFAULT"

/>

						<data	android:scheme="http"	/>

</intent-filter>

Bringing	these	requirements	together	results	in	the	following	complete
AndroidManifest.xml	file:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.mywebview"	>

				<uses-permission	android:name="android.permission.INTERNET"

/>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								<activity

												android:name=".MyWebViewActivity"

												android:label="@string/app_name"	>

												<intent-filter>

																<action

android:name="android.intent.action.VIEW"	/>

																<category			

																					

android:name="android.intent.category.DEFAULT"	/>

																<data	android:scheme="http"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

Load	the	AndroidManifest.xml	file	into	the	manifest	editor	by	double-clicking	on
the	file	name	in	the	Project	tool	window.	Once	loaded,	modify	the	XML	to
match	the	above	changes.
Having	made	the	appropriate	modifications	to	the	manifest	file,	the	new	activity
is	ready	to	be	installed	on	the	device.

44.8	Installing	the	MyWebView	Package	on	a	Device
Before	the	MyWebViewActivity	can	be	used	as	the	recipient	of	an	implicit
intent,	it	must	first	be	installed	onto	the	device.	This	is	achieved	by	running	the

application	in	the	normal	manner.	Because	the	manifest	file	contains	neither	the
android.intent.action.MAIN	nor	the	android.intent.category.LAUNCHER
Android	Studio	needs	to	be	instructed	to	install,	but	not	launch,	the	app.	To
configure	this	behavior,	select	the	app	->	Edit	configurations…	menu	from	the
toolbar	as	illustrated	in	Figure	44-3:

Figure	44-3

Within	the	Run/Debug	Configurations	dialog,	change	the	Launch	option	located
in	the	Launch	Options	section	of	the	panel	to	Nothing	and	click	on	Apply
followed	by	OK:

Figure	44-4

With	this	setting	configured	run	the	app	as	usual.	Note	that	the	app	is	installed
on	the	device,	but	not	launched.

44.9	Testing	the	Application
In	order	to	test	MyWebView,	simply	relaunch	the	ImplicitIntent	application
created	earlier	in	this	chapter	and	touch	the	Show	Web	Page	button.	This	time,
however,	the	intent	resolution	process	will	find	two	activities	with	intent	filters
matching	the	implicit	intent.	As	such,	the	system	will	display	a	dialog	(Figure
44-5)	providing	the	user	with	the	choice	of	activity	to	launch.

Figure	44-5

Selecting	the	MyWebView	option	followed	by	the	Just	once	button	should	cause
the	intent	to	be	handled	by	our	new	MyWebViewActivity,	which	will
subsequently	appear	and	display	the	designated	web	page.
If	the	web	page	loads	into	the	Chrome	browser	without	the	above	selection
dialog	appearing,	it	may	be	that	Chrome	has	been	configured	as	the	default
browser	on	the	device.	This	can	be	changed	by	going	to	Settings	->	Apps	on	the
device	and	choosing	the	All	apps	category.	Scroll	down	the	list	of	apps	and
select	Chrome.	On	the	Chrome	app	info	screen,	tap	the	Open	by	default	option
followed	by	the	Clear	Defaults	button.

44.10	Summary
Implicit	intents	provide	a	mechanism	by	which	one	activity	can	request	the
service	of	another,	simply	by	specifying	an	action	type	and,	optionally,	the	data
on	which	that	action	is	to	be	performed.	In	order	to	be	eligible	as	a	target
candidate	for	an	implicit	intent,	however,	an	activity	must	be	configured	to
extract	the	appropriate	data	from	the	inbound	intent	object	and	be	included	in	a
correctly	configured	manifest	file,	including	appropriate	permissions	and	intent
filters.	When	more	than	one	matching	activity	for	an	implicit	intent	is	found
during	an	intent	resolution	search,	the	user	is	prompted	to	make	a	choice	as	to
which	to	use.
Within	this	chapter	an	example	was	created	to	demonstrate	both	the	issuing	of	an
implicit	intent,	and	the	creation	of	an	example	activity	capable	of	handling	such
an	intent.

45.	 Android	 Broadcast	 Intents	 and	 Broadcast
Receivers

In	addition	to	providing	a	mechanism	for	launching	application	activities,	intents
are	also	used	as	a	way	to	broadcast	system	wide	messages	to	other	components
on	the	system.	This	involves	the	implementation	of	Broadcast	Intents	and
Broadcast	Receivers,	both	of	which	are	the	topic	of	this	chapter.

45.1	An	Overview	of	Broadcast	Intents
Broadcast	intents	are	Intent	objects	that	are	broadcast	via	a	call	to	the
sendBroadcast(),	sendStickyBroadcast()	or	sendOrderedBroadcast()	methods	of
the	Activity	class	(the	latter	being	used	when	results	are	required	from	the
broadcast).	In	addition	to	providing	a	messaging	and	event	system	between
application	components,	broadcast	intents	are	also	used	by	the	Android	system
to	notify	interested	applications	about	key	system	events	(such	as	the	external
power	supply	or	headphones	being	connected	or	disconnected).
When	a	broadcast	intent	is	created,	it	must	include	an	action	string	in	addition	to
optional	data	and	a	category	string.	As	with	standard	intents,	data	is	added	to	a
broadcast	intent	using	key-value	pairs	in	conjunction	with	the	putExtra()	method
of	the	intent	object.	The	optional	category	string	may	be	assigned	to	a	broadcast
intent	via	a	call	to	the	addCategory()	method.
The	action	string,	which	identifies	the	broadcast	event,	must	be	unique	and
typically	uses	the	application’s	Java	package	name	syntax.	For	example,	the
following	code	fragment	creates	and	sends	a	broadcast	intent	including	a	unique
action	string	and	data:

Intent	intent	=	new	Intent();

intent.setAction("com.example.Broadcast");

intent.putExtra("MyData",	1000);

sendBroadcast(intent);

The	above	code	would	successfully	launch	the	corresponding	broadcast	receiver
on	a	device	running	an	Android	version	earlier	than	3.0.	On	more	recent	versions
of	Android,	however,	the	intent	would	not	be	received	by	the	broadcast	receiver.
This	is	because	Android	3.0	introduced	a	launch	control	security	measure	that
prevents	components	of	stopped	applications	from	being	launched	via	an	intent.
An	application	is	considered	to	be	in	a	stopped	state	if	the	application	has	either
just	been	installed	and	not	previously	launched,	or	been	manually	stopped	by	the

user	using	the	application	manager	on	the	device.	To	get	around	this,	however,	a
flag	can	be	added	to	the	intent	before	it	is	sent	to	indicate	that	the	intent	is	to	be
allowed	to	start	a	component	of	a	stopped	application.	This	flag	is
FLAG_INCLUDE_STOPPED_PACKAGES	and	would	be	used	as	outlined	in
the	following	adaptation	of	the	previous	code	fragment:

Intent	intent	=	new	Intent();

intent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES);

intent.setAction("com.example.Broadcast");

intent.putExtra("MyData",	1000);

sendBroadcast(intent);

45.2	An	Overview	of	Broadcast	Receivers
An	application	listens	for	specific	broadcast	intents	by	registering	a	broadcast
receiver.	Broadcast	receivers	are	implemented	by	extending	the	Android
BroadcastReceiver	class	and	overriding	the	onReceive()	method.	The	broadcast
receiver	may	then	be	registered,	either	within	code	(for	example	within	an
activity),	or	within	a	manifest	file.	Part	of	the	registration	implementation
involves	the	creation	of	intent	filters	to	indicate	the	specific	broadcast	intents	the
receiver	is	required	to	listen	for.	This	is	achieved	by	referencing	the	action	string
of	the	broadcast	intent.	When	a	matching	broadcast	is	detected,	the	onReceive()
method	of	the	broadcast	receiver	is	called,	at	which	point	the	method	has	5
seconds	within	which	to	perform	any	necessary	tasks	before	returning.	It	is
important	to	note	that	a	broadcast	receiver	does	not	need	to	be	running	all	the
time.	In	the	event	that	a	matching	intent	is	detected,	the	Android	runtime	system
will	automatically	start	up	the	broadcast	receiver	before	calling	the	onReceive()
method.
The	following	code	outlines	a	template	Broadcast	Receiver	subclass:

package	com.example.broadcastdetector;

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

public	class	MyReceiver	extends	BroadcastReceiver	{

							public	MyReceiver()	{

							}

						

							@Override

							public	void	onReceive(Context	context,	Intent	intent)	{

												//	Implement	code	here	to	be	performed	when

												//	broadcast	is	detected

							}

}

When	registering	a	broadcast	receiver	within	a	manifest	file,	a	<receiver>	entry
must	be	added	containing	one	or	more	intent	filters,	each	containing	the	action
string	of	the	broadcast	intent	for	which	the	receiver	is	required	to	listen.
The	following	example	manifest	file	registers	the	above	example	broadcast
receiver	to	listen	for	broadcast	intents	containing	an	action	string	of
com.example.Broadcast:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.example.broadcastdetector.broadcastdetector"

				android:versionCode="1"

				android:versionName="1.0"	>

				<uses-sdk	android:minSdkVersion="17"	/>

				<application

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"	>

								<receiver	android:name="MyReceiver"	>

												<intent-filter>

																<action	android:name="com.example.Broadcast"	>

																				</action>

												</intent-filter>

								</receiver>

				</application>

</manifest>

The	same	effect	can	be	achieved	by	registering	the	broadcast	receiver	in	code
using	the	registerReceiver()	method	of	the	Activity	class	together	with	an
appropriately	configured	IntentFilter	object:

IntentFilter	filter	=	new

IntentFilter("com.example.Broadcast");

MyReceiver	receiver	=	new	MyReceiver();

registerReceiver(receiver,	filter);

When	a	broadcast	receiver	registered	in	code	is	no	longer	required,	it	may	be
unregistered	via	a	call	to	the	unregisterReceiver()	method	of	the	activity	class,
passing	through	a	reference	to	the	receiver	object	as	an	argument.	For	example,

the	following	code	will	unregister	the	above	broadcast	receiver:
unregisterReceiver(receiver);

It	is	important	to	keep	in	mind	that	some	system	broadcast	intents	can	only	be
detected	by	a	broadcast	receiver	if	it	is	registered	in	code	rather	than	in	the
manifest	file.	Check	the	Android	Intent	class	documentation	for	a	detailed
overview	of	the	system	broadcast	intents	and	corresponding	requirements	online
at:
http://developer.android.com/reference/android/content/Intent.html

45.3	Obtaining	Results	from	a	Broadcast
When	a	broadcast	intent	is	sent	using	the	sendBroadcast()	method,	there	is	no
way	for	the	initiating	activity	to	receive	results	from	any	broadcast	receivers	that
pick	up	the	broadcast.	In	the	event	that	return	results	are	required,	it	is	necessary
to	use	the	sendOrderedBroadcast()	method	instead.	When	a	broadcast	intent	is
sent	using	this	method,	it	is	delivered	in	sequential	order	to	each	broadcast
receiver	with	a	registered	interest.
The	sendOrderedBroadcast()	method	is	called	with	a	number	of	arguments
including	a	reference	to	another	broadcast	receiver	(known	as	the	result
receiver)	which	is	to	be	notified	when	all	other	broadcast	receivers	have	handled
the	intent,	together	with	a	set	of	data	references	into	which	those	receivers	can
place	result	data.	When	all	broadcast	receivers	have	been	given	the	opportunity
to	handle	the	broadcast,	theonReceive()	method	of	the	result	receiver	is	called
and	passed	the	result	data.

45.4	Sticky	Broadcast	Intents
By	default,	broadcast	intents	disappear	once	they	have	been	sent	and	handled	by
any	interested	broadcast	receivers.	A	broadcast	intent	can,	however,	be	defined
as	being	“sticky”.	A	sticky	intent,	and	the	data	contained	therein,	remains
present	in	the	system	after	it	has	completed.	The	data	stored	within	a	sticky
broadcast	intent	can	be	obtained	via	the	return	value	of	a	call	to	the
registerReceiver()	method,	using	the	usual	arguments	(references	to	the
broadcast	receiver	and	intent	filter	object).	Many	of	the	Android	system
broadcasts	are	sticky,	a	prime	example	being	those	broadcasts	relating	to	battery
level	status.
A	sticky	broadcast	may	be	removed	at	any	time	via	a	call	to	the
removeStickyBroadcast()	method,	passing	through	as	an	argument	a	reference	to
the	broadcast	intent	to	be	removed.

http://developer.android.com/reference/android/content/Intent.html

45.5	The	Broadcast	Intent	Example
The	remainder	of	this	chapter	will	work	through	the	creation	of	an	Android
Studio	based	example	of	broadcast	intents	in	action.	In	the	first	instance,	a
simple	application	will	be	created	for	the	purpose	of	issuing	a	custom	broadcast
intent.	A	corresponding	broadcast	receiver	will	then	be	created	that	will	display
a	message	on	the	display	of	the	Android	device	when	the	broadcast	is	detected.
Finally,	the	broadcast	receiver	will	be	modified	to	detect	notification	by	the
system	that	external	power	has	been	disconnected	from	the	device.

45.6	Creating	the	Example	Application
Launch	Android	Studio	and	create	a	new	project,	entering	SendBroadcast	into
the	Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
SendBroadcastActivity	with	a	corresponding	layout	resource	file	named
activity_send_broadcast.
Once	the	new	project	has	been	created,	locate	and	load	the
activity_send_broadcast.xml	layout	file	located	in	the	Project	tool	window	under
app	->	res	->	layout	and,	with	the	Layout	Editor	tool	in	Design	mode,	replace
the	TextView	object	with	a	Button	view	and	set	the	text	property	so	that	it	reads
“Send	Broadcast”.	Once	the	text	value	has	been	set,	follow	the	usual	steps	to
extract	the	string	to	a	resource	named	send_broadcast.	If	the	text	on	the	button	is
truncated,	set	the	layout_width	property	to	wrap_content	so	that	the	button	no
longer	has	a	fixed	width.
With	the	button	still	selected	in	the	layout,	locate	the	onClick	property	in	the
Properties	panel	and	configure	it	to	call	a	method	named	broadcastIntent.

45.7	Creating	and	Sending	the	Broadcast	Intent
Having	created	the	framework	for	the	SendBroadcast	application,	it	is	now	time
to	implement	the	code	to	send	the	broadcast	intent.	This	involves	implementing
the	broadcastIntent()	method	specified	previously	as	the	onClick	target	of	the
Button	view	in	the	user	interface.	Locate	and	double-click	on	the
SendBroadcastActivity.java	file	and	modify	it	to	add	the	code	to	create	and	send
the	broadcast	intent.	Once	modified,	the	source	code	for	this	class	should	read	as
follows:

package	com.ebookfrenzy.sendbroadcast;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.Intent;

import	android.view.View;

public	class	SendBroadcastActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_send_broadcast);

				}

				public	void	broadcastIntent(View	view)

				{

							Intent	intent	=	new	Intent();

							intent.setAction("com.ebookfrenzy.sendbroadcast");

							intent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES);

							sendBroadcast(intent);

				}

}

Note	that	in	this	instance	the	action	string	for	the	intent	is
com.ebookfrenzy.sendbroadcast.	When	the	broadcast	receiver	class	is	created	in
later	sections	of	this	chapter,	it	is	essential	that	the	intent	filter	declaration	match
this	action	string.
This	concludes	the	creation	of	the	application	to	send	the	broadcast	intent.	All
that	remains	is	to	build	a	matching	broadcast	receiver.

45.8	Creating	the	Broadcast	Receiver
In	order	to	create	the	broadcast	receiver,	a	new	class	needs	to	be	created	which
subclasses	the	BroadcastReceiver	superclass.	Create	a	new	project	with	the
application	name	set	to	BroadcastReceiver	and	the	company	domain	name	set	to
com.ebookfrenzy,	this	time	selecting	the	Add	No	Activity	option	before	clicking
on	Finish.
Within	the	Project	tool	window,	navigate	to	app	->	java	and	right-click	on	the
package	name.	From	the	resulting	menu,	select	the	New	->	Other	->	Broadcast
Receiver	menu	option,	name	the	class	MyReceiver	and	make	sure	the	Exported
and	Enabled	options	are	selected.	These	settings	allow	the	Android	system	to
launch	the	receiver	when	needed	and	ensure	that	the	class	can	receive	messages

sent	by	other	applications	on	the	device.	With	the	class	configured,	click	on
Finish.
Once	created,	Android	Studio	will	automatically	load	the	new	MyReceiver.java
class	file	into	the	editor	where	it	should	read	as	follows:

package	com.ebookfrenzy.broadcastreceiver;

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

public	class	MyReceiver	extends	BroadcastReceiver	{

				public	MyReceiver()	{

				}

				@Override

				public	void	onReceive(Context	context,	Intent	intent)	{

								//	TODO:	This	method	is	called	when	the

BroadcastReceiver	is	receiving

								//	an	Intent	broadcast.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

}

As	can	be	seen	in	the	code,	Android	Studio	has	generated	a	template	for	the	new
class	and	generated	a	stub	for	the	onReceive()	method.	A	number	of	changes
now	need	to	be	made	to	the	class	to	implement	the	required	behavior.	Remaining
in	the	MyReceiver.java	file,	therefore,	modify	the	code	so	that	it	reads	as
follows:

package	com.ebookfrenzy.broadcastreceiver;

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

import	android.widget.Toast;

public	class	MyReceiver	extends	BroadcastReceiver	{

				public	MyReceiver()	{

				}

				@Override

				public	void	onReceive(Context	context,	Intent	intent)	{

								//	TODO:	This	method	is	called	when	the

BroadcastReceiver	is	receiving

								//	an	Intent	broadcast.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

								Toast.makeText(context,	"Broadcast	Intent	Detected.",

																Toast.LENGTH_LONG).show();

				}

}

The	code	for	the	broadcast	receiver	is	now	complete.

45.9	Configuring	a	Broadcast	Receiver	in	the	Manifest	File
In	common	with	other	Android	projects,	BroadcastReceiver	has	associated	with
it	a	manifest	file	named	AndroidManifest.xml.
This	file	needs	to	publicize	the	presence	of	the	broadcast	receiver	and	must
include	an	intent	filter	to	specify	the	broadcast	intents	in	which	the	receiver	is
interested.	When	the	BroadcastReceiver	class	was	created	in	the	previous
section,	Android	Studio	automatically	added	a	<receiver>	element	to	the
manifest	file.	All	that	remains,	therefore,	is	to	add	an	<intent-filter>	element
within	the	<receiver>	declaration	appropriately	configured	for	the	custom	action
string:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.broadcastreceiver"	>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme">

								<receiver

												android:name=".MyReceiver"

												android:enabled="true"

												android:exported="true">

												<intent-filter>

																<action

																			

android:name="com.ebookfrenzy.sendbroadcast"	>

																</action>				

												</intent-filter>

								</receiver>

				</application>

</manifest>

With	the	manifest	file	completed,	the	broadcast	example	is	almost	ready	to	be
tested.	Since	the	app	does	not	contain	a	launch	activity,	however,	the	project
must	be	configured	to	install,	but	not	run	the	app	on	the	device	or	emulator	on
which	it	is	being	tested.	Click	on	the	app	button	located	in	the	Android	Studio
toolbar	followed	by	the	Edit	configurations…	option	in	the	drop	down	menu.	In
the	resulting	Run/Debug	Configurations	dialog,	change	the	Launch	option	from
Default	Activity	to	Nothing	before	clicking	on	Apply	followed	by	OK.

45.10	Testing	the	Broadcast	Example
In	order	to	test	the	broadcast	sender	and	receiver,	begin	by	running	the
BroadcastReceiver	application	on	a	physical	Android	device	or	AVD.
Once	the	receiver	is	installed,	run	the	SendBroadcast	application	on	the	same
device	or	AVD	and	wait	for	it	to	appear	on	the	display.	Once	running,	touch	the
button,	at	which	point	the	toast	message	reading	“Broadcast	Intent	Detected.”
should	pop	up	for	a	few	seconds	before	fading	away.
In	the	event	that	the	toast	message	does	not	appear,	double	check	that	the
BroadcastReceiver	application	installed	correctly	and	that	the	intent	filter	in	the
manifest	file	matches	the	action	string	used	when	the	intent	was	broadcast.

45.11	Listening	for	System	Broadcasts
The	final	stage	of	this	example	is	to	modify	the	intent	filter	for	the
BroadcastReceiver	to	listen	also	for	the	system	intent	that	is	broadcast	when
external	power	is	disconnected	from	the	device.	That	action	is
android.intent.action.ACTION_POWER_DISCONNECTED.	The	modified
manifest	file	for	the	BroadcastReceiver	project	should,	therefore,	now	read	as
follows:

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

			

package="com.ebookfrenzy.broadcastreceiver.broadcastreceiver">

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme">

								<receiver

												android:name=".MyReceiver"

												android:enabled="true"

												android:exported="true">

												<intent-filter>

																<action

																			

android:name="com.ebookfrenzy.sendbroadcast"	>

																</action>

																<action

		

android:name="android.intent.action.ACTION_POWER_DISCONNECTED"

>

																</action>

												</intent-filter>

								</receiver>

				</application>

</manifest>

Since	the	onReceive()	method	is	now	going	to	be	listening	for	two	types	of
broadcast	intent,	it	is	worthwhile	to	modify	the	code	so	that	the	action	string	of
the	current	intent	is	also	displayed	in	the	toast	message.	This	string	can	be
obtained	via	a	call	to	the	getAction()	method	of	the	intent	object	passed	as	an
argument	to	the	onReceive()	method:

public	void	onReceive(Context	context,	Intent	intent)

{												

														String	message	=	"Broadcast	intent	detected	"

																						+	intent.getAction();

													

														Toast.makeText(context,	message,

																														Toast.LENGTH_LONG).show();

}

Test	the	receiver	by	reinstalling	the	modified	BroadcastReceiver	package.
Touching	the	button	in	the	SendBroadcast	application	should	now	result	in	a
new	message	containing	the	custom	action	string:

Broadcast	intent	detected	com.ebookfrenzy.sendbroadcast

Next,	remove	the	USB	connector	that	is	currently	supplying	power	to	the
Android	device,	at	which	point	the	receiver	should	report	the	following	in	the
toast	message.	If	the	app	is	running	on	an	emulator,	display	the	extended
controls,	select	the	Battery	option	and	change	the	Charger	connection	setting	to
None.

Broadcast	intent	detected

android.intent.action.ACTION_POWER_DISCONNECTED

To	avoid	this	message	appearing	every	time	the	device	is	disconnected	from	a
power	supply	launch	the	Settings	app	on	the	device	and	select	the	Apps	option.
Select	the	BroadcastReceiver	app	from	the	resulting	list	and	taps	the	Uninstall
button.

45.12	Summary
Broadcast	intents	are	a	mechanism	by	which	an	intent	can	be	issued	for
consumption	by	multiple	components	on	an	Android	system.	Broadcasts	are
detected	by	registering	a	Broadcast	Receiver	which,	in	turn,	is	configured	to
listen	for	intents	that	match	particular	action	strings.	In	general,	broadcast
receivers	remain	dormant	until	woken	up	by	the	system	when	a	matching	intent
is	detected.	Broadcast	intents	are	also	used	by	the	Android	system	to	issue
notifications	of	events	such	as	a	low	battery	warning	or	the	connection	or
disconnection	of	external	power	to	the	device.
In	addition	to	providing	an	overview	of	Broadcast	intents	and	receivers,	this
chapter	has	also	worked	through	an	example	of	sending	broadcast	intents	and	the
implementation	of	a	broadcast	receiver	to	listen	for	both	custom	and	system
broadcast	intents.

46.	A	Basic	Overview	of	Threads	and
Thread	Handlers

The	next	chapter	will	be	the	first	in	a	series	of	chapters	intended	to	introduce	the
use	of	Android	Services	to	perform	application	tasks	in	the	background.	It	is
impossible,	however,	to	understand	the	steps	involved	in	implementing	services
without	first	gaining	a	basic	understanding	of	the	concept	of	threading	in
Android	applications.	Threads	and	thread	handlers	are,	therefore,	the	topic	of
this	chapter.

46.1	An	Overview	of	Threads
Threads	are	the	cornerstone	of	any	multitasking	operating	system	and	can	be
thought	of	as	mini-processes	running	within	a	main	process,	the	purpose	of
which	is	to	enable	at	least	the	appearance	of	parallel	execution	paths	within
applications.

46.2	The	Application	Main	Thread
When	an	Android	application	is	first	started,	the	runtime	system	creates	a	single
thread	in	which	all	application	components	will	run	by	default.	This	thread	is
generally	referred	to	as	the	main	thread.	The	primary	role	of	the	main	thread	is
to	handle	the	user	interface	in	terms	of	event	handling	and	interaction	with	views
in	the	user	interface.	Any	additional	components	that	are	started	within	the
application	will,	by	default,	also	run	on	the	main	thread.
Any	component	within	an	application	that	performs	a	time	consuming	task	using
the	main	thread	will	cause	the	entire	application	to	appear	to	lock	up	until	the
task	is	completed.	This	will	typically	result	in	the	operating	system	displaying	an
“Application	is	not	responding”	warning	to	the	user.	Clearly,	this	is	far	from	the
desired	behavior	for	any	application.	This	can	be	avoided	simply	by	launching
the	task	to	be	performed	in	a	separate	thread,	allowing	the	main	thread	to
continue	unhindered	with	other	tasks.

46.3	Thread	Handlers
Clearly,	one	of	the	key	rules	of	Android	development	is	to	never	perform	time-
consuming	operations	on	the	main	thread	of	an	application.	The	second,	equally
important,	rule	is	that	the	code	within	a	separate	thread	must	never,	under	any

circumstances,	directly	update	any	aspect	of	the	user	interface.	Any	changes	to
the	user	interface	must	always	be	performed	from	within	the	main	thread.	The
reason	for	this	is	that	the	Android	UI	toolkit	is	not	thread-safe.	Attempts	to	work
with	non-thread-safe	code	from	within	multiple	threads	will	typically	result	in
intermittent	problems	and	unpredictable	application	behavior.
In	the	event	that	the	code	executing	in	a	thread	needs	to	interact	with	the	user
interface,	it	must	do	so	by	synchronizing	with	the	main	UI	thread.	This	is
achieved	by	creating	a	handler	within	the	main	thread,	which,	in	turn,	receives
messages	from	another	thread	and	updates	the	user	interface	accordingly.

46.4	A	Basic	Threading	Example
The	remainder	of	this	chapter	will	work	through	some	simple	examples	intended
to	provide	a	basic	introduction	to	threads.	The	first	step	will	be	to	highlight	the
importance	of	performing	time-consuming	tasks	in	a	separate	thread	from	the
main	thread.	Begin,	therefore,	by	creating	a	new	project	in	Android	Studio,
entering	ThreadExample	into	the	Application	name	field	and	ebookfrenzy.com	as
the	Company	Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
ThreadExampleActivity,	using	the	default	for	the	layout	resource	files.
Click	Finish	to	create	the	new	project.
Load	the	activity_thread_example.xml	file	for	the	project	into	the	Layout	Editor
tool.	Select	the	default	TextView	component	and	change	the	ID	for	the	view	to
myTextView	in	the	Properties	tool	window.
With	autoconnect	mode	disabled,	add	a	Button	view	to	the	user	interface,
positioned	directly	beneath	the	existing	TextView	object	as	illustrated	in	Figure
46-1.	Once	the	button	has	been	added,	click	on	the	Infer	Constraints	button	in
the	toolbar	to	add	the	missing	constraints.
Change	the	text	to	“Press	Me”	and	extract	the	string	to	a	resource	named
press_me.	With	the	button	view	still	selected	in	the	layout	change	the
layout_width	property	to	wrap_content	in	the	Properties	tool	window,	locate	the
onClick	property	and	enter	buttonClick	as	the	method	name.

Figure	46-1

Next,	load	the	ThreadExampleActivity.java	file	into	an	editing	panel	and	add
code	to	implement	the	buttonClick()	method	which	will	be	called	when	the
Button	view	is	touched	by	the	user.	Since	the	goal	here	is	to	demonstrate	the
problem	of	performing	lengthy	tasks	on	the	main	thread,	the	code	will	simply
pause	for	20	seconds	before	displaying	different	text	on	the	TextView	object:

package	com.ebookfrenzy.threadexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.TextView;

public	class	ThreadExampleActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_thread_example);

				}

				public	void	buttonClick(View	view)

				{

								long	endTime	=	System.currentTimeMillis()	+	20*1000;

	

								while	(System.currentTimeMillis()	<	endTime)	{

												synchronized	(this)	{

																try	{

																				wait(endTime	-	System.currentTimeMillis());

																}	catch	(Exception	e)	{

																}

												}

								}

								TextView	myTextView	=

																(TextView)findViewById(R.id.myTextView);

								myTextView.setText("Button	Pressed");

				}

}

With	the	code	changes	complete,	run	the	application	on	either	a	physical	device
or	an	emulator.	Once	the	application	is	running,	touch	the	Button,	at	which	point
the	application	will	appear	to	freeze.	It	will,	for	example,	not	be	possible	to
touch	the	button	a	second	time	and	in	some	situations	the	operating	system	will,
as	demonstrated	in	Figure	46-2,	report	the	application	as	being	unresponsive:

Figure	46-2

Clearly,	anything	that	is	going	to	take	time	to	complete	within	the	buttonClick()
method	needs	to	be	performed	within	a	separate	thread.

46.5	Creating	a	New	Thread
In	order	to	create	a	new	thread,	the	code	to	be	executed	in	that	thread	needs	to	be
placed	within	the	Run()	method	of	a	Runnable	instance.	A	new	Thread	object
then	needs	to	be	created,	passing	through	a	reference	to	the	Runnable	instance	to
the	constructor.	Finally,	the	start()	method	of	the	thread	object	needs	to	be	called
to	start	the	thread	running.	To	perform	the	task	within	the	buttonClick()	method,
therefore,	the	following	changes	need	to	be	made:

public	void	buttonClick(View	view)

{

							Runnable	runnable	=	new	Runnable()	{

															public	void	run()	{										

													

																						long	endTime	=	System.currentTimeMillis()

																																													+	20*1000;

													

																						while	(System.currentTimeMillis()	<

endTime)	{

																														synchronized	(this)	{

																																try	{

																																							wait(endTime	-										

																																									

System.currentTimeMillis());

																																}	catch	(Exception	e)	{}

																														}

																						}

															}

						};					

Thread	myThread	=	new	Thread(runnable);

						myThread.start();

}

When	the	application	is	now	run,	touching	the	button	causes	the	delay	to	be
performed	in	a	new	thread	leaving	the	main	thread	to	continue	handling	the	user
interface,	including	responding	to	additional	button	presses.	In	fact,	each	time
the	button	is	touched,	a	new	thread	will	be	created,	allowing	the	task	to	be
performed	multiple	times	concurrently.
A	close	inspection	of	the	updated	code	for	the	buttonClick()	method	will	reveal
that	the	code	to	update	the	TextView	has	been	removed.	As	previously	stated,
updating	a	user	interface	element	from	within	a	thread	other	than	the	main	thread
violates	a	key	rule	of	Android	development.	In	order	to	update	the	user	interface,
therefore,	it	will	be	necessary	to	implement	a	Handler	for	the	thread.

46.6	Implementing	a	Thread	Handler
Thread	handlers	are	implemented	in	the	main	thread	of	an	application	and	are
primarily	used	to	make	updates	to	the	user	interface	in	response	to	messages	sent
by	other	threads	running	within	the	application’s	process.
Handlers	are	subclassed	from	the	Android	Handler	class	and	can	be	used	either
by	specifying	a	Runnable	to	be	executed	when	required	by	the	thread,	or	by
overriding	the	handleMessage()	callback	method	within	the	Handler	subclass
which	will	be	called	when	messages	are	sent	to	the	handler	by	a	thread.
For	the	purposes	of	this	example,	a	handler	will	be	implemented	to	update	the
user	interface	from	within	the	previously	created	thread.	Load	the
ThreadExampleActivity.java	file	into	the	Android	Studio	editor	and	modify	the
code	to	add	a	Handler	instance	to	the	activity:

package	com.ebookfrenzy.threadexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.TextView;

import	android.os.Handler;

import	android.os.Message;

public	class	ThreadExampleActivity	extends	AppCompatActivity	{

				Handler	handler	=	new	Handler()	{

								@Override

								public	void	handleMessage(Message	msg)	{

												TextView	myTextView	=

																				(TextView)findViewById(R.id.myTextView);

												myTextView.setText("Button	Pressed");

								}

				};

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_thread_example);

				}

.

.

.

}

The	above	code	changes	have	declared	a	handler	and	implemented	within	that
handler	the	handleMessage()	callback	which	will	be	called	when	the	thread
sends	the	handler	a	message.	In	this	instance,	the	code	simply	displays	a	string
on	the	TextView	object	in	the	user	interface.
All	that	now	remains	is	to	modify	the	thread	created	in	the	buttonClick()	method
to	send	a	message	to	the	handler	when	the	delay	has	completed:

public	void	buttonClick(View	view)

{

						

							Runnable	runnable	=	new	Runnable()	{

															public	void	run()	{

																																												

																						long	endTime	=	System.currentTimeMillis()

+

																																																											

20*1000;

													

																						while	(System.currentTimeMillis()	<

endTime)	{

																														synchronized	(this)	{

																																try	{

																																								wait(endTime	-

																																									

System.currentTimeMillis());

																																}	catch	(Exception	e)	{}				

																						}

															}

															handler.sendEmptyMessage(0);			

											}

						};

					

						Thread	myThread	=	new	Thread(runnable);

						myThread.start();

					

}

Note	that	the	only	change	that	has	been	made	is	to	make	a	call	to	the
sendEmptyMessage()	method	of	the	handler.	Since	the	handler	does	not
currently	do	anything	with	the	content	of	any	messages	it	receives	it	is	sent	an
empty	message	object.
Compile	and	run	the	application	and,	once	executing,	touch	the	button.	After	a
20	second	delay,	the	new	text	will	appear	in	the	TextView	object	in	the	user
interface.

interface.

46.7	Passing	a	Message	to	the	Handler
While	the	previous	example	triggered	a	call	to	the	handleMessage()	handler
callback,	it	did	not	take	advantage	of	the	message	object	to	send	data	to	the
handler.	In	this	phase	of	the	tutorial,	the	example	will	be	further	modified	to	pass
data	between	the	thread	and	the	handler.	First,	the	updated	thread	in	the
buttonClick()	method	will	obtain	the	date	and	time	from	the	system	in	string
format	and	store	that	information	in	a	Bundle	object.	A	call	will	then	be	made	to
the	obtainMessage()	method	of	the	handler	object	to	get	a	message	object	from
the	message	pool.	Finally,	the	bundle	will	be	added	to	the	message	object	before
being	sent	via	a	call	to	the	sendMessage()	method	of	the	handler	object:

package	com.ebookfrenzy.threadexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.TextView;

import	android.os.Handler;

import	android.os.Message;

import	java.text.SimpleDateFormat;

import	java.util.Date;

import	java.util.Locale;

public	class	ThreadExampleActivity	extends	AppCompatActivity	{

.

.

.

				public	void	buttonClick(View	view)

				{

								Runnable	runnable	=	new	Runnable()	{

												public	void	run()	{

																Message	msg	=	handler.obtainMessage();

																Bundle	bundle	=	new	Bundle();

																SimpleDateFormat	dateformat	=

																								new	SimpleDateFormat("HH:mm:ss

MM/dd/yyyy",

																																Locale.US);

																String	dateString	=

																								dateformat.format(new	Date());

																bundle.putString("myKey",	dateString);

																msg.setData(bundle);

																handler.sendMessage(msg);

												}

								};

								Thread	myThread	=	new	Thread(runnable);

								myThread.start();

				}

}

Next,	update	the	handleMessage()	method	of	the	handler	to	extract	the	date	and
time	string	from	the	bundle	object	in	the	message	and	display	it	on	the	TextView
object:

Handler	handler	=	new	Handler()	{

@Override

public	void	handleMessage(Message	msg)

{																							

														Bundle	bundle	=	msg.getData();

														String	string	=	bundle.getString("myKey");

														TextView	myTextView	=

																					(TextView)findViewById(R.id.myTextView);

														myTextView.setText(string);

													}

};

Finally,	compile	and	run	the	application	and	test	that	touching	the	button	now
causes	the	current	date	and	time	to	appear	on	the	TextView	object.

46.8	Summary
The	goal	of	this	chapter	was	to	provide	an	overview	of	threading	within	Android
applications.	When	an	application	is	first	launched	in	a	process,	the	runtime
system	creates	a	main	thread	in	which	all	subsequently	launched	application
components	run	by	default.	The	primary	role	of	the	main	thread	is	to	handle	the
user	interface,	so	any	time	consuming	tasks	performed	in	that	thread	will	give
the	appearance	that	the	application	has	locked	up.	It	is	essential,	therefore,	that
tasks	likely	to	take	time	to	complete	be	started	in	a	separate	thread.
Because	the	Android	user	interface	toolkit	is	not	thread-safe,	changes	to	the	user
interface	should	not	be	made	in	any	thread	other	than	the	main	thread.	User
interface	changes	can	be	implemented	by	creating	a	handler	in	the	main	thread	to
which	messages	may	be	sent	from	within	other,	non-main	threads.

47.	An	Overview	of	Android	Started	and
Bound	Services

The	Android	Service	class	is	designed	specifically	to	allow	applications	to
initiate	and	perform	background	tasks.	Unlike	broadcast	receivers,	which	are
intended	to	perform	a	task	quickly	and	then	exit,	services	are	designed	to
perform	tasks	that	take	a	long	time	to	complete	(such	as	downloading	a	file	over
an	internet	connection	or	streaming	music	to	the	user)	but	do	not	require	a	user
interface.
In	this	chapter,	an	overview	of	the	different	types	of	services	available	will	be
covered,	including	started	services,	bound	services	and	intent	services.	Once
these	basics	have	been	covered,	subsequent	chapters	will	work	through	a	number
of	examples	of	services	in	action.

47.1	Started	Services
Started	services	are	launched	by	other	application	components	(such	as	an
activity	or	even	a	broadcast	receiver)	and	potentially	run	indefinitely	in	the
background	until	the	service	is	stopped,	or	is	destroyed	by	the	Android	runtime
system	in	order	to	free	up	resources.	A	service	will	continue	to	run	if	the
application	that	started	it	is	no	longer	in	the	foreground,	and	even	in	the	event
that	the	component	that	originally	started	the	service	is	destroyed.
By	default,	a	service	will	run	within	the	same	main	thread	as	the	application
process	from	which	it	was	launched	(referred	to	as	a	local	service).	It	is
important,	therefore,	that	any	CPU	intensive	tasks	be	performed	in	a	new	thread
within	the	service.	Instructing	a	service	to	run	within	a	separate	process	(and
therefore	known	as	a	remote	service)	requires	a	configuration	change	within	the
manifest	file.
Unless	a	service	is	specifically	configured	to	be	private	(once	again	via	a	setting
in	the	manifest	file),	that	service	can	be	started	by	other	components	on	the	same
Android	device.	This	is	achieved	using	the	Intent	mechanism	in	the	same	way
that	one	activity	can	launch	another,	as	outlined	in	preceding	chapters.
Started	services	are	launched	via	a	call	to	the	startService()	method,	passing
through	as	an	argument	an	Intent	object	identifying	the	service	to	be	started.
When	a	started	service	has	completed	its	tasks,	it	should	stop	itself	via	a	call	to
stopSelf().	Alternatively,	a	running	service	may	be	stopped	by	another

component	via	a	call	to	the	stopService()	method,	passing	through	as	an
argument	the	matching	Intent	for	the	service	to	be	stopped.
Services	are	given	a	high	priority	by	the	Android	system	and	are	typically
among	the	last	to	be	terminated	in	order	to	free	up	resources.

47.2	Intent	Service
As	previously	outlined,	services	run	by	default	within	the	same	main	thread	as
the	component	from	which	they	are	launched.	As	such,	any	CPU	intensive	tasks
that	need	to	be	performed	by	the	service	should	take	place	within	a	new	thread,
thereby	avoiding	impacting	the	performance	of	the	calling	application.
The	IntentService	class	is	a	convenience	class	(subclassed	from	the	Service
class)	that	sets	up	a	worker	thread	for	handling	background	tasks	and	handles
each	request	in	an	asynchronous	manner.	Once	the	service	has	handled	all
queued	requests,	it	simply	exits.	All	that	is	required	when	using	the	IntentService
class	is	that	the	onHandleIntent()	method	be	implemented	containing	the	code	to
be	executed	for	each	request.
For	services	that	do	not	require	synchronous	processing	of	requests,
IntentService	is	the	recommended	option.	Services	requiring	synchronous
handling	of	requests	will,	however,	need	to	subclass	from	the	Service	class	and
manually	implement	and	manage	threading	to	handle	any	CPU	intensive	tasks
efficiently.

47.3	Bound	Service
A	bound	service	is	similar	to	a	started	service	with	the	exception	that	a	started
service	does	not	generally	return	results	or	permit	interaction	with	the
component	that	launched	it.	A	bound	service,	on	the	other	hand,	allows	the
launching	component	to	interact	with,	and	receive	results	from,	the	service.
Through	the	implementation	of	interprocess	communication	(IPC),	this
interaction	can	also	take	place	across	process	boundaries.	An	activity	might,	for
example,	start	a	service	to	handle	audio	playback.	The	activity	will,	in	all
probability,	include	a	user	interface	providing	controls	to	the	user	for	the
purpose	of	pausing	playback	or	skipping	to	the	next	track.	Similarly,	the	service
will	quite	likely	need	to	communicate	information	to	the	calling	activity	to
indicate	that	the	current	audio	track	has	completed	and	to	provide	details	of	the
next	track	that	is	about	to	start	playing.
A	component	(also	referred	to	in	this	context	as	a	client)	starts	and	binds	to	a
bound	service	via	a	call	to	the	bindService()	method.	Also,	multiple	components

may	bind	to	a	service	simultaneously.	When	the	service	binding	is	no	longer
required	by	a	client,	a	call	should	be	made	to	the	unbindService()	method.	When
the	last	bound	client	unbinds	from	a	service,	the	service	will	be	terminated	by
the	Android	runtime	system.	It	is	important	to	keep	in	mind	that	a	bound	service
may	also	be	started	via	a	call	to	startService().	Once	started,	components	may
then	bind	to	it	via	bindService()	calls.	When	a	bound	service	is	launched	via	a
call	to	startService()	it	will	continue	to	run	even	after	the	last	client	unbinds	from
it.
A	bound	service	must	include	an	implementation	of	the	onBind()	method	which
is	called	both	when	the	service	is	initially	created	and	when	other	clients
subsequently	bind	to	the	running	service.	The	purpose	of	this	method	is	to	return
to	binding	clients	an	object	of	type	IBinder	containing	the	information	needed	by
the	client	to	communicate	with	the	service.
In	terms	of	implementing	the	communication	between	a	client	and	a	bound
service,	the	recommended	technique	depends	on	whether	the	client	and	service
reside	in	the	same	or	different	processes	and	whether	or	not	the	service	is	private
to	the	client.	Local	communication	can	be	achieved	by	extending	the	Binder
class	and	returning	an	instance	from	the	onBind()	method.	Interprocess
communication,	on	the	other	hand,	requires	Messenger	and	Handler
implementation.	Details	of	both	of	these	approaches	will	be	covered	in	later
chapters.

47.4	The	Anatomy	of	a	Service
A	service	must,	as	has	already	been	mentioned,	be	created	as	a	subclass	of	the
Android	Service	class	(more	specifically	android.app.Service)	or	a	subclass
thereof	(such	as	android.app.IntentService).	As	part	of	the	subclassing
procedure,	one	or	more	of	the	following	superclass	callback	methods	must	be
overridden,	depending	on	the	exact	nature	of	the	service	being	created:
·									onStartCommand()	–	This	is	the	method	that	is	called	when	the	service	is

started	by	another	component	via	a	call	to	the	startService()	method.	This
method	does	not	need	to	be	implemented	for	bound	services.

·									onBind()	–	Called	when	a	component	binds	to	the	service	via	a	call	to	the
bindService()	method.	When	implementing	a	bound	service,	this	method	must
return	an	IBinder	object	facilitating	communication	with	the	client.	In	the
case	of	started	services,	this	method	must	be	implemented	to	return	a	NULL
value.

·									onCreate()	–	Intended	as	a	location	to	perform	initialization	tasks,	this

method	is	called	immediately	before	the	call	to	either	onStartCommand()	or
the	first	call	to	the	onBind()	method.

·									onDestroy()	–	Called	when	the	service	is	being	destroyed.
·									onHandleIntent()	–	Applies	only	to	IntentService	subclasses.	This	method	is

called	to	handle	the	processing	for	the	service.	It	is	executed	in	a	separate
thread	from	the	main	application.

Note	that	the	IntentService	class	includes	its	own	implementations	of	the
onStartCommand()	and	onBind()	callback	methods	so	these	do	not	need	to	be
implemented	in	subclasses.

47.5	Controlling	Destroyed	Service	Restart	Options
The	onStartCommand()	callback	method	is	required	to	return	an	integer	value	to
define	what	should	happen	with	regard	to	the	service	in	the	event	that	it	is
destroyed	by	the	Android	runtime	system.	Possible	return	values	for	these
methods	are	as	follows:
·									START_NOT_STICKY	–	Indicates	to	the	system	that	the	service	should

not	be	restarted	in	the	event	that	it	is	destroyed	unless	there	are	pending
intents	awaiting	delivery.

·									START_STICKY	–	Indicates	that	the	service	should	be	restarted	as	soon	as
possible	after	it	has	been	destroyed	if	the	destruction	occurred	after	the
onStartCommand()	method	returned.	In	the	event	that	no	pending	intents	are
waiting	to	be	delivered,	the	onStartCommand()	callback	method	is	called	with
a	NULL	intent	value.	The	intent	being	processed	at	the	time	that	the	service
was	destroyed	is	discarded.

·									START_REDELIVER_INTENT	–	Indicates	that,	if	the	service	was
destroyed	after	returning	from	the	onStartCommand()	callback	method,	the
service	should	be	restarted	with	the	current	intent	redelivered	to	the
onStartCommand()	method	followed	by	any	pending	intents.

47.6	Declaring	a	Service	in	the	Manifest	File
In	order	for	a	service	to	be	useable,	it	must	first	be	declared	within	a	manifest
file.	This	involves	embedding	an	appropriately	configured	<service>	element
into	an	existing	<application>	entry.	At	a	minimum,	the	<service>	element	must
contain	a	property	declaring	the	class	name	of	the	service	as	illustrated	in	the
following	XML	fragment:

				<application

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"	>

								<activity

												android:label="@string/app_name"

												android:name=".TestActivity"	>

												<intent-filter>

														<action	android:name="android.intent.action.MAIN"

/>

														<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<service	android:name="MyService>

									</service>

				</application>

</manifest>

By	default,	services	are	declared	as	public,	in	that	they	can	be	accessed	by
components	outside	of	the	application	package	in	which	they	reside.	In	order	to
make	a	service	private,	the	android:exported	property	must	be	declared	as	false
within	the	<service>	element	of	the	manifest	file.	For	example:

<service	android:name="MyService"

android:exported="false">

</service>

As	previously	discussed,	services	run	within	the	same	process	as	the	calling
component	by	default.	In	order	to	force	a	service	to	run	within	its	own	process,
add	an	android:process	property	to	the	<service>	element,	declaring	a	name	for
the	process	prefixed	with	a	colon	(:):

<service	android:name="MyService"

android:exported="false"

android:process=":myprocess">

</service>

The	colon	prefix	indicates	that	the	new	process	is	private	to	the	local	application.
If	the	process	name	begins	with	a	lower	case	letter	instead	of	a	colon,	however,
the	process	will	be	global	and	available	for	use	by	other	components.
Finally,	using	the	same	intent	filter	mechanisms	outlined	for	activities,	a	service
may	also	advertise	capabilities	to	other	applications	running	on	the	device.	For
more	details	on	intent	filters,	refer	to	the	chapter	entitled	An	Overview	of
Android	Intents.

47.7	Starting	a	Service	Running	on	System	Startup
Given	the	background	nature	of	services,	it	is	not	uncommon	for	a	service	to
need	to	be	started	when	an	Android	based	system	first	boots	up.	This	can	be

achieved	by	creating	a	broadcast	receiver	with	an	intent	filter	configured	to	listen
for	the	system	android.intent.action.BOOT_COMPLETED	intent.	When	such	an
intent	is	detected,	the	broadcast	receiver	would	simply	invoke	the	necessary
service	and	then	return.	Note	that,	in	order	to	function,	such	a	broadcast	receiver
will	need	to	request	the	android.permission.RECEIVE_BOOT_COMPLETED
permission.

47.8	Summary
Android	services	are	a	powerful	mechanism	that	allows	applications	to	perform
tasks	in	the	background.	A	service,	once	launched,	will	continue	to	run
regardless	of	whether	the	calling	application	is	the	foreground	task	or	not,	and
even	in	the	event	that	the	component	that	initiated	the	service	is	destroyed.
Services	are	subclassed	from	the	Android	Service	class	and	fall	into	the	category
of	either	started	services	or	bound	services.	Started	services	run	until	they	are
stopped	or	destroyed	and	do	not	inherently	provide	a	mechanism	for	interaction
or	data	exchange	with	other	components.	Bound	services,	on	the	other	hand,
provide	a	communication	interface	to	other	client	components	and	generally	run
until	the	last	client	unbinds	from	the	service.
By	default,	services	run	locally	within	the	same	process	and	main	thread	as	the
calling	application.	A	new	thread	should,	therefore,	be	created	within	the	service
for	the	purpose	of	handling	CPU	intensive	tasks.	Remote	services	may	be	started
within	a	separate	process	by	making	a	minor	configuration	change	to	the
corresponding	<service>	entry	in	the	application	manifest	file.
The	IntentService	class	(itself	a	subclass	of	the	Android	Service	class)	provides	a
convenient	mechanism	for	handling	asynchronous	service	requests	within	a
separate	worker	thread.

48.	Implementing	an	Android	Started
Service	–	A	Worked	Example

The	previous	chapter	covered	a	considerable	amount	of	information	relating	to
Android	services	and,	at	this	point,	the	concept	of	services	may	seem	somewhat
overwhelming.	In	order	to	reinforce	the	information	in	the	previous	chapter,	this
chapter	will	work	through	an	Android	Studio	tutorial	intended	to	gradually
introduce	the	concepts	of	started	service	implementation.
Within	this	chapter,	a	sample	application	will	be	created	and	used	as	the	basis
for	implementing	an	Android	service.	In	the	first	instance,	the	service	will	be
created	using	the	IntentService	class.	This	example	will	subsequently	be
extended	to	demonstrate	the	use	of	the	Service	class.	Finally,	the	steps	involved
in	performing	tasks	within	a	separate	thread	when	using	the	Service	class	will	be
implemented.	Having	covered	started	services	in	this	chapter,	the	next	chapter,
entitled	Android	Local	Bound	Services	–	A	Worked	Example,	will	focus	on	the
implementation	of	bound	services	and	client-service	communication.

48.1	Creating	the	Example	Project
Launch	Android	Studio	and	follow	the	usual	steps	to	create	a	new	project,
entering	ServiceExample	into	the	Application	name	field	and	ebookfrenzy.com	as
the	Company	Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
ServiceExampleActivity	using	the	default	values	for	the	remaining	options.

48.2	Creating	the	Service	Class
Before	writing	any	code,	the	first	step	is	to	add	a	new	class	to	the	project	to
contain	the	service.	The	first	type	of	service	to	be	demonstrated	in	this	tutorial	is
to	be	based	on	the	IntentService	class.	As	outlined	in	the	preceding	chapter	(An
Overview	of	Android	Started	and	Bound	Services),	the	purpose	of	the
IntentService	class	is	to	provide	the	developer	with	a	convenient	mechanism	for
creating	services	that	perform	tasks	asynchronously	within	a	separate	thread
from	the	calling	application.
Add	a	new	class	to	the	project	by	right-clicking	on	the

com.ebookfrenzy.serviceexample	package	name	located	under	app	->	java	in	the
Project	tool	window	and	selecting	the	New	->	Java	Class	menu	option.	Within
the	resulting	Create	New	Class	dialog,	name	the	new	class	MyIntentService.
Finally,	click	on	the	OK	button	to	create	the	new	class.
Review	the	new	MyIntentService.java	file	in	the	Android	Studio	editor	where	it
should	read	as	follows:

package	com.ebookfrenzy.serviceexample;

/**

	*	Created	by	<name>	on	<date>.

	*/

public	class	MyIntentService	{

}

The	class	needs	to	be	modified	so	that	it	subclasses	the	IntentService	class.
When	subclassing	the	IntentService	class,	there	are	two	rules	that	must	be
followed.	First,	a	constructor	for	the	class	must	be	implemented	which	calls	the
superclass	constructor,	passing	through	the	class	name	of	the	service.	Second,
the	class	must	override	the	onHandleIntent()	method.	Modify	the	code	in	the
MyIntentService.java	file,	therefore,	so	that	it	reads	as	follows:

package	com.ebookfrenzy.serviceexample;

import	android.app.IntentService;

import	android.content.Intent;				

public	class	MyIntentService	extends	IntentService	{

				@Override

				protected	void	onHandleIntent(Intent	arg0)	{

	

				}

				public	MyIntentService()	{

								super("MyIntentService");

				}

}

All	that	remains	at	this	point	is	to	implement	some	code	within	the
onHandleIntent()	method	so	that	the	service	actually	does	something	when
invoked.	Ordinarily	this	would	involve	performing	a	task	that	takes	some	time	to
complete	such	as	downloading	a	large	file	or	playing	audio.	For	the	purposes	of
this	example,	however,	the	handler	will	simply	output	a	message	to	the	Android

Studio	LogCat	panel:
package	com.ebookfrenzy.serviceexample;

import	android.app.IntentService;

import	android.content.Intent;

import	android.util.Log;

public	class	MyIntentService	extends	IntentService	{

				private	static	final	String	TAG	=

														"ServiceExample";

				@Override

				protected	void	onHandleIntent(Intent	arg0)	{

								Log.i(TAG,	"Intent	Service	started");

				}

				public	MyIntentService()	{

								super("MyIntentService");

				}

}

48.3	Adding	the	Service	to	the	Manifest	File
Before	a	service	can	be	invoked,	it	must	first	be	added	to	the	manifest	file	of	the
application	to	which	it	belongs.	At	a	minimum,	this	involves	adding	a	<service>
element	together	with	the	class	name	of	the	service.
Double-click	on	the	AndroidManifest.xml	file	(app	->	manifests)	for	the	current
project	to	load	it	into	the	editor	and	modify	the	XML	to	add	the	service	element
as	shown	in	the	following	listing:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.serviceexample">

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme">

								<activity	android:name=".ServiceExampleActivity">

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<service	android:name=".MyIntentService"	/>

				</application>

</manifest>

48.4	Starting	the	Service
Now	that	the	service	has	been	implemented	and	declared	in	the	manifest	file,	the
next	step	is	to	add	code	to	start	the	service	when	the	application	launches.	As	is
typically	the	case,	the	ideal	location	for	such	code	is	the	onCreate()	callback
method	of	the	activity	class	(which,	in	this	case,	can	be	found	in	the
ServiceExampleActivity.java	file).	Locate	and	load	this	file	into	the	editor	and
modify	the	onCreate()	method	to	add	the	code	to	start	the	service:

package	com.ebookfrenzy.serviceexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.Intent;

public	class	ServiceExampleActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_service_example);

								Intent	intent	=	new	Intent(this,

MyIntentService.class);

								startService(intent);

				}

}

All	that	the	added	code	needs	to	do	is	to	create	a	new	Intent	object	primed	with
the	class	name	of	the	service	to	start	and	then	use	it	as	an	argument	to	the
startService()	method.

48.5	Testing	the	IntentService	Example
The	example	IntentService	based	service	is	now	complete	and	ready	to	be	tested.
Since	the	message	displayed	by	the	service	will	appear	in	the	LogCat	panel,	it	is

Since	the	message	displayed	by	the	service	will	appear	in	the	LogCat	panel,	it	is
important	that	this	is	configured	in	the	Android	Studio	environment.
Begin	by	displaying	the	Android	Monitor	tool	window	using	either	the	tools
menu	button	located	in	the	far	left	corner	of	the	status	bar	or	the	Alt-6	keyboard
shortcut.	Within	the	tool	window,	make	sure	that	the	logcat	tab	is	selected	before
accessing	the	menu	in	the	upper	right-hand	corner	of	the	panel	(which	will
probably	currently	read	Show	only	selected	application).	From	this	menu,	select
the	Edit	Filter	Configuration	menu	option.
In	the	Create	New	Logcat	Filter	dialog	name	the	filter	ServiceExample	and,	in
the	by	Log	Tag	field,	enter	the	TAG	value	declared	in
ServiceExampleActivity.java	(in	the	above	code	example	this	was
ServiceExample).
When	the	changes	are	complete,	click	on	the	OK	button	to	create	the	filter	and
dismiss	the	dialog.	The	newly	created	filter	should	now	be	selected	in	the
Android	tool	window.
With	the	filter	configured,	run	the	application	on	a	physical	device	or	AVD
emulator	session	and	note	that	the	“Intent	Service	Started”	message	appears	in
the	LogCat	panel.	Note	that	it	may	be	necessary	to	change	the	filter	menu	setting
back	to	ServiceExample	after	the	application	has	launched:

06-29	09:05:16.887	3389-3948/com.ebookfrenzy.serviceexample

I/ServiceExample:	Intent	Service	started

Had	the	service	been	tasked	with	a	long-term	activity,	the	service	would	have
continued	to	run	in	the	background	in	a	separate	thread	until	the	task	was
completed,	allowing	the	application	to	continue	functioning	and	responding	to
the	user.	Since	all	our	service	did	was	log	a	message,	it	will	have	simply	stopped
upon	completion.

48.6	Using	the	Service	Class
While	the	IntentService	class	allows	a	service	to	be	implemented	with	minimal
coding,	there	are	situations	where	the	flexibility	and	synchronous	nature	of	the
Service	class	will	be	required.	As	will	become	evident	in	this	chapter,	this
involves	some	additional	programming	work	to	implement.
In	order	to	avoid	introducing	too	many	concepts	at	once,	and	as	a	demonstration
of	the	risks	inherent	in	performing	time-consuming	service	tasks	in	the	same
thread	as	the	calling	application,	the	example	service	created	here	will	not	run
the	service	task	within	a	new	thread,	instead	relying	on	the	main	thread	of	the
application.	Creation	and	management	of	a	new	thread	within	a	service	will	be

application.	Creation	and	management	of	a	new	thread	within	a	service	will	be
covered	in	the	next	phase	of	the	tutorial.

48.7	Creating	the	New	Service
For	the	purposes	of	this	example,	a	new	class	will	be	added	to	the	project	that
will	subclass	from	the	Service	class.	Right-click,	therefore,	on	the	package	name
listed	under	app	->	java	in	the	Project	tool	window	and	select	the	New	->
Service	->	Service	menu	option.	Create	a	new	class	named	MyService	with	both
the	Exported	and	Enabled	options	selected.
The	minimal	requirement	in	order	to	create	an	operational	service	is	to
implement	the	onStartCommand()	callback	method	which	will	be	called	when
the	service	is	starting	up.	In	addition,	the	onBind()	method	must	return	a	null
value	to	indicate	to	the	Android	system	that	this	is	not	a	bound	service.	For	the
purposes	of	this	example,	the	onStartCommand()	method	will	loop	three	times
performing	a	10-second	wait	on	each	loop.	For	the	sake	of	completeness,	stub
versions	of	the	onCreate()	and	onDestroy()	methods	will	also	be	implemented	in
the	new	MyService.java	file	as	follows:

package	com.ebookfrenzy.serviceexample;

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

import	android.util.Log;

public	class	MyService	extends	Service	{

				public	MyService()	{

				}

				private	static	final	String	TAG	=

												"ServiceExample";

	

				@Override

				public	void	onCreate()	{

								Log.i(TAG,	"Service	onCreate");

				}

	

				@Override

				public	int	onStartCommand(Intent	intent,	int	flags,	int

startId)	{

	

								Log.i(TAG,	"Service	onStartCommand");

	

								for	(int	i	=	0;	i	<	3;	i++)	{

												long	endTime	=	System.currentTimeMillis()	+

																				10	*	1000;

												while	(System.currentTimeMillis()	<	endTime)	{

																synchronized	(this)	{

																				try	{

																								wait(endTime	-

System.currentTimeMillis());

																				}	catch	(Exception	e)	{

																				}

																}

												}

												Log.i(TAG,	"Service	running");

								}

								return	Service.START_STICKY;

				}

	

				@Override

				public	IBinder	onBind(Intent	arg0)	{

								Log.i(TAG,	"Service	onBind");

								return	null;

				}

	

				@Override

				public	void	onDestroy()	{

								Log.i(TAG,	"Service	onDestroy");

				}

}

With	the	service	implemented,	load	the	AndroidManifest.xml	file	into	the	editor
and	verify	that	Android	Studio	has	added	an	appropriate	entry	for	the	new
service	which	should	read	as	follows:

<service

	android:name=".MyService"

												android:enabled="true"

												android:exported="true"	>

</service>

48.8	Modifying	the	User	Interface
As	will	become	evident	when	the	application	runs,	failing	to	create	a	new	thread
for	the	service	to	perform	tasks	creates	a	serious	usability	problem.	In	order	to	be
able	to	appreciate	fully	the	magnitude	of	this	issue,	it	is	going	to	be	necessary	to
add	a	Button	view	to	the	user	interface	of	the	ServiceExampleActivity	activity
and	configure	it	to	call	a	method	when	“clicked”	by	the	user.

Locate	and	load	the	activity_service_example.xml	file	in	the	Project	tool	window
(app	->	res	->	layout	->	activity_service_example.xml).	Delete	the	TextView
and	add	a	Button	view	to	the	layout.	Select	the	new	button,	change	the	text	to
read	“Start	Service”	and	extract	the	string	to	a	resource	named	start_service.
Remaining	in	the	Properties	tool	window,	change	the	layout_width	property	of
the	Button	widget	to	wrap_content	so	that	it	is	sized	to	accommodate	the	text.
With	the	new	Button	still	selected,	locate	the	onClick	property	in	the	Properties
panel	and	assign	to	it	a	method	named	buttonClick.
Next,	edit	the	ServiceExampleActivity.java	file	to	add	the	buttonClick()	method
and	remove	the	code	from	the	onCreate()	method	that	was	previously	added	to
launch	the	MyIntentService	service:

package	com.ebookfrenzy.serviceexample;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.Intent;

import	android.view.View;

public	class	ServiceExampleActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_service_example);

								Intent	intent	=	new	Intent(this,

MyIntentService.class);

								startService(intent);

				}

				public	void	buttonClick(View	view)

				{

								Intent	intent	=	new	Intent(this,	MyService.class);

								startService(intent);

				}

}

All	that	the	buttonClick()	method	does	is	create	an	intent	object	for	the	new
service	and	then	start	it	running.

48.9	Running	the	Application
Run	the	application	and,	once	loaded,	touch	the	Start	Service	button.	Within	the
LogCat	window	(using	the	ServiceExample	filter	created	previously)	the	log

messages	will	appear	indicating	that	the	onCreate()	method	was	called	and	that
the	loop	in	the	onStartCommand()	method	is	executing.
Before	the	final	loop	message	appears,	attempt	to	touch	the	Start	Service	button
a	second	time.	Note	that	the	button	is	unresponsive.	After	approximately	20
seconds,	the	system	may	display	a	warning	dialog	containing	the	message
“ServiceExample	isn’t	responding”.	The	reason	for	this	is	that	the	main	thread	of
the	application	is	currently	being	held	up	by	the	service	while	it	performs	the
looping	task.	Not	only	does	this	prevent	the	application	from	responding	to	the
user,	but	also	to	the	system,	which	eventually	assumes	that	the	application	has
locked	up	in	some	way.
Clearly,	the	code	for	the	service	needs	to	be	modified	to	perform	tasks	in	a
separate	thread	from	the	main	thread.

48.10	Creating	a	New	Thread	for	Service	Tasks
As	outlined	in	A	Basic	Overview	of	Android	Threads	and	Thread	Handlers,
when	an	Android	application	is	first	started,	the	runtime	system	creates	a	single
thread	in	which	all	application	components	will	run	by	default.	This	thread	is
generally	referred	to	as	the	main	thread.	The	primary	role	of	the	main	thread	is
to	handle	the	user	interface	in	terms	of	event	handling	and	interaction	with	views
in	the	user	interface.	Any	additional	components	that	are	started	within	the
application	will,	by	default,	also	run	on	the	main	thread.
As	demonstrated	in	the	previous	section,	any	component	that	undertakes	a	time
consuming	operation	on	the	main	thread	will	cause	the	application	to	become
unresponsive	until	that	task	is	complete.	It	is	not	surprising,	therefore,	that
Android	provides	an	API	that	allows	applications	to	create	and	use	additional
threads.	Any	tasks	performed	in	a	separate	thread	from	the	main	thread	are
essentially	performed	in	the	background.	Such	threads	are	typically	referred	to	as
background	or	worker	threads.
A	very	simple	solution	to	this	problem	involves	performing	the	service	task
within	a	new	thread.	The	following	onStartCommand()	method	from	the
MyService.java	file,	for	example,	has	been	modified	to	launch	the	task	within	a
new	thread	using	the	most	basic	of	thread	handling	examples:

@Override

public	int	onStartCommand(Intent	intent,	int	flags,	int

startId)	{

													

							Log.i(TAG,	"Service	onStartCommand	"	+	startId);

						

							final	int	currentId	=	startId;

													

							Runnable	r	=	new	Runnable()	{

														public	void	run()	{

																					

															for	(int	i	=	0;	i	<	3;	i++)

															{

																						long	endTime	=	System.currentTimeMillis()

+

																																																												

10*1000;

																													

																						while	(System.currentTimeMillis()	<

endTime)	{

																														synchronized	(this)	{

																																						try	{

																																													wait(endTime	-

																																				

System.currentTimeMillis());

																																						}	catch	(Exception	e)	{

																																				}

																													}

																		}										

																		Log.i(TAG,	"Service	running	"	+	currentId);

														}

														stopSelf();

											}

						};

										

						Thread	t	=	new	Thread(r);

						t.start();													

						return	Service.START_STICKY;

}

When	the	application	is	now	run,	it	should	be	possible	to	touch	the	Start	Service
button	multiple	times.	Each	time	a	new	thread	will	be	created	by	the	service	to
process	the	task.	The	LogCat	output	will	now	also	include	a	number	referencing
the	startId	of	each	service	request.
With	the	service	now	handling	requests	outside	of	the	main	thread,	the
application	remains	responsive	to	both	the	user	and	the	Android	system.

48.11	Summary
This	chapter	has	worked	through	an	example	implementation	of	an	Android
started	service	using	the	IntentService	and	Service	classes.	The	example	also

demonstrated	the	use	of	threads	within	a	service	to	avoid	making	the	main	thread
of	the	application	unresponsive.

49.	Android	Local	Bound	Services	–	A
Worked	Example

As	outlined	in	some	detail	in	the	previous	chapters,	bound	services,	unlike
started	services,	provide	a	mechanism	for	implementing	communication	between
an	Android	service	and	one	or	more	client	components.	The	objective	of	this
chapter	is	to	build	on	the	overview	of	bound	services	provided	in	An	Overview	of
Android	Started	and	Bound	Services	before	embarking	on	an	example
implementation	of	a	local	bound	service	in	action.

49.1	Understanding	Bound	Services
In	common	with	started	services,	bound	services	are	provided	to	allow
applications	to	perform	tasks	in	the	background.	Unlike	started	services,
however,	multiple	client	components	may	bind	to	a	bound	service	and,	once
bound,	interact	with	that	service	using	a	variety	of	different	mechanisms.
Bound	services	are	created	as	subclasses	of	the	Android	Service	class	and	must,
at	a	minimum,	implement	the	onBind()	method.	Client	components	bind	to	a
service	via	a	call	to	the	bindService()	method.	The	first	bind	request	to	a	bound
service	will	result	in	a	call	to	that	service’s	onBind()	method	(subsequent	bind
requests	do	not	trigger	an	onBind()	call).	Clients	wishing	to	bind	to	a	service
must	also	implement	a	ServiceConnection	subclass	containing
onServiceConnected()	and	onServiceDisconnected()	methods	which	will	be
called	once	the	client-server	connection	has	been	established	or	disconnected,
respectively.	In	the	case	of	the	onServiceConnected()	method,	this	will	be	passed
an	IBinder	object	containing	the	information	needed	by	the	client	to	interact	with
the	service.

49.2	Bound	Service	Interaction	Options
There	are	two	recommended	mechanisms	for	implementing	interaction	between
client	components	and	a	bound	service.	In	the	event	that	the	bound	service	is
local	and	private	to	the	same	application	as	the	client	component	(in	other	words
it	runs	within	the	same	process	and	is	not	available	to	components	in	other
applications),	the	recommended	method	is	to	create	a	subclass	of	the	Binder
class	and	extend	it	to	provide	an	interface	to	the	service.	An	instance	of	this
Binder	object	is	then	returned	by	the	onBind()	method	and	subsequently	used	by
the	client	component	to	directly	access	methods	and	data	held	within	the	service.

In	situations	where	the	bound	service	is	not	local	to	the	application	(in	other
words,	it	is	running	in	a	different	process	from	the	client	component),	interaction
is	best	achieved	using	a	Messenger/Handler	implementation.
In	the	remainder	of	this	chapter,	an	example	will	be	created	with	the	aim	of
demonstrating	the	steps	involved	in	creating,	starting	and	interacting	with	a
local,	private	bound	service.

49.3	An	Android	Studio	Local	Bound	Service	Example
The	example	application	created	in	the	remainder	of	this	chapter	will	consist	of	a
single	activity	and	a	bound	service.	The	purpose	of	the	bound	service	is	to	obtain
the	current	time	from	the	system	and	return	that	information	to	the	activity
where	it	will	be	displayed	to	the	user.	The	bound	service	will	be	local	and
private	to	the	same	application	as	the	activity.
Launch	Android	Studio	and	follow	the	usual	steps	to	create	a	new	project,
entering	LocalBound	into	the	Application	name	field	and	ebookfrenzy.com	as	the
Company	Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
LocalBoundActivity	with	the	remaining	fields	set	to	the	default	values.
Once	the	project	has	been	created,	the	next	step	is	to	add	a	new	class	to	act	as	the
bound	service.

49.4	Adding	a	Bound	Service	to	the	Project
To	add	a	new	class	to	the	project,	right-click	on	the	package	name	(located	under
app	->	java	->	com.ebookfrenzy.localbound)	within	the	Project	tool	window	and
select	the	New	->	Service	->	Service	menu	option.	Specify	BoundService	as	the
class	name	and	make	sure	that	both	the	Exported	and	Enabled	options	are
selected	before	clicking	on	Finish	to	create	the	class.	By	default,	Android	Studio
will	load	the	BoundService.java	file	into	the	editor	where	it	will	read	as	follows:

package	com.ebookfrenzy.localbound;

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

public	class	BoundService	extends	Service	{

				public	BoundService()	{

				}

				@Override

				public	IBinder	onBind(Intent	intent)	{

								//	TODO:	Return	the	communication	channel	to	the

service.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

}

49.5	Implementing	the	Binder
As	previously	outlined,	local	bound	services	can	communicate	with	bound
clients	by	passing	an	appropriately	configured	Binder	object	to	the	client.	This	is
achieved	by	creating	a	Binder	subclass	within	the	bound	service	class	and
extending	it	by	adding	one	or	more	new	methods	that	can	be	called	by	the	client.
In	most	cases,	this	simply	involves	implementing	a	method	that	returns	a
reference	to	the	bound	service	instance.	With	a	reference	to	this	instance,	the
client	can	then	access	data	and	call	methods	within	the	bound	service	directly.
For	the	purposes	of	this	example,	therefore,	some	changes	are	needed	to	the
template	BoundService	class	created	in	the	preceding	section.	In	the	first
instance,	a	Binder	subclass	needs	to	be	declared.	This	class	will	contain	a	single
method	named	getService()	which	will	simply	return	a	reference	to	the	current
service	object	instance	(represented	by	the	this	keyword).	With	these
requirements	in	mind,	edit	the	BoundService.java	file	and	modify	it	as	follows:

package	com.ebookfrenzy.localbound;

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

import	android.os.Binder;

public	class	BoundService	extends	Service	{

				private	final	IBinder	myBinder	=	new	MyLocalBinder();

				public	BoundService()	{

				}

				@Override

				public	IBinder	onBind(Intent	intent)	{

								//	TODO:	Return	the	communication	channel	to	the

service.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

				public	class	MyLocalBinder	extends	Binder	{

								BoundService	getService()	{

												return	BoundService.this;

								}

				}

}

Having	made	the	changes	to	the	class,	it	is	worth	taking	a	moment	to	recap	the
steps	performed	here.	First,	a	new	subclass	of	Binder	(named	MyLocalBinder)	is
declared.	This	class	contains	a	single	method	for	the	sole	purpose	of	returning	a
reference	to	the	current	instance	of	the	BoundService	class.	A	new	instance	of
the	MyLocalBinder	class	is	created	and	assigned	to	the	myBinder	IBinder
reference	(since	Binder	is	a	subclass	of	IBinder	there	is	no	type	mismatch	in	this
assignment).
Next,	the	onBind()	method	needs	to	be	modified	to	return	a	reference	to	the
myBinder	object	and	a	new	public	method	implemented	to	return	the	current
time	when	called	by	any	clients	that	bind	to	the	service:

package	com.ebookfrenzy.localbound;

import	java.text.SimpleDateFormat;

import	java.util.Date;

import	java.util.Locale;

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

import	android.os.Binder;

public	class	BoundService	extends	Service	{

				private	final	IBinder	myBinder	=	new	MyLocalBinder();

				public	BoundService()	{

				}

				@Override

				public	IBinder	onBind(Intent	intent)	{

								return	myBinder;

				}

				public	String	getCurrentTime()	{

								SimpleDateFormat	dateformat	=

																new	SimpleDateFormat("HH:mm:ss	MM/dd/yyyy",

																								Locale.US);

								return	(dateformat.format(new	Date()));

				}

				public	class	MyLocalBinder	extends	Binder	{

								BoundService	getService()	{

												return	BoundService.this;

								}

				}

}

At	this	point,	the	bound	service	is	complete	and	is	ready	to	be	added	to	the
project	manifest	file.	Locate	and	double-click	on	the	AndroidManifest.xml	file
for	the	LocalBound	project	in	the	Project	tool	window	and,	once	loaded	into	the
Manifest	Editor,	verify	that	Android	Studio	has	already	added	a	<service>	entry
for	the	service	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.localbound.localbound"	>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								<activity

												android:name="	.LocalBoundActivity"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<service

												android:name=".BoundService"

												android:enabled="true"

												android:exported="true"	>

								</service>

				</application>

</manifest>

The	next	phase	is	to	implement	the	necessary	code	within	the	activity	to	bind	to
the	service	and	call	the	getCurrentTime()	method.

49.6	Binding	the	Client	to	the	Service
For	the	purposes	of	this	tutorial,	the	client	is	the	LocalBoundActivity	instance	of
the	running	application.	As	previously	noted,	in	order	to	successfully	bind	to	a
service	and	receive	the	IBinder	object	returned	by	the	service’s	onBind()
method,	it	is	necessary	to	create	a	ServiceConnection	subclass	and	implement
onServiceConnected()	and	onServiceDisconnected()	callback	methods.	Edit	the
LocalBoundActivity.java	file	and	modify	it	as	follows:

package	com.ebookfrenzy.localbound;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.IBinder;

import	android.content.Context;

import	android.content.Intent;

import	android.content.ComponentName;

import	android.content.ServiceConnection;

import	com.ebookfrenzy.localbound.BoundService.MyLocalBinder;

public	class	LocalBoundActivity	extends	AppCompatActivity	{

				BoundService	myService;

				boolean	isBound	=	false;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_local_bound);

				}

				private	ServiceConnection	myConnection	=	new

ServiceConnection()

				{

								@Override

								public	void	onServiceConnected(ComponentName	className,

																																							IBinder	service)	{

												MyLocalBinder	binder	=	(MyLocalBinder)	service;

												myService	=	binder.getService();

												isBound	=	true;

								}

	

								@Override

								public	void	onServiceDisconnected(ComponentName	name)	{

												isBound	=	false;

								}

				};

}

The	onServiceConnected()	method	will	be	called	when	the	client	binds
successfully	to	the	service.	The	method	is	passed	as	an	argument	the	IBinder
object	returned	by	the	onBind()	method	of	the	service.	This	argument	is	cast	to
an	object	of	type	MyLocalBinder	and	then	the	getService()	method	of	the	binder
object	is	called	to	obtain	a	reference	to	the	service	instance,	which,	in	turn,	is
assigned	to	myService.	A	Boolean	flag	is	used	to	indicate	that	the	connection	has
been	successfully	established.
The	onServiceDisconnected()	method	is	called	when	the	connection	ends	and
simply	sets	the	Boolean	flag	to	false.
Having	established	the	connection,	the	next	step	is	to	modify	the	activity	to	bind
to	the	service.	This	involves	the	creation	of	an	intent	and	a	call	to	the
bindService()	method,	which	can	be	performed	in	the	onCreate()	method	of	the
activity:

@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_local_bound);

								Intent	intent	=	new	Intent(this,

BoundService.class);								

								bindService(intent,	myConnection,

Context.BIND_AUTO_CREATE);

}

49.7	Completing	the	Example
All	that	remains	is	to	implement	a	mechanism	for	calling	the	getCurrentTime()
method	and	displaying	the	result	to	the	user.	As	is	now	customary,	Android
Studio	will	have	created	a	template	activity_local_bound.xml	file	for	the	activity
containing	only	a	TextView.	Load	this	file	into	the	Layout	Editor	tool	and,	using

Design	mode,	select	the	TextView	component	and	change	the	ID	to	myTextView.
Add	a	Button	view	beneath	the	TextView	and	change	the	text	on	the	button	to
read	“Show	Time”,	extracting	the	text	to	a	string	resource	named	show_time.	On
completion	of	these	changes,	the	layout	should	resemble	that	illustrated	in	Figure
49-1.	If	any	constraints	are	missing,	click	on	the	Infer	Constraints	button	in	the
Layout	Editor	toolbar.

Figure	49-1

Complete	the	user	interface	design	by	selecting	the	Button	and	configuring	the
onClick	property	to	call	a	method	named	showTime.
Finally,	edit	the	code	in	the	LocalBoundActivity.java	file	to	implement	the

showTime()	method.	This	method	simply	calls	the	getCurrentTime()	method	of
the	service	(which,	thanks	to	the	onServiceConnected()	method,	is	now	available
from	within	the	activity	via	the	myService	reference)	and	assigns	the	resulting
string	to	the	TextView:

package	com.ebookfrenzy.localbound;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.IBinder;

import	android.content.Context;

import	android.content.Intent;

import	android.content.ComponentName;

import	android.content.ServiceConnection;

import	com.ebookfrenzy.localbound.BoundService.MyLocalBinder;

import	android.view.View;

import	android.widget.TextView;

public	class	LocalBoundActivity	extends	AppCompatActivity	{

				BoundService	myService;

				boolean	isBound	=	false;

				public	void	showTime(View	view)

				{

								String	currentTime	=	myService.getCurrentTime();

								TextView	myTextView	=

																(TextView)findViewById(R.id.myTextView);

								myTextView.setText(currentTime);

				}

.

.

.

}

49.8	Testing	the	Application
With	the	code	changes	complete,	perform	a	test	run	of	the	application.	Once
visible,	touch	the	button	and	note	that	the	text	view	changes	to	display	the
current	date	and	time.	The	example	has	successfully	started	and	bound	to	a
service	and	then	called	a	method	of	that	service	to	cause	a	task	to	be	performed
and	results	returned	to	the	activity.

49.9	Summary

When	a	bound	service	is	local	and	private	to	an	application,	components	within
that	application	can	interact	with	the	service	without	the	need	to	resort	to
interprocess	communication	(IPC).	In	general	terms,	the	service’s	onBind()
method	returns	an	IBinder	object	containing	a	reference	to	the	instance	of	the
running	service.	The	client	component	implements	a	ServiceConnection	subclass
containing	callback	methods	that	are	called	when	the	service	is	connected	and
disconnected.	The	former	method	is	passed	the	IBinder	object	returned	by	the
onBind()	method	allowing	public	methods	within	the	service	to	be	called.
Having	covered	the	implementation	of	local	bound	services,	the	next	chapter
will	focus	on	using	IPC	to	interact	with	remote	bound	services.

50.	Android	Remote	Bound	Services	–	A
Worked	Example

In	this,	the	final	chapter	dedicated	to	Android	services,	an	example	application
will	be	developed	to	demonstrate	the	use	of	a	messenger	and	handler
configuration	to	facilitate	interaction	between	a	client	and	remote	bound	service.

50.1	Client	to	Remote	Service	Communication
As	outlined	in	the	previous	chapter,	interaction	between	a	client	and	a	local
service	can	be	implemented	by	returning	to	the	client	an	IBinder	object
containing	a	reference	to	the	service	object.	In	the	case	of	remote	services,
however,	this	approach	does	not	work	because	the	remote	service	is	running	in	a
different	process	and,	as	such,	cannot	be	reached	directly	from	the	client.
In	the	case	of	remote	services,	a	Messenger	and	Handler	configuration	must	be
created	which	allows	messages	to	be	passed	across	process	boundaries	between
client	and	service.
Specifically,	the	service	creates	a	Handler	instance	that	will	be	called	when	a
message	is	received	from	the	client.	In	terms	of	initialization,	it	is	the	job	of	the
Handler	to	create	a	Messenger	object	which,	in	turn,	creates	an	IBinder	object	to
be	returned	to	the	client	in	the	onBind()	method.	This	IBinder	object	is	used	by
the	client	to	create	an	instance	of	the	Messenger	object	and,	subsequently,	to
send	messages	to	the	service	handler.	Each	time	a	message	is	sent	by	the	client,
the	handleMessage()	method	of	the	handler	is	called,	passing	through	the
message	object.
The	simple	example	created	in	this	chapter	will	consist	of	an	activity	and	a
bound	service	running	in	separate	processes.	The	Messenger/Handler
mechanism	will	be	used	to	send	a	string	to	the	service,	which	will	then	display
that	string	in	a	Toast	message.

50.2	Creating	the	Example	Application
Launch	Android	Studio	and	follow	the	steps	to	create	a	new	project,	entering
RemoteBound	into	the	Application	name	field	and	ebookfrenzy.com	as	the
Company	Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the

minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
RemoteBoundActivity	with	a	corresponding	layout	resource	file	named
activity_remote_bound.

50.3	Designing	the	User	Interface
Locate	the	activity_remote_bound.xml	file	in	the	Project	tool	window	and
double-click	on	it	to	load	it	into	the	Layout	Editor	tool.	With	the	Layout	Editor
tool	in	Design	mode,	delete	the	default	TextView	instance	and	drag	and	drop	a
Button	widget	from	the	palette	so	that	it	is	positioned	in	the	center	of	the	layout.
Change	the	text	property	of	the	button	to	read	“Send	Message”	and	extract	the
string	to	a	new	resource	named	send_message.	Remaining	within	the	Properties
tool	window,	change	the	layout_width	property	to	wrap_content.
Finally,	configure	the	onClick	property	to	call	a	method	named	sendMessage.

50.4	Implementing	the	Remote	Bound	Service
In	order	to	implement	the	remote	bound	service	for	this	example,	add	a	new
class	to	the	project	by	right-clicking	on	the	package	name	(located	under	app	->
java)	within	the	Project	tool	window	and	select	the	New	->	Service	->	Service
menu	option.	Specify	RemoteService	as	the	class	name	and	make	sure	that	both
the	Exported	and	Enabled	options	are	selected	before	clicking	on	Finish	to
create	the	class.
The	next	step	is	to	implement	the	handler	class	for	the	new	service.	This	is
achieved	by	extending	the	Handler	class	and	implementing	the	handleMessage()
method.	This	method	will	be	called	when	a	message	is	received	from	the	client.
It	will	be	passed	a	Message	object	as	an	argument	containing	any	data	that	the
client	needs	to	pass	to	the	service.	In	this	instance,	this	will	be	a	Bundle	object
containing	a	string	to	be	displayed	to	the	user.	The	modified	class	in	the
RemoteService.java	file	should	read	as	follows	once	this	has	been	implemented:

package	com.ebookfrenzy.remotebound;

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

import	android.os.Bundle;

import	android.os.Handler;

import	android.os.Message;

import	android.widget.Toast;

import	android.os.Messenger;

public	class	RemoteService	extends	Service	{

				public	RemoteService()	{

				}

				class	IncomingHandler	extends	Handler	{

								@Override

								public	void	handleMessage(Message	msg)	{

	

												Bundle	data	=	msg.getData();

												String	dataString	=	data.getString("MyString");

												Toast.makeText(getApplicationContext(),

																				dataString,	Toast.LENGTH_SHORT).show();

								}

				}

	

				@Override

				public	IBinder	onBind(Intent	intent)	{

								//	TODO:	Return	the	communication	channel	to	the

service.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}			

}

With	the	handler	implemented,	the	only	remaining	task	in	terms	of	the	service
code	is	to	modify	the	onBind()	method	such	that	it	returns	an	IBinder	object
containing	a	Messenger	object	which,	in	turn,	contains	a	reference	to	the
handler:

final	Messenger	myMessenger	=	new	Messenger(new

IncomingHandler());

						

@Override

public	IBinder	onBind(Intent	intent)	{

						return	myMessenger.getBinder();

}

The	first	line	of	the	above	code	fragment	creates	a	new	instance	of	our	handler
class	and	passes	it	through	to	the	constructor	of	a	new	Messenger	object.	Within
the	onBind()	method,	the	getBinder()	method	of	the	messenger	object	is	called	to
return	the	messenger’s	IBinder	object.

50.5	Configuring	a	Remote	Service	in	the	Manifest	File

In	order	to	portray	the	communication	between	a	client	and	remote	service
accurately,	it	will	be	necessary	to	configure	the	service	to	run	in	a	separate
process	from	the	rest	of	the	application.	This	is	achieved	by	adding	an
android:process	property	within	the	<service>	tag	for	the	service	in	the	manifest
file.	In	order	to	launch	a	remote	service	it	is	also	necessary	to	provide	an	intent
filter	for	the	service.	To	implement	these	changes,	modify	the
AndroidManifest.xml	file	to	add	the	required	entries:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.remotebound"	>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme"	>

								<activity

												android:name=".RemoteBoundActivity"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<service

												android:name=".RemoteService"

												android:enabled="true"

												android:exported="true"

												android:process=":my_process"	>

								</service>

				</service>

				</application>

</manifest>

50.6	Launching	and	Binding	to	the	Remote	Service
As	with	a	local	bound	service,	the	client	component	needs	to	implement	an
instance	of	the	ServiceConnection	class	with	onServiceConnected()	and

onServiceDisconnected()	methods.	Also,	in	common	with	local	services,	the
onServiceConnected()	method	will	be	passed	the	IBinder	object	returned	by	the
onBind()	method	of	the	remote	service	which	will	be	used	to	send	messages	to
the	server	handler.	In	the	case	of	this	example,	the	client	is
RemoteBoundActivity,	the	code	for	which	is	located	in
RemoteBoundActivity.java.	Load	this	file	and	modify	it	to	add	the
ServiceConnection	class	and	a	variable	to	store	a	reference	to	the	received
Messenger	object	together	with	a	Boolean	flag	to	indicate	whether	or	not	the
connection	is	established:

package	com.ebookfrenzy.remotebound;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.IBinder;

import	android.os.Message;

import	android.os.Messenger;

import	android.os.RemoteException;

import	android.content.ComponentName;

import	android.content.Context;

import	android.content.Intent;

import	android.content.ServiceConnection;

import	android.view.View;

public	class	RemoteBoundActivity	extends	AppCompatActivity	{

				Messenger	myService	=	null;

				boolean	isBound;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_remote_bound);

				}

				private	ServiceConnection	myConnection	=

												new	ServiceConnection()	{

																public	void	onServiceConnected(

																														ComponentName	className,

																																															IBinder	service)

{

																				myService	=	new	Messenger(service);

																				isBound	=	true;

																}

	

																public	void	onServiceDisconnected(

																														ComponentName	className)	{

																				myService	=	null;

																				isBound	=	false;

																}

												};

}

Next,	some	code	needs	to	be	added	to	bind	to	the	remote	service.	This	involves
creating	an	intent	that	matches	the	intent	filter	for	the	service	as	declared	in	the
manifest	file	and	then	making	a	call	to	the	bindService()	method,	providing	the
intent	and	a	reference	to	the	ServiceConnection	instance	as	arguments.	For	the
purposes	of	this	example,	this	code	will	be	implemented	in	the	activity’s
onCreate()	method:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

							super.onCreate(savedInstanceState);

							setContentView(R.layout.activity_remote_bound);

													

								Intent	intent	=	new	Intent(getApplicationContext(),

																														RemoteService.class);

	

								bindService(intent,	myConnection,

Context.BIND_AUTO_CREATE);

}

50.7	Sending	a	Message	to	the	Remote	Service
All	that	remains	before	testing	the	application	is	to	implement	the
sendMessage()	method	in	the	RemoteBoundActivity	class	which	is	configured	to
be	called	when	the	button	in	the	user	interface	is	touched	by	the	user.	This
method	needs	to	check	that	the	service	is	connected,	create	a	bundle	object
containing	the	string	to	be	displayed	by	the	server,	add	it	to	a	Message	object
and	send	it	to	the	server:

public	void	sendMessage(View	view)

{

									if	(!isBound)	return;

							

								Message	msg	=	Message.obtain();

							

								Bundle	bundle	=	new	Bundle();

								bundle.putString("MyString",	"Message	Received");

							

								msg.setData(bundle);

							

								try	{

												myService.send(msg);

								}	catch	(RemoteException	e)	{

												e.printStackTrace();

								}

}

With	the	code	changes	complete,	compile	and	run	the	application.	Once	loaded,
touch	the	button	in	the	user	interface,	at	which	point	a	Toast	message	should
appear	that	reads	“Message	Received”.

50.8	Summary
In	order	to	implement	interaction	between	a	client	and	remote	bound	service	it	is
necessary	to	implement	a	handler/message	communication	framework.	The
basic	concepts	behind	this	technique	have	been	covered	in	this	chapter	together
with	the	implementation	of	an	example	application	designed	to	demonstrate
communication	between	a	client	and	a	bound	service,	each	running	in	a	separate
process.

51.	An	Android	7	Notifications	Tutorial

Notifications	provide	a	way	for	an	app	to	convey	a	message	to	the	user	when	the
app	is	either	not	running	or	is	currently	in	the	background.	A	messaging	app
might,	for	example,	issue	a	notification	to	let	the	user	know	that	a	new	message
has	arrived	from	a	contact.	Notifications	can	be	categorized	as	being	either	local
or	remote.	A	local	notification	is	triggered	by	the	app	itself	on	the	device	on
which	it	is	running.	Remote	notifications,	on	the	other	hand,	are	initiated	by	a
remote	server	and	delivered	to	the	device	for	presentation	to	the	user.
Notifications	appear	in	the	notification	shade	that	is	pulled	down	from	the	status
bar	of	the	screen	and	each	notification	can	include	actions	such	as	a	button	to
open	the	app	that	sent	the	notification.	Android	7	has	also	introduced	Direct
Reply,	a	feature	that	allows	the	user	to	type	in	and	submit	a	response	to	a
notification	from	within	the	notification	panel.
The	goal	of	this	chapter	is	to	outline	and	demonstrate	the	implementation	of
local	notifications	within	an	Android	app.	The	next	chapter	(An	Android	7	Direct
Reply	Notification	Tutorial)	will	cover	the	implementation	of	direct	reply
notifications,	while	the	use	of	Firebase	to	initiate	and	send	remote	notifications
will	be	covered	in	the	chapters	entitled	Integrating	Firebase	Support	into	an
Android	Studio	Project	and	An	Android	7	Firebase	Remote	Notification	Tutorial.

51.1	An	Overview	of	Notifications
When	a	notification	is	initiated	on	an	Android	device,	it	appears	as	an	icon	in	the
status	bar.	Figure	51-1,	for	example,	shows	a	status	bar	with	a	number	of
notification	icons:

Figure	51-1

To	view	the	notifications,	the	user	makes	a	downward	swiping	motion	starting	at
the	status	bar	to	pull	down	the	notification	shade	as	shown	in	Figure	51-2:

Figure	51-2

A	typical	notification	will	simply	display	a	message	and,	when	tapped,	launch
the	app	responsible	for	issuing	the	notification.	Notifications	may	also	contain
action	buttons	which	perform	a	task	specific	to	the	corresponding	app	when
tapped.	Figure	51-3,	for	example,	shows	a	notification	containing	two	action
buttons	allowing	the	user	to	either	delete	or	save	an	incoming	message.

Figure	51-3

With	Android	7,	it	is	now	also	possible	for	the	user	to	enter	an	inline	text	reply
into	the	notification	and	send	it	to	the	app,	as	is	the	case	in	Figure	51-4	below.
This	allows	the	user	to	respond	to	a	notification	without	having	to	launch	the
corresponding	app	into	the	foreground.

Figure	51-4

The	remainder	of	this	chapter	will	work	through	the	steps	involved	in	creating
and	issuing	a	simple	notification	containing	actions.	The	topic	of	direct	reply
support	will	then	be	covered	in	the	next	chapter	entitled	An	Android	7	Direct
Reply	Notification	Tutorial.

51.2	Creating	the	NotifyDemo	Project
Start	Android	Studio	and	create	a	new	project,	entering	NotifyDemo	into	the

Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	24:	Android	7.0	(Nougat).	Continue	through	the
screens,	requesting	the	creation	of	an	Empty	Activity	named	NotifyDemoActivity
with	a	corresponding	layout	file	named	activity_notify_demo.

51.3	Designing	the	User	Interface
The	main	activity	will	contain	a	single	button,	the	purpose	of	which	is	to	create
and	issue	an	intent.	Locate	and	load	the	activity_notify_demo.xml	file	into	the
Layout	Editor	tool	and	delete	the	default	TextView	widget.
With	Autoconnect	enabled,	drag	and	drop	a	Button	object	from	the	panel	onto
the	center	of	the	layout	canvas	as	illustrated	in	Figure	51-5.
With	the	Button	widget	selected	in	the	layout,	use	the	Properties	panel	to
configure	the	onClick	property	to	call	a	method	named	sendNotification.

Figure	51-5

51.4	Creating	the	Second	Activity
For	the	purposes	of	this	example,	the	app	will	contain	a	second	activity	which
will	be	launched	by	the	user	from	within	the	notification.	Add	this	new	activity
to	the	project	by	right-clicking	on	the	com.ebookfrenzy.notifydemo	package
name	located	in	app	->	java	and	select	the	New	->	Activity	->	Empty	Activity
menu	option	to	display	the	New	Android	Activity	dialog.
Enter	ResultActivity	into	the	Activity	Name	field	and	name	the	layout	file
activity_result.	Since	this	activity	will	not	be	started	when	the	application	is

launched	(it	will	instead	be	launched	via	an	intent	from	within	the	notification),
it	is	important	to	make	sure	that	the	Launcher	Activity	option	is	disabled	before
clicking	on	the	Finish	button.
Open	the	layout	for	the	second	activity	(app	->	res	->	layout	->
activity_result.xml)	and	drag	and	drop	a	TextView	widget	so	that	it	is	positioned
in	the	center	of	the	layout.	Edit	the	text	of	the	TextView	so	that	it	reads	“Result
Activity”,	extract	the	property	value	to	a	string	resource	and	change	the
layout_width	property	to	wrap_content.

51.5	Creating	and	Issuing	a	Basic	Notification
Notifications	are	created	using	the	NotificationCompat.Builder	class	which
allows	properties	such	as	the	icon,	title	and	content	of	the	notification	to	be
specified.	Open	the	NotifyDemoActivity.java	file	and	implement	the
sendNotification()	method	as	follows	to	build	a	basic	notification:

package	com.ebookfrenzy.notifydemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.NotificationManager;

import	android.support.v4.app.NotificationCompat;

import	android.view.View;

import	android.content.Intent;

import	android.app.PendingIntent;

public	class	NotifyDemoActivity	extends	AppCompatActivity	{

.

.

.

				protected	void	sendNotification(View	view)	{

	

								NotificationCompat.Builder	builder	=

										new	NotificationCompat.Builder(this)

														.setSmallIcon(android.R.drawable.ic_dialog_info)

														.setContentTitle("A	Notification")

														.setContentText("This	is	an	example

notification");

			}

}

The	icon	setting	in	the	above	code	makes	use	of	a	built-in	Android	icon	which	is
displayed	both	within	the	status	bar	and	the	notification	panel	when	the
notification	is	issued.

Once	a	notification	has	been	built,	it	needs	to	be	issued	using	the	notify()	method
of	the	NotificationManager	instance.	The	NotificationManager,	a	reference	to
which	can	be	obtained	via	a	call	to	the	getSystemService()	method,	is	a	service
that	runs	on	Android	devices	and	is	responsible	for	managing	notifications.	The
code	to	access	the	NotificationManager	and	issue	the	notification	needs	to	be
added	to	the	sendNotification()	method	as	follows:

protected	void	sendNotification(View	view)	{

			

				NotificationCompat.Builder	builder	=

										new	NotificationCompat.Builder(this)

															.setSmallIcon(android.R.drawable.ic_dialog_info)

															.setContentTitle("A	Notification")

															.setContentText("This	is	an	example

notification");

				int	notificationId	=	101;

	

				NotificationManager	notifyMgr	=

												(NotificationManager)

														getSystemService(NOTIFICATION_SERVICE);

	

				notifyMgr.notify(notificationId,	builder.build());

}

Note	that	when	the	notification	is	issued,	it	is	assigned	a	notification	ID.	This
can	be	any	integer	and	may	be	used	later	when	updating	or	deleting	the
notification.
Compile	and	run	the	app	and	tap	the	button	on	the	main	activity.	When	the
notification	icon	appears	in	the	status	bar,	touch	and	drag	down	from	the	status
bar	to	view	the	full	notification:

Figure	51-6

As	currently	implemented,	tapping	on	the	notification	has	no	effect.	The	next
step	is	to	configure	the	notification	to	launch	an	activity	when	tapped.

step	is	to	configure	the	notification	to	launch	an	activity	when	tapped.

51.6	Launching	an	Activity	from	a	Notification
A	notification	should	ideally	allow	the	user	to	perform	some	form	of	action,	such
as	launching	the	corresponding	app,	or	taking	some	other	form	of	action	in
response	to	the	notification.	A	common	requirement	is	to	simply	launch	an
activity	belonging	to	the	app	when	the	user	taps	the	notification.
This	approach	requires	an	activity	to	be	launched	and	an	Intent	configured	to
launch	that	activity.	Assuming	an	app	that	contains	an	activity	named
ResultActivity,	the	intent	would	be	created	as	follows:

Intent	resultIntent	=	new	Intent(this,	ResultActivity.class);

This	intent	needs	to	then	be	wrapped	in	a	PendingIntent	instance.	PendingIntent
objects	are	designed	to	allow	an	intent	to	be	passed	to	other	applications,
essentially	granting	those	applications	permission	to	perform	the	intent	at	some
point	in	the	future.	In	this	case,	the	PendingIntent	object	is	being	used	to	provide
the	Notification	system	with	a	way	to	launch	the	ResultActivity	activity	when
the	user	taps	the	notification	panel:

PendingIntent	pendingIntent	=

				PendingIntent.getActivity(

				this,

				0,

				resultIntent,

				PendingIntent.FLAG_UPDATE_CURRENT

);

All	that	remains	is	to	assign	the	PendingIntent	object	to	the	notification	builder
instance	created	previously:

builder.setContentIntent(pendingIntent);

Bringing	these	changes	together	results	in	a	modified	sendNotification()	method
which	reads	as	follows:

protected	void	sendNotification(View	view)	{

				NotificationCompat.Builder	builder	=

									new	NotificationCompat.Builder(this)

													.setSmallIcon(android.R.drawable.ic_dialog_info)

													.setContentTitle("A	Notification")

														.setContentText("This	is	an	example

notification");

				Intent	resultIntent	=	new	Intent(this,

ResultActivity.class);

	

				PendingIntent	pendingIntent	=

												PendingIntent.getActivity(

																				this,

																				0,

																				resultIntent,

																				PendingIntent.FLAG_UPDATE_CURRENT

);

	

				builder.setContentIntent(pendingIntent);

	

				int	notificationId	=	101;

				NotificationManager	notifyMgr	=

						(NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

				notifyMgr.notify(notificationId,	builder.build());

}

Compile	and	run	the	app	once	again,	tap	the	button	and	display	the	notification
shade.	This	time,	however,	tapping	the	notification	will	cause	the	ResultActivity
to	launch.

51.7	Adding	Actions	to	a	Notification
Another	way	to	add	interactivity	to	a	notification	is	to	create	actions.	These
appear	as	buttons	beneath	the	notification	message	and	are	programmed	to
trigger	specific	intents	when	tapped	by	the	user.	The	following	code,	if	added	to
the	sendNotification()	method,	will	add	an	action	button	labeled	“Open”	which
launches	the	referenced	pending	intent	when	selected:

NotificationCompat.Action	action	=

											new	NotificationCompat.Action.Builder(

												android.R.drawable.sym_action_chat,

																				"Open",	pendingIntent)

																				.build();

builder.addAction(action);

Add	the	above	code	to	the	method	and	run	the	app.	Issue	the	notification	and
note	the	appearance	of	the	Open	action	within	the	notification:

Figure	51-7

Tapping	the	action	will	trigger	the	pending	intend	and	launch	the	ResultActivity.

51.8	Adding	Sound	to	a	Notification
Sound	can	be	added	to	a	notification	using	the	setSound()	method	when	creating
the	notification	builder	object.	The	following	code	fragment	modifies	the
example	to	configure	the	default	notification	sound	to	accompany	the
notification:

package	com.ebookfrenzy.notifydemo;

import	android.app.NotificationManager;

import	android.app.PendingIntent;

import	android.content.Intent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.support.v4.app.NotificationCompat;

import	android.view.View;

import	android.media.RingtoneManager;

import	android.net.Uri;

.

.

.

					Uri	defaultSoundUri=	RingtoneManager.getDefaultUri(

																													

RingtoneManager.TYPE_NOTIFICATION);

	

					NotificationCompat.Builder	builder	=

											new	NotificationCompat.Builder(this)

														.setSmallIcon(android.R.drawable.ic_dialog_info)

														.setContentTitle("A	Notification")

														.setContentText("This	is	an	example

notification")

														.setSound(defaultSoundUri);

.

.

.

}

51.9	Bundled	Notifications
If	an	app	has	a	tendency	to	regularly	issue	notifications	there	is	a	danger	that
those	notifications	will	rapidly	clutter	both	the	status	bar	and	the	notification
shade	providing	a	less	than	optimal	experience	for	the	user.	This	can	be
particularly	true	of	news	or	messaging	apps	that	send	a	notification	every	time
there	is	either	a	breaking	news	story	or	a	new	message	arrives	from	a	contact.
Consider,	for	example,	the	notifications	in	Figure	51-8:

Figure	51-8

Now	imagine	if	ten	or	even	twenty	new	messages	had	arrived.	To	avoid	this	kind
of	problem	Android	7	allows	notifications	to	be	bundled	together	into	groups.
To	bundle	notifications,	each	notification	must	be	designated	as	belonging	to	the

same	group	via	the	setGroup()	method,	and	an	additional	notification	must	be
issued	and	configured	as	being	the	summary	notification.	The	following	code,
for	example,	creates	and	issues	the	three	notifications	shown	in	Figure	51-8
above,	but	bundles	them	into	the	same	group.	The	code	also	issues	a	notification
to	act	as	the	summary:

final	static	String	GROUP_KEY_NOTIFY	=	"group_key_notify";

NotificationCompat.Builder	builderSummary	=

								new	NotificationCompat.Builder(this)

															

.setSmallIcon(android.R.drawable.ic_dialog_info)

																.setContentTitle("A	Bundle	Example")

																.setContentText("You	have	3	new	messages")

																.setGroup(GROUP_KEY_NOTIFY)

																.setGroupSummary(true);

NotificationCompat.Builder	builder1	=

								new	NotificationCompat.Builder(this)

															

.setSmallIcon(android.R.drawable.ic_dialog_info)

																.setContentTitle("New	Message")

																.setContentText("You	have	a	new	message	from

Kassidy")

																.setGroup(GROUP_KEY_NOTIFY);

NotificationCompat.Builder	builder2	=

								new	NotificationCompat.Builder(this)

															

.setSmallIcon(android.R.drawable.ic_dialog_info)

																.setContentTitle("New	Message")

																.setContentText("You	have	a	new	message	from

Caitlyn")

																.setGroup(GROUP_KEY_NOTIFY);

NotificationCompat.Builder	builder3	=

								new	NotificationCompat.Builder(this)

															

.setSmallIcon(android.R.drawable.ic_dialog_info)

																.setContentTitle("New	Message")

																.setContentText("You	have	a	new	message	from

Jason")

																.setGroup(GROUP_KEY_NOTIFY);

.

.

.

int	notificationId0	=	100;

int	notificationId1	=	101;

int	notificationId2	=	102;

int	notificationId3	=	103;

NotificationManager	notifyMgr	=

								(NotificationManager)

getSystemService(NOTIFICATION_SERVICE);

notifyMgr.notify(notificationId1,	builder1.build());

notifyMgr.notify(notificationId2,	builder2.build());

notifyMgr.notify(notificationId3,	builder3.build());

notifyMgr.notify(notificationId0,	builderSummary.build());

When	the	code	is	executed,	a	single	notification	icon	will	appear	in	the	status	bar
even	though	four	notifications	have	actually	been	issued	by	the	app.	Within	the
notification	shade,	a	single	summary	notification	is	displayed	listing	the
information	in	each	of	the	bundled	notifications:

Figure	51-9

Pulling	further	downward	on	the	notification	shade	expands	the	panel	to	show
the	details	of	each	of	the	bundled	notifications:

Figure	51-10

51.10	Summary
Notifications	provide	a	way	for	an	app	to	deliver	a	message	to	the	user	when	the
app	is	not	running,	or	is	currently	in	the	background.	Notifications	appear	in	the
status	bar	and	notification	shade.	Local	notifications	are	triggered	on	the	device
by	the	running	app	while	remote	notifications	are	initiated	by	a	remote	server
and	delivered	to	the	device.	Local	notifications	are	created	using	the
NotificationCompat.Builder	class	and	issued	using	the	NotificationManager
service.
As	demonstrated	in	this	chapter,	notifications	can	be	configured	to	provide	the
user	with	options	(such	as	launching	an	activity	or	saving	a	message)	by	making
use	of	actions,	intents	and	the	PendingIntent	class.	Notification	bundling
provides	a	mechanism	for	grouping	together	notifications	to	provide	an
improved	experience	for	apps	that	issue	a	greater	number	of	notifications.

52.	An	Android	7	Direct	Reply	Notification	Tutorial

Direct	reply	is	a	feature	introduced	in	Android	7	that	allows	the	user	to	enter	text
into	a	notification	and	send	it	to	the	app	associated	with	that	notification.	This
allows	the	user	to	reply	to	a	message	in	the	notification	without	the	need	to
launch	an	activity	within	the	app.	This	chapter	will	build	on	the	knowledge
gained	in	the	previous	chapter	to	create	an	example	app	that	makes	use	of	this
notification	feature.

52.1	Creating	the	DirectReply	Project
Start	Android	Studio	and	create	a	new	project,	entering	DirectReply	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	24:	Android	7.0	(Nougat).	Continue	through	the
setup	screens,	requesting	the	creation	of	an	Empty	Activity	named
DirectReplyActivity	with	a	corresponding	layout	file	named
activity_direct_reply.

52.2	Designing	the	User	Interface
Load	the	activity_direct_reply.xml	layout	file	into	the	layout	tool.	With
Autoconnect	enabled,	add	a	Button	object	beneath	the	existing	“Hello	World!”
label.	With	the	Button	widget	selected	in	the	layout,	use	the	Properties	tool
window	to	set	the	onClick	property	to	call	a	method	named	sendNotification.	If
necessary,	use	the	Infer	Constraints	button	to	add	any	missing	constraints	to	the
layout.

Figure	52-1

52.3	Building	the	RemoteInput	Object
The	key	element	that	makes	direct	reply	inline	text	possible	within	a	notification
is	the	RemoteInput	class.	The	previous	chapters	introduced	the	PendingIntent
class	and	explained	the	way	in	which	it	allows	one	application	to	create	an	intent
and	then	grant	other	applications	or	services	the	ability	to	launch	that	intent	from
outside	the	original	app.	In	that	chapter,	entitled	An	Android	7	Notifications
Tutorial,	a	pending	intent	was	created	that	allowed	an	activity	in	the	original	app
to	be	launched	from	within	a	notification.	The	RemoteInput	class	allows	a
request	for	user	input	to	be	included	in	the	PendingIntent	object	along	with	the

intent.	When	the	intent	within	the	PendingIntent	object	is	triggered,	for	example
launching	an	activity,	that	activity	is	also	passed	any	input	provided	by	the	user.
The	first	step	in	implementing	direct	reply	within	a	notification	is	to	create	the
RemoteInput	object.	This	is	achieved	using	the	RemoteInput.Builder()	method.
To	build	a	RemoteInput	object,	a	key	string	is	required	that	will	be	used	to
extract	the	input	from	the	resulting	intent.	The	object	also	needs	a	label	string
that	will	appear	within	the	text	input	field	of	the	notification.	Edit	the
DirectReplyAction.java	file	and	begin	implementing	the	sendNotification()
method.	Note	also	the	addition	of	some	import	directives	and	variables	that	will
be	used	later	as	the	chapter	progresses:

package	com.ebookfrenzy.directreply;

import	android.app.Notification;

import	android.app.NotificationManager;

import	android.app.PendingIntent;

import	android.content.Context;

import	android.content.Intent;

import	android.support.v4.app.NotificationCompat;

import	android.support.v4.app.RemoteInput;

import	android.support.v4.content.ContextCompat;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.TextView;

public	class	DirectReplyActivity	extends	AppCompatActivity	{

				private	static	int	notificationId	=	101;

				private	static	String	KEY_TEXT_REPLY	=	"key_text_reply";

.

.

.

				public	void	sendNotification(View	view)	{

								String	replyLabel	=	"Enter	your	reply	here";

								RemoteInput	remoteInput	=

											new	RemoteInput.Builder(KEY_TEXT_REPLY)

																.setLabel(replyLabel)

																.build();

				}

.

.

.

}

Now	that	the	RemoteInput	object	has	been	created	and	initialized	with	a	key	and
a	label	string	it	will	need	to	be	placed	inside	a	notification	action	object.	Before
that	step	can	be	performed,	however,	the	PendingIntent	instance	needs	to	be
created.

52.4	Creating	the	PendingIntent
The	steps	to	creating	the	PendingIntent	are	the	same	as	those	outlined	in	the	An
Android	7	Notifications	Tutorial	chapter,	with	the	exception	that	the	intent	will
be	configured	to	launch	the	main	DirectReplyActivity	activity.	Remaining
within	the	DirectReplyActivity.java	file,	add	the	code	to	create	the	PendingIntent
as	follows:

public	void	sendNotification(View	view)	{

				String	replyLabel	=	"Enter	your	reply	here";

				RemoteInput	remoteInput	=

												new	RemoteInput.Builder(KEY_TEXT_REPLY)

												.setLabel(replyLabel)

												.build();

				Intent	resultIntent	=	new	Intent(this,

DirectReplyActivity.class);

	

				PendingIntent	resultPendingIntent	=

												PendingIntent.getActivity(

																				this,

																				0,

																				resultIntent,

																				PendingIntent.FLAG_UPDATE_CURRENT

);

				}

.

.

.

}

52.5	Creating	the	Reply	Action
The	inline	reply	will	be	accessible	within	the	notification	via	an	action	button.
This	action	now	needs	to	be	created	and	configured	with	an	icon,	a	label	to
appear	on	the	button,	the	PendingIntent	object	and	the	RemoteInput	object.
Modify	the	sendNotification()	method	to	add	the	code	to	create	this	action:

public	void	sendNotification(View	view)	{

				String	replyLabel	=	"Enter	your	reply	here";

				RemoteInput	remoteInput	=

												new	RemoteInput.Builder(KEY_TEXT_REPLY)

												.setLabel(replyLabel)

												.build();

				Intent	resultIntent	=	new	Intent(this,

DirectReplyActivity.class);

				PendingIntent	resultPendingIntent	=

												PendingIntent.getActivity(

																				this,

																				0,

																				resultIntent,

																				PendingIntent.FLAG_UPDATE_CURRENT

);

				NotificationCompat.Action	replyAction	=

												new	NotificationCompat.Action.Builder(

																				android.R.drawable.ic_dialog_info,

																				"Reply",	resultPendingIntent)

																				.addRemoteInput(remoteInput)

																				.build();

				}

.

.

.

}

At	this	stage	in	the	tutorial	we	have	the	RemoteInput,	PendingIntent	and
Notification	Action	objects	built	and	ready	to	be	used.	The	next	stage	is	to	build
the	notification	and	issue	it:

public	void	sendNotification(View	view)	{

				String	replyLabel	=	"Enter	your	reply	here";

				RemoteInput	remoteInput	=

												new	RemoteInput.Builder(KEY_TEXT_REPLY)

												.setLabel(replyLabel)

												.build();

				Intent	resultIntent	=

									new	Intent(this,	DirectReplyActivity.class);

				PendingIntent	resultPendingIntent	=

												PendingIntent.getActivity(

																				this,

																				0,

																				resultIntent,

																				PendingIntent.FLAG_UPDATE_CURRENT

);

				NotificationCompat.Action	replyAction	=

												new	NotificationCompat.Action.Builder(

																				android.R.drawable.ic_dialog_info,

																				"Reply",	resultPendingIntent)

																				.addRemoteInput(remoteInput)

																				.build();

				Notification	newMessageNotification	=

												new	NotificationCompat.Builder(this)

																.setColor(ContextCompat.getColor(this,

																						R.color.colorPrimary))

																.setSmallIcon(

																						android.R.drawable.ic_dialog_info)

																.setContentTitle("My	Notification")

																.setContentText("This	is	a	test	message")

																.addAction(replyAction).build();

	

				NotificationManager	notificationManager	=

												(NotificationManager)

															getSystemService(Context.NOTIFICATION_SERVICE);

	

				notificationManager.notify(notificationId,

																		newMessageNotification);

}

With	the	changes	made,	compile	and	run	the	app	and	test	that	tapping	the	button
successfully	issues	the	notification.	When	viewing	the	notification	shade,	the
notification	should	appear	as	shown	in	Figure	52-2:

Figure	52-2

Tap	the	Reply	action	button	so	that	the	text	input	field	appears	displaying	the
reply	label	that	was	embedded	into	the	RemoteInput	object	when	it	was	created.

Figure	52-3

Enter	some	text,	tap	the	send	arrow	button	located	at	the	end	of	the	input	field.

52.6	Receiving	Direct	Reply	Input
Now	that	the	notification	is	successfully	seeking	input	from	the	user,	the	app
needs	to	do	something	with	that	input.	The	goal	of	this	particular	tutorial	is	to
have	the	text	entered	by	the	user	into	the	notification	appear	on	the	TextView
widget	in	the	activity	user	interface.

When	the	user	enters	text	and	taps	the	send	button	the	DirectReplyActivity
activity	is	launched	via	the	intent	contained	in	the	PendingIntent	object.
Embedded	in	this	intent	is	the	text	entered	by	the	user	via	the	notification.
Within	the	onCreate()	method	of	the	activity,	a	call	to	the	getIntent()	method
will	return	a	copy	of	the	intent	that	launched	the	activity.	Passing	this	through	to
the	RemoteInput.getResultsFromIntent()	method	will,	in	turn,	return	a	Bundle
object	containing	the	reply	text	which	can	be	extracted	and	assigned	to	the
TextView	widget.	This	results	in	a	modified	onCreate()	method	within	the
DirectReplyActivity.java	file	which	reads	as	follows:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_direct_reply);

				Intent	intent	=	this.getIntent();

	

				Bundle	remoteInput	=

RemoteInput.getResultsFromIntent(intent);

	

				if	(remoteInput	!=	null)	{

	

								TextView	myTextView	=	(TextView)

findViewById(R.id.textView);

								String	inputString	=	remoteInput.getCharSequence(

														KEY_TEXT_REPLY).toString();

								myTextView.setText(inputString);

				}

}

After	making	these	code	changes	build	and	run	the	app	once	again.	Click	the
button	to	issue	the	notification	and	enter	and	send	some	text	from	within	the
notification	panel.	Note	that	the	TextView	widget	in	the	DirectReplyActivity
activity	is	updated	to	display	the	inline	text	that	was	entered.

52.7	Updating	the	Notification
After	sending	the	reply	within	the	notification	you	may	have	noticed	that	the
progress	indicator	continues	to	spin	within	the	notification	panel	as	highlighted
in	Figure	52-4:

Figure	52-4

The	notification	is	showing	this	indicator	because	it	is	waiting	for	a	response
from	the	activity	confirming	receipt	of	the	sent	text.	The	recommended	approach
to	performing	this	task	is	to	update	the	notification	with	a	new	message
indicating	that	the	reply	has	been	received	and	handled.	Since	the	original
notification	was	assigned	an	ID	when	it	was	issued,	this	can	be	used	once	again
to	perform	an	update.	Add	the	following	code	to	the	onCreate()	method	to
perform	this	task:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_direct_reply);

				Intent	intent	=	this.getIntent();

				Bundle	remoteInput	=

RemoteInput.getResultsFromIntent(intent);

				if	(remoteInput	!=	null)	{

								TextView	myTextView	=	(TextView)

findViewById(R.id.textView);

								String	inputString	=	remoteInput.getCharSequence(

																						KEY_TEXT_REPLY).toString();

								myTextView.setText(inputString);

								Notification	repliedNotification	=

																new	Notification.Builder(this)

																								.setSmallIcon(

																													

android.R.drawable.ic_dialog_info)

																								.setContentText("Reply	received")

																								.build();

	

								NotificationManager	notificationManager	=

																(NotificationManager)

																					

getSystemService(Context.NOTIFICATION_SERVICE);

								notificationManager.notify(notificationId,

																						repliedNotification);

				}

}

Test	the	app	one	last	time	and	verify	that	the	progress	indicator	goes	away	after
the	inline	reply	text	has	been	sent.

52.8	Summary
The	direct	reply	notification	feature	allows	text	to	be	entered	by	the	user	within	a
notification	and	passed	via	an	intent	to	an	activity	of	the	corresponding
application.	Direct	reply	is	made	possible	by	the	RemoteInput	class,	an	instance
of	which	can	be	embedded	within	an	action	and	bundled	with	the	notification.
When	working	with	direct	reply	notifications,	it	is	important	to	let	the
NotificationManager	service	know	that	the	reply	has	been	received	and
processed.	The	best	way	to	achieve	this	is	to	simply	update	the	notification
message	using	the	notification	ID	provided	when	the	notification	was	first
issued.

53.	Integrating	Firebase	Support	into	an
Android	Studio	Project
The	next	chapter	(An	Android	7	Firebase	Remote	Notification	Tutorial)	will	use
Firebase	to	send	remote	notifications	to	an	Android	app.	Before	Firebase	can	be
used,	however,	there	are	a	number	of	steps	that	must	be	taken	within	both
Firebase	and	the	Android	Studio	project.	This	chapter	is	intended	to	serve	as	a
brief	introduction	to	Firebase	and	to	outline	the	integration	of	Firebase
notifications	into	an	Android	Studio	project.

53.1	What	is	Firebase?
Before	being	acquired	by	Google	in	2014,	Firebase	started	out	as	an	independent
company	providing	cloud-based	solutions	such	as	real-time	database,	analytics,
messaging,	notification	and	crash	reporting	services	to	web	and	mobile	app
developers.	Firebase	essentially	consists	of	a	set	of	cloud	services,	programming
interfaces	and	libraries	combined	with	a	web-based	console	through	which	the
services	are	managed.
One	of	the	services	provided	by	Firebase,	and	the	topic	of	the	next	chapter,	is	the
ability	to	send	remote	notifications	to	Android	apps.	Before	trying	out	Firebase
remote	notifications,	however,	some	initial	setup	steps	need	to	be	taken.

53.2	Signing	in	to	Firebase
All	that	is	required	to	use	Firebase	is	a	Google	account.	To	begin	using	Firebase,
start	by	navigating	to	the	following	URL:
https://firebase.google.com/
Once	the	page	has	loaded,	click	on	the	Get	Started	for	Free	button	to	access	your
Firebase	console	as	illustrated	in	Figure	53-1	below:

https://firebase.google.com/

Figure	53-1

Firebase	projects	can	be	created	and	connected	to	an	Android	Studio	project
either	using	the	Firebase	console	or	via	the	Android	Studio	Firebase	plugin.	By
far	the	most	convenient	option,	and	the	approach	taken	in	this	chapter,	is	to	use
the	plugin.	First,	however,	an	Android	Studio	project	needs	to	be	created.

53.3	Creating	the	FirebaseNotify	Project
Start	Android	Studio	and	create	a	new	project,	entering	FirebaseNotify	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	24:	Android	7.0	(Nougat).	Continue	through	the
setup	screens,	requesting	the	creation	of	an	Empty	Activity	named
FirebaseNotifyActivity	with	a	corresponding	layout	file	named
activity_firebase_notify.

53.4	Configuring	the	User	Interface
For	this	example,	the	only	change	required	to	the	layout	resource	file	is	to	assign
an	ID	to	the	default	“Hello	World!”	TextView	object.	Load	the
firebase_notify_activity.xml	file	into	the	Layout	Editor	tool,	select	the	TextView
widget	and,	using	the	Properties	panel,	set	the	ID	to	myTextView.

53.5	Connecting	the	Project	to	Firebase
An	Android	Studio	project	can	be	configured	to	support	Firebase	using	the

Firebase	plugin.	This	is	accessed	from	within	Android	Studio	by	selecting	the
Tools	->	Firebase	menu	option.	This	will	display	the	Assistant	tool	window	in
the	right-hand	panel	of	the	Android	Studio	main	window.	Within	this	panel,
select	the	Notifications	option	as	illustrated	in	Figure	53-2:

Figure	53-2

Within	the	Notifications	section	of	the	panel,	click	on	the	Receive	notifications
in	your	app	link.	This	will	display	the	Firebase	Notifications	panel	shown	in
Figure	53-3	below:

Figure	53-3

In	order	to	create	a	new	Firebase	project	and	associate	it	with	the	current
Android	Studio	project,	the	app	must	be	connected	to	Firebase.	To	achieve	this,
click	on	the	Connect	to	Firebase	button.	If	this	is	the	first	time	you	have
established	a	connection	to	Firebase	from	within	Android	Studio,	a	browser
window	will	appear	requesting	permission	to	access	your	Google	account	which
you	must	accept	to	continue.

53.6	Creating	a	New	Firebase	Project
The	app	project	in	Android	Studio	must	be	connected	with	a	Firebase	project	to
be	able	to	make	use	of	services	such	as	remote	notifications.	Once	the	Android
Studio	project	has	established	communication	with	Firebase,	a	dialog	(Figure
53-4)	will	appear	providing	the	option	to	create	a	new	Firebase	project,	or
connect	to	an	existing	one.

Figure	53-4

Keep	the	Create	new	Firebase	Project	option	selected	and	enter	Firebase
Notification	Demo	into	the	text	field.	Select	your	country	from	the	dropdown
menu,	click	on	the	Connect	to	Firebase	button	and	wait	for	notification	from
Android	Studio	that	the	connection	has	completed	successfully.

53.7	The	google-services.json	File
As	part	of	the	process	of	connecting	the	app	to	the	Firebase	project,	a	file	named
google-services.json	will	have	been	added	to	the	Android	Studio	project.	To
locate	this	file,	switch	the	Project	tool	window	from	Android	to	Project	mode
using	the	dropdown	menu:

Figure	53-5

Once	the	Project	tool	window	is	in	Project	mode,	unfold	the	project	levels	until
the	app	folder	comes	into	view	and	look	for	the	google-services.json	file	in	the
project	hierarchy	as	highlighted	in	Figure	53-6:

Figure	53-6

This	configuration	file	contains	the	information	that	uniquely	identifies	your	app
within	the	Firebase	ecosystem	and	its	presence	within	the	project	is	essential	for
Firebase	services	to	work.	Having	confirmed	the	presence	of	this	file,	revert	the
Project	tool	window	to	Android	mode	before	continuing.

53.8	Adding	the	Firebase	Libraries
A	number	of	libraries	need	to	be	added	to	the	project	in	order	to	fully	support

Firebase	notifications.	These	dependences	may	be	added	to	the	project
automatically	by	clicking	on	the	Add	Notifications	to	your	app	button	located	in
the	Firebase	Assistant	panel	as	outlined	in	Figure	53-3	above.	Clicking	this
button	will	display	the	following	dialog:

Figure	53-7

Click	on	the	Accept	Changes	button	to	make	the	changes	to	the	project.	Android
Studio	will	add	the	library	dependences	and	synchronize	the	project	build	files	to
reflect	the	changes.
The	first	change	made	by	the	assistant	during	this	process	is	to	add	the	Google
Services	library	to	the	dependencies	section	of	the	project-level	build.gradle	file
(located	under	Gradle	Scripts	->	build.gradle	(Project:	FirebaseNotify)):

buildscript	{

				repositories	{

								jcenter()

				}

				dependencies	{

								classpath	'com.android.tools.build:gradle:2.2.0-alpha3'

								classpath	'com.google.gms:google-services:3.0.0'

				}

}

.

.

.

}

The	second	change	added	the	Firebase	messaging	library	and	Google	Services
plugin	to	the	module-level	build.gradle	file	(located	under	Gradle	Scripts	->
build.gradle	(Module:	app)):

apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	24

.

.

dependencies	{			

				compile	'com.google.firebase:firebase-messaging:10.0.1'

.

.

}

apply	plugin:	'com.google.gms.google-services'

With	these	changes	made	to	the	project,	the	app	is	ready	to	begin	receiving
remote	Firebase	notifications.

53.9	Summary
Firebase	provides	a	range	of	cloud-based	services	that	can	be	integrated	into	web
and	mobile	apps	to	quickly	and	easily	implement	services	such	as	notifications,
remote	database	storage,	crash	logging	and	messaging.	This	chapter	has	outlined
the	steps	required	to	create	new	a	Firebase	project	and	to	integrate	Firebase	into
an	Android	Studio	project.

54.	 An	 Android	 7	 Firebase	 Remote	 Notification
Tutorial

In	the	preceding	chapter	a	new	Firebase	project	was	created	and	the	appropriate
steps	taken	to	integrate	Firebase	into	an	Android	Studio	project.	These	steps
were	taken	in	preparation	for	the	Firebase	remote	notification	tutorial	covered	in
this	chapter.
This	chapter	will	introduce	the	Notifications	section	of	the	Firebase	console	and
explain	how	to	send	a	message	to	a	specific	app.	The	app	will	then	be	modified
to	allow	the	receipt	of	notifications	when	the	app	is	in	the	foreground	and	to
support	the	inclusion	of	custom	data	within	the	Firebase	notification.

54.1	Sending	a	Firebase	Notification
Begin	by	launching	the	FirebaseNotify	app	created	in	the	previous	chapter	on	a
physical	Android	device.	Once	the	app	is	running,	place	it	into	the	background
by	tapping	the	circular	home	button	in	the	bottom	status	bar.	By	default
notifications	of	this	type	are	only	delivered	to	apps	that	are	either	not	running,	or
currently	in	the	background.
Open	a	web	browser	and	navigate	to	https://console.firebase.google.com/	to	sign
into	your	Firebase	console	and	select	the	Firebase	Notification	Demo	project
created	in	the	previous	chapter.	Once	the	project	has	loaded,	select	the
Notifications	option	located	in	the	left-hand	panel	of	the	console:

https://console.firebase.google.com/

Figure	54-1

In	the	main	panel,	click	on	the	button	that	reads	Send	Your	First	Message	to
display	the	message	composition	screen.	Enter	a	text	message	into	the	Message
text	field	and	an	optional	message	label	(this	is	used	to	reference	the	notification
within	the	Firebase	system	and	is	not	seen	by	the	app	users)	and	leave	the
delivery	date	to	Send	Now.
In	the	target	section,	options	are	available	to	target	different	groups	of	app	users.
For	the	purposes	of	this	example,	the	notification	will	target	all	users	of	the
com.ebookfrenzy.firebasenotify	app	so	make	sure	that	User	segment	is	selected
before	choosing	the	package	name	from	the	menu	as	demonstrated	in	Figure	54-
2:

Figure	54-2

Note	that	the	AND	option	may	be	used	to	add	additional	target	criteria	such	as
the	version	of	the	app,	the	spoken	language	of	the	user	and	whether	the	user	has
made	a	previous	purchase	within	the	app.
By	default,	the	title	of	the	notification	will	be	set	to	the	name	of	the
corresponding	app.	The	advanced	settings	section	of	the	Firebase	message
composition	screen	allows	this	title	to	be	changed.	To	access	this	setting,	click
on	the	Advanced	options	header	in	the	message	composition	screen	as
highlighted	in	Figure	54-3	and	enter	the	title	string	into	the	Title	field:

Figure	54-3

With	the	notification	message	configured,	click	on	the	Send	Message	button,
review	the	settings	in	the	resulting	panel	and	click	on	the	Send	button:

Figure	54-4

54.2	Receiving	the	Notification
After	the	message	has	been	sent,	return	to	the	device	on	which	the	app	is	running
and	look	for	a	notification	indicator	in	the	top	status	bar.	Once	the	indicator
appears,	slide	downward	from	the	status	bar	to	view	the	notification	which	will
contain	the	message	text	entered	when	the	notification	was	composed	within	the
Firebase	console:

Figure	54-5

Tapping	the	notification	will	launch	the	FirebaseNotify	app.

54.3	Including	Custom	Data	within	the	Notification
Firebase	messaging	also	provides	the	option	to	pass	key-value	based	data	within
the	notification.	This	data	can	then	be	retrieved	by	the	activity	that	is	launched
when	the	notification	is	selected	on	the	device.	The	key-value	data	pairs	to	be
included	with	the	notification	are	specified	from	within	the	Advanced	options
section	of	the	message	composition	screen.	Figure	54-6,	for	example,	shows	two
custom	data	pairs	configured	for	a	notification:

Figure	54-6

Within	the	activity	launched	when	the	user	taps	the	notification	on	the	device,
the	getIntent()	method	may	be	used	to	obtain	a	reference	to	the	Intent	object	that
triggered	the	launch.	Calling	the	getExtras()	method	on	that	Intent	will	return	a
Bundle	object	containing	the	custom	data.
The	value	associated	with	each	key	may	be	accessed	by	passing	through	the	key
value	to	the	getString()	method	of	the	Bundle	object.
Edit	the	FirebaseNotifyActivity.java	file	and	modify	the	onCreate()	method	to
extract	the	value	for	a	key	of	“MyKey1”	and	display	that	value	on	the
myTextView	widget	in	the	activity	user	interface	layout:

import	android.widget.TextView;

.

.

.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_firebase_notify);

				Bundle	customData	=	getIntent().getExtras();

	

				if	(customData	!=	null)	{

	

								TextView	textView	=	(TextView)

findViewById(R.id.myTextView);

								textView.setText(customData.getString("MyKey1"));

				}

}

Build	and	run	the	app	on	a	physical	Android	device	and	place	it	into	the
background.	Using	the	Firebase	console,	compose	a	new	message	targeted	at	the
FirebaseNotify	app.	Before	sending	the	notification,	open	the	Advanced	options
panel	and	enter	MyKey1	as	the	key	and	a	string	of	your	choice	as	the
corresponding	value.	Send	the	message,	refer	to	the	device	on	which	the	app	is
running	and	pull	down	the	notification	shade	when	the	notification	icon	appears
in	the	status	bar.	Tap	the	notification	to	launch	the	activity	and	note	that	the
string	entered	into	the	value	field	is	now	displayed	on	the	TextView	widget.
Custom	data	has	successfully	been	passed	from	the	Firebase	console	via	a
notification	to	the	main	activity	of	the	app.

54.4	Foreground	App	Notification	Handling
As	previously	outlined	an	app	will	not,	by	default,	receive	a	Firebase	notification
if	it	is	currently	the	foreground	app.	In	order	for	a	foreground	app	to	receive	the
notification,	it	must	implement	a	service	that	extends	the
FirebaseMessagingService	class	and	override	the	onMessageReceived()	method
within	that	class.
With	the	FirebaseNotify	project	loaded	into	Android	Studio,	right-click	on	the
app	->	java	->	com.ebookfrenzy.firebasenotify	entry	and	select	New	->	Service	-
>	Service	from	the	menu.	In	the	configuration	dialog,	name	the	class
MyFBMessageService	and	enable	both	the	Exported	and	Enabled	options	before
clicking	on	the	Finish	button.
Edit	the	newly	created	MyFBMessageService.java	file	and	modify	it	to	extend
the	FirebaseMessagingService	class,	implement	the	onMessageReceived()
method	and	remove	the	existing	onBind()	method:

package	com.ebookfrenzy.firebasenotify;

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

import	android.util.Log;

import	com.google.firebase.messaging.FirebaseMessagingService;

import	com.google.firebase.messaging.RemoteMessage;

public	class	MyFBMessageService	extends

FirebaseMessagingService		{

				String	TAG	=	"firebasenotify";

			

				public	MyFBMessageService()	{

				}

				@Override

				public	IBinder	onBind(Intent	intent)	{

								//	TODO:	Return	the	communication	channel	to	the

service.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

				@Override

				public	void	onMessageReceived(RemoteMessage	remoteMessage)

{

								Log.d(TAG,	"Notification	Title:	"	+

														remoteMessage.getNotification().getTitle());

								Log.d(TAG,	"Notification	Message:	"	+

														remoteMessage.getNotification().getBody());

				}

}

When	the	onMessageReceived()	method	is	called,	it	is	passed	as	an	argument	a
RemoteMessage	object.	Contained	within	this	object	is	an	instance	of	the
RemoteMessage.Notification	class.	This	object	is	used	to	contain	the	details	of	a
Firebase	remote	notification.
In	the	above	code,	the	getNotification()	method	of	the	RemoteMessage	object	is
called	to	access	the	RemoteMessage.Notification	object.	The	getTitle()	method
of	the	RemoteMessage.Notification	object	is	then	called	to	obtain	the	title	text	of
the	message	while	the	getBody()	method	returns	the	notification	body	text.	These
strings	are	both	displayed	on	the	Android	Studio	console.
The	final	task	before	testing	the	code	is	to	modify	the	service	entry	within	the

AndroidManifest.xml	file	to	add	an	intent	filter	for	the	Firebase	messaging	event:
<service

				android:name=".MyFBMessageService"

				android:enabled="true"

				android:exported="true">

				<intent-filter>

								<action

android:name="com.google.firebase.MESSAGING_EVENT"/>

				</intent-filter>

</service>

Once	the	changes	have	been	made,	build	and	run	the	app	on	a	physical	Android
device	and	display	the	Android	Monitor	tool	window	so	that	the	console	output
from	the	device	is	visible.	Using	the	Firebase	console,	send	a	new	notification	to
the	app	using	the	steps	outlined	earlier	in	the	chapter.	Once	the	notification	has
arrived	on	the	device,	output	should	appear	in	the	Android	Monitor	tool	window
containing	the	message	title	and	body	text	from	the	notification:

Figure	54-7

54.5	Summary
In	addition	to	local	notifications,	Android	also	provides	a	way	to	send
notifications	remotely	using	the	Firebase	notifications	system.	Notifications	can
be	targeted	to	users	using	a	variety	of	categories	including	all	users	of	an	app,	a
particular	spoken	language,	an	app	version	or	even	to	a	specific	Android	device.
This	chapter	has	demonstrated	how	to	send	and	receive	remote	notifications,
including	the	implementation	of	a	service	to	receive	notifications	for	a
foreground	app	and	the	passing	of	custom	data	to	the	app	from	the	remote
server.

55.	 An	 Introduction	 to	 Android	 7	 MultiWindow
Support

Android	7	introduced	a	new	feature	in	the	form	of	multiwindow	support.	Unlike
previous	versions	of	Android,	multiwindow	support	in	Android	7	allows	more
than	one	activity	to	be	displayed	on	the	device	screen	at	one	time.	In	this
chapter,	an	overview	of	Android	multiwindow	modes	will	be	provided	from	both
user	and	app	developer	perspectives.
Once	the	basics	of	multiwindow	support	have	been	covered,	the	next	chapter
will	work	through	a	tutorial	outlining	the	practical	steps	involved	in	working
with	multiwindow	mode	when	developing	Android	apps.

55.1	Split-Screen,	Freeform	and	Picture-in-Picture	Modes
Multiwindow	support	in	Android	provides	three	different	forms	of	window
support.	Split-screen	mode,	available	on	most	phone	and	tablet	devices,	provides
a	split	screen	environment	where	two	activities	appear	either	side	by	side	or	one
above	the	other.	A	moveable	divider	is	provided	which,	when	dragged	by	the
user,	adjusts	the	percentage	of	the	screen	assigned	to	each	of	the	adjacent
activities:

Figure	55-1

Freeform	mode	provides	a	windowing	environment	on	devices	with	larger
screens	and	is	currently	enabled	at	the	discretion	of	the	device	manufacturer.
Freeform	differs	from	split-screen	mode	in	that	it	allows	each	activity	to	appear
in	a	separate,	resizable	window	and	is	not	limited	to	two	activities	being
displayed	concurrently.	Figure	55-2,	for	example,	shows	a	device	in	freeform
mode	with	the	Calculator	and	Contacts	apps	displayed	in	separate	windows:

Figure	55-2

Picture-in-picture	support,	as	the	name	suggests,	allows	video	playback	to
continue	in	a	smaller	window	while	the	user	performs	other	tasks.	At	present	this
feature	is	only	available	on	Android	TV	and,	as	such,	is	outside	the	scope	of	this
book.

55.2	Entering	MultiWindow	Mode
Split-screen	mode	can	be	entered	by	pressing	and	holding	the	square	Overview
button	until	the	display	switches	mode.	Once	in	split-screen	mode,	the	Overview
button	will	change	to	display	two	rectangles	as	shown	in	Figure	55-3	and	the
current	activity	will	fill	one	half	of	the	screen.	The	Overview	screen	will	appear
in	the	adjacent	half	of	the	screen	allowing	the	second	activity	to	be	selected	for
display:

Figure	55-3

Alternatively,	an	app	may	be	placed	in	split-screen	mode	by	displaying	the
Overview	screen,	pressing	and	holding	the	title	bar	of	a	listed	app	and	then
dragging	and	dropping	the	app	onto	the	highlighted	section	of	the	screen.
To	exit	split-screen	mode,	simply	drag	the	divider	separating	the	two	activities	to
a	far	edge	so	that	only	one	activity	fills	the	screen,	or	press	and	hold	the
Overview	button	until	it	reverts	to	a	single	square.
In	the	case	of	freeform	mode,	an	additional	button	appears	within	the	title	bar	of
the	apps	when	listed	in	the	Overview	screen.	When	selected,	this	button
(highlighted	in	Figure	55-4)	causes	the	activity	to	appear	in	a	freeform	window:

Figure	55-4

The	additional	button	located	in	the	title	bar	of	a	freeform	activity	(shown	in
Figure	55-5)	may	be	pressed	to	return	the	activity	to	full	screen	mode:

Figure	55-5

Alternatively,	freeform	activities	may	be	switched	to	full	screen	mode	from
within	the	Overview	screen	by	tapping	the	full	screen	button	located	in	the	title
bar:

Figure	55-6

55.3	Checking	for	Freeform	Support
As	outlined	earlier	in	the	chapter,	Google	is	leaving	the	choice	of	whether	to
enable	freeform	multiwindow	mode	to	the	individual	Android	device
manufacturers.	Since	it	only	makes	sense	to	use	freeform	on	larger	devices,	there
is	no	guarantee	that	freeform	will	be	available	on	every	device	on	which	an	app
is	likely	to	run.	Fortunately	all	of	the	freeform	specific	methods	and	attributes
are	ignored	by	the	system	if	freeform	mode	is	not	available	on	a	device,	so	using
these	will	not	cause	the	app	to	crash	on	a	non-freeform	device.	Situations	might
arise,	however,	where	it	may	be	useful	to	be	able	to	detect	if	a	device	supports
freeform	multiwindow	mode.	Fortunately,	this	can	be	achieved	by	checking	for
the	freeform	window	management	feature	in	the	package	manager.	The
following	code	example	checks	for	freeform	multiwindow	support	and	returns	a
Boolean	value	based	on	the	result	of	the	test:

public	Boolean	checkFreeform()	{

				return	getPackageManager().hasSystemFeature(

												PackageManager.FEATURE_FREEFORM_WINDOW_MANAGEMENT);

}

55.4	Enabling	MultiWindow	Support	in	an	App
The	android:resizableActivity	manifest	file	setting	controls	whether
multiwindow	behavior	is	supported	by	an	app.	This	setting	can	be	made	at	either
the	application	or	individual	activity	levels.	The	following	fragment,	for
example,	configures	the	activity	named	MainActivity	to	support	both	split-
screen	and	freeform	multiwindow	modes:

<activity

				android:name=".MainActivity"

				android:resizeableActivity="true"

				android:label="@string/app_name"

				android:theme="@style/AppTheme.NoActionBar">

				<intent-filter>

								<action	android:name="android.intent.action.MAIN"	/>

								<category

android:name="android.intent.category.LAUNCHER"	/>

				</intent-filter>

</activity>

Setting	the	property	to	false	will	prevent	the	activity	from	appearing	in	split-
screen	or	freeform	mode.	Launching	an	activity	for	which	multiwindow	support
is	disabled	will	result	in	a	message	appearing	indicating	that	the	app	does	not
support	multiwindow	mode	and	the	activity	filling	the	entire	screen.	When	a
device	is	in	multiwindow	mode,	the	title	bar	of	such	activities	will	also	display	a
message	within	the	Overview	screen	indicating	that	multiwindow	mode	is	not
supported	by	the	activity	(Figure	55-7):

Figure	55-7

55.5	Specifying	MultiWindow	Attributes
A	number	of	attributes	are	available	as	part	of	the	<layout>	element	for
specifying	the	size	and	placement	of	an	activity	when	it	is	launched	into	a
multiwindow	mode.	The	initial	height,	width	and	position	of	an	activity	when
launched	in	freeform	mode	may	be	specified	using	the	following	attributes:
·									android:defaultWidth	–	Specifies	the	default	width	of	the	activity.
·									android:defaultHeight	–	Specifies	the	default	height	of	the	activity.
·									android:gravity	–	Specifies	the	initial	position	of	the	activity	(start,	end,	left,

right,	top	etc.).
Note	that	the	above	attributes	apply	to	the	activity	only	when	it	is	displayed	in
freeform	mode.	The	following	example	configures	an	activity	to	appear	with	a
specific	height	and	width	at	the	top	of	the	starting	edge	of	the	screen:

<activity	android:name=".MainActivity	">

				<layout	android:defaultHeight="350dp"

										android:defaultWidth="450dp"

										android:gravity="start|end"	/>

</activity>

The	following	<layout>	attributes	may	be	used	to	specify	the	minimum	width
and	height	to	which	an	activity	may	be	reduced	in	either	split-view	or	freeform
modes:
·									android:minimalHeight	–	Specifies	the	minimum	height	to	which	the

activity	may	be	reduced	while	in	split-screen	or	freeform	mode.
·									android:minimalWidth	-	Specifies	the	minimum	width	to	which	the	activity

may	be	reduced	while	in	split-screen	or	freeform	mode.
When	the	user	slides	the	split-screen	divider	beyond	the	minimal	height	or	width
boundaries,	the	system	will	stop	resizing	the	layout	of	the	shrinking	activity	and
simply	clip	the	user	interface	to	make	room	for	the	adjacent	activity.
The	following	manifest	file	fragment	implements	the	minimal	width	and	height
attributes	for	an	activity:

<activity	android:name=".MainActivity	">

				<layout	android:minimalHeight="400dp"

										android:minimalWidth="290dp"	/>

</activity>

55.6	Detecting	MultiWindow	Mode	in	an	Activity
Situations	may	arise	where	an	activity	needs	to	detect	whether	it	is	currently
being	displayed	to	the	user	in	multiwindow	mode.	The	current	status	can	be
obtained	via	a	call	to	the	isInMultiWindowMode()	method	of	the	Activity	class.
When	called,	this	method	returns	a	true	or	false	value	depending	on	whether	or
not	the	activity	is	currently	full	screen:

if	(this.isInMultiWindowMode())	{

				//	Activity	is	running	in	MultiWindow	mode

}	else	{

				//	Activity	is	not	in	MultiWindow	mode

}

55.7	Receiving	MultiWindow	Notifications

An	activity	will	receive	notification	that	it	is	entering	or	exiting	multiwindow
mode	if	it	overrides	the	onMultiWindowModeChanged()	callback	method.	The
argument	passed	to	this	method	is	true	on	entering	multiwindow	mode,	and	false
when	the	activity	exits	the	mode:

@Override

public	void	onMultiWindowModeChanged(boolean

isInMultiWindowMode)	{

				super.onMultiWindowModeChanged(isInMultiWindowMode);

			

				if	(isInMultiWindowMode)	{

								//	Activity	has	entered	multiwindow	mode

				}	else	{

								//	Activity	has	exited	multiwindow	mode

				}

}

55.8	Launching	an	Activity	in	MultiWindow	Mode
In	the	Android	Explicit	Intents	–	A	Worked	Example	chapter	of	this	book,	an
example	app	was	created	in	which	an	activity	uses	an	intent	to	launch	a	second
activity.	By	default,	activities	launched	via	an	intent	are	considered	to	reside	in
the	same	task	stack	as	the	originating	activity.	An	activity	can,	however,	be
launched	into	a	new	task	stack	by	passing	through	the	appropriate	flags	with	the
intent.
When	an	activity	in	multiwindow	mode	launches	another	activity	within	the
same	task	stack,	the	new	activity	replaces	the	originating	activity	within	the
split-screen	or	freeform	window	(the	user	returns	to	the	original	activity	via	the
back	button).
When	launched	into	a	new	task	stack	in	split-screen	mode,	however,	the	second
activity	will	appear	in	the	window	adjacent	to	the	original	activity,	allowing	both
activities	to	be	viewed	simultaneously.	In	the	case	of	freeform	mode,	the
launched	activity	will	appear	in	a	separate	window	from	the	original	activity.
In	order	to	launch	an	activity	into	a	new	task	stack,	the	following	flags	must	be
set	on	the	intent	before	it	is	started:
·									Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT
·									Intent.FLAG_ACTIVITY_MULTIPLE_TASK
·									Intent.FLAG_ACTIVITY_NEW_TASK				
The	following	code,	for	example,	configures	and	launches	a	second	activity
designed	to	appear	in	a	separate	window:

Intent	i	=	new	Intent(this,	SecondActivity.class);

i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT|

											Intent.FLAG_ACTIVITY_MULTIPLE_TASK|

											Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(i);

55.9	Configuring	Freeform	Activity	Size	and	Position
By	default,	an	activity	launched	into	a	different	task	stack	while	in	freeform
mode	will	be	positioned	in	the	center	of	the	screen	at	a	size	dictated	by	the
system.	The	location	and	dimensions	of	this	window	can	be	controlled	by
passing	launch	bounds	settings	to	the	intent	via	the	ActivityOptions	class.	The
first	step	in	this	process	is	to	create	a	Rect	object	configured	with	the	left	(X),
top	(Y),	right	(X)	and	bottom	(Y)	coordinates	of	the	rectangle	representing	the
activity	window.	The	following	code,	for	example,	creates	a	Rect	object	in
which	the	top-left	corner	is	positioned	at	coordinate	(100,	800)	and	the	bottom-
right	at	(900,	700):

Rect	rect	=	new	Rect(100,	800,	900,	700);

The	next	step	is	to	create	a	basic	instance	of	the	ActivityOptions	class	and
initialize	it	with	the	Rect	settings	via	the	setLaunchBounds()	method:

ActivityOptions	options	=	ActivityOptions.makeBasic();

ActivityOptions	bounds	=	options.setLaunchBounds(rect);

Finally,	the	ActivityOptions	instance	is	converted	to	a	Bundle	object	and	passed
to	the	startActivity()	method	along	with	the	Intent	object:

startActivity(i,	bounds.toBundle());

Combining	these	steps	results	in	a	code	sequence	that	reads	as	follows:
Intent	i	=	new	Intent(this,	SecondActivity.class);

i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT|

											Intent.FLAG_ACTIVITY_MULTIPLE_TASK|

											Intent.FLAG_ACTIVITY_NEW_TASK);

Rect	rect	=	new	Rect(100,	800,	900,	700);

ActivityOptions	options	=	ActivityOptions.makeBasic();

ActivityOptions	bounds	=	options.setLaunchBounds(rect);

startActivity(i,	bounds.toBundle());

When	the	second	activity	is	launched	by	the	intent	while	the	originating	activity

When	the	second	activity	is	launched	by	the	intent	while	the	originating	activity
is	in	freeform	mode,	the	new	activity	window	will	appear	with	the	location	and
dimensions	defined	in	the	Rect	object.

55.10	Summary
Android	7	introduced	multiwindow	support,	a	system	whereby	more	than	one
activity	is	displayed	on	the	screen	at	any	one	time.	The	three	modes	provided	by
multiwindow	support	are	split-screen,	freeform	and	picture-in-picture.	In	split-
screen	mode,	the	screen	is	split	either	horizontally	or	vertically	into	two	panes
with	an	activity	displayed	in	each	pane.	Freeform	mode,	which	is	only	supported
on	certain	Android	devices,	allows	each	activity	to	appear	in	a	separate,	movable
and	resizable	window.	Picture-in-picture	mode	is	only	available	on	Android	TV
and	allows	video	playback	to	continue	in	a	small	window	while	the	user	is
performing	other	tasks.
As	outlined	in	this	chapter,	a	number	of	methods	and	property	settings	are
available	within	the	Android	SDK	to	detect,	respond	to	and	control	multiwindow
behavior	within	an	app.

56.	An	Android	Studio	MultiWindow
Split-Screen	and	Freeform	Tutorial
With	the	basics	of	Android	multiwindow	support	covered	in	the	previous
chapter,	this	chapter	will	work	through	the	steps	involved	in	implementing
multiwindow	support	within	an	Android	app.	This	project	will	be	used	to
demonstrate	the	steps	involved	in	configuring	and	managing	both	split-screen
and	freeform	behavior	within	a	multi-activity	app.

56.1	Creating	the	MultiWindow	Project
Start	Android	Studio	and	create	a	new	project,	entering	MultiWindow	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	24:	Android	7.0	(Nougat).	Continue	through	the
remaining	setup	screens,	requesting	the	creation	of	an	Empty	Activity	named
FirstActivity	with	a	corresponding	layout	file	named	activity_first.

56.2	Designing	the	FirstActivity	User	Interface
The	user	interface	will	need	to	be	comprised	of	a	single	Button	and	a	TextView.
Within	the	Project	tool	window,	navigate	to	the	activity_first.xml	layout	file
located	in	app	->	res	->	layout	and	double-click	on	it	to	load	it	into	the	Layout
Editor	tool.	With	the	tool	in	Design	mode,	select	and	delete	the	Hello	World!
TextView	object.
With	Autoconnect	mode	enabled	in	the	Layout	Editor	toolbar,	drag	a	TextView
widget	from	the	palette	and	position	it	in	the	center	of	the	layout.	Next,	drag	a
Button	object	and	position	it	beneath	the	TextView.	Edit	the	text	on	the	Button
so	that	it	reads	“Launch”.	If	any	constraints	are	missing	from	the	layout,	simply
click	on	the	Infer	Constraints	button	in	the	Layout	Editor	toolbar	to	add	them.
On	completion	of	these	steps,	the	layout	should	resemble	that	shown	in	Figure
56-1:

Figure	56-1

In	the	properties	panel,	change	the	widget	ID	for	the	TextView	to	myTextView
and	assign	an	onClick	property	to	the	button	so	that	it	calls	a	method	named
launchIntent	when	selected	by	the	user.

56.3	Adding	the	Second	Activity
The	second	activity	will	be	launched	when	the	user	clicks	on	the	button	in	the
first	activity.	Add	this	new	activity	by	right-clicking	on	the
com.ebookfrenzy.multiwindow	package	name	located	in	app	->	java	and	select
the	New	->	Activity	->	Empty	Activity	menu	option	to	display	the	New	Android

Activity	dialog.
Enter	SecondActivity	into	the	Activity	Name	and	Title	fields	and	name	the	layout
file	activity_second.	Since	this	activity	will	not	be	started	when	the	application	is
launched	(it	will	instead	be	launched	via	an	intent	by	FirstActivity	when	the
button	is	pressed),	it	is	important	to	make	sure	that	the	Launcher	Activity	option
is	disabled	before	clicking	on	the	Finish	button.
Open	the	layout	for	the	second	activity	(app	->	res	->	layout	->
activity_second.xml)	and	convert	the	layout	to	a	ConstraintLayout	if	necessary.
Drag	and	drop	a	TextView	widget	so	that	it	is	positioned	in	the	center	of	the
layout.	Edit	the	text	of	the	TextView	so	that	it	reads	“Second	Activity”	and	set
the	layout_width	property	to	wrap_content:

Figure	56-2

56.4	Launching	the	Second	Activity
The	next	step	is	to	add	some	code	to	the	FirstActivity.java	class	file	to
implement	the	launchIntent()	method.	Edit	the	FirstActivity.java	file	and
implement	this	method	as	follows:

package	com.ebookfrenzy.multiwindow;

import	android.content.Intent;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

public	class	FirstActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_first);

				}

				public	void	launchIntent(View	view)	{

								Intent	i	=	new	Intent(this,	SecondActivity.class);

								startActivity(i);

				}

}

Compile	and	run	the	app	and	verify	that	the	second	activity	is	launched	when	the
Launch	button	is	clicked.

56.5	Enabling	MultiWindow	Mode
Edit	the	AndroidManifest.xml	file	and	add	the	directive	to	enable	multiwindow
support	for	the	app	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.multiwindow">

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme">

								<activity

												android:name=".FirstActivity"

												android:resizeableActivity="true">

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<activity	android:name=".SecondActivity"></activity>

				</application>

</manifest>

Note	that,	at	the	time	of	writing,	multiwindow	support	is	enabled	by	default.	The
above	step,	however,	is	recommended	for	the	purposes	of	completeness	and	to
defend	against	the	possibility	that	this	default	behavior	may	change	in	the	future.

56.6	Testing	MultiWindow	Support
Build	and	run	the	app	once	again	and,	once	running,	press	and	hold	the
Overview	button	as	outlined	in	the	chapter	entitled	An	Introduction	to	Android	7
MultiWindow	Support	to	switch	to	split-screen	mode.	From	the	Overview	screen
in	the	second	half	of	the	screen,	choose	an	app	to	appear	in	the	adjacent	panel:

Figure	56-3

Click	on	the	Launch	button	and	note	that	the	second	activity	appears	in	the	same
panel	as	the	first	activity.
If	the	app	is	running	on	a	device	or	emulator	session	that	supports	freeform
mode,	press	and	hold	the	Overview	button	a	second	time	until	multiwindow
mode	exits.	Click	in	the	Overview	button	once	again	and,	in	the	resulting
Overview	screen,	select	the	freeform	button	located	in	the	title	bar	of	the
MultiWindow	app	as	outlined	in	Figure	56-4:

Figure	56-4

Once	selected,	the	activity	should	appear	in	freeform	mode	as	illustrated	in
Figure	56-5:

Figure	56-5

Click	on	the	Launch	button	and	note	that,	once	again,	the	second	activity	appears
in	place	of	the	first	rather	than	in	a	separate	window.
In	order	for	the	second	activity	to	appear	in	a	different	split-screen	panel	or
freeform	window,	the	intent	must	be	launched	with	the	appropriate	flags	set.

56.7	Launching	the	Second	Activity	in	a	Different	Window
To	prevent	the	second	activity	from	replacing	the	first	activity	the	launchIntent()
method	needs	to	be	modified	to	launch	the	second	activity	in	a	different	task
stack	as	follows:

public	void	launchIntent(View	view)	{

				Intent	i	=	new	Intent(this,	SecondActivity.class);

				i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT|

												Intent.FLAG_ACTIVITY_MULTIPLE_TASK|

												Intent.FLAG_ACTIVITY_NEW_TASK);

			

				startActivity(i);

}

After	making	this	change,	rerun	the	app,	enter	split-screen	mode	and	launch	the
second	activity.	The	second	activity	should	now	appear	in	the	panel	adjacent	to
the	first	activity:

Figure	56-6

Repeat	the	steps	from	the	previous	section	to	enter	freeform	mode	and	verify
that	the	second	activity	appears	in	a	separate	window	from	the	first	as	shown	in
Figure	56-7:

Figure	56-7

56.8	Changing	the	Freeform	Window	Position	and	Size
Each	time	the	second	activity	has	launched	in	a	separate	window	in	freeform
mode	it	has	appeared	in	the	center	of	the	screen.	As	a	final	example,	modify	the
launchIntent()	method	to	configure	the	second	activity	so	that	it	appears	in	the
top	left-hand	corner	of	the	screen	with	dimensions	of	100	by	100:

package	com.ebookfrenzy.multiwindow;

import	android.app.ActivityOptions;

import	android.content.Intent;

import	android.graphics.Rect;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	static	com.ebookfrenzy.multiwindow.R.id.myTextView;

public	class	FirstActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_first);

				}

				public	void	launchIntent(View	view)	{

								Intent	i	=	new	Intent(this,	SecondActivity.class);

								i.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT|

																Intent.FLAG_ACTIVITY_MULTIPLE_TASK|

																Intent.FLAG_ACTIVITY_NEW_TASK);

								Rect	rect	=	new	Rect(0,	0,	100,	100);

	

								ActivityOptions	options	=	ActivityOptions.makeBasic();

								ActivityOptions	bounds	=	options.setLaunchBounds(rect);

								startActivity(i,	bounds.toBundle());

				}

Run	the	app	one	last	time,	enter	freeform	mode	and	launch	the	second	activity.
Verify	that	the	size	and	position	of	the	second	window	matches	the	specified
configuration	options.

56.9	Summary
This	chapter	has	demonstrated	some	of	the	basics	of	enabling	and	working	with
multiwindow	support	within	an	Android	app	through	the	implementation	of	an
example	project.	In	particular,	this	example	has	focused	on	enabling
multiwindow	support,	launching	a	second	activity	into	a	new	task	stack	and
configuring	the	size	and	location	of	a	freeform	window.

57.	An	Overview	of	Android	SQLite	Databases

Mobile	applications	that	do	not	need	to	store	at	least	some	amount	of	persistent
data	are	few	and	far	between.	The	use	of	databases	is	an	essential	aspect	of	most
applications,	ranging	from	applications	that	are	almost	entirely	data	driven,	to
those	that	simply	need	to	store	small	amounts	of	data	such	as	the	prevailing
score	of	a	game.
The	importance	of	persistent	data	storage	becomes	even	more	evident	when
taking	into	consideration	the	somewhat	transient	lifecycle	of	the	typical	Android
application.	With	the	ever-present	risk	that	the	Android	runtime	system	will
terminate	an	application	component	to	free	up	resources,	a	comprehensive	data
storage	strategy	to	avoid	data	loss	is	a	key	factor	in	the	design	and
implementation	of	any	application	development	strategy.
This	chapter	will	provide	an	overview	of	the	SQLite	database	management
system	bundled	with	the	Android	operating	system,	together	with	an	outline	of
the	Android	SDK	classes	that	are	provided	to	facilitate	persistent	SQLite	based
database	storage	from	within	an	Android	application.	Before	delving	into	the
specifics	of	SQLite	in	the	context	of	Android	development,	however,	a	brief
overview	of	databases	and	SQL	will	be	covered.

57.1	Understanding	Database	Tables
Database	Tables	provide	the	most	basic	level	of	data	structure	in	a	database.
Each	database	can	contain	multiple	tables	and	each	table	is	designed	to	hold
information	of	a	specific	type.	For	example,	a	database	may	contain	a	customer
table	that	contains	the	name,	address	and	telephone	number	for	each	of	the
customers	of	a	particular	business.	The	same	database	may	also	include	a
products	table	used	to	store	the	product	descriptions	with	associated	product
codes	for	the	items	sold	by	the	business.
Each	table	in	a	database	is	assigned	a	name	that	must	be	unique	within	that
particular	database.	A	table	name,	once	assigned	to	a	table	in	one	database,	may
not	be	used	for	another	table	except	within	the	context	of	another	database.

57.2	Introducing	Database	Schema
Database	Schemas	define	the	characteristics	of	the	data	stored	in	a	database
table.	For	example,	the	table	schema	for	a	customer	database	table	might	define
that	the	customer	name	is	a	string	of	no	more	than	20	characters	in	length,	and

that	the	customer	phone	number	is	a	numerical	data	field	of	a	certain	format.
Schemas	are	also	used	to	define	the	structure	of	entire	databases	and	the
relationship	between	the	various	tables	contained	in	each	database.

57.3	Columns	and	Data	Types
It	is	helpful	at	this	stage	to	begin	to	view	a	database	table	as	being	similar	to	a
spreadsheet	where	data	is	stored	in	rows	and	columns.
Each	column	represents	a	data	field	in	the	corresponding	table.	For	example,	the
name,	address	and	telephone	data	fields	of	a	table	are	all	columns.
Each	column,	in	turn,	is	defined	to	contain	a	certain	type	of	data.	A	column
designed	to	store	numbers	would,	therefore,	be	defined	as	containing	numerical
data.

57.4	Database	Rows
Each	new	record	that	is	saved	to	a	table	is	stored	in	a	row.	Each	row,	in	turn,
consists	of	the	columns	of	data	associated	with	the	saved	record.
Once	again,	consider	the	spreadsheet	analogy	described	earlier	in	this	chapter.
Each	entry	in	a	customer	table	is	equivalent	to	a	row	in	a	spreadsheet	and	each
column	contains	the	data	for	each	customer	(name,	address,	telephone	etc).
When	a	new	customer	is	added	to	the	table,	a	new	row	is	created	and	the	data	for
that	customer	stored	in	the	corresponding	columns	of	the	new	row.
Rows	are	also	sometimes	referred	to	as	records	or	entries	and	these	terms	can
generally	be	used	interchangeably.

57.5	Introducing	Primary	Keys
Each	database	table	should	contain	one	or	more	columns	that	can	be	used	to
identify	each	row	in	the	table	uniquely.	This	is	known	in	database	terminology
as	the	Primary	Key.	For	example,	a	table	may	use	a	bank	account	number
column	as	the	primary	key.	Alternatively,	a	customer	table	may	use	the
customer's	social	security	number	as	the	primary	key.
Primary	keys	allow	the	database	management	system	to	identify	a	specific	row
in	a	table	uniquely.	Without	a	primary	key	it	would	not	be	possible	to	retrieve	or
delete	a	specific	row	in	a	table	because	there	can	be	no	certainty	that	the	correct
row	has	been	selected.	For	example,	suppose	a	table	existed	where	the
customer's	last	name	had	been	defined	as	the	primary	key.	Imagine	then	the
problem	that	might	arise	if	more	than	one	customer	named	"Smith"	were
recorded	in	the	database.	Without	some	guaranteed	way	to	identify	a	specific

recorded	in	the	database.	Without	some	guaranteed	way	to	identify	a	specific
row	uniquely,	it	would	be	impossible	to	ensure	the	correct	data	was	being
accessed	at	any	given	time.
Primary	keys	can	comprise	a	single	column	or	multiple	columns	in	a	table.	To
qualify	as	a	single	column	primary	key,	no	two	rows	can	contain	matching
primary	key	values.	When	using	multiple	columns	to	construct	a	primary	key,
individual	column	values	do	not	need	to	be	unique,	but	all	the	columns'	values
combined	together	must	be	unique.

57.6	What	is	SQLite?
SQLite	is	an	embedded,	relational	database	management	system	(RDBMS).
Most	relational	databases	(Oracle,	SQL	Server	and	MySQL	being	prime
examples)	are	standalone	server	processes	that	run	independently,	and	in
cooperation	with,	applications	that	require	database	access.	SQLite	is	referred	to
as	embedded	because	it	is	provided	in	the	form	of	a	library	that	is	linked	into
applications.	As	such,	there	is	no	standalone	database	server	running	in	the
background.	All	database	operations	are	handled	internally	within	the
application	through	calls	to	functions	contained	in	the	SQLite	library.
The	developers	of	SQLite	have	placed	the	technology	into	the	public	domain
with	the	result	that	it	is	now	a	widely	deployed	database	solution.
SQLite	is	written	in	the	C	programming	language	and	as	such,	the	Android	SDK
provides	a	Java	based	“wrapper”	around	the	underlying	database	interface.	This
essentially	consists	of	a	set	of	classes	that	may	be	utilized	within	the	Java	code
of	an	application	to	create	and	manage	SQLite	based	databases.
For	additional	information	about	SQLite	refer	to	http://www.sqlite.org.

57.7	Structured	Query	Language	(SQL)
Data	is	accessed	in	SQLite	databases	using	a	high-level	language	known	as
Structured	Query	Language.	This	is	usually	abbreviated	to	SQL	and	pronounced
sequel.	SQL	is	a	standard	language	used	by	most	relational	database
management	systems.	SQLite	conforms	mostly	to	the	SQL-92	standard.
SQL	is	essentially	a	very	simple	and	easy	to	use	language	designed	specifically
to	enable	the	reading	and	writing	of	database	data.	Because	SQL	contains	a
small	set	of	keywords,	it	can	be	learned	quickly.	In	addition,	SQL	syntax	is	more
or	less	identical	between	most	DBMS	implementations,	so	having	learned	SQL
for	one	system,	it	is	likely	that	your	skills	will	transfer	to	other	database
management	systems.
While	some	basic	SQL	statements	will	be	used	within	this	chapter,	a	detailed
overview	of	SQL	is	beyond	the	scope	of	this	book.	There	are,	however,	many

http://www.sqlite.org

overview	of	SQL	is	beyond	the	scope	of	this	book.	There	are,	however,	many
other	resources	that	provide	a	far	better	overview	of	SQL	than	we	could	ever
hope	to	provide	in	a	single	chapter	here.

57.8	Trying	SQLite	on	an	Android	Virtual	Device	(AVD)
For	readers	unfamiliar	with	databases	in	general	and	SQLite	in	particular,	diving
right	into	creating	an	Android	application	that	uses	SQLite	may	seem	a	little
intimidating.	Fortunately,	Android	is	shipped	with	SQLite	pre-installed,
including	an	interactive	environment	for	issuing	SQL	commands	from	within	an
adb	shell	session	connected	to	a	running	Android	AVD	emulator	instance.	This
is	both	a	useful	way	to	learn	about	SQLite	and	SQL,	and	also	an	invaluable	tool
for	identifying	problems	with	databases	created	by	applications	running	in	an
emulator.
To	launch	an	interactive	SQLite	session,	begin	by	running	an	AVD	session.	This
can	be	achieved	from	within	Android	Studio	by	launching	the	Android	Virtual
Device	Manager	(Tools	->	Android	->	AVD	Manager),	selecting	a	previously
configured	AVD	and	clicking	on	the	start	button.
Once	the	AVD	is	up	and	running,	open	a	Terminal	or	Command-Prompt
window	and	connect	to	the	emulator	using	the	adb	command-line	tool	as	follows
(note	that	the	–e	flag	directs	the	tool	to	look	for	an	emulator	with	which	to
connect,	rather	than	a	physical	device):

adb	–e	shell

Once	connected,	the	shell	environment	will	provide	a	command	prompt	at	which
commands	may	be	entered:

root@android:/	#

Data	stored	in	SQLite	databases	are	actually	stored	in	database	files	on	the	file
system	of	the	Android	device	on	which	the	application	is	running.	By	default,
the	file	system	path	for	these	database	files	is	as	follows:

datadata/<package	name>/databases/<database	filename>.db

For	example,	if	an	application	with	the	package	name	com.example.MyDBApp
creates	a	database	named	mydatabase.db,	the	path	to	the	file	on	the	device	would
read	as	follows:

datadata/com.example.MyDBApp/databases/mydatabase.db

For	the	purposes	of	this	exercise,	therefore,	change	directory	to	datadata	within
the	adb	shell	and	create	a	subdirectory	hierarchy	suitable	for	some	SQLite
experimentation:

cd	datadata

mkdir	com.example.dbexample

cd	com.example.dbexample

mkdir	databases

cd	databases

With	a	suitable	location	created	for	the	database	file,	launch	the	interactive
SQLite	tool	as	follows:

root@android:datadata/databases	#	sqlite3	./mydatabase.db

sqlite3	./mydatabase.db

SQLite	version	3.8.10.2	2015-05-20	18:17:19

Enter	".help"	for	usage	hints.

sqlite>

At	the	sqlite>	prompt,	commands	may	be	entered	to	perform	tasks	such	as
creating	tables	and	inserting	and	retrieving	data.	For	example,	to	create	a	new
table	in	our	database	with	fields	to	hold	ID,	name,	address	and	phone	number
fields	the	following	statement	is	required:

create	table	contacts	(_id	integer	primary	key	autoincrement,

name	text,	address	text,	phone	text);

Note	that	each	row	in	a	table	should	have	a	primary	key	that	is	unique	to	that
row.	In	the	above	example,	we	have	designated	the	ID	field	as	the	primary	key,
declared	it	as	being	of	type	integer	and	asked	SQLite	to	increment	the	number
automatically	each	time	a	row	is	added.	This	is	a	common	way	to	make	sure	that
each	row	has	a	unique	primary	key.	On	most	other	platforms,	the	choice	of	name
for	the	primary	key	is	arbitrary.	In	the	case	of	Android,	however,	it	is	essential
that	the	key	be	named	_id	in	order	for	the	database	to	be	fully	accessible	using
all	of	the	Android	database	related	classes.	The	remaining	fields	are	each
declared	as	being	of	type	text.
To	list	the	tables	in	the	currently	selected	database,	use	the	.tables	statement:

sqlite>	.tables

contacts

To	insert	records	into	the	table:
sqlite>	insert	into	contacts	(name,	address,	phone)	values

("Bill	Smith",	"123	Main	Street,	California",	"123-555-2323");

sqlite>	insert	into	contacts	(name,	address,	phone)	values

("Mike	Parks",	"10	Upping	Street,	Idaho",	"444-444-1212");

To	retrieve	all	rows	from	a	table:
sqlite>	select	*	from	contacts;

1|Bill	Smith|123	Main	Street,	California|123-555-2323

2|Mike	Parks|10	Upping	Street,	Idaho|444-444-1212

To	extract	a	row	that	meets	specific	criteria:
sqlite>	select	*	from	contacts	where	name="Mike	Parks";

2|Mike	Parks|10	Upping	Street,	Idaho|444-444-1212

To	exit	from	the	sqlite3	interactive	environment:
sqlite>	.exit

When	running	an	Android	application	in	the	emulator	environment,	any	database
files	will	be	created	on	the	file	system	of	the	emulator	using	the	previously
discussed	path	convention.	This	has	the	advantage	that	you	can	connect	with
adb,	navigate	to	the	location	of	the	database	file,	load	it	into	the	sqlite3
interactive	tool	and	perform	tasks	on	the	data	to	identify	possible	problems
occurring	in	the	application	code.
It	is	also	important	to	note	that,	while	it	is	possible	to	connect	with	an	adb	shell
to	a	physical	Android	device,	the	shell	is	not	granted	sufficient	privileges	by
default	to	create	and	manage	SQLite	databases.	Debugging	of	database	problems
is,	therefore,	best	performed	using	an	AVD	session.

57.9	Android	SQLite	Java	Classes
SQLite	is,	as	previously	mentioned,	written	in	the	C	programming	language
while	Android	applications	are	primarily	developed	using	Java.	To	bridge	this
“language	gap”,	the	Android	SDK	includes	a	set	of	classes	that	provide	a	Java
layer	on	top	of	the	SQLite	database	management	system.	The	remainder	of	this
chapter	will	provide	a	basic	overview	of	each	of	the	major	classes	within	this
category.	More	details	on	each	class	can	be	found	in	the	online	Android
documentation.

57.9.1	Cursor
A	class	provided	specifically	to	provide	access	to	the	results	of	a	database	query.
For	example,	a	SQL	SELECT	operation	performed	on	a	database	will	potentially
return	multiple	matching	rows	from	the	database.	A	Cursor	instance	can	be	used
to	step	through	these	results,	which	may	then	be	accessed	from	within	the
application	code	using	a	variety	of	methods.	Some	key	methods	of	this	class	are
as	follows:
·									close()	–	Releases	all	resources	used	by	the	cursor	and	closes	it.
·									getCount()	–	Returns	the	number	of	rows	contained	within	the	result	set.
·									moveToFirst()	–	Moves	to	the	first	row	within	the	result	set.
·									moveToLast()	–	Moves	to	the	last	row	in	the	result	set.

·									moveToNext()	–	Moves	to	the	next	row	in	the	result	set.
·									move()	–	Moves	by	a	specified	offset	from	the	current	position	in	the	result

set.
·									get<type>()	–	Returns	the	value	of	the	specified	<type>	contained	at	the

specified	column	index	of	the	row	at	the	current	cursor	position	(variations
consist	of	getString(),	getInt(),	getShort(),	getFloat()	and	getDouble()).

57.9.2	SQLiteDatabase
This	class	provides	the	primary	interface	between	the	application	code	and
underlying	SQLite	databases	including	the	ability	to	create,	delete	and	perform
SQL	based	operations	on	databases.	Some	key	methods	of	this	class	are	as
follows:
·									insert()	–	Inserts	a	new	row	into	a	database	table.
·									delete()	–	Deletes	rows	from	a	database	table.
·									query()	–	Performs	a	specified	database	query	and	returns	matching	results

via	a	Cursor	object.
·									execSQL()	–	Executes	a	single	SQL	statement	that	does	not	return	result

data.
·									rawQuery()	–	Executes	a	SQL	query	statement	and	returns	matching	results

in	the	form	of	a	Cursor	object.

57.9.3	SQLiteOpenHelper
A	helper	class	designed	to	make	it	easier	to	create	and	update	databases.	This
class	must	be	subclassed	within	the	code	of	the	application	seeking	database
access	and	the	following	callback	methods	implemented	within	that	subclass:
·									onCreate()	–	Called	when	the	database	is	created	for	the	first	time.	This

method	is	passed	the	SQLiteDatabase	object	as	an	argument	for	the	newly
created	database.	This	is	the	ideal	location	to	initialize	the	database	in	terms
of	creating	a	table	and	inserting	any	initial	data	rows.

·									onUpgrade()	–	Called	in	the	event	that	the	application	code	contains	a	more
recent	database	version	number	reference.	This	is	typically	used	when	an
application	is	updated	on	the	device	and	requires	that	the	database	schema
also	be	updated	to	handle	storage	of	additional	data.

In	addition	to	the	above	mandatory	callback	methods,	the	onOpen()	method,
called	when	the	database	is	opened,	may	also	be	implemented	within	the
subclass.
The	constructor	for	the	subclass	must	also	be	implemented	to	call	the	super
class,	passing	through	the	application	context,	the	name	of	the	database	and	the

class,	passing	through	the	application	context,	the	name	of	the	database	and	the
database	version.
Notable	methods	of	the	SQLiteOpenHelper	class	include:
·									getWritableDatabase()	–	Opens	or	creates	a	database	for	reading	and

writing.	Returns	a	reference	to	the	database	in	the	form	of	a	SQLiteDatabase
object.

·									getReadableDatabase()	–	Creates	or	opens	a	database	for	reading	only.
Returns	a	reference	to	the	database	in	the	form	of	a	SQLiteDatabase	object.

·									close()	–	Closes	the	database.

57.9.4	ContentValues
ContentValues	is	a	convenience	class	that	allows	key/value	pairs	to	be	declared
consisting	of	table	column	identifiers	and	the	values	to	be	stored	in	each	column.
This	class	is	of	particular	use	when	inserting	or	updating	entries	in	a	database
table.

57.10	Summary
SQLite	is	a	lightweight,	embedded	relational	database	management	system	that
is	included	as	part	of	the	Android	framework	and	provides	a	mechanism	for
implementing	organized	persistent	data	storage	for	Android	applications.	In
addition	to	the	SQLite	database,	the	Android	framework	also	includes	a	range	of
Java	classes	that	may	be	used	to	create	and	manage	SQLite	based	databases	and
tables.
The	goal	of	this	chapter	was	to	provide	an	overview	of	databases	in	general	and
SQLite	in	particular	within	the	context	of	Android	application	development.	The
next	chapters	will	work	through	the	creation	of	an	example	application	intended
to	put	this	theory	into	practice	in	the	form	of	a	step-by-step	tutorial.	Since	the
user	interface	for	the	example	application	will	require	a	forms	based	layout,	the
first	chapter,	entitled	An	Android	TableLayout	and	TableRow	Tutorial,	will
detour	slightly	from	the	core	topic	by	introducing	the	basics	of	the	TableLayout
and	TableRow	views.

58.	An	Android	TableLayout	and	TableRow	Tutorial

When	the	work	began	on	the	next	chapter	of	this	book	(An	Android	SQLite
Database	Tutorial)	it	was	originally	intended	that	it	would	include	the	steps	to
design	the	user	interface	layout	for	the	database	example	application.	It	quickly
became	evident,	however,	that	the	best	way	to	implement	the	user	interface	was
to	make	use	of	the	Android	TableLayout	and	TableRow	views	and	that	this	topic
area	deserved	a	self-contained	chapter.	As	a	result,	this	chapter	will	focus	solely
on	the	user	interface	design	of	the	database	application	completed	in	the	next
chapter,	and	in	doing	so,	take	some	time	to	introduce	the	basic	concepts	of	table
layouts	in	Android	Studio.

58.1	The	TableLayout	and	TableRow	Layout	Views
The	purpose	of	the	TableLayout	container	view	is	to	allow	user	interface
elements	to	be	organized	on	the	screen	in	a	table	format	consisting	of	rows	and
columns.	Each	row	within	a	TableLayout	is	occupied	by	a	TableRow	instance,
which,	in	turn,	is	divided	into	cells,	with	each	cell	containing	a	single	child	view
(which	may	itself	be	a	container	with	multiple	view	children).
The	number	of	columns	in	a	table	is	dictated	by	the	row	with	the	most	columns
and,	by	default,	the	width	of	each	column	is	defined	by	the	widest	cell	in	that
column.	Columns	may	be	configured	to	be	shrinkable	or	stretchable	(or	both)
such	that	they	change	in	size	relative	to	the	parent	TableLayout.	In	addition,	a
single	cell	may	be	configured	to	span	multiple	columns.
Consider	the	user	interface	layout	shown	in	Figure	58-1:

Figure	58-1

From	the	visual	appearance	of	the	layout,	it	is	difficult	to	identify	the
TableLayout	structure	used	to	design	the	interface.	The	hierarchical	tree
illustrated	in	Figure	58-2,	however,	makes	the	structure	a	little	easier	to
understand:

Figure	58-2

Clearly,	the	layout	consists	of	a	parent	LinearLayout	view	with	TableLayout	and
LinearLayout	children.	The	TableLayout	contains	three	TableRow	children
representing	three	rows	in	the	table.	The	TableRows	contain	two	child	views,
with	each	child	representing	the	contents	of	a	column	cell.	The	LinearLayout
child	view	contains	three	Button	children.
The	layout	shown	in	Figure	58-2	is	the	exact	layout	that	is	required	for	the
database	example	that	will	be	completed	in	the	next	chapter.	The	remainder	of
this	chapter,	therefore,	will	be	used	to	work	step	by	step	through	the	design	of
this	user	interface	using	the	Android	Studio	Layout	Editor	tool.

58.2	Creating	the	Database	Project
Start	Android	Studio	and	create	a	new	project,	entering	Database	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
DatabaseActivity	with	a	corresponding	layout	file	named	activity_database.

58.3	Adding	the	TableLayout	to	the	User	Interface

Locate	the	activity_database.xml	file	in	the	Project	tool	window	(app	->	res	->
layout)	and	double-click	on	it	to	load	it	into	the	Layout	Editor	tool.	By	default,
Android	Studio	has	used	a	ConstraintLayout	as	the	root	layout	element	in	the
user	interface.	This	needs	to	be	replaced	by	a	vertically	oriented	LinearLayout.
With	the	Layout	Editor	tool	in	Text	mode,	replace	the	XML	with	the	following:

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout

				android:orientation="vertical"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				xmlns:android="http://schemas.android.com/apk/res/android">

</LinearLayout>

Switch	to	Design	mode	and,	referring	to	the	Layouts	category	of	the	Palette,
drag	and	drop	a	TableLayout	view	so	that	it	is	positioned	at	the	top	of	the
LinearLayout	canvas	area.	With	the	LinearLayout	component	selected,	use	the
Properties	tool	window	to	set	the	layout_height	property	to	wrap_content.
Once	these	initial	steps	are	complete,	the	Component	Tree	for	the	layout	should
resemble	that	shown	in	Figure	58-3.

Figure	58-3

Clearly,	Android	Studio	has	automatically	added	four	TableRow	instances	to	the
TableLayout.	Since	only	three	rows	are	required	for	this	example,	select	and
delete	the	fourth	TableRow	instance.	Additional	rows	may	be	added	to	the
TableLayout	at	any	time	by	dragging	the	TableRow	object	from	the	palette	and
dropping	it	onto	the	TableLayout	entry	in	the	Component	Tree	tool	window.

58.4	Configuring	the	TableRows
From	within	the	Widgets	section	of	the	palette,	drag	and	drop	two	TextView
objects	onto	the	uppermost	TableRow	entry	in	the	Component	Tree	(Figure	58-

4):

Figure	58-4

Select	the	left	most	TextView	within	the	screen	layout	and,	in	the	Properties	tool
window,	change	the	text	property	to	“Product	ID”.	Repeat	this	step	for	the	right
most	TextView,	this	time	changing	the	text	to	“Not	assigned”	and	specifying	an
ID	value	of	productID.
Drag	and	drop	another	TextView	widget	onto	the	second	TableRow	entry	in	the
Component	Tree	and	change	the	text	on	the	view	to	read	“Product	Name”.
Locate	the	Plain	Text	object	in	the	palette	and	drag	and	drop	it	so	that	it	is
positioned	beneath	the	Product	Name	TextView	within	the	Component	Tree	as
outlined	in	Figure	58-5.	With	the	TextView	selected,	change	the	inputType
property	from	textPersonName	to	None,	delete	the	“Name”	string	from	the	text
property	and	set	the	ID	to	productName.

Figure	58-5

Drag	and	drop	another	TextView	and	a	Number	(Decimal)	Text	Field	onto	the
third	TableRow	so	that	the	TextView	is	positioned	above	the	Text	Field	in	the
hierarchy.	Change	the	text	on	the	TextView	to	Product	Quantity	and	the	ID	of
the	Text	Field	object	to	productQuantity.
Click	and	drag	to	select	all	of	the	widgets	in	the	layout	as	shown	in	Figure	58-6
below,	and	use	the	Properties	tool	window	to	set	the	textSize	property	on	all	of
the	objects	to	18sp:

Figure	58-6

Before	proceeding,	be	sure	to	extract	all	of	the	text	properties	added	in	the	above
steps	to	string	resources.

58.5	Adding	the	Button	Bar	to	the	Layout
The	next	step	is	to	add	a	LinearLayout	(Horizontal)	view	to	the	parent
LinearLayout	view,	positioned	immediately	below	the	TableLayout	view.	Begin
by	clicking	on	the	small	arrow	to	the	left	of	the	TableLayout	entry	in	the
Component	Tree	so	that	the	TableRows	are	folded	away	from	view.	Drag	a
LinearLayout	(Horizontal)	instance	from	the	Layouts	section	of	the	Layout
Editor	palette,	drop	it	immediately	beneath	the	TableLayout	entry	in	the
Component	Tree	panel	and	change	the	layout_height	property	to	wrap_content:

Figure	58-7

Drag	and	drop	three	Button	objects	onto	the	new	LinearLayout	and	assign	string
resources	for	each	button	that	read	“Add”,	“Find”	and	“Delete”	respectively.
Buttons	in	this	type	of	button	bar	arrangement	should	generally	be	displayed
with	a	borderless	style.	For	each	button,	use	the	Properties	tool	window	to
change	the	style	setting	to	Widget.AppCompat.Button.Borderless.
With	the	new	horizontal	Linear	Layout	view	selected	in	the	Component	Tree,
switch	the	Properties	panel	to	list	all	properties	and	change	layout_gravity
property	to	center	(Figure	58-8)	so	that	the	buttons	are	centered	horizontally
within	the	display:

Figure	58-8

Before	proceeding,	check	the	hierarchy	of	the	layout	in	the	Component	Tree
panel,	taking	extra	care	to	ensure	the	view	ID	names	match	those	in	the
following	figure:

Figure	58-9

58.6	Adjusting	the	Layout	Margins
All	that	remains	is	to	adjust	some	of	the	layout	settings.	Begin	by	clicking	on	the
first	TableRow	entry	in	the	Component	Tree	panel	so	that	it	is	selected.	Hold
down	the	Ctrl-key	on	the	keyboard	and	click	in	the	second	and	third	TableRows
so	that	all	three	items	are	selected.	In	the	Properties	panel,	list	all	properties,

locate	the	layout_margins	properties	category	and,	once	located,	change	all	the
settings	to	10dp	as	shown	in	Figure	58-10:

Figure	58-10

With	margins	set	on	all	three	TableRows,	the	user	interface	should	appear	as
illustrated	in	Figure	58-1.

58.7	Summary
The	Android	TableLayout	container	view	provides	a	way	to	arrange	view
components	in	a	row	and	column	configuration.	While	the	TableLayout	view
provides	the	overall	container,	each	row	and	the	cells	contained	therein	are
implemented	via	instances	of	the	TableRow	view.	In	this	chapter,	a	user
interface	has	been	designed	in	Android	Studio	using	the	TableLayout	and
TableRow	containers.	The	next	chapter	will	add	the	functionality	behind	this
user	interface	to	implement	the	SQLite	database	capabilities.

59.	An	Android	SQLite	Database	Tutorial

The	chapter	entitled	An	Overview	of	Android	SQLite	Databases	covered	the
basic	principles	of	integrating	relational	database	storage	into	Android
applications	using	the	SQLite	database	management	system.	The	previous
chapter	took	a	minor	detour	into	the	territory	of	designing	TableLayouts	within
the	Android	Studio	Layout	Editor	tool,	in	the	course	of	which,	the	user	interface
for	an	example	database	application	was	created.	In	this	chapter,	work	on	the
Database	application	project	will	be	continued	with	the	ultimate	objective	of
completing	the	database	example.

59.1	About	the	Database	Example
As	is	probably	evident	from	the	user	interface	layout	designed	in	the	preceding
chapter,	the	example	project	is	a	simple	data	entry	and	retrieval	application
designed	to	allow	the	user	to	add,	query	and	delete	database	entries.	The	idea
behind	this	application	is	to	allow	the	tracking	of	product	inventory.
The	name	of	the	database	will	be	productID.db	which,	in	turn,	will	contain	a
single	table	named	products.	Each	record	in	the	database	table	will	contain	a
unique	product	ID,	a	product	description	and	the	quantity	of	that	product	item
currently	in	stock,	corresponding	to	column	names	of	“productid”,
“productname”	and	“productquantity”,	respectively.	The	productid	column	will
act	as	the	primary	key	and	will	be	automatically	assigned	and	incremented	by
the	database	management	system.
The	database	schema	for	the	products	table	is	outlined	in	Table	59-1:

	
	Column

	
	Data	Type

	
productid	

	
Integer	Primary	Key	Auto	Increment	

	
productname	

	
Text	

	
productquantity	

	
Integer	

Table	59-1

59.2	Creating	the	Data	Model
Once	completed,	the	application	will	consist	of	an	activity	and	a	database
handler	class.	The	database	handler	will	be	a	subclass	of	SQLiteOpenHelper	and
will	provide	an	abstract	layer	between	the	underlying	SQLite	database	and	the
activity	class,	with	the	activity	calling	on	the	database	handler	to	interact	with
the	database	(adding,	removing	and	querying	database	entries).	In	order	to
implement	this	interaction	in	a	structured	way,	a	third	class	will	need	to	be
implemented	to	hold	the	database	entry	data	as	it	is	passed	between	the	activity
and	the	handler.	This	is	actually	a	very	simple	class	capable	of	holding	product
ID,	product	name	and	product	quantity	values,	together	with	getter	and	setter
methods	for	accessing	these	values.	Instances	of	this	class	can	then	be	created
within	the	activity	and	database	handler	and	passed	back	and	forth	as	needed.
Essentially,	this	class	can	be	thought	of	as	representing	the	database	model.
Within	Android	Studio,	navigate	within	the	Project	tool	window	to	app	->	java
and	right-click	on	the	package	name.	From	the	popup	menu,	choose	the	New	->
Java	Class	option	and,	in	the	Create	New	Class	dialog,	name	the	class	Product
before	clicking	on	the	OK	button.
Once	created	the	Product.java	source	file	will	automatically	load	into	the
Android	Studio	editor.	Once	loaded,	modify	the	code	to	add	the	appropriate	data
members	and	methods:

package	com.ebookfrenzy.database;

public	class	Product	{

				private	int	_id;

				private	String	_productname;

				private	int	_quantity;

	

				public	Product()	{

							

				}

	

				public	Product(int	id,	String	productname,	int	quantity)	{

								this._id	=	id;

								this._productname	=	productname;

								this._quantity	=	quantity;

				}

	

				public	Product(String	productname,	int	quantity)	{

								this._productname	=	productname;

								this._quantity	=	quantity;

				}

	

				public	void	setID(int	id)	{

								this._id	=	id;

				}

	

				public	int	getID()	{

								return	this._id;

				}

	

				public	void	setProductName(String	productname)	{

								this._productname	=	productname;

				}

	

				public	String	getProductName()	{

								return	this._productname;

				}

	

				public	void	setQuantity(int	quantity)	{

								this._quantity	=	quantity;

				}

	

				public	int	getQuantity()	{

								return	this._quantity;

				}

}

The	completed	class	contains	private	data	members	for	the	internal	storage	of
data	columns	from	database	entries	and	a	set	of	methods	to	get	and	set	those
values.

59.3	Implementing	the	Data	Handler
The	data	handler	will	be	implemented	by	subclassing	from	the	Android
SQLiteOpenHelper	class	and,	as	outlined	in	An	Overview	of	Android	SQLite
Databases,	adding	the	constructor,	onCreate()	and	onUpgrade()	methods.	Since
the	handler	will	be	required	to	add,	query	and	delete	data	on	behalf	of	the
activity	component,	corresponding	methods	will	also	need	to	be	added	to	the
class.
Begin	by	adding	a	second	new	class	to	the	project	to	act	as	the	handler,	this	time
named	MyDBHandler.	Once	the	new	class	has	been	created,	modify	it	so	that	it
reads	as	follows:

package	com.ebookfrenzy.database;

import	android.database.sqlite.SQLiteDatabase;

import	android.database.sqlite.SQLiteOpenHelper;

public	class	MyDBHandler	extends	SQLiteOpenHelper	{

				@Override

				public	void	onCreate(SQLiteDatabase	db)	{

	

				}

	

				@Override

				public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,

																														int	newVersion)	{

	

				}

}

Having	now	pre-populated	the	source	file	with	template	onCreate()	and
onUpgrade()	methods,	the	next	task	is	to	add	a	constructor	method.	Modify	the
code	to	declare	constants	for	the	database	name,	table	name,	table	columns	and
database	version	and	to	add	the	constructor	method	as	follows:

package	com.ebookfrenzy.database;

import	android.database.sqlite.SQLiteDatabase;

import	android.database.sqlite.SQLiteOpenHelper;

import	android.content.Context;

import	android.content.ContentValues;

import	android.database.Cursor;

public	class	MyDBHandler	extends	SQLiteOpenHelper	{

				private	static	final	int	DATABASE_VERSION	=	1;

				private	static	final	String	DATABASE_NAME	=	"productDB.db";

				public	static	final	String	TABLE_PRODUCTS	=	"products";

	

				public	static	final	String	COLUMN_ID	=	"_id";

				public	static	final	String	COLUMN_PRODUCTNAME	=

"productname";

				public	static	final	String	COLUMN_QUANTITY	=	"quantity";

				public	MyDBHandler(Context	context,	String	name,

						SQLiteDatabase.CursorFactory	factory,	int	version)	{

								super(context,	DATABASE_NAME,	factory,

DATABASE_VERSION);

				}

	

				@Override

				public	void	onCreate(SQLiteDatabase	db)	{

				}

				@Override

				public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,

														int	newVersion)	{

				}

}

Next,	the	onCreate()	method	needs	to	be	implemented	so	that	the	products	table
is	created	when	the	database	is	first	initialized.	This	involves	constructing	a	SQL
CREATE	statement	containing	instructions	to	create	a	new	table	with	the
appropriate	columns	and	then	passing	that	through	to	the	execSQL()	method	of
the	SQLiteDatabase	object	passed	as	an	argument	to	onCreate():

@Override

public	void	onCreate(SQLiteDatabase	db)	{

							String	CREATE_PRODUCTS_TABLE	=	"CREATE	TABLE	"	+

													TABLE_PRODUCTS	+	"("

													+	COLUMN_ID	+	"	INTEGER	PRIMARY	KEY,"	+

																						COLUMN_PRODUCTNAME

													+	"	TEXT,"	+	COLUMN_QUANTITY	+	"	INTEGER"	+	")";

						db.execSQL(CREATE_PRODUCTS_TABLE);

}

The	onUpgrade()	method	is	called	when	the	handler	is	invoked	with	a	greater
database	version	number	from	the	one	previously	used.	The	exact	steps	to	be
performed	in	this	instance	will	be	application	specific,	so	for	the	purposes	of	this
example,	we	will	simply	remove	the	old	database	and	create	a	new	one:

@Override

public	void	onUpgrade(SQLiteDatabase	db,	int	oldVersion,

																														int	newVersion)	{

							db.execSQL("DROP	TABLE	IF	EXISTS	"	+	TABLE_PRODUCTS);

							onCreate(db);

}

All	that	now	remains	to	be	implemented	in	the	MyDBHandler.java	handler	class

are	the	methods	to	add,	query	and	remove	database	table	entries.

59.3.1	The	Add	Handler	Method
The	method	to	insert	database	records	will	be	named	addProduct()	and	will	take
as	an	argument	an	instance	of	our	Product	data	model	class.	A	ContentValues
object	will	be	created	in	the	body	of	the	method	and	primed	with	key-value	pairs
for	the	data	columns	extracted	from	the	Product	object.	Next,	a	reference	to	the
database	will	be	obtained	via	a	call	to	getWritableDatabase()	followed	by	a	call
to	the	insert()	method	of	the	returned	database	object.	Finally,	once	the	insertion
has	been	performed,	the	database	needs	to	be	closed:

public	void	addProduct(Product	product)	{

								ContentValues	values	=	new	ContentValues();

								values.put(COLUMN_PRODUCTNAME,

product.getProductName());

								values.put(COLUMN_QUANTITY,	product.getQuantity());

								SQLiteDatabase	db	=	this.getWritableDatabase();

							

								db.insert(TABLE_PRODUCTS,	null,	values);

								db.close();

}

59.3.2	The	Query	Handler	Method
The	method	to	query	the	database	will	be	named	findProduct()	and	will	take	as
an	argument	a	String	object	containing	the	name	of	the	product	to	be	located.
Using	this	string,	a	SQL	SELECT	statement	will	be	constructed	to	find	all
matching	records	in	the	table.	For	the	purposes	of	this	example,	only	the	first
match	will	then	be	returned,	contained	within	a	new	instance	of	our	Product	data
model	class:

public	Product	findProduct(String	productname)	{

							String	query	=	"SELECT	*	FROM	"	+	TABLE_PRODUCTS	+	"

WHERE	"	+	COLUMN_PRODUCTNAME	+	"	=		\""	+	productname	+	"\"";

						

							SQLiteDatabase	db	=	this.getWritableDatabase();

						

							Cursor	cursor	=	db.rawQuery(query,	null);

						

							Product	product	=	new	Product();

						

							if	(cursor.moveToFirst())	{

														cursor.moveToFirst();

													

product.setID(Integer.parseInt(cursor.getString(0)));

														product.setProductName(cursor.getString(1));

													

product.setQuantity(Integer.parseInt(cursor.getString(2)));

														cursor.close();

							}	else	{

														product	=	null;

							}

							db.close();

							return	product;

}

59.3.3	The	Delete	Handler	Method
The	deletion	method	will	be	named	deleteProduct()	and	will	accept	as	an
argument	the	entry	to	be	deleted	in	the	form	of	a	Product	object.	The	method
will	use	a	SQL	SELECT	statement	to	search	for	the	entry	based	on	the	product
name	and,	if	located,	delete	it	from	the	table.	The	success	or	otherwise	of	the
deletion	will	be	reflected	in	a	Boolean	return	value:

public	boolean	deleteProduct(String	productname)	{

						

							boolean	result	=	false;

						

							String	query	=	"SELECT	*	FROM	"	+	TABLE_PRODUCTS	+	"

WHERE	"	+	COLUMN_PRODUCTNAME	+	"	=		\""	+	productname	+	"\"";

							SQLiteDatabase	db	=	this.getWritableDatabase();

						

							Cursor	cursor	=	db.rawQuery(query,	null);

						

							Product	product	=	new	Product();

						

							if	(cursor.moveToFirst())	{

													

product.setID(Integer.parseInt(cursor.getString(0)));

														db.delete(TABLE_PRODUCTS,	COLUMN_ID	+	"	=	?",

																			new	String[]	{

String.valueOf(product.getID())	});

														cursor.close();

														result	=	true;

							}

							db.close();

							return	result;

}

59.4	Implementing	the	Activity	Event	Methods
The	final	task	prior	to	testing	the	application	is	to	wire	up	onClick	event	handlers
on	the	three	buttons	in	the	user	interface	and	to	implement	corresponding
methods	for	those	events.	Locate	and	load	the	activity_database.xml	file	into	the
Layout	Editor	tool,	switch	to	Text	mode	and	locate	and	modify	the	three	button
elements	to	add	onClick	properties:

<Button

				android:text="@string/add"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button3"

				android:layout_weight="1"

				style="@style/Widget.AppCompat.Button.Borderless"

				android:onClick="newProduct"	/>

<Button

				android:text="@string/find"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button2"

				android:layout_weight="1"

				style="@style/Widget.AppCompat.Button.Borderless"

				android:onClick="lookupProduct"	/>

<Button

				android:text="@string/delete"

				android:layout_width="wrap_content"

				android:layout_height="wrap_content"

				android:id="@+id/button"

				android:layout_weight="1"

				style="@style/Widget.AppCompat.Button.Borderless"

				android:onClick="removeProduct"	/>

Load	the	DatabaseActivity.java	source	file	into	the	editor	and	implement	the
code	to	identify	the	views	in	the	user	interface	and	to	implement	the	three
“onClick”	target	methods:

package	com.ebookfrenzy.database;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.EditText;

import	android.widget.TextView;

public	class	DatabaseActivity	extends	AppCompatActivity	{

				TextView	idView;

				EditText	productBox;

				EditText	quantityBox;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_database);

								idView	=	(TextView)	findViewById(R.id.productID);

								productBox	=	(EditText)	findViewById(R.id.productName);

								quantityBox	=

																(EditText)	findViewById(R.id.productQuantity);

				}

				public	void	newProduct	(View	view)	{

								MyDBHandler	dbHandler	=	new	MyDBHandler(this,	null,

null,	1);

	

								int	quantity	=

															

Integer.parseInt(quantityBox.getText().toString());

	

								Product	product	=

																new	Product(productBox.getText().toString(),

																														quantity);

	

								dbHandler.addProduct(product);

								productBox.setText("");

								quantityBox.setText("");

				}

	

				public	void	lookupProduct	(View	view)	{

								MyDBHandler	dbHandler	=	new	MyDBHandler(this,	null,

null,	1);

	

								Product	product	=	dbHandler.findProduct(

														productBox.getText().toString());

	

								if	(product	!=	null)	{

												idView.setText(String.valueOf(product.getID()));

	

												quantityBox.setText(

																						String.valueOf(product.getQuantity()));

								}	else	{

												idView.setText("No	Match	Found");

								}

				}

	

				public	void	removeProduct	(View	view)	{

								MyDBHandler	dbHandler	=	new	MyDBHandler(this,	null,

																null,	1);

	

								boolean	result	=	dbHandler.deleteProduct(

																productBox.getText().toString());

	

								if	(result)

								{

												idView.setText("Record	Deleted");

												productBox.setText("");

												quantityBox.setText("");

								}

								else

												idView.setText("No	Match	Found");

				}

}

59.5	Testing	the	Application
With	the	coding	changes	completed,	compile	and	run	the	application	either	in	an
AVD	session	or	on	a	physical	Android	device.	Once	the	application	is	running,
enter	a	product	name	and	quantity	value	into	the	user	interface	form	and	touch
the	Add	button.	Once	the	record	has	been	added	the	text	boxes	will	clear.	Repeat
these	steps	to	add	a	second	product	to	the	database.	Next,	enter	the	name	of	one
of	the	newly	added	products	into	the	product	name	field	and	touch	the	Find
button.	The	form	should	update	with	the	product	ID	and	quantity	for	the	selected
product.	Touch	the	Delete	button	to	delete	the	selected	record.	A	subsequent
search	by	product	name	should	indicate	that	the	record	no	longer	exists.

59.6	Summary
The	purpose	of	this	chapter	has	been	to	work	step	by	step	through	a	practical
application	of	SQLite	based	database	storage	in	Android	applications.	As	an
exercise	to	develop	your	new	database	skill	set	further,	consider	extending	the
example	to	include	the	ability	to	update	existing	records	in	the	database	table.

60.	Understanding	Android	Content	Providers

The	previous	chapter	worked	through	the	creation	of	an	example	application
designed	to	store	data	using	a	SQLite	database.	When	implemented	in	this	way,
the	data	is	private	to	the	application	and,	as	such,	inaccessible	to	other
applications	running	on	the	same	device.	While	this	may	be	the	desired	behavior
for	many	types	of	application,	situations	will	inevitably	arise	whereby	the	data
stored	on	behalf	of	an	application	could	be	of	benefit	to	other	applications.	A
prime	example	of	this	is	the	data	stored	by	the	built-in	Contacts	application	on
an	Android	device.	While	the	Contacts	application	is	primarily	responsible	for
the	management	of	the	user’s	address	book	details,	this	data	is	also	made
accessible	to	any	other	applications	that	might	need	access	to	this	data.	This
sharing	of	data	between	Android	applications	is	achieved	through	the
implementation	of	content	providers.

60.1	What	is	a	Content	Provider?
A	content	provider	provides	access	to	structured	data	between	different	Android
applications.	This	data	is	exposed	to	applications	either	as	tables	of	data	(in
much	the	same	way	as	a	SQLite	database)	or	as	a	handle	to	a	file.	This
essentially	involves	the	implementation	of	a	client/server	arrangement	whereby
the	application	seeking	access	to	the	data	is	the	client	and	the	content	provider	is
the	server,	performing	actions	and	returning	results	on	behalf	of	the	client.
A	successful	content	provider	implementation	involves	a	number	of	different
elements,	each	of	which	will	be	covered	in	detail	in	the	remainder	of	this
chapter.

60.2	The	Content	Provider
A	content	provider	is	created	as	a	subclass	of	the
android.content.ContentProvider	class.	Typically,	the	application	responsible	for
managing	the	data	to	be	shared	will	implement	a	content	provider	to	facilitate
the	sharing	of	that	data	with	other	applications.
The	creation	of	a	content	provider	involves	the	implementation	of	a	set	of
methods	to	manage	the	data	on	behalf	of	other,	client	applications.	These
methods	are	as	follows:

60.2.1	onCreate()
This	method	is	called	when	the	content	provider	is	first	created	and	should	be

This	method	is	called	when	the	content	provider	is	first	created	and	should	be
used	to	perform	any	initialization	tasks	required	by	the	content	provider.

60.2.2	query()
This	method	will	be	called	when	a	client	requests	that	data	be	retrieved	from	the
content	provider.	It	is	the	responsibility	of	this	method	to	identify	the	data	to	be
retrieved	(either	single	or	multiple	rows),	perform	the	data	extraction	and	return
the	results	wrapped	in	a	Cursor	object.

60.2.3	insert()
This	method	is	called	when	a	new	row	needs	to	be	inserted	into	the	provider
database.	This	method	must	identify	the	destination	for	the	data,	perform	the
insertion	and	return	the	full	URI	of	the	newly	added	row.

60.2.4	update()
The	method	called	when	existing	rows	need	to	be	updated	on	behalf	of	the
client.	The	method	uses	the	arguments	passed	through	to	update	the	appropriate
table	rows	and	return	the	number	of	rows	updated	as	a	result	of	the	operation.

60.2.5	delete()
Called	when	rows	are	to	be	deleted	from	a	table.	This	method	deletes	the
designated	rows	and	returns	a	count	of	the	number	of	rows	deleted.

60.2.6	getType()
Returns	the	MIME	type	of	the	data	stored	by	the	content	provider.
It	is	important	when	implementing	these	methods	in	a	content	provider	to	keep
in	mind	that,	with	the	exception	of	the	onCreate()	method,	they	can	be	called
from	many	processes	simultaneously	and	must,	therefore,	be	thread	safe.
Once	a	content	provider	has	been	implemented,	the	issue	that	then	arises	is	how
the	provider	is	identified	within	the	Android	system.	This	is	where	the	content
URI	comes	into	play.

60.3	The	Content	URI
An	Android	device	will	potentially	contain	a	number	of	content	providers.	The
system	must,	therefore,	provide	some	way	of	identifying	one	provider	from
another.	Similarly,	a	single	content	provider	may	provide	access	to	multiple
forms	of	content	(typically	in	the	form	of	database	tables).	Client	applications,
therefore,	need	a	way	to	specify	the	underlying	data	for	which	access	is	required.
This	is	achieved	through	the	use	of	content	URIs.

The	content	URI	is	essentially	used	to	identify	specific	data	within	a	specific
content	provider.	The	Authority	section	of	the	URI	identifies	the	content
provider	and	usually	takes	the	form	of	the	package	name	of	the	content	provider.
For	example:

com.example.mydbapp.myprovider

A	specific	database	table	within	the	provider	data	structure	may	be	referenced	by
appending	the	table	name	to	the	authority.	For	example,	the	following	URI
references	a	table	named	products	within	the	content	provider:

com.example.mydbapp.myprovider/products

Similarly,	a	specific	row	within	the	specified	table	may	be	referenced	by
appending	the	row	ID	to	the	URI.	The	following	URI,	for	example,	references
the	row	in	the	products	table	in	which	the	value	stored	in	the	_ID	column	equals
3:

com.example.mydbapp.myprovider/products/3

When	implementing	the	insert,	query,	update	and	delete	methods	in	the	content
provider,	it	will	be	the	responsibility	of	these	methods	to	identify	whether	the
incoming	URI	is	targeting	a	specific	row	in	a	table,	or	references	multiple	rows,
and	act	accordingly.	This	can	potentially	be	a	complex	task	given	that	a	URI	can
extend	to	multiple	levels.	This	process	can,	however,	be	eased	significantly	by
making	use	of	the	UriMatcher	class	as	will	be	outlined	in	the	next	chapter.

60.4	The	Content	Resolver
Access	to	a	content	provider	is	achieved	via	a	ContentResolver	object.	An
application	can	obtain	a	reference	to	its	content	resolver	by	making	a	call	to	the
getContentResolver()	method	of	the	application	context.
The	content	resolver	object	contains	a	set	of	methods	that	mirror	those	of	the
content	provider	(insert,	query,	delete	etc.).	The	application	simply	makes	calls
to	the	methods,	specifying	the	URI	of	the	content	on	which	the	operation	is	to	be
performed.	The	content	resolver	and	content	provider	objects	then	communicate
to	perform	the	requested	task	on	behalf	of	the	application.

60.5	The	<provider>	Manifest	Element
In	order	for	a	content	provider	to	be	visible	within	an	Android	system,	it	must	be
declared	within	the	Android	manifest	file	for	the	application	in	which	it	resides.
This	is	achieved	using	the	<provider>	element,	which	must	contain	the
following	items:

·									android:authority	–	The	full	authority	URI	of	the	content	provider.	For
example	com.example.mydbapp.mydbapp.myprovider.

·									android:name	–	The	name	of	the	class	that	implements	the	content	provider.
In	most	cases,	this	will	use	the	same	value	as	the	authority.

Similarly,	the	<provider>	element	may	be	used	to	define	the	permissions	that
must	be	held	by	client	applications	in	order	to	qualify	for	access	to	the
underlying	data.	If	no	permissions	are	declared,	the	default	behavior	is	for
permission	to	be	allowed	for	all	applications.
Permissions	can	be	set	to	cover	the	entire	content	provider,	or	limited	to	specific
tables	and	records.

60.6	Summary
The	data	belonging	to	an	application	is	typically	private	to	the	application	and
inaccessible	to	other	applications.	In	situations	where	the	data	needs	to	be
shared,	it	is	necessary	to	set	up	a	content	provider.	This	chapter	has	covered	the
basic	elements	that	combine	to	enable	data	sharing	between	applications,	and
outlined	the	concepts	of	the	content	provider,	content	URI	and	content	resolver.
In	the	next	chapter,	the	Android	Studio	Database	example	application	created
previously	will	be	extended	to	make	the	underlying	product	data	available	via	a
content	provider.

61.	Implementing	an	Android	Content
Provider	in	Android	Studio

As	outlined	in	the	previous	chapter,	content	providers	provide	a	mechanism
through	which	the	data	stored	by	one	Android	application	can	be	made
accessible	to	other	applications.	Having	provided	a	theoretical	overview	of
content	providers,	this	chapter	will	continue	the	coverage	of	content	providers	by
extending	the	Database	project	created	in	the	chapter	entitled	An	Android
TableLayout	and	TableRow	Tutorial	to	implement	content	provider	based	access
to	the	database.

61.1	Copying	the	Database	Project
In	order	to	keep	the	original	Database	project	intact,	we	will	make	a	backup
copy	of	the	project	before	modifying	it	to	implement	content	provider	support
for	the	application.	If	the	Database	project	is	currently	open	within	Android
Studio,	close	it	using	the	File	->	Close	Project	menu	option.
Using	the	file	system	explorer	for	your	operating	system	type,	navigate	to	the
directory	containing	your	Android	Studio	projects	(typically	this	will	be	a	folder
named	AndroidStudioProjects	located	in	your	home	directory).	Within	this
folder,	copy	the	Database	project	folder	to	a	new	folder	named
DatabaseOriginal.
Within	the	Android	Studio	welcome	screen,	select	the	Open	an	existing	Android
Studio	project	option	from	the	Quick	Start	list	and	navigate	to	and	select	the
original	Database	project	so	that	it	loads	into	the	main	window.

61.2	Adding	the	Content	Provider	Package
The	next	step	is	to	add	a	new	package	to	the	Database	project	into	which	the
content	provider	class	will	be	created.	Add	this	new	package	by	navigating
within	the	Project	tool	window	to	app	->	java,	right-clicking	on	the	java	entry
and	selecting	the	New	->	Package	menu	option.	When	the	Choose	Destination
Directory	dialog	appears,	select	the	..\app\src\main\java	option	from	the
Directory	Structure	panel	and	click	on	OK.
In	the	New	Package	dialog,	enter	the	following	package	name	into	the	name
field	before	clicking	on	the	OK	button:

com.ebookfrenzy.database.provider

The	new	package	should	now	be	listed	within	the	Project	tool	window	as
illustrated	in	Figure	61-1:

Figure	61-1

61.3	Creating	the	Content	Provider	Class
As	discussed	in	Understanding	Android	Content	Providers,	content	providers
are	created	by	subclassing	the	android.content.ContentProvider	class.
Consequently,	the	next	step	is	to	add	a	class	to	the	new	provider	package	to
serve	as	the	content	provider	for	this	application.	Locate	the	new	package	in	the
Project	tool	window,	right-click	on	it	and	select	the	New	->	Other	->	Content
Provider	menu	option.	In	the	Configure	Component	dialog,	enter
MyContentProvider	into	the	Class	Name	field	and	the	following	into	the	URI
Authorities	field:

com.ebookfrenzy.database.provider.MyContentProvider

Make	sure	that	the	new	content	provider	class	is	both	exported	and	enabled
before	clicking	on	Finish	to	create	the	new	class.
Once	the	new	class	has	been	created,	the	MyContentProvider.java	file	should	be
listed	beneath	the	provider	package	in	the	Project	tool	window	and	automatically
loaded	into	the	editor	where	it	should	appear	as	outlined	in	the	following	listing:

package	com.ebookfrenzy.database.provider;

import	android.content.ContentProvider;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.net.Uri;

public	class	MyContentProvider	extends	ContentProvider	{

				public	MyContentProvider()	{

				}

				@Override

				public	int	delete(Uri	uri,	String	selection,	String[]

selectionArgs)	{

								//	Implement	this	to	handle	requests	to	delete	one	or

more	rows.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

				@Override

				public	String	getType(Uri	uri)	{

								//	TODO:	Implement	this	to	handle	requests	for	the	MIME

type	of	the	data

								//	at	the	given	URI.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

				@Override

				public	Uri	insert(Uri	uri,	ContentValues	values)	{

								//	TODO:	Implement	this	to	handle	requests	to	insert	a

new	row.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

				@Override

				public	boolean	onCreate()	{

								//	TODO:	Implement	this	to	initialize	your	content

provider	on	startup.

								return	false;

				}

				@Override

				public	Cursor	query(Uri	uri,	String[]	projection,	String

selection,

												String[]	selectionArgs,	String	sortOrder)	{

								//	TODO:	Implement	this	to	handle	query	requests	from

clients.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

				@Override

				public	int	update(Uri	uri,	ContentValues	values,	String

selection,

												String[]	selectionArgs)	{

								//	TODO:	Implement	this	to	handle	requests	to	update

one	or	more	rows.

								throw	new	UnsupportedOperationException("Not	yet

implemented");

				}

}

As	is	evident	from	a	quick	review	of	the	code	in	this	file,	Android	Studio	has
already	populated	the	class	with	stubs	for	each	of	the	methods	that	a	subclass	of
ContentProvider	is	required	to	implement.	It	will	soon	be	necessary	to	begin
implementing	these	methods,	but	first	some	constants	relating	to	the	provider’s
content	authority	and	URI	need	to	be	declared.

61.4	Constructing	the	Authority	and	Content	URI
As	outlined	in	the	previous	chapter,	all	content	providers	must	have	associated
with	them	an	authority	and	a	content	uri.	In	practice,	the	authority	is	typically
the	full	package	name	of	the	content	provider	class	itself,	in	this	case
com.ebookfrenzy.database.database.provider.MyContentProvider	as	declared
when	the	new	Content	Provider	class	was	created	in	the	previous	section.
The	content	URI	will	vary	depending	on	application	requirements,	but	for	the
purposes	of	this	example	it	will	comprise	the	authority	with	the	name	of	the
database	table	appended	at	the	end.	Within	the	MyContentProvider.java	file,
make	the	following	modifications:

package	com.ebookfrenzy.database.provider;

import	android.content.ContentProvider;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.net.Uri;

import	android.content.UriMatcher;

public	class	MyContentProvider	extends	ContentProvider	{

				private	static	final	String	AUTHORITY	=

						"com.ebookfrenzy.database.provider.MyContentProvider";

				private	static	final	String	PRODUCTS_TABLE	=	"products";

				public	static	final	Uri	CONTENT_URI	=

												Uri.parse("content://"	+	AUTHORITY	+	"/"	+

`																					PRODUCTS_TABLE);

				public	MyContentProvider()	{

				}

.

.

.

}

The	above	statements	begin	by	creating	a	new	String	object	named	AUTHORITY
and	assigning	the	authority	string	to	it.	Similarly,	a	second	String	object	named
PRODUCTS_TABLE	is	created	and	initialized	with	the	name	of	our	database
table	(products).
Finally,	these	two	string	elements	are	combined,	prefixed	with	content://	and
converted	to	a	Uri	object	using	the	parse()	method	of	the	Uri	class.	The	result	is
assigned	to	a	variable	named	CONTENT_URI.

61.5	Implementing	URI	Matching	in	the	Content	Provider
When	the	methods	of	the	content	provider	are	called,	they	will	be	passed	as	an
argument	a	URI	indicating	the	data	on	which	the	operation	is	to	be	performed.
This	URI	may	take	the	form	of	a	reference	to	a	specific	row	in	a	specific	table.	It
is	also	possible	that	the	URI	will	be	more	general,	for	example	specifying	only
the	database	table.	It	is	the	responsibility	of	each	method	to	identify	the	Uri	type
and	to	act	accordingly.	This	task	can	be	eased	considerably	by	making	use	of	a
UriMatcher	instance.	Once	a	UriMatcher	instance	has	been	created,	it	can	be
configured	to	return	a	specific	integer	value	corresponding	to	the	type	of	URI	it
detects	when	asked	to	do	so.	For	the	purposes	of	this	tutorial,	we	will	be
configuring	our	UriMatcher	instance	to	return	a	value	of	1	when	the	URI
references	the	entire	products	table,	and	a	value	of	2	when	the	URI	references
the	ID	of	a	specific	row	in	the	products	table.	Before	working	on	creating	the
URIMatcher	instance,	we	will	first	create	two	integer	variables	to	represent	the
two	URI	types:

package	com.ebookfrenzy.database.provider;

import	android.content.ContentProvider;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.net.Uri;

import	android.content.UriMatcher;

public	class	MyContentProvider	extends	ContentProvider	{

				private	static	final	String	AUTHORITY	=

						"com.ebookfrenzy.database.provider.MyContentProvider";

				private	static	final	String	PRODUCTS_TABLE	=	"products";

				public	static	final	Uri	CONTENT_URI	=

												Uri.parse("content://"	+	AUTHORITY	+	"/"	+

																						PRODUCTS_TABLE);

				public	static	final	int	PRODUCTS	=	1;

				public	static	final	int	PRODUCTS_ID	=	2;

.

.

}

With	the	Uri	type	variables	declared,	it	is	now	time	to	add	code	to	create	a
UriMatcher	instance	and	configure	it	to	return	the	appropriate	variables:

public	class	MyContentProvider	extends	ContentProvider	{

				private	static	final	String	AUTHORITY	=

						"com.ebookfrenzy.database.provider.MyContentProvider";

				private	static	final	String	PRODUCTS_TABLE	=	"products";

				public	static	final	Uri	CONTENT_URI	=

												Uri.parse("content://"	+	AUTHORITY	+	"/"	+

																						PRODUCTS_TABLE);

				public	static	final	int	PRODUCTS	=	1;

				public	static	final	int	PRODUCTS_ID	=	2;

						

				private	static	final	UriMatcher	sURIMatcher	=

																														new

UriMatcher(UriMatcher.NO_MATCH);

						

				static	{

											sURIMatcher.addURI(AUTHORITY,	PRODUCTS_TABLE,

PRODUCTS);

											sURIMatcher.addURI(AUTHORITY,	PRODUCTS_TABLE	+	"/#",

																																										PRODUCTS_ID);

				}

.

.

}

The	UriMatcher	instance	(named	sURIMatcher)	is	now	primed	to	return	the
value	of	PRODUCTS	when	just	the	products	table	is	referenced	in	a	URI,	and
PRODUCTS_ID	when	the	URI	includes	the	ID	of	a	specific	row	in	the	table.

61.6	Implementing	the	Content	Provider	onCreate()	Method
When	the	content	provider	class	is	created	and	initialized,	a	call	will	be	made	to
the	onCreate()	method	of	the	class.	It	is	within	this	method	that	any	initialization
tasks	for	the	class	need	to	be	performed.	For	the	purposes	of	this	example,	all
that	needs	to	be	performed	is	for	an	instance	of	the	MyDBHandler	class
implemented	in	An	Android	SQLite	Database	Tutorial	to	be	created.	Once	this
instance	has	been	created,	it	will	need	to	be	accessible	from	the	other	methods	in
the	class,	so	a	declaration	for	the	database	handler	also	needs	to	be	declared,
resulting	in	the	following	code	changes	to	the	MyContentProvider.java	file:

package	com.ebookfrenzy.database.provider;

import	com.ebookfrenzy.database.MyDBHandler;

import	android.content.ContentProvider;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.net.Uri;

import	android.content.UriMatcher;

import	android.database.sqlite.SQLiteDatabase;

import	android.database.sqlite.SQLiteQueryBuilder;

import	android.text.TextUtils;

	

public	class	MyContentProvider	extends	ContentProvider	{

							private	MyDBHandler	myDB;

.

.

.

							@Override

							public	boolean	onCreate()	{

															myDB	=	new	MyDBHandler(getContext(),	null,	null,

1);

														return	false;

							}

}

61.7	Implementing	the	Content	Provider	insert()	Method
When	a	client	application	or	activity	requests	that	data	be	inserted	into	the
underlying	database,	the	insert()	method	of	the	content	provider	class	will	be
called.	At	this	point,	however,	all	that	exists	in	the	MyContentProvider.java	file
of	the	project	is	a	stub	method,	which	reads	as	follows:

@Override

public	Uri	insert(Uri	uri,	ContentValues	values)	{

				//	TODO:	Implement	this	to	handle	requests	to	insert	a	new

row.

				throw	new	UnsupportedOperationException("Not	yet

implemented");

}

Passed	as	arguments	to	the	method	are	a	URI	specifying	the	destination	of	the
insertion	and	a	ContentValues	object	containing	the	data	to	be	inserted.
This	method	now	needs	to	be	modified	to	perform	the	following	tasks:
·									Use	the	sUriMatcher	object	to	identify	the	URI	type.
·									Throw	an	exception	if	the	URI	is	not	valid.
·									Obtain	a	reference	to	a	writable	instance	of	the	underlying	SQLite	database.
·									Perform	a	SQL	insert	operation	to	insert	the	data	into	the	database	table.
·									Notify	the	corresponding	content	resolver	that	the	database	has	been

modified.
·									Return	the	URI	of	the	newly	added	table	row.
Bringing	these	requirements	together	results	in	a	modified	insert()	method,
which	reads	as	follows:

@Override

public	Uri	insert(Uri	uri,	ContentValues	values)	{

				int	uriType	=	sURIMatcher.match(uri);

	

				SQLiteDatabase	sqlDB	=	myDB.getWritableDatabase();

	

				long	id	=	0;

				switch	(uriType)	{

								case	PRODUCTS:

												id	=	sqlDB.insert(MyDBHandler.TABLE_PRODUCTS,

																				null,	values);

												break;

								default:

												throw	new	IllegalArgumentException("Unknown	URI:	"

																				+	uri);

				}

				getContext().getContentResolver().notifyChange(uri,	null);

				return	Uri.parse(PRODUCTS_TABLE	+	"/"	+	id);

}

61.8	Implementing	the	Content	Provider	query()	Method

When	a	content	provider	is	called	upon	to	return	data,	the	query()	method	of	the
provider	class	will	be	called.	When	called,	this	method	is	passed	some	or	all	of
the	following	arguments:
·									URI	–	The	URI	specifying	the	data	source	on	which	the	query	is	to	be

performed.	This	can	take	the	form	of	a	general	query	with	multiple	results,	or
a	specific	query	targeting	the	ID	of	a	single	table	row.

·									Projection	–	A	row	within	a	database	table	can	comprise	multiple	columns	of
data.	In	the	case	of	this	application,	for	example,	these	correspond	to	the	ID,
product	name	and	product	quantity.	The	projection	argument	is	simply	a
String	array	containing	the	name	for	each	of	the	columns	that	is	to	be	returned
in	the	result	data	set.

·									Selection	–	The	“where”	element	of	the	selection	to	be	performed	as	part	of
the	query.	This	argument	controls	which	rows	are	selected	from	the	specified
database.	For	example,	if	the	query	was	required	to	select	only	products
named	“Cat	Food”	then	the	selection	string	passed	to	the	query()	method
would	read	productname	=	“Cat	Food”.

·									Selection	Args	–	Any	additional	arguments	that	need	to	be	passed	to	the	SQL
query	operation	to	perform	the	selection.

·									Sort	Order	–	The	sort	order	for	the	selected	rows.
When	called,	the	query()	method	is	required	to	perform	the	following	operations:
·									Use	the	sUriMatcher	to	identify	the	Uri	type.
·									Throw	an	exception	if	the	URI	is	not	valid.
·									Construct	a	SQL	query	based	on	the	criteria	passed	to	the	method.	For

convenience,	the	SQLiteQueryBuilder	class	can	be	used	in	construction	of	the
query.

·									Execute	the	query	operation	on	the	database.
·									Notify	the	content	resolver	of	the	operation.
·									Return	a	Cursor	object	containing	the	results	of	the	query.
With	these	requirements	in	mind,	the	code	for	the	query()	method	in	the
MyContentProvider.java	file	should	now	read	as	outlined	in	the	following
listing:

@Override

public	Cursor	query(Uri	uri,	String[]	projection,	String

selection,

								String[]	selectionArgs,	String	sortOrder)	{

				SQLiteQueryBuilder	queryBuilder	=	new	SQLiteQueryBuilder();

				queryBuilder.setTables(MyDBHandler.TABLE_PRODUCTS);

	

				int	uriType	=	sURIMatcher.match(uri);

	

				switch	(uriType)	{

								case	PRODUCTS_ID:

												queryBuilder.appendWhere(MyDBHandler.COLUMN_ID	+

"="

																				+	uri.getLastPathSegment());

												break;

								case	PRODUCTS:

												break;

								default:

												throw	new	IllegalArgumentException("Unknown	URI");

				}

	

				Cursor	cursor	=

queryBuilder.query(myDB.getReadableDatabase(),

																projection,	selection,	selectionArgs,	null,

null,

																sortOrder);

			

cursor.setNotificationUri(getContext().getContentResolver(),

																uri);

				return	cursor;

}

61.9	Implementing	the	Content	Provider	update()	Method
The	update()	method	of	the	content	provider	is	called	when	changes	are	being
requested	to	existing	database	table	rows.	The	method	is	passed	a	URI	with	the
new	values	in	the	form	of	a	ContentValues	object	and	the	usual	selection
argument	strings.
When	called,	the	update()	method	would	typically	perform	the	following	steps:
·									Use	the	sUriMatcher	to	identify	the	URI	type.
·									Throw	an	exception	if	the	URI	is	not	valid.
·									Obtain	a	reference	to	a	writable	instance	of	the	underlying	SQLite	database.
·									Perform	the	appropriate	update	operation	on	the	database,	depending	on	the

selection	criteria	and	the	URI	type.
·									Notify	the	content	resolver	of	the	database	change.
·									Return	a	count	of	the	number	of	rows	that	were	changed	as	a	result	of	the

update	operation.
A	general-purpose	update()	method,	and	the	one	we	will	use	for	this	project,
would	read	as	follows:

@Override

public	int	update(Uri	uri,	ContentValues	values,	String

selection,

												String[]	selectionArgs)	{

														int	uriType	=	sURIMatcher.match(uri);

														SQLiteDatabase	sqlDB	=

myDB.getWritableDatabase();

														int	rowsUpdated	=	0;

	

														switch	(uriType)	{

																case	PRODUCTS:

																		rowsUpdated	=

																						sqlDB.update(MyDBHandler.TABLE_PRODUCTS,

																						values,

																						selection,

																						selectionArgs);

																		break;

																case	PRODUCTS_ID:

																		String	id	=	uri.getLastPathSegment();

																		if	(TextUtils.isEmpty(selection))	{

																				rowsUpdated	=

																						sqlDB.update(MyDBHandler.TABLE_PRODUCTS,

																								values,

																								MyDBHandler.COLUMN_ID	+	"="	+	id,

																								null);

																		}	else	{

																				rowsUpdated	=

																						sqlDB.update(MyDBHandler.TABLE_PRODUCTS,

																								values,

																								MyDBHandler.COLUMN_ID	+	"="	+	id

																								+	"	and	"

																								+	selection,

																								selectionArgs);

																		}

																		break;

																default:

																		throw	new	IllegalArgumentException("Unknown

URI:	"

																						+	uri);

																}

													

getContext().getContentResolver().notifyChange(uri,

																																																											

null);

													return	rowsUpdated;

}

61.10	Implementing	the	Content	Provider	delete()	Method
In	common	with	a	number	of	other	content	provider	methods,	the	delete()
method	is	passed	a	URI,	a	selection	string	and	an	optional	set	of	selection
arguments.	A	typical	delete()	method	will	also	perform	the	following,	and	by
now	largely	familiar,	tasks	when	called:
·									Use	the	sUriMatcher	to	identify	the	URI	type.
·									Throw	an	exception	if	the	URI	is	not	valid.
·									Obtain	a	reference	to	a	writable	instance	of	the	underlying	SQLite	database.
·									Perform	the	appropriate	delete	operation	on	the	database	depending	on	the

selection	criteria	and	the	Uri	type.
·									Notify	the	content	resolver	of	the	database	change.
·									Return	the	number	of	rows	deleted	as	a	result	of	the	operation.
A	typical	delete()	method	is	in	many	ways	similar	to	the	update()	method	and
may	be	implemented	as	follows:

@Override

public	int	delete(Uri	uri,	String	selection,	String[]

selectionArgs)	{				

							int	uriType	=	sURIMatcher.match(uri);

							SQLiteDatabase	sqlDB	=	myDB.getWritableDatabase();

							int	rowsDeleted	=	0;

	

							switch	(uriType)	{

											case	PRODUCTS:

													rowsDeleted	=

sqlDB.delete(MyDBHandler.TABLE_PRODUCTS,

														selection,

															selectionArgs);

															break;

												

											case	PRODUCTS_ID:

													String	id	=	uri.getLastPathSegment();

													if	(TextUtils.isEmpty(selection))	{

															rowsDeleted	=

sqlDB.delete(MyDBHandler.TABLE_PRODUCTS,

																														MyDBHandler.COLUMN_ID	+	"="	+	id,

																			null);

													}	else	{

															rowsDeleted	=

sqlDB.delete(MyDBHandler.TABLE_PRODUCTS,

																														MyDBHandler.COLUMN_ID	+	"="	+	id

																			+	"	and	"	+	selection,

																			selectionArgs);

													}

													break;

											default:

													throw	new	IllegalArgumentException("Unknown	URI:	"

+

																																																				uri);

											}

											getContext().getContentResolver().notifyChange(uri,

null);

											return	rowsDeleted;

}

With	these	methods	implemented,	the	content	provider	class,	in	terms	of	the
requirements	for	this	example	at	least,	is	complete.	The	next	step	is	to	make	sure
that	the	content	provider	is	declared	in	the	project	manifest	file	so	that	it	is
visible	to	any	content	resolvers	seeking	access	to	it.

61.11	Declaring	the	Content	Provider	in	the	Manifest	File
Unless	a	content	provider	is	declared	in	the	manifest	file	of	the	application	to
which	it	belongs,	it	will	not	be	possible	for	a	content	resolver	to	locate	and
access	it.	As	outlined,	content	providers	are	declared	using	the	<provider>	tag
and	the	manifest	entry	must	correctly	reference	the	content	provider	authority
and	content	URI.
For	the	purposes	of	this	project,	therefore,	locate	the	AndroidManifest.xml	file
for	the	DatabaseProvider	project	within	the	Project	tool	window	and	double-
click	on	it	to	load	it	into	the	editing	panel.	Within	the	editing	panel,	make	sure
that	the	content	provider	declaration	has	already	been	added	by	Android	Studio
when	the	MyContentProvider	class	was	added	to	the	project:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.database"	>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								<activity

												android:name=".DatabaseActivity"

												android:label="@string/app_name"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								<provider	android:name=".provider.MyContentProvider"

												android:authorities=

		"com.ebookfrenzy.database.provider.MyContentProvider"

												android:enabled="true"

												android:exported="true"	>

								</provider>

				</application>

</manifest>

All	that	remains	before	testing	the	application	is	to	modify	the	database	handler
class	to	use	the	content	provider	instead	of	directly	accessing	the	database.

61.12	Modifying	the	Database	Handler
When	this	application	was	originally	created,	it	was	designed	to	use	a	database
handler	to	access	the	underlying	database	directly.	Now	that	a	content	provider
has	been	implemented,	the	database	handler	needs	to	be	modified	so	that	all
database	operations	are	performed	using	the	content	provider	via	a	content
resolver.
The	first	step	is	to	modify	the	MyDBHandler.java	class	so	that	it	obtains	a
reference	to	a	ContentResolver	instance.	This	can	be	achieved	in	the	constructor
method	of	the	class:

package	com.ebookfrenzy.database;

import	com.ebookfrenzy.database.provider.MyContentProvider;

import	android.database.sqlite.SQLiteDatabase;

import	android.database.sqlite.SQLiteOpenHelper;

import	android.content.Context;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.content.ContentResolver;

public	class	MyDBHandler	extends	SQLiteOpenHelper	{

				private	ContentResolver	myCR;

				private	static	final	int	DATABASE_VERSION	=	1;

				private	static	final	String	DATABASE_NAME	=	"productDB.db";

				public	static	final	String	TABLE_PRODUCTS	=	"products";

				public	static	final	String	COLUMN_ID	=	"_id";

				public	static	final	String	COLUMN_PRODUCTNAME	=

"productname";

				public	static	final	String	COLUMN_QUANTITY	=	"quantity";

				public	MyDBHandler(Context	context,	String	name,

																		SQLiteDatabase.CursorFactory	factory,	int

version)	{

								super(context,	DATABASE_NAME,	factory,

DATABASE_VERSION);

								myCR	=	context.getContentResolver();

				}

.

.

.

}

Next,	the	addProduct(),	findProduct()	and	removeProduct()	methods	need	to	be
rewritten	to	use	the	content	resolver	and	content	provider	for	data	management
purposes:

public	void	addProduct(Product	product)	{

							ContentValues	values	=	new	ContentValues();

							values.put(COLUMN_PRODUCTNAME,

product.getProductName());

							values.put(COLUMN_QUANTITY,	product.getQuantity());

								

							myCR.insert(MyContentProvider.CONTENT_URI,	values);

}

public	Product	findProduct(String	productname)	{

							String[]	projection	=	{COLUMN_ID,

										COLUMN_PRODUCTNAME,	COLUMN_QUANTITY	};

						

							String	selection	=	"productname	=	\""	+	productname	+

"\"";

						

							Cursor	cursor	=

myCR.query(MyContentProvider.CONTENT_URI,

														projection,	selection,	null,

															null);

						

							Product	product	=	new	Product();

													

							if	(cursor.moveToFirst())	{

														cursor.moveToFirst();

													

product.setID(Integer.parseInt(cursor.getString(0)));

														product.setProductName(cursor.getString(1));

														product.setQuantity(

																						Integer.parseInt(cursor.getString(2)));

														cursor.close();

							}	else	{

														product	=	null;

							}

							return	product;

}

public	boolean	deleteProduct(String	productname)	{

													

							boolean	result	=	false;

						

							String	selection	=	"productname	=	\""	+	productname	+

"\"";

						

							int	rowsDeleted	=

myCR.delete(MyContentProvider.CONTENT_URI,

																		selection,	null);

													

							if	(rowsDeleted	>	0)

														result	=	true;

						

							return	result;

}

With	the	database	handler	class	updated	to	use	a	content	resolver	and	content
provider,	the	application	is	now	ready	to	be	tested.	Compile	and	run	the
application	and	perform	some	operations	to	add,	find	and	remove	product
entries.	In	terms	of	operation	and	functionality,	the	application	should	behave
exactly	as	it	did	when	directly	accessing	the	database,	except	that	it	is	now	using
the	content	provider.
With	the	content	provider	now	implemented	and	declared	in	the	manifest	file,
any	other	applications	can	potentially	access	that	data	(since	no	permissions
were	declared,	the	default	full	access	is	in	effect).	The	only	information	that	the
other	applications	need	to	know	to	gain	access	is	the	content	URI	and	the	names

other	applications	need	to	know	to	gain	access	is	the	content	URI	and	the	names
of	the	columns	in	the	products	table.

61.13	Summary
The	goal	of	this	chapter	was	to	provide	a	more	detailed	overview	of	the	exact
steps	involved	in	implementing	an	Android	content	provider	with	a	particular
emphasis	on	the	structure	and	implementation	of	the	query,	insert,	delete	and
update	methods	of	the	content	provider	class.	Practical	use	of	the	content
resolver	class	to	access	data	in	the	content	provider	was	also	covered,	and	the
Database	project	was	modified	to	make	use	of	both	a	content	provider	and
content	resolver.

62.	Accessing	Cloud	Storage	using	the
Android	Storage	Access	Framework
Recent	years	have	seen	the	wide	adoption	of	remote	storage	services	(otherwise
known	as	“cloud	storage”)	to	store	user	files	and	data.	Driving	this	growth	are
two	key	factors.	One	is	that	most	mobile	devices	now	provide	continuous,	high
speed	internet	connectivity,	thereby	making	the	transfer	of	data	fast	and
affordable.	The	second	factor	is	that,	relative	to	traditional	computer	systems
(such	as	desktops	and	laptops)	these	mobile	devices	are	constrained	in	terms	of
internal	storage	resources.	A	high	specification	Android	tablet	today,	for
example,	typically	comes	with	128Gb	of	storage	capacity.	When	compared	with
a	mid-range	laptop	system	with	a	750Gb	disk	drive,	the	need	for	the	seamless
remote	storage	of	files	is	a	key	requirement	for	many	mobile	applications	today.
In	recognition	of	this	fact,	Google	introduced	the	Storage	Access	Framework	as
part	of	the	Android	4.4	SDK.	This	chapter	will	provide	a	high	level	overview	of
the	storage	access	framework	in	preparation	for	the	more	detail	oriented	tutorial
contained	in	the	next	chapter,	entitled	An	Android	Storage	Access	Framework
Example.

62.1	The	Storage	Access	Framework
From	the	perspective	of	the	user,	the	Storage	Access	Framework	provides	an
intuitive	user	interface	that	allows	the	user	to	browse,	select,	delete	and	create
files	hosted	by	storage	services	(also	referred	to	as	document	providers)	from
within	Android	applications.	Using	this	browsing	interface	(also	referred	to	as
the	picker),	users	can,	for	example,	browse	through	the	files	(such	as	documents,
audio,	images	and	videos)	hosted	by	their	chosen	document	providers.	Figure
62-1,	for	example,	shows	the	picker	user	interface	displaying	a	collection	of	files
hosted	by	a	document	provider	service:

Figure	62-1

Document	providers	can	range	from	cloud-based	services	to	local	document
providers	running	on	the	same	device	as	the	client	application.	At	the	time	of
writing,	the	most	prominent	document	providers	compatible	with	the	Storage
Access	Framework	are	Box	and,	unsurprisingly,	Google	Drive.	It	is	highly	likely
that	other	cloud	storage	providers	and	application	developers	will	soon	also
provide	services	that	conform	to	the	Android	Storage	Access	Framework.	Figure
62-2,	for	example,	illustrates	some	document	provider	options	listed	by	the
picker	interface:

Figure	62-2

As	shown	in	the	above	figure,	in	addition	to	cloud	based	document	providers	the
picker	also	provides	access	to	internal	storage	on	the	device,	providing	a	range
of	file	storage	options	to	the	application	user.
Through	a	set	of	Intents	included	with	Android	4.4,	Android	application
developers	can	incorporate	these	storage	capabilities	into	applications	with	just	a
few	lines	of	code.	A	particularly	compelling	aspect	of	the	Storage	Access
Framework	from	the	point	of	view	of	the	developer	is	that	the	underlying
document	provider	selected	by	the	user	is	completely	transparent	to	the
application.	Once	the	storage	functionality	has	been	implemented	using	the
framework	within	an	application,	it	will	work	with	all	document	providers
without	any	code	modifications.

62.2	Working	with	the	Storage	Access	Framework
Android	4.4	introduced	a	new	set	of	Intents	designed	to	integrate	the	features	of
the	Storage	Access	Framework	into	Android	applications.	These	intents	display
the	Storage	Access	Framework	picker	user	interface	to	the	user	and	return	the
results	of	the	interaction	to	the	application	via	a	call	to	the	onActivityResult()
method	of	the	activity	that	launched	the	intent.	When	the	onActivityResult()
method	is	called,	it	is	passed	the	Uri	of	the	selected	file	together	with	a	value

indicating	the	success	or	otherwise	of	the	operation.
The	Storage	Access	Framework	intents	can	be	summarized	as	follows:
·									ACTION_OPEN_DOCUMENT	–	Provides	the	user	with	access	to	the

picker	user	interface	so	that	files	may	be	selected	from	the	document
providers	configured	on	the	device.	Selected	files	are	passed	back	to	the
application	in	the	form	of	Uri	objects.

·									ACTION_CREATE_DOCUMENT	–	Allows	the	user	to	select	a	document
provider,	a	location	on	that	provider’s	storage	and	a	file	name	for	a	new	file.
Once	selected,	the	file	is	created	by	the	Storage	Access	Framework	and	the
Uri	of	that	file	returned	to	the	application	for	further	processing.

62.3	Filtering	Picker	File	Listings
The	files	listed	within	the	picker	user	interface	when	an	intent	is	started	may	be
filtered	using	a	variety	of	options.	Consider,	for	example,	the	following	code	to
start	an	ACTION_OPEN_DOCUMENT	intent:

private	static	final	int	OPEN_REQUEST_CODE	=	41;

Intent	intent	=	new	Intent(Intent.ACTION_OPEN_DOCUMENT);

startActivityForResult(intent,	OPEN_REQUEST_CODE);

When	executed,	the	above	code	will	cause	the	picker	user	interface	to	be
displayed,	allowing	the	user	to	browse	and	select	any	files	hosted	by	available
document	providers.	Once	a	file	has	been	selected	by	the	user,	a	reference	to	that
file	will	be	provided	to	the	application	in	the	form	of	a	Uri	object.	The
application	can	then	open	the	file	using	the	openFileDescriptor(Uri,	String)
method.	There	is	some	risk,	however,	that	not	all	files	listed	by	a	document
provider	can	be	opened	in	this	way.	The	exclusion	of	such	files	within	the	picker
can	be	achieved	by	modifying	the	intent	using	the	CATEGORY_OPENABLE
option.	For	example:

private	static	final	int	OPEN_REQUEST_CODE	=	41;

Intent	intent	=	new	Intent(Intent.ACTION_OPEN_DOCUMENT);

intent.addCategory(Intent.CATEGORY_OPENABLE);

startActivityForResult(intent,	OPEN_REQUEST_CODE);

When	the	picker	is	now	displayed,	files	which	cannot	be	opened	using	the
openFileDescriptor()	method	will	be	listed	but	not	selectable	by	the	user.
Another	useful	approach	to	filtering	allows	the	files	available	for	selection	to	be
restricted	by	file	type.	This	involves	specifying	the	types	of	the	files	the
application	is	able	to	handle.	An	image	editing	application	might,	for	example,

application	is	able	to	handle.	An	image	editing	application	might,	for	example,
only	want	to	provide	the	user	with	the	option	of	selecting	image	files	from	the
document	providers.	This	is	achieved	by	configuring	the	intent	object	with	the
MIME	types	of	the	files	that	are	to	be	selectable	by	the	user.	The	following	code,
for	example,	specifies	that	only	image	files	are	suitable	for	selection	in	the
picker:

Intent	intent	=	new	Intent(Intent.ACTION_OPEN_DOCUMENT);

intent.addCategory(Intent.CATEGORY_OPENABLE);

intent.setType("image/*");							

startActivityForResult(intent,	OPEN_REQUEST_CODE);

This	could	be	further	refined	to	limit	selection	to	JPEG	images:
intent.setType("image/jpeg");

Alternatively,	an	audio	player	app	might	only	be	able	to	handle	audio	files:
intent.setType("audio/*");

The	audio	app	might	be	limited	even	further	in	only	supporting	the	playback	of
MP4	based	audio	files:

intent.setType("audio/mp4");

A	wide	range	of	MIME	type	settings	are	available	for	use	when	working	with
the	Storage	Access	Framework,	the	more	common	of	which	can	be	found	listed
online	at:
http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

62.4	Handling	Intent	Results
When	an	intent	returns	control	to	the	application,	it	does	so	by	calling	the
onActivityResult()	method	of	the	activity	which	started	the	intent.	This	method	is
passed	the	request	code	that	was	handed	to	the	intent	at	launch	time,	a	result
code	indicating	whether	or	not	the	intent	was	successful	and	a	result	data	object
containing	the	Uri	of	the	selected	file.	The	following	code,	for	example,	might
be	used	as	the	basis	for	handling	the	results	from	the
ACTION_OPEN_DOCUMENT	intent	outlined	in	the	previous	section:

public	void	onActivityResult(int	requestCode,	int	resultCode,

								Intent	resultData)	{

							Uri	currentUri	=	null;

							if	(resultCode	==	Activity.RESULT_OK)

							{														

http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

														if	(requestCode	==	OPEN_REQUEST_CODE)

														{

																						if	(resultData	!=	null)	{

																														currentUri	=

resultData.getData();

																													readFileContent(currentUri);

																						}

							}

}

The	above	method	verifies	that	the	intent	was	successful,	checks	that	the	request
code	matches	that	for	a	file	open	request	and	then	extracts	the	Uri	from	the	intent
data.	The	Uri	can	then	be	used	to	read	the	content	of	the	file.

62.5	Reading	the	Content	of	a	File
The	exact	steps	required	to	read	the	content	of	a	file	hosted	by	a	document
provider	will	depend	to	a	large	extent	on	the	type	of	the	file.	The	steps	to	read
lines	from	a	text	file,	for	example,	differ	from	those	for	image	or	audio	files.
An	image	file	can	be	assigned	to	a	Bitmap	object	by	extracting	the	file	descriptor
from	the	Uri	object	and	then	decoding	the	image	into	a	BitmapFactory	instance.
For	example:

ParcelFileDescriptor	pFileDescriptor	=

												getContentResolver().openFileDescriptor(uri,	"r");

FileDescriptor	fileDescriptor	=

												pFileDescriptor.getFileDescriptor();

Bitmap	image	=

BitmapFactory.decodeFileDescriptor(fileDescriptor);

pFileDescriptor.close();

myImageView.setImageBitmap(image);

Note	that	the	file	descriptor	is	opened	in	“r”	mode.	This	indicates	that	the	file	is
to	be	opened	for	reading.	Other	options	are	“w”	for	write	access	and	“rwt”	for
read	and	write	access,	where	existing	content	in	the	file	is	truncated	by	the	new
content.
Reading	the	content	of	a	text	file	requires	slightly	more	work	and	the	use	of	an
InputStream	object.	The	following	code,	for	example,	reads	the	lines	from	a	text
file:

InputStream	inputStream	=

getContentResolver().openInputStream(uri);

BufferedReader	reader	=	new	BufferedReader(new

InputStreamReader(

																										inputStream));

String	readline;

while	((readline	=	reader.readLine())	!=	null)	{

							//	Do	something	with	each	line	in	the	file

}

inputStream.close();

62.6	Writing	Content	to	a	File
Writing	to	an	open	file	hosted	by	a	document	provider	is	similar	to	reading	with
the	exception	that	an	output	stream	is	used	instead	of	an	input	stream.	The
following	code,	for	example,	writes	text	to	the	output	stream	of	the	storage	based
file	referenced	by	the	specified	Uri:

try{																	

							ParcelFileDescriptor	pFileDescriptor	=

this.getContentResolver().

																openFileDescriptor(uri,	"w");

																					

							FileOutputStream	fileOutputStream	=

													new

FileOutputStream(pFileDescriptor.getFileDescriptor());

																					

							String	textContent	=	"Some	sample	text";

							fileOutputStream.write(textContent.getBytes());

							fileOutputStream.close();

							pFileDescriptor.close();

}	catch	(FileNotFoundException	e)	{

							e.printStackTrace();

}	catch	(IOException	e)	{

							e.printStackTrace();

}

First,	the	file	descriptor	is	extracted	from	the	Uri,	this	time	requesting	write
permission	to	the	target	file.	The	file	descriptor	is	subsequently	used	to	obtain	a
reference	to	the	file’s	output	stream.	The	content	(in	this	example,	some	text)	is
then	written	to	the	output	stream	before	the	file	descriptor	and	output	stream	are
closed.

62.7	Deleting	a	File
Whether	a	file	can	be	deleted	from	storage	depends	on	whether	or	not	the	file’s
document	provider	supports	deletion	of	the	file.	Assuming	deletion	is	permitted,

document	provider	supports	deletion	of	the	file.	Assuming	deletion	is	permitted,
it	may	be	performed	on	a	designated	Uri	as	follows:

if	(DocumentsContract.deleteDocument(getContentResolver(),

uri))

							//	Deletion	was	successful

else

							//	Deletion	failed

62.8	Gaining	Persistent	Access	to	a	File
When	an	application	gains	access	to	a	file	via	the	Storage	Access	Framework,
the	access	will	remain	valid	until	the	Android	device	on	which	the	application	is
running	is	restarted.	Persistent	access	to	a	specific	file	can	be	obtained	by
“taking”	the	necessary	permissions	for	the	Uri.	The	following	code,	for	example,
persists	read	and	write	permissions	for	the	file	referenced	by	the	fileUri	Uri
instance:

final	int	takeFlags	=	intent.getFlags()

												&	(Intent.FLAG_GRANT_READ_URI_PERMISSION

												|	Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

getContentResolver().takePersistableUriPermission(fileUri,

takeFlags);

Once	the	permissions	for	the	file	have	been	taken	by	the	application,	and
assuming	the	Uri	has	been	saved	by	the	application,	the	user	should	be	able	to
continue	accessing	the	file	after	a	device	restart	without	the	user	having	to
reselect	the	file	from	the	picker	interface.
If,	at	any	time,	the	persistent	permissions	are	no	longer	required,	they	can	be
released	via	a	call	to	the	releasePersistableUriPermission()	method	of	the
content	resolver:

final	int	releaseFlags	=	intent.getFlags()

												&	(Intent.FLAG_GRANT_READ_URI_PERMISSION

												|	Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

getContentResolver().releasePersistableUriPermission(fileUri,

																														releaseFlags);

62.9	Summary
It	is	interesting	to	consider	how	perceptions	of	storage	have	changed	in	recent
years.	Once	synonymous	with	high	capacity	internal	hard	disk	drives,	the	term
“storage”	is	now	just	as	likely	to	refer	to	storage	space	hosted	remotely	in	the
cloud	and	accessed	over	an	internet	connection.	This	is	increasingly	the	case
with	the	wide	adoption	of	resource	constrained,	“always-connected”	mobile

with	the	wide	adoption	of	resource	constrained,	“always-connected”	mobile
devices	with	minimal	internal	storage	capacity.
The	Android	Storage	Access	Framework	provides	a	simple	mechanism	for	both
users	and	application	developers	to	seamlessly	gain	access	to	files	stored	in	the
cloud.	Through	the	use	of	a	set	of	intents	introduced	into	Android	4.4	and	a
built-in	user	interface	for	selecting	document	providers	and	files,	comprehensive
cloud	based	storage	can	now	be	integrated	into	Android	applications	with	a
minimal	amount	of	coding.

63.	An	Android	Storage	Access	Framework	Example

As	previously	discussed,	the	Storage	Access	Framework	considerably	eases	the
process	of	integrating	cloud	based	storage	access	into	Android	applications.
Consisting	of	a	picker	user	interface	and	a	set	of	new	intents,	access	to	files
stored	on	document	providers	such	as	Google	Drive	and	Box	can	now	be	built
into	Android	applications	with	relative	ease.	With	the	basics	of	the	Android
Storage	Access	Framework	covered	in	the	preceding	chapter,	this	chapter	will
work	through	the	creation	of	an	example	application	which	uses	the	Storage
Access	Framework	to	store	and	manage	files.

63.1	About	the	Storage	Access	Framework	Example
The	Android	application	created	in	this	chapter	will	take	the	form	of	a
rudimentary	text	editor	designed	to	create	and	store	text	files	remotely	onto	a
cloud	based	storage	service.	In	practice,	the	example	will	work	with	any	cloud
based	document	storage	provider	that	is	compatible	with	the	Storage	Access
Framework,	though	for	the	purpose	of	this	example	the	use	of	Google	Drive	is
assumed.
In	functional	terms,	the	application	will	present	the	user	with	a	multiline	text
view	into	which	text	may	be	entered	and	edited,	together	with	a	set	of	buttons
allowing	storage	based	text	files	to	be	created,	opened	and	saved.

63.2	Creating	the	Storage	Access	Framework	Example
Create	a	new	project	in	Android	Studio,	entering	StorageDemo	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
StorageDemoActivity	with	a	corresponding	layout	named
activity_storage_demo.

63.3	Designing	the	User	Interface
The	user	interface	will	need	to	be	comprised	of	three	Button	views	and	a	single
EditText	view.	Within	the	Project	tool	window,	navigate	to	the
activity_storage_demo.xml	layout	file	located	in	app	->	res	->	layout	and
double-click	on	it	to	load	it	into	the	Layout	Editor	tool.	With	the	tool	in	Design

mode,	select	and	delete	the	Hello	World!	TextView	object.
Drag	and	position	a	Button	widget	in	the	top	left-hand	corner	of	the	layout	so
that	both	the	left	and	top	dotted	margin	guidelines	appear	before	dropping	the
widget	in	place.	Position	a	second	Button	such	that	the	center	and	top	margin
guidelines	appear.	The	third	Button	widget	should	then	be	placed	so	that	the	top
and	right-hand	margin	guidelines	appear.
Change	the	text	properties	on	the	three	buttons	to	“New”,	“Open”	and	“Save”
respectively.	Next,	position	a	Plain	Text	widget	so	that	it	is	centered	horizontally
and	positioned	beneath	the	center	Button	so	that	the	user	interface	layout
matches	that	shown	in	Figure	63-1.	Use	the	Infer	Constraints	button	in	the
Layout	Editor	toolbar	to	add	any	missing	constraints.
Select	the	Plain	Text	widget	in	the	layout,	delete	the	current	text	property	setting
so	that	the	field	is	initially	blank	and	set	the	ID	to	fileText,	remembering	to
extract	all	the	string	properties	to	resource	values:

Figure	63-1

Using	the	Properties	tool	window,	configure	the	onClick	property	on	the	Button
widgets	to	call	methods	named	newFile,	openFile	and	saveFile	respectively.

63.4	Declaring	Request	Codes
Working	with	files	in	the	Storage	Access	Framework	involves	triggering	a
variety	of	intents	depending	on	the	specific	action	to	be	performed.	Invariably
this	will	result	in	the	framework	displaying	the	storage	picker	user	interface	so
that	the	user	can	specify	the	storage	location	(such	as	a	directory	on	Google
Drive	and	the	name	of	a	file).	When	the	work	of	the	intent	is	complete,	the
application	will	be	notified	by	a	call	to	a	method	named	onActivityResult().
Since	all	intents	from	a	single	activity	will	result	in	a	call	to	the	same
onActivityResult()	method,	a	mechanism	is	required	to	identify	which	intent
triggered	the	call.	This	can	be	achieved	by	passing	a	request	code	through	to	the
intent	when	it	is	launched.	This	code	is	then	passed	on	to	the	onActivityResult()
method	by	the	intents,	enabling	the	method	to	identify	which	action	has	been
requested	by	the	user.	Before	implementing	the	onClick	handlers	to	create,	save
and	open	files,	the	first	step	is	to	declare	some	request	codes	for	these	three
actions.
Locate	and	load	the	StorageDemoActivity.java	file	into	the	editor	and	declare
constant	values	for	the	three	actions	to	be	performed	by	the	application.	Also,
add	some	code	to	obtain	a	reference	to	the	multiline	EditText	object	which	will
be	referenced	in	later	methods:

package	com.ebookfrenzy.storagedemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.EditText;

public	class	StorageDemoActivity	extends	AppCompatActivity	{

				private	static	EditText	textView;

	

				private	static	final	int	CREATE_REQUEST_CODE	=	40;

				private	static	final	int	OPEN_REQUEST_CODE	=	41;

				private	static	final	int	SAVE_REQUEST_CODE	=	42;

	

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_storage_demo);

								textView	=	(EditText)	findViewById(R.id.fileText);

				}

}

63.5	Creating	a	New	Storage	File
When	the	New	button	is	selected,	the	application	will	need	to	trigger	an
ACTION_CREATE_DOCUMENT	intent	configured	to	create	a	file	with	a	plain-
text	MIME	type.	When	the	user	interface	was	designed,	the	New	button	was
configured	to	call	a	method	named	newFile().	It	is	within	this	method	that	the
appropriate	intent	needs	to	be	launched.
Remaining	in	the	StorageDemoActivity.java	file,	implement	this	method	as
follows:

package	com.ebookfrenzy.storagedemo;

import	android.app.Activity;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.EditText;

import	android.content.Intent;

import	android.view.View;

public	class	StorageDemoActivity	extends	AppCompatActivity	{

public	class	StorageDemoActivity	extends	Activity	{

				private	static	EditText	textView;

				private	static	final	int	CREATE_REQUEST_CODE	=	40;

				private	static	final	int	OPEN_REQUEST_CODE	=	41;

				private	static	final	int	SAVE_REQUEST_CODE	=	42;

.

.

.

				public	void	newFile(View	view)

				{

								Intent	intent	=	new

Intent(Intent.ACTION_CREATE_DOCUMENT);

	

								intent.addCategory(Intent.CATEGORY_OPENABLE);

								intent.setType("text/plain");

								intent.putExtra(Intent.EXTRA_TITLE,	"newfile.txt");

	

								startActivityForResult(intent,	CREATE_REQUEST_CODE);

				}

.

.

}

This	code	creates	a	new	ACTION_CREATE_INTENT	Intent	object.	This	intent
is	then	configured	so	that	only	files	that	can	be	opened	with	a	file	descriptor	are
returned	(via	the	Intent.CATEGORY_OPENABLE	category	setting).
Next	the	code	specifies	that	the	file	to	be	opened	is	to	have	a	plain	text	MIME
type	and	a	placeholder	filename	is	provided	(which	can	be	changed	by	the	user
in	the	picker	interface).	Finally,	the	intent	is	started,	passing	through	the
previously	declared	CREATE_REQUEST_CODE.
When	this	method	is	executed	and	the	intent	has	completed	the	assigned	task,	a
call	will	be	made	to	the	application’s	onActivityResult()	method	and	passed,
amongst	other	arguments,	the	Uri	of	the	newly	created	document	and	the	request
code	that	was	used	when	the	intent	was	started.	Now	is	an	ideal	opportunity	to
begin	to	implement	this	method.

63.6	The	onActivityResult()	Method
The	onActivityResult()	method	will	be	shared	by	all	of	the	intents	that	will	be
called	during	the	lifecycle	of	the	application.	In	each	case,	the	method	will	be
passed	a	request	code,	a	result	code	and	a	set	of	result	data	which	contains	the
Uri	of	the	storage	file.	The	method	will	need	to	be	implemented	such	that	it
checks	for	the	success	of	the	intent	action,	identifies	the	type	of	action	performed
and	extracts	the	file	Uri	from	the	results	data.	At	this	point	in	the	tutorial,	the
method	only	needs	to	handle	the	creation	of	a	new	file	on	the	selected	document
provider,	so	modify	the	StorageDemoActivity.java	file	to	add	this	method	as
follows:

public	void	onActivityResult(int	requestCode,	int	resultCode,

									Intent	resultData)	{

	

							if	(resultCode	==	Activity.RESULT_OK)

							{

														if	(requestCode	==	CREATE_REQUEST_CODE)

														{						

																						if	(resultData	!=	null)	{

																													textView.setText("");

																						}

														}

	

									}

}

The	code	in	this	method	is	largely	straightforward.	The	result	of	the	activity	is
checked	and,	if	successful,	the	request	code	is	compared	to	the

checked	and,	if	successful,	the	request	code	is	compared	to	the
CREATE_REQUEST_CODE	value	to	verify	that	the	user	is	creating	a	new	file.
That	being	the	case,	the	edit	text	view	is	cleared	of	any	previous	text	to	signify
the	creation	of	a	new	file.
Compile	and	run	the	application	and	select	the	New	button.	The	Storage	Access
Framework	should	subsequently	display	the	“Save	to”	storage	picker	user
interface	as	illustrated	in	Figure	63-2.

Figure	63-2

From	this	menu,	select	the	Drive	option	followed	by	My	Drive	and	navigate	to	a
suitable	location	on	your	Google	Drive	storage	into	which	to	save	the	file.	In	the
text	field	at	the	bottom	of	the	picker	interface,	change	the	name	from
“newfile.txt”	to	a	suitable	name	(but	keeping	the	.txt	extension)	before	selecting
the	Save	option.
Once	the	new	file	has	been	created,	the	app	should	return	to	the	main	activity

Once	the	new	file	has	been	created,	the	app	should	return	to	the	main	activity
and	a	notification	will	appear	within	the	notifications	panel	which	reads	“1	file
uploaded”.

Figure	63-3

At	this	point,	it	should	be	possible	to	log	into	your	Google	Drive	account	in	a
browser	window	and	find	the	newly	created	file	in	the	requested	location.	In	the
event	that	the	file	is	missing,	make	sure	that	the	Android	device	on	which	the
application	is	running	has	an	active	internet	connection.	Access	to	Google	Drive
on	the	device	may	also	be	verified	by	running	the	Google	Drive	app,	which	is
installed	by	default	on	many	Android	devices,	and	available	for	download	from
the	Google	Play	store.

63.7	Saving	to	a	Storage	File
Now	that	the	application	is	able	to	create	new	storage	based	files,	the	next	step	is
to	add	the	ability	to	save	any	text	entered	by	the	user	to	a	file.	The	user	interface
is	configured	to	call	the	saveFile()	method	when	the	Save	button	is	selected	by
the	user.	This	method	will	be	responsible	for	starting	a	new	intent	of	type
ACTION_OPEN_DOCUMENT	which	will	result	in	the	picker	user	interface
appearing	so	that	the	user	can	choose	the	file	to	which	the	text	is	to	be	stored.
Since	we	are	only	working	with	plain	text	files,	the	intent	needs	to	be	configured
to	restrict	the	user’s	selection	options	to	existing	files	that	match	the	text/plain
MIME	type.	Having	identified	the	actions	to	be	performed	by	the	saveFile()
method,	this	can	now	be	added	to	the	StorageDemoActivity.java	class	file	as
follows:

public	void	saveFile(View	view)

{

							Intent	intent	=	new	Intent(Intent.ACTION_OPEN_DOCUMENT);

							intent.addCategory(Intent.CATEGORY_OPENABLE);

							intent.setType("text/plain");

							startActivityForResult(intent,	SAVE_REQUEST_CODE);

}

Since	the	SAVE_REQUEST_CODE	was	passed	through	to	the	intent,	the
onActivityResult()	method	must	now	be	extended	to	handle	save	actions:

package	com.ebookfrenzy.storagedemo;

import	android.app.Activity;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.EditText;

import	android.content.Intent;

import	android.view.View;

import	android.net.Uri;

public	class	StorageDemoActivity	extends	AppCompatActivity	{

.

.

							public	void	onActivityResult(int	requestCode,	int

resultCode,

															Intent	resultData)	{

														Uri	currentUri	=	null;

														if	(resultCode	==	Activity.RESULT_OK)

														{																					

																						if	(requestCode	==	CREATE_REQUEST_CODE)

																						{

																													if	(resultData	!=	null)	{

																																					textView.setText("");

																													}

																						}	else	if	(requestCode	==

SAVE_REQUEST_CODE)	{

																					

																														if	(resultData	!=	null)	{

																																					currentUri	=

																																												

resultData.getData();

																																				

writeFileContent(currentUri);

																														}

																						}

														}

							}

}

The	method	now	checks	for	the	save	request	code,	extracts	the	Uri	of	the	file
selected	by	the	user	in	the	storage	picker	and	calls	a	method	named
writeFileContent(),	passing	through	the	Uri	of	the	file	to	which	the	text	is	to	be
written.	Remaining	in	the	StorageDemoActivity.java	file,	implement	this	method
now	so	that	it	reads	as	follows:

package	com.ebookfrenzy.storagedemo;

import	java.io.FileNotFoundException;

import	java.io.FileOutputStream;

import	java.io.IOException;

	

import	android.app.Activity;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.EditText;

import	android.content.Intent;

import	android.view.View;

import	android.net.Uri;

import	android.os.ParcelFileDescriptor;

	

public	class	StorageDemoActivity	extends	AppCompatActivity	{

.

.

							private	void	writeFileContent(Uri	uri)

							{

														try{										

																						ParcelFileDescriptor	pfd	=

																														this.getContentResolver().

																														openFileDescriptor(uri,	"w");

																					

																						FileOutputStream	fileOutputStream	=

																									new	FileOutputStream(

																														pfd.getFileDescriptor());

																					

																						String	textContent	=

																														textView.getText().toString();

																					

																					

fileOutputStream.write(textContent.getBytes());

																					

																						fileOutputStream.close();

																						pfd.close();

														}	catch	(FileNotFoundException	e)	{

																						e.printStackTrace();

															}	catch	(IOException	e)	{

																						e.printStackTrace();

														}

							}

.

.

}

The	method	begins	by	obtaining	and	opening	the	file	descriptor	from	the	Uri	of
the	file	selected	by	the	user.	Since	the	code	will	need	to	write	to	the	file,	the
descriptor	is	opened	in	write	mode	(“w”).	The	file	descriptor	is	then	used	as	the
basis	for	creating	an	output	stream	that	will	enable	the	application	to	write	to	the
file.
The	text	entered	by	the	user	is	extracted	from	the	edit	text	object	and	written	to
the	output	stream	before	both	the	file	descriptor	and	stream	are	closed.	Code	is
also	added	to	handle	any	IO	exceptions	encountered	during	the	file	writing
process.
With	the	new	method	added,	compile	and	run	the	application,	enter	some	text
into	the	text	view	and	select	the	Save	button.	From	the	picker	interface,	locate
the	previously	created	file	from	the	Google	Drive	storage	to	save	the	text	to	that
file.	Return	to	your	Google	Drive	account	in	a	browser	window	and	select	the
text	file	to	display	the	contents.	The	file	should	now	contain	the	text	entered
within	the	StorageDemo	application	on	the	Android	device.

63.8	Opening	and	Reading	a	Storage	File
Having	written	the	code	to	create	and	save	text	files,	the	final	task	is	to	add	some
functionality	to	open	and	read	a	file	from	the	storage.	This	will	involve	writing
the	openFile()	onClick	event	handler	method	and	implementing	it	so	that	it	starts
an	ACTION_OPEN_DOCUMENT	intent:

public	void	openFile(View	view)

{

							Intent	intent	=	new	Intent(Intent.ACTION_OPEN_DOCUMENT);

							intent.addCategory(Intent.CATEGORY_OPENABLE);

							intent.setType("text/plain");

							startActivityForResult(intent,	OPEN_REQUEST_CODE);

}

In	this	code,	the	intent	is	configured	to	filter	selection	to	files	which	can	be
opened	by	the	application.	When	the	activity	is	started,	it	is	passed	the	open

request	code	constant	which	will	now	need	to	be	handled	within	the
onActivityResult()	method:

public	void	onActivityResult(int	requestCode,	int	resultCode,

							Intent	resultData)	{

							Uri	currentUri	=	null;

							if	(resultCode	==	Activity.RESULT_OK)

							{

																					

														if	(requestCode	==	CREATE_REQUEST_CODE)

														{

																						if	(resultData	!=	null)	{

																													textView.setText("");

																						}

														}	else	if	(requestCode	==	SAVE_REQUEST_CODE)	{

																					

																						if	(resultData	!=	null)	{

																														currentUri	=

resultData.getData();

																														writeFileContent(currentUri);

																						}

														}	else	if	(requestCode	==	OPEN_REQUEST_CODE)	{

																													

																						if	(resultData	!=	null)	{

																													currentUri	=	resultData.getData();

																									

																													try	{

																																String	content	=

																																				

				readFileContent(currentUri);

																																					textView.setText(content);

																													}	catch	(IOException	e)	{

																																					//	Handle	error	here

																													}

																						}

														}

							}

}

The	new	code	added	above	to	handle	the	open	request	obtains	the	Uri	of	the	file
selected	by	the	user	from	the	picker	user	interface	and	passes	it	through	to	a
method	named	readFileContent()	which	is	expected	to	return	the	content	of	the
selected	file	in	the	form	of	a	String	object.	The	resulting	string	is	then	assigned
to	the	text	property	of	the	edit	text	view.	Clearly,	the	next	task	is	to	implement

the	readFileContent()	method:
package	com.ebookfrenzy.storagedemo;

import	java.io.FileNotFoundException;

import	java.io.FileOutputStream;

import	java.io.IOException;

import	java.io.BufferedReader;

import	java.io.InputStream;

import	java.io.InputStreamReader;

import	android.app.Activity;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.EditText;

import	android.content.Intent;

import	android.view.View;

import	android.net.Uri;

import	android.os.ParcelFileDescriptor;

public	class	StorageDemoActivity	extends	AppCompatActivity	{

.

.

.

							private	String	readFileContent(Uri	uri)	throws

IOException	{

													

														InputStream	inputStream	=

																					

getContentResolver().openInputStream(uri);

														BufferedReader	reader	=

																						new	BufferedReader(new	InputStreamReader(

																														inputStream));

														StringBuilder	stringBuilder	=	new

StringBuilder();

														String	currentline;

														while	((currentline	=	reader.readLine())	!=	null)

{

																						stringBuilder.append(currentline	+	"\n");

														}

														inputStream.close();

														return	stringBuilder.toString();

							}

.

.

}

This	method	begins	by	extracting	the	file	descriptor	for	the	selected	text	file	and

This	method	begins	by	extracting	the	file	descriptor	for	the	selected	text	file	and
opening	it	for	reading.	The	input	stream	associated	with	the	Uri	is	then	opened
and	used	as	the	input	source	for	a	BufferedReader	instance.	Each	line	within	the
file	is	then	read	and	stored	in	a	StringBuilder	object.	Once	all	the	lines	have	been
read,	the	input	stream	and	file	descriptor	are	both	closed,	and	the	file	content	is
returned	as	a	String	object.

63.9	Testing	the	Storage	Access	Application
With	the	coding	phase	complete	the	application	is	now	ready	to	be	fully	tested.
Begin	by	launching	the	application	on	a	physical	Android	device	and	selecting
the	“New”	button.	Within	the	resulting	storage	picker	interface,	select	a	Google
Drive	location	and	name	the	text	file	storagedemo.txt	before	selecting	the	Save
option	located	to	the	right	of	the	file	name	field.
When	control	returns	to	your	application	look	for	the	file	uploading	notification,
then	enter	some	text	into	the	text	area	before	selecting	the	“Save”	button.	Select
the	previously	created	storagedemo.txt	file	from	the	picker	to	save	the	content	to
the	file.	On	returning	to	the	application,	delete	the	text	and	select	the	“Open”
button,	once	again	choosing	the	storagedemo.txt	file.	When	control	is	returned	to
the	application,	the	text	view	should	have	been	populated	with	the	content	of	the
text	file.
It	is	important	to	note	that	the	Storage	Access	Framework	will	cache	storage
files	locally	in	the	event	that	the	Android	device	lacks	an	active	internet
connection.	Once	connectivity	is	re-established,	however,	any	cached	data	will
be	synchronized	with	the	remote	storage	service.	As	a	final	test	of	the
application,	therefore,	log	into	your	Google	Drive	account	in	a	browser	window,
navigate	to	the	storagedemo.txt	file	and	click	on	it	to	view	the	content	which
should,	all	being	well,	contain	the	text	saved	by	the	application.

63.10	Summary
This	chapter	has	worked	through	the	creation	of	an	example	Android	Studio
application	in	the	form	of	a	very	rudimentary	text	editor	designed	to	use	cloud
based	storage	to	create,	save	and	open	files	using	the	Android	Storage	Access
Framework.

64.	Implementing	Video	Playback	on
Android	using	the	VideoView	and
MediaController	Classes

One	of	the	primary	uses	for	smartphones	and	tablets	is	to	enable	the	user	to
access	and	consume	content.	One	key	form	of	content	widely	used,	especially	in
the	case	of	tablet	devices,	is	video.
The	Android	SDK	includes	two	classes	that	make	the	implementation	of	video
playback	on	Android	devices	extremely	easy	to	implement	when	developing
applications.	This	chapter	will	provide	an	overview	of	these	two	classes,
VideoView	and	MediaController,	before	working	through	the	creation	of	a
simple	video	playback	application.

64.1	Introducing	the	Android	VideoView	Class
By	far	the	simplest	way	to	display	video	within	an	Android	application	is	to	use
the	VideoView	class.	This	is	a	visual	component	which,	when	added	to	the
layout	of	an	activity,	provides	a	surface	onto	which	a	video	may	be	played.
Android	currently	supports	the	following	video	formats:
·									H.263
·									H.264	AVC
·									H.265	HEVC
·									MPEG-4	SP
·									VP8
·									VP9
The	VideoView	class	has	a	wide	range	of	methods	that	may	be	called	in	order	to
manage	the	playback	of	video.	Some	of	the	more	commonly	used	methods	are	as
follows:
·									setVideoPath(String	path)	–	Specifies	the	path	(as	a	string)	of	the	video

media	to	be	played.	This	can	be	either	the	URL	of	a	remote	video	file	or	a
video	file	local	to	the	device.

·									setVideoUri(Uri	uri)	–	Performs	the	same	task	as	the	setVideoPath()	method
but	takes	a	Uri	object	as	an	argument	instead	of	a	string.

·									start()	–	Starts	video	playback.
·									stopPlayback()	–	Stops	the	video	playback.

·									pause()	–	Pauses	video	playback.
·									isPlaying()	–	Returns	a	Boolean	value	indicating	whether	a	video	is	currently

playing.
·									setOnPreparedListener(MediaPlayer.OnPreparedListener)	–	Allows	a

callback	method	to	be	called	when	the	video	is	ready	to	play.
·									setOnErrorListener(MediaPlayer.OnErrorListener)	-	Allows	a	callback

method	to	be	called	when	an	error	occurs	during	the	video	playback.
·									setOnCompletionListener(MediaPlayer.OnCompletionListener)	-	Allows

a	callback	method	to	be	called	when	the	end	of	the	video	is	reached.
·									getDuration()	–	Returns	the	duration	of	the	video.	Will	typically	return	-1

unless	called	from	within	the	OnPreparedListener()	callback	method.
·									getCurrentPosition()	–	Returns	an	integer	value	indicating	the	current

position	of	playback.
·									setMediaController(MediaController)	–	Designates	a	MediaController

instance	allowing	playback	controls	to	be	displayed	to	the	user.

64.2	Introducing	the	Android	MediaController	Class
If	a	video	is	simply	played	using	the	VideoView	class,	the	user	will	not	be	given
any	control	over	the	playback,	which	will	run	until	the	end	of	the	video	is
reached.	This	issue	can	be	addressed	by	attaching	an	instance	of	the
MediaController	class	to	the	VideoView	instance.	The	MediaController	will	then
provide	a	set	of	controls	allowing	the	user	to	manage	the	playback	(such	as
pausing	and	seeking	backwards/forwards	in	the	video	timeline).
The	position	of	the	controls	is	designated	by	anchoring	the	controller	instance	to
a	specific	view	in	the	user	interface	layout.	Once	attached	and	anchored,	the
controls	will	appear	briefly	when	playback	starts	and	may	subsequently	be
restored	at	any	point	by	the	user	tapping	on	the	view	to	which	the	instance	is
anchored.
Some	of	the	key	methods	of	this	class	are	as	follows:
·									setAnchorView(View	view)	–	Designates	the	view	to	which	the	controller	is

to	be	anchored.	This	controls	the	location	of	the	controls	on	the	screen.
·									show()	–	Displays	the	controls.
·									show(int	timeout)	–	Controls	are	displayed	for	the	designated	duration	(in

milliseconds).
·									hide()	–	Hides	the	controller	from	the	user.
·									isShowing()	–	Returns	a	Boolean	value	indicating	whether	the	controls	are

currently	visible	to	the	user.

64.3	Testing	Video	Playback
At	the	time	of	writing,	it	is	not	possible	to	test	video	playback	when	using	the
Android	AVD	emulators.	To	test	the	video	playback	functionality	of	an
application	it	will	be	necessary	to	deploy	it	onto	a	physical	device.

64.4	Creating	the	Video	Playback	Example
The	remainder	of	this	chapter	is	dedicated	to	working	through	an	example
application	intended	to	use	the	VideoView	and	MediaController	classes	to	play	a
web	based	MPEG-4	video	file.
Create	a	new	project	in	Android	Studio,	entering	VideoPlayer	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
VideoPlayerActivity	with	a	corresponding	layout	named	activity_video_player.

64.5	Designing	the	VideoPlayer	Layout
The	user	interface	for	the	main	activity	will	consist	solely	of	an	instance	of	the
VideoView	class.	Use	the	Project	tool	window	to	locate	the	app	->	res	->	layout
->	activity_video_player.xml	file,	double-click	on	it,	switch	the	Layout	Editor
tool	to	Design	mode	and	delete	the	default	TextView	widget.
From	the	Images	category	of	the	Palette	panel,	drag	and	drop	a	VideoView
instance	onto	the	layout	so	that	it	fills	the	available	canvas	area	as	shown	in
Figure	64-1.
Establish	constraints	from	each	side	of	the	VideoView	to	the	corresponding	side
of	the	parent	layout.	Use	the	Properties	tool	window	to	change	the	ID	of	the
component	to	videoView1	set	the	layout_width	and	layout_height	properties	for
the	VideoView	instance	to	match_parent.

Figure	64-1

On	completion	of	the	layout	design,	the	XML	resources	for	the	layout	should
read	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:app="http://schemas.android.com/apk/res-auto"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

			

tools:context="com.ebookfrenzy.videoplayer.VideoPlayerActivity"

>

				<VideoView

								android:id="@+id/videoView1"

								android:layout_width="match_parent"

								android:layout_height="match_parent"

								app:layout_constraintBottom_toBottomOf="parent"

								app:layout_constraintLeft_toLeftOf="parent"

								app:layout_constraintRight_toRightOf="parent"

								app:layout_constraintTop_toTopOf="parent"	/>

</android.support.constraint.ConstraintLayout>

64.6	Configuring	the	VideoView
The	next	step	is	to	configure	the	VideoView	with	the	path	of	the	video	to	be
played	and	then	start	the	playback.	This	will	be	performed	when	the	main
activity	has	initialized,	so	load	the	VideoPlayerActivity.java	file	into	the	editor
and	modify	the	OnCreate()	method	as	outlined	in	the	following	listing:

package	com.ebookfrenzy.videoplayer;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.VideoView;

public	class	VideoPlayerActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_video_player);

								final	VideoView	videoView	=

																(VideoView)	findViewById(R.id.videoView1);

	

								videoView.setVideoPath(

															

"http://www.ebookfrenzy.com/android_book/movie.mp4");

	

								videoView.start();

				}

}

All	that	this	code	does	is	obtain	a	reference	to	the	VideoView	instance	in	the
layout,	set	the	video	path	on	it	to	point	to	an	MPEG-4	file	hosted	on	a	web	site
and	then	start	the	video	playing.

64.7	Adding	Internet	Permission
An	attempt	to	run	the	application	at	this	point	would	result	in	the	application
failing	to	launch	with	an	error	dialog	appearing	on	the	Android	device	that	reads
“Unable	to	Play	Video.	Sorry,	this	video	cannot	be	played”.	This	is	not	because
of	an	error	in	the	code	or	an	incorrect	video	file	format.	The	issue	would	be	that

the	application	is	attempting	to	access	a	file	over	the	internet,	but	has	failed	to
request	appropriate	permissions	to	do	so.	To	resolve	this,	edit	the
AndroidManifest.xml	file	for	the	project	and	add	a	line	to	request	internet	access:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.videoplayer.videoplayer"	>

				<uses-permission	android:name="android.permission.INTERNET"

/>

			

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme"	>

.

.

.

</manifest>

Test	the	application	by	running	it	on	a	physical	Android	device.	After	the
application	launches	there	may	be	a	short	delay	while	video	content	is	buffered
before	the	playback	begins	(Figure	64-2).

Figure	64-2

This	provides	an	indication	of	how	easy	it	can	be	to	integrate	video	playback
into	an	Android	application.	Everything	so	far	in	this	example	has	been	achieved
using	a	VideoView	instance	and	three	lines	of	code.

64.8	Adding	the	MediaController	to	the	Video	View
As	the	VideoPlayer	application	currently	stands,	there	is	no	way	for	the	user	to
control	playback.	As	previously	outlined,	this	can	be	achieved	using	the
MediaController	class.	To	add	a	controller	to	the	VideoView,	modify	the
onCreate()	method	once	again:

package	com.ebookfrenzy.videoplayer;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.VideoView;

import	android.widget.MediaController;

public	class	VideoPlayerActivity	extends	AppCompatActivity	{

							@Override

							protected	void	onCreate(Bundle	savedInstanceState)	{

														super.onCreate(savedInstanceState);

														setContentView(R.layout.activity_video_player);

													

														final	VideoView	videoView	=	(VideoView)

																												findViewById(R.id.videoView1);

														videoView.setVideoPath(

																

"http://www.ebookfrenzy.com/android_book/movie.mp4");

													

														MediaController	mediaController	=	new

																						MediaController(this);

														mediaController.setAnchorView(videoView);

														videoView.setMediaController(mediaController);

													

														videoView.start();												

							}

}

When	the	application	is	launched	with	these	changes	implemented,	tapping	the
VideoView	canvas	will	cause	the	media	controls	will	appear	over	the	video
playback.	These	controls	should	include	a	seekbar	together	with	fast	forward,
rewind	and	play/pause	buttons.	After	the	controls	recede	from	view,	they	can	be
restored	at	any	time	by	tapping	on	the	VideoView	canvas	once	again.	With	just
three	more	lines	of	code,	our	video	player	application	now	has	media	controls	as
shown	in	Figure	64-3:

Figure	64-3

64.9	Setting	up	the	onPreparedListener
As	a	final	example	of	working	with	video	based	media,	the	onCreate()	method
will	now	be	extended	further	to	demonstrate	the	mechanism	for	configuring	a
listener.	In	this	case,	a	listener	will	be	implemented	that	is	intended	to	output	the
duration	of	the	video	as	a	message	in	the	Android	Studio	LogCat	panel:

package	com.ebookfrenzy.videoplayer;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.VideoView;

import	android.widget.MediaController;

import	android.util.Log;

import	android.media.MediaPlayer;

public	class	VideoPlayerActivity	extends	AppCompatActivity	{

				String	TAG	=	"VideoPlayer";

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_video_player);

								final	VideoView	videoView	=

																(VideoView)	findViewById(R.id.videoView1);

								videoView.setVideoPath(

															

"http://www.ebookfrenzy.com/android_book/movie.mp4");

								MediaController	mediaController	=	new

																MediaController(this);

								mediaController.setAnchorView(videoView);

								videoView.setMediaController(mediaController);

								videoView.setOnPreparedListener(new

																MediaPlayer.OnPreparedListener()		{

																					@Override

																					public	void	onPrepared(MediaPlayer	mp)	{

																														Log.i(TAG,	"Duration	=	"	+

																																					videoView.getDuration());

																					}

									});

								videoView.start();

				}

}

Now	just	before	the	video	playback	begins,	a	message	will	appear	in	the	Android
Studio	LogCat	panel	that	reads	along	the	lines	of:

11-05	10:27:52.256	12542-12542/com.ebookfrenzy.videoplayer

I/VideoPlayer:	Duration	=	6874

64.10	Summary
Tablet	based	Android	devices	make	excellent	platforms	for	the	delivery	of
content	to	users,	particularly	in	the	form	of	video	media.	As	outlined	in	this
chapter,	the	Android	SDK	provides	two	classes,	namely	VideoView	and
MediaController,	which	combine	to	make	the	integration	of	video	playback	into
Android	applications	quick	and	easy,	often	involving	just	a	few	lines	of	Java
code.

65.	Video	Recording	and	Image	Capture
on	Android	using	Camera	Intents

Many	Android	devices	are	equipped	with	at	least	one	camera.	There	are	a
number	of	ways	to	allow	the	user	to	record	video	from	within	an	Android
application	via	these	built-in	cameras,	but	by	far	the	easiest	approach	is	to	make
use	of	a	camera	intent	included	with	the	Android	operating	system.	This	allows
an	application	to	invoke	the	standard	Android	video	recording	interface.	When
the	user	has	finished	recording,	the	intent	will	return	to	the	application,	passing
through	a	reference	to	the	media	file	containing	the	recorded	video.
As	will	be	demonstrated	in	this	chapter,	this	approach	allows	video	recording
capabilities	to	be	added	to	applications	with	just	a	few	lines	of	code.

65.1	Checking	for	Camera	Support
Before	attempting	to	access	the	camera	on	an	Android	device,	it	is	essential	that
defensive	code	be	implemented	to	verify	the	presence	of	camera	hardware.	This
is	of	particular	importance	since	not	all	Android	devices	include	a	camera.
The	presence	or	otherwise	of	a	camera	can	be	identified	via	a	call	to	the
PackageManager.hasSystemFeature()	method.	In	order	to	check	for	the
presence	of	a	front-facing	camera,	the	code	needs	to	check	for	the	presence	of
the	PackageManager.FEATURE_CAMERA_FRONT	feature.	This	can	be
encapsulated	into	the	following	convenience	method:

private	boolean	hasCamera()	{

							return	(getPackageManager().hasSystemFeature(

											PackageManager.FEATURE_CAMERA_FRONT));

}

The	presence	of	a	camera	facing	away	from	the	device	screen	can	be	similarly
verified	using	the	PackageManager.FEATURE_CAMERA	constant.	A	test	for
whether	a	device	has	any	camera	can	be	performed	by	referencing
PackageManager.FEATURE_CAMERA_ANY.

65.2	Calling	the	Video	Capture	Intent
Use	of	the	video	capture	intent	involves,	at	a	minimum,	the	implementation	of
code	to	call	the	intent	activity	and	a	method	to	handle	the	return	from	the
activity.	The	Android	built-in	video	recording	intent	is	represented	by

MediaStore.ACTION_VIDEO_CAPTURE	and	may	be	launched	as	follows:
private	static	final	int	VIDEO_CAPTURE	=	101;

Intent	intent	=	new	Intent(MediaStore.ACTION_VIDEO_CAPTURE);

			

startActivityForResult(intent,	VIDEO_CAPTURE);

When	invoked	in	this	way,	the	intent	will	place	the	recorded	video	into	a	file
using	a	default	location	and	file	name.
When	the	user	either	completes	or	cancels	the	video	recording	session,	the
onActivityResult()	method	of	the	calling	activity	will	be	called.	This	method
needs	to	check	that	the	request	code	passed	through	as	an	argument	matches	that
specified	when	the	intent	was	launched,	verify	that	the	recording	session	was
successful	and	extract	the	path	of	the	video	media	file.	The	corresponding
onActivityResult()	method	for	the	above	intent	launch	code	might,	therefore,	be
implemented	as	follows:

@Override

protected	void	onActivityResult(int	requestCode,	int

resultCode,	Intent	data)	{

				Uri	videoUri	=	data.getData();

				if	(requestCode	==	VIDEO_CAPTURE)	{

								if	(resultCode	==	RESULT_OK)	{

												Toast.makeText(this,	"Video	saved	to:\n"	+

																				videoUri,	Toast.LENGTH_LONG).show();

								}	else	if	(resultCode	==	RESULT_CANCELED)	{

												Toast.makeText(this,	"Video	recording	cancelled.",

																				Toast.LENGTH_LONG).show();

								}	else	{

												Toast.makeText(this,	"Failed	to	record	video",

																				Toast.LENGTH_LONG).show();

								}

				}

}

The	above	code	example	simply	displays	a	toast	message	indicating	the	success
of	the	recording	intent	session.	In	the	event	of	a	successful	recording,	the	path	to
the	stored	video	file	is	displayed.
When	executed,	the	video	capture	intent	(Figure	65-1)	will	launch	and	provide
the	user	the	opportunity	to	record	video.

Figure	65-1

65.3	Calling	the	Image	Capture	Intent
In	addition	to	the	video	capture	intent,	Android	also	includes	an	intent	designed
for	taking	still	photos	using	the	built-in	camera,	launched	by	referencing
MediaStore.ACTION_IMAGE_CAPTURE:

private	static	final	int	IMAGE_CAPTURE	=	102;

Intent	intent	=	new	Intent(MediaStore.ACTION_IMAGE_CAPTURE);

			

startActivityForResult(intent,	IMAGE_CAPTURE);

As	with	video	capture,	the	intent	may	be	passed	the	location	and	file	name	into
which	the	image	is	to	be	stored,	or	left	to	use	the	default	location	and	naming
convention.

65.4	Creating	an	Android	Studio	Video	Recording	Project
In	the	remainder	of	this	chapter,	a	very	simple	application	will	be	created	to
demonstrate	the	use	of	the	video	capture	intent.	The	application	will	consist	of	a

demonstrate	the	use	of	the	video	capture	intent.	The	application	will	consist	of	a
single	button	which	will	launch	the	video	capture	intent.	Once	video	has	been
recorded	and	the	video	capture	intent	dismissed,	the	application	will	simply
display	the	path	to	the	video	file	as	a	Toast	message.	The	VideoPlayer
application	created	in	the	previous	chapter	may	then	be	modified	to	play	back
the	recorded	video.
Create	a	new	project	in	Android	Studio,	entering	CameraApp	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
CameraAppActivity	with	a	layout	file	named	activity_camera_app.

65.5	Designing	the	User	Interface	Layout
Navigate	to	app	->	res	->	layout	and	double-click	on	the
activity_camera_app.xml	layout	file	to	load	it	into	the	Layout	Editor	tool.
With	the	Layout	Editor	tool	in	Design	mode,	delete	the	default	“Hello	World!”
text	view	and	replace	it	with	a	Button	view	positioned	in	the	center	of	the	layout
canvas.	Change	the	text	on	the	button	to	read	“Record	Video”	and	extract	the
text	to	a	string	resource.	Also,	assign	an	onClick	property	to	the	button	so	that	it
calls	a	method	named	startRecording	when	selected	by	the	user	and	change	the
layout_width	property	to	wrap_content:

Figure	65-2

Remaining	within	the	Properties	tool	window,	change	the	ID	to	recordButton.

65.6	Checking	for	the	Camera
Before	attempting	to	launch	the	video	capture	intent,	the	application	first	needs
to	verify	that	the	device	on	which	it	is	running	actually	has	a	camera.	For	the
purposes	of	this	example,	we	will	simply	make	use	of	the	previously	outlined
hasCamera()	method,	this	time	checking	for	any	camera	type.	In	the	event	that	a
camera	is	not	present,	the	Record	Video	button	will	be	disabled.
Edit	the	CameraAppActivity.java	file	and	modify	it	as	follows:

package	com.ebookfrenzy.cameraapp;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.pm.PackageManager;

import	android.widget.Button;

public	class	CameraAppActivity	extends	AppCompatActivity	{

						

							@Override

							protected	void	onCreate(Bundle	savedInstanceState)	{

														super.onCreate(savedInstanceState);

														setContentView(R.layout.activity_camera_app);

													

														Button	recordButton	=

																(Button)	findViewById(R.id.recordButton);

													

														if	(!hasCamera())

																						recordButton.setEnabled(false);

							}

							private	boolean	hasCamera()	{

												return	(getPackageManager().hasSystemFeature(

																													

PackageManager.FEATURE_CAMERA_ANY));

							}

}

65.7	Launching	the	Video	Capture	Intent
The	objective	is	for	the	video	capture	intent	to	launch	when	the	user	selects	the
Record	Video	button.	Since	this	is	now	configured	to	call	a	method	named
startRecording(),	the	next	logical	step	is	to	implement	this	method	within	the
CameraAppActivity.java	source	file:

package	com.ebookfrenzy.cameraapp;

import	java.io.File;

	

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.pm.PackageManager;

import	android.widget.Button;

import	android.net.Uri;

import	android.os.Environment;

import	android.provider.MediaStore;

import	android.content.Intent;

import	android.view.View;

public	class	CameraAppActivity	extends	AppCompatActivity	{

				private	static	final	int	VIDEO_CAPTURE	=	101;

				private	Uri	fileUri;

													

				public	void	startRecording(View	view)

				{

								Intent	intent	=	new

Intent(MediaStore.ACTION_VIDEO_CAPTURE);

								startActivityForResult(intent,	VIDEO_CAPTURE);					

				}

.

.

.

}

65.8	Handling	the	Intent	Return
When	control	returns	back	from	the	intent	to	the	application’s	main	activity,	the
onActivityResult()	method	will	be	called.	All	that	this	method	needs	to	do	for	this
example	is	verify	the	success	of	the	video	capture	and	display	the	path	of	the	file
into	which	the	video	has	been	stored:

package	com.ebookfrenzy.cameraapp;

import	java.io.File;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.pm.PackageManager;

import	android.widget.Button;

import	android.net.Uri;

import	android.os.Environment;

import	android.provider.MediaStore;

import	android.content.Intent;

import	android.view.View;

import	android.widget.Toast;

public	class	CameraAppActivity	extends	AppCompatActivity	{

.

.

.

				protected	void	onActivityResult(int	requestCode,

														int	resultCode,	Intent	data)	{

	

								Uri	videoUri	=	data.getData();

	

								if	(requestCode	==	VIDEO_CAPTURE)	{

												if	(resultCode	==	RESULT_OK)	{

																Toast.makeText(this,	"Video	saved	to:\n"	+

																								videoUri,	Toast.LENGTH_LONG).show();

												}	else	if	(resultCode	==	RESULT_CANCELED)	{

																Toast.makeText(this,	"Video	recording

cancelled.",

																								Toast.LENGTH_LONG).show();

												}	else	{

																Toast.makeText(this,	"Failed	to	record	video",

																								Toast.LENGTH_LONG).show();

												}			

				}

.

.

}

65.9	Testing	the	Application
Compile	and	run	the	application	on	a	physical	Android	device	or	emulator
session,	touch	the	record	button	and	use	the	video	capture	intent	to	record	some
video.	Once	completed,	stop	the	video	recording.	Play	back	the	recording	by
selecting	the	play	button	on	the	screen.	Finally,	touch	the	Done	(sometimes
represented	by	a	check	mark)	button	on	the	screen	to	return	to	the	CameraApp
application.	On	returning,	a	Toast	message	should	appear	stating	that	the	video
has	been	stored	in	a	specific	location	on	the	device	(the	exact	location	will	differ
from	one	device	type	to	another)	from	where	it	can	be	moved,	stored	or	played
back	depending	on	the	requirements	of	the	app.

65.10	Summary
Most	Android	tablet	and	smartphone	devices	include	a	camera	that	can	be
accessed	by	applications.	While	there	are	a	number	of	different	approaches	to
adding	camera	support	to	applications,	the	Android	video	and	image	capture
intents	provide	a	simple	and	easy	solution	to	capturing	video	and	images.

66.	Making	Runtime	Permission	Requests	in	Android

In	a	number	of	the	example	projects	created	in	preceding	chapters,	changes	have
been	made	to	the	AndroidManifest.xml	file	to	request	permission	for	the	app	to
perform	a	specific	task.	In	a	couple	of	instances,	for	example,	internet	access
permission	has	been	requested	in	order	to	allow	the	app	to	download	and	display
web	pages.	In	each	case	up	until	this	point,	the	addition	of	the	request	to	the
manifest	was	all	that	is	required	in	order	for	the	app	to	obtain	permission	from
the	user	to	perform	the	designated	task.
There	are,	however,	a	number	of	permissions	for	which	additional	steps	are
required	in	order	for	the	app	to	function	when	running	on	Android	6.0	or	later.
The	first	of	these	so-called	“dangerous”	permissions	will	be	encountered	in	the
next	chapter.	Before	reaching	that	point,	however,	this	chapter	will	outline	the
steps	involved	in	requesting	such	permissions	when	running	on	the	latest
generations	of	Android.

66.1	Understanding	Normal	and	Dangerous	Permissions
Android	enforces	security	by	requiring	the	user	to	grant	permission	for	an	app	to
perform	certain	tasks.	Prior	to	the	introduction	of	Android	6,	permission	was
always	sought	at	the	point	that	the	app	was	installed	on	the	device.	Figure	66-1,
for	example,	shows	a	typical	screen	seeking	a	variety	of	permissions	during	the
installation	of	an	app	via	Google	Play.

Figure	66-1

For	many	types	of	permissions	this	scenario	still	applies	for	apps	on	Android	6.0
or	later.	These	permissions	are	referred	to	as	normal	permissions	and	are	still
required	to	be	accepted	by	the	user	at	the	point	of	installation.	A	second	type	of
permission,	referred	to	as	dangerous	permissions	must	also	be	declared	within
the	manifest	file	in	the	same	way	as	a	normal	permission,	but	must	also	be
requested	from	the	user	when	the	application	is	first	launched.	When	such	a
request	is	made,	it	appears	in	the	form	of	a	dialog	box	as	illustrated	in	Figure	66-
2:

Figure	66-2

The	full	list	of	permissions	that	fall	into	the	dangerous	category	is	contained	in
Table	66-1:

	
	Permission	Group

	
	Permission

	
	Calendar

	
READ_CALENDAR
WRITE_CALENDAR	

	
	Camera

	
CAMERA	

	
	Contacts

	
READ_CONTACTS
WRITE_CONTACTS
GET_ACCOUNTS	

	
	Location

	
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION	

	
	Microphone

	
RECORD_AUDIO	

	
	Phone

	
READ_PHONE_STATE
CALL_PHONE
READ_CALL_LOG
WRITE_CALL_LOG
ADD_VOICEMAIL
USE_SIP
PROCESS_OUTGOING_CALLS	

	
	Sensors

	
BODY_SENSORS	

	
	SMS

	
SEND_SMS
RECEIVE_SMS
READ_SMS
RECEIVE_WAP_PUSH
RECEIVE_MMS	

	
	Storage

	
READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE	

Table	66-1

66.2	Creating	the	Permissions	Example	Project
Create	a	new	project	in	Android	Studio,	entering	PermissionDemo	into	the
Application	name	field	and	com.ebookfrenzy	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
PermissionDemoActivity	with	a	corresponding	layout	named
activity_permission_demo.

66.3	Checking	for	a	Permission
The	Android	Support	Library	contains	a	number	of	methods	that	can	be	used	to
seek	and	manage	dangerous	permissions	within	the	code	of	an	Android	app.
These	API	calls	can	be	made	safely	regardless	of	the	version	of	Android	on
which	the	app	is	running,	but	will	only	perform	meaningful	tasks	when	executed
on	Android	6.0	or	later.
Before	an	app	attempts	to	make	use	of	a	feature	that	requires	approval	of	a
dangerous	permission,	and	regardless	of	whether	or	not	permission	was
previously	granted,	the	code	must	check	that	the	permission	has	been	granted.
This	can	be	achieved	via	a	call	to	the	checkSelfPermission()	method	of	the
ContextCompat	class,	passing	through	as	arguments	a	reference	to	the	current
activity	and	the	permission	being	requested.	The	method	will	check	whether	the
permission	has	been	previously	granted	and	return	an	integer	value	matching
PackageManager.PERMISSION_GRANTED	or

PackageManager.PERMISSION_DENIED.
Within	the	PermissionDemoActivity.java	file	of	the	example	project,	modify	the
code	to	check	whether	permission	has	been	granted	for	the	app	to	record	audio:

package	com.ebookfrenzy.permissiondemoactivity;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.content.ContextCompat;

import	android.util.Log;

public	class	PermissionDemoActivity	extends	AppCompatActivity	{

				private	static	String	TAG	=	"PermissionDemo";

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_permission_demo);

								int	permission	=

ContextCompat.checkSelfPermission(this,

																Manifest.permission.RECORD_AUDIO);

	

								if	(permission	!=	PackageManager.PERMISSION_GRANTED)	{

												Log.i(TAG,	"Permission	to	record	denied");

								}

				}

}

Run	the	app	on	a	device	or	emulator	running	a	version	of	Android	that	predates
Android	6.0	and	check	the	log	cat	output	within	Android	Studio.	After	the	app
has	launched,	the	output	should	include	the	“Permission	to	record	denied”
message.
Edit	the	AndroidManifest.xml	file	(located	in	the	Project	tool	window	under	app
->	manifests)	and	add	a	line	to	request	recording	permission	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.permissiondemoactivity"	>

				<uses-permission

android:name="android.permission.RECORD_AUDIO"	/>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme"	>

								<activity	android:name=".PermissionDemoActivity"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category

																	

android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

Compile	and	run	the	app	once	again	and	note	that	this	time	the	permission	denial
message	does	not	appear.	Clearly,	everything	that	needs	to	be	done	to	request
this	permission	on	older	versions	of	Android	has	been	done.	Run	the	app	on	a
device	or	emulator	running	Android	6.0	or	later,	however,	and	note	that	even
though	permission	has	been	added	to	the	manifest	file,	the	check	still	reports	that
permission	has	been	denied.	This	is	because	Android	version	6	or	later	requires
that	the	app	also	request	dangerous	permissions	at	runtime.

66.4	Requesting	Permission	at	Runtime
A	permission	request	is	made	via	a	call	to	the	requestPermissions()	method	of
the	ActivityCompat	class.	When	this	method	is	called,	the	permission	request	is
handled	asynchronously	and	a	method	named	onRequestPermissionsResult()	is
called	when	the	task	is	completed.
The	requestPermissions()	method	takes	as	arguments	a	reference	to	the	current
activity,	together	with	the	identifier	of	the	permission	being	requested	and	a
request	code.	The	request	code	can	be	any	integer	value	and	will	be	used	to
identify	which	request	has	triggered	the	call	to	the
onRequestPermissionsResult()	method.	Modify	the
PermissionDemoActivity.java	file	to	declare	a	request	code	and	request

recording	permission	in	the	event	that	the	permission	check	failed:
package	com.ebookfrenzy.permissiondemoactivity;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.content.ContextCompat;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.util.Log;

import	android.support.v4.app.ActivityCompat;

public	class	PermissionDemoActivity	extends	AppCompatActivity	{

				private	static	String	TAG	=	"PermissionDemo";

				private	static	final	int	RECORD_REQUEST_CODE	=	101;

			

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_permission_demo);

								int	permission	=

ContextCompat.checkSelfPermission(this,

																Manifest.permission.RECORD_AUDIO);

								if	(permission	!=	PackageManager.PERMISSION_GRANTED)	{

												Log.i(TAG,	"Permission	to	record	denied");

												makeRequest();

								}

				}

				protected	void	makeRequest()	{

								ActivityCompat.requestPermissions(this,

																new	String[]{Manifest.permission.RECORD_AUDIO},

																RECORD_REQUEST_CODE);

				}

}

Next,	implement	the	onRequestPermissionsResult()	method	so	that	it	reads	as
follows:

@Override

public	void	onRequestPermissionsResult(int	requestCode,

																																							String	permissions[],

int[]	grantResults)	{

				switch	(requestCode)	{

								case	RECORD_REQUEST_CODE:	{

												if	(grantResults.length	==	0

																				||	grantResults[0]	!=

																						PackageManager.PERMISSION_GRANTED)	{

																Log.i(TAG,	"Permission	has	been	denied	by

user");

												}	else	{

																Log.i(TAG,	"Permission	has	been	granted	by

user");

												}

												return;

								}

				}

}

Compile	and	run	the	app	on	an	Android	6	or	later	emulator	or	device	and	note
that	a	dialog	seeking	permission	to	record	audio	appears	as	shown	in	Figure	66-
3:

Figure	66-3

Tap	the	Allow	button	and	check	that	the	“Permission	has	been	granted	by	user”
message	appears	in	the	LogCat	panel.
Once	the	user	has	granted	the	requested	permission,	the	checkSelfPermission()
method	call	will	return	a	PERMISSION_GRANTED	result	on	future	app
invocations	until	the	user	uninstalls	and	reinstalls	the	app	or	changes	the
permissions	for	the	app	in	Settings.

66.5	Providing	a	Rationale	for	the	Permission	Request

As	is	evident	from	Figure	66-3,	the	user	has	the	option	to	deny	the	requested
permission.	In	this	case,	the	app	will	continue	to	request	the	permission	each
time	that	it	is	launched	by	the	user	unless	the	user	selected	the	“Never	ask	again”
option	prior	to	clicking	on	the	Deny	button.	Repeated	denials	by	the	user	may
indicate	that	the	user	doesn’t	understand	why	the	permission	is	required	by	the
app.	The	user	might,	therefore,	be	more	likely	to	grant	permission	if	the	reason
for	the	requirements	is	explained	when	the	request	is	made.	Unfortunately,	it	is
not	possible	to	change	the	content	of	the	request	dialog	to	include	such	an
explanation.
An	explanation	is	best	included	in	a	separate	dialog	which	can	be	displayed
before	the	request	dialog	is	presented	to	the	user.	This	raises	the	question	as	to
when	to	display	this	explanation	dialog.	The	Android	documentation
recommends	that	an	explanation	dialog	only	be	shown	in	the	event	that	the	user
has	previously	denied	the	permission	and	provides	a	method	to	identify	when
this	is	the	case.
A	call	to	the	shouldShowRequestPermissionRationale()	method	of	the
ActivityCompat	class	will	return	a	true	result	if	the	user	has	previously	denied	a
request	for	the	specified	permission,	and	a	false	result	if	the	request	has	not
previously	been	made.	In	the	case	of	a	true	result,	the	app	should	display	a
dialog	containing	a	rationale	for	needing	the	permission	and,	once	the	dialog	has
been	read	and	dismissed	by	the	user,	the	permission	request	should	be	repeated.
To	add	this	functionality	to	the	example	app,	modify	the	onCreate()	method	so
that	it	reads	as	follows:

.

.

import	android.app.AlertDialog;

import	android.content.DialogInterface;

.

.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_permission_demo);

				int	permission	=	ContextCompat.checkSelfPermission(this,

												Manifest.permission.RECORD_AUDIO);

				if	(permission	!=	PackageManager.PERMISSION_GRANTED)	{

								Log.i(TAG,	"Permission	to	record	denied");

								if

(ActivityCompat.shouldShowRequestPermissionRationale(this,

																Manifest.permission.RECORD_AUDIO))	{

												AlertDialog.Builder	builder	=

																						new	AlertDialog.Builder(this);

												builder.setMessage("Permission	to	access	the

microphone	is	required	for	this	app	to	record	audio.")

																				.setTitle("Permission	required");

	

												builder.setPositiveButton("OK",

																						new	DialogInterface.OnClickListener()	{

	

																public	void	onClick(DialogInterface	dialog,	int

id)	{

																				Log.i(TAG,	"Clicked");

																				makeRequest();

																}

												});

	

												AlertDialog	dialog	=	builder.create();

												dialog.show();

								}	else	{

												makeRequest();

								}

				}

}

The	method	still	checks	whether	or	not	the	permission	has	been	granted,	but	now
also	identifies	whether	a	rationale	needs	to	be	displayed.	If	the	user	has
previously	denied	the	request,	a	dialog	is	displayed	containing	an	explanation
and	an	OK	button	on	which	a	listener	is	configured	to	call	the	makeRequest()
method	when	the	button	is	tapped.	In	the	event	that	the	permission	request	has
not	previously	been	made,	the	code	moves	directly	to	seeking	permission.

66.6	Testing	the	Permissions	App
On	the	Android	6	device	or	emulator	session	on	which	testing	is	being
performed,	launch	the	Settings	app,	select	the	Apps	option	and	scroll	to	and
select	the	PermissionDemo	app.	On	the	app	settings	screen,	tap	the	uninstall
button	to	remove	the	app	from	the	device.
Run	the	app	once	again	and,	when	the	permission	request	dialog	appears,	click
on	the	Deny	button.	Terminate	the	app,	run	it	a	second	time	and	verify	that	the
rationale	dialog	appears.	Tap	the	OK	button	and,	when	the	permission	request
dialog	appears,	tap	the	Allow	button.

Return	to	the	Settings	app,	select	the	Apps	option	and	select	the
PermissionDemo	app	once	again	from	the	list.	Once	the	settings	for	the	app	are
listed,	verify	that	the	Permissions	section	lists	the	Microphone	permission:

Figure	66-4

66.7	Summary
Prior	to	the	introduction	of	Android	6.0	the	only	step	necessary	for	an	app	to
request	permission	to	access	certain	functionality	was	to	add	an	appropriate	line
to	the	application’s	manifest	file.	The	user	would	then	be	prompted	to	approve
the	permission	at	the	point	that	the	app	was	installed.	This	is	still	the	case	for

the	permission	at	the	point	that	the	app	was	installed.	This	is	still	the	case	for
most	permissions,	with	the	exception	of	a	set	of	permissions	that	are	considered
dangerous.	Permissions	that	are	considered	dangerous	usually	have	the	potential
to	allow	an	app	to	violate	the	user’s	privacy	such	as	allowing	access	to	the
microphone,	contacts	list	or	external	storage.
As	outlined	in	this	chapter,	apps	based	on	Android	6	or	later	must	now	request
dangerous	permission	approval	from	the	user	when	the	app	launches	in	addition
to	including	the	permission	request	in	the	manifest	file.

67.	Android	Audio	Recording	and
Playback	using	MediaPlayer	and
MediaRecorder

This	chapter	will	provide	an	overview	of	the	MediaRecorder	class	and	explain
the	basics	of	how	this	class	can	be	used	to	record	audio	or	video.	The	use	of	the
MediaPlayer	class	to	play	back	audio	will	also	be	covered.	Having	covered	the
basics,	an	example	application	will	be	created	to	demonstrate	these	techniques	in
action.	In	addition	to	looking	at	audio	and	video	handling,	this	chapter	will	also
touch	on	the	subject	of	saving	files	to	the	SD	card.

67.1	Playing	Audio
In	terms	of	audio	playback,	most	implementations	of	Android	support	AAC
LC/LTP,	HE-AACv1	(AAC+),	HE-AACv2	(enhanced	AAC+),	AMR-NB,
AMR-WB,	MP3,	MIDI,	Ogg	Vorbis,	and	PCM/WAVE	formats.
Audio	playback	can	be	performed	using	either	the	MediaPlayer	or	the
AudioTrack	classes.	AudioTrack	is	a	more	advanced	option	that	uses	streaming
audio	buffers	and	provides	greater	control	over	the	audio.	The	MediaPlayer
class,	on	the	other	hand,	provides	an	easier	programming	interface	for
implementing	audio	playback	and	will	meet	the	needs	of	most	audio
requirements.
The	MediaPlayer	class	has	associated	with	it	a	range	of	methods	that	can	be
called	by	an	application	to	perform	certain	tasks.	A	subset	of	some	of	the	key
methods	of	this	class	is	as	follows:
·									create()	–	Called	to	create	a	new	instance	of	the	class,	passing	through	the

Uri	of	the	audio	to	be	played.
·									setDataSource()	–	Sets	the	source	from	which	the	audio	is	to	play.
·									prepare()	–	Instructs	the	player	to	prepare	to	begin	playback.
·									start()	–	Starts	the	playback.
·									pause()	–	Pauses	the	playback.	Playback	may	be	resumed	via	a	call	to	the
resume()	method.

·									stop()	–	Stops	playback.
·									setVolume()	–	Takes	two	floating-point	arguments	specifying	the	playback

volume	for	the	left	and	right	channels.

·									resume()	–	Resumes	a	previously	paused	playback	session.
·									reset()	–	Resets	the	state	of	the	media	player	instance.	Essentially	sets	the

instance	back	to	the	uninitialized	state.	At	a	minimum,	a	reset	player	will
need	to	have	the	data	source	set	again	and	the	prepare()	method	called.

·									release()	–	To	be	called	when	the	player	instance	is	no	longer	needed.	This
method	ensures	that	any	resources	held	by	the	player	are	released.

In	a	typical	implementation,	an	application	will	instantiate	an	instance	of	the
MediaPlayer	class,	set	the	source	of	the	audio	to	be	played	and	then	call
prepare()	followed	by	start().	For	example:

MediaPlayer	mediaPlayer	=	new	MediaPlayer();

													

mediaPlayer.setDataSource("http://www.yourcompany.com/myaudio.mp3");

mediaPlayer.prepare();

mediaPlayer.start();

67.2	Recording	Audio	and	Video	using	the	MediaRecorder	Class
As	with	audio	playback,	recording	can	be	performed	using	a	number	of	different
techniques.	One	option	is	to	use	the	MediaRecorder	class,	which,	as	with	the
MediaPlayer	class,	provides	a	number	of	methods	that	are	used	to	record	audio:
-										setAudioSource()	–	Specifies	the	source	of	the	audio	to	be	recorded

(typically	this	will	be	MediaRecorder.AudioSource.MIC	for	the	device
microphone).

-										setVideoSource()	–	Specifies	the	source	of	the	video	to	be	recorded	(for
example	MediaRecorder.VideoSource.CAMERA).

-										setOutputFormat()	–	Specifies	the	format	into	which	the	recorded	audio	or
video	is	to	be	stored	(for	example
MediaRecorder.OutputFormat.AAC_ADTS).

-										setAudioEncoder()	–	Specifies	the	audio	encoder	to	be	used	for	the	recorded
audio	(for	example	MediaRecorder.AudioEncoder.AAC).

-										setOutputFile()	–	Configures	the	path	to	the	file	into	which	the	recorded
audio	or	video	is	to	be	stored.

-										prepare()	–	Prepares	the	MediaRecorder	instance	to	begin	recording.
-										start()	-	Begins	the	recording	process.
-										stop()	–	Stops	the	recording	process.	Once	a	recorder	has	been	stopped,	it

will	need	to	be	completely	reconfigured	and	prepared	before	being	restarted.
-										reset()	–	Resets	the	recorder.	The	instance	will	need	to	be	completely

reconfigured	and	prepared	before	being	restarted.
-										release()	–	Should	be	called	when	the	recorder	instance	is	no	longer	needed.

This	method	ensures	all	resources	held	by	the	instance	are	released.
A	typical	implementation	using	this	class	will	set	the	source,	output	and
encoding	format	and	output	file.	Calls	will	then	be	made	to	the	prepare()	and
start()	methods.	The	stop()	method	will	then	be	called	when	recording	is	to	end,
followed	by	the	reset()	method.	When	the	application	no	longer	needs	the
recorder	instance,	a	call	to	the	release()	method	is	recommended:

MediaRecorder	mediaRecorder	=	new	MediaRecorder();

mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.AAC_ADTS);

mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);

mediaRecorder.setOutputFile(audioFilePath);

																					

mediaRecorder.prepare();

mediaRecorder.start();

.

.

.

mediaRecorder.stop()

mediaRecorder.reset()

mediaRecorder.release()

In	order	to	record	audio,	the	manifest	file	for	the	application	must	include	the
android.permission.RECORD_AUDIO	permission:

<uses-permission	android:name="android.permission.RECORD_AUDIO"

/>

As	outlined	in	the	chapter	entitled	Making	Runtime	Permission	Requests	in
Android	6.0,	access	to	the	microphone	falls	into	the	category	of	dangerous
permissions.	To	support	Android	6,	therefore,	a	specific	request	for	microphone
access	must	also	be	made	when	the	application	launches,	the	steps	for	which	will
be	covered	later	in	this	chapter.

67.3	About	the	Example	Project
The	remainder	of	this	chapter	will	work	through	the	creation	of	an	example
application	intended	to	demonstrate	the	use	of	the	MediaPlayer	and
MediaRecorder	classes	to	implement	the	recording	and	playback	of	audio	on	an
Android	device.
When	developing	applications	that	make	use	of	specific	hardware	features,	the
microphone	being	a	case	in	point,	it	is	important	to	check	the	availability	of	the
feature	before	attempting	to	access	it	in	the	application	code.	The	application
created	in	this	chapter	will,	therefore,	also	demonstrate	the	steps	involved	in

created	in	this	chapter	will,	therefore,	also	demonstrate	the	steps	involved	in
detecting	the	presence	of	a	microphone	on	the	device.
Once	completed,	this	application	will	provide	a	very	simple	interface	intended	to
allow	the	user	to	record	and	playback	audio.	The	recorded	audio	will	need	to	be
stored	within	an	audio	file	on	the	device.	That	being	the	case,	this	tutorial	will
also	briefly	explore	the	mechanism	for	using	SD	Card	storage.

67.4	Creating	the	AudioApp	Project
Create	a	new	project	in	Android	Studio,	entering	AudioApp	into	the	Application
name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting	before	clicking
on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	14:	Android	4.0	(IceCreamSandwich).	Continue	to
proceed	through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
AudioAppActivity	with	a	corresponding	layout	resource	file	named
activity_audio_app.

67.5	Designing	the	User	Interface
Once	the	new	project	has	been	created,	select	the	activity_audio_app.xml	file
from	the	Project	tool	window	and	with	the	Layout	Editor	tool	in	Design	mode,
select	the	“Hello	World!”	TextView	and	delete	it	from	the	layout.
Drag	and	drop	three	Button	views	onto	the	layout.	The	positioning	of	the	buttons
is	not	of	paramount	importance	to	this	example,	though	Figure	67-1	shows	a
suggested	layout.

Figure	67-1

Configure	the	buttons	to	display	string	resources	that	read	Play,	Record	and	Stop
and	give	them	view	IDs	of	playButton,	recordButton,	and	stopButton
respectively.
Select	the	Play	button	and,	within	the	Properties	panel,	configure	the	onClick
property	to	call	a	method	named	playAudio	when	selected	by	the	user.	Repeat
these	steps	to	configure	the	remaining	buttons	to	call	methods	named
recordAudio	and	stopAudio	respectively.

67.6	Checking	for	Microphone	Availability
Attempting	to	record	audio	on	a	device	without	a	microphone	will	cause	the
Android	system	to	throw	an	exception.	It	is	vital,	therefore,	that	the	code	check
for	the	presence	of	a	microphone	before	making	such	an	attempt.	There	are	a
number	of	ways	of	doing	this,	including	checking	for	the	physical	presence	of
the	device.	An	easier	approach,	and	one	that	is	more	likely	to	work	on	different
Android	devices,	is	to	ask	the	Android	system	if	it	has	a	package	installed	for	a
particular	feature.	This	involves	creating	an	instance	of	the	Android
PackageManager	class	and	then	making	a	call	to	the	object’s

hasSystemFeature()	method.	PackageManager.FEATURE_MICROPHONE	is
the	feature	of	interest	in	this	case.
For	the	purposes	of	this	example,	we	will	create	a	method	named
hasMicrophone()	that	may	be	called	upon	to	check	for	the	presence	of	a
microphone.	Within	the	Project	tool	window,	locate	and	double-click	on	the
AudioAppActivity.java	file	and	modify	it	to	add	this	method:

package	com.ebookfrenzy.audioapp;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.pm.PackageManager;

public	class	AudioAppActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_audio_app);

				}

				protected	boolean	hasMicrophone()	{

								PackageManager	pmanager	=	this.getPackageManager();

								return	pmanager.hasSystemFeature(

																PackageManager.FEATURE_MICROPHONE);

				}

}

67.7	Performing	the	Activity	Initialization
The	next	step	is	to	modify	the	onCreate()	method	of	the	activity	to	perform	a
number	of	initialization	tasks.	Remaining	within	the	AudioAppActivity.java	file,
modify	the	method	as	follows:

package	com.ebookfrenzy.audioapp;

import	java.io.IOException;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.pm.PackageManager;

import	android.media.MediaRecorder;

import	android.os.Environment;

import	android.widget.Button;

import	android.view.View;

import	android.media.MediaPlayer;

public	class	AudioAppActivity	extends	AppCompatActivity	{

							private	static	MediaRecorder	mediaRecorder;

							private	static	MediaPlayer	mediaPlayer;

	

							private	static	String	audioFilePath;

							private	static	Button	stopButton;

							private	static	Button	playButton;

							private	static	Button	recordButton;

						

							private	boolean	isRecording	=	false;

							@Override

							protected	void	onCreate(Bundle	savedInstanceState)	{

														super.onCreate(savedInstanceState);

														setContentView(R.layout.activity_audio_app);

													

														recordButton	=

																						(Button)	findViewById(R.id.recordButton);

															playButton	=	(Button)

findViewById(R.id.playButton);

														stopButton	=	(Button)

findViewById(R.id.stopButton);

						

														if	(!hasMicrophone())

														{

																						stopButton.setEnabled(false);

																						playButton.setEnabled(false);

																						recordButton.setEnabled(false);

														}	else	{

																						playButton.setEnabled(false);

																						stopButton.setEnabled(false);

														}

													

														audioFilePath	=

												

								

Environment.getExternalStorageDirectory().getAbsolutePath()

																	+	"/myaudio.3gp";

							}

.

.

}

The	added	code	begins	by	obtaining	references	to	the	three	button	views	in	the
user	interface.	Next,	the	previously	implemented	hasMicrophone()	method	is
called	to	ascertain	whether	the	device	includes	a	microphone.	If	it	does	not,	all
the	buttons	are	disabled,	otherwise	only	the	Stop	and	Play	buttons	are	disabled.
The	next	line	of	code	needs	a	little	more	explanation:

audioFilePath	=

								

Environment.getExternalStorageDirectory().getAbsolutePath()

																	+	"/myaudio.3gp";

The	purpose	of	this	code	is	to	identify	the	location	of	the	SD	card	storage	on	the
device	and	to	use	that	to	create	a	path	to	a	file	named	myaudio.3gp	into	which
the	audio	recording	will	be	stored.	The	path	of	the	SD	card	(which	is	referred	to
as	external	storage	even	though	it	is	internal	to	the	device	on	many	Android
devices)	is	obtained	via	a	call	to	the	getExternalStorageDirectory()	method	of
the	Android	Environment	class.
When	working	with	external	storage	it	is	important	to	be	aware	that	such	activity
by	an	application	requires	permission	to	be	requested	in	the	application	manifest
file.	For	example:

<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE"	/>

67.8	Implementing	the	recordAudio()	Method
When	the	user	touches	the	Record	button,	the	recordAudio()	method	will	be
called.	This	method	will	need	to	enable	and	disable	the	appropriate	buttons	and
configure	the	MediaRecorder	instance	with	information	about	the	source	of	the
audio,	the	output	format	and	encoding,	and	the	location	of	the	file	into	which	the
audio	is	to	be	stored.	Finally,	the	prepare()	and	start()	methods	of	the
MediaRecorder	object	will	need	to	be	called.	Combined,	these	requirements
result	in	the	following	method	implementation	in	the	AudioAppActivity.java	file:

public	void	recordAudio	(View	view)	throws	IOException

{

			isRecording	=	true;

			stopButton.setEnabled(true);

			playButton.setEnabled(false);

			recordButton.setEnabled(false);

									

			try	{

					mediaRecorder	=	new	MediaRecorder();

				

mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

					mediaRecorder.setOutputFormat(

										MediaRecorder.OutputFormat.THREE_GPP);

					mediaRecorder.setOutputFile(audioFilePath);

				

mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

					mediaRecorder.prepare();

			}	catch	(Exception	e)	{

										e.printStackTrace();

			}

			mediaRecorder.start();																			

}

67.9	Implementing	the	stopAudio()	Method
The	stopAudio()	method	is	responsible	for	enabling	the	Play	button,	disabling
the	Stop	button	and	then	stopping	and	resetting	the	MediaRecorder	instance.	The
code	to	achieve	this	reads	as	outlined	in	the	following	listing	and	should	be
added	to	the	AudioAppAcitivy.java	file:

public	void	stopAudio	(View	view)

{

													

							stopButton.setEnabled(false);

							playButton.setEnabled(true);

													

							if	(isRecording)

							{						

														recordButton.setEnabled(false);

														mediaRecorder.stop();

														mediaRecorder.release();

														mediaRecorder	=	null;

														isRecording	=	false;

							}	else	{

														mediaPlayer.release();

															mediaPlayer	=	null;

															recordButton.setEnabled(true);

							}

}

67.10	Implementing	the	playAudio()	method
The	playAudio()	method	will	simply	create	a	new	MediaPlayer	instance,	assign
the	audio	file	located	on	the	SD	card	as	the	data	source	and	then	prepare	and
start	the	playback:

public	void	playAudio	(View	view)	throws	IOException

{

							playButton.setEnabled(false);

							recordButton.setEnabled(false);

							stopButton.setEnabled(true);

							mediaPlayer	=	new	MediaPlayer();

							mediaPlayer.setDataSource(audioFilePath);

							mediaPlayer.prepare();

							mediaPlayer.start();

}

67.11	Configuring	and	Requesting	Permissions
Before	testing	the	application,	it	is	essential	that	the	appropriate	permissions	be
requested	within	the	manifest	file	for	the	application.	Specifically,	the
application	will	require	permission	to	record	audio	and	to	access	the	external
storage	(SD	card).	Within	the	Project	tool	window,	locate	and	double-click	on
the	AndroidManifest.xml	file	to	load	it	into	the	editor	and	modify	the	XML	to
add	the	two	permission	tags:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.audioapp"	>

				<uses-permission	android:name=

																	"android.permission.WRITE_EXTERNAL_STORAGE"	/>

				<uses-permission

android:name="android.permission.RECORD_AUDIO"	/>

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								<activity	android:name=".AudioAppActivity"

												android:label="@string/app_name"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category	android:name=

																					"android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

The	above	steps	will	be	adequate	to	ensure	that	the	user	enables	these
permissions	when	the	app	is	installed	on	devices	running	versions	of	Android
predating	Android	6.0.	Both	microphone	and	external	storage	access	are
categorized	in	Android	as	being	dangerous	permissions	because	they	give	the
app	the	potential	to	compromise	the	user’s	privacy.	In	order	for	the	example	app
to	function	on	Android	6	or	later	devices,	therefore,	code	needs	to	be	added	to
specifically	request	these	two	permissions	at	app	runtime.
Edit	the	AudioAppActivity.java	file	and	begin	by	adding	some	additional	import
directives	and	constants	to	act	as	request	identification	codes	for	the	permissions
being	requested:

package	com.ebookfrenzy.audioapp;

import	java.io.IOException;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.content.pm.PackageManager;

import	android.media.MediaRecorder;

import	android.os.Environment;

import	android.widget.Button;

import	android.view.View;

import	android.media.MediaPlayer;

import	android.widget.Toast;

import	android.support.v4.content.ContextCompat;

import	android.Manifest;

import	android.support.v4.app.ActivityCompat;

public	class	AudioAppActivity	extends	AppCompatActivity	{

				private	static	final	int	RECORD_REQUEST_CODE	=	101;

				private	static	final	int	STORAGE_REQUEST_CODE	=	102;

			

				private	static	MediaRecorder	mediaRecorder;

				private	static	MediaPlayer	mediaPlayer;

.

.

.

Next,	a	method	needs	to	be	added	to	the	class,	the	purpose	of	which	is	to	take	as

arguments	the	permission	to	be	requested	and	the	corresponding	request
identification	code.	Remaining	with	the	AudioAppActivity.java	class	file,
implement	this	method	as	follows:

protected	void	requestPermission(String	permissionType,	int

requestCode)	{

				int	permission	=	ContextCompat.checkSelfPermission(this,

																permissionType);

				if	(permission	!=	PackageManager.PERMISSION_GRANTED)	{

								ActivityCompat.requestPermissions(this,

																new	String[]{permissionType},	requestCode

);

				}

}

Using	the	steps	outlined	in	the	Making	Runtime	Permission	Requests	in	Android
6.0	chapter	of	this	book,	the	above	method	verifies	that	the	specified	permission
has	not	already	been	granted	before	making	the	request,	passing	through	the
identification	code	as	an	argument.
When	the	request	has	been	handled,	the	onRequestPermissionsResult()	method
will	be	called	on	the	activity,	passing	through	the	identification	code	and	the
results	of	the	request.	The	next	step,	therefore,	is	to	implement	this	method
within	the	AudioAppActivity.java	file	as	follows:

@Override

public	void	onRequestPermissionsResult(int	requestCode,

																								String	permissions[],	int[]

grantResults)	{

				switch	(requestCode)	{

								case	RECORD_REQUEST_CODE:	{

												if	(grantResults.length	==	0

																	||	grantResults[0]	!=

																						PackageManager.PERMISSION_GRANTED)	{

																recordButton.setEnabled(false);

																Toast.makeText(this,

																						"Record	permission	required",

																														Toast.LENGTH_LONG).show();

												}	else	{

																requestPermission(

																				

Manifest.permission.WRITE_EXTERNAL_STORAGE,

																								STORAGE_REQUEST_CODE);

												}

												return;

								}

								case	STORAGE_REQUEST_CODE:	{

												if	(grantResults.length	==	0

																				||	grantResults[0]	!=

																						PackageManager.PERMISSION_GRANTED)	{

																recordButton.setEnabled(false);

																Toast.makeText(this,

																						"External	Storage	permission	required",

																						Toast.LENGTH_LONG).show();

												}

												return;

								}

				}

}

The	above	code	checks	the	request	identifier	code	to	identify	which	permission
request	has	returned	before	checking	whether	or	not	the	corresponding
permission	was	granted.	If	the	user	grants	permission	to	access	the	microphone
the	code	then	proceeds	to	request	access	to	the	external	storage.	In	the	event	that
either	permission	was	denied,	a	message	is	displayed	to	the	user	indicating	the
app	will	not	function.	In	both	instances,	the	record	button	is	also	disabled.
All	that	remains	prior	to	testing	the	app	is	to	call	the	newly	added
requestPermission()	method	for	microphone	access	when	the	app	launches.
Remaining	in	the	AudioAppActivity.java	file,	modify	the	onCreate()	method	as
follows:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_audio_app);

				recordButton	=	(Button)	findViewById(R.id.recordButton);

				playButton	=	(Button)	findViewById(R.id.playButton);

				stopButton	=	(Button)	findViewById(R.id.stopButton);

				if	(!hasMicrophone())

				{

								stopButton.setEnabled(false);

								playButton.setEnabled(false);

								recordButton.setEnabled(false);

				}	else	{

								playButton.setEnabled(false);

								stopButton.setEnabled(false);

				}

				audioFilePath	=

															

Environment.getExternalStorageDirectory().getAbsolutePath()

																								+	"/myaudio.3gp";

				requestPermission(Manifest.permission.RECORD_AUDIO,

																																					RECORD_REQUEST_CODE);

}

67.12	Testing	the	Application
Compile	and	run	the	application	on	an	Android	device	containing	a	microphone,
allow	the	requested	permissions	and	touch	the	Record	button.	After	recording,
touch	Stop	followed	by	Play,	at	which	point	the	recorded	audio	should	play	back
through	the	device	speakers.	If	running	on	Android	6.0	or	later,	note	that	the	app
requests	permission	to	use	the	external	storage	and	to	record	audio	when	first
launched.

67.13	Summary
The	Android	SDK	provides	a	number	of	mechanisms	for	the	implementation	of
audio	recording	and	playback.	This	chapter	has	looked	at	two	of	these,	in	the
form	of	the	MediaPlayer	and	MediaRecorder	classes.	Having	covered	the	theory
of	using	these	techniques,	this	chapter	worked	through	the	creation	of	an
example	application	designed	to	record	and	then	play	back	audio.	In	the	course
of	working	with	audio	in	Android,	this	chapter	also	looked	at	the	steps	involved
in	ensuring	that	the	device	on	which	the	application	is	running	has	a	microphone
before	attempting	to	record	audio.	The	use	of	external	storage	in	the	form	of	an
SD	card	was	also	covered.

68.	Working	with	the	Google	Maps
Android	API	in	Android	Studio

When	Google	decided	to	introduce	a	map	service	many	years	ago,	it	is	hard	to
say	whether	or	not	they	ever	anticipated	having	a	version	available	for
integration	into	mobile	applications.	When	the	first	web	based	version	of	what
would	eventually	be	called	Google	Maps	was	introduced	in	2005,	the	iPhone	had
yet	to	ignite	the	smartphone	revolution	and	the	company	that	was	developing	the
Android	operating	system	would	not	be	acquired	by	Google	for	another	six
months.	Whatever	aspirations	Google	had	for	the	future	of	Google	Maps,	it	is
remarkable	to	consider	that	all	of	the	power	of	Google	Maps	can	now	be
accessed	directly	via	Android	applications	using	the	Google	Maps	Android	API.
This	chapter	is	intended	to	provide	an	overview	of	the	Google	Maps	system	and
Google	Maps	Android	API.	The	chapter	will	provide	an	overview	of	the
different	elements	that	make	up	the	API,	detail	the	steps	necessary	to	configure	a
development	environment	to	work	with	Google	Maps	and	then	work	through
some	code	examples	demonstrating	some	of	the	basics	of	Google	Maps	Android
integration.

68.1	The	Elements	of	the	Google	Maps	Android	API
The	Google	Maps	Android	API	consists	of	a	core	set	of	classes	that	combine	to
provide	mapping	capabilities	in	Android	applications.	The	key	elements	of	a
map	are	as	follows:
·									GoogleMap	–	The	main	class	of	the	Google	Maps	Android	API.	This	class	is

responsible	for	downloading	and	displaying	map	tiles	and	for	displaying	and
responding	to	map	controls.	The	GoogleMap	object	is	not	created	directly	by
the	application	but	is	instead	created	when	MapView	or	MapFragment
instances	are	created.	A	reference	to	the	GoogleMap	object	can	be	obtained
within	application	code	via	a	call	to	the	getMap()	method	of	a	MapView,
MapFragment	or	SupportMapFragment	instance.

·									MapView	-	A	subclass	of	the	View	class,	this	class	provides	the	view	canvas
onto	which	the	map	is	drawn	by	the	GoogleMap	object,	allowing	a	map	to	be
placed	in	the	user	interface	layout	of	an	activity.

·									SupportMapFragment	–	A	subclass	of	the	Fragment	class,	this	class	allows
a	map	to	be	placed	within	a	Fragment	in	an	Android	layout.

·									Marker	–	The	purpose	of	the	Marker	class	is	to	allow	locations	to	be	marked
on	a	map.	Markers	are	added	to	a	map	by	obtaining	a	reference	to	the
GoogleMap	object	associated	with	a	map	and	then	making	a	call	to	the
addMarker()	method	of	that	object	instance.	The	position	of	a	marker	is
defined	via	Longitude	and	Latitude.	Markers	can	be	configured	in	a	number
of	ways,	including	specifying	a	title,	text	and	an	icon.	Markers	may	also	be
made	to	be	“draggable”,	allowing	the	user	to	move	the	marker	to	different
positions	on	a	map.

·									Shapes	–	The	drawing	of	lines	and	shapes	on	a	map	is	achieved	through	the
use	of	the	Polyline,	Polygon	and	Circle	classes.

·									UiSettings	–	The	UiSettings	class	provides	a	level	of	control	from	within	an
application	of	which	user	interface	controls	appear	on	a	map.	Using	this	class,
for	example,	the	application	can	control	whether	or	not	the	zoom,	current
location	and	compass	controls	appear	on	a	map.	This	class	can	also	be	used	to
configure	which	touch	screen	gestures	are	recognized	by	the	map.

·									My	Location	Layer	–	When	enabled,	the	My	Location	Layer	displays	a
button	on	the	map	which,	when	selected	by	the	user,	centers	the	map	on	the
user’s	current	geographical	location.	If	the	user	is	stationary,	this	location	is
represented	on	the	map	by	a	blue	marker.	If	the	user	is	in	motion	the	location
is	represented	by	a	chevron	indicating	the	user’s	direction	of	travel.

The	best	way	to	gain	familiarity	with	the	Google	Maps	Android	API	is	to	work
through	an	example.	The	remainder	of	this	chapter	will	create	a	simple	Google
Maps	based	application	while	highlighting	the	key	areas	of	the	API.

68.2	Creating	the	Google	Maps	Project
Create	a	new	project	in	Android	Studio,	entering	MapDemo	into	the	Application
name	field	and	com.ebookfrenzy	as	the	Company	Domain	setting	before	clicking
on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	a	Google	Maps	Activity	named
MapDemoActivity	with	a	corresponding	layout	named	activity_map_demo	and	a
title	of	MapDemo.

68.3	Obtaining	Your	Developer	Signature
Before	an	application	can	make	use	of	the	Google	Maps	Android	API,	it	must
first	be	registered	within	the	Google	APIs	Console.	Before	an	application	can	be
registered,	however,	the	developer	signature	(also	referred	to	as	the	SHA-1

fingerprint)	associated	with	your	development	environment	must	be	identified.
This	is	contained	in	a	keystore	file	located	in	the	.android	subdirectory	of	your
home	directory	and	may	be	obtained	using	the	keytool	utility	provided	as	part	of
the	Java	SDK	as	outlined	below.	In	order	to	make	the	process	easier,	however,
Android	Studio	adds	some	additional	files	to	the	project	when	the	Google	Maps
Activity	option	is	selected	during	the	project	creation	process.	One	of	these	files
is	named	google_maps_api.xml	and	is	located	in	the	app	->	res	->	values	folder
of	the	project.
Contained	within	the	google_maps_api.xml	file	is	a	link	to	the	Google
Developer	console.	Copy	and	paste	this	link	into	a	browser	window.	Once
loaded,	a	page	similar	to	the	following	will	appear:

Figure	68-1

Verify	that	the	menu	is	set	to	Create	a	new	project	before	clicking	on	the
Continue	button.	Once	the	API	has	been	enabled,	click	on	the	Create	API	Key
button.	After	a	short	delay,	the	new	project	will	be	created	and	a	panel	will
appear	(Figure	68-2)	providing	the	API	key	for	the	application.

Figure	68-2

Copy	this	key,	return	to	Android	Studio	and	paste	the	API	key	into	the
YOUR_KEY_HERE	section	of	the	file:
<string	name="google_maps_key"	templateMergeStrategy="preserve"

translatable="false">YOUR_KEY_HERE</string>

68.4	Testing	the	Application
Perform	a	test	run	of	the	application	to	verify	that	the	API	key	is	correctly
configured.	Assuming	that	the	configuration	is	correct,	the	application	will	run
and	display	a	map	on	the	screen.
In	the	event	that	a	map	is	not	displayed,	check	the	following	areas:
·									If	the	application	is	running	on	an	emulator,	make	sure	that	the	emulator	is

running	a	version	of	Android	that	includes	the	Google	APIs.	The	current
operating	system	can	be	changed	for	an	AVD	configuration	by	selecting	the
Tools	->	Android	->	AVD	Manager	menu	option,	clicking	on	the	pencil	icon
in	the	Actions	column	of	the	AVD	followed	by	the	Change…	button	next	to
the	current	Android	version.	Within	the	system	image	dialog,	select	a	target
which	includes	the	Google	APIs.

·									Check	the	LogCat	output	for	any	areas	relating	to	authentication	problems
with	regard	to	the	Google	Maps	API.	This	usually	means	the	API	key	was
entered	incorrectly	or	that	the	application	package	name	does	not	match	that
specified	when	the	API	key	was	generated.

·									Verify	within	the	Google	API	Console	that	the	Google	Maps	Android	API
has	been	enabled	in	the	Services	panel.

68.5	Understanding	Geocoding	and	Reverse	Geocoding
It	is	impossible	to	talk	about	maps	and	geographical	locations	without	first

It	is	impossible	to	talk	about	maps	and	geographical	locations	without	first
covering	the	subject	of	Geocoding.	Geocoding	can	best	be	described	as	the
process	of	converting	a	textual	based	geographical	location	(such	as	a	street
address)	into	geographical	coordinates	expressed	in	terms	of	longitude	and
latitude.
Geocoding	can	be	achieved	using	the	Android	Geocoder	class.	An	instance	of
the	Geocoder	class	can,	for	example,	be	passed	a	string	representing	a	location
such	as	a	city	name,	street	address	or	airport	code.	The	Geocoder	will	attempt	to
find	a	match	for	the	location	and	return	a	list	of	Address	objects	that	potentially
match	the	location	string,	ranked	in	order	with	the	closest	match	at	position	0	in
the	list.	A	variety	of	information	can	then	be	extracted	from	the	Address	objects,
including	the	longitude	and	latitude	of	the	potential	matches.
The	following	code,	for	example,	requests	the	location	of	the	National	Air	and
Space	Museum	in	Washington,	D.C.:

import	java.io.IOException;

import	java.util.List;

import	android.location.Address;

import	android.location.Geocoder;

.

.

.

double	latitude;

double	longitude;

List<Address>	geocodeMatches	=	null;

try	{

							geocodeMatches	=

										new	Geocoder(this).getFromLocationName(

															"600	Independence	Ave	SW,	Washington,	DC	20560",

1);

				}	catch	(IOException	e)	{

							//	TODO	Auto-generated	catch	block

							e.printStackTrace();

}

if	(!geocodeMatches.isEmpty())

{

							latitude	=	geocodeMatches.get(0).getLatitude();

							longitude	=	geocodeMatches.get(0).getLongitude();

}

Note	that	the	value	of	1	is	passed	through	as	the	second	argument	to	the
getFromLocationName()	method.	This	simply	tells	the	Geocoder	to	return	only
one	result	in	the	array.	Given	the	specific	nature	of	the	address	provided,	there
should	only	be	one	potential	match.	For	more	vague	location	names,	however,	it
may	be	necessary	to	request	more	potential	matches	and	allow	the	user	to	choose
the	correct	one.
The	above	code	is	an	example	of	forward-geocoding	in	that	coordinates	are
calculated	based	on	a	text	location	description.	Reverse-geocoding,	as	the	name
suggests,	involves	the	translation	of	geographical	coordinates	into	a	human
readable	address	string.	Consider,	for	example,	the	following	code:

import	java.io.IOException;

import	java.util.List;

import	android.location.Address;

import	android.location.Geocoder;

.

.

.

List<Address>	geocodeMatches	=	null;

String	Address1;

String	Address2;

String	State;

String	Zipcode;

String	Country;

try	{

							geocodeMatches	=

									new	Geocoder(this).getFromLocation(38.8874245,

-77.0200729,	1);

}	catch	(IOException	e)	{

							//	TODO	Auto-generated	catch	block

							e.printStackTrace();

}

if	(!geocodeMatches.isEmpty())

{

							Address1	=	geocodeMatches.get(0).getAddressLine(0);

							Address2	=	geocodeMatches.get(0).getAddressLine(1);

							State	=	geocodeMatches.get(0).getAdminArea();

							Zipcode	=	geocodeMatches.get(0).getPostalCode();

							Country	=	geocodeMatches.get(0).getCountryName();

}

In	this	case	the	Geocoder	object	is	initialized	with	latitude	and	longitude	values

via	the	getFromLocation()	method.	Once	again,	only	a	single	matching	result	is
requested.	The	text	based	address	information	is	then	extracted	from	the
resulting	Address	object.
It	should	be	noted	that	the	geocoding	is	not	actually	performed	on	the	Android
device,	but	rather	on	a	server	to	which	the	device	connects	when	a	translation	is
required	and	the	results	subsequently	returned	when	the	translation	is	complete.
As	such,	geocoding	can	only	take	place	when	the	device	has	an	active	internet
connection.

68.6	Adding	a	Map	to	an	Application
The	simplest	way	to	add	a	map	to	an	application	is	to	specify	it	in	the	user
interface	layout	XML	file	for	an	activity.	The	following	example	layout	file
shows	the	SupportMapFragment	instance	added	to	the	activity_map_demo.xml
file	created	by	Android	Studio:

<fragment

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:id="@+id/map"

				tools:context=".MapDemoActivity"

			

android:name="com.google.android.gms.maps.SupportMapFragment"/>

68.7	Requesting	Current	Location	Permission
As	outlined	in	the	chapter	entitled	Making	Runtime	Permission	Requests	in
Android	6.0,	certain	permissions	are	categorized	as	being	dangerous	and	require
special	handing	for	Android	6.0	or	later.	One	such	permission	gives	applications
the	ability	to	identify	the	user’s	current	location.	By	default,	Android	Studio	has
placed	a	location	permission	request	within	the	AndroidManifest.xml.	Locate	this
file	located	under	app	->	manifests	in	the	Project	tool	window	and	locate	the
following	permission	line:

<uses-permission			

									

android:name="android.permission.ACCESS_FINE_LOCATION"	/>

This	will	ensure	that	the	app	is	given	the	opportunity	to	provide	permission	for
the	app	to	obtain	location	information	at	the	point	that	the	app	is	installed	on
older	versions	of	Android,	but	to	fully	support	Android	6.0	or	later,	the	app	must
also	specifically	request	this	permission	at	runtime.	To	achieve	this,	some	code

needs	to	be	added	to	the	MapDemoActivity.java	file.
Begin	by	adding	some	import	directives	and	a	constant	to	act	as	the	permission
request	code:

package	com.ebookfrenzy.mapdemo;

import	android.content.pm.PackageManager;

import	android.support.v4.app.FragmentActivity;

import	android.os.Bundle;

import	android.support.v4.content.ContextCompat;

import	android.support.v4.app.ActivityCompat;

import	android.Manifest;

import	android.widget.Toast;

import	android.content.pm.PackageManager;

import	com.google.android.gms.maps.CameraUpdateFactory;

import	com.google.android.gms.maps.GoogleMap;

import	com.google.android.gms.maps.OnMapReadyCallback;

import	com.google.android.gms.maps.SupportMapFragment;

import	com.google.android.gms.maps.model.LatLng;

import	com.google.android.gms.maps.model.MarkerOptions;

public	class	MapDemoActivity	extends	FragmentActivity

implements	OnMapReadyCallback	{

				private	static	final	int	LOCATION_REQUEST_CODE	=	101;

				private	GoogleMap	mMap;

.

.

}

Next,	a	method	needs	to	be	added	to	the	class	to	request	a	specified	permission
from	the	user.	Remaining	within	the	MapDemoActivity.java	class	file,
implement	this	method	as	follows:

protected	void	requestPermission(String	permissionType,

																																	int	requestCode)	{

				ActivityCompat.requestPermissions(this,

												new	String[]{permissionType},	requestCode

);

}

When	the	user	has	responded	to	the	permission	request,	the
onRequestPermissionsResult()	method	will	be	called	on	the	activity.	Remaining
in	the	MapDemoActivity.java	file,	implement	this	method	now	so	that	it	reads	as

follows:
@Override

public	void	onRequestPermissionsResult(int	requestCode,

																		String	permissions[],	int[]	grantResults)	{

				switch	(requestCode)	{

								case	LOCATION_REQUEST_CODE:	{

												if	(grantResults.length	==	0

																				||	grantResults[0]	!=

																						PackageManager.PERMISSION_GRANTED)	{

																Toast.makeText(this,

																		"Unable	to	show	location	-	permission

required",

																														Toast.LENGTH_LONG).show();

												}	else	{

																SupportMapFragment	mapFragment	=

																		(SupportMapFragment)

getSupportFragmentManager()

																								.findFragmentById(R.id.map);

																mapFragment.getMapAsync(this);

												}

								}

				}

}

If	permission	has	not	been	granted	by	the	user,	the	app	displays	a	message
indicating	that	the	current	location	cannot	be	displayed.	If,	on	the	other	hand,
permission	was	granted,	the	map	is	refreshed	to	provide	an	opportunity	for	the
location	marker	to	be	displayed.

68.8	Displaying	the	User’s	Current	Location
Once	the	appropriate	permission	has	been	granted,	the	user’s	current	location
may	be	displayed	on	the	map	by	obtaining	a	reference	to	the	GoogleMap	object
associated	with	the	displayed	map	and	calling	the	setMyLocationEnabled()
method	of	that	instance,	passing	through	a	value	of	true.
When	the	map	is	ready	to	display,	the	onMapReady()	method	of	the	activity	is
called.	This	method	will	also	be	called	when	the	map	is	refreshed	within	the
onRequestPermissionsResult()	method	above.	By	default,	Android	Studio	has
implemented	this	method	and	added	some	code	to	orient	the	map	over	Australia
with	a	marker	positioned	over	the	city	of	Sidney.	Locate	and	edit	the

onMapReady()	method	in	the	MapDemoActivty.java	file	to	remove	this	template
code	and	to	add	code	to	check	the	location	permission	has	been	granted	before
enabling	display	of	the	user’s	current	location.	If	permission	has	not	been
granted,	a	request	is	made	to	the	user	via	a	call	to	the	previously	added
requestPermission()	method:

@Override

public	void	onMapReady(GoogleMap	googleMap)	{

				mMap	=	googleMap;

				//	Add	a	marker	in	Sydney	and	move	the	camera

				LatLng	sydney	=	new	LatLng(-34,	151);

				mMap.addMarker(new

MarkerOptions().position(sydney).title("Marker	in	Sydney"));

				mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney));

				if	(mMap	!=	null)	{

								int	permission	=

ContextCompat.checkSelfPermission(this,

														Manifest.permission.ACCESS_FINE_LOCATION);

	

								if	(permission	==	PackageManager.PERMISSION_GRANTED)	{

												mMap.setMyLocationEnabled(true);

								}	else	{

																requestPermission(

																		Manifest.permission.ACCESS_FINE_LOCATION,

																								LOCATION_REQUEST_CODE);

								}

					}

}

When	the	app	is	now	run,	the	dialog	shown	in	Figure	68-3	will	appear	requesting
location	permission.	If	permission	is	granted,	a	blue	dot	will	appear	on	the	map
indicating	the	current	location	of	the	device.

Figure	68-3

68.9	Changing	the	Map	Type
The	type	of	map	displayed	can	be	modified	dynamically	by	making	a	call	to	the
setMapType()	method	of	the	corresponding	GoogleMap	object,	passing	through
one	of	the	following	values:
·									GoogleMap.MAP_TYPE_NONE	–	An	empty	grid	with	no	mapping	tiles

displayed.
·									GoogleMap.MAP_TYPE_NORMAL	–	The	standard	view	consisting	of	the

classic	road	map.
·									GoogleMap.MAP_TYPE_SATELLITE	–	Displays	the	satellite	imagery	of

the	map	region.
·									GoogleMap.MAP_TYPE_HYBRID	–	Displays	satellite	imagery	with	the

road	maps	superimposed.
·									GoogleMap.MAP_TYPE_TERRAIN	–	Displays	topographical	information

such	as	contour	lines	and	colors.
The	following	code	change	to	the	onMapReady()	method,	for	example,	switches
a	map	to	Satellite	mode:

.

.

if	(mMap	!=	null)	{

				int	permission	=	ContextCompat.checkSelfPermission(

														this,	Manifest.permission.ACCESS_FINE_LOCATION);

				if	(permission	==	PackageManager.PERMISSION_GRANTED)	{

								mMap.setMyLocationEnabled(true);

				}	else	{

							

requestPermission(Manifest.permission.ACCESS_FINE_LOCATION,

																LOCATION_REQUEST_CODE);

				}

				mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);

}

.

.

Alternatively,	the	map	type	may	be	specified	in	the	XML	layout	file	in	which	the
map	is	embedded	using	the	map:mapType	property	together	with	a	value	of
none,	normal,	hybrid,	satellite	or	terrain.	For	example:

<?xml	version="1.0"	encoding="utf-8"?>

<fragment

xmlns:android="http://schemas.android.com/apk/res/android"

										xmlns:map="http://schemas.android.com/apk/res-auto"

										android:id="@+id/map"

										android:layout_width="match_parent"

										android:layout_height="match_parent"

										map:mapType="hybrid"

									

android:name="com.google.android.gms.maps.SupportMapFragment"/>

68.10	Displaying	Map	Controls	to	the	User
The	Google	Maps	Android	API	provides	a	number	of	controls	that	may	be
optionally	displayed	to	the	user	consisting	of	zoom	in	and	out	buttons,	a	“my
location”	button	and	a	compass.
Whether	or	not	the	zoom	and	compass	controls	are	displayed	may	be	controlled
either	programmatically	or	within	the	map	element	in	XML	layout	resources.	In
order	to	configure	the	controls	programmatically,	a	reference	to	the	UiSettings
object	associated	with	the	GoogleMap	object	must	be	obtained:

import	com.google.android.gms.maps.UiSettings;

.

.

.

UiSettings	mapSettings;

mapSettings	=	mMap.getUiSettings();

The	zoom	controls	are	enabled	and	disabled	via	calls	to	the
setZoomControlsEnabled()	method	of	the	UiSettings	object.	For	example:

mapSettings.setZoomControlsEnabled(true);

Alternatively,	the	map:uiZoomControls	property	may	be	set	within	the	map
element	of	the	XML	resource	file:

map:uiZoomControls="false"

The	compass	may	be	displayed	either	via	a	call	to	the	setCompassEnabled()
method	of	the	UiSettings	instance,	or	through	XML	resources	using	the
map:uiCompass	property.	Note	the	compass	icon	only	appears	when	the	map
camera	is	tilted	or	rotated	away	from	the	default	orientation.
The	“My	Location”	button	will	only	appear	when	My	Location	mode	is	enabled
as	outlined	earlier	in	this	chapter.	The	button	may	be	prevented	from	appearing
even	when	in	this	mode	via	a	call	to	the	setMyLocationButtonEnabled()	method
of	the	UiSettings	instance.

68.11	Handling	Map	Gesture	Interaction

The	Google	Maps	Android	API	is	capable	of	responding	to	a	number	of	different
user	interactions.	These	interactions	can	be	used	to	change	the	area	of	the	map
displayed,	the	zoom	level	and	even	the	angle	of	view	(such	that	a	3D
representation	of	the	map	area	is	displayed	for	certain	cities).

68.11.1	Map	Zooming	Gestures
Support	for	gestures	relating	to	zooming	in	and	out	of	a	map	may	be	enabled	or
disabled	using	the	setZoomControlsEnabled()	method	of	the	UiSettings	object
associated	with	the	GoogleMap	instance.	For	example,	the	following	code
disables	zoom	gestures	for	our	example	map:

UiSettings	mapSettings;

mapSettings	=	map.getUiSettings();

mapSettings.setZoomGesturesEnabled(false);

The	same	result	can	be	achieved	within	an	XML	resource	file	by	setting	the
map:uiZoomGestures	property	to	true	or	false.
When	enabled,	zooming	will	occur	when	the	user	makes	pinching	gestures	on
the	screen.	Similarly,	a	double	tap	will	zoom	in	while	a	two	finger	tap	will	zoom
out.	One	finger	zooming	gestures,	on	the	other	hand,	are	performed	by	tapping
twice	but	not	releasing	the	second	tap	and	then	sliding	the	finger	up	and	down	on
the	screen	to	zoom	in	and	out	respectively.

68.11.2	Map	Scrolling/Panning	Gestures
A	scrolling,	or	panning	gesture	allows	the	user	to	move	around	the	map	by
dragging	the	map	around	the	screen	with	a	single	finger	motion.	Scrolling
gestures	may	be	enabled	within	code	via	a	call	to	the	setScrollGesturesEnabled()
method	of	the	UiSettings	instance:

UiSettings	mapSettings;

mapSettings	=	mMap.getUiSettings();	

mapSettings.setScrollGesturesEnabled(true);

Alternatively,	scrolling	on	a	map	instance	may	be	enabled	in	an	XML	resource
layout	file	using	the	map:uiScrollGestures	property.

68.11.3	Map	Tilt	Gestures
Tilt	gestures	allow	the	user	to	tilt	the	angle	of	projection	of	the	map	by	placing
two	fingers	on	the	screen	and	moving	them	up	and	down	to	adjust	the	tilt	angle.
Tilt	gestures	may	be	enabled	or	disabled	via	a	call	to	the
setTiltGesturesEnabled()	method	of	the	UiSettings	instance,	for	example:

UiSettings	mapSettings;

mapSettings	=	mMap.getUiSettings();	

mapSettings.setTiltGesturesEnabled(true);

Tilt	gestures	may	also	be	enabled	and	disabled	using	the	map:uiTiltGestures
property	in	an	XML	layout	resource	file.

68.11.4	Map	Rotation	Gestures
By	placing	two	fingers	on	the	screen	and	rotating	them	in	a	circular	motion,	the
user	may	rotate	the	orientation	of	a	map	when	map	rotation	gestures	are	enabled.
This	gesture	support	is	enabled	and	disabled	in	code	via	a	call	to	the
setRotateGesturesEnabled()	method	of	the	UiSettings	instance,	for	example:

UiSettings	mapSettings;

mapSettings	=	mMap.getUiSettings();	

mapSettings.setRotateGesturesEnabled(true);

Rotation	gestures	may	also	be	enabled	or	disabled	using	the
map:uiRotateGestures	property	in	an	XML	layout	resource	file.

68.12	Creating	Map	Markers
Markers	are	used	to	notify	the	user	of	locations	on	a	map	and	take	the	form	of
either	a	standard	or	custom	icon.	Markers	may	also	include	a	title	and	optional
text	(referred	to	as	a	snippet)	and	may	be	configured	such	that	they	can	be
dragged	to	different	locations	on	the	map	by	the	user.	When	tapped	by	the	user
an	info	window	will	appear	displaying	additional	information	about	the	marker
location.
Markers	are	represented	by	instances	of	the	Marker	class	and	are	added	to	a	map
via	a	call	to	the	addMarker()	method	of	the	corresponding	GoogleMap	object.
Passed	through	as	an	argument	to	this	method	is	a	MarkerOptions	class	instance
containing	the	various	options	required	for	the	marker	such	as	the	title	and
snippet	text.	The	location	of	a	marker	is	defined	by	specifying	latitude	and
longitude	values,	also	included	as	part	of	the	MarkerOptions	instance.	For
example,	the	following	code	adds	a	marker	including	a	title,	snippet	and	a
position	to	a	specific	location	on	the	map:

import	com.google.android.gms.maps.model.Marker;

import	com.google.android.gms.maps.model.LatLng;

import	com.google.android.gms.maps.model.MarkerOptions;

.

.

.

LatLng	MUSEUM	=	new	LatLng(38.8874245,	-77.0200729);

Marker	museum	=	mMap.addMarker(new	MarkerOptions()

																		.position(MUSEUM)

																		.title("Museum")

																		.snippet("National	Air	and	Space	Museum"));

When	executed,	the	above	code	will	mark	the	location	specified	which,	when
tapped,	will	display	an	info	window	containing	the	title	and	snippet	as	shown	in
Figure	68-4:

Figure	68-4

68.13	Controlling	the	Map	Camera
Because	Android	device	screens	are	flat	and	the	world	is	a	sphere,	the	Google
Maps	Android	API	uses	the	Mercator	projection	to	represent	the	earth	on	a	flat
surface.	The	default	view	of	the	map	is	presented	to	the	user	as	though	through	a
camera	suspended	above	the	map	and	pointing	directly	down	at	the	map.	The
Google	Maps	Android	API	allows	the	target,	zoom,	bearing	and	tilt	of	this
camera	to	be	changed	in	real-time	from	within	the	application:
·									Target	–	The	location	of	the	center	of	the	map	within	the	device	display

specified	in	terms	of	longitude	and	latitude.
·									Zoom	–	The	zoom	level	of	the	camera	specified	in	levels.	Increasing	the

zoom	level	by	1.0	doubles	the	width	of	the	amount	of	the	map	displayed.
·									Tilt	–	The	viewing	angle	of	the	camera	specified	as	a	position	on	an	arc

spanning	directly	over	the	center	of	the	viewable	map	area	measured	in
degrees	from	the	top	of	the	arc	(this	being	the	nadir	of	the	arc	where	the
camera	points	directly	down	to	the	map).

·									Bearing	–	The	orientation	of	the	map	in	degrees	measured	in	a	clockwise
direction	from	North.

Camera	changes	are	made	by	creating	an	instance	of	the	CameraUpdate	class
with	the	appropriate	settings.	CameraUpdate	instances	are	created	by	making
method	calls	to	the	CameraUpdateFactory	class.	Once	a	CameraUpdate	instance
has	been	created,	it	is	applied	to	the	map	via	a	call	to	the	moveCamera()	method
of	the	GoogleMap	instance.	To	obtain	a	smooth	animated	effect	as	the	camera
changes,	the	animateCamera()	method	may	be	called	instead	of	moveCamera().
A	summary	of	CameraUpdateFactory	methods	is	as	follows:
·									CameraUpdateFactory.zoomIn()	–	Provides	a	CameraUpdate	instance

zoomed	in	by	one	level.
·									CameraUpdateFactory.zoomOut()	-	Provides	a	CameraUpdate	instance

zoomed	out	by	one	level.
·									CameraUpdateFactory.zoomTo(float)	-	Generates	a	CameraUpdate

instance	that	changes	the	zoom	level	to	the	specified	value.
·									CameraUpdateFactory.zoomBy(float)	–	Provides	a	CameraUpdate	instance

with	a	zoom	level	increased	or	decreased	by	the	specified	amount.
·									CameraUpdateFactory.zoomBy(float,	Point)	-	Creates	a	CameraUpdate

instance	that	increases	or	decreases	the	zoom	level	by	the	specified	value.
·									CameraUpdateFactory.newLatLng(LatLng)	-	Creates	a	CameraUpdate

instance	that	changes	the	camera's	target	latitude	and	longitude.
·									CameraUpdateFactory.newLatLngZoom(LatLng,	float)		-	Generates	a

CameraUpdate	instance	that	changes	the	camera's	latitude,	longitude	and
zoom.

·									CameraUpdateFactory.newCameraPosition(CameraPosition)	-	Returns	a
CameraUpdate	instance	that	moves	the	camera	to	the	specified	position.	A
CameraPosition	instance	can	be	obtained	using	CameraPosition.Builder().

The	following	code,	for	example,	zooms	in	the	camera	by	one	level	using
animation:

mMap.animateCamera(CameraUpdateFactory.zoomIn());

The	following	code,	on	the	other	hand,	moves	the	camera	to	a	new	location	and
adjusts	the	zoom	level	to	10	without	animation:

private	static	final	LatLng	MUSEUM	=

							new	LatLng(38.8874245,	-77.0200729);

mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(MUSEUM,	10));

Finally,	the	next	code	example	uses	CameraPosition.Builder()	to	create	a
CameraPosition	object	with	changes	to	the	target,	zoom,	bearing	and	tilt.	This
change	is	then	applied	to	the	camera	using	animation:

import	com.google.android.gms.maps.model.CameraPosition;

.

.

CameraPosition	cameraPosition	=	new	CameraPosition.Builder()

				.target(MUSEUM)

				.zoom(50)

				.bearing(70)

				.tilt(25)

				.build();

map.animateCamera(CameraUpdateFactory.newCameraPosition(

																														cameraPosition));

68.14	Summary
This	chapter	has	provided	an	overview	of	the	key	classes	and	methods	that	make
up	the	Google	Maps	Android	API	and	outlined	the	steps	involved	in	preparing
both	the	development	environment	and	an	application	project	to	make	use	of	the
API.

69.	Printing	with	the	Android	Printing	Framework

With	the	introduction	of	the	Android	4.4	KitKat	release,	it	became	possible	to
print	content	from	within	Android	applications.	While	subsequent	chapters	will
explore	in	more	detail	the	options	for	adding	printing	support	to	your	own
applications,	this	chapter	will	focus	on	the	various	printing	options	now
available	in	Android	and	the	steps	involved	in	enabling	those	options.	Having
covered	these	initial	topics,	the	chapter	will	then	provide	an	overview	of	the
various	printing	features	that	are	available	to	Android	developers	in	terms	of
building	printing	support	into	applications.

69.1	The	Android	Printing	Architecture
Printing	in	Android	4.4	and	later	is	provided	by	the	Printing	framework.	In	basic
terms,	this	framework	consists	of	a	Print	Manager	and	a	number	of	print	service
plugins.	It	is	the	responsibility	of	the	Print	Manager	to	handle	the	print	requests
from	applications	on	the	device	and	to	interact	with	the	print	service	plugins	that
are	installed	on	the	device,	thereby	ensuring	that	print	requests	are	fulfilled.	By
default,	many	Android	devices	have	print	service	plugins	installed	to	enable
printing	using	the	Google	Cloud	Print	and	Google	Drive	services.	Print	Services
Plugin	for	other	printer	types,	if	not	already	installed,	may	also	be	obtained	from
the	Google	Play	store.	Print	Service	Plugins	are	currently	available	for	HP,
Epson,	Samsung	and	Canon	printers	and	plugins	from	other	printer	manufactures
will	most	likely	be	released	in	the	near	future	though	the	Google	Cloud	Print
service	plugin	can	also	be	used	to	print	from	an	Android	device	to	just	about	any
printer	type	and	model.	For	the	purposes	of	this	book,	we	will	use	the	HP	Print
Services	Plugin	as	a	reference	example.

69.2	The	Print	Service	Plugins
The	purpose	of	the	Print	Service	plugins	is	to	enable	applications	to	print	to
compatible	printers	that	are	visible	to	the	Android	device	via	a	local	area
wireless	network	or	Bluetooth.	Print	Service	plugins	are	currently	available	for	a
wide	range	of	printer	brands	including	HP,	Samsung,	Brother,	Canon,	Lexmark
and	Xerox.
The	presence	of	the	Print	Service	Plugin	on	an	Android	device	can	be	verified	by
loading	the	Google	Play	app	and	performing	a	search	for	“Print	Services
Plugin”.	Once	the	plugin	is	listed	in	the	Play	Store,	and	in	the	event	that	the
plugin	is	not	already	installed,	it	can	be	installed	by	selecting	the	Install	button.

Figure	69-1,	for	example,	shows	the	HP	Print	Service	plugin	within	Google
Play:

Figure	69-1

The	Print	Services	plugins	will	automatically	detect	compatible	HP	printers	on
the	network	to	which	the	Android	device	is	currently	connected	and	list	them	as
options	when	printing	from	an	application.

69.3	Google	Cloud	Print

Google	Cloud	Print	is	a	service	provided	by	Google	that	enables	you	to	print
content	onto	your	own	printer	over	the	web	from	anywhere	with	internet
connectivity.	Google	Cloud	Print	supports	a	wide	range	of	devices	and	printer
models	in	the	form	of	both	Cloud	Ready	and	Classic	printers.	A	Cloud	Ready
printer	has	technology	built-in	that	enables	printing	via	the	web.	Manufacturers
that	provide	cloud	ready	printers	include	Brother,	Canon,	Dell,	Epson,	HP,
Kodak	and	Samsung.	To	identify	if	your	printer	is	both	cloud	ready	and
supported	by	Google	Cloud	Print,	review	the	list	of	printers	at	the	following
URL:
https://www.google.com/cloudprint/learn/printers.html
In	the	case	of	classic,	non-Cloud	Ready	printers,	Google	Cloud	Print	provides
support	for	cloud	printing	through	the	installation	of	software	on	the	computer
system	to	which	the	classic	printer	is	connected	(either	directly	or	over	a	home
or	office	network).
To	set	up	Google	Cloud	Print,	visit	the	following	web	page	and	login	using	the
same	Google	account	ID	that	you	use	when	logging	in	to	your	Android	devices:
https://www.google.com/cloudprint/learn/index.html
Once	printers	have	been	added	to	your	Google	Cloud	Print	account,	they	will	be
listed	as	printer	destination	options	when	you	print	from	within	Android
applications	on	your	devices.

69.4	Printing	to	Google	Drive
In	addition	to	supporting	physical	printers,	it	is	also	possible	to	save	printed
output	to	your	Google	Drive	account.	When	printing	from	a	device,	select	the
Save	to	Google	Drive	option	in	the	printing	panel.	The	content	to	be	printed	will
then	be	converted	to	a	PDF	file	and	saved	to	the	Google	Drive	cloud-based
storage	associated	with	the	currently	active	Google	Account	ID	on	the	device.

69.5	Save	as	PDF
The	final	printing	option	provided	by	Android	allows	the	printed	content	to	be
saved	locally	as	a	PDF	file	on	the	Android	device.	Once	selected,	this	option	will
request	a	name	for	the	PDF	file	and	a	location	on	the	device	into	which	the
document	is	to	be	saved.
Both	the	Save	as	PDF	and	Google	Drive	options	can	be	invaluable	in	terms	of
saving	paper	when	testing	the	printing	functionality	of	your	own	Android
applications.

https://www.google.com/cloudprint/learn/printers.html
https://www.google.com/cloudprint/learn/index.html

69.6	Printing	from	Android	Devices
Google	recommends	that	applications	which	provide	the	ability	to	print	content
do	so	by	placing	the	print	option	in	the	Overflow	menu	(a	topic	covered	in	some
detail	in	the	chapter	entitled	Creating	and	Managing	Overflow	Menus	on
Android).	A	number	of	applications	bundled	with	Android	now	include
“Print…”	menu	options.	Figure	69-2,	for	example,	shows	the	Print	option	in	the
Overflow	menu	of	the	Chrome	browser	application:

Figure	69-2

Once	the	print	option	has	been	selected	from	within	an	application,	the	standard
Android	print	screen	will	appear	showing	a	preview	of	the	content	to	be	printed
as	illustrated	in	Figure	69-3:

Figure	69-3

Tapping	the	panel	along	the	top	of	the	screen	will	display	the	full	range	of
printing	options:

Figure	69-4

The	Android	print	panel	provides	the	usual	printing	options	such	as	paper	size,
color,	orientation	and	number	of	copies.	Other	print	destination	options	may	be
accessed	by	tapping	on	the	current	printer	or	PDF	output	selection.

69.7	Options	for	Building	Print	Support	into	Android	Apps
The	Printing	framework	introduced	into	the	Android	4.4	SDK	provides	a	number
of	options	for	incorporating	print	support	into	Android	applications.	These
options	can	be	categorized	as	follows:

69.7.1	Image	Printing
As	the	name	suggests,	this	option	allows	image	printing	to	be	incorporated	into
Android	applications.	When	adding	this	feature	to	an	application,	the	first	step	is
to	create	a	new	instance	of	the	PrintHelper	class:

PrintHelper	imagePrinter	=	new	PrintHelper(context);

Next,	the	scale	mode	for	the	printed	image	may	be	specified	via	a	call	to	the
setScaleMode()	method	of	the	PrintHelper	instance.	Options	are	as	follows:
·									SCALE_MODE_FIT	–	The	image	will	be	scaled	to	fit	within	the	paper	size

without	any	cropping	or	changes	to	aspect	ratio.	This	will	typically	result	in
white	space	appearing	in	one	dimension.

·									SCALE_MODE_FILL	–	The	image	will	be	scaled	to	fill	the	paper	size	with
cropping	performed	where	necessary	to	avoid	the	appearance	of	white	space
in	the	printed	output.

In	the	absence	of	a	scale	mode	setting,	the	system	will	default	to
SCALE_MODE_FILL.	The	following	code,	for	example,	sets	scale	to	fit	mode
on	the	previously	declared	PrintHelper	instance:

imagePrinter.setScaleMode(PrintHelper.SCALE_MODE_FIT);

Similarly,	the	color	mode	may	also	be	configured	to	indicate	whether	the	print
output	is	to	be	in	color	or	black	and	white.	This	is	achieved	by	passing	one	of	the
following	options	through	to	the	setColorMode()	method	of	the	PrintHelper
instance:
·									COLOR_MODE_COLOR	–	Indicates	that	the	image	is	to	be	printed	in

color.
·									COLOR_MODE_MONOCHROME	–	Indicates	that	the	image	is	to	be

printed	in	black	and	white.
The	printing	framework	will	default	to	color	printing	unless	the	monochrome
option	is	specified	as	follows:

imagePrinter.setColorMode(PrintHelper.COLOR_MODE_MONOCHROME);

All	that	is	required	to	complete	the	printing	operation	is	an	image	to	be	printed
and	a	call	to	the	printBitmap()	method	of	the	PrintHelper	instance,	passing
through	a	string	representing	the	name	to	be	assigned	to	the	print	job	and	a
reference	to	the	image	(in	the	form	of	either	a	Bitmap	object	or	a	Uri	reference	to
the	image):

Bitmap	bitmap	=	BitmapFactory.decodeResource(getResources(),

												R.drawable.oceanscene);

imagePrinter.printBitmap("My	Test	Print	Job",	bitmap);

Once	the	print	job	has	been	started,	the	Printing	framework	will	display	the	print
dialog	and	handle	both	the	subsequent	interaction	with	the	user	and	the	printing
of	the	image	on	the	user-selected	print	destination.

69.7.2	Creating	and	Printing	HTML	Content
The	Android	Printing	framework	also	provides	an	easy	way	to	print	HTML
based	content	from	within	an	application.	This	content	can	either	be	in	the	form
of	HTML	content	referenced	by	the	URL	of	a	page	hosted	on	a	web	site,	or
HTML	content	that	is	dynamically	created	within	the	application.
To	enable	HTML	printing,	the	WebView	class	has	been	extended	in	Android	4.4
to	include	support	for	printing	with	minimal	coding	requirements.

to	include	support	for	printing	with	minimal	coding	requirements.
When	dynamically	creating	HTML	content	(as	opposed	to	loading	and	printing
an	existing	web	page)	the	process	involves	the	creation	of	a	WebView	object
and	associating	with	it	a	WebViewClient	instance.	The	web	view	client	is	then
configured	to	start	a	print	job	when	the	HTML	has	finished	being	loaded	into	the
WebView.	With	the	web	view	client	configured,	the	HTML	is	then	loaded	into
the	WebView,	at	which	point	the	print	process	is	triggered.
Consider,	for	example,	the	following	code:

private	WebView	myWebView;

public	void	printContent(View	view)

{

							WebView	webView	=	new	WebView(this);

							webView.setWebViewClient(new	WebViewClient()	{

												public	boolean	shouldOverrideUrlLoading(WebView

view,

																						String	url)

												{

																			return	false;

												}

												@Override

																public	void	onPageFinished(WebView	view,	String

url)	{

																							createWebPrintJob(view);

																							myWebView	=	null;

																			}

											});

											String	htmlDocument	=

																"<html><body><h1>Android	Print	Test</h1><p>"

															+	"This	is	some	sample	content.</p></body>

</html>";

											webView.loadDataWithBaseURL(null,	htmlDocument,

																					"text/HTML",	"UTF-8",	null);

										

											myWebView	=	webView;

}

The	code	in	this	method	begins	by	declaring	a	variable	named	myWebView	in

which	will	be	stored	a	reference	to	the	WebView	instance	created	in	the	method.
Within	the	printContent()	method,	an	instance	of	the	WebView	class	is	created
to	which	a	WebViewClient	instance	is	then	assigned.
The	WebViewClient	assigned	to	the	web	view	object	is	configured	to	indicate
that	loading	of	the	HTML	content	is	to	be	handled	by	the	WebView	instance	(by
returning	false	from	the	shouldOverrideUrlLoading())	method.	More
importantly,	an	onPageFinished()	handler	method	is	declared	and	implemented
to	call	a	method	named	createWebPrintJob().	The	onPageFinished()	callback
method	will	be	called	automatically	when	all	of	the	HTML	content	has	been
loaded	into	the	web	view.	This	ensures	that	the	print	job	is	not	started	until	the
content	is	ready,	thereby	ensuring	that	all	of	the	content	is	printed.
Next,	a	string	is	created	containing	some	HTML	to	serve	as	the	content.	This	is
then	loaded	into	the	web	view.	Once	the	HTML	is	loaded,	the	onPageFinished()
method	will	trigger.	Finally,	the	method	stores	a	reference	to	the	web	view
object.	Without	this	vital	step,	there	is	a	significant	risk	that	the	Java	runtime
system	will	assume	that	the	application	no	longer	needs	the	web	view	object	and
will	discard	it	to	free	up	memory	(a	concept	referred	to	in	Java	terminology	as
garbage	collection)	resulting	in	the	print	job	terminating	prior	to	completion.
All	that	remains	in	this	example	is	to	implement	the	createWebPrintJob()
method	as	follows:

private	void	createWebPrintJob(WebView	webView)	{

							PrintManager	printManager	=	(PrintManager)	this

																			.getSystemService(Context.PRINT_SERVICE);

							PrintDocumentAdapter	printAdapter	=

																			

webView.createPrintDocumentAdapter("MyDocument");

							String	jobName	=	getString(R.string.app_name)	+	"

Document";

							PrintJob	printJob	=	printManager.print(jobName,

printAdapter,

																			new	PrintAttributes.Builder().build());

}

This	method	simply	obtains	a	reference	to	the	PrintManager	service	and	instructs
the	web	view	instance	to	create	a	print	adapter.	A	new	string	is	created	to	store
the	name	of	the	print	job	(which	in	this	is	case	based	on	the	name	of	the
application	and	the	word	“Document”).

Finally,	the	print	job	is	started	by	calling	the	print()	method	of	the	print	manager,
passing	through	the	job	name,	print	adapter	and	a	set	of	default	print	attributes.	If
required,	the	print	attributes	could	be	customized	to	specify	resolution	(dots	per
inch),	margin	and	color	options.

69.7.3	Printing	a	Web	Page
The	steps	involved	in	printing	a	web	page	are	similar	to	those	outlined	above,
with	the	exception	that	the	web	view	is	passed	the	URL	of	the	web	page	to	be
printed	in	place	of	the	dynamically	created	HTML,	for	example:

webView.loadUrl("http://developer.android.com/google/index.html");

It	is	also	important	to	note	that	the	WebViewClient	configuration	is	only
necessary	if	a	web	page	is	to	automatically	print	as	soon	as	it	has	loaded.	If	the
printing	is	to	be	initiated	by	the	user	selecting	a	menu	option	after	the	page	has
loaded,	only	the	code	in	the	createWebPrintJob()	method	outlined	above	need	be
included	in	the	application	code.	The	next	chapter,	entitled	An	Android	HTML
and	Web	Content	Printing	Example,	will	demonstrate	just	such	a	scenario.

69.7.4	Printing	a	Custom	Document
While	the	HTML	and	web	printing	features	introduced	by	the	Printing
framework	provide	an	easy	path	to	printing	content	from	within	an	Android
application,	it	is	clear	that	these	options	will	be	overly	simplistic	for	more
advanced	printing	requirements.	For	more	complex	printing	tasks,	the	Printing
framework	also	provides	custom	document	printing	support.	This	allows	content
in	the	form	of	text	and	graphics	to	be	drawn	onto	a	canvas	and	then	printed.
Unlike	HTML	and	image	printing,	which	can	be	implemented	with	relative	ease,
custom	document	printing	is	a	more	complex,	multistage	process	which	will	be
outlined	in	the	A	Guide	to	Android	Custom	Document	Printing	chapter	of	this
book.	These	steps	can	be	summarized	as	follows:
·									Connect	to	the	Android	Print	Manager
·									Create	a	Custom	Print	Adapter	subclassed	from	the	PrintDocumentAdapter

class
·									Create	a	PdfDocument	instance	to	represent	the	document	pages
·									Obtain	a	reference	to	the	pages	of	the	PdfDocument	instance,	each	of	which

has	associated	with	it	a	Canvas	instance
·									Draw	the	content	on	the	page	canvases
·									Notify	the	print	framework	that	the	document	is	ready	to	print
The	custom	print	adapter	outlined	in	the	above	steps	needs	to	implement	a

number	of	methods	which	will	be	called	upon	by	the	Android	system	to	perform
specific	tasks	during	the	printing	process.	The	most	important	of	these	are	the
onLayout()	method	which	is	responsible	for	re-arranging	the	document	layout	in
response	to	the	user	changing	settings	such	as	paper	size	or	page	orientation,	and
the	onWrite()	method	which	is	responsible	for	rendering	the	pages	to	be	printed.
This	topic	will	be	covered	in	detail	in	the	chapter	entitled	A	Guide	to	Android
Custom	Document	Printing.

69.8	Summary
The	Android	4.4	KitKat	release	introduced	the	ability	to	print	content	from
Android	devices.	Print	output	can	be	directed	to	suitably	configured	printers,	a
local	PDF	file	or	to	the	cloud	via	Google	Drive.	From	the	perspective	of	the
Android	application	developer,	these	capabilities	are	available	for	use	in
applications	by	making	use	of	the	Printing	framework.	By	far	the	easiest	printing
options	to	implement	are	those	involving	content	in	the	form	of	images	and
HTML.	More	advanced	printing	may,	however,	be	implemented	using	the
custom	document	printing	features	of	the	framework.

70.	An	Android	HTML	and	Web
Content	Printing	Example
As	outlined	in	the	previous	chapter,	entitled	Printing	with	the	Android	Printing
Framework,	the	Android	Printing	framework	can	be	used	to	print	both	web
pages	and	dynamically	created	HTML	content.	While	there	is	much	similarity	in
these	two	approaches	to	printing,	there	are	also	some	subtle	differences	that	need
to	be	taken	into	consideration.	This	chapter	will	work	through	the	creation	of
two	example	applications	in	order	to	bring	some	clarity	to	these	two	printing
options.

70.1	Creating	the	HTML	Printing	Example	Application
Begin	this	example	by	launching	the	Android	Studio	environment	and	creating	a
new	project,	entering	HTMLPrint	into	the	Application	name	field	and
ebookfrenzy.com	as	the	Company	Domain	setting	before	clicking	on	the	Next
button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	21:	Android	5.0	(Lollipop).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
HTMLPrintActivity	with	a	corresponding	layout	named	activity_html_print.

70.2	Printing	Dynamic	HTML	Content
The	first	stage	of	this	tutorial	is	to	add	code	to	the	project	to	create	some	HTML
content	and	send	it	to	the	Printing	framework	in	the	form	of	a	print	job.
Begin	by	locating	the	HTMLPrintActivity.java	file	(located	in	the	Project	tool
window	under	app	->	java	->	com.ebookfrenzy.htmlprint)	and	loading	it	into	the
editing	panel.	Once	loaded,	modify	the	code	so	that	it	reads	as	outlined	in	the
following	listing:

package	com.ebookfrenzy.htmlprint;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.webkit.WebView;

import	android.webkit.WebViewClient;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.print.PrintManager;

import	android.content.Context;

public	class	HTMLPrintActivity	extends	AppCompatActivity	{

				private	WebView	myWebView;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_html_print);

								WebView	webView	=	new	WebView(this);

								webView.setWebViewClient(new	WebViewClient()	{

	

												public	boolean	shouldOverrideUrlLoading(WebView

view,

																																				WebResourceRequest	request)

												{

																return	false;

												}

	

												@Override

												public	void	onPageFinished(WebView	view,	String

url)

												{

																createWebPrintJob(view);

																myWebView	=	null;

												}

								});

	

								String	htmlDocument	=

											"<html><body><h1>Android	Print	Test</h1><p>"

											+	"This	is	some	sample	content.</p></body></html>";

	

								webView.loadDataWithBaseURL(null,	htmlDocument,

																"text/HTML",	"UTF-8",	null);

	

								myWebView	=	webView;

				}

}

The	code	changes	begin	by	declaring	a	variable	named	myWebView	in	which
will	be	stored	a	reference	to	the	WebView	instance	used	for	the	printing
operation.	Within	the	onCreate()	method,	an	instance	of	the	WebView	class	is
created	to	which	a	WebViewClient	instance	is	then	assigned.

The	WebViewClient	assigned	to	the	web	view	object	is	configured	to	indicate
that	loading	of	the	HTML	content	is	to	be	handled	by	the	WebView	instance	(by
returning	false	from	the	shouldOverrideUrlLoading()	method).	More
importantly,	an	onPageFinished()	handler	method	is	declared	and	implemented
to	call	a	method	named	createWebPrintJob().	The	onPageFinished()	method
will	be	called	automatically	when	all	of	the	HTML	content	has	been	loaded	into
the	web	view.	As	outlined	in	the	previous	chapter,	this	step	is	necessary	when
printing	dynamically	created	HTML	content	to	ensure	that	the	print	job	is	not
started	until	the	content	has	fully	loaded	into	the	WebView.
Next,	a	String	object	is	created	containing	some	HTML	to	serve	as	the	content
and	subsequently	loaded	into	the	web	view.	Once	the	HTML	is	loaded,	the
onPageFinished()	callback	method	will	trigger.	Finally,	the	method	stores	a
reference	to	the	web	view	object	in	the	previously	declared	myWebView
variable.	Without	this	vital	step,	there	is	a	significant	risk	that	the	Java	runtime
system	will	assume	that	the	application	no	longer	needs	the	web	view	object	and
will	discard	it	to	free	up	memory	resulting	in	the	print	job	terminating	before
completion.
All	that	remains	in	this	example	is	to	implement	the	createWebPrintJob()
method	which	is	currently	configured	to	be	called	by	the	onPageFinished()
callback	method.	Remaining	within	the	HTMLPrintActivity.java	file,	therefore,
implement	this	method	so	that	it	reads	as	follows:

private	void	createWebPrintJob(WebView	webView)	{

							PrintManager	printManager	=	(PrintManager)	this

																.getSystemService(Context.PRINT_SERVICE);

							PrintDocumentAdapter	printAdapter	=

															

webView.createPrintDocumentAdapter("MyDocument");

							String	jobName	=	getString(R.string.app_name)	+	"	Print

Test";

							printManager.print(jobName,	printAdapter,

																	new	PrintAttributes.Builder().build());

}

This	method	obtains	a	reference	to	the	PrintManager	service	and	instructs	the
web	view	instance	to	create	a	print	adapter.	A	new	string	is	created	to	store	the
name	of	the	print	job	(in	this	case	based	on	the	name	of	the	application	and	the
word	“Print	Test”).

word	“Print	Test”).
Finally,	the	print	job	is	started	by	calling	the	print()	method	of	the	print	manager,
passing	through	the	job	name,	print	adapter	and	a	set	of	default	print	attributes.
Compile	and	run	the	application	on	a	device	or	emulator	running	Android	5.0	or
later.	Once	launched,	the	standard	Android	printing	page	should	appear	as
illustrated	in	Figure	70-1.

Figure	70-1

Print	to	a	physical	printer	if	you	have	one	configured,	save	to	Google	Drive	or,
alternatively,	select	the	option	to	save	to	a	PDF	file.	Once	the	print	job	has	been
initiated,	check	the	generated	output	on	your	chosen	destination.	Note	that	when
using	the	Save	to	PDF	option,	the	system	will	request	a	name	and	location	for
the	PDF	file.	The	Downloads	folder	makes	a	good	option,	the	contents	of	which
can	be	viewed	by	selecting	the	Downloads	icon	located	amongst	the	other	app
icons	on	the	device.	Figure	70-2,	for	example,	shows	the	PDF	output	generated
by	the	Save	to	PDF	option	viewed	on	an	Android	device:

Figure	70-2

70.3	Creating	the	Web	Page	Printing	Example
The	second	example	application	to	be	created	in	this	chapter	will	provide	the
user	with	an	Overflow	menu	option	to	print	the	web	page	currently	displayed

within	a	WebView	instance.	Create	a	new	project	in	Android	Studio,	entering
WebPrint	into	the	Application	name	field	and	ebookfrenzy.com	as	the	Company
Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	21:	Android	5.0	(Lollipop).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	a	Basic	Activity	(since	we	will	be
making	use	of	the	context	menu	provided	by	the	Basic	Activity	template)	named
WebPrintActivity	with	the	remaining	properties	set	to	the	default	values.

70.4	Removing	the	Floating	Action	Button
Selecting	the	Basic	Activity	template	provided	a	context	menu	and	a	floating
action	button.	Since	the	floating	action	button	is	not	required	by	the	app	it	can	be
removed	before	proceeding.	Load	the	activity_web_print.xml	layout	file	into	the
Layout	Editor,	select	the	floating	action	button	and	tap	the	keyboard	Delete	key
to	remove	the	object	from	the	layout.	Edit	the	WebPrintActivity.java	file	and
remove	the	floating	action	button	code	from	the	onCreate	method	as	follows:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_web_print);

				Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

				setSupportActionBar(toolbar);

				FloatingActionButton	fab	=

								(FloatingActionButton)	findViewById(R.id.fab);

				fab.setOnClickListener(new	View.OnClickListener()	{

								@Override

								public	void	onClick(View	view)	{

												Snackbar.make(view,	"Replace	with	your	own	action",

																		Snackbar.LENGTH_LONG)

																								.setAction("Action",	null).show();

								}

				});

}

70.5	Designing	the	User	Interface	Layout
Load	the	content_web_print.xml	layout	resource	file	into	the	Layout	Editor	tool
if	it	has	not	already	been	loaded	and,	in	Design	mode,	select	and	delete	the
“Hello	World!”	TextView	object.	From	the	Widgets	section	of	the	palette,	drag
and	drop	a	WebView	object	onto	the	center	of	the	device	screen	layout.	Using
the	Properties	tool	window,	change	the	layout_width	and	layout_height

properties	of	the	WebView	to	match_parent	so	that	it	fills	the	entire	layout
canvas	as	outlined	in	Figure	70-3:

Figure	70-3

Select	the	newly	added	WebView	instance	and	change	the	ID	of	the	view	to
myWebView.
Before	proceeding	to	the	next	step	of	this	tutorial,	an	additional	permission
needs	to	be	added	to	the	project	to	enable	the	WebView	object	to	access	the
internet	and	download	a	web	page	for	printing.	Add	this	permission	by	locating
the	AndroidManifest.xml	file	in	the	Project	tool	window	and	double-clicking	on
it	to	load	it	into	the	editing	panel.	Once	loaded,	edit	the	XML	content	to	add	the
appropriate	permission	line	as	shown	in	the	following	listing:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.webprint"	>

				<uses-permission	android:name="android.permission.INTERNET"

/>

			

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:supportsRtl="true"

								android:theme="@style/AppTheme"	>

								<activity

												android:name=".WebPrintActivity"

												android:label="@string/app_name"

												android:theme="@style/AppTheme.NoActionBar"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category	android:name=

																								"android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

70.6	Loading	the	Web	Page	into	the	WebView
Before	the	web	page	can	be	printed,	it	needs	to	be	loaded	into	the	WebView
instance.	For	the	purposes	of	this	tutorial,	this	will	be	performed	by	a	call	to	the
loadUrl()	method	of	the	WebView	instance,	which	will	be	placed	in	the
onCreate()	method	of	the	WebPrintActivity	class.	Edit	the	WebPrintActivity.java
file,	therefore,	and	modify	it	as	follows:

package	com.ebookfrenzy.webprint;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.webkit.WebView;

import	android.webkit.WebViewClient;

import	android.webkit.WebResourceRequest;

public	class	WebPrintActivity	extends	AppCompatActivity	{

				private	WebView	myWebView;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_web_print);

								Toolbar	toolbar	=	(Toolbar)	findViewById(R.id.toolbar);

								setSupportActionBar(toolbar);

								myWebView	=	(WebView)	findViewById(R.id.myWebView);

								myWebView.setWebViewClient(new	WebViewClient(){

												@Override

												public	boolean	shouldOverrideUrlLoading(

																				WebView	view,	WebResourceRequest	request)	{

																return	super.shouldOverrideUrlLoading(

																								view,	request);

												}

								});

								myWebView.getSettings().setJavaScriptEnabled(true);

								myWebView.loadUrl(

															

"https://developer.android.com/google/index.html");

				}

.

.

}

70.7	Adding	the	Print	Menu	Option
The	option	to	print	the	web	page	will	now	be	added	to	the	Overflow	menu	using
the	techniques	outlined	in	the	chapter	entitled	Creating	and	Managing	Overflow
Menus	on	Android.
The	first	requirement	is	a	string	resource	with	which	to	label	the	menu	option.
Within	the	Project	tool	window,	locate	the	app	->	res	->	values	->	strings.xml
file,	double-click	on	it	to	load	it	into	the	editor	and	modify	it	to	add	a	new	string
resource:

<resources>

				<string	name="app_name">WebPrint</string>

				<string	name="action_settings">Settings</string>

				<string	name="print_string">Print</string>

</resources>

Next,	load	the	app	->	res	->	menu	->	menu_web_print.xml	file	into	the	menu

editor,	switch	to	Text	mode	and	replace	the	Settings	menu	option	with	the	print
option:

<menu

xmlns:android="http://schemas.android.com/apk/res/android"

				xmlns:tools="http://schemas.android.com/tools"

				tools:context="com.ebookfrenzy.webprint.WebPrintActivity"	>

				<item	android:id="@+id/action_settings"

								android:title="@string/action_settings"

								android:orderInCategory="100"

								app:showAsAction="never"	/>

				<item

								android:id="@+id/action_print"

								android:orderInCategory="100"

								app:showAsAction="never"				

								android:title="@string/print_string"/>

</menu>

All	that	remains	in	terms	of	configuring	the	menu	option	is	to	modify	the
onOptionsItemSelected()	handler	method	within	the	WebPrintActivity.java	file:

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

				int	id	=	item.getItemId();

				if	(id	==	R.id.action_print)	{

								createWebPrintJob(myWebView);

								return	true;

				}

				return	super.onOptionsItemSelected(item);

}

With	the	onOptionsItemSelected()	method	implemented,	the	activity	will	call	a
method	named	createWebPrintJob()	when	the	print	menu	option	is	selected	from
the	overflow	menu.	The	implementation	of	this	method	is	identical	to	that	used
in	the	previous	HTMLPrint	project	and	may	now	be	added	to	the
WebPrintActivity.java	file	such	that	it	reads	as	follows:

package	com.ebookfrenzy.webprint;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.support.v7.widget.Toolbar;

import	android.view.Menu;

import	android.view.MenuItem;

import	android.webkit.WebView;

import	android.webkit.WebViewClient;

import	android.webkit.WebResourceRequest;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.print.PrintManager;

import	android.content.Context;

public	class	WebPrintActivity	extends	AppCompatActivity	{

				private	WebView	myWebView;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_web_print);

								myWebView	=	(WebView)	findViewById(R.id.myWebView);

								myWebView.loadUrl(

																"http://www.cnn.com");

				}

				private	void	createWebPrintJob(WebView	webView)	{

	

								PrintManager	printManager	=	(PrintManager)	this

																.getSystemService(Context.PRINT_SERVICE);

	

								PrintDocumentAdapter	printAdapter	=

															

webView.createPrintDocumentAdapter("MyDocument");

	

								String	jobName	=	getString(R.string.app_name)	+

																"	Print	Test";

	

								printManager.print(jobName,	printAdapter,

																new	PrintAttributes.Builder().build());

				}

.

.

}

With	the	code	changes	complete,	run	the	application	on	a	physical	Android
device	or	emulator	running	Android	version	5.0	or	later.	Once	successfully
launched,	the	WebView	should	be	visible	with	the	designated	web	page	loaded.
Once	the	page	has	loaded,	select	the	Print	option	from	the	Overflow	menu
(Figure	70-4)	and	use	the	resulting	print	panel	to	print	the	web	page	to	a	suitable

(Figure	70-4)	and	use	the	resulting	print	panel	to	print	the	web	page	to	a	suitable
destination.

Figure	70-4

70.8	Summary
The	Android	Printing	framework	includes	extensions	to	the	WebView	class	that
make	it	possible	to	print	HTML	based	content	from	within	an	Android
application.	This	content	can	be	in	the	form	of	HTML	created	dynamically
within	the	application	at	runtime,	or	a	pre-existing	web	page	loaded	into	a
WebView	instance.	In	the	case	of	dynamically	created	HTML,	it	is	important	to
use	a	WebViewClient	instance	to	ensure	that	printing	does	not	start	until	the
HTML	has	been	fully	loaded	into	the	WebView.

71.	A	Guide	to	Android	Custom	Document	Printing

As	we	have	seen	in	the	preceding	chapters,	the	Android	Printing	framework
makes	it	relatively	easy	to	build	printing	support	into	applications	as	long	as	the
content	is	in	the	form	of	an	image	or	HTML	markup.	More	advanced	printing
requirements	can	be	met	by	making	use	of	the	custom	document	printing	feature
of	the	Printing	framework.

71.1	An	Overview	of	Android	Custom	Document	Printing
In	simplistic	terms,	custom	document	printing	uses	canvases	to	represent	the
pages	of	the	document	to	be	printed.	The	application	draws	the	content	to	be
printed	onto	these	canvases	in	the	form	of	shapes,	colors,	text	and	images.	In
actual	fact,	the	canvases	are	represented	by	instances	of	the	Android	Canvas
class,	thereby	providing	access	to	a	rich	selection	of	drawing	options.	Once	all
the	pages	have	been	drawn,	the	document	is	then	printed.
While	this	sounds	simple	enough,	there	are	actually	a	number	of	steps	that	need
to	be	performed	to	make	this	happen,	which	can	be	summarized	as	follows:
·									Implement	a	custom	print	adapter	subclassed	from	the

PrintDocumentAdapter	class
·									Obtain	a	reference	to	the	Print	Manager	Service
·									Create	an	instance	of	the	PdfDocument	class	in	which	to	store	the	document

pages
·									Add	pages	to	the	PdfDocument	in	the	form	of	PdfDocument.Page	instances
·									Obtain	references	to	the	Canvas	objects	associated	with	the	document	pages
·									Draw	content	onto	the	canvases
·									Write	the	PDF	document	to	a	destination	output	stream	provided	by	the

Printing	framework
·									Notify	the	Printing	framework	that	the	document	is	ready	to	print
In	this	chapter,	an	overview	of	these	steps	will	be	provided,	followed	by	a
detailed	tutorial	designed	to	demonstrate	the	implementation	of	custom
document	printing	within	Android	applications.

71.1.1	Custom	Print	Adapters
The	role	of	the	print	adapter	is	to	provide	the	Printing	framework	with	the
content	to	be	printed,	and	to	ensure	that	it	is	formatted	correctly	for	the	user’s
chosen	preferences	(taking	into	consideration	factors	such	as	paper	size	and	page
orientation).

orientation).
When	printing	HTML	and	images,	much	of	this	work	is	performed	by	the	print
adapters	provided	as	part	of	the	Android	Printing	framework	and	designed	for
these	specific	printing	tasks.	When	printing	a	web	page,	for	example,	a	print
adapter	is	created	for	us	when	a	call	is	made	to	the
createPrintDocumentAdapter()	method	of	an	instance	of	the	WebView	class.
In	the	case	of	custom	document	printing,	however,	it	is	the	responsibility	of	the
application	developer	to	design	the	print	adapter	and	implement	the	code	to	draw
and	format	the	content	in	preparation	for	printing.
Custom	print	adapters	are	created	by	subclassing	the	PrintDocumentAdapter
class	and	overriding	a	set	of	callback	methods	within	that	class	which	will	be
called	by	the	Printing	framework	at	various	stages	in	the	print	process.	These
callback	methods	can	be	summarized	as	follows:
·									onStart()	–	This	method	is	called	when	the	printing	process	begins	and	is

provided	so	that	the	application	code	has	an	opportunity	to	perform	any
necessary	tasks	in	preparation	for	creating	the	print	job.	Implementation	of
this	method	within	the	PrintDocumentAdapter	subclass	is	optional.

·									onLayout()	–	This	callback	method	is	called	after	the	call	to	the	onStart()
method	and	then	again	each	time	the	user	makes	changes	to	the	print	settings
(such	as	changing	the	orientation,	paper	size	or	color	settings).	This	method
should	adapt	the	content	and	layout	where	necessary	to	accommodate	these
changes.	Once	these	changes	are	completed,	the	method	must	return	the
number	of	pages	to	be	printed.	Implementation	of	the	onLayout()	method
within	the	PrintDocumentAdapter	subclass	is	mandatory.

·									onWrite()	–	This	method	is	called	after	each	call	to	onLayout()	and	is
responsible	for	rendering	the	content	on	the	canvases	of	the	pages	to	be
printed.	Amongst	other	arguments,	this	method	is	passed	a	file	descriptor	to
which	the	resulting	PDF	document	must	be	written	once	rendering	is
complete.	A	call	is	then	made	to	the	onWriteFinished()	callback	method
passing	through	an	argument	containing	information	about	the	page	ranges	to
be	printed.	Implementation	of	the	onWrite()	method	within	the
PrintDocumentAdapter	subclass	is	mandatory.

·									onFinish()	–	An	optional	method	which,	if	implemented,	is	called	once	by
the	Printing	framework	when	the	printing	process	is	completed,	thereby
providing	the	application	the	opportunity	to	perform	any	clean-up	operations
that	may	be	necessary.

71.2	Preparing	the	Custom	Document	Printing	Project

Launch	the	Android	Studio	environment	and	create	a	new	project,	entering
CustomPrint	into	the	Application	name	field	and	ebookfrenzy.com	as	the
Company	Domain	setting	before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	21:	Android	5.0	(Lollipop).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
CustomPrintActivity	with	a	corresponding	layout	resource	file	named
activity_custom_print.
Load	the	activity_custom_print.xml	layout	file	into	the	Layout	Editor	tool	and,	in
Design	mode,	select	and	delete	the	“Hello	World!”	TextView	object.	Drag	and
drop	a	Button	view	from	the	Form	Widgets	section	of	the	palette	and	position	it
in	the	center	of	the	layout	view.	With	the	Button	view	selected,	change	the	text
property	to	“Print	Document”,	extract	the	string	to	a	new	string	resource	and
change	the	layout_width	property	to	wrap_content.	On	completion,	the	user
interface	layout	should	match	that	shown	in	Figure	71-1:

Figure	71-1

When	the	button	is	selected	within	the	application	it	will	be	required	to	call	a
method	to	initiate	the	document	printing	process.	Remaining	within	the
Properties	tool	window,	set	the	onClick	property	to	call	a	method	named
printDocument.

71.3	Creating	the	Custom	Print	Adapter
Most	of	the	work	involved	in	printing	a	custom	document	from	within	an
Android	application	involves	the	implementation	of	the	custom	print	adapter.
This	example	will	require	a	print	adapter	with	the	onLayout()	and	onWrite()
callback	methods	implemented.	Within	the	CustomPrintActivity.java	file,	add
the	template	for	this	new	class	so	that	it	reads	as	follows:

package	com.ebookfrenzy.customprint;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.CancellationSignal;

import	android.os.ParcelFileDescriptor;

import	android.print.PageRange;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.content.Context;

public	class	CustomPrintActivity	extends	AppCompatActivity	{

	

				public	class	MyPrintDocumentAdapter	extends

PrintDocumentAdapter

				{

								Context	context;

	

								public	MyPrintDocumentAdapter(Context	context)

								{

												this.context	=	context;

								}

	

								@Override

								public	void	onLayout(PrintAttributes	oldAttributes,

																													PrintAttributes	newAttributes,

																													CancellationSignal

cancellationSignal,

																													LayoutResultCallback	callback,

																													Bundle	metadata)	{

								}

	

								@Override

								public	void	onWrite(final	PageRange[]	pageRanges,

																												final	ParcelFileDescriptor

destination,

																												final	CancellationSignal

																																				cancellationSignal,

																												final	WriteResultCallback	callback)

{

								}

	

				}

.

.

}

As	the	new	class	currently	stands,	it	contains	a	constructor	method	which	will	be
called	when	a	new	instance	of	the	class	is	created.	The	constructor	takes	as	an
argument	the	context	of	the	calling	activity	which	is	then	stored	so	that	it	can	be

argument	the	context	of	the	calling	activity	which	is	then	stored	so	that	it	can	be
referenced	later	in	the	two	callback	methods.
With	the	outline	of	the	class	established,	the	next	step	is	to	begin	implementing
the	two	callback	methods,	beginning	with	onLayout().

71.4	Implementing	the	onLayout()	Callback	Method
Remaining	within	the	CustomPrintActivity.java	file,	begin	by	adding	some
import	directives	that	will	be	required	by	the	code	in	the	onLayout()	method:

package	com.ebookfrenzy.customprint;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.CancellationSignal;

import	android.os.ParcelFileDescriptor;

import	android.print.PageRange;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.content.Context;

import	android.print.PrintDocumentInfo;

import	android.print.pdf.PrintedPdfDocument;

import	android.graphics.pdf.PdfDocument;

public	class	CustomPrintActivity	extends	AppCompatActivity	{

.

.

.

}

Next,	modify	the	MyPrintDocumentAdapter	class	to	declare	variables	to	be	used
within	the	onLayout()	method:

public	class	MyPrintDocumentAdapter	extends

PrintDocumentAdapter

{

							Context	context;

							private	int	pageHeight;

							private	int	pageWidth;

							public	PdfDocument	myPdfDocument;

							public	int	totalpages	=	4;

.

.

}

													

Note	that	for	the	purposes	of	this	example,	a	four	page	document	is	going	to	be
printed.	In	more	complex	situations,	the	application	will	most	likely	need	to
dynamically	calculate	the	number	of	pages	to	be	printed	based	on	the	quantity

dynamically	calculate	the	number	of	pages	to	be	printed	based	on	the	quantity
and	layout	of	the	content	in	relation	to	the	user’s	paper	size	and	page	orientation
selections.
With	the	variables	declared,	implement	the	onLayout()	method	as	outlined	in	the
following	code	listing:

@Override

public	void	onLayout(PrintAttributes	oldAttributes,

																				PrintAttributes	newAttributes,

																				CancellationSignal	cancellationSignal,

																				LayoutResultCallback	callback,

																				Bundle	metadata)	{

							myPdfDocument	=	new	PrintedPdfDocument(context,

newAttributes);

																	

							pageHeight	=

													newAttributes.getMediaSize().getHeightMils()/1000

*	72;

							pageWidth	=

													newAttributes.getMediaSize().getWidthMils()/1000	*

72;

																	

							if	(cancellationSignal.isCanceled())	{

														callback.onLayoutCancelled();

														return;

							}

																	

							if	(totalpages	>	0)	{

										PrintDocumentInfo.Builder	builder	=	new

PrintDocumentInfo

																.Builder("print_output.pdf").setContentType(

																						PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)

																.setPageCount(totalpages);

																													

										PrintDocumentInfo	info	=	builder.build();

										callback.onLayoutFinished(info,	true);

							}	else	{

										callback.onLayoutFailed("Page	count	is	zero.");

							}

}

Clearly	this	method	is	performing	quite	a	few	tasks,	each	of	which	requires	some
detailed	explanation.
To	begin	with,	a	new	PDF	document	is	created	in	the	form	of	a	PdfDocument

class	instance.	One	of	the	arguments	passed	into	the	onLayout()	method	when	it
is	called	by	the	Printing	framework	is	an	object	of	type	PrintAttributes
containing	details	about	the	paper	size,	resolution	and	color	settings	selected	by
the	user	for	the	print	output.	These	settings	are	used	when	creating	the	PDF
document,	along	with	the	context	of	the	activity	previously	stored	for	us	by	our
constructor	method:

myPdfDocument	=	new	PrintedPdfDocument(context,	newAttributes);

The	method	then	uses	the	PrintAttributes	object	to	extract	the	height	and	width
values	for	the	document	pages.	These	dimensions	are	stored	in	the	object	in	the
form	of	thousandths	of	an	inch.	Since	the	methods	that	will	use	these	values	later
in	this	example	work	in	units	of	1/72	of	an	inch	these	numbers	are	converted
before	they	are	stored:

pageHeight	=	newAttributes.getMediaSize().getHeightMils()/1000

*	72;

pageWidth	=	newAttributes.getMediaSize().getWidthMils()/1000	*

72;

Although	this	example	does	not	make	use	of	the	user’s	color	selection,	this
property	can	be	obtained	via	a	call	to	the	getColorMode()	method	of	the
PrintAttributes	object	which	will	return	a	value	of	either
COLOR_MODE_COLOR	or	COLOR_MODE_MONOCHROME.
When	the	onLayout()	method	is	called,	it	is	passed	an	object	of	type
LayoutResultCallback.	This	object	provides	a	way	for	the	method	to
communicate	status	information	back	to	the	Printing	framework	via	a	set	of
methods.	The	onLayout()	method,	for	example,	will	be	called	in	the	event	that
the	user	cancels	the	print	process.	The	fact	that	the	process	has	been	cancelled	is
indicated	via	a	setting	within	the	CancellationSignal	argument.	In	the	event	that
a	cancellation	is	detected,	the	onLayout()	method	must	call	the
onLayoutCancelled()	method	of	the	LayoutResultCallback	object	to	notify	the
Print	framework	that	the	cancellation	request	was	received	and	that	the	layout
task	has	been	cancelled:

if	(cancellationSignal.isCanceled())	{

							callback.onLayoutCancelled();

							return;

}

When	the	layout	work	is	complete,	the	method	is	required	to	call	the
onLayoutFinished()	method	of	the	LayoutResultCallback	object,	passing	through
two	arguments.	The	first	argument	takes	the	form	of	a	PrintDocumentInfo	object

containing	information	about	the	document	to	be	printed.	This	information
consists	of	the	name	to	be	used	for	the	PDF	document,	the	type	of	content	(in
this	case	a	document	rather	than	an	image)	and	the	page	count.	The	second
argument	is	a	Boolean	value	indicating	whether	or	not	the	layout	has	changed
since	the	last	call	made	to	the	onLayout()	method:

if	(totalpages	>	0)	{

							PrintDocumentInfo.Builder	builder	=	new

PrintDocumentInfo

														.Builder("print_output.pdf")

														.setContentType(

																		PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)

														.setPageCount(totalpages);	

							

							PrintDocumentInfo	info	=	builder.build();

					

							callback.onLayoutFinished(info,	true);

}	else	{																																					

							callback.onLayoutFailed("Page	count	is	zero.");

}

In	the	event	that	the	page	count	is	zero,	the	code	reports	this	failure	to	the
Printing	framework	via	a	call	to	the	onLayoutFailed()	method	of	the
LayoutResultCallback	object.
The	call	to	the	onLayoutFinished()	method	notifies	the	Printing	framework	that
the	layout	work	is	complete,	thereby	triggering	a	call	to	the	onWrite()	method.

71.5	Implementing	the	onWrite()	Callback	Method
The	onWrite()	callback	method	is	responsible	for	rendering	the	pages	of	the
document	and	then	notifying	the	Printing	framework	that	the	document	is	ready
to	be	printed.	When	completed,	the	onWrite()	method	reads	as	follows:

package	com.ebookfrenzy.customprint;

import	java.io.FileOutputStream;

import	java.io.IOException;

	

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.CancellationSignal;

import	android.os.ParcelFileDescriptor;

import	android.print.PageRange;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.content.Context;

import	android.print.PrintDocumentInfo;

import	android.print.pdf.PrintedPdfDocument;

import	android.graphics.pdf.PdfDocument;

import	android.graphics.pdf.PdfDocument.PageInfo;

.

.

.

.

@Override

public	void	onWrite(final	PageRange[]	pageRanges,

																			final	ParcelFileDescriptor	destination,

																			final	CancellationSignal	cancellationSignal,

																			final	WriteResultCallback	callback)	{

													

							for	(int	i	=	0;	i	<	totalpages;	i++)	{

														if	(pageInRange(pageRanges,	i))

															{

																			PageInfo	newPage	=	new

PageInfo.Builder(pageWidth,

																									pageHeight,	i).create();

																					

																			PdfDocument.Page	page	=

																										myPdfDocument.startPage(newPage);

	

																			if	(cancellationSignal.isCanceled())	{

																								callback.onWriteCancelled();

																								myPdfDocument.close();

																								myPdfDocument	=	null;

																								return;

																			}

																			drawPage(page,	i);

																			myPdfDocument.finishPage(page);	

														}

							}

										

							try	{

														myPdfDocument.writeTo(new	FileOutputStream(

																										destination.getFileDescriptor()));

							}	catch	(IOException	e)	{

														callback.onWriteFailed(e.toString());

														return;

							}	finally	{

														myPdfDocument.close();

														myPdfDocument	=	null;

							}

	

							callback.onWriteFinished(pageRanges);

}

The	onWrite()	method	starts	by	looping	through	each	of	the	pages	in	the
document.	It	is	important	to	take	into	consideration,	however,	that	the	user	may
not	have	requested	that	all	of	the	pages	that	make	up	the	document	be	printed.	In
actual	fact,	the	Printing	framework	user	interface	panel	provides	the	option	to
specify	that	specific	pages,	or	ranges	of	pages	be	printed.	Figure	71-2,	for
example,	shows	the	print	panel	configured	to	print	pages	1-4,	pages	8	and	9	and
pages	11-13	of	a	document.

Figure	71-2

When	writing	the	pages	to	the	PDF	document,	the	onWrite()	method	must	take
steps	to	ensure	that	only	those	pages	specified	by	the	user	are	printed.	To	make
this	possible,	the	Printing	framework	passes	through	as	an	argument	an	array	of
PageRange	objects	indicating	the	ranges	of	pages	to	be	printed.	In	the	above
onWrite()	implementation,	a	method	named	pagesInRange()	is	called	for	each
page	to	verify	that	the	page	is	within	the	specified	ranges.	The	code	for	the
pagesInRange()	method	will	be	implemented	later	in	this	chapter.

for	(int	i	=	0;	i	<	totalpages;	i++)	{

							if	(pageInRange(pageRanges,	i))

							{

For	each	page	that	is	within	any	specified	ranges,	a	new	PdfDocument.Page
object	is	created.	When	creating	a	new	page,	the	height	and	width	values
previously	stored	by	the	onLayout()	method	are	passed	through	as	arguments	so
that	the	page	size	matches	the	print	options	selected	by	the	user:

PageInfo	newPage	=	new	PageInfo.Builder(pageWidth,

																													pageHeight,	i).create();

																					

PdfDocument.Page	page	=	myPdfDocument.startPage(newPage);

As	with	the	onLayout()	method,	the	onWrite()	method	is	required	to	respond	to

cancellation	requests.	In	this	case,	the	code	notifies	the	Printing	framework	that
the	cancellation	has	been	performed,	before	closing	and	de-referencing	the
myPdfDocument	variable:

if	(cancellationSignal.isCanceled())	{

							callback.onWriteCancelled();

							myPdfDocument.close();

							myPdfDocument	=	null;

							return;

}

As	long	as	the	print	process	has	not	been	cancelled,	the	method	then	calls	a
method	to	draw	the	content	on	the	current	page	before	calling	the	finishedPage()
method	on	the	myPdfDocument	object.

drawPage(page,	i);

myPdfDocument.finishPage(page);	

The	drawPage()	method	is	responsible	for	drawing	the	content	onto	the	page	and
will	be	implemented	once	the	onWrite()	method	is	complete.
When	the	required	number	of	pages	have	been	added	to	the	PDF	document,	the
document	is	then	written	to	the	destination	stream	using	the	file	descriptor	which
was	passed	through	as	an	argument	to	the	onWrite()	method.	If,	for	any	reason,
the	write	operation	fails,	the	method	notifies	the	framework	by	calling	the
onWriteFailed()	method	of	the	WriteResultCallback	object	(also	passed	as	an
argument	to	the	onWrite()	method).

try	{

							myPdfDocument.writeTo(new	FileOutputStream(

															destination.getFileDescriptor()));

}	catch	(IOException	e)	{

														callback.onWriteFailed(e.toString());

														return;

}	finally	{

														myPdfDocument.close();

														myPdfDocument	=	null;

}

Finally,	the	onWriteFinish()	method	of	the	WriteResultsCallback	object	is	called
to	notify	the	Printing	framework	that	the	document	is	ready	to	be	printed.

71.6	Checking	a	Page	is	in	Range
As	previously	outlined,	when	the	onWrite()	method	is	called	it	is	passed	an	array
of	PageRange	objects	indicating	the	ranges	of	pages	within	the	document	that
are	to	be	printed.	The	PageRange	class	is	designed	to	store	the	start	and	end

pages	of	a	page	range	which,	in	turn,	may	be	accessed	via	the	getStart()	and
getEnd()	methods	of	the	class.
When	the	onWrite()	method	was	implemented	in	the	previous	section,	a	call	was
made	to	a	method	named	pageInRange(),	which	takes	as	arguments	an	array	of
PageRange	objects	and	a	page	number.	The	role	of	the	pageInRange()	method	is
to	identify	whether	the	specified	page	number	is	within	the	ranges	specified	and
may	be	implemented	within	the	MyPrintDocumentAdapter	class	in	the
CustomPrintActivity.java	class	as	follows:

public	class	MyPrintDocumentAdapter	extends

PrintDocumentAdapter

{

.

.

.

							private	boolean	pageInRange(PageRange[]	pageRanges,	int

page)

							{

														for	(int	i	=	0;	i<pageRanges.length;	i++)

														{

																						if	((page	>=	pageRanges[i].getStart())	&&

																																		(page	<=

pageRanges[i].getEnd()))

																														return	true;

														}

														return	false;

							}

.

.

}

71.7	Drawing	the	Content	on	the	Page	Canvas
We	have	now	reached	the	point	where	some	code	needs	to	be	written	to	draw	the
content	on	the	pages	so	that	they	are	ready	for	printing.	The	content	that	gets
drawn	is	completely	application	specific	and	limited	only	by	what	can	be
achieved	using	the	Android	Canvas	class.	For	the	purposes	of	this	example,
however,	some	simple	text	and	graphics	will	be	drawn	on	the	canvas.
The	onWrite()	method	has	been	designed	to	call	a	method	named	drawPage()
which	takes	as	arguments	the	PdfDocument.Page	object	representing	the	current
page	and	an	integer	representing	the	page	number.	Within	the
CustomPrintActivity.java	file	this	method	should	now	be	implemented	as
follows:

package	com.ebookfrenzy.customprint;

import	java.io.FileOutputStream;

import	java.io.IOException;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.CancellationSignal;

import	android.os.ParcelFileDescriptor;

import	android.print.PageRange;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.content.Context;

import	android.print.PrintDocumentInfo;

import	android.print.pdf.PrintedPdfDocument;

import	android.graphics.pdf.PdfDocument;

import	android.graphics.pdf.PdfDocument.PageInfo;

import	android.graphics.Canvas;

import	android.graphics.Color;				

import	android.graphics.Paint;

public	class	CustomPrintActivity	extends	AppCompatActivity	{

.

.

							public	class	MyPrintDocumentAdapter	extends

																																					PrintDocumentAdapter

							{

.

.

														private	void	drawPage(PdfDocument.Page	page,

																														int	pagenumber)	{

																		Canvas	canvas	=	page.getCanvas();

	

																		pagenumber++;	//	Make	sure	page	numbers	start

at	1

																	

																		int	titleBaseLine	=	72;

																		int	leftMargin	=	54;

	

																		Paint	paint	=	new	Paint();

																		paint.setColor(Color.BLACK);

																		paint.setTextSize(40);

																		canvas.drawText(

																					"Test	Print	Document	Page	"	+	pagenumber,

																																																			leftMargin,

								

																																										titleBaseLine,

																																																			paint);

	

																		paint.setTextSize(14);

																		canvas.drawText("This	is	some	test	content	to

verify	that	custom	document	printing	works",	leftMargin,

titleBaseLine	+	35,	paint);

	

																		if	(pagenumber	%	2	==	0)

																													paint.setColor(Color.RED);

																		else

																						paint.setColor(Color.GREEN);

																	

																		PageInfo	pageInfo	=	page.getInfo();

																	

																	

																		canvas.drawCircle(pageInfo.getPageWidth()/2,

																																				

pageInfo.getPageHeight()/2,

																																					150,

																																					paint);

														}

.

.

}

Page	numbering	within	the	code	starts	at	0.	Since	documents	traditionally	start	at
page	1,	the	method	begins	by	incrementing	the	stored	page	number.	A	reference
to	the	Canvas	object	associated	with	the	page	is	then	obtained	and	some	margin
and	baseline	values	declared:

Canvas	canvas	=	page.getCanvas();

pagenumber++;

int	titleBaseLine	=	72;

int	leftMargin	=	54;

Next,	the	code	creates	Paint	and	Color	objects	to	be	used	for	drawing,	sets	a	text
size	and	draws	the	page	title	text,	including	the	current	page	number:

Paint	paint	=	new	Paint();

paint.setColor(Color.BLACK);

paint.setTextSize(40);

canvas.drawText("Test	Print	Document	Page	"	+	pagenumber,

																																														leftMargin,

																																														titleBaseLine,

																																														paint);

The	text	size	is	then	reduced	and	some	body	text	drawn	beneath	the	title:
paint.setTextSize(14);

canvas.drawText("This	is	some	test	content	to	verify	that

custom	document	printing	works",	leftMargin,	titleBaseLine	+

35,	paint);

The	last	task	performed	by	this	method	involves	drawing	a	circle	(red	on	even
numbered	pages	and	green	on	odd).	Having	ascertained	whether	the	page	is	odd
or	even,	the	method	obtains	the	height	and	width	of	the	page	before	using	this
information	to	position	the	circle	in	the	center	of	the	page:

if	(pagenumber	%	2	==	0)

							paint.setColor(Color.RED);

else

							paint.setColor(Color.GREEN);

																	

PageInfo	pageInfo	=	page.getInfo();

canvas.drawCircle(pageInfo.getPageWidth()/2,

																		pageInfo.getPageHeight()/2,

																		150,	paint);

Having	drawn	on	the	canvas,	the	method	returns	control	to	the	onWrite()
method.
With	the	completion	of	the	drawPage()	method,	the	MyPrintDocumentAdapter
class	is	now	finished.

71.8	Starting	the	Print	Job
When	the	“Print	Document”	button	is	touched	by	the	user,	the	printDocument()
onClick	event	handler	method	will	be	called.	All	that	now	remains	before	testing
can	commence,	therefore,	is	to	add	this	method	to	the	CustomPrintActivity.java
file,	taking	particular	care	to	ensure	that	it	is	placed	outside	of	the
MyPrintDocumentAdapter	class:

package	com.ebookfrenzy.customprint;

import	java.io.FileOutputStream;

import	java.io.IOException;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.os.CancellationSignal;

import	android.os.ParcelFileDescriptor;

import	android.print.PageRange;

import	android.print.PrintAttributes;

import	android.print.PrintDocumentAdapter;

import	android.content.Context;

import	android.print.PrintDocumentInfo;

import	android.print.pdf.PrintedPdfDocument;

import	android.graphics.pdf.PdfDocument;

import	android.graphics.pdf.PdfDocument.PageInfo;

import	android.graphics.Canvas;

import	android.graphics.Color;

import	android.graphics.Paint;

import	android.print.PrintManager;

import	android.view.View;				

public	class	CustomPrintActivity	extends	AppCompatActivity	{

							public	void	printDocument(View	view)

							{

											PrintManager	printManager	=	(PrintManager)	this

																			.getSystemService(Context.PRINT_SERVICE);

	

											String	jobName	=	this.getString(R.string.app_name)	+

																								"	Document";

	

											printManager.print(jobName,	new

																				MyPrintDocumentAdapter(this),

																				null);

							}

.

.

.

}

This	method	obtains	a	reference	to	the	Print	Manager	service	running	on	the
device	before	creating	a	new	String	object	to	serve	as	the	job	name	for	the	print
task.	Finally	the	print()	method	of	the	Print	Manager	is	called	to	start	the	print
job,	passing	through	the	job	name	and	an	instance	of	our	custom	print	document
adapter	class.

71.9	Testing	the	Application
Compile	and	run	the	application	on	an	Android	device	or	emulator	that	is
running	Android	4.4	or	later.	When	the	application	has	loaded,	touch	the	“Print

running	Android	4.4	or	later.	When	the	application	has	loaded,	touch	the	“Print
Document”	button	to	initiate	the	print	job	and	select	a	suitable	target	for	the
output	(the	Save	to	PDF	option	is	a	useful	option	for	avoiding	wasting	paper	and
printer	ink).
Check	the	printed	output	which	should	consist	of	4	pages	including	text	and
graphics.	Figure	71-3,	for	example,	shows	the	four	pages	of	the	document
viewed	as	a	PDF	file	ready	to	be	saved	on	the	device.
Experiment	with	other	print	configuration	options	such	as	changing	the	paper
size,	orientation	and	pages	settings	within	the	print	panel.	Each	setting	change
should	be	reflected	in	the	printed	output,	indicating	that	the	custom	print
document	adapter	is	functioning	correctly.

Figure	71-3

71.10	Summary
Although	more	complex	to	implement	than	the	Android	Printing	framework
HTML	and	image	printing	options,	custom	document	printing	provides
considerable	flexibility	in	terms	of	printing	complex	content	from	within	an

considerable	flexibility	in	terms	of	printing	complex	content	from	within	an
Android	application.	The	majority	of	the	work	involved	in	implementing	custom
document	printing	involves	the	creation	of	a	custom	Print	Adapter	class	such
that	it	not	only	draws	the	content	on	the	document	pages,	but	also	responds
correctly	as	changes	are	made	by	the	user	to	print	settings	such	as	the	page	size
and	range	of	pages	to	be	printed.

72.	An	Android	Fingerprint	Authentication	Tutorial

Fingerprint	authentication	uses	the	touch	sensor	built	into	many	Android	devices
to	identify	the	user	and	provide	access	to	both	the	device	and	application
functionality	such	as	in-app	payment	options.	The	implementation	of	fingerprint
authentication	is	a	multistep	process	which	can,	at	first,	seem	overwhelming.
When	broken	down	into	individual	steps,	however,	the	process	becomes	much
less	complex.	In	basic	terms,	fingerprint	authentication	is	primarily	a	matter	of
encryption	involving	a	key,	a	cipher	to	perform	the	encryption	and	a	fingerprint
manager	to	handle	the	authentication	process.
This	chapter	provides	both	an	overview	of	fingerprint	authentication	and	a
detailed,	step	by	step	tutorial	that	demonstrates	a	practical	approach	to
implementation.

72.1	An	Overview	of	Fingerprint	Authentication
There	are	essentially	10	steps	to	implementing	fingerprint	authentication	within
an	Android	app.	These	steps	can	be	summarized	as	follows:
1.							Request	fingerprint	authentication	permission	within	the	project	Manifest

file.
2.							Verify	that	the	lock	screen	of	the	device	on	which	the	app	is	running	is

protected	by	a	PIN,	pattern	or	password	(fingerprints	can	only	be	registered
on	devices	on	which	the	lock	screen	has	been	secured).

3.							Verify	that	at	least	one	fingerprint	has	been	registered	on	the	device.
4.							Create	an	instance	of	the	FingerprintManager	class.
5.							Use	a	Keystore	instance	to	gain	access	to	the	Android	Keystore	container.

This	is	a	storage	area	used	for	the	secure	storage	of	cryptographic	keys	on
Android	devices.

6.							Generate	an	encryption	key	using	the	KeyGenerator	class	and	store	it	in	the
Keystore	container.

7.							Initialize	an	instance	of	the	Cipher	class	using	the	key	generated	in	step	5.
8.							Use	the	Cipher	instance	to	create	a	CryptoObject	and	assign	it	to	the

FingerprintManager	instance	created	in	step	4.
9.							Call	the	authenticate	method	of	the	FingerprintManager	instance.
10.			Implement	methods	to	handle	the	callbacks	triggered	by	the	authentication

process.	Provide	access	to	the	protected	content	or	functionality	on
completion	of	a	successful	authentication.		

Each	of	the	above	steps	will	be	covered	in	greater	detail	throughout	the	tutorial

Each	of	the	above	steps	will	be	covered	in	greater	detail	throughout	the	tutorial
outlined	in	the	remainder	of	this	chapter.

72.2	Creating	the	Fingerprint	Authentication	Project
Begin	this	example	by	launching	the	Android	Studio	environment	and	creating	a
new	project,	entering	FingerprintDemo	into	the	Application	name	field	and
ebookfrenzy.com	as	the	Company	Domain	setting	before	clicking	on	the	Next
button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	23:	Android	6.0	(Marshmallow).	Continue
through	the	setup	screens,	requesting	the	creation	of	an	Empty	Activity	named
FingerprintDemoActivity	with	a	corresponding	layout	named
activity_fingerprint_demo.

72.3	Configuring	Device	Fingerprint	Authentication
Fingerprint	authentication	is	only	available	on	devices	containing	a	touch	sensor
and	on	which	the	appropriate	configuration	steps	have	been	taken	to	secure	the
device	and	enroll	at	least	one	fingerprint.	For	steps	on	configuring	an	emulator
session	to	test	fingerprint	authentication,	refer	to	the	chapter	entitled	Using	and
Configuring	the	Android	Studio	AVD	Emulator.
To	configure	fingerprint	authentication	on	a	physical	device	begin	by	opening
the	Settings	app	and	selecting	the	Security	option.	Within	the	Security	settings
screen,	select	the	Fingerprint	option.	On	the	resulting	information	screen	click
on	the	Continue	button	to	proceed	to	the	Fingerprint	setup	screen.	Before
fingerprint	security	can	be	enabled	a	backup	screen	unlocking	method	(such	as	a
PIN	number)	must	be	configured.	Click	on	the	Set	Up	Screen	Lock	button	if	the
lock	screen	is	not	already	secured	and	follow	the	steps	to	configure	either	PIN,
pattern	or	password	security.
With	the	lock	screen	secured,	proceed	to	the	fingerprint	detection	screen	and
touch	the	sensor	when	prompted	to	do	so	(Figure	72-1),	repeating	the	process	to
add	additional	fingerprints	if	required.

Figure	72-1

72.4	Adding	the	Fingerprint	Permission	to	the	Manifest	File
Fingerprint	authentication	requires	that	the	app	request	the	USE_FINGERPRINT
permission	within	the	project	manifest	file.	Within	the	Android	Studio	Project
tool	window	locate	and	edit	the	app	->	manifests	->	AndroidManifest.xml	file	to
add	the	permission	request	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.fingerprintdemo1">

				<uses-permission

								android:name="android.permission.USE_FINGERPRINT"	/>

.

.

.

72.5	Adding	the	Fingerprint	Icon
Google	provides	a	standard	icon	(Figure	72-2)	which	should	be	displayed
whenever	an	app	requests	authentication	from	a	user.

Figure	72-2

A	copy	of	this	icon	is	included	in	the	project_icons	folder	of	the	sample	code
download	available	from	the	following	URL:
http://www.ebookfrenzy.com/retail/androidstudio23/index.php
Open	the	filesystem	navigator	for	your	operating	system,	select	the	image	file
and	press	Ctrl-C	(Cmd-C	on	Mac	OS	X)	to	copy	the	file.	Return	to	Android
Studio,	right-click	on	the	app	->	res	->	drawable	folder	and	select	the	Paste
menu	option	to	add	a	copy	of	the	image	file	to	the	project.	When	the	Copy
dialog	appears,	click	on	the	OK	button	to	use	the	default	settings.

72.6	Designing	the	User	Interface
In	the	interests	of	keeping	the	example	as	simple	as	possible,	the	only	elements
within	the	user	interface	will	be	a	TextView	and	an	ImageView.	Locate	and
select	the	activity_fingerprint_demo.xml	layout	resource	file	to	load	it	into	the
Layout	Editor	tool.
Once	built,	delete	the	sample	TextView	object,	drag	and	drop	an	ImageView
object	from	the	Images	category	of	the	palette	and	position	it	in	the	center	of	the
layout	canvas.
After	the	ImageView	widget	has	been	placed	within	the	layout,	the	Resources
dialog	will	appear.	From	the	left-hand	panel	of	the	dialog	select	the	Drawable
option.	Within	the	main	panel,	enter	ic_fp	into	the	search	box	as	illustrated	in
Figure	72-3	to	locate	the	fingerprint	icon.	Select	the	icon	from	the	dialog	and
click	on	OK	to	assign	it	to	the	ImageView	object.	Resize	the	ImageView
instance	if	necessary.

http://www.ebookfrenzy.com/retail/androidstudio23/index.php

Figure	72-3

Locate	the	TextView	widget	from	the	palette	and	drag	and	drop	it	so	that	it	is
positioned	in	the	horizontal	center	of	the	layout	and	beneath	the	bottom	edge	of
the	ImageView	object.	Using	the	Properties	tool	window,	set	the	layout_width
and	layout_height	properties	to	wrap_content,	change	the	text	property	to
“Touch	Sensor”	and	increase	the	font	size	to	24sp.	Finally,	extract	the	string	to	a
resource	named	touch_sensor.
On	completion	of	the	above	steps	the	layout	should	match	that	shown	in	Figure
72-4:

Figure	72-4

72.7	Accessing	the	Keyguard	and	Fingerprint	Manager	Services
Fingerprint	authentication	makes	use	of	two	system	services	in	the	form	of	the
KeyguardManager	and	the	FingerprintManager.	Edit	the	onCreate	method
located	in	the	FingerprintDemoActivity.java	file	to	obtain	references	to	these
two	services	as	follows:

package	com.ebookfrenzy.fingerprintdemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.KeyguardManager;

import	android.hardware.fingerprint.FingerprintManager;

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_fingerprint_demo);

								keyguardManager	=

											(KeyguardManager)

getSystemService(KEYGUARD_SERVICE);

								fingerprintManager	=

											(FingerprintManager)

getSystemService(FINGERPRINT_SERVICE);

				}

}

72.8	Checking	the	Security	Settings
Earlier	in	this	chapter	steps	were	taken	to	configure	the	lock	screen	and	register
fingerprints	on	the	device	or	emulator	on	which	the	app	is	going	to	be	tested.	It
is	important,	however,	to	include	defensive	code	in	the	app	to	make	sure	that
these	requirements	have	been	met	before	attempting	to	seek	fingerprint
authentication.	These	steps	will	be	performed	within	the	onCreate	method
residing	in	the	FingerprintDemoActivity.java	file,	making	use	of	the	Keyguard
and	Fingerprint	manager	services.	Note	that	code	has	also	been	added	to	verify
that	the	USE_FINGERPRINT	permission	has	been	configured	for	the	app:

package	com.ebookfrenzy.fingerprintdemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.KeyguardManager;

import	android.hardware.fingerprint.FingerprintManager;

import	android.widget.Toast;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.app.ActivityCompat;

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_fingerprint_demo);

								keyguardManager	=

										(KeyguardManager)	getSystemService(KEYGUARD_SERVICE);

								fingerprintManager	=

										(FingerprintManager)

getSystemService(FINGERPRINT_SERVICE);

								if	(!keyguardManager.isKeyguardSecure())	{

	

												Toast.makeText(this,

																				"Lock	screen	security	not	enabled	in

Settings",

																				Toast.LENGTH_LONG).show();

												return;

								}

	

								if	(ActivityCompat.checkSelfPermission(this,

																							Manifest.permission.USE_FINGERPRINT)	!=

																													

PackageManager.PERMISSION_GRANTED)	{

												Toast.makeText(this,

																	"Fingerprint	authentication	permission	not

enabled",

																	Toast.LENGTH_LONG).show();

	

												return;

								}

	

								if	(!fingerprintManager.hasEnrolledFingerprints())	{

	

												//	This	happens	when	no	fingerprints	are

registered.

												Toast.makeText(this,

																				"Register	at	least	one	fingerprint	in

Settings",

																				Toast.LENGTH_LONG).show();

												return;

								}

				}

.

.

.

}

The	above	code	changes	begin	by	using	the	Keyguard	manager	to	verify	that	a
backup	screen	unlocking	method	has	been	configured	(in	other	words	a	PIN	or
other	authentication	method	can	be	used	as	an	alternative	to	fingerprint
authentication	to	unlock	the	screen).	In	the	event	that	the	lock	screen	is	not
secured	the	code	reports	the	problem	to	the	user	and	returns	from	the	method.
The	fingerprint	manager	is	then	used	to	verify	that	at	least	one	fingerprint	has

The	fingerprint	manager	is	then	used	to	verify	that	at	least	one	fingerprint	has
been	registered	on	the	device,	once	again	reporting	the	problem	and	returning
from	the	method	if	necessary.

72.9	Accessing	the	Android	Keystore	and	KeyGenerator
Part	of	the	fingerprint	authentication	process	involves	the	generation	of	an
encryption	key	which	is	then	stored	securely	on	the	device	using	the	Android
Keystore	system.	Before	the	key	can	be	generated	and	stored,	the	app	must	first
gain	access	to	the	Keystore.	A	new	method	named	generateKey	will	now	be
implemented	within	the	FingerprintDemoActivity.java	file	to	perform	the	key
generation	and	storage	tasks.	Initially,	only	the	code	to	access	the	Keystore	will
be	added	as	follows:

package	com.ebookfrenzy.fingerprintdemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.KeyguardManager;

import	android.hardware.fingerprint.FingerprintManager;

import	android.widget.Toast;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.app.ActivityCompat;

import	java.security.KeyStore;

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				private	KeyStore	keyStore;

.

.

.

				protected	void	generateKey()	{

								try	{

												keyStore	=	KeyStore.getInstance("AndroidKeyStore");

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}

				}

}

A	reference	to	the	Keystore	is	obtained	by	calling	the	getInstance	method	of	the

Keystore	class	and	passing	through	the	identifier	of	the	standard	Android
keystore	container	(“AndroidKeyStore”).	The	next	step	in	the	tutorial	will	be	to
generate	a	key	using	the	KeyGenerator	service.	Before	generating	this	key,	code
needs	to	be	added	to	obtain	a	reference	to	an	instance	of	the	KeyGenerator,
passing	through	as	arguments	the	type	of	key	to	be	generated	and	the	name	of
the	Keystore	container	into	which	the	key	is	to	be	saved:

package	com.ebookfrenzy.fingerprintdemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.KeyguardManager;

import	android.hardware.fingerprint.FingerprintManager;

import	android.widget.Toast;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.app.ActivityCompat;

import	android.security.keystore.KeyProperties;

import	java.security.KeyStore;

import	java.security.NoSuchAlgorithmException;

import	java.security.NoSuchProviderException;

	

import	javax.crypto.KeyGenerator;

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				private	KeyStore	keyStore;

				private	KeyGenerator	keyGenerator;

				protected	void	generateKey()	{

								try	{

												keyStore	=	KeyStore.getInstance("AndroidKeyStore");

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}

								try	{

												keyGenerator	=	KeyGenerator.getInstance(

																														KeyProperties.KEY_ALGORITHM_AES,

																														"AndroidKeyStore");

								}	catch	(NoSuchAlgorithmException	|

																														NoSuchProviderException	e)	{

												throw	new	RuntimeException(

																						"Failed	to	get	KeyGenerator	instance",

e);

								}

				}

.

.

}

72.10	Generating	the	Key
Now	that	we	have	a	reference	to	the	Android	Keystore	container	and	a
KeyGenerator	instance,	the	next	step	is	to	generate	the	key	that	will	be	used	to
create	a	cipher	for	the	encryption	process.	Remaining	within	the
FingerprintDemoActivity.java	file,	add	this	new	code	as	follows:

package	com.ebookfrenzy.fingerprintdemo;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.KeyguardManager;

import	android.hardware.fingerprint.FingerprintManager;

import	android.widget.Toast;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.app.ActivityCompat;

import	android.security.keystore.KeyProperties;

import	android.security.keystore.KeyGenParameterSpec;

import	java.security.KeyStore;

import	java.security.InvalidAlgorithmParameterException;

import	java.security.NoSuchAlgorithmException;

import	java.security.cert.CertificateException;

import	java.security.InvalidAlgorithmParameterException;

import	java.io.IOException;

import	javax.crypto.KeyGenerator;

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	static	final	String	KEY_NAME	=	"example_key";

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				private	KeyStore	keyStore;

				private	KeyGenerator	keyGenerator;

.

.

.

				protected	void	generateKey()	{

								try	{

												keyStore	=	KeyStore.getInstance("AndroidKeyStore");

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}

								try	{

												keyGenerator	=	KeyGenerator.getInstance(

																														KeyProperties.KEY_ALGORITHM_AES,

																														"AndroidKeyStore");

								}	catch	(NoSuchAlgorithmException	|

																														NoSuchProviderException	e)	{

												throw	new	RuntimeException(

																						"Failed	to	get	KeyGenerator	instance",

e);

								}

								try	{

												keyStore.load(null);

												keyGenerator.init(new		

															KeyGenParameterSpec.Builder(KEY_NAME,

																				KeyProperties.PURPOSE_ENCRYPT	|

																				KeyProperties.PURPOSE_DECRYPT)

																			

.setBlockModes(KeyProperties.BLOCK_MODE_CBC)

																				.setUserAuthenticationRequired(true)

																				.setEncryptionPaddings(

																								

KeyProperties.ENCRYPTION_PADDING_PKCS7)

																												.build());

												keyGenerator.generateKey();

								}	catch	(NoSuchAlgorithmException	|

																		InvalidAlgorithmParameterException

																|	CertificateException	|	IOException	e)	{

												throw	new	RuntimeException(e);

								}

				}

.

.

}

The	above	changes	require	some	explanation.	After	importing	a	number	of
additional	modules	the	code	declares	a	string	variable	representing	the	name	(in

additional	modules	the	code	declares	a	string	variable	representing	the	name	(in
this	case	“example_key”)	that	will	be	used	when	storing	the	key	in	the	Keystore
container.
Next,	the	keystore	container	is	loaded	and	the	KeyGenerator	initialized.	This
initialization	process	makes	use	of	the	KeyGenParameterSpec.Builder	class	to
specify	the	type	of	key	being	generated.	This	includes	referencing	the	key	name,
configuring	the	key	such	that	it	can	be	used	for	both	encryption	and	decryption,
and	setting	various	encryption	parameters.	The	setUserAuthenticationRequired
method	call	configures	the	key	such	that	the	user	is	required	to	authorize	every
use	of	the	key	with	a	fingerprint	authentication.	Once	the	KeyGenerator	has	been
configured,	it	is	then	used	to	generate	the	key	via	a	call	to	the	generateKey
method	of	the	instance.

72.11	Initializing	the	Cipher
Now	that	the	key	has	been	generated	the	next	step	is	to	initialize	the	cipher	that
will	be	used	to	create	the	encrypted	FingerprintManager.CryptoObject	instance.
This	CryptoObject	will,	in	turn,	be	used	during	the	fingerprint	authentication
process.	Cipher	configuration	involves	obtaining	a	Cipher	instance	and
initializing	it	with	the	key	stored	in	the	Keystore	container.	Add	a	new	method
named	cipherInit	to	the	FingerprintDemoActivity.java	file	to	perform	these
tasks:

package	com.ebookfrenzy.fingerprintdemo;

import	android.security.keystore.KeyProperties;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.app.KeyguardManager;

import	android.hardware.fingerprint.FingerprintManager;

import	android.widget.Toast;

import	android.Manifest;

import	android.content.pm.PackageManager;

import	android.support.v4.app.ActivityCompat;

import	android.security.keystore.KeyGenParameterSpec;

import

android.security.keystore.KeyPermanentlyInvalidatedException;

import	java.security.KeyStore;

import	java.security.InvalidAlgorithmParameterException;

import	java.security.NoSuchAlgorithmException;

import	java.security.cert.CertificateException;

import	java.security.InvalidAlgorithmParameterException;

import	java.io.IOException;

import	java.security.InvalidKeyException;

import	java.security.KeyStoreException;

import	java.security.UnrecoverableKeyException;

import	javax.crypto.KeyGenerator;

import	javax.crypto.NoSuchPaddingException;

import	javax.crypto.SecretKey;

import	javax.crypto.Cipher;

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	static	final	String	KEY_NAME	=	"example_key";

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				private	KeyStore	keyStore;

				private	KeyGenerator	keyGenerator;

				private	Cipher	cipher;

.

.

.

				public	boolean	cipherInit()	{

								try	{

												cipher	=	Cipher.getInstance(

																						KeyProperties.KEY_ALGORITHM_AES	+	"/"

																				+	KeyProperties.BLOCK_MODE_CBC	+	"/"

																				+	KeyProperties.ENCRYPTION_PADDING_PKCS7);

								}	catch	(NoSuchAlgorithmException	|

																														NoSuchPaddingException	e)	{

												throw	new	RuntimeException("Failed	to	get	Cipher",

e);

								}

	

								try	{

												keyStore.load(null);

												SecretKey	key	=	(SecretKey)

keyStore.getKey(KEY_NAME,

																																																					null);

												cipher.init(Cipher.ENCRYPT_MODE,	key);

												return	true;

								}	catch	(KeyPermanentlyInvalidatedException	e)	{

												return	false;

								}	catch	(KeyStoreException	|	CertificateException

																						|	UnrecoverableKeyException	|	IOException

																|	NoSuchAlgorithmException	|

InvalidKeyException	e)	{

												throw	new	RuntimeException("Failed	to	init	Cipher",

e);

								}

				}

}

The	getInstance	method	of	the	Cipher	class	is	called	to	obtain	a	Cipher	instance
which	is	subsequently	configured	with	the	properties	required	for	fingerprint
authentication.	The	previously	generated	key	is	then	extracted	from	the	Keystore
container	and	used	to	initialize	the	Cipher	instance.	Errors	are	handled
accordingly	and	a	true	or	false	result	returned	based	on	the	success	or	otherwise
of	the	cipher	initialization	process.
Work	is	now	complete	on	both	the	generateKey	and	cipherInit	methods.	The
next	step	is	to	modify	the	onCreate	method	to	call	these	methods	and,	in	the
event	of	a	successful	cipher	initialization,	create	a	CryptoObject	instance.

72.12	Creating	the	CryptoObject	Instance
Remaining	within	the	FingerprintDemoActivity.java	file,	modify	the	onCreate
method	to	call	the	two	newly	created	methods	and	generate	the	CryptoObject	as
follows:

public	class	FingerprintDemoActivity	extends	AppCompatActivity

{

				private	static	final	String	KEY_NAME	=	"example_key";

				private	FingerprintManager	fingerprintManager;

				private	KeyguardManager	keyguardManager;

				private	KeyStore	keyStore;

				private	KeyGenerator	keyGenerator;

				private	Cipher	cipher;

				private	FingerprintManager.CryptoObject	cryptoObject;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_fingerprint_demo);

.

.

.

								if	(!fingerprintManager.hasEnrolledFingerprints())	{

												//	This	happens	when	no	fingerprints	are

registered.

												Toast.makeText(this,

																				"Register	at	least	one	fingerprint	in

Settings",

																				Toast.LENGTH_LONG).show();

												return;

								}

								generateKey();

	

								if	(cipherInit())	{

												cryptoObject	=

																						new

FingerprintManager.CryptoObject(cipher);

								}

				}

The	final	task	in	the	project	is	to	implement	a	new	class	to	handle	the	actual
fingerprint	authentication.

72.13	Implementing	the	Fingerprint	Authentication	Handler
Class
So	far	in	this	chapter	most	of	the	work	has	involved	preparing	for	the	fingerprint
authentication	in	terms	of	the	key,	cipher	and	crypto	object.	The	actual
authentication	is	triggered	via	a	call	to	the	authenticate	method	of	the
FingerprintManager	instance.	This	method	call,	however,	will	trigger	one	of	a
number	of	callback	events	depending	on	the	success	or	failure	of	the
authentication.	Both	the	authenticate	method	call	and	the	callback	handler
methods	need	to	be	implemented	in	a	class	that	extends	the
FingerprintManager.AuthenticationCallback	class.	Such	a	class	now	needs	to	be
added	to	the	project.
Navigate	to	the	app	->	java	->	com.ebookfrenzy.fingerprintdemo	entry	within
the	Android	Studio	Project	tool	window	and	right-click	on	it.	From	the	resulting
menu,	select	the	New	->	Java	Class	option	to	display	the	Create	New	Class
dialog.	Name	the	class	FingerprintHandler	and	click	on	the	OK	button	to	create
the	class.
Edit	the	new	class	file	so	that	it	extends
FingerprintManager.AuthenticationCallback,	imports	some	additional	modules
and	implements	a	constructor	method	that	will	allow	the	application	context	to
be	passed	through	when	an	instance	of	the	class	is	created	(the	context	will	be
used	in	the	callback	methods	to	notify	the	user	of	the	authentication	status):

package	com.ebookfrenzy.fingerprintdemo;

import	android.Manifest;

import	android.content.Context;

import	android.content.pm.PackageManager;

import	android.hardware.fingerprint.FingerprintManager;

import	android.os.CancellationSignal;

import	android.support.v4.app.ActivityCompat;

import	android.widget.Toast;

public	class	FingerprintHandler	extends

														FingerprintManager.AuthenticationCallback	{

				private	CancellationSignal	cancellationSignal;

				private	Context	appContext;

				public	FingerprintHandler(Context	context)	{

								appContext	=	context;

				}

}

Next	a	method	needs	to	be	added	which	can	be	called	to	initiate	the	fingerprint
authentication.	When	called,	this	method	will	need	to	be	passed	the
FingerprintManager	and	CryptoObject	instances.	Name	this	method	startAuth
and	implement	it	in	the	FingerprintHandler.java	class	file	as	follows	(note	that
code	has	also	been	added	to	once	again	check	that	fingerprint	permission	has
been	granted):

public	void	startAuth(FingerprintManager	manager,

							FingerprintManager.CryptoObject	cryptoObject)	{

				cancellationSignal	=	new	CancellationSignal();

				if	(ActivityCompat.checkSelfPermission(appContext,

														Manifest.permission.USE_FINGERPRINT)	!=

																						PackageManager.PERMISSION_GRANTED)	{

								return;

				}

				manager.authenticate(cryptoObject,	cancellationSignal,	0,

this,	null);

}	

Next,	add	the	callback	handler	methods,	each	of	which	is	implemented	to	display
a	toast	message	indicating	the	result	of	the	fingerprint	authentication:

@Override

public	void	onAuthenticationError(int	errMsgId,

																														CharSequence	errString)	{

				Toast.makeText(appContext,

												"Authentication	error\n"	+	errString,

												Toast.LENGTH_LONG).show();

}

@Override

public	void	onAuthenticationHelp(int	helpMsgId,

																														CharSequence	helpString)	{

				Toast.makeText(appContext,

												"Authentication	help\n"	+	helpString,

												Toast.LENGTH_LONG).show();

}

@Override

public	void	onAuthenticationFailed()	{

				Toast.makeText(appContext,

												"Authentication	failed.",

												Toast.LENGTH_LONG).show();

}

@Override

public	void	onAuthenticationSucceeded(

														FingerprintManager.AuthenticationResult	result)	{

				Toast.makeText(appContext,

												"Authentication	succeeded.",

												Toast.LENGTH_LONG).show();

}

The	final	task	before	testing	the	project	is	to	modify	the	onCreate	method	so	that
it	creates	a	new	instance	of	the	FingerprintHandler	class	and	calls	the	startAuth
method.	Edit	the	FingerprintDemoActivity.java	file	and	modify	the	end	of	the
onCreate	method	so	that	it	reads	as	follows:

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.activity_fingerprint);

.

.

.

				if	(initCipher())	{

								cryptoObject	=	new

FingerprintManager.CryptoObject(cipher);

								FingerprintHandler	helper	=	new

FingerprintHandler(this);

								helper.startAuth(fingerprintManager,	cryptoObject);

				}

}

72.14	Testing	the	Project
With	the	project	now	complete	run	the	app	on	a	physical	Android	device	or
emulator	session.	Once	running,	either	touch	the	fingerprint	sensor	or	use	the
extended	controls	panel	within	the	emulator	to	simulate	a	fingerprint	touch	as
outlined	the	chapter	entitled	Using	and	Configuring	the	Android	Studio	2	AVD
Emulator.	Assuming	a	registered	fingerprint	is	detected	a	toast	message	will
appear	indicating	a	successful	authentication	as	shown	in	Figure	72-5:

Figure	72-5

Stop	the	running	app	and	relaunch	it,	this	time	using	an	unregistered	fingerprint
to	attempt	the	authentication.	This	time	a	toast	message	should	appear	indicating
that	the	authentication	failed.

72.15	Summary
Fingerprint	authentication	within	Android	is	a	multistep	process	that	can	initially
appear	to	be	complex.	When	broken	down	into	individual	steps,	however,	the
process	becomes	clearer.	Fingerprint	authentication	involves	the	use	of	keys,
ciphers	and	key	storage	combined	with	the	features	of	the	FingerprintManager
class.	This	chapter	has	provided	an	introduction	to	these	steps	and	worked
through	the	creation	of	an	example	application	project	intended	to	show	the
practical	implementation	of	fingerprint	authentication	within	Android.

practical	implementation	of	fingerprint	authentication	within	Android.

73.	Handling	Different	Android	Devices	and	Displays

Before	being	made	available	for	purchase	on	the	Google	Play	App	Store,	an
application	must	first	be	submitted	to	the	portal	for	review	and	approval.	One	of
the	most	important	steps	to	take	before	submitting	an	application	is	to	decide
which	Android	device	models	the	application	is	intended	to	support	and,	more
importantly,	that	the	application	runs	without	issue	on	those	devices.
This	chapter	will	cover	some	of	the	areas	to	consider	when	making	sure	that	an
application	runs	on	the	widest	possible	range	of	Android	devices.

73.1	Handling	Different	Device	Displays
Android	devices	come	in	a	variety	of	different	screen	sizes	and	resolutions.	The
ideal	solution	is	to	design	the	user	interface	of	your	application	so	that	it	appears
correctly	on	the	widest	possible	range	of	devices.	The	best	way	to	achieve	this	is
to	design	the	user	interface	using	layout	managers	that	do	not	rely	on	absolute
positioning	(i.e.	specific	X	and	Y	coordinates)	such	as	the	ConstraintLayout	so
that	views	are	positioned	relative	to	both	the	size	of	the	display	and	each	other.
Similarly,	avoid	using	specific	width	and	height	properties	wherever	possible.
When	such	properties	are	unavoidable,	always	use	density-independent	(dp)
values	as	these	are	automatically	scaled	to	match	the	device	display	at
application	runtime.
Having	designed	the	user	interface,	be	sure	to	test	it	on	each	device	on	which	it
is	intended	to	be	supported.	In	the	absence	of	the	physical	device	hardware,	use
the	emulator	templates,	wherever	possible,	to	test	on	the	widest	possible	range	of
devices.
In	the	event	that	it	is	not	possible	to	design	the	user	interface	such	that	a	single
design	will	work	on	all	Android	devices,	another	option	is	to	provide	a	different
layout	for	each	display.

73.2	Creating	a	Layout	for	each	Display	Size
The	ideal	solution	to	the	multiple	display	problem	is	to	design	user	interface
layouts	that	adapt	to	the	display	size	of	the	device	on	which	the	application	is
running.	This,	for	example,	has	the	advantage	of	having	only	one	layout	to
manage	when	modifying	the	application.	Inevitably,	however,	there	will	be
situations	where	this	ideal	is	unachievable	given	the	vast	difference	in	screen
size	between	a	phone	and	a	tablet.	Another	option	is	to	provide	different	layouts,

each	tailored	to	a	specific	display	category.	This	involves	identifying	the
smallest	width	qualifier	value	of	each	display	and	creating	an	XML	layout	file
for	each	one.	The	smallest	width	value	of	a	display	indicates	the	minimum	width
of	that	display	measured	in	dp	units.
Display-specific	layouts	are	implemented	by	creating	additional	subdirectories
under	the	res	directory	of	a	project.	The	naming	convention	for	these	folders	is:
layout-<smallest-width>
For	example,	layout	resource	folders	for	a	range	of	devices	might	be	configured
as	follows:
·									res/layout	–	The	default	layout	file
·									res/layout-sw200dp
·									res/layout-sw600dp
·									res/layout-sw800dp

Alternatively,	more	general	categories	can	be	created	by	targeting	small,	normal,
large	and	xlarge	displays:
·									res/layout	–	The	default	layout	file
·									res/layout-small
·									res/layout-normal
·									res/layout-large
·									res/layout-xlarge
·									res/layout-land

Each	folder	must,	in	turn,	contain	a	copy	of	the	layout	XML	file	adapted	for	the
corresponding	display,	all	of	which	must	have	matching	file	names.	Once
implemented,	the	Android	runtime	system	will	automatically	select	the	correct
layout	file	to	display	to	the	user	to	match	the	device	display.

73.3	Creating	Layout	Variants	in	Android	Studio
Android	Studio	makes	it	easy	to	add	additional	layout	size	variants	using	the
Layout	Variants	button	located	in	the	Layout	Editor	toolbar	as	highlighted	in
Figure	72-1:

Figure	73-1

When	selected,	the	menu	provides	options	to	create	either	a	preconfigured
landscape	(res/layout-land)	or	xlarge	(res/layout-xlarge)	variants.	Alternatively,
the	Create	Other…	menu	option	may	be	used	to	create	variants	for	other	sizes.
To	create	a	custom	variant,	select	the	Size	qualifier	in	the	Select	Resource
Directory	dialog,	click	on	the	button	displaying	the	‘>>’	character	sequence	and
then	make	a	selection	from	the	Screen	size	dropdown	menu:

Figure	73-2

At	any	time	during	the	layout	design	process,	use	the	Layout	Variants	menu	to
switch	to	one	of	the	different	variants	to	see	how	the	user	interface	will	appear
when	running	on	a	device	with	the	corresponding	screen	size:

Figure	73-3

73.4	Providing	Different	Images
User	interface	layouts	are	not	the	only	area	of	concern	when	adapting	an
application	for	different	screen	densities,	dimensions	and	aspect	ratios.	Another
area	to	pay	attention	to	is	that	of	images.	An	image	that	appears	correctly	scaled
on	a	large	tablet	screen,	for	example,	might	not	appear	correctly	scaled	on	a
smaller	phone	based	device.	As	with	layouts,	however,	multiple	sets	of	images
can	be	bundled	with	the	application,	each	tailored	to	a	specific	display.	This	can
once	again	be	achieved	by	referencing	the	smallest	width	value.	In	this	case,
drawable	folders	need	to	be	created	in	the	res	directory.	For	example:
·									res/drawable	–	The	default	image	folder
·									res/drawable-sw200dp
·									res/drawable-sw600dp
·									res/drawable-sw800dp

Having	created	the	folders,	simply	place	the	display	specific	versions	of	the
images	into	the	corresponding	folder,	using	the	same	name	for	each	of	the
images.
Alternatively,	the	images	may	be	categorized	into	broader	display	densities
using	the	following	directories	based	on	the	pixel	density	of	the	display:
·									res/drawable-ldpi	-	Images	for	low	density	screens	(approx.	120	dpi)
·									res/drawable-mdpi	–	Images	for	medium-density	screens	(approx.	160	dpi)
·									res/drawable-hdpi	–	Images	for	high-density	screens	(approx.	240	dpi)
·									res/drawable-xhdpi	–	Images	for	extra	high-density	screens	(approx.	320	dpi)
·									res/drawable-tvdpi	–	Images	for	displays	between	medium	and	high	density

(approx.	213	dpi)
·									res/drawable-nodpi	–	Images	that	must	not	be	scaled	by	the	system

73.5	Checking	for	Hardware	Support
By	now,	it	should	be	apparent	that	not	all	Android	devices	were	created	equal.
An	application	that	makes	use	of	specific	hardware	features	(such	as	a
microphone	or	camera)	should	include	code	to	gracefully	handle	the	absence	of
that	hardware.	This	typically	involves	performing	a	check	to	find	out	if	the
hardware	feature	is	missing,	and	subsequently	reporting	to	the	user	that	the
corresponding	application	functionality	will	not	be	available.
The	following	method	can	be	used	to	check	for	the	presence	of	a	microphone:

protected	boolean	hasMicrophone()	{

							PackageManager	pmanager	=	this.getPackageManager();

							return	pmanager.hasSystemFeature(

														PackageManager.FEATURE_MICROPHONE);

}

Similarly,	the	following	method	is	useful	for	checking	for	the	presence	of	a	front
facing	camera:

private	boolean	hasCamera()	{

							if	(getPackageManager().hasSystemFeature(

											PackageManager.FEATURE_CAMERA_FRONT)){

															return	true;

						}	else	{

														return	false;

						}

}

73.6	Providing	Device	Specific	Application	Binaries
Even	with	the	best	of	intentions,	there	will	inevitably	be	situations	where	it	is	not
possible	to	target	all	Android	devices	within	a	single	application	(though	Google
certainly	encourages	developers	to	target	as	many	devices	as	possible	within	a
single	application	binary	package).	In	this	situation,	the	application	submission
process	allows	multiple	application	binaries	to	be	uploaded	for	a	single
application.	Each	binary	is	then	configured	to	indicate	to	Google	the	devices
with	which	the	binary	is	configured	to	work.	When	a	user	subsequently
purchases	the	application,	Google	ensures	that	the	correct	binary	is	downloaded
for	the	user’s	device.
It	is	also	important	to	be	aware	that	it	may	not	always	make	sense	to	try	to
provide	support	for	every	Android	device	model.	There	is	little	point,	for
example,	in	making	an	application	that	relies	heavily	on	a	specific	hardware
feature	available	on	devices	that	lack	that	specific	hardware.	These	requirements
can	be	defined	using	Google	Play	Filters	as	outlined	at:

	http://developer.android.com/google/play/filters.html

73.7	Summary
There	is	more	to	completing	an	Android	application	than	making	sure	it	works
on	a	single	device	model.	Before	an	application	is	submitted	to	the	Google	Play
Developer	Console,	it	should	first	be	tested	on	as	wide	a	range	of	display	sizes	as
possible.	This	includes	making	sure	that	the	user	interface	layouts	and	images
scale	correctly	for	each	display	variation	and	taking	steps	to	ensure	that	the
application	gracefully	handles	the	absence	of	certain	hardware	features.	It	is	also
possible	to	submit	to	the	developer	console	a	different	application	binary	for
specific	Android	models,	or	to	state	that	a	particular	application	simply	does	not
support	certain	Android	devices.

http://developer.android.com/google/play/filters.html

74.	Signing	and	Preparing	an	Android
Application	for	Release

Once	the	development	work	on	an	Android	application	is	complete	and	it	has
been	tested	on	a	wide	range	of	Android	devices,	the	next	step	is	to	prepare	the
application	for	submission	to	the	Google	Play	App	Store.	Before	submission	can
take	place,	however,	the	application	must	be	packaged	for	release	and	signed
with	a	private	key.	This	chapter	will	work	through	the	steps	involved	in
obtaining	a	private	key	and	preparing	the	application	package	for	release.

74.1	The	Release	Preparation	Process
Up	until	this	point	in	the	book,	we	have	been	building	application	projects	in	a
mode	suitable	for	testing	and	debugging.	Building	an	application	package	for
release	to	customers	via	the	Google	Play	store,	on	the	other	hand,	requires	that
some	additional	steps	be	taken.	The	first	requirement	is	that	the	application	be
compiled	in	release	mode	instead	of	debug	mode.	Secondly,	the	application	must
be	signed	with	a	private	key	that	uniquely	identifies	you	as	the	application’s
developer.	Finally,	the	application	package	must	be	aligned.	This	is	simply	a
process	by	which	some	data	files	in	the	application	package	are	formatted	with	a
certain	byte	alignment	to	improve	performance.
While	each	of	these	tasks	can	be	performed	outside	of	the	Android	Studio
environment,	the	procedures	can	more	easily	be	performed	using	the	Android
Studio	build	mechanism	as	outlined	in	the	remainder	of	this	chapter.

74.2	Changing	the	Build	Variant
The	first	step	in	the	process	of	generating	a	signed	application	APK	file	involves
changing	the	build	variant	for	the	project	from	debug	to	release.	This	is	achieved
using	the	Build	Variants	tool	window	which	can	be	accessed	from	the	tool
window	quick	access	menu	(located	in	the	bottom	left-hand	corner	of	the
Android	Studio	main	window	as	shown	in	Figure	74-1).

Figure	74-1

Once	the	Build	Variants	tool	window	is	displayed,	change	the	Build	Variant
settings	for	all	the	modules	listed	from	debug	to	release:

Figure	74-2

The	project	is	now	configured	to	build	in	release	mode.	The	next	step	is	to
configure	signing	key	information	for	use	when	generating	the	signed
application	package.

74.3	Enabling	ProGuard
When	generating	an	application	package,	the	option	is	available	to	use	ProGuard
during	the	package	creation	process.	ProGuard	performs	a	series	of	optimization
and	verification	tasks	that	result	in	smaller	and	more	efficient	byte	code.	In	order
to	use	ProGuard,	it	is	necessary	to	enable	this	feature	within	the	Project	Structure
settings	prior	to	generating	the	APK	file.
The	steps	to	enable	ProGuard	are	as	follows:
1.							Display	the	Project	Structure	dialog	(File	->	Project	Structure).
2.							Select	the	"app"	module	in	the	far	left	panel.

3.							Select	the	"Build	Types"	tab	in	the	main	panel	and	the	"release"	entry	from
the	middle	panel.

4.							Change	the	"Minify	Enabled"	option	from	"false"	to	"true"	and	click	on	OK.
5.							Follow	the	steps	to	create	a	keystore	file	and	build	the	release	APK	file.

74.4	Creating	a	Keystore	File
To	create	a	keystore	file,	select	the	Build	->	Generate	Signed	APK…	menu
option	to	display	the	Generate	Signed	APK	Wizard	dialog	as	shown	in	Figure
74-3:

Figure	74-3

In	the	event	that	you	have	an	existing	release	keystore	file,	click	on	the	Choose
existing…	button	and	navigate	to	and	select	the	file.	In	the	event	that	you	have
yet	to	create	a	keystore	file,	click	on	the	Create	new…	button	to	display	the	New
Key	Store	dialog	(Figure	74-4).	Click	on	the	button	to	the	right	of	the	Key	store
path	field	and	navigate	to	a	suitable	location	on	your	file	system,	enter	a	name
for	the	keystore	file	(for	example,	release.keystore.jks)	and	click	on	the	OK
button.
The	New	Key	Store	dialog	is	divided	into	two	sections.	The	top	section	relates	to
the	keystore	file.	In	this	section,	enter	a	strong	password	with	which	to	protect
the	keystore	file	into	both	the	Password	and	Confirm	fields.	The	lower	section	of
the	dialog	relates	to	the	release	key	that	will	be	stored	in	the	key	store	file.

Figure	74-4

74.5	Generating	a	Private	Key
The	next	step	is	to	generate	a	new	private	key	which	will	be	used	to	sign	the
application	package.	Within	the	Key	section	of	the	New	Key	Store	dialog,	enter
the	following	details:
·									An	alias	by	which	the	key	will	be	referenced.	This	can	be	any	sequence	of

characters,	though	only	the	first	8	are	used	by	the	system.
·									A	suitably	strong	password	to	protect	the	key.
·									The	number	of	years	for	which	the	key	is	to	be	valid	(Google	recommends	a

duration	in	excess	of	25	years).
In	addition,	information	must	be	provided	for	at	least	one	of	the	remaining	fields
(for	example,	your	first	and	last	name,	or	organization	name).

Figure	74-5

Once	the	information	has	been	entered,	click	on	the	OK	button	to	proceed	with
the	package	creation.

74.6	Creating	the	Application	APK	File
The	next	task	to	be	performed	is	to	instruct	Android	Studio	to	build	the
application	APK	package	file	in	release	mode	and	then	sign	it	with	the	newly
created	private	key.	At	this	point	the	Generate	Signed	APK	Wizard	dialog	should
still	be	displayed	with	the	keystore	path,	passwords	and	key	alias	fields
populated	with	information:

Figure	74-6

Assuming	that	the	settings	are	correct,	click	on	the	Next	button	to	proceed	to	the
APK	generation	screen	(Figure	74-7).	Within	this	screen,	review	the	Destination
APK	path:	setting	to	verify	that	the	location	into	which	the	APK	file	will	be
generated	is	acceptable.	In	the	event	that	another	location	is	preferred,	click	on
the	button	to	the	right	of	the	text	field	and	navigate	to	the	desired	file	system
location.

Figure	74-7

Two	signature	options	are	provided	for	selection	within	the	APK	generation

Two	signature	options	are	provided	for	selection	within	the	APK	generation
dialog.	The	recommended	option	is	V2	(Full	APK	Signature).	This	provides
additional	security	to	protect	the	APK	from	malicious	alteration	together	with
faster	app	installation	times.	If	problems	occur	when	using	the	V2	option,	repeat
the	generation	process	using	the	V1	option.
The	Gradle	system	will	now	compile	the	application	in	release	mode.	Once	the
build	is	complete,	a	dialog	will	appear	providing	the	option	to	open	the	folder
containing	the	APK	file	in	an	explorer	window:

Figure	74-8

At	this	point	the	application	is	ready	to	be	submitted	to	the	Google	Play	store.
The	private	key	generated	as	part	of	this	process	should	be	used	when	signing
and	releasing	future	applications	and,	as	such,	should	be	kept	in	a	safe	place	and
securely	backed	up.
The	final	step	in	the	process	of	bringing	an	Android	application	to	market
involves	submitting	it	to	the	Google	Play	Developer	Console.	Once	submitted,
the	application	will	be	available	for	download	from	the	Google	Play	App	Store.

74.7	Register	for	a	Google	Play	Developer	Console	Account
The	first	step	in	the	application	submission	process	is	to	create	a	Google	Play
Developer	Console	account.	To	do	so,	navigate	to
https://play.google.com/apps/publish/signup/	and	follow	the	instructions	to
complete	the	registration	process.	Note	that	there	is	a	one-time	$25	fee	to
register.	Once	an	application	goes	on	sale,	Google	will	keep	30%	of	all	revenues
associated	with	the	application.
Once	the	account	has	been	created,	the	next	step	is	to	gather	together
information	about	the	application.	In	order	to	bring	your	application	to	market,
the	following	information	will	be	required:
·									Title	–	The	title	of	the	application.
·									Short	Description	-	Up	to	80	words	describing	the	application.
·									Description	–	Up	to	4000	words	describing	the	application.
·									Screenshots	–	Up	to	8	screenshots	of	your	application	running	(a	minimum

of	two	is	required).	Google	recommends	submitted	screenshots	of	the
application	running	on	a	7”	or	10”	tablet.

https://play.google.com/apps/publish/signup/

·									Language	–	The	language	of	the	application	(the	default	is	US	English).
·									Promotional	Text	–	The	text	that	will	be	used	when	your	application	appears

in	special	promotional	features	within	the	Google	Play	environment.
·									Application	Type	–	Whether	your	application	is	considered	to	be	a	game	or

an	application.
·									Category	–	The	category	that	best	describes	your	application	(for	example

finance,	health	and	fitness,	education,	sports,	etc.).
·									Locations	–	The	geographical	locations	into	which	you	wish	your	application

to	be	made	available	for	purchase.
·									Contact	Details	–	Methods	by	which	users	may	contact	you	for	support

relating	to	the	application.	Options	include	web,	email	and	phone.
·									Pricing	&	Distribution	–	Information	about	the	price	of	the	application	and

the	geographical	locations	where	it	is	to	be	marketed	and	sold.
Having	collected	the	above	information	and	prepared	the	application	package
file	for	release,	simply	follow	the	steps	in	the	Google	Play	Developer	Console	to
submit	the	application	for	testing	and	sale.

74.8	Uploading	New	APK	Versions	to	the	Google	Play	Developer
Console
The	first	APK	file	uploaded	for	your	application	will	invariably	have	a	version
code	of	1.	If	an	attempt	is	made	to	upload	another	APK	file	with	the	same
version	code	number,	the	console	will	reject	the	file	with	the	following	error:

You	need	to	use	a	different	version	code	for	your	APK	because

you	already	have	one	with	version	code	1.

To	resolve	this	problem,	the	version	code	embedded	into	the	APK	needs	to	be
increased.	This	is	performed	in	the	module	level	build.gradle	file	of	the	project,
shown	highlighted	in	Figure	74-9.	It	is	important	to	note	that	this	is	not	the	top
level	build.gradle	file	positioned	lower	in	the	project	hierarchy	listing:

Figure	74-9

By	default,	this	file	will	typically	read	as	follows:
apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	25

				buildToolsVersion	"25.0.2"

				defaultConfig	{

								applicationId	"com.ebookfrenzy.myapplication"

								minSdkVersion	14

								targetSdkVersion	25

								versionCode	1

								versionName	"1.0"

								testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"

				}

				buildTypes	{

								release	{

												minifyEnabled	true

												proguardFiles	getDefaultProguardFile('proguard-

android.txt'),	'proguard-rules.pro'

								}

				}

}

dependencies	{

				compile	fileTree(include:	['*.jar'],	dir:	'libs')

			

androidTestCompile('com.android.support.test.espresso:espresso-

core:2.2.2',	{

								exclude	group:	'com.android.support',	module:	'support-

annotations'

				})

				compile	'com.android.support:appcompat-v7:25.1.0'

				compile	'com.android.support.constraint:constraint-

layout:1.0.0-beta4'

				testCompile	'junit:junit:4.12'

}

To	change	the	version	code,	simply	change	the	number	declared	next	to
versionCode.	To	also	change	the	version	number	displayed	to	users	of	your
application,	change	the	versionName	string.	For	example:

versionCode	2

versionName	"2.0"

Having	made	these	changes,	rebuild	the	APK	file	and	perform	the	upload	again.

74.9	Analyzing	the	APK	File
Android	Studio	provides	the	ability	to	analyze	the	content	of	an	APK	file.	This
can	be	useful,	for	example,	when	attempting	to	find	out	why	the	APK	file	is
larger	than	expected	or	to	review	the	class	structure	of	the	application’s	dex	file.
To	analyze	an	APK	file,	select	the	Android	Studio	Build	->	Analyze	APK…
menu	option	and	navigate	to	and	choose	the	APK	file	to	be	reviewed.	Once
loaded	into	the	tool,	information	will	be	displayed	about	the	raw	and	download
size	of	the	package	together	with	a	listing	the	of	file	structure	of	the	package	as
illustrated	in	Figure	74-10:

Figure	74-10

Selecting	the	classes.dex	file	will	display	the	class	structure	of	the	file	in	the
lower	panel.	Within	this	panel,	details	of	the	individual	classes	may	be	explored
down	to	the	level	of	the	methods	within	a	class:

Figure	74-11

Similarly,	selecting	a	resource	or	image	file	within	the	file	list	will	display	the
file	content	within	the	lower	panel.	In	Figure	74-12,	for	example,	an	image	file
has	been	selected	from	a	drawable	folder	within	the	package	file	list:

Figure	74-12

The	size	differences	between	two	APK	files	may	be	reviewed	by	clicking	on	the
Compare	with…	button	and	selecting	a	second	APK	file.

Figure	74-13

74.10	Summary

Before	an	application	can	be	submitted	to	the	Google	Play	store,	it	must	first	be
built	in	release	mode,	signed	with	a	private	certificate	and	the	resulting	APK
package	file	subjected	to	a	process	referred	to	as	alignment.	As	outlined	in	this
chapter,	all	of	these	steps	can	be	performed	with	relative	ease	through	the	use	of
the	Android	Studio	build	system.

75.	Integrating	Google	Play	In-app
Billing	into	an	Android	Application
In	the	early	days	of	mobile	applications	for	operating	systems	such	as	Android
and	iOS,	the	most	common	method	for	earning	revenue	was	to	charge	an	upfront
fee	to	download	and	install	the	application.	Another	revenue	opportunity	was
soon	introduced	in	the	form	of	embedding	advertising	within	applications.
Perhaps	the	most	common	and	lucrative	option	is	now	to	charge	the	user	for
purchasing	items	from	within	the	application	after	it	has	been	installed.	This
typically	takes	the	form	of	access	to	a	higher	level	in	a	game,	acquiring	virtual
goods	or	currency,	or	subscribing	to	the	digital	edition	of	a	magazine	or
newspaper.
Google	provides	support	for	the	integration	of	in	app	purchasing	through	the
Google	Play	In-App	Billing	API.	The	purpose	of	this	chapter	is	to	work	through
a	tutorial	that	demonstrates	the	steps	involved	in	implementing	basic	Google
Play	based	in-app	billing	within	an	Android	application.

75.1	Installing	the	Google	Play	Billing	Library
A	prerequisite	to	implementing	Google	Play	In-app	Billing	is	that	the	Google
Play	Billing	Library	be	installed	on	the	development	system.	Check	whether	or
not	the	library	is	installed	by	launching	the	Android	SDK	Manager	by	selecting
Configure	->	SDK	Manager	from	the	Android	Studio	welcome	screen,	or	via	the
Tools	->	Android	->	SDK	Manager	menu	of	the	main	window.	Once	the	SDK
settings	have	loaded,	select	the	SDK	Tools	tab	and	check	the	Status	column	next
to	the	Google	Play	Billing	Library	entry	as	shown	in	Figure	75-1.
If	the	library’s	status	is	listed	as	Not	Installed,	select	the	check	box	next	to	the
library	and	click	on	the	Apply	button.	Once	the	download	has	completed,	the
SDK	will	have	been	installed	into	the	sdk/extras/google/play_billing	subfolder
of	the	Android	Studio	installation	directory	(the	location	of	which	can	be	found
in	the	SDK	Path	field	at	the	top	of	the	Android	SDK	settings	window).

Figure	75-1
Within	the	above	SDK	subfolder	resides	a	file	named	IInAppBillingService.aidl
which	will	need	to	be	included	with	any	projects	that	require	Google	Play	billing
support.	The	folder	also	includes	a	sample	application	(contained	within	the
samples	subdirectory)	named	TrivialDrive.	Part	of	this	sample	application	is	a
package	containing	a	set	of	convenience	classes	that	significantly	ease	the
process	of	integrating	billing	into	an	application.	Later	in	this	tutorial,	these
classes	will	be	imported	into	our	own	application	project	and	used	to	implement
in-app	billing.

75.2	Creating	the	Example	In-app	Billing	Project
The	objective	of	this	tutorial	is	to	create	a	simple	application	that	uses	the
Google	in-app	billing	system	to	allow	consumable	purchases	to	be	made.	The
application	will	consist	of	two	buttons,	one	of	which	will	be	disabled	by	default.
In	order	to	enable	the	button	so	that	it	can	be	clicked,	the	user	must	purchase	a
“button	click”	item	by	clicking	on	the	second	button	and	completing	a	purchase.
The	first	button	will	then	be	enabled	for	a	single	click	before	being	disabled
again	until	the	user	makes	another	purchase.
Create	a	new	project	in	Android	Studio,	entering	InAppBilling	into	the
Application	name	field	and	your	own	URL	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.

On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
InAppBillingActivity	with	a	corresponding	layout	resource	file	named
activity_in_app_billing.
Click	on	Finish	to	initiate	the	project	creation	process.

75.3	Adding	Billing	Permission	to	the	Manifest	File
Before	an	application	can	support	in-app	billing,	a	new	permission	line	must	be
added	to	the	project’s	AndroidManifest.xml	file.	Within	the	Project	tool	window,
therefore,	locate	and	load	the	AndroidManifest.xml	file	for	the	newly	created
InAppBilling	project	and	modify	it	to	add	the	billing	permission	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.ebookfrenzy.inappbilling"	>

				<uses-permission	android:name="com.android.vending.BILLING"

/>

			

				<application

								android:allowBackup="true"

								android:icon="@mipmap/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								<activity

												android:name=".InAppBillingActivity"

												android:label="@string/app_name"	>

												<intent-filter>

																<action

android:name="android.intent.action.MAIN"	/>

																<category	android:name=

																					"android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

75.4	Adding	the	IInAppBillingService.aidl	File	to	the	Project
The	IInAppBillingService.aidl	file	included	as	part	of	the	Google	Play	Billing

Library	should	now	be	added	to	the	project.	This	file	must	be	added	such	that	it
is	contained	in	a	package	named	com.android.vending.billing	located	in	the	app
->	aidl	folder	of	the	InAppBilling	project	module.
To	create	the	aidl	directory,	right-click	on	the	app	node	in	the	project	tool
window,	selecting	the	New	->	Folder	->	AIDL	Folder	menu	option	as	shown	in
Figure	75-2:

Figure	75-2

In	the	resulting	options	dialog,	accept	the	defaults	by	clicking	on	the	Finish
button.
Within	the	Project	tool	window	the	aidl	folder	should	now	be	listed.	The	next
step	is	to	create	the	com.android.vending.billing	package.	Right-click	on	the	aidl

folder	and	select	the	New	->	Package	menu	item.	In	the	resulting	dialog,	enter
com.android.vending.billing	into	the	text	field	and	click	on	OK.
Using	the	explorer	or	finder	tool	for	your	operating	system,	navigate	to	the	<sdk
path>/sdk/extras/google/play_billing	where	<sdk	path>	is	replaced	by	the	path
into	which	you	installed	the	Android	SDK.	From	this	location,	copy	the
IInAppBillingService.aidl	file,	return	to	Android	Studio	and	paste	the	file	onto
the	com.android.vending.billing	package	in	the	Project	tool	window.	In	the	Copy
dialog,	accept	the	default	settings	and	click	on	the	OK	button.	At	this	point	the
relevant	sections	of	the	Project	tool	window	should	be	organized	to	match	that	of
Figure	75-3:

Figure	75-3

With	the	library	file	installed,	the	next	step	is	to	import	the	utility	classes	from
the	TrivialDrive	sample	into	the	project	so	that	these	can	be	utilized	within	the
application	code.

75.5	Adding	the	Utility	Classes	to	the	Project
The	TrivialDrive	sample	project	that	was	installed	into	the	SDK	as	part	of	the
Google	Play	Billing	library	includes	a	set	of	classes	intended	specifically	to
make	the	task	of	implementing	in-app	billing	easier.	Although	bundled	as	part	of
the	TrivialDrive	project,	these	classes	are	general	purpose	in	nature	and	are
applicable	to	most	application	billing	requirements.	For	the	purposes	of	this
example,	we	will	create	a	new	package	named	com.ebookfrenzy.inappbilling.util
within	our	project.
To	create	this	package,	right-click	on	the	app	->	java	folder	in	the	Project	tool
window	and	select	the	New	->	Package	menu	option.	In	the	resulting	dialog,

select	..\app\src\main\java	from	the	Directory	Structure	panel	and	click	on	OK.
In	the	next	dialog	name	the	package	<your	domain>.inappbilling.util	(where
<your	domain>	is	replaced	by	the	reversed	domain	entered	when	the	project	was
created,	for	example	com.mycompany)	and	click	on	OK.
The	next	step	is	to	import	the	TrivialDrive	utility	class	files	into	the	Android
Studio	project.	Returning	to	the	file	system	explorer	window	(and	assuming	it	is
still	positioned	in	the	<sdk	path>/sdk/extras/google/play_billing	directory),
navigate	further	into	the	file	system	hierarchy	to	the	following	directory:

samples/TrivialDrive/src/com/example/android/trivialdrivesample/util

Select	all	nine	files	in	this	folder	and	copy	them.	Return	to	Android	Studio	and
paste	the	files	onto	the	com.example.inappbilling.inappbilling.util	package	in	the
Project	tool	window.	Verify	that	the	project	hierarchy	now	matches	Figure	75-4:

Figure	75-4

75.6	Designing	the	User	Interface
The	user	interface,	as	previously	outlined,	is	going	to	consist	of	two	buttons,	the

first	of	which	can	only	be	clicked	after	a	purchase	has	been	made	via	a	click
performed	on	the	second	button.	Double-click	on	the	app	->	res	->	layout	->
activity_in_app_billing.xml	file	to	load	it	into	the	Layout	Editor	tool	and	delete
the	default	TextView	widget.
Position	a	Button	widget	so	that	it	is	located	in	the	center	of	the	layout,	add	a
second	Button	located	in	the	horizontal	center	of	the	layout	above	the	top	edge
of	the	first	button.	Change	the	ID	properties	to	clickButton	and	buyButton.
Change	the	text	property	of	the	topmost	button	to	Click	Me!	and	the	lower	button
to	Buy	a	Click,	extracting	the	string	values	to	resources	named	click_me	and
buy_a_click	respectively.	On	completion	of	these	steps	the	layout	should
resemble	that	shown	in	Figure	75-5	below.	Use	the	Infer	Constraints	button	if
any	constraints	are	missing.
Finally,	set	onClick	properties	to	configure	the	buttons	to	call	methods	named
buttonClicked	and	buyClick	respectively.
With	the	user	interface	design	complete,	it	is	time	to	start	writing	some	Java
code	to	handle	the	purchasing	and	consumption	of	clicks.

Figure	75-5

75.7	Implementing	the	“Click	Me”	Button
When	the	application	is	initially	launched,	the	“Click	Me!”	button	will	be
disabled.	To	make	sure	that	this	happens,	load	the	InAppBillingActivity.java	file
into	the	editor	and	modify	the	onCreate	method	to	obtain	a	reference	to	both
buttons	and	then	disable	the	clickButton:

package	com.ebookfrenzy.inappbilling;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.Button;

public	class	InAppBillingActivity	extends	AppCompatActivity	{

				private	Button	clickButton;

				private	Button	buyButton;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_in_app_billing);

								buyButton	=	(Button)findViewById(R.id.buyButton);

								clickButton	=	(Button)findViewById(R.id.clickButton);

								clickButton.setEnabled(false);

				}

.

.

.

}

The	buttonClicked	method	that	will	be	called	when	the	button	is	clicked	by	the
user	now	also	needs	to	be	implemented.	All	this	method	needs	to	do	is	to	disable
the	button	once	again	so	that	the	button	cannot	be	clicked	until	another	purchase
is	made	and	to	enable	the	buy	button	so	that	another	click	can	be	purchased.
Remaining	within	the	InAppBillingActivity.java	file,	implement	this	method	as
follows:

package	com.ebookfrenzy.inappbilling;

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.Button;

import	android.view.View;

public	class	InAppBillingActivity	extends	AppCompatActivity	{

.

.

.

							public	void	buttonClicked	(View	view)

							{

														clickButton.setEnabled(false);

														buyButton.setEnabled(true);

							}

.

.

}

Work	on	the	functionality	of	the	first	button	is	now	complete.	The	next	steps	are
to	begin	implementing	the	in-app	billing	functionality.

75.8	Google	Play	Developer	Console	and	Google	Wallet	Accounts
Application	developers	making	use	of	Google	Play	billing	must	be	identified	by
a	unique	public	license	key.	The	only	way	to	obtain	a	public	license	key	is	to
register	an	application	within	the	Google	Play	Developer	Console.	If	you	do	not
already	have	a	Google	Play	Developer	Console	account,	go	to
http://play.google.com/apps/publish	and	follow	the	steps	to	register	as	outlined
in	the	chapter	entitled	Signing	and	Preparing	an	Android	Application	for
Release.
Once	you	are	logged	in,	click	on	the	Settings	option	(located	on	the	left-hand
edge	of	the	web	page)	and,	on	the	Account	details	page,	scroll	down	to	the
Merchant	Account	section.	In	order	to	use	in-app	billing,	your	Google	Play
Developer	Console	account	must	have	a	Google	Wallet	Merchant	account
associated	with	it.	If	a	Google	Wallet	merchant	account	is	not	set	up,	create	a
merchant	account	and	register	it	with	your	Google	Developer	Console	account
before	proceeding.

75.9	Obtaining	the	Public	License	Key	for	the	Application
From	the	home	page	of	the	Google	Play	Developer	Console,	click	on	the	Create
application	button,	specifying	the	default	language	and	a	title	of	InAppBilling.
Once	this	information	has	been	entered,	click	on	the	Upload	APK	button:

http://play.google.com/apps/publish

Figure	75-6
It	is	not	necessary	to	upload	the	APK	file	at	this	point,	so	once	the	application
has	been	registered,	click	on	the	Services	&	APIs	option	to	display	the	Base64-
encoded	RSA	public	key	for	the	application	as	shown	in	Figure	75-7:

Figure	75-7
Keep	this	Browser	window	open	for	now	as	this	key	will	need	to	be	included	in
the	application	code	in	the	next	step	of	this	tutorial.

75.10	Setting	Up	Google	Play	Billing	in	the	Application
With	the	public	key	generated,	it	is	now	time	to	use	that	key	to	initialize	billing
within	the	application	code.	For	the	InAppBilling	example	project	this	will	be
performed	in	the	onCreate	method	of	the	InAppBillingActivity.java	file	and	will

make	use	of	the	IabHelper	class	from	the	utilities	classes	previously	added	to	the
project	as	follows.	Note	that	<your	license	key	here>	should	be	replaced	by	your
own	license	key	generated	in	the	previous	section	and	<your	domain>	by	the
package	name	used	to	hold	the	utility	class	files:

package	com.ebookfrenzy.inappbilling;

import	<your	domain>.inappbilling.util.IabHelper;

import	<your	domain>.inappbilling.util.IabResult;

import	<your	domain>.inappbilling.util.Inventory;

import	<your	domain>.inappbilling.util.Purchase;

	

import	android.support.v7.app.AppCompatActivity;

import	android.os.Bundle;

import	android.widget.Button;

import	android.view.View;

import	android.content.Intent;

import	android.util.Log;

public	class	InAppBillingActivity	extends	AppCompatActivity	{

				private	static	final	String	TAG	=

																	"InAppBilling";

				IabHelper	mHelper;

				private	Button	clickButton;

				private	Button	buyButton;

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_in_app_billing);

								buyButton	=	(Button)findViewById(R.id.buyButton);

								clickButton	=	(Button)findViewById(R.id.clickButton);

								clickButton.setEnabled(false);

								String	base64EncodedPublicKey	=

																"<your	license	key	here>";

	

								mHelper	=	new	IabHelper(this,	base64EncodedPublicKey);

	

								mHelper.startSetup(new

											IabHelper.OnIabSetupFinishedListener()	{

															public	void	onIabSetupFinished(IabResult	result)

															{

																			if	(!result.isSuccess())	{

																							Log.d(TAG,	"In-app	Billing	setup	failed:

"	+

																															result);

																			}	else	{

																							Log.d(TAG,	"In-app	Billing	is	set	up

OK");

																			}

															}

											});

				}

.

.

.

}

After	implementing	the	above	changes,	compile	and	run	the	application	on	a
physical	Android	device	(Google	Play	Billing	cannot	be	tested	within	an
emulator	session)	and	make	sure	that	the	“In-app	Billing	is	set	up	OK”	message
appears	in	the	LogCat	output	panel.

75.11	Initiating	a	Google	Play	In-app	Billing	Purchase
With	access	to	the	billing	system	initialized,	we	can	now	turn	our	attention	to
initiating	a	purchase	when	the	user	touches	the	Buy	Click	button	in	the	user
interface.	This	was	previously	configured	to	trigger	a	call	to	a	method	named
buyClick	which	now	needs	to	be	implemented	in	the	InAppBillingActivity.java
file.	In	addition	to	initiating	the	purchase	process	in	this	method,	it	will	be
necessary	to	implement	an	onActivityResult	method	and	also	a	listener	method	to
be	called	when	the	purchase	has	completed.
Begin	by	editing	the	InAppBillingActivity.java	file	and	adding	the	code	for	the
buyClick	method	so	that	it	reads	as	follows:

.

.

.

public	class	InAppBillingActivity	extends	AppCompatActivity	{

							private	static	final	String	TAG	=	"InAppBilling";

							IabHelper	mHelper;

							static	final	String	ITEM_SKU	=	"android.test.purchased";

.

.

.

							public	void	buyClick(View	view)	{

												mHelper.launchPurchaseFlow(this,	ITEM_SKU,	10001,		

																									mPurchaseFinishedListener,

																														"mypurchasetoken");

							}

.

.

.

}

Clearly,	all	this	method	needs	to	do	is	make	a	call	to	the	launchPurchaseFlow
method	of	our	mHelper	instance.	The	arguments	passed	through	to	the	method
are	as	follows:
·									A	reference	to	the	enclosing	Activity	instance	from	which	the	method	is

being	called.
·									The	SKU	that	identifies	the	product	that	is	being	purchased.	In	this	instance

we	are	going	to	use	a	standard	SKU	provided	by	Google	for	testing	purposes.
This	SKU,	referred	to	as	a	static	response	SKU,	will	always	result	in	a
successful	purchase.	Other	testing	SKUs	available	for	use	when	testing
purchasing	functionality	without	making	real	purchases	are
android.test.cancelled,	android.test.refunded	and
android.test.item_unavailable.

·									The	request	code	which	can	be	any	positive	integer	value.	When	the	purchase
has	completed,	the	onActivityResult	method	will	be	called	and	passed	this
integer	along	with	the	purchase	response.	This	allows	the	method	to	identify
which	purchase	process	is	returning	and	can	be	useful	when	the	method	needs
to	be	able	to	handle	purchasing	for	different	items.

·									The	listener	method	to	be	called	when	the	purchase	is	complete.
·									The	developer	payload	token	string.	This	can	be	any	string	value	and	is	used

to	identify	the	purchase.	For	the	purposes	of	this	example,	this	is	set	to
“mypurchasetoken”.

75.12	Implementing	the	onActivityResult	Method
When	the	purchasing	process	returns,	it	will	call	a	method	on	the	calling	activity
named	onActivityResult,	passing	through	as	arguments	the	request	code	passed
through	to	the	launchPurchaseFlow	method,	a	result	code	and	intent	data
containing	the	purchase	response.
This	method	needs	to	identify	if	it	was	called	as	a	result	of	an	in-app	purchase
request	or	some	request	unrelated	to	in-app	billing.	It	does	this	by	calling	the

handleActivityResult	method	of	the	mHelper	instance	and	passing	through	the
incoming	arguments.	If	this	is	a	purchase	request	the	mHelper	will	handle	it	and
return	a	true	value.	If	this	is	not	the	result	of	a	purchase,	then	the	method	needs
to	pass	it	up	to	the	superclass	to	be	handled.	Bringing	this	together	results	in	the
following	code:

@Override

protected	void	onActivityResult(int	requestCode,	int

resultCode,

					Intent	data)

{

						if	(!mHelper.handleActivityResult(requestCode,

														resultCode,	data))	{				

													super.onActivityResult(requestCode,	resultCode,

data);

						}

}

In	the	event	that	the	onActivityResult	method	was	called	in	response	to	an	in-
app	billing	purchase,	a	call	will	then	be	made	to	the	listener	method	referenced
in	the	call	to	the	launchPurchaseFlow	method	(in	this	case	a	method	named
mPurchaseFinishedListener).	The	next	task,	therefore,	is	to	implement	this
method.

75.13	Implementing	the	Purchase	Finished	Listener
The	“purchase	finished”	listener	must	perform	a	number	of	different	tasks.	In	the
first	instance,	it	must	check	to	ensure	that	the	purchase	was	successful.	It	then
needs	to	check	the	SKU	of	the	purchased	item	to	make	sure	it	matches	the	one
specified	in	the	purchase	request.	In	the	event	of	a	successful	purchase,	the
method	will	need	to	consume	the	purchase	so	that	the	user	can	purchase	it	again
when	another	one	is	needed.	If	the	purchase	is	not	consumed,	future	attempts	to
purchase	the	item	will	fail	stating	that	the	item	has	already	been	purchased.
While	this	would	be	desired	behavior	if	the	user	only	needed	to	purchase	the
item	once,	clearly	this	is	not	the	behavior	required	for	consumable	purchases.
Finally,	the	method	needs	to	enable	the	“Click	Me!”	button	so	that	the	user	can
perform	the	button	click	that	was	purchased.
Within	the	InAppBillingActivity.java	file,	implement	this	method	as	follows:

IabHelper.OnIabPurchaseFinishedListener

mPurchaseFinishedListener

							=	new	IabHelper.OnIabPurchaseFinishedListener()	{

							public	void	onIabPurchaseFinished(IabResult	result,

																				Purchase	purchase)

							{

										if	(result.isFailure())	{

													//	Handle	error

													return;

								}					

								else	if	(purchase.getSku().equals(ITEM_SKU))	{

												consumeItem();

											buyButton.setEnabled(false);

							}

												

			}

};

As	can	be	seen	from	the	above	code	fragment,	in	the	event	that	the	purchase	was
successful,	a	method	named	consumeItem()	will	be	called.	Clearly,	the	next	step
is	to	implement	this	method.

75.14	Consuming	the	Purchased	Item
In	the	documentation	for	Google	Play	In-app	Billing,	Google	recommends	that
consumable	items	be	consumed	before	providing	the	user	with	access	to	the
purchased	item.	So	far	in	this	tutorial	we	have	performed	the	purchase	of	the
item	but	not	yet	consumed	it.	In	the	event	of	a	successful	purchase,	the
mPurchaseFinishedListener	implementation	has	been	configured	to	call	a
method	named	consumeItem().	It	will	be	the	responsibility	of	this	method	to
query	the	billing	system	to	make	sure	that	the	purchase	has	been	made.	This
involves	making	a	call	to	the	queryInventoryAsync()	method	of	the	mHelper
object.	This	task	is	performed	asynchronously	from	the	application’s	main
thread	and	a	listener	method	called	when	the	task	is	complete.	If	the	item	has
been	purchased,	the	listener	will	consume	the	item	via	a	call	to	the
consumeAsync()	method	of	the	mHelper	object.	Bringing	these	requirements
together	results	in	the	following	additions	to	the	InAppBillingActivity.java	file:

public	void	consumeItem()	{

							mHelper.queryInventoryAsync(mReceivedInventoryListener);

}

						

IabHelper.QueryInventoryFinishedListener

mReceivedInventoryListener

			=	new	IabHelper.QueryInventoryFinishedListener()	{

										public	void	onQueryInventoryFinished(IabResult

result,

													Inventory	inventory)	{

																	

													if	(result.isFailure())	{

																//	Handle	failure

													}	else	{

																

mHelper.consumeAsync(inventory.getPurchase(ITEM_SKU),

																						mConsumeFinishedListener);

													}

				}

};

As	with	the	query,	the	consumption	task	is	also	performed	asynchronously	and,
in	this	case,	is	configured	to	call	a	listener	named	mConsumeFinishedListener
when	completed.	This	listener	now	needs	to	be	implemented	such	that	it	enables
the	“Click	Me!”	button	after	the	item	has	been	consumed	in	the	billing	system:

IabHelper.OnConsumeFinishedListener	mConsumeFinishedListener	=

									new	IabHelper.OnConsumeFinishedListener()	{

										public	void	onConsumeFinished(Purchase	purchase,

													IabResult	result)	{

								if	(result.isSuccess())	{

																	clickButton.setEnabled(true);

								}	else	{

																//	handle	error

								}

		}

};

75.15	Releasing	the	IabHelper	Instance
Throughout	this	tutorial,	much	of	the	work	has	been	performed	by	calling
methods	on	an	instance	of	the	IabHelper	utility	class	named	mHelper.	Now	that
the	code	to	handle	purchasing	and	subsequent	consumption	of	a	virtual	item	is
complete,	the	last	task	is	to	make	sure	this	object	is	released	when	the	activity	is
destroyed.	Remaining	in	the	InAppBillingActivity.java	file,	override	the
onDestroy()	activity	lifecycle	method	as	follows:

@Override

public	void	onDestroy()	{

							super.onDestroy();

							if	(mHelper	!=	null)	mHelper.dispose();

							mHelper	=	null;

}

75.16	Modifying	the	Security.java	File
When	an	application	is	compiled	and	installed	on	a	device	from	within	Android
Studio,	it	is	built	and	executed	in	debug	mode.	When	the	application	is	complete

it	is	then	built	in	release	mode	and	uploaded	to	the	Google	Play	App	Store	as
described	in	the	chapter	entitled	Signing	and	Preparing	an	Android	Application
for	Release.
As	the	InAppBilling	application	is	currently	configured,	purchases	are	being
made	using	the	android.test.purchased	static	response	SKU	code.	It	is	important
to	be	aware	that	static	response	SKUs	can	only	be	used	when	running	an
application	in	debug	mode.	As	will	be	outlined	later,	new	in-app	products	must
be	created	within	the	Google	Play	Developer	Console	before	full	testing	can	be
performed	in	release	mode.
The	current	version	of	the	utility	classes	provided	with	the	TrivialDrive	example
application	include	an	added	level	of	security	that	prevents	purchases	from	being
made	without	a	valid	signature	key	being	returned	from	the	Google	Play	billing
server.	A	side	effect	of	this	change	is	that	it	prevents	the	code	from	functioning
when	using	the	static	response	SKU	values.	Before	testing	the	application	in
debug	mode,	therefore,	a	few	extra	lines	of	code	need	to	be	added	to	the
verifyPurchase()	method	in	the	Security.java	file.	Within	the	Android	Studio
Project	tool	window,	select	the	Security.java	file	located	in	the	app	->	java	->
<package	name>	->	util	folder	of	the	project	to	load	it	into	the	editor.	Once
loaded,	locate	and	modify	the	verifyPurchase()	method	so	that	it	reads	as
follows:

package	com.ebookfrenzy.inappbilling.util;

import	android.text.TextUtils;

import	android.util.Log;

import	org.json.JSONException;

import	org.json.JSONObject;

import	<your	domain>.inappbilling.BuildConfig;

	

import	java.security.InvalidKeyException;

import	java.security.KeyFactory;

import	java.security.NoSuchAlgorithmException;

import	java.security.PublicKey;

import	java.security.Signature;

import	java.security.SignatureException;

import	java.security.spec.InvalidKeySpecException;

import	java.security.spec.X509EncodedKeySpec;

.

.

.

				public	static	boolean	verifyPurchase(String

base64PublicKey,

										String	signedData,	String	signature)	{

								if	(TextUtils.isEmpty(signedData)	||

																TextUtils.isEmpty(base64PublicKey)	||

																TextUtils.isEmpty(signature))	{

												Log.e(TAG,	"Purchase	verification	failed:	missing

data.");

												if	(BuildConfig.DEBUG)	{

																return	true;

												}

												return	false;

								}

								PublicKey	key	=

Security.generatePublicKey(base64PublicKey);

								return	Security.verify(key,	signedData,	signature);

				}

This	will	ensure	that	when	the	application	is	running	in	debug	mode	the	method
does	not	report	an	error	if	the	signature	is	missing	when	a	static	response	SKU
purchase	is	verified.	By	checking	for	debug	mode	in	this	code,	we	ensure	that
this	security	check	will	function	as	intended	when	the	application	is	built	in
release	mode.

75.17	Testing	the	In-app	Billing	Application
Compile	and	run	the	application	on	a	physical	Android	device	with	Google	Play
support	and	click	on	the	“Buy	a	Click”	button.	This	should	cause	the	Google
Play	purchase	dialog	to	appear	listing	the	test	item	as	illustrated	in	Figure	75-8:

Figure	75-8

Click	on	the	Buy	button	to	simulate	a	purchase	at	which	point	a	Payment
Successful	message	(Figure	75-9)	should	appear	after	which	it	should	be
possible	to	click	on	the	“Click	Me!”	button	once.

Figure	75-9
Having	consumed	the	click,	it	will	be	necessary	to	purchase	another	click	in
order	to	once	again	enable	the	button.

75.18	Building	a	Release	APK
Up	until	this	point	the	example	application	created	in	this	chapter	has	used	a
static	response	testing	SKU	provided	by	Google	for	early	stage	testing	of	in-app
billing.	The	next	step	is	to	create	a	real	in-app	billing	product	SKU	code	for	a
virtual	item	and	use	this	when	testing	the	application.	Before	creating	an	in-app
billing	product,	however,	the	application	code	needs	to	be	changed	slightly	so
that	it	uses	a	real	SKU	instead	of	the	static	response	SKU.	The	product	SKU	that
will	be	used	in	the	remainder	of	this	chapter	will	be	named
com.example.buttonclick,	so	edit	the	InAppBillingActivity.java	file	and	modify
the	SKU	reference	accordingly:

public	class	InAppBillingActivity	extends	Activity	{

							private	static	final	String	TAG	=

														"InAppBilling";

							IabHelper	mHelper;

							static	final	String	ITEM_SKU	=	"android.test.purchased";

							static	final	String	ITEM_SKU	=

"com.example.buttonclick";

						

							private	Button	clickButton;

							private	Button	buyButton;

.

.

.					

Before	any	products	can	be	created,	a	release	APK	file	for	the	application	must
first	be	uploaded	to	the	developer	console.	In	order	to	prepare	this	release	APK
file	for	the	InAppBilling	application,	follow	the	steps	outlined	in	the	chapter
entitled	Signing	and	Preparing	an	Android	Application	for	Release.
Once	the	APK	file	has	been	created,	select	the	previously	registered	application
from	the	list	of	applications	in	the	Google	Play	Developer	Console	and,	from	the
resulting	screen,	click	on	the	APK	link	in	the	left-hand	panel	and	upload	the
release	APK	file	to	the	console.

75.19	Creating	a	New	In-app	Product
Once	the	APK	file	has	been	uploaded,	select	the	In-app	Products	menu	item
from	the	left-hand	panel	of	the	developer	console	to	display	the	screen	shown	in
Figure	75-10:

Figure	75-10
To	add	a	new	product,	click	on	the	Add	new	product	button	and,	in	the	resulting
panel,	set	the	product	type	to	Managed	product	and	enter	a	Product	ID	(in	this
case	com.example.buttonclick).	Click	on	Continue	and	in	the	second	screen	enter
a	title,	description	and	price	for	the	item.	Change	the	menu	at	the	top	of	the	page
to	Activate.
On	returning	to	the	In-app	Products	home	screen,	the	new	product	should	now
be	listed:

Figure	75-11

75.20	Publishing	the	Application	to	the	Alpha	Distribution
Channel
The	application	APK	file	is	currently	stored	within	the	Google	Play	Developer
Console	in	Draft	mode.	Before	it	can	be	used	for	further	testing	using	real	in-app
products,	the	application	must	be	published	to	either	the	Alpha	or	Beta	testing
distribution	channels.	These	channels	make	the	application	available	for	testing
by	designated	groups	of	users.
Before	an	application	APK	can	be	submitted	to	either	of	the	testing	channels,	the
store	listing,	pricing	and	distribution	information	for	the	application	must	be
completed.	To	meet	this	requirement,	select	the	application	from	the	Google
Play	Developer	Console	and	click	on	the	Store	Listing	link	in	the	left-hand
navigation	panel.	From	within	this	screen,	fill	out	the	mandatory	information
(those	areas	marked	with	an	asterisk)	and	upload	the	necessary	images.	Once	the
form	is	complete,	click	on	the	Save	button	located	at	the	top	of	the	page.	To
configure	the	pricing	and	distribution	information,	select	the	Pricing	&

Distribution	option	from	the	side	panel	and	complete	the	necessary	fields.
When	the	required	information	has	been	provided,	the	application	is	eligible	to
be	published	in	the	testing	distribution	channels.	Once	all	the	information	has
been	saved,	the	button	in	the	top	right-hand	corner	of	the	screen	should	have
changed	from	Draft	to	Ready	to	Publish.	If	the	button	still	reads	Draft,	click	on
it	and	select	“Why	can’t	I	publish?”	from	the	menu.	This	option	will	list	any
issues	that	need	to	be	resolved	before	the	application	can	be	published.
Once	any	issues	have	been	addressed,	click	on	the	Publish	app	button.	Note	that
it	can	take	several	hours	before	the	application	is	actually	published	to	the
channel	and	available	to	respond	to	in-app	purchase	request	made	by	testers.

75.21	Adding	In-app	Billing	Test	Accounts
Unfortunately,	Google	will	not	allow	developers	to	make	test	purchases	using
real	product	SKUs	from	their	own	Google	accounts.	In	order	to	test	in-app
billing	from	this	point	on,	it	will	be	necessary	to	setup	other	Google	accounts	as
testing	accounts.	The	users	of	these	accounts	must	load	your	application	onto
their	devices	and	make	test	purchases.	To	add	individual	test	user	accounts,	click
on	the	Settings	option	located	on	the	left-hand	side	of	your	Google	Play
Developer	Console	home	screen	and	on	the	account	details	screen	scroll	down	to
the	License	Testing	section.	In	the	corresponding	text	box,	enter	the	Gmail
accounts	for	the	users	who	will	be	performing	the	in-app	testing	on	your	behalf
before	saving	the	changes.
In	the	absence	of	real	users	willing	to	test	your	application,	it	is	also	possible	to
set	up	a	new	Google	account	for	testing	purposes.	Simply	create	a	new	Gmail
account	that	is	not	connected	in	any	way	with	your	existing	Google	account
identity.	Once	the	account	has	been	created	and	added	as	a	test	account	in	the
Google	Play	Developer	Console,	open	the	Settings	application	on	the	physical
Android	device,	select	Users	from	the	list	of	options	and,	on	the	Users	screen,
click	on	the	Add	user	option.	Enter	the	new	Gmail	account	and	password
information	to	create	the	new	user	on	the	device.	Return	to	the	device	lock
screen	and	log	into	the	device	as	the	test	user	by	selecting	the	appropriate	icon	at
the	bottom	of	the	screen.	Note	that	during	the	test	purchase,	it	will	be	necessary
to	enter	credit	card	information	for	the	new	user	in	order	to	be	able	to	fully	test
the	in-app	billing	implementation.
Once	the	user	has	been	added	as	a	test	account,	the	next	step	is	to	load	the
previously	generated	release	APK	file	onto	the	device.	Begin	by	enabling	the
device	for	USB	debugging	by	following	the	steps	in	the	chapter	entitled	Testing

Android	Studio	Apps	on	a	Physical	Android	Device.	Once	enabled,	attach	the
device	to	the	development	system	and	remove	any	previous	versions	of	the
application	from	the	device	by	running	the	following	in	a	terminal	or	command
prompt	window,	where	<package	name>	is	the	full	package	name	of	the
application	(for	example	<your	domain>.inappbilling):

adb	uninstall	<package	name>

Next,	upload	the	release	APK	created	earlier	in	this	chapter	by	running	the
following	command:

adb	–d	install	pathto/release/apkfile.apk

Once	the	application	is	installed,	locate	it	among	the	applications	on	the	device
and	launch	it.	As	long	as	the	application	remains	in	testing	status	within	the
Google	Play	Developer	console	no	charges	will	be	incurred	by	the	user	while
testing	the	in-app	billing	functionality	of	the	application.	Note	that	the	Google
Play	dialog	(Figure	75-12)	now	lists	the	product	title	and	price	as	declared	for
the	product	in	the	Google	Play	Developer	Console:

Figure	75-12
Any	test	purchases	made	in	this	way	will	be	listed	within	the	developer’s	Google
Wallet	account	but	will	not	be	billed	to	the	user	performing	the	testing.	Any
transactions	not	cancelled	manually	within	Google	Wallet	will	be	cancelled
automatically	after	14	days.

75.22	Configuring	Group	Testing
Testing	can	be	expanded	beyond	the	limits	of	a	single	test	account,	thereby
allowing	larger	groups	to	be	involved	in	the	testing	of	a	new	application.	These
can	be	specified	as	lists	of	users	or	as	groups	of	members	of	a	Google	Group	or

Google+	Community.	To	configure	such	a	group,	access	the	application	settings
within	the	Google	Play	Developer	Console	and	select	the	APK	item	in	the	left-
hand	navigation	panel.	Select	either	the	beta	or	alpha	testing	tab	(depending	on
which	testing	distribution	channel	you	are	currently	using)	and	select	one	and
configure	one	of	the	three	testing	options	(closed,	open	or	group)	testing	options
as	highlighted	in	Figure	75-13:

Figure	75-13

75.23	Resolving	Problems	with	In-App	Purchasing
Implementation	of	Google	Play	in-app	purchasing	is	a	multistep	process	where

Implementation	of	Google	Play	in-app	purchasing	is	a	multistep	process	where
even	the	simplest	of	mistakes	can	lead	to	unsuccessful	and	confusing	results.
There	are,	however,	a	number	of	steps	that	can	be	taken	to	identify	and	resolve
issues.	It	is	important	to	note	that	Google	occasionally	changes	the	mechanism
for	implementing	and	testing	in-app	purchasing.	Before	spending	too	much
debugging	time	it	is	always	worth	checking	the	Announcements	section	in	the
Google	Play	Developer	Console	to	see	if	anything	has	changed	since	this	book
was	written.
If	in-app	purchasing	is	still	not	working,	the	next	step	is	to	ensure	that	the	license
key	in	the	Google	Play	developer	console	matches	that	contained	in	the
application	code.	If	the	key	is	not	an	exact	match,	purchase	attempts	will	fail.
Also	keep	in	mind	that	it	can	take	a	few	hours	after	an	application	has	been
published	to	a	testing	distribution	channel	before	it	will	be	available	for	testing
purposes.
When	testing,	it	is	also	important	to	keep	in	mind	that	static	response	SKU	codes
only	work	when	the	application	is	running	in	debug	mode.	Similarly,	real	SKU
product	codes	created	in	the	developer	console	can	only	be	purchased	from
within	a	release	version	of	the	application	running	under	an	account	that	has
been	authorized	from	within	the	developer	console.	This	account	must	not	be	the
same	as	that	of	the	application	developer	registered	with	the	Google	Play
developer	console.
If	problems	persist,	check	the	output	on	the	Android	Studio	LogCat	panel	while
the	application	is	running	in	debug	mode.	The	in-app	purchase	utility	classes
provide	useful	feedback	in	most	failure	situations.	The	level	of	diagnostic	detail
can	be	increased	by	adding	the	following	line	of	code	to	the	in-app	billing
initialization	sequence:

mHelper.enableDebugLogging(true,	TAG);	

For	example:
mHelper.startSetup(new

							IabHelper.OnIabSetupFinishedListener()	{

								public	void	onIabSetupFinished(IabResult	result)

									{

														if	(!result.isSuccess())	{

																	Log.d(TAG,	"In-app	Billing	setup	failed:	"	+

																														result);

									}	else	{												

																			Log.d(TAG,	"In-app	Billing	is	set	up	OK");

																			mHelper.enableDebugLogging(true,	TAG);

									}

			}

		});

}

Finally,	it	is	not	unusual	for	the	developer	to	find	that	code	that	worked	in	debug
mode	using	static	responses	fails	when	in	release	mode	with	real	SKU	values.	In
this	situation,	the	LogCat	output	from	the	running	release	mode	application	can
be	viewed	in	real-time	by	connecting	the	device	to	the	development	computer
and	running	the	following	adb	command	in	a	terminal	or	command	prompt
window:

adb	logcat

Generally,	the	diagnostic	messages	will	provide	a	good	starting	point	to	identify
potential	causes	of	most	failures.

75.24	Summary
The	Google	Play	In-app	Billing	API	provides	a	mechanism	by	which	users	can
be	charged	for	virtual	goods	or	services	from	within	applications.	In-app
products	can	be	configured	to	be	subscription	based,	one-time	purchase	only,	or
consumable	(in	that	the	item	needs	to	re-purchased	after	it	is	used	within	the
application).
This	chapter	worked	through	the	steps	involved	in	preparing	for	and
implementing	Google	Play	in-app	billing	within	an	Android	application.

76.	An	Overview	of	Gradle	in	Android	Studio

Up	until	this	point	it	has,	for	the	most	part,	been	taken	for	granted	that	Android
Studio	will	take	the	necessary	steps	to	compile	and	run	the	application	projects
that	have	been	created.	Android	Studio	has	been	achieving	this	in	the
background	using	a	system	known	as	Gradle.
It	is	now	time	to	look	at	how	Gradle	is	used	to	compile	and	package	together	the
various	elements	of	an	application	project	and	to	begin	exploring	how	to
configure	this	system	when	more	advanced	requirements	are	needed	in	terms	of
building	projects	in	Android	Studio.

76.1	An	Overview	of	Gradle
Gradle	is	an	automated	build	toolkit	that	allows	the	way	in	which	projects	are
built	to	be	configured	and	managed	through	a	set	of	build	configuration	files.
This	includes	defining	how	a	project	is	to	be	built,	what	dependencies	need	to	be
fulfilled	for	the	project	to	build	successfully	and	what	the	end	result	(or	results)
of	the	build	process	should	be.
The	strength	of	Gradle	lies	in	the	flexibility	that	it	provides	to	the	developer.	The
Gradle	system	is	a	self-contained,	command-line	based	environment	that	can	be
integrated	into	other	environments	through	the	use	of	plugins.	In	the	case	of
Android	Studio,	Gradle	integration	is	provided	through	the	appropriately	named
Android	Studio	Plug-in.
Although	the	Android	Studio	Plug-in	allows	Gradle	tasks	to	be	initiated	and
managed	from	within	Android	Studio,	the	Gradle	command-line	wrapper	can
still	be	used	to	build	Android	Studio	based	projects,	including	on	systems	on
which	Android	Studio	is	not	installed.
The	configuration	rules	to	build	a	project	are	declared	in	Gradle	build	files	and
scripts	based	on	the	Groovy	programming	language.

76.2	Gradle	and	Android	Studio
Gradle	brings	a	number	of	powerful	features	to	building	Android	application
projects.	Some	of	the	key	features	are	as	follows:

76.2.1	Sensible	Defaults
Gradle	implements	a	concept	referred	to	as	convention	over	configuration.	This
simply	means	that	Gradle	has	a	pre-defined	set	of	sensible	default	configuration

settings	that	will	be	used	unless	they	are	overridden	by	settings	in	the	build	files.
This	means	that	builds	can	be	performed	with	the	minimum	of	configuration
required	by	the	developer.	Changes	to	the	build	files	are	only	needed	when	the
default	configuration	does	not	meet	your	build	needs.

76.2.2	Dependencies
Another	key	area	of	Gradle	functionality	is	that	of	dependencies.	Consider,	for
example,	a	module	within	an	Android	Studio	project	which	triggers	an	intent	to
load	another	module	in	the	project.	The	first	module	has,	in	effect,	a	dependency
on	the	second	module	since	the	application	will	fail	to	build	if	the	second
module	cannot	be	located	and	launched	at	runtime.	This	dependency	can	be
declared	in	the	Gradle	build	file	for	the	first	module	so	that	the	second	module	is
included	in	the	application	build,	or	an	error	flagged	in	the	event	the	second
module	cannot	be	found	or	built.	Other	examples	of	dependencies	are	libraries
and	JAR	files	on	which	the	project	depends	in	order	to	compile	and	run.
Gradle	dependencies	can	be	categorized	as	local	or	remote.	A	local	dependency
references	an	item	that	is	present	on	the	local	file	system	of	the	computer	system
on	which	the	build	is	being	performed.	A	remote	dependency	refers	to	an	item
that	is	present	on	a	remote	server	(typically	referred	to	as	a	repository).
Remote	dependencies	are	handled	for	Android	Studio	projects	using	another
project	management	tool	named	Maven.	If	a	remote	dependency	is	declared	in	a
Gradle	build	file	using	Maven	syntax	then	the	dependency	will	be	downloaded
automatically	from	the	designated	repository	and	included	in	the	build	process.
The	following	dependency	declaration,	for	example,	causes	the
ConstraintLayout	library	to	be	added	to	the	project	from	the	Google	repository:

compile	'com.android.support.constraint:constraint-

layout:1.0.0'

76.2.3	Build	Variants
In	addition	to	dependencies,	Gradle	also	provides	build	variant	support	for
Android	Studio	projects.	This	allows	multiple	variations	of	an	application	to	be
built	from	a	single	project.	Android	runs	on	many	different	devices
encompassing	a	range	of	processor	types	and	screen	sizes.	In	order	to	target	as
wide	a	range	of	device	types	and	sizes	as	possible	it	will	often	be	necessary	to
build	a	number	of	different	variants	of	an	application	(for	example,	one	with	a
user	interface	for	phones	and	another	for	tablet	sized	screens).	Through	the	use
of	Gradle,	this	is	now	possible	in	Android	Studio.

76.2.4	Manifest	Entries

Each	Android	Studio	project	has	associated	with	it	an	AndroidManifest.xml	file
containing	configuration	details	about	the	application.	A	number	of	manifest
entries	can	be	specified	in	Gradle	build	files	which	are	then	auto-generated	into
the	manifest	file	when	the	project	is	built.	This	capability	is	complementary	to
the	build	variants	feature,	allowing	elements	such	as	the	application	version
number,	application	ID	and	SDK	version	information	to	be	configured
differently	for	each	build	variant.

76.2.5	APK	Signing
The	chapter	entitled	Signing	and	Preparing	an	Android	Application	for	Release
covered	the	creation	of	a	signed	release	APK	file	using	the	Android	Studio
environment.	It	is	also	possible	to	include	the	signing	information	entered
through	the	Android	Studio	user	interface	within	a	Gradle	build	file	so	that
signed	APK	files	can	be	generated	from	the	command-line.

76.2.6	ProGuard	Support
ProGuard	is	a	tool	included	with	Android	Studio	that	optimizes,	shrinks	and
obfuscates	Java	byte	code	to	make	it	more	efficient	and	harder	to	reverse
engineer	(the	method	by	which	the	logic	of	an	application	can	be	identified	by
others	through	analysis	of	the	compiled	Java	byte	code).	The	Gradle	build	files
provide	the	ability	to	control	whether	or	not	ProGuard	is	run	on	your	application
when	it	is	built.

76.3	The	Top-level	Gradle	Build	File
A	completed	Android	Studio	project	contains	everything	needed	to	build	an
Android	application	and	consists	of	modules,	libraries,	manifest	files	and	Gradle
build	files.
Each	project	contains	one	top-level	Gradle	build	file.	This	file	is	listed	as
build.gradle	(Project:	<project	name>)	and	can	be	found	in	the	project	tool
window	as	highlighted	in	Figure	76-1:

Figure	76-1

By	default,	the	contents	of	the	top	level	Gradle	build	file	read	as	follows:
//	Top-level	build	file	where	you	can	add	configuration	options

common	to	all	sub-projects/modules.

buildscript	{

				repositories	{

								jcenter()

				}

				dependencies	{

								classpath	'com.android.tools.build:gradle:2.3.0'

								//	NOTE:	Do	not	place	your	application	dependencies

here;	they	belong

								//	in	the	individual	module	build.gradle	files

				}

}

allprojects	{

				repositories	{

								jcenter()

				}

}

task	clean(type:	Delete)	{

				delete	rootProject.buildDir

}

As	it	stands	all	the	file	does	is	declare	that	remote	libraries	are	to	be	obtained
using	the	jcenter	repository	and	that	builds	are	dependent	on	the	Android	plugin
for	Gradle.	In	most	situations	it	is	not	necessary	to	make	any	changes	to	this
build	file.

76.4	Module	Level	Gradle	Build	Files
An	Android	Studio	application	project	is	made	up	of	one	or	more	modules.
Take,	for	example,	a	hypothetical	application	project	named	GradleDemo	which
contains	two	modules	named	Module1	and	Module2	respectively.	In	this
scenario,	each	of	the	modules	will	require	its	own	Gradle	build	file.	In	terms	of
the	project	structure,	these	would	be	located	as	follows:
·									Module1/build.gradle
·									Module2/build.gradle
By	default,	the	Module1	build.gradle	file	would	resemble	that	of	the	following
listing:

apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	25

				buildToolsVersion	"25.0.2"

				defaultConfig	{

								applicationId	"com.ebookfrenzy.module1"

								minSdkVersion	8

								targetSdkVersion	25

								versionCode	1

								versionName	"1.0"

				}

				buildTypes	{

								release	{

												minifyEnabled	false

												proguardFiles	getDefaultProguardFile('proguard-

android.txt'),	'proguard-rules.pro'

								}

				}

}

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

				testCompile	'junit:junit:4.12'

				compile	'com.android.support:appcompat-v7:25.2.0'

				compile	'com.android.support:design:25.2.0'

}

As	is	evident	from	the	file	content,	the	build	file	begins	by	declaring	the	use	of
the	Gradle	Android	plug-in:

apply	plugin:	'com.android.application'

The	android	section	of	the	file	then	states	the	version	of	both	the	SDK	and	the
Android	Build	Tools	that	are	to	be	used	when	building	Module1.

android	{

				compileSdkVersion	25

				buildToolsVersion	"25.0.2"

The	items	declared	in	the	defaultConfig	section	define	elements	that	are	to	be
generated	into	the	module’s	AndroidManifest.xml	file	during	the	build.	These
settings,	which	may	be	modified	in	the	build	file,	are	taken	from	the	settings
entered	within	Android	Studio	when	the	module	was	first	created:

defaultConfig	{

				applicationId	"com.ebookfrenzy.gradledemo.module1"

				minSdkVersion	8

				targetSdkVersion	25

				versionCode	1

				versionName	"1.0"

}

The	buildTypes	section	contains	instructions	on	whether	and	how	to	run
ProGuard	on	the	APK	file	when	a	release	version	of	the	application	is	built:

buildTypes	{

				release	{

								runProguard	false

								proguardFiles	getDefaultProguardFile('proguard-

android.txt'),

																						'proguard-rules.pro'

				}

}

As	currently	configured,	ProGuard	will	not	be	run	when	Module1	is	built.	To
enable	ProGuard,	the	runProguard	entry	needs	to	be	changed	from	false	to	true.

The	proguard-rules.pro	file	can	be	found	in	the	module	directory	of	the	project.
Changes	made	to	this	file	override	the	default	settings	in	the	proguard-
android.txt	file	which	is	located	on	the	Android	SDK	installation	directory	under
sdk/tools/proguard.
Since	no	debug	buildType	is	declared	in	this	file,	the	defaults	will	be	used	(built
without	ProGuard,	signed	with	a	debug	key	and	with	debug	symbols	enabled).
An	additional	section,	entitled	productFlavors	may	also	be	included	in	the
module	build	file	to	enable	multiple	build	variants	to	be	created.	This	topic	will
be	covered	in	the	next	chapter	entitled	An	Android	Studio	Gradle	Build	Variants
Example.
Finally,	the	dependencies	section	lists	any	local	and	remote	dependencies	on
which	the	module	is	dependent.	The	first	dependency	reads	as	follows:

compile	fileTree(dir:	'libs',	include:	['*.jar'])

This	is	a	standard	line	that	tells	the	Gradle	system	that	any	JAR	file	located	in
the	module’s	lib	subdirectory	is	to	be	included	in	the	project	build.	If,	for
example,	a	JAR	file	named	myclasses.jar	was	present	in	the
GradleDemo/Module1/lib	folder	of	the	project,	that	JAR	file	would	be	treated	as
a	module	dependency	and	included	in	the	build	process.
A	dependency	on	other	modules	within	the	same	application	project	may	also	be
declared	within	the	build	file.	If,	for	example,	Module1	has	a	dependency	on
Module2,	the	following	line	would	need	to	be	added	to	the	dependencies	section
of	the	Module1	build.gradle	file:

compile	project(":Module2")

The	last	dependency	lines	in	the	above	example	file	use	Maven	syntax	to
designate	that	the	Android	Support	and	Design	libraries	need	to	be	included
from	the	Android	Repository:

compile	'com.android.support:appcompat-v7:25.2.0'

compile	'com.android.support:design:25.2.0'

Another	common	repository	requirement	is	the	Google	Play	Services	library,	a
dependency	which	can	be	declared	as	follows:

compile	'com.google.android.gms:play-services:+'

Note	that	the	dependency	declaration	can	include	an	optional	version	number	to
indicate	which	version	of	the	library	should	be	included.	No	particular	version	is
specified	above	for	the	play	services	(resulting	in	the	most	recent	version	being
obtained	from	the	repository).

76.5	Configuring	Signing	Settings	in	the	Build	File
The	Signing	and	Preparing	an	Android	Application	for	Release	chapter	of	this
book	covered	the	steps	involved	in	setting	up	keys	and	generating	a	signed
release	APK	file	using	the	Android	Studio	user	interface.	These	settings	may
also	be	declared	within	a	signingSettings	section	of	the	build.gradle	file.	For
example:

apply	plugin:	'android'

android	{

				compileSdkVersion	25

				buildToolsVersion	"25.0.2"

				defaultConfig	{

								applicationId	"com.ebookfrenzy.gradledemo.module1"

								minSdkVersion	8

								targetSdkVersion	25

								versionCode	1

								versionName	"1.0"

				}

				signingConfigs	{

								release	{

												storeFile	file("keystore.release")

												storePassword	"your	keystore	password	here"

												keyAlias	"your	key	alias	here"

												keyPassword	"your	key	password	here"

								}

				}

				buildTypes	{

.

.

.

}

The	above	example	embeds	the	key	password	information	directly	into	the	build
file.	Alternatives	to	this	approach	are	to	extract	these	values	from	system
environment	variables:

signingConfigs	{

				release	{

								storeFile	file("keystore.release")

								storePassword

System.getenv("KEYSTOREPASSWD")											

								keyAlias	"your	key	alias	here"

								keyPassword	System.getenv("KEYPASSWD")

				}

}

Yet	another	approach	is	to	configure	the	build	file	so	that	Gradle	prompts	for	the
passwords	to	be	entered	during	the	build	process:

signingConfigs	{

				release	{

								storeFile	file("keystore.release")

								storePassword	System.console().readLine

																	("\nEnter	Keystore	password:	")								

								keyAlias	"your	key	alias	here"

								keyPassword	System.console().readLIne("\nEnter	Key

password:	")

				}

}

76.6	Running	Gradle	Tasks	from	the	Command-line
Each	Android	Studio	project	contains	a	Gradle	wrapper	tool	for	the	purpose	of
allowing	Gradle	tasks	to	be	invoked	from	the	command	line.	This	tool	is	located
in	the	root	directory	of	each	project	folder.	While	this	wrapper	is	executable	on
Windows	systems,	it	needs	to	have	execute	permission	enabled	on	Linux	and
Mac	OS	X	before	it	can	be	used.	To	enable	execute	permission,	open	a	terminal
window,	change	directory	to	the	project	folder	for	which	the	wrapper	is	needed
and	execute	the	following	command:

chmod	+x	gradlew

Once	the	file	has	execute	permissions,	the	location	of	the	file	will	either	need	to
be	added	to	your	$PATH	environment	variable,	or	the	name	prefixed	by	./	in
order	to	run.	For	example:

./gradlew	tasks

Gradle	views	project	building	in	terms	of	number	of	different	tasks.	A	full	listing
of	tasks	that	are	available	for	the	current	project	can	be	obtained	by	running	the
following	command	from	within	the	project	directory	(remembering	to	prefix	the
command	with	a	./	if	running	in	Mac	OS	X	or	Linux):

gradlew	tasks

To	build	a	debug	release	of	the	project	suitable	for	device	or	emulator	testing,
use	the	assembleDebug	option:

gradlew	assembleDebug

Alternatively,	to	build	a	release	version	of	the	application:

gradlew	assembleRelease

76.7	Summary
For	the	most	part,	Android	Studio	performs	application	builds	in	the	background
without	any	intervention	from	the	developer.	This	build	process	is	handled	using
the	Gradle	system,	an	automated	build	toolkit	designed	to	allow	the	ways	in
which	projects	are	built	to	be	configured	and	managed	through	a	set	of	build
configuration	files.	While	the	default	behavior	of	Gradle	is	adequate	for	many
basic	project	build	requirements,	the	need	to	configure	the	build	process	is
inevitable	with	more	complex	projects.	This	chapter	has	provided	an	overview	of
the	Gradle	build	system	and	configuration	files	within	the	context	of	an	Android
Studio	project.	The	next	chapter,	entitled	An	Android	Studio	Gradle	Build
Variants	Example	will	take	this	a	step	further	in	the	form	of	using	Gradle	to
build	different	versions	of	the	same	application	project.

77.	 An	 Android	 Studio	 Gradle	 Build	 Variants
Example

The	goal	of	this	chapter	is	to	use	the	build	variants	feature	of	Android	Studio	to
create	a	project	which	can	be	built	in	two	flavors	designed	to	target	phone	and
tablet	devices	respectively.	The	build	environment	will	be	configured	such	that
each	flavor	can	be	built	using	either	a	release	or	debug	build	type.	The	end
result,	therefore,	will	be	four	build	variant	options	available	for	selection	within
Android	Studio:
·									phoneDebug
·									phoneRelease
·									tabletDebug
·									tabletRelease
This	raises	the	question	as	to	the	difference	between	a	build	type	and	a	build
flavor.	In	general,	a	build	type	defines	how	a	module	is	built	(for	example
whether	or	not	ProGuard	is	run,	how	the	resulting	application	package	is	signed
and	whether	debug	symbols	are	to	be	included).
The	build	flavor,	on	the	other	hand,	typically	defines	what	is	built	(such	as	which
resource	and	source	code	files	are	to	be	included	in	the	build)	for	each	variant	of
the	module.
Initially	the	two	flavors	will	be	configured	such	that	they	differ	only	visually	in
terms	of	the	resources	that	are	used	for	each	target	such	as	layouts	and	string
values.	The	project	will	then	be	further	extended	to	provide	an	example	of	how
each	flavor	might	make	use	of	different	source	code	bases	in	order	to	provide
differing	application	behavior.

77.1	Creating	the	Build	Variant	Example	Project
Create	a	new	project	in	Android	Studio,	entering	BuildExample	into	the
Application	name	field	and	ebookfrenzy.com	as	the	Company	Domain	setting
before	clicking	on	the	Next	button.
On	the	form	factors	screen,	enable	the	Phone	and	Tablet	option	and	set	the
minimum	SDK	setting	to	API	19:	Android	4.4	(KitKat).	Continue	to	proceed
through	the	screens,	requesting	the	creation	of	an	Empty	Activity	named
BuildExampleActivity	with	the	remaining	fields	set	to	the	default	values.
Select	the	activity_build_example.xml	layout	file	and	load	it	into	the	Layout

Editor	tool.	Select	the	ConstraintLayout	entry	within	the	Component	Tree	tool
window	and	verify	within	the	Properties	tool	window	that	the	ID	has	been	set	to
activity_build_example,	changing	it	to	this	value	if	necessary.
Next,	change	the	text	on	the	“Hello	World!”	TextView	widget	to	“Build
Example”	and	extract	the	string	to	a	resource	named	variant_text.

77.2	Adding	the	Build	Flavors	to	the	Module	Build	File
With	the	initial	project	created,	the	next	step	is	to	configure	the	module	level
build.gradle	file	to	add	the	two	build	flavor	configurations.	Within	the	Android
Studio	Project	tool	window,	navigate	to	the	build.gradle	file	listed	as	app	->
Gradle	Scripts	->	build.gradle	(Module:	app)	(Figure	77-1)	and	double-click	on
it	to	load	it	into	the	editor:

Figure	77-1

Once	loaded	into	the	editor,	the	build	file	should	resemble	the	following	listing
(allowing	for	differences	in	some	version	numbers):

apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	25

				buildToolsVersion	"25.0.2"

				defaultConfig	{

								applicationId	"com.ebookfrenzy.buildexample"

								minSdkVersion	19

								targetSdkVersion	25

								versionCode	1

								versionName	"1.0"

								testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"

				}

				buildTypes	{

								release	{

												minifyEnabled	false

												proguardFiles	getDefaultProguardFile('proguard-

android.txt'),	'proguard-rules.pro'

								}

				}

}

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

			

androidTestCompile('com.android.support.test.espresso:espresso-

core:2.2.2',	{

								exclude	group:	'com.android.support',	module:	'support-

annotations'

				})

				compile	'com.android.support:appcompat-v7:25.2.0'

				compile	'com.android.support.constraint:constraint-

layout:1.0.0'

				testCompile	'junit:junit:4.12'

}

As	previously	outlined,	the	project	is	going	to	consist	of	two	build	types	(release
and	debug)	together	with	two	flavors	(phone	and	tablet).	As	is	evident	from	the
build	file,	the	release	build	type	is	already	declared	in	the	file	so	this	does	not
need	to	be	added.	In	practice,	Gradle	is	also	using	sensible	default	settings	for
the	debug	build	so	this	type	also	does	not	need	to	be	added	to	the	file.	All	this
leaves	is	the	requirement	to	declare	the	two	build	flavors	as	follows:

apply	plugin:	'com.android.application'

android	{

				compileSdkVersion	25

				buildToolsVersion	"25.0.2"

				defaultConfig	{

								applicationId	"com.ebookfrenzy.buildexample"

								minSdkVersion	19

								targetSdkVersion	25

								versionCode	1

								versionName	"1.0"

								testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"

				}

				buildTypes	{

								release	{

												minifyEnabled	false

												proguardFiles	getDefaultProguardFile('proguard-

android.txt'),	'proguard-rules.pro'

								}

				}

				productFlavors	{

								phone	{

												applicationId

												"com.ebookfrenzy.buildexample.app.phone"

												versionName	"1.0-phone"

								}

								tablet	{

												applicationId

												"com.ebookfrenzy.buildexample.app.tablet"

												versionName	"1.0-tablet"

								}

				}

}

dependencies	{

				compile	fileTree(dir:	'libs',	include:	['*.jar'])

			

androidTestCompile('com.android.support.test.espresso:espresso-

core:2.2.2',	{

								exclude	group:	'com.android.support',	module:	'support-

annotations'

				})

				compile	'com.android.support:appcompat-v7:25.2.0'

				compile	'com.android.support.constraint:constraint-

layout:1.0.0'

				testCompile	'junit:junit:4.12'

}

Once	the	changes	have	been	made,	a	yellow	warning	bar	will	appear	across	the
top	of	the	editor	indicating	that	the	changes	to	the	Gradle	build	file	need	to	be
synchronized	with	the	rest	of	the	project.	Click	on	the	Sync	Now	link	located	in
the	warning	panel	to	perform	the	synchronization.
Before	proceeding	to	the	next	step,	open	the	Build	Variants	tool	window	either
using	the	quick	access	menu	located	in	the	status	bar	in	the	bottom	left-hand
corner	of	the	Android	Studio	main	window	or	using	the	Build	Variant	tool
window	bar.	Once	loaded,	clicking	in	the	Build	Variant	cell	for	the	app	module
should	now	list	the	four	build	variants:

Figure	77-2

Now	that	the	build	flavors	have	been	added	to	the	project	the	project	structure
needs	to	be	extended	to	provide	support	for	these	two	new	flavors.

77.3	Adding	the	Flavors	to	the	Project	Structure
So	far	in	this	book	we	have	been	using	the	Android	Studio	Project	tool	window
in	Android	mode.	This	mode	presents	a	less	cluttered	view	of	the	directory
structure	of	a	project.	When	working	with	build	variants,	however,	it	will	be
necessary	to	switch	the	window	into	Project	mode	so	that	we	can	gain	access	to
all	of	the	directory	levels	in	the	project.	To	switch	mode,	click	on	the	button
indicated	by	the	arrow	in	Figure	77-3.

Figure	77-3

From	the	drop	down	menu,	select	the	Project	option	(Figure	77-4):

Figure	77-4

With	the	Project	tool	window	now	in	Project	mode,	right-click	on	the
BuildExample	->	app	->	src	directory,	select	the	New	->	Directory	menu	option
and	create	a	new	directory	named	phone/res/layout.	Right-click	once	again	on
the	src	directory,	this	time	adding	a	new	directory	named	phone/res/values.
Repeat	these	steps,	this	time	naming	the	new	directories	tablet/res/layout	and
tablet/res/values.	Once	complete,	the	module	section	of	the	project	structure
should	resemble	that	of	Figure	77-5:

Figure	77-5

77.4	Adding	Resource	Files	to	the	Flavors
Each	flavor	is	going	to	need	to	contain	a	copy	of	the	activity’s
activity_build_example.xml	and	strings.xml	resource	files.	Each	copy	will	then

be	modified	to	meet	the	requirements	of	the	respective	flavor.
Within	the	Project	tool	window,	navigate	to	the	app	->	src	->	main	->	res	->
layout	->	activity_build_example.xml	file,	right-click	on	it	and	select	the	Copy
menu	option.	With	the	file	copied,	right-click	on	the	src	->	phone	->	res	->
layout	folder	and	select	the	Paste	menu	option	to	add	a	copy	of	the	file	to	the
folder.	Within	the	Copy	dialog	click	on	OK	to	accept	the	defaults.	Once	copied,
modify	the	phone	layout	variant	so	that	the	TextView	widget	is	positioned	in	the
top	left-hand	corner	of	the	layout.
Using	the	same	technique,	add	a	copy	of	the	src	->	main	->	res	->	values	–>
strings.xml	file	to	the	src	->	phone	->	res	->	values	folder.
Once	the	resource	files	have	been	added,	edit	the	strings.xml	file	in	the	phone
flavor	to	change	the	variant_text	string	resource	as	follows:

<resources>

				<string	name="app_name">BuildExample</string>

				<string	name="variant_text">This	is	the	phone

flavor</string>

</resources>

Change	the	Build	Variant	setting	to	tabletDebug	and	copy	and	paste	the	phone
activity_build_example.xml	and	strings.xml	files	to	the	corresponding	locations
in	the	tablet	res	->	layout	and	res	->	values	folders	respectively.
Edit	the	tablet	flavor	strings.xml	file	so	that	the	variant_text	string	resource	reads
“This	is	the	tablet	flavor”.
With	the	changes	made,	the	flavor	section	of	the	project	structure	should	now
match	that	of	Figure	77-6:

Figure	77-6

77.5	Testing	the	Build	Flavors

At	this	point	two	flavors	have	been	configured,	each	with	different	string	and
layout	resources.	Before	moving	on	to	the	next	step,	it	is	important	to	check	that
the	two	build	variants	work	as	expected.
Within	the	Build	Variants	tool	window,	change	the	Build	Variant	setting	for	the
app	module	to	phoneDebug	before	running	the	application	on	a	device	or
emulator.	Once	running,	the	phone	flavor	of	the	user	interface	should	be
displayed	with	the	“This	is	the	phone	flavor”	message	displayed	on	the
TextView	object	located	in	the	top	left-hand	corner	of	the	screen.
Stop	the	running	app,	change	the	build	variant	to	tabletDebug	and	wait	while
Gradle	rebuilds	the	project	for	the	new	selection.	Once	the	build	completes,	run
the	application	once	again,	noting	that	this	time	the	tablet	flavor	has	been	built
with	the	“This	is	the	tablet	flavor”	message	positioned	in	the	center	of	the
display.

77.6	Build	Variants	and	Class	Files
As	the	project	currently	stands,	the	two	flavors	of	the	application	share	the	main
BuildExample	activity	class	and	all	of	the	flavor	changes	have	been	made
through	resource	files.	While	much	can	be	achieved	through	resource	file
modifications,	it	is	inevitable	that	in	many	instances	changes	in	the	source	code
will	be	necessary	from	one	flavor	to	the	next.	In	the	remainder	of	this	chapter	the
main	Activity	class	will	be	moved	into	the	flavor	variants	so	that	different	code
bases	can	be	used	for	each	flavor.

77.7	Adding	Packages	to	the	Build	Flavors
From	this	point	on,	each	of	the	build	flavors	will	have	its	own	activity	class	file
which	can	be	customized	to	meet	the	requirements	of	the	two	different	build
targets.
Within	the	Build	Variants	tool	window,	begin	by	selecting	the	phoneDebug
variant.	Move	to	the	Project	tool	window,	right-click	on	the	phone	entry	and
select	the	New	->	Directory	menu	option.	Name	the	new	directory	java	before
clicking	on	the	OK	button.
Right-click	on	the	new	java	directory,	this	time	selecting	the	New	->	Package
menu	option	and	naming	the	new	package	com.ebookfrenzy.buildexample.
Finally,	find	the	BuildExampleActivity	class	which	is	located	in	the	src	->	main	-
>	java	->	com.ebookfrenzy.buildexample	folder,	right-click	on	it	and	select	the
Copy	menu	option.	Right-click	on	the	new	package	added	to	the	phone	variant
and	select	the	Paste	menu	option	to	copy	the	Activity	source	file	into	the

package.	In	the	resulting	Copy	Class	dialog	click	on	the	OK	button	to	accept	the
default	settings.
The	phone	variant	now	has	its	own	version	of	the	activity	class.	Using	the	Build
Variants	tool	window,	change	the	build	variant	to	tabletDebug	and	repeat	the
above	steps	to	add	instances	of	the	package	and	Activity	class	file	to	the	tablet
flavor	of	the	build.
At	this	point,	Android	Studio	will	most	likely	have	started	to	complain	about
duplicate	instances	of	the	BuildExampleActivity	class.	This	is	because	in
addition	to	having	the	class	declared	within	the	flavor	variants,	the	original
instance	still	exists	within	the	main	build	folder.	Locate,	therefore,	and	delete	the
BuildExampleActivity	entry	listed	under	src	->	main	->	java	->
com.ebookfrenzy.buildexample.

77.8	Customizing	the	Activity	Classes
With	phoneDebug	selected	in	the	Build	Variants	tool	window,	load	the	phone	->
java	->	com.ebookfrenzy.buildexample	->	BuildExampleActivity	class	file	into
the	editing	window	and	modify	the	onCreate	method	to	change	the	background
color	of	the	ConstraintLayout	to	red:

package	com.ebookfrenzy.buildexample;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.graphics.Color;

import	android.support.constraint.ConstraintLayout;

	

public	class	BuildExampleActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_build_example);

								ConstraintLayout	myLayout	=

												(ConstraintLayout)

																	findViewById(R.id.activity_build_example);

								myLayout.setBackgroundColor(Color.RED);

				}

.

.

.

}

Change	the	build	variant	to	tabletDebug	and	modify	the	tablet	->	java	->
com.ebookfrenzy.buildexample	->	BuildExampleActivity	class	file	to	change	the
background	color	of	the	layout	to	green:

package	com.ebookfrenzy.buildexample;

import	android.os.Bundle;

import	android.support.v7.app.AppCompatActivity;

import	android.graphics.Color;

import	android.support.constraint.ConstraintLayout;

public	class	BuildExampleActivity	extends	AppCompatActivity	{

				@Override

				protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.activity_build_example);

								ConstraintLayout	myLayout	=

												(ConstraintLayout)

																	findViewById(R.id.activity_build_example);

								myLayout.setBackgroundColor(Color.GREEN);

				}

.

.

.

}

Compile	and	run	the	application	using	each	variant	and	note	that	the	background
color	changes	to	indicate	that	each	flavor	is	using	its	own	activity	class	file	in
addition	to	different	resource	files.

77.9	Summary
The	Android	market	now	comprises	a	diverse	range	of	devices	all	of	which	have
different	hardware	capabilities	and	screen	sizes.	While	there	is	much	that	can	be
achieved	with	careful	use	of	layout	managers	such	as	the	ConstraintLayout	and
defensive	coding,	there	will	inevitably	be	situations	where	some	target	devices
will	need	a	separate	application	package	to	be	built.	In	recognition	of	this	fact,
Android	Studio	introduces	the	concept	of	build	variants	and	flavors	designed
specifically	to	make	the	task	of	building	multiple	variations	of	an	application
project	easier	to	manage.

Table	of	Contents

1.Introduction
1.1	Downloading	the	Code	Samples
1.2	Feedback
1.3	Errata
2.Setting	up	an	Android	Studio	Development	Environment
2.1	System	Requirements
2.2	Installing	the	Java	Development	Kit	(JDK)
2.2.1	Windows	JDK	Installation
2.2.2	Mac	OS	X	JDK	Installation
2.3	Linux	JDK	Installation
2.4	Downloading	the	Android	Studio	Package
2.5	Installing	Android	Studio
2.5.1	Installation	on	Windows
2.5.2	Installation	on	Mac	OS	X
2.5.3	Installation	on	Linux
2.6	The	Android	Studio	Setup	Wizard
2.7	Installing	Additional	Android	SDK	Packages
2.8	Making	the	Android	SDK	Tools	Command-line	Accessible
2.8.1	Windows	7
2.8.2	Windows	8.1
2.8.3	Windows	10
2.8.4	Linux
2.8.5	Mac	OS	X
2.9	Updating	the	Android	Studio	and	the	SDK
2.10	Summary
3.Creating	an	Example	Android	App	in	Android	Studio
3.1	Creating	a	New	Android	Project
3.2	Defining	the	Project	and	SDK	Settings
3.3	Creating	an	Activity
3.4	Modifying	the	Example	Application
3.5	Reviewing	the	Layout	and	Resource	Files
3.6	Summary
4.A	Tour	of	the	Android	Studio	User	Interface
4.1	The	Welcome	Screen
4.2	The	Main	Window

4.3	The	Tool	Windows
4.4	Android	Studio	Keyboard	Shortcuts
4.5	Switcher	and	Recent	Files	Navigation
4.6	Changing	the	Android	Studio	Theme
4.7	Summary
5.Creating	an	Android	Virtual	Device	(AVD)	in	Android	Studio
5.1	About	Android	Virtual	Devices
5.2	Creating	a	New	AVD
5.3	Starting	the	Emulator
5.4	Running	the	Application	in	the	AVD
5.5	Run/Debug	Configurations
5.6	Stopping	a	Running	Application
5.7	AVD	Command-line	Creation
5.8	Android	Virtual	Device	Configuration	Files
5.9	Moving	and	Renaming	an	Android	Virtual	Device
5.10	Summary
6.	Using	and	Configuring	the	Android	Studio	AVD	Emulator
6.1	The	Emulator	Environment
6.2	The	Emulator	Toolbar	Options
6.3	Working	in	Zoom	Mode
6.4	Resizing	the	Emulator	Window
6.5	Extended	Control	Options
6.5.1	Location
6.5.2	Cellular
6.5.3	Battery
6.5.4	Phone
6.5.5	Directional	Pad
6.5.6	Fingerprint
6.5.7	Virtual	Sensors
6.5.8	Settings
6.5.9	Help
6.6	Drag	and	Drop	Support
6.7	Configuring	Fingerprint	Emulation
6.8	Summary
7.Testing	Android	Studio	Apps	on	a	Physical	Android	Device
7.1	An	Overview	of	the	Android	Debug	Bridge	(ADB)
7.2	Enabling	ADB	on	Android	based	Devices
7.2.1	Mac	OS	X	ADB	Configuration
7.2.2	Windows	ADB	Configuration

7.2.3	Linux	adb	Configuration
7.3	Testing	the	adb	Connection
7.4	Summary
8.The	Basics	of	the	Android	Studio	Code	Editor
8.1	The	Android	Studio	Editor
8.2	Splitting	the	Editor	Window
8.3	Code	Completion
8.4	Statement	Completion
8.5	Parameter	Information
8.6	Code	Generation
8.7	Code	Folding
8.8	Quick	Documentation	Lookup
8.9	Code	Reformatting
8.10	Finding	Sample	Code
8.11	Summary
9.An	Overview	of	the	Android	Architecture
9.1	The	Android	Software	Stack
9.2	The	Linux	Kernel
9.3	Android	Runtime	–	ART
9.4	Android	Libraries
9.4.1	C/C++	Libraries
9.5	Application	Framework
9.6	Applications
9.7	Summary
10.The	Anatomy	of	an	Android	Application
10.1	Android	Activities
10.2	Android	Intents
10.3	Broadcast	Intents
10.4	Broadcast	Receivers
10.5	Android	Services
10.6	Content	Providers
10.7	The	Application	Manifest
10.8	Application	Resources
10.9	Application	Context
10.10	Summary
11.Understanding	Android	Application	and	Activity	Lifecycles
11.1	Android	Applications	and	Resource	Management
11.2	Android	Process	States
11.2.1	Foreground	Process

11.2.2	Visible	Process
11.2.3	Service	Process
11.2.4	Background	Process
11.2.5	Empty	Process
11.3	InterProcess	Dependencies
11.4	The	Activity	Lifecycle
11.5	The	Activity	Stack
11.6	Activity	States
11.7	Configuration	Changes
11.8	Handling	State	Change
11.9	Summary
12.Handling	Android	Activity	State	Changes
12.1	The	Activity	Class
12.2	Dynamic	State	vs.	Persistent	State
12.3	The	Android	Activity	Lifecycle	Methods
12.4	Activity	Lifetimes
12.5	Disabling	Configuration	Change	Restarts
12.6	Summary
13.Android	Activity	State	Changes	by	Example
13.1	Creating	the	State	Change	Example	Project
13.2	Designing	the	User	Interface
13.3	Overriding	the	Activity	Lifecycle	Methods
13.4	Filtering	the	LogCat	Panel
13.5	Running	the	Application
13.6	Experimenting	with	the	Activity
13.7	Summary
14.Saving	and	Restoring	the	State	of	an	Android	Activity
14.1	Saving	Dynamic	State
14.2	Default	Saving	of	User	Interface	State
14.3	The	Bundle	Class
14.4	Saving	the	State
14.5	Restoring	the	State
14.6	Testing	the	Application
14.7	Summary
15.Understanding	Android	Views,	View	Groups	and	Layouts
15.1	Designing	for	Different	Android	Devices
15.2	Views	and	View	Groups
15.3	Android	Layout	Managers
15.4	The	View	Hierarchy

15.5	Creating	User	Interfaces
15.6	Summary
16.A	Guide	to	the	Android	Studio	Layout	Editor	Tool
16.1	Basic	vs.	Empty	Activity	Templates
16.2	The	Android	Studio	Layout	Editor
16.3	Design	Mode
16.4	The	Palette
16.5	Pan	and	Zoom
16.6	Design	and	Layout	Views
16.7	Text	Mode
16.8	Setting	Properties
16.9	Configuring	Favorite	Attributes
16.10	Creating	a	Custom	Device	Definition
16.11	Changing	the	Current	Device
16.12	Summary
17.A	Guide	to	the	Android	ConstraintLayout
17.1	How	ConstraintLayout	Works
17.1.1	Constraints
17.1.2	Margins
17.1.3	Opposing	Constraints
17.1.4	Constraint	Bias
17.1.5	Chains
17.1.6	Chain	Styles
17.2	Baseline	Alignment
17.3	Working	with	Guidelines
17.4	Configuring	Widget	Dimensions
17.5	Ratios
17.6	ConstraintLayout	Advantages
17.7	ConstraintLayout	Availability
17.8	Summary
18.A	Guide	to	using	ConstraintLayout	in	Android	Studio
18.1	Design	and	Layout	Views
18.2	Autoconnect	Mode
18.3	Inference	Mode
18.4	Manipulating	Constraints	Manually
18.5	Deleting	Constraints
18.6	Adjusting	Constraint	Bias
18.7	Understanding	ConstraintLayout	Margins
18.8	The	Importance	of	Opposing	Constraints	and	Bias

18.9	Configuring	Widget	Dimensions
18.10	Adding	Guidelines
18.11	Widget	Group	Alignment
18.12	Converting	other	Layouts	to	ConstraintLayout
18.13	Summary
19.Working	with	ConstraintLayout	Chains	and	Ratios	in	Android	Studio
19.1	Creating	a	Chain
19.2	Changing	the	Chain	Style
19.3	Spread	Inside	Chain	Style
19.4	Packed	Chain	Style
19.5	Packed	Chain	Style	with	Bias
19.6	Weighted	Chain
19.7	Working	with	Ratios
19.8	Summary
20.An	Android	Studio	Layout	Editor	ConstraintLayout	Tutorial
20.1	An	Android	Studio	Layout	Editor	Tool	Example
20.2	Creating	a	New	Activity
20.3	Preparing	the	Layout	Editor	Environment
20.4	Adding	the	Widgets	to	the	User	Interface
20.5	Adding	the	Constraints
20.6	Testing	the	Layout
20.7	Using	the	Layout	Inspector
20.8	Using	the	Hierarchy	Viewer
20.9	Summary
21.Manual	XML	Layout	Design	in	Android	Studio
21.1	Manually	Creating	an	XML	Layout
21.2	Manual	XML	vs.	Visual	Layout	Design
21.3	Summary
22.Managing	Constraints	using	Constraint	Sets
22.1	Java	Code	vs.	XML	Layout	Files
22.2	Creating	Views
22.3	View	Properties
22.4	Constraint	Sets
22.4.1	Establishing	Connections
22.4.2	Applying	Constraints	to	a	Layout
22.4.3	Parent	Constraint	Connections
22.4.4	Sizing	Constraints
22.4.5	Constraint	Bias
22.4.6	Alignment	Constraints

22.4.7	Copying	and	Applying	Constraint	Sets
22.4.8	ConstraintLayout	Chains
22.4.9	Guidelines
22.4.10	Removing	Constraints
22.4.11	Scaling
22.4.12	Rotation
22.5	Summary
23.An	Android	ConstraintSet	Tutorial
23.1	Creating	the	Example	Project	in	Android	Studio
23.2	Adding	Views	to	an	Activity
23.3	Setting	View	Properties
23.4	Creating	View	IDs
23.5	Configuring	the	Constraint	Set
23.6	Adding	the	EditText	View
23.7	Converting	Density	Independent	Pixels	(dp)	to	Pixels	(px)
23.8	Summary
24.An	Overview	and	Example	of	Android	Event	Handling
24.1	Understanding	Android	Events
24.2	Using	the	android:onClick	Resource
24.3	Event	Listeners	and	Callback	Methods
24.4	An	Event	Handling	Example
24.5	Designing	the	User	Interface
24.6	The	Event	Listener	and	Callback	Method
24.7	Consuming	Events
24.8	Summary
25.	A	Guide	to	using	Instant	Run	in	Android	Studio
25.1	Introducing	Instant	Run
25.2	Understanding	Instant	Run	Swapping	Levels
25.3	Enabling	and	Disabling	Instant	Run
25.4	Using	Instant	Run
25.5	An	Instant	Run	Tutorial
25.6	Triggering	an	Instant	Run	Hot	Swap
25.7	Triggering	an	Instant	Run	Warm	Swap
25.8	Triggering	an	Instant	Run	Cold	Swap
25.9	The	Run	Button
25.10	Summary
26.Android	Touch	and	Multi-touch	Event	Handling
26.1	Intercepting	Touch	Events
26.2	The	MotionEvent	Object

26.3	Understanding	Touch	Actions
26.4	Handling	Multiple	Touches
26.5	An	Example	Multi-Touch	Application
26.6	Designing	the	Activity	User	Interface
26.7	Implementing	the	Touch	Event	Listener
26.8	Running	the	Example	Application
26.9	Summary
27.Detecting	Common	Gestures	using	the	Android	Gesture	Detector	Class
27.1	Implementing	Common	Gesture	Detection
27.2	Creating	an	Example	Gesture	Detection	Project
27.3	Implementing	the	Listener	Class
27.4	Creating	the	GestureDetectorCompat	Instance
27.5	Implementing	the	onTouchEvent()	Method
27.6	Testing	the	Application
27.7	Summary
28.Implementing	Custom	Gesture	and	Pinch	Recognition	on	Android
28.1	The	Android	Gesture	Builder	Application
28.2	The	GestureOverlayView	Class
28.3	Detecting	Gestures
28.4	Identifying	Specific	Gestures
28.5	Building	and	Running	the	Gesture	Builder	Application
28.6	Creating	a	Gestures	File
28.7	Extracting	the	Gestures	File	from	the	SD	Card
28.8	Creating	the	Example	Project
28.9	Adding	the	Gestures	File	to	the	Project
28.10	Designing	the	User	Interface
28.11	Loading	the	Gestures	File
28.12	Registering	the	Event	Listener
28.13	Implementing	the	onGesturePerformed	Method
28.14	Testing	the	Application
28.15	Configuring	the	GestureOverlayView
28.16	Intercepting	Gestures
28.17	Detecting	Pinch	Gestures
28.18	A	Pinch	Gesture	Example	Project
28.19	Summary
29.An	Introduction	to	Android	Fragments
29.1	What	is	a	Fragment?
29.2	Creating	a	Fragment
29.3	Adding	a	Fragment	to	an	Activity	using	the	Layout	XML	File

29.4	Adding	and	Managing	Fragments	in	Code
29.5	Handling	Fragment	Events
29.6	Implementing	Fragment	Communication
29.7	Summary
30.Using	Fragments	in	Android	Studio	-	An	Example
30.1	About	the	Example	Fragment	Application
30.2	Creating	the	Example	Project
30.3	Creating	the	First	Fragment	Layout
30.4	Creating	the	First	Fragment	Class
30.5	Creating	the	Second	Fragment	Layout
30.6	Adding	the	Fragments	to	the	Activity
30.7	Making	the	Toolbar	Fragment	Talk	to	the	Activity
30.8	Making	the	Activity	Talk	to	the	Text	Fragment
30.9	Testing	the	Application
30.10	Summary
31.Creating	and	Managing	Overflow	Menus	on	Android
31.1	The	Overflow	Menu
31.2	Creating	an	Overflow	Menu
31.3	Displaying	an	Overflow	Menu
31.4	Responding	to	Menu	Item	Selections
31.5	Creating	Checkable	Item	Groups
31.6	Menus	and	the	Android	Studio	Menu	Editor
31.7	Creating	the	Example	Project
31.8	Designing	the	Menu
31.9	Modifying	the	onOptionsItemSelected()	Method
31.10	Testing	the	Application
31.11	Summary
32.Animating	User	Interfaces	with	the	Android	Transitions	Framework
32.1	Introducing	Android	Transitions	and	Scenes
32.2	Using	Interpolators	with	Transitions
32.3	Working	with	Scene	Transitions
32.4	Custom	Transitions	and	TransitionSets	in	Code
32.5	Custom	Transitions	and	TransitionSets	in	XML
32.6	Working	with	Interpolators
32.7	Creating	a	Custom	Interpolator
32.8	Using	the	beginDelayedTransition	Method
32.9	Summary
33.An	Android	Transition	Tutorial	using	beginDelayedTransition
33.1	Creating	the	Android	Studio	TransitionDemo	Project

33.2	Preparing	the	Project	Files
33.3	Implementing	beginDelayedTransition	Animation
33.4	Customizing	the	Transition
33.5	Summary
34.Implementing	Android	Scene	Transitions	–	A	Tutorial
34.1	An	Overview	of	the	Scene	Transition	Project
34.2	Creating	the	Android	Studio	SceneTransitions	Project
34.3	Identifying	and	Preparing	the	Root	Container
34.4	Designing	the	First	Scene
34.5	Designing	the	Second	Scene
34.6	Entering	the	First	Scene
34.7	Loading	Scene	2
34.8	Implementing	the	Transitions
34.9	Adding	the	Transition	File
34.10	Loading	and	Using	the	Transition	Set
34.11	Configuring	Additional	Transitions
34.12	Summary
35.Working	with	the	Floating	Action	Button	and	Snackbar
35.1	The	Material	Design
35.2	The	Design	Library
35.3	The	Floating	Action	Button	(FAB)
35.4	The	Snackbar
35.5	Creating	the	Example	Project
35.6	Reviewing	the	Project
35.7	Changing	the	Floating	Action	Button
35.8	Adding	the	ListView	to	the	Content	Layout
35.9	Adding	Items	to	the	ListView
35.10	Adding	an	Action	to	the	Snackbar
35.11	Summary
36.Creating	a	Tabbed	Interface	using	the	TabLayout	Component
36.1	An	Introduction	to	the	ViewPager
36.2	An	Overview	of	the	TabLayout	Component
36.3	Creating	the	TabLayoutDemo	Project
36.4	Creating	the	First	Fragment
36.5	Duplicating	the	Fragments
36.6	Adding	the	TabLayout	and	ViewPager
36.7	Creating	the	Pager	Adapter
36.8	Performing	the	Initialization	Tasks
36.9	Testing	the	Application

36.10	Customizing	the	TabLayout
36.11	Displaying	Icon	Tab	Items
36.12	Summary
37.Working	with	the	RecyclerView	and	CardView	Widgets
37.1	An	Overview	of	the	RecyclerView
37.2	An	Overview	of	the	CardView
37.3	Adding	the	Libraries	to	the	Project
37.4	Summary
38.An	Android	RecyclerView	and	CardView	Tutorial
38.1	Creating	the	CardDemo	Project
38.2	Removing	the	Floating	Action	Button
38.3	Adding	the	RecyclerView	and	CardView	Libraries
38.4	Designing	the	CardView	Layout
38.5	Adding	the	RecyclerView
38.6	Creating	the	RecyclerView	Adapter
38.7	Adding	the	Image	Files
38.8	Initializing	the	RecyclerView	Component
38.9	Testing	the	Application
38.10	Responding	to	Card	Selections
38.11	Summary
39.Working	with	the	AppBar	and	Collapsing	Toolbar	Layouts
39.1	The	Anatomy	of	an	AppBar
39.2	The	Example	Project
39.3	Coordinating	the	RecyclerView	and	Toolbar
39.4	Introducing	the	Collapsing	Toolbar	Layout
39.5	Changing	the	Title	and	Scrim	Color
39.6	Summary
40.Implementing	an	Android	Navigation	Drawer
40.1	An	Overview	of	the	Navigation	Drawer
40.2	Opening	and	Closing	the	Drawer
40.3	Responding	to	Drawer	Item	Selections
40.4	Using	the	Navigation	Drawer	Activity	Template
40.5	Creating	the	Navigation	Drawer	Template	Project
40.6	The	Template	Layout	Resource	Files
40.7	The	Header	Coloring	Resource	File
40.8	The	Template	Menu	Resource	File
40.9	The	Template	Code
40.10	Running	the	App
40.11	Summary

41.An	Android	Studio	Master/Detail	Flow	Tutorial
41.1	The	Master/Detail	Flow
41.2	Creating	a	Master/Detail	Flow	Activity
41.3	The	Anatomy	of	the	Master/Detail	Flow	Template
41.4	Modifying	the	Master/Detail	Flow	Template
41.5	Changing	the	Content	Model
41.6	Changing	the	Detail	Pane
41.7	Modifying	the	WebsiteDetailFragment	Class
41.8	Modifying	the	WebsiteListActivity	Class
41.9	Adding	Manifest	Permissions
41.10	Running	the	Application
41.11	Summary
42.An	Overview	of	Android	Intents
42.1	An	Overview	of	Intents
42.2	Explicit	Intents
42.3	Returning	Data	from	an	Activity
42.4	Implicit	Intents
42.5	Using	Intent	Filters
42.6	Checking	Intent	Availability
42.7	Summary
43.Android	Explicit	Intents	–	A	Worked	Example
43.1	Creating	the	Explicit	Intent	Example	Application
43.2	Designing	the	User	Interface	Layout	for	ActivityA
43.3	Creating	the	Second	Activity	Class
43.4	Designing	the	User	Interface	Layout	for	ActivityB
43.5	Reviewing	the	Application	Manifest	File
43.6	Creating	the	Intent
43.7	Extracting	Intent	Data
43.8	Launching	ActivityB	as	a	Sub-Activity
43.9	Returning	Data	from	a	Sub-Activity
43.10	Testing	the	Application
43.11	Summary
44.Android	Implicit	Intents	–	A	Worked	Example
44.1	Creating	the	Android	Studio	Implicit	Intent	Example	Project
44.2	Designing	the	User	Interface
44.3	Creating	the	Implicit	Intent
44.4	Adding	a	Second	Matching	Activity
44.5	Adding	the	Web	View	to	the	UI
44.6	Obtaining	the	Intent	URL

44.7	Modifying	the	MyWebView	Project	Manifest	File
44.8	Installing	the	MyWebView	Package	on	a	Device
44.9	Testing	the	Application
44.10	Summary
45.Android	Broadcast	Intents	and	Broadcast	Receivers
45.1	An	Overview	of	Broadcast	Intents
45.2	An	Overview	of	Broadcast	Receivers
45.3	Obtaining	Results	from	a	Broadcast
45.4	Sticky	Broadcast	Intents
45.5	The	Broadcast	Intent	Example
45.6	Creating	the	Example	Application
45.7	Creating	and	Sending	the	Broadcast	Intent
45.8	Creating	the	Broadcast	Receiver
45.9	Configuring	a	Broadcast	Receiver	in	the	Manifest	File
45.10	Testing	the	Broadcast	Example
45.11	Listening	for	System	Broadcasts
45.12	Summary
46.A	Basic	Overview	of	Threads	and	Thread	Handlers
46.1	An	Overview	of	Threads
46.2	The	Application	Main	Thread
46.3	Thread	Handlers
46.4	A	Basic	Threading	Example
46.5	Creating	a	New	Thread
46.6	Implementing	a	Thread	Handler
46.7	Passing	a	Message	to	the	Handler
46.8	Summary
47.An	Overview	of	Android	Started	and	Bound	Services
47.1	Started	Services
47.2	Intent	Service
47.3	Bound	Service
47.4	The	Anatomy	of	a	Service
47.5	Controlling	Destroyed	Service	Restart	Options
47.6	Declaring	a	Service	in	the	Manifest	File
47.7	Starting	a	Service	Running	on	System	Startup
47.8	Summary
48.Implementing	an	Android	Started	Service	–	A	Worked	Example
48.1	Creating	the	Example	Project
48.2	Creating	the	Service	Class
48.3	Adding	the	Service	to	the	Manifest	File

48.4	Starting	the	Service
48.5	Testing	the	IntentService	Example
48.6	Using	the	Service	Class
48.7	Creating	the	New	Service
48.8	Modifying	the	User	Interface
48.9	Running	the	Application
48.10	Creating	a	New	Thread	for	Service	Tasks
48.11	Summary
49.Android	Local	Bound	Services	–	A	Worked	Example
49.1	Understanding	Bound	Services
49.2	Bound	Service	Interaction	Options
49.3	An	Android	Studio	Local	Bound	Service	Example
49.4	Adding	a	Bound	Service	to	the	Project
49.5	Implementing	the	Binder
49.6	Binding	the	Client	to	the	Service
49.7	Completing	the	Example
49.8	Testing	the	Application
49.9	Summary
50.Android	Remote	Bound	Services	–	A	Worked	Example
50.1	Client	to	Remote	Service	Communication
50.2	Creating	the	Example	Application
50.3	Designing	the	User	Interface
50.4	Implementing	the	Remote	Bound	Service
50.5	Configuring	a	Remote	Service	in	the	Manifest	File
50.6	Launching	and	Binding	to	the	Remote	Service
50.7	Sending	a	Message	to	the	Remote	Service
50.8	Summary
51.An	Android	7	Notifications	Tutorial
51.1	An	Overview	of	Notifications
51.2	Creating	the	NotifyDemo	Project
51.3	Designing	the	User	Interface
51.4	Creating	the	Second	Activity
51.5	Creating	and	Issuing	a	Basic	Notification
51.6	Launching	an	Activity	from	a	Notification
51.7	Adding	Actions	to	a	Notification
51.8	Adding	Sound	to	a	Notification
51.9	Bundled	Notifications
51.10	Summary
52.An	Android	7	Direct	Reply	Notification	Tutorial

52.1	Creating	the	DirectReply	Project
52.2	Designing	the	User	Interface
52.3	Building	the	RemoteInput	Object
52.4	Creating	the	PendingIntent
52.5	Creating	the	Reply	Action
52.6	Receiving	Direct	Reply	Input
52.7	Updating	the	Notification
52.8	Summary
53.Integrating	Firebase	Support	into	an	Android	Studio	Project
53.1	What	is	Firebase?
53.2	Signing	in	to	Firebase
53.3	Creating	the	FirebaseNotify	Project
53.4	Configuring	the	User	Interface
53.5	Connecting	the	Project	to	Firebase
53.6	Creating	a	New	Firebase	Project
53.7	The	google-services.json	File
53.8	Adding	the	Firebase	Libraries
53.9	Summary
54.An	Android	7	Firebase	Remote	Notification	Tutorial
54.1	Sending	a	Firebase	Notification
54.2	Receiving	the	Notification
54.3	Including	Custom	Data	within	the	Notification
54.4	Foreground	App	Notification	Handling
54.5	Summary
55.An	Introduction	to	Android	7	MultiWindow	Support
55.1	Split-Screen,	Freeform	and	Picture-in-Picture	Modes
55.2	Entering	MultiWindow	Mode
55.3	Checking	for	Freeform	Support
55.4	Enabling	MultiWindow	Support	in	an	App
55.5	Specifying	MultiWindow	Attributes
55.6	Detecting	MultiWindow	Mode	in	an	Activity
55.7	Receiving	MultiWindow	Notifications
55.8	Launching	an	Activity	in	MultiWindow	Mode
55.9	Configuring	Freeform	Activity	Size	and	Position
55.10	Summary
56.An	Android	Studio	MultiWindow	Split-Screen	and	Freeform	Tutorial
56.1	Creating	the	MultiWindow	Project
56.2	Designing	the	FirstActivity	User	Interface
56.3	Adding	the	Second	Activity

56.4	Launching	the	Second	Activity
56.5	Enabling	MultiWindow	Mode
56.6	Testing	MultiWindow	Support
56.7	Launching	the	Second	Activity	in	a	Different	Window
56.8	Changing	the	Freeform	Window	Position	and	Size
56.9	Summary
57.An	Overview	of	Android	SQLite	Databases
57.1	Understanding	Database	Tables
57.2	Introducing	Database	Schema
57.3	Columns	and	Data	Types
57.4	Database	Rows
57.5	Introducing	Primary	Keys
57.6	What	is	SQLite?
57.7	Structured	Query	Language	(SQL)
57.8	Trying	SQLite	on	an	Android	Virtual	Device	(AVD)
57.9	Android	SQLite	Java	Classes
57.9.1	Cursor
57.9.2	SQLiteDatabase
57.9.3	SQLiteOpenHelper
57.9.4	ContentValues
57.10	Summary
58.An	Android	TableLayout	and	TableRow	Tutorial
58.1	The	TableLayout	and	TableRow	Layout	Views
58.2	Creating	the	Database	Project
58.3	Adding	the	TableLayout	to	the	User	Interface
58.4	Configuring	the	TableRows
58.5	Adding	the	Button	Bar	to	the	Layout
58.6	Adjusting	the	Layout	Margins
58.7	Summary
59.An	Android	SQLite	Database	Tutorial
59.1	About	the	Database	Example
59.2	Creating	the	Data	Model
59.3	Implementing	the	Data	Handler
59.3.1	The	Add	Handler	Method
59.3.2	The	Query	Handler	Method
59.3.3	The	Delete	Handler	Method
59.4	Implementing	the	Activity	Event	Methods
59.5	Testing	the	Application
59.6	Summary

60.Understanding	Android	Content	Providers
60.1	What	is	a	Content	Provider?
60.2	The	Content	Provider
60.2.1	onCreate()
60.2.2	query()
60.2.3	insert()
60.2.4	update()
60.2.5	delete()
60.2.6	getType()
60.3	The	Content	URI
60.4	The	Content	Resolver
60.5	The	<provider>	Manifest	Element
60.6	Summary
61.Implementing	an	Android	Content	Provider	in	Android	Studio
61.1	Copying	the	Database	Project
61.2	Adding	the	Content	Provider	Package
61.3	Creating	the	Content	Provider	Class
61.4	Constructing	the	Authority	and	Content	URI
61.5	Implementing	URI	Matching	in	the	Content	Provider
61.6	Implementing	the	Content	Provider	onCreate()	Method
61.7	Implementing	the	Content	Provider	insert()	Method
61.8	Implementing	the	Content	Provider	query()	Method
61.9	Implementing	the	Content	Provider	update()	Method
61.10	Implementing	the	Content	Provider	delete()	Method
61.11	Declaring	the	Content	Provider	in	the	Manifest	File
61.12	Modifying	the	Database	Handler
61.13	Summary
62.Accessing	Cloud	Storage	using	the	Android	Storage	Access	Framework
62.1	The	Storage	Access	Framework
62.2	Working	with	the	Storage	Access	Framework
62.3	Filtering	Picker	File	Listings
62.4	Handling	Intent	Results
62.5	Reading	the	Content	of	a	File
62.6	Writing	Content	to	a	File
62.7	Deleting	a	File
62.8	Gaining	Persistent	Access	to	a	File
62.9	Summary
63.An	Android	Storage	Access	Framework	Example
63.1	About	the	Storage	Access	Framework	Example

63.2	Creating	the	Storage	Access	Framework	Example
63.3	Designing	the	User	Interface
63.4	Declaring	Request	Codes
63.5	Creating	a	New	Storage	File
63.6	The	onActivityResult()	Method
63.7	Saving	to	a	Storage	File
63.8	Opening	and	Reading	a	Storage	File
63.9	Testing	the	Storage	Access	Application
63.10	Summary
64.Implementing	 Video	 Playback	 on	 Android	 using	 the	 VideoView	 and
MediaController	Classes

64.1	Introducing	the	Android	VideoView	Class
64.2	Introducing	the	Android	MediaController	Class
64.3	Testing	Video	Playback
64.4	Creating	the	Video	Playback	Example
64.5	Designing	the	VideoPlayer	Layout
64.6	Configuring	the	VideoView
64.7	Adding	Internet	Permission
64.8	Adding	the	MediaController	to	the	Video	View
64.9	Setting	up	the	onPreparedListener
64.10	Summary
65.Video	Recording	and	Image	Capture	on	Android	using	Camera	Intents
65.1	Checking	for	Camera	Support
65.2	Calling	the	Video	Capture	Intent
65.3	Calling	the	Image	Capture	Intent
65.4	Creating	an	Android	Studio	Video	Recording	Project
65.5	Designing	the	User	Interface	Layout
65.6	Checking	for	the	Camera
65.7	Launching	the	Video	Capture	Intent
65.8	Handling	the	Intent	Return
65.9	Testing	the	Application
65.10	Summary
66.Making	Runtime	Permission	Requests	in	Android
66.1	Understanding	Normal	and	Dangerous	Permissions
66.2	Creating	the	Permissions	Example	Project
66.3	Checking	for	a	Permission
66.4	Requesting	Permission	at	Runtime
66.5	Providing	a	Rationale	for	the	Permission	Request
66.6	Testing	the	Permissions	App

66.7	Summary
67.Android	 Audio	 Recording	 and	 Playback	 using	 MediaPlayer	 and
MediaRecorder

67.1	Playing	Audio
67.2	Recording	Audio	and	Video	using	the	MediaRecorder	Class
67.3	About	the	Example	Project
67.4	Creating	the	AudioApp	Project
67.5	Designing	the	User	Interface
67.6	Checking	for	Microphone	Availability
67.7	Performing	the	Activity	Initialization
67.8	Implementing	the	recordAudio()	Method
67.9	Implementing	the	stopAudio()	Method
67.10	Implementing	the	playAudio()	method
67.11	Configuring	and	Requesting	Permissions
67.12	Testing	the	Application
67.13	Summary
68.Working	with	the	Google	Maps	Android	API	in	Android	Studio
68.1	The	Elements	of	the	Google	Maps	Android	API
68.2	Creating	the	Google	Maps	Project
68.3	Obtaining	Your	Developer	Signature
68.4	Testing	the	Application
68.5	Understanding	Geocoding	and	Reverse	Geocoding
68.6	Adding	a	Map	to	an	Application
68.7	Requesting	Current	Location	Permission
68.8	Displaying	the	User’s	Current	Location
68.9	Changing	the	Map	Type
68.10	Displaying	Map	Controls	to	the	User
68.11	Handling	Map	Gesture	Interaction
68.11.1	Map	Zooming	Gestures
68.11.2	Map	Scrolling/Panning	Gestures
68.11.3	Map	Tilt	Gestures
68.11.4	Map	Rotation	Gestures
68.12	Creating	Map	Markers
68.13	Controlling	the	Map	Camera
68.14	Summary
69.Printing	with	the	Android	Printing	Framework
69.1	The	Android	Printing	Architecture
69.2	The	Print	Service	Plugins
69.3	Google	Cloud	Print

69.4	Printing	to	Google	Drive
69.5	Save	as	PDF
69.6	Printing	from	Android	Devices
69.7	Options	for	Building	Print	Support	into	Android	Apps
69.7.1	Image	Printing
69.7.2	Creating	and	Printing	HTML	Content
69.7.3	Printing	a	Web	Page
69.7.4	Printing	a	Custom	Document
69.8	Summary
70.An	Android	HTML	and	Web	Content	Printing	Example
70.1	Creating	the	HTML	Printing	Example	Application
70.2	Printing	Dynamic	HTML	Content
70.3	Creating	the	Web	Page	Printing	Example
70.4	Removing	the	Floating	Action	Button
70.5	Designing	the	User	Interface	Layout
70.6	Loading	the	Web	Page	into	the	WebView
70.7	Adding	the	Print	Menu	Option
70.8	Summary
71.A	Guide	to	Android	Custom	Document	Printing
71.1	An	Overview	of	Android	Custom	Document	Printing
71.1.1	Custom	Print	Adapters
71.2	Preparing	the	Custom	Document	Printing	Project
71.3	Creating	the	Custom	Print	Adapter
71.4	Implementing	the	onLayout()	Callback	Method
71.5	Implementing	the	onWrite()	Callback	Method
71.6	Checking	a	Page	is	in	Range
71.7	Drawing	the	Content	on	the	Page	Canvas
71.8	Starting	the	Print	Job
71.9	Testing	the	Application
71.10	Summary
72.An	Android	Fingerprint	Authentication	Tutorial
72.1	An	Overview	of	Fingerprint	Authentication
72.2	Creating	the	Fingerprint	Authentication	Project
72.3	Configuring	Device	Fingerprint	Authentication
72.4	Adding	the	Fingerprint	Permission	to	the	Manifest	File
72.5	Adding	the	Fingerprint	Icon
72.6	Designing	the	User	Interface
72.7	Accessing	the	Keyguard	and	Fingerprint	Manager	Services
72.8	Checking	the	Security	Settings

72.9	Accessing	the	Android	Keystore	and	KeyGenerator
72.10	Generating	the	Key
72.11	Initializing	the	Cipher
72.12	Creating	the	CryptoObject	Instance
72.13	Implementing	the	Fingerprint	Authentication	Handler	Class
72.14	Testing	the	Project
72.15	Summary
73.Handling	Different	Android	Devices	and	Displays
73.1	Handling	Different	Device	Displays
73.2	Creating	a	Layout	for	each	Display	Size
73.3	Creating	Layout	Variants	in	Android	Studio
73.4	Providing	Different	Images
73.5	Checking	for	Hardware	Support
73.6	Providing	Device	Specific	Application	Binaries
73.7	Summary
74.Signing	and	Preparing	an	Android	Application	for	Release
74.1	The	Release	Preparation	Process
74.2	Changing	the	Build	Variant
74.3	Enabling	ProGuard
74.4	Creating	a	Keystore	File
74.5	Generating	a	Private	Key
74.6	Creating	the	Application	APK	File
74.7	Register	for	a	Google	Play	Developer	Console	Account
74.8	Uploading	New	APK	Versions	to	the	Google	Play	Developer	Console
74.9	Analyzing	the	APK	File
74.10	Summary
75.	Integrating	Google	Play	In-app	Billing	into	an	Android	Application
75.1	Installing	the	Google	Play	Billing	Library
75.2	Creating	the	Example	In-app	Billing	Project
75.3	Adding	Billing	Permission	to	the	Manifest	File
75.4	Adding	the	IInAppBillingService.aidl	File	to	the	Project
75.5	Adding	the	Utility	Classes	to	the	Project
75.6	Designing	the	User	Interface
75.7	Implementing	the	“Click	Me”	Button
75.8	Google	Play	Developer	Console	and	Google	Wallet	Accounts
75.9	Obtaining	the	Public	License	Key	for	the	Application
75.10	Setting	Up	Google	Play	Billing	in	the	Application
75.11	Initiating	a	Google	Play	In-app	Billing	Purchase
75.12	Implementing	the	onActivityResult	Method

75.13	Implementing	the	Purchase	Finished	Listener
75.14	Consuming	the	Purchased	Item
75.15	Releasing	the	IabHelper	Instance
75.16	Modifying	the	Security.java	File
75.17	Testing	the	In-app	Billing	Application
75.18	Building	a	Release	APK
75.19	Creating	a	New	In-app	Product
75.20	Publishing	the	Application	to	the	Alpha	Distribution	Channel
75.21	Adding	In-app	Billing	Test	Accounts
75.22	Configuring	Group	Testing
75.23	Resolving	Problems	with	In-App	Purchasing
75.24	Summary
76.	An	Overview	of	Gradle	in	Android	Studio
76.1	An	Overview	of	Gradle
76.2	Gradle	and	Android	Studio
76.2.1	Sensible	Defaults
76.2.2	Dependencies
76.2.3	Build	Variants
76.2.4	Manifest	Entries
76.2.5	APK	Signing
76.2.6	ProGuard	Support
76.3	The	Top-level	Gradle	Build	File
76.4	Module	Level	Gradle	Build	Files
76.5	Configuring	Signing	Settings	in	the	Build	File
76.6	Running	Gradle	Tasks	from	the	Command-line
76.7	Summary
77.	An	Android	Studio	Gradle	Build	Variants	Example
77.1	Creating	the	Build	Variant	Example	Project
77.2	Adding	the	Build	Flavors	to	the	Module	Build	File
77.3	Adding	the	Flavors	to	the	Project	Structure
77.4	Adding	Resource	Files	to	the	Flavors
77.5	Testing	the	Build	Flavors
77.6	Build	Variants	and	Class	Files
77.7	Adding	Packages	to	the	Build	Flavors
77.8	Customizing	the	Activity	Classes
77.9	Summary
Creating	an	Android	Virtual	Device	(AVD)	in	Android	Studio
Using	and	Configuring	the	Android	Studio	AVD	Emulator
An	Android	Fingerprint	Authentication	Tutorial

Setting	up	an	Android	Studio	Development	Environment
Creating	an	Example	Android	App	in	Android	Studio
Handling	Android	Activity	State	Changes
Understanding	Android	Application	and	Activity	Lifecycles
Saving	and	Restoring	the	User	Interface	State	of	an	Android	Activity
Android	Activity	State	Changes	–	An	Example	Application
The	Basics	of	the	Android	Studio	Code	Editor
Testing	Android	Studio	Apps	on	a	Physical	Android	Device
The	Anatomy	of	an	Android	Application
Working	with	the	Floating	Action	Button	and	Snackbar
Working	with	the	AppBar	and	Collapsing	Toolbar	Layouts
Understanding	Android	Views,	View	Groups	and	Layouts
A	Guide	to	using	ConstraintLayout	in	Android	Studio
A	Guide	to	the	Android	Studio	Layout	Editor	Tool
A	Guide	to	the	Android	ConstraintLayout
Designing	an	Android	User	Interface	using	the	Graphical	Layout	Tool
Manual	XML	Layout	Design	in	Android	Studio
Android	Touch	and	Multi-touch	Event	Handling
An	Overview	and	Example	of	Android	Event	Handling
Detecting	Common	Gestures	using	the	Android	Gesture	Detector	Class
Implementing	Custom	Gesture	and	Pinch	Recognition	on	Android
Using	Fragments	in	Android	Studio	-	A	Worked	Example
An	Introduction	to	Android	Fragments
Animating	User	Interfaces	with	the	Android	Transitions	Framework
An	Android	RecyclerView	and	CardView	Tutorial
Creating	and	Managing	Overflow	Menus	on	Android
An	Overview	of	Android	Intents
Android	Implicit	Intents	–	A	Worked	Example
Android	Local	Bound	Services	–	A	Worked	Example
An	Overview	of	Android	Started	and	Bound	Services
A	Basic	Overview	of	Android	Threads	and	Thread	Handlers
An	Android	7	Direct	Reply	Notification	Tutorial
Integrating	Firebase	Support	into	an	Android	Studio	Project
An	Android	7	Firebase	Remote	Notification	Tutorial
An	Android	7	Notifications	Tutorial
Android	Explicit	Intents	–	A	Worked	Example
An	Introduction	to	Android	7	MultiWindow	Support
An	Android	TableLayout	and	TableRow	Tutorial
An	Android	SQLite	Database	Tutorial

Understanding	Android	Content	Providers
An	Android	Storage	Access	Framework	Example
Making	Runtime	Permission	Requests	in	Android	6.0
An	Android	HTML	and	Web	Content	Printing	Example
A	Guide	to	Android	Custom	Document	Printing
Printing	with	the	Android	Printing	Framework
Using	and	Configuring	the	Android	Studio	2	AVD	Emulator
Signing	and	Preparing	an	Android	Application	for	Release
An	Android	Studio	Gradle	Build	Variants	Example

	1.Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata
	2.Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Installing the Java Development Kit (JDK)
	2.2.1 Windows JDK Installation
	2.2.2 Mac OS X JDK Installation
	2.3 Linux JDK Installation
	2.4 Downloading the Android Studio Package
	2.5 Installing Android Studio
	2.5.1 Installation on Windows
	2.5.2 Installation on Mac OS X
	2.5.3 Installation on Linux
	2.6 The Android Studio Setup Wizard
	2.7 Installing Additional Android SDK Packages
	2.8 Making the Android SDK Tools Command-line Accessible
	2.8.1 Windows 7
	2.8.2 Windows 8.1
	2.8.3 Windows 10
	2.8.4 Linux
	2.8.5 Mac OS X
	2.9 Updating the Android Studio and the SDK
	2.10 Summary
	3.Creating an Example Android App in Android Studio
	3.1 Creating a New Android Project
	3.2 Defining the Project and SDK Settings
	3.3 Creating an Activity
	3.4 Modifying the Example Application
	3.5 Reviewing the Layout and Resource Files
	3.6 Summary
	4.A Tour of the Android Studio User Interface
	4.1 The Welcome Screen
	4.2 The Main Window
	4.3 The Tool Windows
	4.4 Android Studio Keyboard Shortcuts
	4.5 Switcher and Recent Files Navigation
	4.6 Changing the Android Studio Theme
	4.7 Summary
	5.Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Creating a New AVD
	5.3 Starting the Emulator
	5.4 Running the Application in the AVD
	5.5 Run/Debug Configurations
	5.6 Stopping a Running Application
	5.7 AVD Command-line Creation
	5.8 Android Virtual Device Configuration Files
	5.9 Moving and Renaming an Android Virtual Device
	5.10 Summary
	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The Emulator Environment
	6.2 The Emulator Toolbar Options
	6.3 Working in Zoom Mode
	6.4 Resizing the Emulator Window
	6.5 Extended Control Options
	6.5.1 Location
	6.5.2 Cellular
	6.5.3 Battery
	6.5.4 Phone
	6.5.5 Directional Pad
	6.5.6 Fingerprint
	6.5.7 Virtual Sensors
	6.5.8 Settings
	6.5.9 Help
	6.6 Drag and Drop Support
	6.7 Configuring Fingerprint Emulation
	6.8 Summary
	7.Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling ADB on Android based Devices
	7.2.1 Mac OS X ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration
	7.3 Testing the adb Connection
	7.4 Summary
	8.The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Code Generation
	8.7 Code Folding
	8.8 Quick Documentation Lookup
	8.9 Code Reformatting
	8.10 Finding Sample Code
	8.11 Summary
	9.An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries
	9.5 Application Framework
	9.6 Applications
	9.7 Summary
	10.The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Intents
	10.3 Broadcast Intents
	10.4 Broadcast Receivers
	10.5 Android Services
	10.6 Content Providers
	10.7 The Application Manifest
	10.8 Application Resources
	10.9 Application Context
	10.10 Summary
	11.Understanding Android Application and Activity Lifecycles
	11.1 Android Applications and Resource Management
	11.2 Android Process States
	11.2.1 Foreground Process
	11.2.2 Visible Process
	11.2.3 Service Process
	11.2.4 Background Process
	11.2.5 Empty Process
	11.3 Inter-Process Dependencies
	11.4 The Activity Lifecycle
	11.5 The Activity Stack
	11.6 Activity States
	11.7 Configuration Changes
	11.8 Handling State Change
	11.9 Summary
	12.Handling Android Activity State Changes
	12.1 The Activity Class
	12.2 Dynamic State vs. Persistent State
	12.3 The Android Activity Lifecycle Methods
	12.4 Activity Lifetimes
	12.5 Disabling Configuration Change Restarts
	12.6 Summary
	13.Android Activity State Changes by Example
	13.1 Creating the State Change Example Project
	13.2 Designing the User Interface
	13.3 Overriding the Activity Lifecycle Methods
	13.4 Filtering the LogCat Panel
	13.5 Running the Application
	13.6 Experimenting with the Activity
	13.7 Summary
	14.Saving and Restoring the State of an Android Activity
	14.1 Saving Dynamic State
	14.2 Default Saving of User Interface State
	14.3 The Bundle Class
	14.4 Saving the State
	14.5 Restoring the State
	14.6 Testing the Application
	14.7 Summary
	15.Understanding Android Views, View Groups and Layouts
	15.1 Designing for Different Android Devices
	15.2 Views and View Groups
	15.3 Android Layout Managers
	15.4 The View Hierarchy
	15.5 Creating User Interfaces
	15.6 Summary
	16.A Guide to the Android Studio Layout Editor Tool
	16.1 Basic vs. Empty Activity Templates
	16.2 The Android Studio Layout Editor
	16.3 Design Mode
	16.4 The Palette
	16.5 Pan and Zoom
	16.6 Design and Layout Views
	16.7 Text Mode
	16.8 Setting Properties
	16.9 Configuring Favorite Attributes
	16.10 Creating a Custom Device Definition
	16.11 Changing the Current Device
	16.12 Summary
	17.A Guide to the Android ConstraintLayout
	17.1 How ConstraintLayout Works
	17.1.1 Constraints
	17.1.2 Margins
	17.1.3 Opposing Constraints
	17.1.4 Constraint Bias
	17.1.5 Chains
	17.1.6 Chain Styles
	17.2 Baseline Alignment
	17.3 Working with Guidelines
	17.4 Configuring Widget Dimensions
	17.5 Ratios
	17.6 ConstraintLayout Advantages
	17.7 ConstraintLayout Availability
	17.8 Summary
	18.A Guide to using ConstraintLayout in Android Studio
	18.1 Design and Layout Views
	18.2 Autoconnect Mode
	18.3 Inference Mode
	18.4 Manipulating Constraints Manually
	18.5 Deleting Constraints
	18.6 Adjusting Constraint Bias
	18.7 Understanding ConstraintLayout Margins
	18.8 The Importance of Opposing Constraints and Bias
	18.9 Configuring Widget Dimensions
	18.10 Adding Guidelines
	18.11 Widget Group Alignment
	18.12 Converting other Layouts to ConstraintLayout
	18.13 Summary
	19.Working with ConstraintLayout Chains and Ratios in Android Studio
	19.1 Creating a Chain
	19.2 Changing the Chain Style
	19.3 Spread Inside Chain Style
	19.4 Packed Chain Style
	19.5 Packed Chain Style with Bias
	19.6 Weighted Chain
	19.7 Working with Ratios
	19.8 Summary
	20.An Android Studio Layout Editor ConstraintLayout Tutorial
	20.1 An Android Studio Layout Editor Tool Example
	20.2 Creating a New Activity
	20.3 Preparing the Layout Editor Environment
	20.4 Adding the Widgets to the User Interface
	20.5 Adding the Constraints
	20.6 Testing the Layout
	20.7 Using the Layout Inspector
	20.8 Using the Hierarchy Viewer
	20.9 Summary
	21.Manual XML Layout Design in Android Studio
	21.1 Manually Creating an XML Layout
	21.2 Manual XML vs. Visual Layout Design
	21.3 Summary
	22.Managing Constraints using Constraint Sets
	22.1 Java Code vs. XML Layout Files
	22.2 Creating Views
	22.3 View Properties
	22.4 Constraint Sets
	22.4.1 Establishing Connections
	22.4.2 Applying Constraints to a Layout
	22.4.3 Parent Constraint Connections
	22.4.4 Sizing Constraints
	22.4.5 Constraint Bias
	22.4.6 Alignment Constraints
	22.4.7 Copying and Applying Constraint Sets
	22.4.8 ConstraintLayout Chains
	22.4.9 Guidelines
	22.4.10 Removing Constraints
	22.4.11 Scaling
	22.4.12 Rotation
	22.5 Summary
	23.An Android ConstraintSet Tutorial
	23.1 Creating the Example Project in Android Studio
	23.2 Adding Views to an Activity
	23.3 Setting View Properties
	23.4 Creating View IDs
	23.5 Configuring the Constraint Set
	23.6 Adding the EditText View
	23.7 Converting Density Independent Pixels (dp) to Pixels (px)
	23.8 Summary
	24.An Overview and Example of Android Event Handling
	24.1 Understanding Android Events
	24.2 Using the android:onClick Resource
	24.3 Event Listeners and Callback Methods
	24.4 An Event Handling Example
	24.5 Designing the User Interface
	24.6 The Event Listener and Callback Method
	24.7 Consuming Events
	24.8 Summary
	25. A Guide to using Instant Run in Android Studio
	25.1 Introducing Instant Run
	25.2 Understanding Instant Run Swapping Levels
	25.3 Enabling and Disabling Instant Run
	25.4 Using Instant Run
	25.5 An Instant Run Tutorial
	25.6 Triggering an Instant Run Hot Swap
	25.7 Triggering an Instant Run Warm Swap
	25.8 Triggering an Instant Run Cold Swap
	25.9 The Run Button
	25.10 Summary
	26.Android Touch and Multi-touch Event Handling
	26.1 Intercepting Touch Events
	26.2 The MotionEvent Object
	26.3 Understanding Touch Actions
	26.4 Handling Multiple Touches
	26.5 An Example Multi-Touch Application
	26.6 Designing the Activity User Interface
	26.7 Implementing the Touch Event Listener
	26.8 Running the Example Application
	26.9 Summary
	27.Detecting Common Gestures using the Android Gesture Detector Class
	27.1 Implementing Common Gesture Detection
	27.2 Creating an Example Gesture Detection Project
	27.3 Implementing the Listener Class
	27.4 Creating the GestureDetectorCompat Instance
	27.5 Implementing the onTouchEvent() Method
	27.6 Testing the Application
	27.7 Summary
	28.Implementing Custom Gesture and Pinch Recognition on Android
	28.1 The Android Gesture Builder Application
	28.2 The GestureOverlayView Class
	28.3 Detecting Gestures
	28.4 Identifying Specific Gestures
	28.5 Building and Running the Gesture Builder Application
	28.6 Creating a Gestures File
	28.7 Extracting the Gestures File from the SD Card
	28.8 Creating the Example Project
	28.9 Adding the Gestures File to the Project
	28.10 Designing the User Interface
	28.11 Loading the Gestures File
	28.12 Registering the Event Listener
	28.13 Implementing the onGesturePerformed Method
	28.14 Testing the Application
	28.15 Configuring the GestureOverlayView
	28.16 Intercepting Gestures
	28.17 Detecting Pinch Gestures
	28.18 A Pinch Gesture Example Project
	28.19 Summary
	29.An Introduction to Android Fragments
	29.1 What is a Fragment?
	29.2 Creating a Fragment
	29.3 Adding a Fragment to an Activity using the Layout XML File
	29.4 Adding and Managing Fragments in Code
	29.5 Handling Fragment Events
	29.6 Implementing Fragment Communication
	29.7 Summary
	30.Using Fragments in Android Studio - An Example
	30.1 About the Example Fragment Application
	30.2 Creating the Example Project
	30.3 Creating the First Fragment Layout
	30.4 Creating the First Fragment Class
	30.5 Creating the Second Fragment Layout
	30.6 Adding the Fragments to the Activity
	30.7 Making the Toolbar Fragment Talk to the Activity
	30.8 Making the Activity Talk to the Text Fragment
	30.9 Testing the Application
	30.10 Summary
	31.Creating and Managing Overflow Menus on Android
	31.1 The Overflow Menu
	31.2 Creating an Overflow Menu
	31.3 Displaying an Overflow Menu
	31.4 Responding to Menu Item Selections
	31.5 Creating Checkable Item Groups
	31.6 Menus and the Android Studio Menu Editor
	31.7 Creating the Example Project
	31.8 Designing the Menu
	31.9 Modifying the onOptionsItemSelected() Method
	31.10 Testing the Application
	31.11 Summary
	32.Animating User Interfaces with the Android Transitions Framework
	32.1 Introducing Android Transitions and Scenes
	32.2 Using Interpolators with Transitions
	32.3 Working with Scene Transitions
	32.4 Custom Transitions and TransitionSets in Code
	32.5 Custom Transitions and TransitionSets in XML
	32.6 Working with Interpolators
	32.7 Creating a Custom Interpolator
	32.8 Using the beginDelayedTransition Method
	32.9 Summary
	33.An Android Transition Tutorial using beginDelayedTransition
	33.1 Creating the Android Studio TransitionDemo Project
	33.2 Preparing the Project Files
	33.3 Implementing beginDelayedTransition Animation
	33.4 Customizing the Transition
	33.5 Summary
	34.Implementing Android Scene Transitions – A Tutorial
	34.1 An Overview of the Scene Transition Project
	34.2 Creating the Android Studio SceneTransitions Project
	34.3 Identifying and Preparing the Root Container
	34.4 Designing the First Scene
	34.5 Designing the Second Scene
	34.6 Entering the First Scene
	34.7 Loading Scene 2
	34.8 Implementing the Transitions
	34.9 Adding the Transition File
	34.10 Loading and Using the Transition Set
	34.11 Configuring Additional Transitions
	34.12 Summary
	35.Working with the Floating Action Button and Snackbar
	35.1 The Material Design
	35.2 The Design Library
	35.3 The Floating Action Button (FAB)
	35.4 The Snackbar
	35.5 Creating the Example Project
	35.6 Reviewing the Project
	35.7 Changing the Floating Action Button
	35.8 Adding the ListView to the Content Layout
	35.9 Adding Items to the ListView
	35.10 Adding an Action to the Snackbar
	35.11 Summary
	36.Creating a Tabbed Interface using the TabLayout Component
	36.1 An Introduction to the ViewPager
	36.2 An Overview of the TabLayout Component
	36.3 Creating the TabLayoutDemo Project
	36.4 Creating the First Fragment
	36.5 Duplicating the Fragments
	36.6 Adding the TabLayout and ViewPager
	36.7 Creating the Pager Adapter
	36.8 Performing the Initialization Tasks
	36.9 Testing the Application
	36.10 Customizing the TabLayout
	36.11 Displaying Icon Tab Items
	36.12 Summary
	37.Working with the RecyclerView and CardView Widgets
	37.1 An Overview of the RecyclerView
	37.2 An Overview of the CardView
	37.3 Adding the Libraries to the Project
	37.4 Summary
	38.An Android RecyclerView and CardView Tutorial
	38.1 Creating the CardDemo Project
	38.2 Removing the Floating Action Button
	38.3 Adding the RecyclerView and CardView Libraries
	38.4 Designing the CardView Layout
	38.5 Adding the RecyclerView
	38.6 Creating the RecyclerView Adapter
	38.7 Adding the Image Files
	38.8 Initializing the RecyclerView Component
	38.9 Testing the Application
	38.10 Responding to Card Selections
	38.11 Summary
	39.Working with the AppBar and Collapsing Toolbar Layouts
	39.1 The Anatomy of an AppBar
	39.2 The Example Project
	39.3 Coordinating the RecyclerView and Toolbar
	39.4 Introducing the Collapsing Toolbar Layout
	39.5 Changing the Title and Scrim Color
	39.6 Summary
	40.Implementing an Android Navigation Drawer
	40.1 An Overview of the Navigation Drawer
	40.2 Opening and Closing the Drawer
	40.3 Responding to Drawer Item Selections
	40.4 Using the Navigation Drawer Activity Template
	40.5 Creating the Navigation Drawer Template Project
	40.6 The Template Layout Resource Files
	40.7 The Header Coloring Resource File
	40.8 The Template Menu Resource File
	40.9 The Template Code
	40.10 Running the App
	40.11 Summary
	41.An Android Studio Master/Detail Flow Tutorial
	41.1 The Master/Detail Flow
	41.2 Creating a Master/Detail Flow Activity
	41.3 The Anatomy of the Master/Detail Flow Template
	41.4 Modifying the Master/Detail Flow Template
	41.5 Changing the Content Model
	41.6 Changing the Detail Pane
	41.7 Modifying the WebsiteDetailFragment Class
	41.8 Modifying the WebsiteListActivity Class
	41.9 Adding Manifest Permissions
	41.10 Running the Application
	41.11 Summary
	42.An Overview of Android Intents
	42.1 An Overview of Intents
	42.2 Explicit Intents
	42.3 Returning Data from an Activity
	42.4 Implicit Intents
	42.5 Using Intent Filters
	42.6 Checking Intent Availability
	42.7 Summary
	43.Android Explicit Intents – A Worked Example
	43.1 Creating the Explicit Intent Example Application
	43.2 Designing the User Interface Layout for ActivityA
	43.3 Creating the Second Activity Class
	43.4 Designing the User Interface Layout for ActivityB
	43.5 Reviewing the Application Manifest File
	43.6 Creating the Intent
	43.7 Extracting Intent Data
	43.8 Launching ActivityB as a Sub-Activity
	43.9 Returning Data from a Sub-Activity
	43.10 Testing the Application
	43.11 Summary
	44.Android Implicit Intents – A Worked Example
	44.1 Creating the Android Studio Implicit Intent Example Project
	44.2 Designing the User Interface
	44.3 Creating the Implicit Intent
	44.4 Adding a Second Matching Activity
	44.5 Adding the Web View to the UI
	44.6 Obtaining the Intent URL
	44.7 Modifying the MyWebView Project Manifest File
	44.8 Installing the MyWebView Package on a Device
	44.9 Testing the Application
	44.10 Summary
	45.Android Broadcast Intents and Broadcast Receivers
	45.1 An Overview of Broadcast Intents
	45.2 An Overview of Broadcast Receivers
	45.3 Obtaining Results from a Broadcast
	45.4 Sticky Broadcast Intents
	45.5 The Broadcast Intent Example
	45.6 Creating the Example Application
	45.7 Creating and Sending the Broadcast Intent
	45.8 Creating the Broadcast Receiver
	45.9 Configuring a Broadcast Receiver in the Manifest File
	45.10 Testing the Broadcast Example
	45.11 Listening for System Broadcasts
	45.12 Summary
	46.A Basic Overview of Threads and Thread Handlers
	46.1 An Overview of Threads
	46.2 The Application Main Thread
	46.3 Thread Handlers
	46.4 A Basic Threading Example
	46.5 Creating a New Thread
	46.6 Implementing a Thread Handler
	46.7 Passing a Message to the Handler
	46.8 Summary
	47.An Overview of Android Started and Bound Services
	47.1 Started Services
	47.2 Intent Service
	47.3 Bound Service
	47.4 The Anatomy of a Service
	47.5 Controlling Destroyed Service Restart Options
	47.6 Declaring a Service in the Manifest File
	47.7 Starting a Service Running on System Startup
	47.8 Summary
	48.Implementing an Android Started Service – A Worked Example
	48.1 Creating the Example Project
	48.2 Creating the Service Class
	48.3 Adding the Service to the Manifest File
	48.4 Starting the Service
	48.5 Testing the IntentService Example
	48.6 Using the Service Class
	48.7 Creating the New Service
	48.8 Modifying the User Interface
	48.9 Running the Application
	48.10 Creating a New Thread for Service Tasks
	48.11 Summary
	49.Android Local Bound Services – A Worked Example
	49.1 Understanding Bound Services
	49.2 Bound Service Interaction Options
	49.3 An Android Studio Local Bound Service Example
	49.4 Adding a Bound Service to the Project
	49.5 Implementing the Binder
	49.6 Binding the Client to the Service
	49.7 Completing the Example
	49.8 Testing the Application
	49.9 Summary
	50.Android Remote Bound Services – A Worked Example
	50.1 Client to Remote Service Communication
	50.2 Creating the Example Application
	50.3 Designing the User Interface
	50.4 Implementing the Remote Bound Service
	50.5 Configuring a Remote Service in the Manifest File
	50.6 Launching and Binding to the Remote Service
	50.7 Sending a Message to the Remote Service
	50.8 Summary
	51.An Android 7 Notifications Tutorial
	51.1 An Overview of Notifications
	51.2 Creating the NotifyDemo Project
	51.3 Designing the User Interface
	51.4 Creating the Second Activity
	51.5 Creating and Issuing a Basic Notification
	51.6 Launching an Activity from a Notification
	51.7 Adding Actions to a Notification
	51.8 Adding Sound to a Notification
	51.9 Bundled Notifications
	51.10 Summary
	52.An Android 7 Direct Reply Notification Tutorial
	52.1 Creating the DirectReply Project
	52.2 Designing the User Interface
	52.3 Building the RemoteInput Object
	52.4 Creating the PendingIntent
	52.5 Creating the Reply Action
	52.6 Receiving Direct Reply Input
	52.7 Updating the Notification
	52.8 Summary
	53.Integrating Firebase Support into an Android Studio Project
	53.1 What is Firebase?
	53.2 Signing in to Firebase
	53.3 Creating the FirebaseNotify Project
	53.4 Configuring the User Interface
	53.5 Connecting the Project to Firebase
	53.6 Creating a New Firebase Project
	53.7 The google-services.json File
	53.8 Adding the Firebase Libraries
	53.9 Summary
	54.An Android 7 Firebase Remote Notification Tutorial
	54.1 Sending a Firebase Notification
	54.2 Receiving the Notification
	54.3 Including Custom Data within the Notification
	54.4 Foreground App Notification Handling
	54.5 Summary
	55.An Introduction to Android 7 Multi-Window Support
	55.1 Split-Screen, Freeform and Picture-in-Picture Modes
	55.2 Entering Multi-Window Mode
	55.3 Checking for Freeform Support
	55.4 Enabling Multi-Window Support in an App
	55.5 Specifying Multi-Window Attributes
	55.6 Detecting Multi-Window Mode in an Activity
	55.7 Receiving Multi-Window Notifications
	55.8 Launching an Activity in Multi-Window Mode
	55.9 Configuring Freeform Activity Size and Position
	55.10 Summary
	56.An Android Studio Multi-Window Split-Screen and Freeform Tutorial
	56.1 Creating the Multi-Window Project
	56.2 Designing the FirstActivity User Interface
	56.3 Adding the Second Activity
	56.4 Launching the Second Activity
	56.5 Enabling Multi-Window Mode
	56.6 Testing Multi-Window Support
	56.7 Launching the Second Activity in a Different Window
	56.8 Changing the Freeform Window Position and Size
	56.9 Summary
	57.An Overview of Android SQLite Databases
	57.1 Understanding Database Tables
	57.2 Introducing Database Schema
	57.3 Columns and Data Types
	57.4 Database Rows
	57.5 Introducing Primary Keys
	57.6 What is SQLite?
	57.7 Structured Query Language (SQL)
	57.8 Trying SQLite on an Android Virtual Device (AVD)
	57.9 Android SQLite Java Classes
	57.9.1 Cursor
	57.9.2 SQLiteDatabase
	57.9.3 SQLiteOpenHelper
	57.9.4 ContentValues
	57.10 Summary
	58.An Android TableLayout and TableRow Tutorial
	58.1 The TableLayout and TableRow Layout Views
	58.2 Creating the Database Project
	58.3 Adding the TableLayout to the User Interface
	58.4 Configuring the TableRows
	58.5 Adding the Button Bar to the Layout
	58.6 Adjusting the Layout Margins
	58.7 Summary
	59.An Android SQLite Database Tutorial
	59.1 About the Database Example
	59.2 Creating the Data Model
	59.3 Implementing the Data Handler
	59.3.1 The Add Handler Method
	59.3.2 The Query Handler Method
	59.3.3 The Delete Handler Method
	59.4 Implementing the Activity Event Methods
	59.5 Testing the Application
	59.6 Summary
	60.Understanding Android Content Providers
	60.1 What is a Content Provider?
	60.2 The Content Provider
	60.2.1 onCreate()
	60.2.2 query()
	60.2.3 insert()
	60.2.4 update()
	60.2.5 delete()
	60.2.6 getType()
	60.3 The Content URI
	60.4 The Content Resolver
	60.5 The <provider> Manifest Element
	60.6 Summary
	61.Implementing an Android Content Provider in Android Studio
	61.1 Copying the Database Project
	61.2 Adding the Content Provider Package
	61.3 Creating the Content Provider Class
	61.4 Constructing the Authority and Content URI
	61.5 Implementing URI Matching in the Content Provider
	61.6 Implementing the Content Provider onCreate() Method
	61.7 Implementing the Content Provider insert() Method
	61.8 Implementing the Content Provider query() Method
	61.9 Implementing the Content Provider update() Method
	61.10 Implementing the Content Provider delete() Method
	61.11 Declaring the Content Provider in the Manifest File
	61.12 Modifying the Database Handler
	61.13 Summary
	62.Accessing Cloud Storage using the Android Storage Access Framework
	62.1 The Storage Access Framework
	62.2 Working with the Storage Access Framework
	62.3 Filtering Picker File Listings
	62.4 Handling Intent Results
	62.5 Reading the Content of a File
	62.6 Writing Content to a File
	62.7 Deleting a File
	62.8 Gaining Persistent Access to a File
	62.9 Summary
	63.An Android Storage Access Framework Example
	63.1 About the Storage Access Framework Example
	63.2 Creating the Storage Access Framework Example
	63.3 Designing the User Interface
	63.4 Declaring Request Codes
	63.5 Creating a New Storage File
	63.6 The onActivityResult() Method
	63.7 Saving to a Storage File
	63.8 Opening and Reading a Storage File
	63.9 Testing the Storage Access Application
	63.10 Summary
	64.Implementing Video Playback on Android using the VideoView and MediaController Classes
	64.1 Introducing the Android VideoView Class
	64.2 Introducing the Android MediaController Class
	64.3 Testing Video Playback
	64.4 Creating the Video Playback Example
	64.5 Designing the VideoPlayer Layout
	64.6 Configuring the VideoView
	64.7 Adding Internet Permission
	64.8 Adding the MediaController to the Video View
	64.9 Setting up the onPreparedListener
	64.10 Summary
	65.Video Recording and Image Capture on Android using Camera Intents
	65.1 Checking for Camera Support
	65.2 Calling the Video Capture Intent
	65.3 Calling the Image Capture Intent
	65.4 Creating an Android Studio Video Recording Project
	65.5 Designing the User Interface Layout
	65.6 Checking for the Camera
	65.7 Launching the Video Capture Intent
	65.8 Handling the Intent Return
	65.9 Testing the Application
	65.10 Summary
	66.Making Runtime Permission Requests in Android
	66.1 Understanding Normal and Dangerous Permissions
	66.2 Creating the Permissions Example Project
	66.3 Checking for a Permission
	66.4 Requesting Permission at Runtime
	66.5 Providing a Rationale for the Permission Request
	66.6 Testing the Permissions App
	66.7 Summary
	67.Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	67.1 Playing Audio
	67.2 Recording Audio and Video using the MediaRecorder Class
	67.3 About the Example Project
	67.4 Creating the AudioApp Project
	67.5 Designing the User Interface
	67.6 Checking for Microphone Availability
	67.7 Performing the Activity Initialization
	67.8 Implementing the recordAudio() Method
	67.9 Implementing the stopAudio() Method
	67.10 Implementing the playAudio() method
	67.11 Configuring and Requesting Permissions
	67.12 Testing the Application
	67.13 Summary
	68.Working with the Google Maps Android API in Android Studio
	68.1 The Elements of the Google Maps Android API
	68.2 Creating the Google Maps Project
	68.3 Obtaining Your Developer Signature
	68.4 Testing the Application
	68.5 Understanding Geocoding and Reverse Geocoding
	68.6 Adding a Map to an Application
	68.7 Requesting Current Location Permission
	68.8 Displaying the User’s Current Location
	68.9 Changing the Map Type
	68.10 Displaying Map Controls to the User
	68.11 Handling Map Gesture Interaction
	68.11.1 Map Zooming Gestures
	68.11.2 Map Scrolling/Panning Gestures
	68.11.3 Map Tilt Gestures
	68.11.4 Map Rotation Gestures
	68.12 Creating Map Markers
	68.13 Controlling the Map Camera
	68.14 Summary
	69.Printing with the Android Printing Framework
	69.1 The Android Printing Architecture
	69.2 The Print Service Plugins
	69.3 Google Cloud Print
	69.4 Printing to Google Drive
	69.5 Save as PDF
	69.6 Printing from Android Devices
	69.7 Options for Building Print Support into Android Apps
	69.7.1 Image Printing
	69.7.2 Creating and Printing HTML Content
	69.7.3 Printing a Web Page
	69.7.4 Printing a Custom Document
	69.8 Summary
	70.An Android HTML and Web Content Printing Example
	70.1 Creating the HTML Printing Example Application
	70.2 Printing Dynamic HTML Content
	70.3 Creating the Web Page Printing Example
	70.4 Removing the Floating Action Button
	70.5 Designing the User Interface Layout
	70.6 Loading the Web Page into the WebView
	70.7 Adding the Print Menu Option
	70.8 Summary
	71.A Guide to Android Custom Document Printing
	71.1 An Overview of Android Custom Document Printing
	71.1.1 Custom Print Adapters
	71.2 Preparing the Custom Document Printing Project
	71.3 Creating the Custom Print Adapter
	71.4 Implementing the onLayout() Callback Method
	71.5 Implementing the onWrite() Callback Method
	71.6 Checking a Page is in Range
	71.7 Drawing the Content on the Page Canvas
	71.8 Starting the Print Job
	71.9 Testing the Application
	71.10 Summary
	72.An Android Fingerprint Authentication Tutorial
	72.1 An Overview of Fingerprint Authentication
	72.2 Creating the Fingerprint Authentication Project
	72.3 Configuring Device Fingerprint Authentication
	72.4 Adding the Fingerprint Permission to the Manifest File
	72.5 Adding the Fingerprint Icon
	72.6 Designing the User Interface
	72.7 Accessing the Keyguard and Fingerprint Manager Services
	72.8 Checking the Security Settings
	72.9 Accessing the Android Keystore and KeyGenerator
	72.10 Generating the Key
	72.11 Initializing the Cipher
	72.12 Creating the CryptoObject Instance
	72.13 Implementing the Fingerprint Authentication Handler Class
	72.14 Testing the Project
	72.15 Summary
	73.Handling Different Android Devices and Displays
	73.1 Handling Different Device Displays
	73.2 Creating a Layout for each Display Size
	73.3 Creating Layout Variants in Android Studio
	73.4 Providing Different Images
	73.5 Checking for Hardware Support
	73.6 Providing Device Specific Application Binaries
	73.7 Summary
	74.Signing and Preparing an Android Application for Release
	74.1 The Release Preparation Process
	74.2 Changing the Build Variant
	74.3 Enabling ProGuard
	74.4 Creating a Keystore File
	74.5 Generating a Private Key
	74.6 Creating the Application APK File
	74.7 Register for a Google Play Developer Console Account
	74.8 Uploading New APK Versions to the Google Play Developer Console
	74.9 Analyzing the APK File
	74.10 Summary
	75. Integrating Google Play In-app Billing into an Android Application
	75.1 Installing the Google Play Billing Library
	75.2 Creating the Example In-app Billing Project
	75.3 Adding Billing Permission to the Manifest File
	75.4 Adding the IInAppBillingService.aidl File to the Project
	75.5 Adding the Utility Classes to the Project
	75.6 Designing the User Interface
	75.7 Implementing the “Click Me” Button
	75.8 Google Play Developer Console and Google Wallet Accounts
	75.9 Obtaining the Public License Key for the Application
	75.10 Setting Up Google Play Billing in the Application
	75.11 Initiating a Google Play In-app Billing Purchase
	75.12 Implementing the onActivityResult Method
	75.13 Implementing the Purchase Finished Listener
	75.14 Consuming the Purchased Item
	75.15 Releasing the IabHelper Instance
	75.16 Modifying the Security.java File
	75.17 Testing the In-app Billing Application
	75.18 Building a Release APK
	75.19 Creating a New In-app Product
	75.20 Publishing the Application to the Alpha Distribution Channel
	75.21 Adding In-app Billing Test Accounts
	75.22 Configuring Group Testing
	75.23 Resolving Problems with In-App Purchasing
	75.24 Summary
	76. An Overview of Gradle in Android Studio
	76.1 An Overview of Gradle
	76.2 Gradle and Android Studio
	76.2.1 Sensible Defaults
	76.2.2 Dependencies
	76.2.3 Build Variants
	76.2.4 Manifest Entries
	76.2.5 APK Signing
	76.2.6 ProGuard Support
	76.3 The Top-level Gradle Build File
	76.4 Module Level Gradle Build Files
	76.5 Configuring Signing Settings in the Build File
	76.6 Running Gradle Tasks from the Command-line
	76.7 Summary
	77. An Android Studio Gradle Build Variants Example
	77.1 Creating the Build Variant Example Project
	77.2 Adding the Build Flavors to the Module Build File
	77.3 Adding the Flavors to the Project Structure
	77.4 Adding Resource Files to the Flavors
	77.5 Testing the Build Flavors
	77.6 Build Variants and Class Files
	77.7 Adding Packages to the Build Flavors
	77.8 Customizing the Activity Classes
	77.9 Summary
	Creating an Android Virtual Device (AVD) in Android Studio
	Using and Configuring the Android Studio AVD Emulator
	An Android Fingerprint Authentication Tutorial
	Setting up an Android Studio Development Environment
	Creating an Example Android App in Android Studio
	Handling Android Activity State Changes
	Understanding Android Application and Activity Lifecycles
	Saving and Restoring the User Interface State of an Android Activity
	Android Activity State Changes – An Example Application
	The Basics of the Android Studio Code Editor
	Testing Android Studio Apps on a Physical Android Device
	The Anatomy of an Android Application
	Working with the Floating Action Button and Snackbar
	Working with the AppBar and Collapsing Toolbar Layouts
	Understanding Android Views, View Groups and Layouts
	A Guide to using ConstraintLayout in Android Studio
	A Guide to the Android Studio Layout Editor Tool
	A Guide to the Android ConstraintLayout
	Designing an Android User Interface using the Graphical Layout Tool
	Manual XML Layout Design in Android Studio
	Android Touch and Multi-touch Event Handling
	An Overview and Example of Android Event Handling
	Detecting Common Gestures using the Android Gesture Detector Class
	Implementing Custom Gesture and Pinch Recognition on Android
	Using Fragments in Android Studio - A Worked Example
	An Introduction to Android Fragments
	Animating User Interfaces with the Android Transitions Framework
	An Android RecyclerView and CardView Tutorial
	Creating and Managing Overflow Menus on Android
	An Overview of Android Intents
	Android Implicit Intents – A Worked Example
	Android Local Bound Services – A Worked Example
	An Overview of Android Started and Bound Services
	A Basic Overview of Android Threads and Thread Handlers
	An Android 7 Direct Reply Notification Tutorial
	Integrating Firebase Support into an Android Studio Project
	An Android 7 Firebase Remote Notification Tutorial
	An Android 7 Notifications Tutorial
	Android Explicit Intents – A Worked Example
	An Introduction to Android 7 Multi-Window Support
	An Android TableLayout and TableRow Tutorial
	An Android SQLite Database Tutorial
	Understanding Android Content Providers
	An Android Storage Access Framework Example
	Making Runtime Permission Requests in Android 6.0
	An Android HTML and Web Content Printing Example
	A Guide to Android Custom Document Printing
	Printing with the Android Printing Framework
	Using and Configuring the Android Studio 2 AVD Emulator
	Signing and Preparing an Android Application for Release
	An Android Studio Gradle Build Variants Example

