

Android Studio Application
Development

Create visually appealing applications using the new
IntelliJ IDE Android Studio

Belén Cruz Zapata

BIRMINGHAM - MUMBAI

Android Studio Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1081013

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-527-3

www.packtpub.com

Cover Image by Sheetal Aute (sheetala@packtpub.com)

Credits

Author
Belén Cruz Zapata

Reviewers
Karan Kedar Balkar

Angel Ivorra

Pablo Pera Mira

Antonio Hernández Niñirola

Acquisition Editor
Saleem Ahmed

Commissioning Editors
Shaon Basu

Meeta Rajani

Technical Editors
Tanvi Bhatt

Tarunveer Shetty

Project Coordinator
Amey Sawant

Proofreader
Jonathan Todd

Indexer
Priya Subramani

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

About the Author

Belén Cruz Zapata received her Engineer's degree in Computer Science from the
University of Murcia in Spain, specializing in software technologies and intelligent
and knowledge technologies. She earned an M.Sc in Computer Science and is
now working in her Ph.D on the Software Engineering Research Group from the
University of Murcia.

Belén is based in Spain, although in the field of her Ph.D she is now collaborating with
the Université Mohammed V-Soussi, in Rabat, as beneficiary of an Erasmus Mundus
program. Her research is focused on the mobile world and cloud computing.

She has a special interest in the development of mobile applications and new
technologies. In the past few years, she has worked as a mobile developer for
several platforms such as Android, iOS , and the Web.

She maintains a blog at http://www.belencruz.com and you can follow her on
Twitter: @belen_cz.

I would like to thank Packt Publishing for offering me the opportunity
to write this book. I would particularly like to thank Reshma Raman,
Meeta Rajani, and Amey Sawant for their valuable help.

I would also like to thank my mentors during the last months,
Miguel R. and P. Salinas; my friends, especially Ana, Nerea, and the
yupi group, for cheering me up; my family, especially my parents
and brother, for supporting me; and finally my significant other for
everything and more.

About the Reviewers

Karan Kedar Balkar has been working as an independent Android application
developer for the past four years. Born and brought up in Mumbai, he holds
a Bachelor's degree in Computer Engineering. He has written more than 50
programming tutorials on his personal blog (http://karanbalkar.com) covering
popular technologies and frameworks.

At present, he is working as a Software Engineer. He has been trained on various
technologies including Java, Oracle, and .NET. Apart from being passionate about
technology, he loves to write poems and travel to different places. He likes listening
to music and enjoys playing the guitar.

Firstly, I would like to thank my parents for their constant support
and encouragement. I would also like to thank my friends, Srivatsan
Iyer, Ajit Pillai, and Prasaanth Neelakandan for always inspiring and
motivating me.

I would like to express my deepest gratitude to Packt Publishing for
giving me a chance to be a part of the reviewing process.

Angel Ivorra is an autodidact software developer with 20 years of experience in
several languages and platforms. He lives and works in Spain, in his own company
(http://www.crestasoftware.es).

I would like to thank my wife and daughter for all the patience
during my long nights working.

Pablo Pera Mira is an Android developer and entrepreneur. As a co-founder of
Androidsx, Pablo has been involved in the design, development, marketing, and
launch of more than 10 applications in the Google Play Store, with a total reach of
over 10 million users.

He currently works for Pixable, where he leads the development of the Android
application Photofeed, a product from Pixable, based in New York. He previously
worked as a backend Java engineer for the control platform of LHC, the particle
accelerator in CERN, in Geneva. His first contact with real-world software was at
Google, Zurich.

Antonio Hernández Niñirola is a Computer Science Engineer and mobile
applications developer, born and raised in Murcia in the southeast of Spain and
currently living in Rabat, Morocco. He has developed several websites and also
mobile applications that have been published in both the Google Play Market and
the Apple Store.

After his degree in Computer Science, he pursued a Master's degree in Teacher
Training for Informatics and Technology. Antonio pushed his studies further and
is now a doctorate student under the Software Engineering Group of the Faculty of
Computer Science of the University of Murcia and is actually a researcher for the
University Mohammed Soussi V in Rabat.

As soon as Antonio got his first smartphone, a second-hand first generation
iPhone, he started programming small applications as a form of entertainment.
What started as a hobby, became a passion and is now leading his career both
professionally and academically.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Installing and Configuring Android Studio 5

Preparing for installation 5
Downloading Android Studio 6

Installing Android Studio 6
Running Android Studio for the first time 6

Configuring the Android SDK 8
Summary 10

Chapter 2: Starting a Project 11
Creating a new project 11
Creating a custom launcher icon 13
Choosing your type of activity 13
Summary 15

Chapter 3: Navigating a Project 17
The project navigation panel 18
Project structure 19
Project settings 21
Summary 22

Chapter 4: Using the Code Editor 23
Editor settings 24
Code completion 26
Code generation 27
Navigating code 28
Useful actions 30
Summary 31

Table of Contents

[ii]

Chapter 5: Creating User Interfaces 33
The graphical editor 34
The text-based editor 35
Creating a new layout 36
Adding components 36
Supporting multiple screens 38
Changing the UI theme 41
Handling events 42
Summary 45

Chapter 6: Google Play Services 47
How Google Play Services work 47
Services available 48
Adding Google Play Services to Android Studio 49
Google Maps Android API v2 50
Google+ Platform for Android 52
Google Play In-app Billing v3 53
Google Cloud Messaging 54
Summary 54

Chapter 7: Tools 55
Software Development Kit Manager 55
Android Virtual Device Manager 57
Generating Javadoc 61
Version control system 62
Summary 64

Chapter 8: Debugging 65
Running and debugging 65
LogCat 68
DDMS 69

Threads 70
Method profiling 71
Heap 72
Allocation tracker 73
Network statistics 73
File Explorer 74
Emulator control 74
System information 74

Summary 75

Table of Contents

[iii]

Chapter 9: Preparing for Release 77
What is an APK file 77
Previous steps 79
Generating a signed APK 80
Summary 81

Chapter 10: Getting Help 83
Getting help from Android Studio 83
Android online documentation 84
Updates 86
Summary 87

Index 89

Preface
Mobile applications have had a huge increase in popularity in the last few years and
this interest is still growing among users. Mobile operating systems are available not
only for smartphones but tablets as well, therefore increasing the possible market
quota for these applications.

Android has characteristics that make it pleasant to developers such as open source
and a certain level of community-driven development. Android has always been
contesting with iOS (the Apple mobile system) in everything and with XCode, iOS
presented itself as a more centralized development environment. The new IDE
Android Studio makes this centralization finally available for Android developers
and makes this tool indispensable for a good Android developer.

This book about Android Studio shows users how to develop and build Android
applications with this new IDE. It is not only a getting started book but also a guide
to advanced developers to build their applications faster and more productively.
This book will follow a tutorial approach from the basic features to the steps to build
for release, including practical examples.

What this book covers
Chapter 1, Installing and Configuring Android Studio, describes the installation and
basic configuration of Android Studio.

Chapter 2, Starting a Project, shows how to create a new project and the type of
activities we can select.

Chapter 3, Navigating a Project, explores the basic structure of a project in
Android Studio.

Chapter 4, Using the Code Editor, exposes the basic features of the code editor in
order to get the best out of it.

Preface

[2]

Chapter 5, Creating User Interfaces, focuses on the creation of the user interfaces using
both the graphical view and the text-based view.

Chapter 6, Google Play Services, introduces the current existing Google Play Services
and how to integrate them into a project in Android Studio.

Chapter 7, Tools, exposes some additional tools such as the Android SDK tools,
Javadoc, and the version control integration.

Chapter 8, Debugging, shows in detail how to debug an application in Android Studio
and the provided information when debugging.

Chapter 9, Preparing for Release, describes how to prepare your application for release.

Chapter 10, Getting Help, introduces how to get help using Android Studio and
provides a list of online sites to learn more about the topics seen in this book.

What you need for this book
For this book you need a computer with a Windows, Mac OS, or Linux system. You
will also need to have Java installed in your system.

Who this book is for
This book is not only a getting started book but also a guide to advanced
developers who have not used Android Studio to build their Android apps
before. This book is great for developers who want to learn the key features of
Android Studio and for developers who want to create their first app. It's assumed
that you are familiar with the object-oriented programming paradigm and the
Java programming language. It is also recommended you understand the main
characteristics of the Android mobile system.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We will go through the most important
folders in our project, build, gen, libs, and the folders under src/main. "

Preface

[3]

A block of code is set as follows:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 setContentView(R.layout.activity_main);

 if (savedInstanceState != null) {
 System.out.println("savedInstanceState = [" +
savedInstanceState + "]");
 }

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "In the Android
Studio welcome screen, navigate to Configure | Project Defaults | Project Structure."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing and Configuring
Android Studio

You want to get familiar with the new and official Google IDE Android Studio. You
want to know the features available in this environment. You would like to make
your own Android applications, and you want these applications to be available to
other users on Google Play Store. Can you do this easily? How can you achieve this?

This chapter will show you how to prepare your new Android Studio installation
and how to take your first steps in the new environment. We'll begin by preparing
the system for the installation and downloading the required files. We'll see the
welcome screen that prompts when running Android Studio for the first time and
we'll configure the Android SDK (Software Development Kit) properly so you have
everything ready to create your first application.

These are the topics we'll be covering in this chapter:

• Installation of Android Studio
• Welcome screen when running Android Studio for the first time
• Configuration of the Android SDK

Preparing for installation
A prerequisite to start working with Android Studio is to have Java installed in
your system. The system also must be able to find the Java installation. This can be
achieved by setting an environment variable named JAVA_HOME, which must point
to the JDK (Java Development Kit) folder in your system. Check this environment
variable to avoid future issues during the installation of Android Studio.

Installing and Configuring Android Studio

[6]

Downloading Android Studio
The Android Studio package can be downloaded from the Android developer tools
web page at: http://developer.android.com/sdk/installing/studio.html.

This package is an EXE file for Windows systems:

http://dl.google.com/android/studio/android-studio-bundle-130.737825-
windows.exe.

A DMG file for Mac OS X systems:

http://dl.google.com/android/studio/android-studio-bundle-130.737825-
mac.dmg.

Or a TGZ file for Linux systems:

http://dl.google.com/android/studio/android-studio-bundle-130.737825-
linux.tgz.

Installing Android Studio
In Windows, launch the EXE file. The default installation directory is \Users\<your_
user_name>\Appdata\Local\Android\android-studio. The Appdata directory is
usually a hidden directory.

In Mac OS X, open the DMG file and drop Android Studio into your applications
folder. The default installation directory is /Applications/Android/ Studio.app.

In Linux systems, unpack the TGZ file and execute the studio.sh script located at
the android-studio/bin/ directory.

If you have any problem in the installation process or in the following steps, you can
get help about it and the known issues by checking Chapter 10, Getting Help.

Running Android Studio for the first time
Execute Android Studio and wait until it loads completely (it may take a few minutes).
The first time executing Android Studio, a welcome screen will be prompted. As
shown in the following screenshot, the welcome screen includes a section to open
recent projects and a section of Quick Start. We can create a new project, import a
project, open a project, or even perform more advanced actions such as checking out
from a version control system or opening the configuration options.

Chapter 1

[7]

Let's have a look at the various options available in the Quick Start section:

• New Project...: Creates a new Android project
• Import Project: Creates a new project by importing existing sources from

your system
• Open Project: Opens an existing project
• Check out from Version Control: Creates a new project by importing

existing sources from a version control system
• Configure: Opens the configuration menu

 ° Settings: Opens Android Studio settings
 ° Plugins: Opens the plugins manager for Android Studio
 ° Import Settings: Imports the settings from a file (.jar)
 ° Export Settings: Exports the settings to a file (.jar)
 ° Project Defaults: Opens the project defaults settings menu

 ° Settings: Opens the template project settings. These settings are also
reachable from the Android Studio settings (Configure | Settings)

 ° Project Structure: Opens the project and platform settings
 ° Run Configurations: Opens the run and debug settings

Installing and Configuring Android Studio

[8]

• Docs and How-Tos: Opens the help menu

 ° Read Help: Opens the Android Studio help, online version
 ° Tips of the Day: Opens a dialog with the tip of the day
 ° Default Keymap Reference: Opens an online PDF containing the

default keymap
 ° JetBrains TV: Opens a JetBrains website containing video tutorials
 ° Plugin Development: Opens a JetBrains website containing

information for plugin developers

Configuring the Android SDK
The essential feature that has to be correctly configured is the Android SDK.
Although Android Studio automatically installs the last Android SDK available, so
you should already have everything you need to create your first application, it is
important to check it and to learn how we can change it.

In the Android Studio welcome screen, navigate to Configure | Project Defaults |
Project Structure. In Platform Settings, click on SDKs. The list of the installed SDKs
will be shown and you should have at least one Android SDK in the list. In Project
Settings, click on Project to open the general settings for the project default template.
You should have a selected Project SDK as shown in the next screenshot. This
selected SDK is the default that will be used in our Android projects, but even so we
can change it later for specific projects that require special settings.

Chapter 1

[9]

If you do not have any Android SDK configured in Android Studio, then we have to
add it manually.

To accomplish this task, in Platform Settings | SDKs click on the green plus
button to add an Android SDK to the list and then select the home directory for the
SDK. Check if you have it in your system by navigating to your Android Studio
installation directory. You should find a folder named sdk that contains the Android
SDK and its tools. The Android Studio installation directory may be in a hidden
folder, so click on the button highlighted in the following screenshot to Show
Hidden Files and Directories:

If you want to use another Android SDK different from the one included in Android
Studio, select it instead. For example, if you previously used the ADT (Android
Development Tools) plugin for Eclipse, you already have an Android SDK
installation in your system. You could also add both of them.

When you finish adding the SDK, it will appear in the list and you can select the
default from the project settings.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Installing and Configuring Android Studio

[10]

Summary
We have successfully prepared the system for Android Studio and installed our
Android Studio instance. We ran the Studio for the first time and now we know the
options available in the welcome screen. We have also learned how to configure
our Android SDK and how to install it manually in case you want to use a different
version. Fulfilling these tasks will leave your system with Android Studio running
and configured to create your first project.

In the next chapter, we will learn about the concept of project and how it includes
everything the application requires, from classes to libraries. We will create our first
project and we will discuss the different kinds of activities available in the wizard.

Starting a Project
You just installed Android Studio and now you want to get familiar with its features.
You want to understand the necessary fields when creating a project. You would
like to know how to add an icon to your application and associate it on the project,
and you are wondering how to create the main activity and which type of activity to
choose. How can you achieve this using Android Studio?

The goal of this chapter is to create a new project with the basic content it should
start out with. We will use the Android Studio wizard to create the project and we
will go through the project configuration fields. We will choose a launch icon for our
application and we will go through the different kinds of activities available in the
wizard to pick as the main activity for our project.

These are the topics we'll be covering in this chapter:

• Creating a new project
• Creating your application icon
• Types of activities to choose as your main activity

Creating a new project
To create a new project, click on the New Project option from the welcome screen.
If you are not in the welcome screen, then navigate to File | New Project. The new
project wizard opens.

Starting a Project

[12]

The first step of the wizard is enough to create a project, but if you check the Create
custom launcher icon option, a second step is added to the wizard, and if you check
the Create activity option, two additional steps are added. Check both of them.

The fields that will be shown on the new project wizard are as follows:

• Application name: It is the name shown in Google Play and the one that
users see.

• Module name: It is the name used only by Android Studio.
• Package name: Unique identifier of your application usually in the form

com.company_name.app_name or reverse_company_domain.app_name.
This form reduces the risk of name conflicts with other applications.

• Project location: It is the directory to save the project in your system.
• Minimum required SDK: It is the minimum SDK supported by your

application. Devices with a previous SDK will not be able to install your
application. Try to reach a balance between supported devices and available
features. If your application does not require a specific feature published
in the newest SDKs, then you can select an older API (Application
Programming Interface). The last dashboards published by Google about
the platforms distribution show that 95.5 percent of the devices use Android
2.3 or superior. If you select Android 2.2, then the percentage rises to 98.5
percent. Official Android dashboards are available at http://developer.
android.com/about/dashboards/index.html.

• Target SDK: It is the highest SDK that you have tested against your
application. You should keep this value updated to the latest versions.

• Compile with: It is the SDK used to compile your application. This SDK is
one of the SDKs you have installed and configured in Android Studio.

• Theme: Selects a default user interface theme for your application.

Chapter 2

[13]

The option Mark this project as a library is used to create the project as a library
module. A library can be referenced in other projects to share its functionality. Do
not check this option.

Consider the fields shown in the previous screenshot. Select API 10 as the minimum
SDK and API 17 as the target SDK. In the Compile with field, select the highest API
version you have installed (API 17). Click Next.

Creating a custom launcher icon
This step allows you to create your application icon and will be shown if you
checked the Create custom launcher icon option in the first step.

Android projects store several images resolutions to choose the most appropriate to
the device screen resolution when the application is executing. To ensure that the icon
will be displayed properly in every device, check if the XXHDPI image is not pixelated.

There are three options to create your application icon, an image, one of the provided
cliparts, or a text. The most common is an image. You can select your own image file
to create the icon and adjust some parameters such as its padding, its shape, or the
background color. Choose the Image option and leave the default image and options
as they are. Click on Next.

Choosing your type of activity
This step allows you to create the main activity of your application. This step will be
shown if in the first one you checked the Create activity option.

Starting a Project

[14]

Several types of activities can be selected:

• Blank Activity: This creates a blank activity with an action bar. The action
bar includes a title and an options menu. The navigation type can be a tabbed
user interface (tabs fixed or scrollable), horizontal swipe, or a drop-down
menu. See more about action bars at http://developer.android.com/
guide/topics/ui/actionbar.html.

• Fullscreen Activity: This template hides the system user interface (such as
the notification bar) in a full-screen view. The full-screen mode is alternated
with an action bar that shows up when the user touches the device screen.

• Login activity: This template creates its view as a login screen allowing the
users to log in or register with an e-mail and password.

Chapter 2

[15]

• Master/Detail Flow: This template splits the screen into two sections: a left
menu and the detail of the selected item on the right. On a smaller screen,
just one section is displayed, but on a bigger screen, both sections are
displayed at the same time.

• Settings Activity: This creates a preference activity with a list of settings.

Select the Blank Activity and click on Next. In the last step, we can give a name to
the activity and its associated layout. Leave the default values, select no navigation
type, and click Finish.

Summary
We have used the Android Studio wizard to create our first project and we filled the
configuration fields. We chose the launch icon for our application and made sure that
it's going to display properly with any resolution. We went through the different
kinds of activities.

In the next chapter, we will go through the different elements of the structure of
Android Studio. We will find where we can create new classes, add and access
libraries, and how to configure the project.

Navigating a Project
You just created your first Android Studio project and now you want to understand
what is going on. You want to start programming, but before this you need to get
familiar with the navigation of the project. How is everything structured? What
settings can you change on the project? How can you change these settings and
what do they mean?

This chapter is designed to introduce the structure of a project in Android Studio.
We will start by understanding the project navigation panel. We will go through
the most important folders in our project, build, gen, libs, and the folders under
src/main, and we will learn how to change the project settings.

These are the topics we'll be covering in this chapter:

• Navigation panel
• Project structure
• Changing project properties

Navigating a Project

[18]

The project navigation panel
Initially in the main view of Android Studio, no project or file is displayed as you
can see in the next screenshot. As Android Studio suggests, press Alt + 1 to open the
project view. You can also open it by clicking on the Project button from the left edge.

The project view shows the list of the open projects. The projects are displayed using
a hierarchical view.

In the upper-left corner of the project explorer we can change the type of view:
Project or Packages. The first one shows the directory structure of the project, while
the second one shows only the package structure.

Chapter 3

[19]

In the upper-right corner there are some actions and a drop-down menu to configure
the project view. These actions are highlighted in the following screenshot:

Click on the project name with the right mouse button to open the context menu, or
click on any element of the project. From this menu we can:

• Create and add new elements to the project
• Cut, copy, paste, or rename files in the project
• Find elements in the project
• Analyze and reformat the code
• Build the project
• Compare files
• Open files in Explorer

Project structure
In the project navigation pane, we can examine the project structure. Inside the
project structure is a folder with the name of our application. This folder contains
the application structure and files. The most important elements of the application
structure are:

• build/: A folder that contains the compiled resources after building the
application and the classes generated by the Android tools such as the
R.java file, which contains the references to the application resources.

• libs/: A folder that contains the libraries referenced from our code.

Navigating a Project

[20]

• src/main/: A folder that contains the sources of your application. All
the files you will usually work with are in this folder. The main folder is
subdivided as follows:

 ° java/: A folder that contains the Java classes organized as packages.
Every class we create will be in our project package namespace (com.
example.myapplication). When we created our first project, we
also created its main activity, so the activity class should be in this
package. The next screenshot shows this main activity class inside the
project structure:

 ° res/: A folder that contains project resources such as the XML files
that specify layouts and menus or the images files.

 ° drawable/: A folder that contains the images used in our application.
There are different drawable folders categorized into the different
screen densities. When we created our first project, we also created
our application icon, so this icon is already in these folders named
as ic_launcher.png.

 ° layout/: A folder that contains the XML definitions of the views
and their elements.

 ° menu/: A folder that contains the XML definitions of the menus of
the application.

 ° values/: A folder that contains the XML files that define sets of
name-value pairs. These values can be colors, strings, or styles.
There are different values folders categorized into different screens
options to adapt the interface to them. For example, to enlarge the
components or the fonts when the application is running on a tablet.

Chapter 3

[21]

 ° AndroidManifest.xml: This file is essential in an Android project
and is generated automatically when we create the project. This file
declares basic information needed by the Android system to run the
application, package name, version, activities, permissions, intents, or
required hardware.

• build.gradle: This file is the script used to build our application.

Project settings
There are two dialog boxes that contain project settings: File | Settings menu and
File | Project Structure. Both are also available in the toolbar.

Select your project from the project view and navigate to File | Settings menu.
In the left menu of the settings dialog, there is a section named Project Settings
[MyApplication]. Some important options are:

• Code Style: Configures the default code style scheme.
• Compiler: Configures the Android DX compiler used when building

our application.
• File Encodings: Changes the file's encoding. The default encoding is UTF-8.
• Gradle: It gives the Gradle's configuration. Gradle is a tool similar to Apache

Ant and Apache Maven, based on Groovy to build and manage Java projects.
Gradle is integrated in Android Studio.

• Language Injections: Adds or removes the available languages used in
the editor.

• Maven: It gives the Maven configuration. Maven is a tool similar to Apache
Ant and Gradle, based on XML to build and manage Java projects. Maven is
integrated in Android Studio.

• Version Control: Configures the version control options. Version control will
be explained in more detail in Chapter 7, Tools.

Navigating a Project

[22]

In addition to these settings, there are more of them in the project structure dialog.
Navigate to File | Project Structure menu. The Project Settings are:

• Project: We can change the project name and the project SDK. Remember
in Chapter 1, Installing and Configuring Android Studio, when we selected a
SDK as the default one. In this screen we can change this SDK just for the
current project.

• Modules: This screen shows a list of the existing modules with its facets.
We can also remove them or create new ones. According to IntelliJ IDEA
(http://www.jetbrains.com/idea/webhelp/module.html),

A module is a discrete unit of functionality which you can compile,
run, test and debug independently.

• Libraries: This screen shows a list of the libraries imported into the
project. We can also remove them or add new ones. They will be added
to the libs/ folder.

• Facets: This screen shows a list of the existing facets. We can also remove
them or create new ones. These facets were also displayed in the Modules
view. According to IntelliJ IDEA (http://www.jetbrains.com/idea/
webhelp/facet.html),

Facets represent various frameworks, technologies and
languages used in a module. They let IntelliJ IDEA know
how to treat the module contents and thus ensure conformity
with the corresponding frameworks and technologies.

Summary
We have learned how the projects are presented in Android Studio and what folders
are in it by default once it is created. Now we understand the reasons for each folder
and what AndroidManifest.xml is for. We went through the project settings both
in the File | Settings and the File | Project Structure dialogs. By now, you should
know how to manipulate and navigate a project in Android Studio.

In the next chapter we will learn how to use the text editor. A proper knowledge of the
text editor is important in order to improve our programming efficiency. We will learn
about the editor settings and how to auto-complete code, use pre-generated blocks of
code, and navigating the code. We will also learn about some useful shortcuts.

Using the Code Editor
You have created your first project and you know how to navigate through the
different folders, subfolders, and files. It's time to start programming! Have you
ever wanted to be able to program more efficiently? How can you speed up your
development process? Do you want to learn useful shortcuts to, for example,
comment more than one line at once, find and replace strings, or move faster through
different parameters in a method call?

In this chapter we will learn how to use the code editor and how to customize it in
order to feel more comfortable when programming. It is worth knowing the basic
features of the code editor in order to increase the developer productivity. We will
learn about code completion and code generation. Finally, we will learn some useful
shortcuts and hotkeys to speed up our development process.

These are the topics we'll be covering in this chapter:

• Customizing the code editor
• Code completion
• Code generation
• Find related content
• Useful shortcuts

Using the Code Editor

[24]

Editor settings
To open the editor settings navigate to File | Settings, section IDE Settings, menu
Editor. This screen displays the general settings of the editor. We recommend
checking two options that are unchecked by default:

• Change font size (Zoom) with Ctrl + Mouse Wheel: This option allows us
to change the font size of the editor using the mouse wheel, as we do in other
programs such as web browsers.

• Show quick doc on mouse move: If we check this option, when we move the
mouse over a piece of code and wait 500 ms, a quick doc about that code will
be displayed in a small dialog. When we move the mouse again, the dialog
automatically disappears, but if we move the mouse into the dialog, then we
can examine the doc in detail. This is very useful, for example, to read what a
method does and its parameters without navigating to it.

There are more settings distributed among seven categories:

• Smart Keys: Configures actions to be done automatically when typing, such
as adding closing brackets, quotes or tags; or indenting the line when we
press the Enter key.

• Appearance: Configures the appearance of the editor. We recommend
checking the next two options that are unchecked by default:

 ° Show line numbers: Shows the line numbers in the left edge of
the editor. It can be very useful when we are debugging or
examining the log.

Chapter 4

[25]

 ° Show method separators: Visually separates the methods of a class.
• Colors & Fonts: Changes the fonts and colors. There are a lot of options and

elements to configure (keywords, numbers, warnings, errors, comments,
strings, and so on). We can save the configurations as schemes.

• Editor Tabs: Configuration of the editor tabs. We suggest you select the
Mark modified tabs with asterisk option to easily detect the modified and
not-saved files.

• Code Folding: The code folding option allows us to collapse or expand
code blocks. It is very useful to hide code blocks that we are not editing,
simplifying the code view. We can collapse or expand the blocks using the
icons from the editor or using the Code | Folding menu.

• Code completion: Configures the code completion options. Code completion
is examined in detail in the next section.

• Auto Import: Configures how the editor behaves when we paste code that
uses classes that are not imported in the current class. By default when we do
this, a pop up appears to add the import command. If we check the option
Add unambiguous imports on the fly, the import command will be added
automatically without our interaction.

Using the Code Editor

[26]

Code completion
Code completion helps us to write code quickly by suggestion lists and automatically
completing the code.

The basic code completion is the list of suggestions that appears while we are typing.
If the list is not displayed, press Ctrl + the Spacebar to open it.

Keep typing, select a command from the list, and press Enter or double-click to add it
in your code.

If the code we are writing is an expression, but we want to insert the expression in
its negated form, when we select the expression from the suggestion list, instead
of pressing Enter or double-clicking on it, press the exclamation mark key (!). The
expression will be added with negation.

Another type of code completion is the smart type code completion. If we are typing
a command to call a method with a String parameter, then just the String objects
will be suggested. This smart completion occurs in the right part of an assignment
statement, parameters of a method call, return statements or variable initializers. To
open the smart suggestions list, press Ctrl + Shift + the Spacebar.

To show the difference between these two types of suggestion lists, create in your
code two objects of different classes, String and int. Then call to a method with
a String parameter, for example, the method i of the Log class. When typing the
String parameter, note the difference between opening the basic suggestion list (Ctrl
+ the spacebar) as the next screenshot shows, and opening the smart type suggestion
list (Ctrl + Shift + the Spacebar) as the screenshot on the next page shows.

Chapter 4

[27]

In the first list, which is shown in the previous screenshot, both objects are suggested
although the int object does not match the parameter class. In the second one,
which is shown in the following screenshot, just String objects are suggested.

One last utility of code completion is the completion of statements. Type a
statement, press Ctrl + Shift + Enter, and notice how the closing punctuation is
automatically added. If you press those keys after typing the keyword if, the
parenthesis and the brackets are added to complete the conditional statement. This
shortcut can also be used to complete methods declarations. Start typing a method
and after typing the opening parenthesis, or after typing the method parameters,
press Ctrl + Shift + Enter. The closing parenthesis and the brackets are added to
complete the method specification.

Code generation
To generate blocks of code in a class, navigate to Code | Generate or press the
shortcut Alt + Insert. We can generate constructors, getters, and setters methods,
equals and toString methods, override or delegate methods.

Another way to generate code is surrounding some of our code with some
statements (if, if/else, while, for, try/catch, and so on). Select a code line
and navigate to Code | Surround With or press Ctrl + Alt + T.

Using the Code Editor

[28]

The third option is inserting code templates. Navigate to Code | Insert Live
Templates to open a dialog box of the available templates. These templates can insert
code to iterate collections, arrays, lists, and so on; code to print formatted strings,
code to throw exceptions, or code to add static and final variables. In the left edge of
the dialog, each template has a prefix, so if you type the prefix in the editor and press
the Tab key, the code template is added automatically.

Try to type inn at the end of the onCreate method of our main activity and press
Tab. A conditional block will appear. In this new block, type soutm and press Tab
again. The result is shown next.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 if (savedInstanceState != null) {
 System.out.println("savedInstanceState = [" +
savedInstanceState + "]");
 }
 }

Navigating code
The most direct way to navigate to declarations or type declarations is to press Ctrl
and click on the symbol when it is displayed as a link. This option is also accessible
from Navigate | Declaration.

From the left edge of the editor we can navigate through the hierarchy of methods.
Next to the method declarations that belong to a hierarchy of methods, there is an
icon that indicates if a method is implementing an interface method, implementing
an abstract class method, overriding a superclass method, or on the contrary, if a
method is implemented or is overridden by other descendants.

Click on these icons to navigate to the methods in the hierarchy. This option is also
available via Navigate | Super Method or Navigate | Implementation(s). Test it by
opening the main activity of our first project (MainActivity.java).

Chapter 4

[29]

Another useful utility related to code navigation is the use of custom regions. A
custom region is just a piece of code that you want to group and give a name to. For
example, if there is a class with a lot of methods, we can create some custom regions
to distribute the methods among them. A region has a name or description and it can
be collapsed or expanded using code folding.

To create a custom region we can use the code generation. Select the fragment of
code, navigate to Code | Surround With, and select one of these two options:

• <editor-fold…> Comments
• region…endregion Comments

Both of them create a region but using a different style.

When we are using custom regions, we can navigate them using the Navigate |
Custom Region menu.

The rest of the navigation options are accessible from the menu Navigate:

• Class/File/Symbol: Finds a class, a file, or a symbol by its name.
• Line: Goes to a line code by its number.
• Last Edit Location: Navigates to the most recent change point.
• Test: Navigates to the test of the current class.

Using the Code Editor

[30]

• File Structure: Opens a dialog box that shows the file structure. Open the file
structure of our main activity and observe how the structure is presented,
displaying the list of methods, the icons that indicate the type of element, or
the icons that indicate the visibility of the element.

• File Path: Opens a dialog that shows the complete path to the file opened
in the editor.

• Type Hierarchy: Opens a dialog that shows the type hierarchy of the
selected object.

• Method Hierarchy: Opens a dialog that shows the method hierarchy of
the selected method.

• Call Hierarchy: Opens a dialog that shows the call hierarchy of the
selected method.

• Next Highlighted Error: Navigates to the next error.
• Previous Highlighted Error: Navigates to the previous error.
• Next Method: Navigates to the next method.
• Previous Method: Navigates to the previous method.

Useful actions
Some useful shortcuts are exposed in the following list:

• Ctrl + W: Selects the expressions based on grammar. Keep pressing these
keys again and again to expand the selection. The opposite command is
Ctrl + Shift + W.

• Ctrl + /: Comments each line of the selected code. To use block comments
press Ctrl + Shift + /.

• Ctrl + Alt + I: Indents the selected code. Useful when you finish writing a
block of code or method to clean it up.

Chapter 4

[31]

• Ctrl + Alt + O: Optimizes the imports, removing the unused ones and
reordering the rest of them.

• Shift + Ctrl + Arrows: Moves the selected code to another line.
• Alt + Arrows: Switches between the opened tabs of the editor.
• Ctrl + F: Finds a string in the active tab of the editor.
• Ctrl + R: Replaces a string in the active tab of the editor.
• Ctrl + A: Selects all the code of the opened file.
• Ctrl + D: Copies the selected code and pastes it at the end of it. If no code is

selected, then the entire line is copied and pasted in a new line.
• Ctrl + Y: Removes the entire line without leaving any blank line.
• Ctrl + Shift + U: Toggles case.
• Tab: Moves to the next parameter.

Summary
By the end of this chapter, the user should learn some useful tricks and useful actions
to make the most of the code editor. We know now how to use code completion,
code generation, and some useful shortcuts for speeding up different actions. We
have also customized our code editor and we are now ready to start programming.

In the next chapter, we will start creating our first user interface using layouts.
We will learn how to create a layout using the graphical wizard and how to create
it editing the XML layout file using the text-based view. We will create our first
application, a classic Hello World example using the text view component. We will
also learn about how to prepare our application for multiple screen sizes and adapt
them for different device orientations. Finally, we will learn about UI themes and
how to handle events.

Creating User Interfaces
Now that you have created your first project and have become familiar with the
code editor and its functionalities, we will begin our application by creating our user
interface. Is there more than one way to create a user interface using Android Studio?
How can you add components to your user interface? Have you ever wondered how
to make your applications support different screen sizes and resolutions?

This chapter focuses on the creation of the user interfaces using layouts. The layouts
can be created using a graphical view or a text-based view. We will learn how to use
both of them to create our layout. We will also code a Hello World application using
simple components. We will learn about fragmentation on different Android-based
devices and how to prepare our application for this issue. We will end this chapter
with basic notions of handling events on our application.

These are the topics we'll be covering in this chapter:

• Existing layout editors
• Creating a new layout
• Adding components
• Supporting different screens
• Changing the UI theme
• Handling events

Creating User Interfaces

[34]

The graphical editor
Open the main layout located at /src/main/res/layout/activity_main.xml
in our project. The graphical editor will be opened by default. Initially, this main
layout contains just a text view with a Hello world! message. To switch between
the graphical and the text editor, click on the bottom tabs, Design and Text.

The toolbar contains some options to change the layout style and preview.
The options of the toolbar are explained throughout the chapter.

The components tree displays the components placed in the layout as a hierarchy.
The properties inspector shows the properties of the selected component from the
layout and it allows us to change them.

Chapter 5

[35]

The palette lists the existing UI (User Interface) components to place in our layout.
The palette organizes the components in different categories.

• Layouts: A layout is a container object to distribute the components on the
screen. The root element of a user interface is a layout object, but layouts can
also contain more layouts, creating a hierarchy of components structured in
layouts. The recommendation is to keep this layout hierarchy as simple as
possible. Our main layout has a relative layout as a root element.

• Widgets: Buttons, checkboxes, text views, switches, image views, progress
bars, spinners, or web views are in this category. They are the most common
components used in most layouts.

• Text Fields: These are inputs in which users can type text. The difference
between them is the type of text users can type.

• Containers: These are containers group components that share a common
behavior. Radio groups, list views, scroll views, or tab hosts are some of them.

• Date & Time: These are components related to date and time, as a calendar
or clocks.

• Expert: These components are not as common as the ones in the widgets
category, but it is worth taking a look at them.

• Custom: These are components that allow us to include our custom
components, which are usually other layouts from our project.

The text-based editor
Change the graphical editor to the text editor by clicking on the Text tab.

Creating User Interfaces

[36]

The toolbar is the same as the graphical editor. The preview displays the layout but
it cannot be changed, you should use the design tab instead. The components are
added to the layout using their XML declarations. The properties are also configured
using the XML declarations. Like the graphical editor, the text editor shows just the
text view element inside the root layout.

Creating a new layout
When we created our main activity, the associated layout was also created. This is a
way to create a layout, while creating an activity.

If we want to add an independent layout without creating a new activity, then click
with the right mouse button on the layouts folder (res/layout/) and navigate to
New | Layout resource file. You can also navigate to the menu option File | New |
Layout resource file. Type the filename and the root element.

Once the layout is created, the associated activity can be changed from the editor to
another one. If the layout has no activity, any existing one can be linked to it from the
editor. To accomplish this, in the toolbar of the layout editor, search for the activity
option, click on it, and select the Associate with other Activity option. A dialog box
that lists all the activities of your project will be opened so you can select one of them.

Adding components
Our main layout is a relative layout and contains a text view saying Hello world!,
but let's add a new component. The easiest way to do this is using the graphical
editor, so open the design tab. Select a component and drag it into the layout
preview, for example, navigate to Text Fields | Person Name and place it below
the text view.

In the component tree view, now there is a new EditText object. Keep the text
field selected to examine its properties loaded in the properties inspector. Let's
change some of them and observe the differences in the layout preview and in the
component tree.

1. layout:width: Its current value is wrap_content. This option will adapt the
width of the field to its content. Change it to match_parent to adapt it to the
parent layout width (the root relative layout).

2. hint: Type Enter your name as the hint of the field. The hint is a text shown
when the field is empty to indicate the information that should be typed. Due
to the field having a default value, Name, the hint is not visible.

Chapter 5

[37]

3. id: Its current ID is @+id/editText. This ID will be used from the code to get
access to this object and is the one displayed in the component tree. Change it
to @+id/editText_name to easily distinguish it from other text fields. Check
that in the component tree the component ID has also changed.

4. text: Delete the value of this field. The hint should now be visible.

If we switch to the text editor, we can see the XML definition of the text field with the
properties we edited:

<EditText
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:inputType="textPersonName"
android:ems="10"
android:id="@+id/editText_name"
android:layout_below="@+id/textView_greeting"
android:layout_alignLeft="@+id/textView_greeting"
android:layout_marginTop="15dp"
android:hint="Enter your name"
/>

From the text editor, the existing components and their properties can also be
changed. Modify the text view ID (android:id property) from @+id/textView to
@+id/textView_greeting. Having a descriptive ID is important since it will be used
from our code. Descriptive variable names allow the code to be self-documenting.

Creating User Interfaces

[38]

Let's add another component using the text editor this time. Press the open tag key
and start typing Button. Let the suggestion list appear and select a Button object.
Inside the Button tag, add the next properties:

<Button
android:id="@+id/button_accept"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/editText_name"
android:layout_centerHorizontal="true"
android:text="Accept"
/>

Create the ID property with the value @+id/button_accept. Let the width and height
adapt to the button content (wrap_content value). Place the button below the name
text field using the android:layout_below property. We reference the name text field
by its ID (@+id/editText_name). Center horizontally the button in the parent layout
using the layout_centerHorizontal property. Set the text of the button (Accept).

The button is displayed in the layout preview. The next screenshot shows that if
we switch to the graphical editor, the button is also displayed in it and in the
component tree:

Supporting multiple screens
When creating an Android application, we have to be aware of the existence of
multiple screen sizes and screen resolutions. It is important to check how our layouts
are displayed in different screen configurations. To accomplish this, Android Studio
provides a functionality to change the layout preview when we are in the design mode.

Chapter 5

[39]

We can find this functionality in the toolbar, the device definition option used
in the preview is by default Nexus 4. Click on it to open the list of available
device definitions.

Try some of them. The difference between a tablet device and a device like the Nexus
one are very notable. We should adapt the views to all the screen configurations our
application supports to ensure they are displayed optimally.

The device definitions indicate the screen inches, the resolution, and the screen density.
Android divides into ldpi, mdpi, hdpi, xhdpi, and even xxhdpi the screen densities.

• ldpi (low-density dots per inch): About 120 dpi
• mdpi (medium-density dots per inch): About 160 dpi
• hdpi (high-density dots per inch): About 240 dpi
• xhdpi (extra-high-density dots per inch): About 320 dpi
• xxhdpi (extra-extra-high-density dots per inch): About 480 dpi

The last dashboards published by Google show that most devices have high-density
screens (34.3 percent), followed by xhdpi (23.7 percent) and mdpi (23.5 percent).
Therefore, we can cover 81.5 percent of the devices by testing our application using
these three screen densities. Official Android dashboards are available at http://
developer.android.com/about/dashboards.

Another issue to keep in mind is the device orientation. Do we want to support the
landscape mode in our application? If the answer is yes, we have to test our layouts
in the landscape orientation. On the toolbar, click on the layout state option to
change the mode from portrait to landscape or from landscape to portrait.

Creating User Interfaces

[40]

In the case that our application supports the landscape mode and the layout does not
display as expected in this orientation, we may want to create a variation of the layout.
Click on the first icon of the toolbar, that is, the configuration option, and select the
option Create Landscape Variation. A new layout will be opened in the editor. This
layout has been created in the resources folder, under the directory layout-land and
using the same name as the portrait layout: /src/main/res/layout-land/activity_
main.xml. Now we can edit the new layout variation perfectly conformed to the
landscape mode.

Similarly, we can create a variation of the layout for xlarge screens. Select the option
Create layout-xlarge Variation. The new layout will be created in the layout-
xlarge folder: /src/main/res/layout-xlarge/activity_main.xml. Android
divides into small, normal, large, and xlarge the actual screen sizes:

• small: Screens classified in this category are at least 426 dp x 320 dp
• normal: Screens classified in this category are at least 470 dp x 320 dp
• large: Screens classified in this category are at least 640 dp x 480 dp
• xlarge: Screens classified in this category are at least 960 dp x 720 dp

A dp is a density independent pixel, equivalent to one physical pixel on a 160
dpi screen.

The last dashboards published by Google show that most devices have a normal
screen size (79.6 percent). If you want to cover a bigger percentage of devices, test
your application by also using a small screen (9.5 percent), so the coverage will be
89.1 percent of devices.

To display multiple device configurations at the same time, in the toolbar click on the
configuration option and select the option Preview All Screen Sizes, or click on the
Preview Representative Sample to open just the most important screen sizes. We
can also delete any of the samples by clicking on it using the right mouse button and
selecting the Delete option of the menu. Another useful action of this menu is the
Save screenshot option, which allows us to take a screenshot of the layout preview.

Chapter 5

[41]

If we create some layout variations, we can preview all of them selecting the option
Preview Layout Versions.

Changing the UI theme
Layouts and widgets are created using the default UI theme of our project. We
can change the appearance of the elements of the UI by creating styles. Styles can
be grouped to create a theme and a theme can be applied to a whole activity or
application. Some themes are provided by default, such as the Holo style. Styles and
themes are created as resources under the /src/res/values folder.

Open the main layout using the graphical editor. The selected theme for our layout
is indicated in the toolbar: AppTheme. This theme was created for our project and can
be found in the styles file (/src/res/values/styles.xml). Open the styles file and
notice that this theme is an extension of another theme (Theme.Light).

To custom our theme, edit the styles file. For example, add the next line in the
AppTheme definition to change the window background color:

<style name="AppTheme" parent="AppBaseTheme">
<item name="android:windowBackground">#dddddd</item>
</style>

Save the file and switch to the layout tab. The background is now light gray. This
background color will be applied to all our layouts due to the fact that we configured
it in the theme and not just in the layout.

Creating User Interfaces

[42]

To completely change the layout theme, click on the theme option from the toolbar in
the graphical editor. The theme selector dialog is now opened, displaying a list of the
available themes.

The themes created in our own project are listed in the Project Themes section. The
section Manifest Themes shows the theme configured in the application manifest file
(/src/main/AndroidManifest.xml). The All section lists all the available themes.

Handling events
The user interface would be useless if the rest of the application could not
interact with it. Events in Android are generated when the user interacts with our
application. All the UI widgets are children of the View class and they share some
events handled by the next listeners:

• OnClickListener: Captures the event when the user clicks the view element
• OnCreateContextMenu: Captures the event when the user performs a long

click on the view element and we want to open a context menu
• OnDragListener: Captures the event when the user drags and drops the

event element
• OnFocusChange: Captures the event when the user navigates from an

element to another in the same view
• OnKeyListener: Captures the event when the user presses any key while the

view element has the focus

Chapter 5

[43]

• OnLongClickListener: Captures the event when the user touches the view
element and holds it

• OnTouchListener: Captures the event when the user touches the view element

In addition to these events and listeners, some UI widgets have some more
specific ones. Checkboxes can register a listener to capture when its state changes
(OnCheckedChangeListener), or spinners can register a listener to capture when an
item is clicked (OnItemClickListener).

The most common event to capture is when the user clicks on the view elements.
For this event, there is an easy way to handle it, using the view properties. Select
the accept button in our layout and look for the onClick property. This property
indicates the name of the method that will be executed when the user clicks on the
button. This method has to be created in the activity associated with the current
layout, in this case, in our main activity, MainActivity.java. Type onAcceptClick
as the value of this property.

Open the main activity to create the method definition. An event callback method
when a view is clicked has to be public, with a void return type, and it receives the
view that has been clicked as a parameter. This method will be executed every time
the user clicks on the button.

public void onAcceptClick(View v) {
 // Action when the button is pressed
}

From the main activity we can interact with all the components of the interface, so
when the user clicks on the accept button, our code can read the text from the name
field and change the greeting to include the name in it.

To get the reference to a view object, use the findViewById method inherited from
the Activity class. This method receives the ID of the component and returns the
View object corresponding to that ID. The returned view object has to be casted
to its specific class in order to use its methods, such as the getText method of the
EditText class to get the name typed by the user.

public void onAcceptClick(View v) {
 TextView tv_greeting =
 (TextView) findViewById(R.id.textView_greeting);
 EditText et_name = (EditText) findViewById(R.id.editText_name);

 if(et_name.getText().length() > 0) {
 tv_greeting.setText("Hello " + et_name.getText());
 }
}

Creating User Interfaces

[44]

In the first two lines of the method, the references to the elements of the layout are
retrieved: the text view that contains the greeting and the text field where the user
can type a name. The components are found by its ID, the same ID we indicated in
the properties of the element in the layout file. All the IDs of resources are included
in the R class. The R class is autogenerated in the build phase and we must not edit it.
If this class is not autogenerated, then probably some file of our resources contains
an error.

The next line is a conditional statement to check that the user typed a name, a case in
which the text will be replaced by a new greeting that contains that name. In the next
chapters we will learn how to execute our application in an emulator and we will be
able to test this code.

In case the event we want to handle is not the user click, then we have to create and
add the listener by code in the onCreate method of the activity. There are two options:

• Implement the listener interface in the activity and then add the
unimplemented methods. The methods required by the interface are the
methods to receive the events.

• Create a private anonymous implementation of the listener in the activity file.
The methods that receive the events are implemented in this object.

Finally, the listener implementation has to be assigned to the view element
using the setter methods, setOnClickListener, setOnCreateContextMenu,
setOnDragListener, setOnFocusChange, setOnKeyListener, and so on. The listener
assignment is usually included in the onCreate method of the activity. If the listener
was implemented directly by the activity, then the parameter indicated to the setter
method is its own activity using the keyword this as the following code shows:

Button b_accept = (Button) findViewById(R.id.button_accept);
b_accept.setOnClickListener(this);

The activity should then implement the listener and the onClick method required by
the listener interface.

public class MainActivity extends Activity
implements View.OnClickListener {
 @Override
 public void onClick(View view) {
 // Action when the button is pressed
 }

Chapter 5

[45]

Summary
By the end of this chapter, we have learned how to create and edit the user interface
layouts by using both the graphical and the text-based editors. We finished our
first small application and we have upgraded it with some basic components. The
user should now be able to create a simple layout and to test it with different styles,
screens sizes and screen resolutions. We have also learned about the different
available UI themes and finally, we have learned about events and how to handle
them using listeners.

In the next chapter we will learn about Google Play available services and how to
integrate them into our project using Android Studio. We will learn how to install
and integrate different libraries available with Google technology such as Google
Maps, Google Plus, and more.

Google Play Services
Now that you have become familiar with the use of components on layouts, you
should start thinking about extra functionality. Google Play Services give you
features to attract users using Google features such as Google Maps, Google+, and
more. How can you easily add these features to your application? What features are
available? What are the Android version requirements to use Google Play Services?

This chapter focuses on the creation, integration, and use of Google Play Services
using Android Studio. We will learn about which Google services are available. We
will also learn about the standard authorization API in order to have a safe way to
grant and receive access tokens to Google Play Services. We will also learn about the
limitations of these services and the benefits of using them.

These are the topics we'll be covering in this chapter:

• Existing Google Services
• Adding Google Play Services from the IDE
• Integrating Google Play Services in your app
• Understanding automatic updates
• Using Google Services in your app

How Google Play Services work
When Google previewed Google Play Services at Google I/O 2012, it said that the
platform (https://developers.google.com/events/io/2012/)...

...consists of a services component that runs on the device and a thin client library
that you package with your app.

Google Play Services

[48]

This means that Google Play Services work thanks to two main components: the
Google Play Services client library and the Google Play Services APK.

• Client library: The Google Play Services client library includes the interfaces
to each Google Service that is used by your app. The library is included when
you pack your app and it allows your users to authorize the app with access
to these services using their credentials. The client library is upgraded from
time to time by Google, adding new features and services. You may upgrade
the library in your app through an update to your app, although it is not
necessary if you are not including any of the new features.

• Google Play Services APK: The Google Play Services Android Package
(APK) runs as a background service in the Android operating system. Using
the client library, your app accesses this service, which is the one that carries
out the actions during runtime. The APK is not guaranteed to be installed
on all devices. In case the device does not come with it installed, the APK is
available in the Google Play Store.

This way, Google manages to separate the runtime of its services from the
implementation you do as a developer, so you do not need to upgrade your
application every time Google Play Services are upgraded.

Although Google Play Services are not included in the Android platform itself, they
are supported by most Android-based devices. Any Android device running Android
2.2 or newer is ready to install any application that uses Google Play Services.

Services available
Google Play Services are thought to easily add more features to attract users on a
wide range of devices while using well-known features powered by Google. Using
these services, you can add new revenue sources, manage the distribution of the app,
access statistics and learn about your application's users customs, and improve your
application with easy to implement Google features such as maps or Google's social
network, Google+. The services are explained as follows:

• Games: Using this Google Play Game Service, you can improve your game
with a more social experience.

• Location: Integrating the location APIs, you can make your application
location-aware.

• Google Maps: Google Maps API allows you to use the maps provided by
Google in your application and to customize them.

Chapter 6

[49]

• Google+: Using Google+ Platform for Android, you can authenticate the user
of your app. Once authenticated, you can also access their public profile and
social graph.

• In-app Billing: Selling digital content from your apps is possible using Google
Play In-app Billing. You can use this service to sell one-time billing or temporal
subscriptions to premium services and features.

• Cloud Messaging: Google Cloud Messaging (GCM) for Android allows you
to exchange data between the app running in an Android-based device and
your server.

• Panorama: It enables the user to see a 360-degree panorama picture.

Adding Google Play Services to Android
Studio
The first thing we need to know is what we need to add to our Android Studio. We
have just learned that the APK is available in Google Play Store and it is the actual
runtime of the services. We, as developers, only need this package to be available
in our testing device while debugging our application. What we need to add to
Android Studio is the Google Play Services client library.

This library is distributed through the Android SDK Manager (Software Development
Kit Manager), which will be explained in detail in Chapter 7, Tools. To open it, navigate
to Tools | Android | SDK Manager. We can find Google Play Services in the
packages list under the folder Extras. Select the Google Play Services checkbox and
click on the Install 1 package... button.

Google Play Services

[50]

Performing these actions will add the library project into the location of our SDK
installation folder, /sdk/extras/google/google_play_services/. You can check
the exact path by hovering the mouse over the Google Play Services row in the SDK
manager and looking at the tool tip.

Navigate to the library folder to examine its content. The samples folder contains
sample projects of the authentication service (auth/), the Google Maps v2 service
(maps/), the Google+ service (plus/), and the Panorama service (panorama/). The
folder that contains the Google Play Services library project is libproject/. In this
project folder is where the google-play-services.jar file is placed, libproject/
google-play-services_lib/libs/ google-play-services.jar.

Add this JAR file to your project by just dragging it into the libs/ folder. Once this
is done, select the JAR file and press the right mouse button on it. Select the Add as
Library option. In the create library dialog, select the project library level, select your
application module, and click on OK.

You now have the google-play-services.jar file available in your project
libraries, under the libs/ folder, and you will now be able to reference Google
Play Services from your code.

Finally, you will need to add the library to your Gradle's build file. To do this
just edit the file MyApplication/build.gradle and add the following line in the
dependencies section:

compile files('libs/google-play-services.jar')

Google Maps Android API v2
Google Maps Android API allows the user of your application to explore the maps
available at the Google service. The new Maps Version 2 offers more functionalities
such as 3D maps, indoor and satellite maps, efficient caching and drawing using
vector-based technology, and animated transitions through the map.

Chapter 6

[51]

Let's import the sample project to examine the most important classes. Click on
File | Import Project. Search for the sample project in your SDK installation folder
and select the project root directory, /google_play_services/samples/maps/. In
the next dialog, check the Create project from existing sources option. Continue
clicking on Next in the successive dialogs and finally click on the Finish button and
open the sample project in a new window. Now we have the Google Play Services
project and the maps sample project loaded in a new window in Android Studio.

Open the BasicMapActivity class to examine a simple example of the use of
Google Maps. You can find this activity in the maps project inside the src/ folder.
The package com.google.android.gms.maps contains the Google Maps Android
API classes.

This activity declares a private GoogleMap object named as mMap. The GoogleMap
class is the main class of the API and it is the entry point for all the methods related
to a map. You may change the theme colors and the icons of your map to match
your application style. You can also customize your map by adding markers to your
maps. To add a simple marker you can use the addMarker method of the GoogleMap
class. Examine the setUpMap method in the BasicMapActivity class to see the
following code example:

mMap.addMarker(new MarkerOptions()
 .position(new LatLng(0, 0)).title("Marker"));

The method addMarker has a MarkerOptions object as parameter. Using the method
position we indicate the coordinates of the marker on the map and using the
method title we can add a custom string to show up on the marker.

To add a map into a layout we can use the MapView class, which extends the class
View and displays a map. But the easiest way to place a map in an application is
using a MapFragment object. A fragment represents a piece of the user interface or
behavior that can be embedded in an activity. A fragment is a reusable module.

The MapFragment class wraps a view of a map to automatically handle the
necessary life cycle needs of a component. It extends the class Fragment and
can therefore be added to a layout by adding the following XML code:

<fragment
class="com.google.android.gms.maps.MapFragment"
android:layout_width="match_parent"
android:layout_height="match_parent" />

To see an example of the previous code, open the layout associated to the
BasicMapActivity class; this is the basic_demo.xml file in the /res/layout/ folder.

Google Play Services

[52]

Finally, we need the code to obtain the GoogleMap object from the fragment. We can
find the map Fragment using the method findFragmentById, and then we get the
map from the Fragment using the method getMap.

mMap = ((MapFragment) getFragmentManager().
 findFragmentById(R.Id.map).getMap();

The example of this code in the BasicMapActivity class is in the setUpMapIfNeeded
method.

One last important class is the GoogleMapOptions class, which defines the
configuration for a map. You can also modify the initial state of a map by editing the
layout XML code. Here are some interesting options available:

• mapType: Specify the type of a map. Its value can be none, normal, hybrid,
satellite, and terrain.

• uiCompass: Define whether compass controls are enabled or disabled.
• uiZoomControls: Define whether zoom controls are enabled or disabled.
• cameraTargetLat and cameraTargetLong: Specify the initial camera position.

Google+ Platform for Android
Using the Google+ Platform for Android lets the developer authenticate users with
the same credentials they use on Google+. You can also use the public profile and
social graph to be able to welcome the users by their name, display their pictures, or
connect with friends.

The package com.google.android.gms.plus contains the Google+ Platform
for Android classes. Import the Google+ sample project to learn about the most
important classes. The Google+ sample project can be found in the Google Play
Services installation folder, in /google_play_services/samples/plus/.

• PlusClient and PlusClient.Builder: PlusClient is the main class of the
API. It is the entry point for Google+ integration. PlusClient.Builder is a
builder to configure the PlusClient object to communicate properly with
the Google+ APIs.

• PlusOneButton: The class to implement a +1 button to recommend a URL on
Google+. Add it to a layout using the following code:
<com.google.android.gms.plus.PlusOneButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
plus:size="standard" />

Chapter 6

[53]

The available sizes are small, medium, tall, or standard.
Example code about this functionality can be found in the sample project,
in the PlusOneActivity class in the src/ folder and its associated layout,
plus_one_activity.xml in the res/layout/ folder.

• PlusShare: Include resources in posts shared on Google+. Example code about
sharing resources can be found in the ShareActivity class in the src/ folder
and its associated layout, share_activity.xml in the res/layout/ folder.

First of all, a PlusClient object should be instantiated in the onCreate method of
your activity class to call its asynchronous method connect, which will connect the
client to Google+ services. When the app is done using a PlusClient instance, it
should call the method disconnect, which terminates the connection, and should
also always be called from the onStop method of the activity.

Google Play In-app Billing v3
In-app Billing v3 allows you to sell virtual content from your apps. This virtual
content may be paid once with a one-time billing or may be a timed concession
through subscriptions or fees. Using this service, you can allow users to pay for extra
features and access premium content.

Any app published in Google Play Store can implement the In-app Billing API, since
it only requires the same accounts as publishing an app: a Google Play Developer
Console account and a Google Wallet merchant account.

Using the Google Play Developer Console you can define your products, including
type, identification code (SKU), price, description, and more. Once you have your
products defined, you can access this content from this application. When the user
wants to buy this content, the following purchase flow will happen between your
In-app Billing application and Google Play App:

1. Your app calls isBillingSupported() to Google Play to check if the In-app
Billing version you are using is supported.

2. If the In-app Billing API version is supported, you may use getPurchases()
to get a list of the SKUs of the purchased items. This list will be returned in a
Bundle object.

3. You will probably want to inform your user of the in-app purchases
available. To do this your app may send a getSkuDetails() request, which
will result in a list with the product's price, title, description, and more
information available for the item.

Google Play Services

[54]

Google Cloud Messaging
GCM for Android allows the communication between your server and your
application through the use of asynchronous messages. You do not have to worry
about handling low-level aspects of this communication such as queuing and
message construction. Using this service, you can easily implement a notification
system for your application.

You have two options when using GCM:

• The server can inform your app that there is new data available to be fetched
from the server and then the application gets this data.

• The server can send the data directly in a message. The message payload can
be up to 4 KB. This allows your application to access the data at once and act
accordingly.

In order to send or receive messages, you will need to get a registration ID. This
registration ID identifies the combination of device and application. To allow your
app to use the GCM service, you need to add the following line to the manifest file
of your project:

<uses-permission android:name="com.google.
 android.c2dm.permission.RECEIVE"/>

The main class you will need to use is GoogleCloudMessaging. This class is available
in the package com.google.android.gms.gcm.

Summary
By the end of this chapter, we know about the available Google Play Services. We
learned how to improve our application using Google Play Services through its client
library and Android package. The reader should have successfully installed the
Google Play Services client library in Android Studio using the SDK Manager and
should be able to build applications using the library features. We have also learned
some tips about Google Maps v2, Google+ Platform for Android authentication,
Google Play In-app Billing, and GCM.

In the next chapter we will learn about some useful tools available in the Android
Studio. We will again use the SDK Manager in detail to install different packages.
We will also learn about the AVD Manager to be able to have different virtual
devices to test our applications on. We will generate Javadoc documentation for our
project using the Javadoc utility and we will learn about the version control systems
available in Android Studio.

Tools
In the previous chapter we've learned about useful services that Google provides
which can be used by developers to improve their applications. Now, we will learn
about tools available in Android Studio that make our life easier as developers. Have
you wondered how to manage the Android platforms? Do you want to have your
project clearly documented? Are you working as a group of developers and need a
version control manager integrated with Android Studio?

This chapter shows the most important additional tools provided in Android Studio:
Android SDK tools, Javadoc, and version control integration. First, we will learn
about the Software Development Kit Manager available in Android Studio from
which we'll be able to examine, update, and install different components for our
project. Next, we will review the Android Virtual Device Manager, where we can
edit the virtual devices in which we will be testing our project. We will also learn
about how to have a complete documentation using the Javadoc tool, and how to
have version control using the systems available in Android Studio.

These are the topics we'll be covering in this chapter:

• SDK Manager
• AVD Manager
• Javadoc
• Version control

Software Development Kit Manager
The Software Development Kit (SDK) Manager is an Android tool integrated in
Android Studio to control our Android SDK installation. From this tool we can
examine the Android platforms installed in our system, update them, install new
platforms, or install some other components such as Google Play Services or the
Android Support Library.

Tools

[56]

To open the SDK Manager from Android Studio, navigate to the menu Tools |
Android | SDK Manager. You can also click on the shortcut from the toolbar. On the
top of the manager the SDK path that was configured in Android Studio is displayed.

The SDK Manager displays the list of the available packages with the following
properties:

• Name: Name of the package or the container that aggregates some
related packages.

• API: API number in which the package was added.
• Rev: Number of the package revision or version.
• Status: Status of the package regarding your system. The status can be Not

installed, Installed, Update available, Not compatible, or Obsolete.

The packages can be filtered by their state using the checkboxes under the list and
they can be sorted by the API level or by the repository they are downloaded to.
These options are also accessible from the top menu Packages.

From the menu Tools | Manage Add-on Sites we can examine the list of the official
sites that provide the add-ons and extra packages. In the User Defined Sites menu
we can add our custom external sites.

Next to the name of the packages there is a checkbox to select the packages we want to
install, update, or delete. As shown in the following screenshot, the packages that are
installed in our system but have updates available are checked by default. If there is a
new Android platform version that is not installed, its packages will also be checked.

The total number of selected packages to be installed or updated is indicated in the
text of the button on the bottom of the dialog. The button under it indicates the total
number of selected packages to be deleted.

Chapter 7

[57]

Check the packages that need to be updated, check the last Android platform if
you do not have it installed, and check the minimum platform supported by our
application, Android 2.3.3 (API 10), to be able to test our application in a virtual
device using this version. Click on the Install button.

In the next dialog, we have to accept the package licenses. Check the Accept
License radio button and click on the Install button. The installation or updating
of the packages will start showing its progress. Firstly, the manager downloads the
packages, then unzips them, and finally installs them.

Remember to check the SDK Manager from time to time to check for updates.

Android Virtual Device Manager
The Android Virtual Device Manager (AVD Manager) is an Android tool
integrated in Android Studio to manage the Android virtual devices that will be
executed in the Android emulator.

To open the AVD Manager from Android Studio, navigate to the menu Tools |
Android | AVD Manager. You can also click on the shortcut from the toolbar.
The AVD Manager displays the list of the existing virtual devices in the default tab
Android Virtual Devices. Since we have not created any virtual device, initially the
list should be empty. To create our first virtual device, click on the New button to
open the configuration dialog:

• AVD Name: Name of the virtual device.
• Device: Select one of the available device configurations. These

configurations are the ones we tested in the layout editor preview.
Select the Nexus 4 device to load its parameters in the dialog.

• Target: Select the device Android platform. We have to create one virtual
device with the minimum platform supported by our application and
another virtual device with the target platform of our application. Both of
these platforms were configured when we created the project. For this first
virtual device, select the target platform, Android 4.2.2 (API 17).

Tools

[58]

• CPU/ABI: Select the device architecture. The value of this field is set when
we select the target platform. Each platform has its architecture, so if we
do not have it installed, the following message will be shown: No system
images installed for this target. To solve this, open the SDK Manager and
search for one of the architectures of the target platform, ARM EABI v7a
System Image or Intel x86 Atom System Image.

• Keyboard: Select if a hardware keyboard is displayed in the emulator.
Check it.

• Skin: Select if additional hardware controls are displayed in the emulator.
Check it.

• Front Camera: Select if the emulator has a front camera. The camera can
be emulated or can be real by the use of a webcam from the computer.
Select None.

• Back Camera: Select if the emulator has a back camera. Select None.
• Memory Options: Select the memory parameters of the virtual device. Keep

the default values, unless a warning message is shown; in this case, follow
the instructions of the message. For example, select 256 for the RAM memory
and 64 for the VM Heap.

• Internal Storage: Select the virtual device storage size, for example: 200 MiB.
• SD Card: Select the size of the SD card or select a file to behave as the SD

card. This parameter is optional.
• Emulation Options: The Snapshot option saves the state of the emulator in

order to load faster the next time. Check it. The Use Host GPU option tries to
accelerate the GPU hardware to run the emulator faster.

Give the virtual device a meaningful name to easily recognize it, like AVD_nexus4_
api17. Click on the OK button.

The new virtual device is now listed in the AVD Manager with a green tick icon
indicating that it is valid. These icons indicate the state of the virtual device: if it
is valid, if it failed to load, or if its state is repairable. The icon legend is explained
on the bottom of the manager window. Select the recently created virtual device to
enable the remaining actions:

• Edit: Edit the virtual device configuration.
• Delete: Delete the virtual device.
• Repair: Option available if the virtual device failed to load but it can be

repaired. This action tries to repair the error state of the virtual device.
• Details: Open a dialog detailing the virtual device characteristics.
• Start: Run the virtual device.

Chapter 7

[59]

Click on the Start button to open the launch dialog. Check the options relative to the
snapshot and click on the Launch button. The emulator will be opened as shown in
the following screenshot. Wait until it is completely loaded and then you will be able
to try it.

From the AVD Manager we can also configure the device definitions. The device
definitions are used in the layout preview and are the base of the virtual devices.
Open the Device Definitions tab where the existing definitions are listed. We
can create a new device definition using the New Device button, we can clone an
existing device to create a new one easily using the Clone button, we can delete
them using the Delete button, or we can create a virtual device based on the device
definition using the Create AVD button.

Click on the New Device button to examine the existing configuration parameters.
The most important parameters that define a device are:

• Name: Name of the device.

Tools

[60]

• Screen Size (in): Screen size in inches. This value determines the size category
of the device. Type a value of 4.0 and notice how the Size value (on the right
side) is normal. Now type a value of 7.0 and the Size field changes its value
to large. This parameter along with the screen resolution also determines the
density category.

• Resolution (px): Screen resolution in pixels. This value determines the
density category of the device. With a screen size of 4.0 inches, type a value
of 768 x 1280 and notice how the density value is xhdpi. Change the screen
size to 6.0 inches and the density value changes to hdpi. Now change the
resolution to 480 x 800 and the density value is mdpi.

• Sensors: Sensors available in the device: accelerometer, GPS, gyroscope, or
proximity sensor.

• RAM: RAM memory size of the device.
• Buttons: Indicate if the home, back, or menu buttons of the device are

available via software or hardware.
• Device States: Check the allowed states.

Create a new device with a screen size of 4.7 inches, a resolution of 800 x 1280, a
RAM value of 200 MiB, software buttons enabled, and both portrait and landscape
states enabled. Name it as My Device. Click on the Create Device button.

The AVD Manager now displays in the device list our device definition. Also, in
Android Studio, open the main layout with the graphical editor and click on the list
of the devices. As the next screenshot shows, our custom device definition appears
and we can select it to preview the layout:

Chapter 7

[61]

Generating Javadoc
Javadoc is a utility to document Java code in HTML format. The Javadoc
documentation is generated from comments and tags added to the Java classes or
methods. The comments start with the /** string and end with */. Inside these
comments, some tags can be added such as @param to describe a method parameter,
@throws to describe an exception that can be thrown by the method, or @version to
indicate the version of the class or method.

The use of Javadoc is integrated in Android Studio. We can use code completion
when typing the Javadoc comments and the documentation will appear in the pop-
up tool tips of the code elements.

To generate a complete Javadoc, we have to write the Javadoc comments about
our classes and methods. Open the main activity of our project to add the Javadoc
comments to the method onAcceptClick we created in Chapter 5, Creating User
Interfaces. Place the caret on the line before the method declaration, type /**,
and press Enter. The Javadoc comments are automatically inserted containing the
available information from the method declaration: parameters and return type. In
this case, there is no return type.

The first line of the documentation comments is the method description. Then,
explain each parameter and the return type. The method should now look like this:

/**
 * Method executed when the user clicks on the Accept button.
 * Change the greeting message to include the name introduced by the
user in the editText box.
 *
 * @param v View the user clicked
 */
public void onAcceptClick(View v) { ... }

Tools

[62]

This information about the method will now be displayed as its documentation in
the emerging dialogs. The following screenshot shows the dialog that should appear
over the method:

To generate the Javadoc documentation, navigate on the top menu to Tools |
Generate Javadoc. A dialog showing the Javadoc options will be opened. We can
choose the scope, the output directory, the visibility of the included elements, or if
we want to create a hierarchy tree, a navigation bar, and an index.

Check Current File as scope to generate just the documentation of our main activity.
Select an output directory from your system. Reduce the visibility to public and click
on the OK button. The Javadoc documentation in HTML format has been created in
the output directory, the index.html file being the start point. Navigate through the
documentation to open the MainActivity class. Notice that the onCreate method
whose visibility is protected does not appear due to the fact that we reduced the
visibility of the generated Javadoc to public elements.

Version control system
Android Studio integrates some version control systems: Git, Mercurial, or
Subversion. To enable the version control integration navigate on the top menu to
VCS | Enable Version Control Integration and select the type of system. Now some
more options have been added to the VCS menu.

The first step is to do the checkout from the version control system. Navigate to VCS |
Checkout from Version Control, click on the add icon, and type the repository URL:

• To update the entire project navigate to the option VCS | Update Project
• To commit all the changes of the project navigate to the option VCS |

Commit Changes
• To clean up the project navigate to the option VCS | Cleanup Project

Chapter 7

[63]

The version control actions can also be applied to individual files. Click on any file of
the project using the right mouse button and select the Subversion section. From the
emerging menu we can add the file to the repository, add it to the ignore list, browse
the changes, revert the changes, or lock it.

A simpler way to control the file versions is using the local history. Open the main
activity file in the editor and navigate to VCS | Local History | Show History.
The file history dialog will be opened. On the left side of the dialog, the available
versions of the file are listed. Select an older version to compare it to the current
version of the file. The differences between the older version and the current version
are highlighted. A gray color is used to indicate a block of deleted code, a blue color
to highlight the text that has changed, and a green color to indicate the new inserted
text. From the top icons we can revert the changes and configure the whitespaces
visualization. The next screenshot shows the comparison between two versions
of our main activity. We can observe how the method we recently added, the
onAcceptClick method, is highlighted in green.

We can also examine the local history of just a specific block of code. Close the
dialog, select some lines of code from the editor, and navigate to VCS | Local
History | Show History for Selection. The same history dialog will be opened, but
this time it displays the versions of the selected code.

Tools

[64]

Summary
By the end of this chapter we should have the knowledge to use the Android SDK
Manager tool to install, update, or examine available platforms for our project. We
should be able to create a new Android Virtual Device and to edit it whenever it
is deemed necessary. Creating a complete documentation of our project should
no longer be a problem using Javadoc, and we should also be able to work with a
version control system integrated in Android Studio.

In the next chapter we will keep on working with Android Studio integrated
features. In this case we will be learning about the emulation of our project and
how to debug it. We will learn about the debugger, the console, or the LogCat tool.
We will also learn about more advanced debugging tools such as the Dalvik Debug
Monitor Server (DDMS). We will study in depth about this monitor server, going
through each of its available utilities.

Debugging
The debugging environment is one of the most important features of an IDE. Using
a debugging tool allows you to easily optimize your application and improve its
performance. Do you want to use one of these debug tools while programming
in Android Studio? Android Studio includes the Dalvik Debug Monitor Server
(DDMS) debugging tool.

In this chapter we will start by learning about the run and debug options and how to
emulate our application in one of the Android virtual devices we learned to create in
the previous chapter. We will learn about the debugger tab, the console tab, and the
LogCat tab in depth. We will also learn how to use breakpoints using the debugger
and how to run our application stopping in those breakpoints. We will end this
chapter with information about each tab available in the advanced debugging tool
included in Android Studio DDMS.

These are the topics we'll be covering in this chapter:

• Debugging
• LogCat
• DDMS tools

Running and debugging
Android applications can be run from Android Studio in a real device using the USB
connection or in a virtual device using the emulator. Virtual devices make it possible
to test our applications in different types of hardware and software configurations.
In this chapter we are using the emulator to run and debug our application because
of its simplicity and flexibility.

Debugging

[66]

To directly run an application, navigate to the menu Run | Run 'MyApplication'.
You can also click on the play icon button from the toolbar. To debug an application,
navigate to the menu Run | Debug 'MyApplication' or click on the bug icon from
the toolbar.

When we select the debug option, a dialog to choose the device is opened. The first
option is to choose a running device; the available connected devices are listed, real
or virtual ones. The second option is to launch a new instance of the emulator; the
available virtual devices are listed. Check the Launch emulator option and select
the virtual device created in Chapter 7, Tools. Click on OK. The emulator will be
launched. The next time we run or debug the application, the emulator is already
running, so we will choose the first option (Choose a running device).

While debugging, on the bottom of Android Studio there are three tabs: Debugger,
Console, and LogCat.

The Console displays the events that are taking place while the emulator is being
launched. Open it to examine the messages and check that the emulator and the
application are correctly being executed. The actions that should appear are:

• Waiting for device: Start point when the emulator is being launched.
• Uploading file: The application is packed and stored in the device.
• Installing: The application is being installed in the device. After the

installation a success message should be printed.
• Launching application: The application starts to execute.
• Waiting for process: The application should now be running and the

debug system tries to connect to the application process in the device.

After the success of the previous steps, the application will be visible in the emulator.
Test it by typing any name in the text input and click on the Accept button. The
greeting message should change.

Chapter 8

[67]

The Debugger manages the breakpoints, controls the execution of the code, and
shows information about the variables. To add a breakpoint in our code, just click on
the left edge of a line code. A red point will appear next to the line code to indicate
the breakpoint. To delete the breakpoint, click on it. If you click on a breakpoint
using the right mouse button, more options are available. We can disable it without
deleting it or we can set a condition for the breakpoint.

Add a breakpoint in the conditional statement of the onAcceptClick method of our
main activity and debug the application again.

Enter your name in the application and click on the Accept button. When the
execution gets to the breakpoint, it pauses and the debugger tab is opened. Since
we added the breakpoint in the conditional statement, before assigning the text,
our greeting message has not changed.

From the debugger tab we can examine the method call hierarchy and the variables
state at that point of execution. The available variables are the parameter of the
method (v), the TextView and EditText objects obtained by the findViewById
method and the reference to the current activity (this). Expand the EditText object
named as et_name and search for the property mText. This property should contain
the name you typed before:

• To execute the next line of code without stepping into the method call,
navigate to Run | Step Over or use the keyboard shortcut indicated for this
option, usually key F8

• To step into the method call, navigate to Run | Step Into or press F7
• To resume the execution until the next breakpoint if there is one, navigate to

Run | Resume Program or press F9
• To stop the execution, navigate to Run | Stop or press Ctrl + F2

Debugging

[68]

These options, among others, are also available from the debugger tab as
icon shortcuts.

Expand the tv_greeting object to check the value of its mText property. Now step
over the conditional statement and step over the call of the setText method. Notice
how the value of the mText property has changed. Finally, resume the execution so
the greeting message changes in the device screen.

LogCat
LogCat is the Android logging system that displays all the log messages generated
by the Android system in the running device. Log messages have several levels of
significance. From the LogCat tab we can filter the log messages by these levels. For
example, if we select the information level as filter, the messages from information,
warning, and error levels will be displayed.

To print log messages from our code we need to import the Log class. This class has a
method for each level: v method for debug level, d method for verbose, i method for
information, w method for warning, and e method for error messages. These methods
receive two string parameters. The first string parameter usually identifies the
source class of the message and the second string parameter identifies the message
itself. To identify the source class, we recommend using a constant static string tag,
although in the next example we directly use the string to simplify the code. Add the
following log messages in the onAcceptClick method of our main activity:

if(et_name.getText().length() > 0) {
 Log.i("MainActivity", "Name read: " + et_name.getText());
tv_greeting.setText("Hello " + et_name.getText());
}

Chapter 8

[69]

else {
 Log.w("MainActivity", "No name typed, greeting didn't change");
}

We have a log message to inform about the name obtained from the user input and
a log message to print a warning if the user did not type any name. Remove any
breakpoint we previously created and then debug the application.

The LogCat tab has printed all the log messages generated by the device, so reading
the messages of our application can be complex. We need to filter the messages.
In the LogCat tab there is an expandable list with the No Filters option selected.
Expand it and select the option Edit Filter Configuration. A dialog to create filters
is opened. Log messages can be filtered by their tag or their content using regular
expressions, by the name of the package that printed them, by the process ID (PID),
or by their level.

Create a new filter named MyApplication and filter by Package Name using the
package of our application as value: com.example.myapplication. Click on OK.
Now the LogCat log has been filtered and it is easier to read our messages.

1. Focus the emulator window, enter a name in the application, and click
on Accept. Observe how our log message is printed in the LogCat view.

2. Delete your name in the application and click on Accept. This time, the
warning message is printed. Notice the different colors used for each
type of message.

If we double-click on a LogCat entrance, we can navigate to the source line that
generated that log message.

DDMS
The Dalvik Debug Monitor Server (DDMS) is a more advanced debugging tool
from the SDK that has also been integrated into Android Studio. This tool is able
to monitor both a real device and the emulator.

To open the DDMS perspective navigate to Tools | Android | Monitor (DDMS
included). You can also click on the Android icon button from the toolbar. A new
window will be opened with the DDMS perspective.

Debugging

[70]

On the left part of the window, the list of connected devices is shown. Currently, just
our virtual device is listed. In the devices section the list of the processes running
on each device is also presented. We should be able to locate our application in the
processes of the device we launched before. From the toolbar of the devices section,
we can stop a process using the stop sign icon button. We can also take a screen
capture of the virtual device by clicking on the camera icon button. Some of the other
options will be explained later.

On the right part of the window, detailed information of the device is provided.
This information is divided into seven tabs: Threads, Heap, Allocation Tracker,
Network Statistics, File Explorer, Emulator Control, and System Information. On
the bottom part of the window is the LogCat, which has been also integrated in the
DDMS perspective.

Threads
The threads tab displays the list of threads that belong to the selected process. Select
our application process from the devices section. The process is identified by the
package name com.example.myapplication. Click on the Update Threads icon
button from the toolbar of the devices section and the threads will be loaded in the
content of the tab.

The first columns are the IDs of the threads. The Status column indicates the thread
state, utime indicates the total time spent by the thread executing user code, stime
indicates the total time spent by the thread executing system code, and Name
indicates the name of the thread. The threads that interest us are those that spend
time executing our user code.

This tool is useful if we create threads in our application apart from the main thread.
We can check if they are being executed at a certain point of the application or if their
execution time is moderate or not.

Chapter 8

[71]

Method profiling
Method profiling is a tool to measure the performance of the methods' execution
in the selected process. The measured parameters are the number of calls and the
CPU time spent while executing. There are two types of spent time, the exclusive
and the inclusive:

• Exclusive time: Time spent in the execution of the method itself.
• Inclusive time: Total time spent in the execution of the method. This

measure includes the time spent by any called methods inside the method.
These called functions are known as its children methods.

To collect the method profiling data, select our application process from the devices
section and click on the Start Method Profiling icon button from the toolbar of the
devices section, next to the Update Threads icon button. Then perform some actions
in the application, for example, in our example application, type a name and click on
the Accept button in order to execute the onAcceptClick method of the main activity.
Stop the method profiling by clicking on the Stop Method Profiling icon button.

When the method profiling is stopped, a new tab with the resultant trace is
opened in the DDMS perspective. On the top of this new tab, the method calls are
represented in a time graph; each row belongs to a thread. On the bottom of the
trace, the summary of the time spent in a method is represented in a table.

Order the methods by their name to search for our onAcceptClick method. Click on
it to expand the detailed information about the execution of this method. Notice the
following facts:

• The children methods called inside the onAcceptClick method are listed.
We can see the EditText.getText method, the Activity.findViewById
method, or the TextView.setText method, which indeed we directly call
inside the method in the following screenshot.

• The number of calls. For example, we can see that the Activity.
findViewById method is called twice: that is one call to find the TextView
object and a second call to find the EditText object.

Debugging

[72]

• The exclusive time columns have no value for the parents or children
methods due to their own definition of this type of measured time.

Method profiling is very useful to detect methods that spend too much time in its
execution and be able to optimize them. We can learn which are the most expensive
methods, to avoid unnecessary calls to them.

Heap
The heap tab displays the heap memory usage information and statistics of the
selected process. Select the application process and click on the Update Heap icon
button from the toolbar of the devices section to enable it. The heap information is
shown after a garbage collector (GC) execution. To force it, click on the Cause GC
button or click on the garbage icon button from the toolbar of the devices section.

The first table displays the summary of the heap usage: the total size, the allocated
space, the free space, and the number of allocated objects. The statistics table gives
the details of the objects allocated in the heap by its type: the number of objects, the
total size of those objects, the size of the smallest and largest objects, the median size,
and the average size. Select one of the types to load the bottom bar graph. The graph
draws the number of the objects of that type by its size in bytes. If we click on the
graph using the right mouse button, we can change its properties (title, colors, font,
labels...) and save it as an image in PNG format.

Chapter 8

[73]

Allocation tracker
The allocation tracker tab displays the memory allocations of the selected process.
Select the application process and click on the Start Tracking button to start tracking
the memory information. Then click on the Get Allocations button to get the list of
allocated objects.

We can use the filter on the top of the tab to filter the objects allocated in our own
classes. Type our package name in the filter, com.example.myapplication. For
each object, the table shows its allocation size, the thread, the object or class, and
the method in which the object was allocated. Click on any object to see more
information, for example, the line number that allocated it. Finally, click on the Stop
Tracking button.

The allocation tracker is very useful to examine the objects that are being
allocated when doing certain interactions in our application in order to improve
the memory consumption.

Network statistics
The network statistics tab displays how our application uses the network resources.
To get the network statistics of any application that uses the network, click on the
Start button. The data transfers will start to appear in the graph.

The network statistics are useful to optimize the network requests in our code and
control the data transferred at a certain point of the execution.

Debugging

[74]

File Explorer
This tab exposes the whole filesystem of the device. For each element we can
examine its size, date, or permissions. Navigate to /data/app/ to search for our
application package file, com.example.myapplication.apk.

Emulator control
Emulator control allows us to emulate some special states or activities in the virtual
device. We can test our application in different environments and situations to check
that it behaves as expected. If our application has features that depend on the device
physical location, we can use mock locations:

• Telephony Status: Choose the voice and data status, its speed, and latency
• Telephony Actions: Simulate an incoming call or SMS
• Location Controls: Set the geolocation of the device

System information
The system information tab presents the frame render time, the total CPU load, and
the total memory usage of the device as graphs. We can search for our application
and easily compare it along with the rest of the processes running on the device.

We can change the properties of the graphs such as colors, font, title and we can
save them as images in the PNG format. To open these options, click on the graph
elements using the right mouse button.

Open the CPU load and save the graph when our application is running in the
foreground. Then close the application and update the CPU load by clicking on the
Update from Device button. Notice the difference between both graphs and notice
the growth of the idle percentage.

Chapter 8

[75]

Summary
By the end of this chapter, the users should know the different launch options for
their application and how to use the console and the LogCat for debugging. They
should also have learned how to debug an application and to interpret the data
provided by the DDMS in each of the tabs available.

In the next chapter we will prepare our application for its release using Android
Studio. First we will learn about the necessary steps to prepare our application
before building it in the release mode. We will learn about how the applications are
compressed in APK files and how to generate our own APK. Finally, we will learn how
to get our certificate as developers and how to generate a signed APK file, making it
ready for release.

Preparing for Release
In the previous chapter you've learned enough to test and debug your application.
What do you need to prepare your application for release? How can you do this
using Android Studio?

This chapter describes the necessary steps to prepare your application for release
using Android Studio. First of all we will learn about the Application Packages files,
a variation of the JAR files in which Android applications are packed. We will then
learn how we need to change our application after fully testing it. Finally, we will
sign our application APK (Application Package) file, leaving it ready to upload to
any market such as Google Play.

These are the topics we'll be covering in this chapter:

• Preparing for release
• APK files
• Getting a certificate
• Generating a signed APK

What is an APK file
Android applications are packed in a file with the .APK extension, which is a
variation of a Java JAR (Java Archive) file. These files are just compressed ZIP files,
so their content can be easily explored. An APK file usually contains:

• assets/: A folder that contains the assets files of the application. This is the
same assets folder existing in the project.

• META-INF/: A folder that contains our certificates.
• lib/: A folder that contains compiled code if necessary for a processor.
• res/: A folder that contains the application resources.

Preparing for Release

[78]

• AndroidManifest.xml: The application manifest file.
• classes.dex: A file that contains the application compiled code.
• resources.arsc: A file that contains some precompiled resources.

With the APK file, the application can be distributed and installed on the Android
operating system. Android applications can be distributed as you prefer, through
app markets such as Google Play, Amazon Appstore, or Opera Mobile Store; through
your own website; or even through an e-mail to your users. If you choose any of the
last two options, take into account that Android by default blocks installations from
locations different from Google Play. You should inform your users that they need
to disable this restriction in their devices to be able to install your application. They
have to check the Unknown sources option from the Settings | Security menu of
their Android devices.

Applications have to be signed with a private key when they are built. An application
can't be installed in a device or even in the emulator if it is not signed. To build our
application there are two modes, debug and release. Both APK versions contain the
same folders and compiled files. The difference is the key used to sign them:

• Debug: When we run and tested our application in the previous chapters, we
were in the debug mode, but we didn't have any key nor did anything to sign
our application. The Android SDK tools automatically create a debug key,
an alias, and their passwords to sign the APK. This process occurs when we
are running or debugging our application with Android Studio without us
realizing that. We can't publish an APK signed with the debug key created by
the SDK tools.

• Release: We have to build a release version when we want to distribute
our application in order to be able to install it in other Android devices. It
is a requirement that the APK file is signed with a certificate for which the
developer keeps the private key. In this case, we need our own private key,
alias, and password and provide them to the build tools. The certificate
identifies the developer of the application and can be a self-signed certificate.
It is not necessary for a certificate authority to sign the certificate.

Keep the key store with your certificate in a secure place. To upgrade
your application you have to use the same key in order to upload the
new version. If you lose the key store, you won't be able to update
your application. You will have to create a new application with a
different package name.

Chapter 9

[79]

Previous steps
Before we generate the APK file, it is necessary to prepare our application for
building it in the release mode.

Firstly, make sure you have completely tested your application. We recommend
testing your application:

• On a device using the minimum required platform
• On a device using the target platform
• On a device using the latest available platform
• On a real device and not just in the emulator
• On a variety of screen resolutions and sizes
• On a tablet if your application supports them
• Switching to the landscape mode if you allow it, both in a mobile device

and in a tablet
• On different network conditions, such as no Internet connectivity or

low coverage
• If your application uses the GPS or any location service, test it when they

are not activated in the device
• Behavior of the back button

Secondly, we have to check the log messages that are printed from our application.
Printing some log messages can be considered a security vulnerability. Logs
generated by the Android system can be captured and analyzed, so we should avoid
showing critical information about the application's internal working. You should
also remove the android:debuggable property from the application manifest file.
You can also set this property to false.

Thirdly, if your application communicates with a server, check that the configured
URL is the production one. It is possible that during the debug phase, you referenced
to a URL of a server in a pre-release environment.

Finally, set the correct value for the android:versionCode and
android:versionName properties from the application manifest file. The version
code is a number (integer) that represents the application version. New versions
should have greater version codes. This code is used to determine if an application
installed in a device is the last version, or there is a newer one.

Preparing for Release

[80]

The version name is a string that represents the application version. Unlike the
version code, the version name is visible to the user and appears in the public
information about the application. It is just an informative version name to the user
and is not used for any internal purpose.

Specify a value of 1 for the version code and 1.0 for the version name. The manifest
tag should look like:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapplication"
 android:versionCode="1"
 android:versionName="1.0" >

A new version of our application will have a value of 2 for the version code and, for
example, 1.1 for the version name.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapplication"
 android:versionCode="2"
 android:versionName="1.1" >

Generating a signed APK
To generate the signed APK, navigate on the menu Build | Generate Signed APK. In
the dialog to generate the signed APK, we are asked for a certificate. The APK is signed
by this certificate and it indicates that it belongs to us.

If it is our first application, probably we do not have any certificate. Click on the
Create new button to open the dialog box to create a new key store. We have to fill in
the following information.

• Key store path: Path in your system to create the key store. The key store is a
file with a .jks extension. For example, name it as release_keystore.jks.

• Password: Key store password. You have to confirm it.
• Alias: Alias for your certificate and pair of public and private key. For

example, name it as releasekey.
• Password: Certificate password. You have to confirm it.
• Validity: The certificate will be valid until the validity date. A value of 25

years or more is recommended.
• Certificate: Personal information contained in the certificate. Type your first

and last name, organizational unit, organization, city or locality, state or
province, and country code. For example, AS example as Organizational
Unit, packtpub as Organization, and ES as Country Code.

Chapter 9

[81]

Click on OK. The dialog box to create the signed APK is now loaded with the key store
data. The next time we create a signed APK, we already have a certificate and therefore
we will click on the Choose existing button. Click on the Next button. In the next
step, select the path to save the APK file and click Finish. When the APK is completely
generated, we will be informed as can be seen from the following screenshot:

We should have the APK file created in the selected path. Click on the Show in
Explorer button to open the folder containing the generated package, or click on the
Close button to just close the message.

Now that we have the release APK file, it is recommended to test it again in a device
before distributing it.

Summary
We have learned how to make an APK file and how to modify our application to
make it ready for release. We have also learned how to sign our application using
our developer certificate. By the end of this chapter, the user should have generated a
signed APK prepared for its release.

In the next chapter we will learn about how to get help using Android Studio. We
will access Android Studio online documentation and go through the help topics.
Finally, we will learn about keeping our Android Studio instance updated using the
built-in feature for it.

Getting Help
While developing applications in a new IDE there will always be doubts on
how to do a certain action. A successful IDE usually includes help wizards and
documentation that help users with different problems. Are you wondering how to
get help using Android Studio?

In this last chapter we will learn about the Android Studio documentation and help
topics. We will learn the topics available in the official documentation that can be
accessed online on the official Android website. Finally, we will learn about how to
keep our Android Studio instance up-to-date using the update functionality.

Topics covered:

• Android Studio help
• Online documentation
• Android Studio updates

Getting help from Android Studio
Android Studio documentation is included in the IntelliJ IDEA web help. This
documentation is accessible from Android Studio in the menu Help | Online
Documentation, or at http://www.jetbrains.com/idea/documentation/.
A better option is to navigate to Help | Help Topics to directly open the
documentation contents tree, or at http://www.jetbrains.com/idea/webhelp/
intellij-idea.html. There are also some online video tutorials available. Navigate
to Help | JetBrains TV or open the URL http://tv.jetbrains.net/.

To quickly find actions of Android Studio, we can use the Help | Find Action option.
Type the action you are looking for and the list of matching actions will be displayed.

Getting Help

[84]

Finally, Android Studio provides the tip of the day functionality. The tip of the
day explains in a dialog box a trick about Android Studio. Every time you open
Android Studio, this dialog box is shown. We can navigate through more tips using
the Previous Tip and Next Tip buttons. By deselecting the Show Tips on Startup
checkbox, we can disable this functionality. The tip dialog box can be opened by
navigating to Help | Tip of the Day.

Android online documentation
The official Android documentation provided by Google is available at http://
developer.android.com/. This documentation contains all the necessary guides
to learn not only how to program Android applications but also how to design for
Android and how to distribute and promote our applications. Since this website is
quite extensive, here we are listing some of the specific guides useful to increase the
knowledge exposed in the chapters of this book.

1. Chapter 1, Installing and Configuring Android Studio:
 ° Getting Started with Android Studio, at http://developer.

android.com/sdk/installing/studio.html

 ° Troubleshooting, at http://developer.android.com/sdk/
installing/studio.html#Troubleshooting

 ° Known issues, at http://tools.android.com/knownissues

2. Chapter 2, Starting a Project:
 ° Iconography | Launcher, at http://developer.android.com/

design/style/iconography.html#launcher

 ° Using Code Templates, at http://developer.android.com/tools/
projects/templates.html

3. Chapter 3, Navigating a Project:
 ° Managing Projects, at http://developer.android.com/tools/

projects/

 ° Android Studio Tips and Tricks | Project Structure, at http://
developer.android.com/sdk/installing/studio-tips.
html#Project

4. Chapter 4, Using the Code Editor:
 ° Android Studio Tips and Tricks | Keyboard Commands, at http://

developer.android.com/sdk/installing/studio-tips.
html#KeyCommands

Chapter 10

[85]

5. Chapter 5, Creating User Interfaces:
 ° Layouts, at http://developer.android.com/guide/topics/ui/

declaring-layout.html

 ° Input Controls, at http://developer.android.com/guide/topics/
ui/controls.html

 ° Input Events, at http://developer.android.com/guide/topics/
ui/ui-events.html

 ° Supporting multiple screens, at http://developer.android.com/
guide/practices/screens_support.html

6. Chapter 6, Google Play Services:
 ° Google Play Services, at http://developer.android.com/google/

play-services/

 ° PlusOneButton, at https://developer.android.com/reference/
com/google/android/gms/plus/PlusOneButton.html

7. Chapter 7, Tools:
 ° SDK Manager, at http://developer.android.com/tools/help/

sdk-manager.html

 ° Managing Virtual Devices, at http://developer.android.com/
tools/devices/

8. Chapter 8, Debugging:
 ° Using DDMS, at http://developer.android.com/tools/

debugging/ddms.html

 ° Reading and Writing Logs, at http://developer.android.com/
tools/debugging/debugging-log.html

 ° Profiling with Traceview and dmtracedump, at http://developer.
android.com/tools/debugging/debugging-tracing.html

9. Chapter 9, Preparing for Release:

 ° Publishing Overview, at http://developer.android.com/tools/
publishing/publishing_overview.html

Getting Help

[86]

Updates
From the help menu we can check for updates of Android Studio. Navigate to Help
| Check for Update. When the checking finishes, if there is an available update of
Android Studio we have not installed, the update info is shown in a dialog box. This
dialog box is shown in the next screenshot. We can look over our current version,
the new version code, and its size. We can choose if we want to ignore the update,
update it later (Remind Me Later button), review the online release notes about the
update (Release Notes button), or install the update (Update and Restart button).
Click on this last option to update Android Studio. The update starts to download
first, then Android Studio will restart and the update will be installed.

If we already have the latest version of Android Studio, the following message will
be shown:

You already have the latest version of Android Studio (I/O Preview) installed. To
configure automatic update settings, see the Updates dialog of your IDE settings

Click on the Updates link to open the updates configuration dialog. We can select
if we want Android Studio to automatically check for updates and what type of
updates to check, for example, beta releases or stable releases.

We can examine the information about the recent Android Studio updates by
navigating to the menu Help | What's New in Android Studio. This information is
available online at http://tools.android.com/recent. To get the current version
we have of Android Studio or even the Java version in our system, navigate to
Help | About.

Chapter 10

[87]

Summary
We have learned how to use the Android Studio documentation in case we need help
with any action available in the IDE. We have also learned about the update feature
to always have the latest version of Android Studio installed. By the end of this
chapter, the user should be able to search for help using the online documentation
and the help topics, and to keep their Android Studio updated with the latest
features at their disposal.

Index
Symbols
@param 61
@throws 61
@version 61

A
Accept button 67, 71
action bars

URL 14
activity

choosing 14, 15
Activity class 43
Activity.findViewById method 71
addMarker method 51
ADT (Android Development Tools) 9
allocation tracker tab, DDMS 73
Alt + Arrows 31
Android

Google+ Platform, using 52
android:debuggable property 79
android:versionCode property 79
android:versionName property 79
Android applications

debugging 65-68
running 65-68

Android dashboards
URL 12, 39

Android documentation
URL 84

AndroidManifest.xml 21, 78
Android Package. See APK
Android SDK

configuring 8, 9
Android Studio

downloading 6
getting help from 83, 84
Google Play Services, adding 49, 50
installing 6
running, for first time 6-8
URL 84

Android Studio package
URL 6

Android Studio Tips and Tricks | Keyboard
Commands

URL 84
Android Virtual Device Manager. See AVD

Manager
API (Application Programming Interface)

12
APK 48
APK file 77, 78
Appearance option 24
Application name field 12
assets/ 77
Auto Import option 25
AVD Manager 57-60

B
BasicMapActivity class 51
build/ 19
build.gradle 21
Button object 38

C
Call Hierarchy option 30
cameraTargetLat 52
cameraTargetLong 52
Cause GC button 72
Choose existing button 81

[90]

classes.dex 78
Class/File/Symbol option 29
client library 48
Clone button 59
Close button 81
Cloud Messaging

Google Play Services, using for 49
code

completion 26, 27
generation 27
navigating 28-30

Code completion option 25
code folding 25
Code Style option 21
Code Templates

URL 84
Colors & Fonts option 25
Compiler option 21
Compile with field 12
components

adding 36-38
Console 66
Containers 35
Create activity option 12, 13
Create AVD button 59
Create new button 80
Ctrl + / 30
Ctrl + A 31
Ctrl + Alt + I 30
Ctrl + D 31
Ctrl + F 31
Ctrl + R 31
Ctrl + Shift + U 31
Ctrl + W 30
Ctrl + Y 31
Custom component 35
custom launcher icon

creating 13
custom region 29

D
Dalvik Debug Monitor Server. See DDMS
Date & Time 35
DDMS

about 69, 70
allocation tracker tab 73

emulator control 74
File Explorer tab 74
heap tab 72
method profiling 71, 72
network statistics tab 73
system information tab 74
threads tab 70
URL 85

Debug 78
Debugger 67
Delete button 59
device orientation 39
d method 68
DMG file

for Mac OS X systems, URL 6
dp 40

E
editor settings 24, 25
Editor Tabs option 25
EditText class 43
EditText.getText method 71
e method 68
emulator control, DDMS 74
events

handling 42-44
Exclusive time 71
EXE file

for Windows systems, URL 6
Expert component 35

F
Facets option 22
File Encodings option 21
File Explorer tab, DDMS 74
File Path option 30
File Structure option 30
findViewById method 43, 67

G
games

Google Play Services, using for 48
GCM

about 54
using 54

[91]

Get Allocations button 73
getPurchases() 53
getSkuDetails() 53
getText method 43
Google+

Google Play Services, using for 49
Google Cloud Messaging. See GCM
GoogleMap class 51
GoogleMap object 51
GoogleMapOptions class 52
Google Maps

Google Play Services, using for 48
Google Maps Android API v2 50-52
Google+ Platform

used, for Android 52
Google Play Services

adding, to Android Studio 49, 50
APK 48
client library 48
URL 85
used, for Cloud Messaging 49
used, for games 48
used, for Google+ 49
used, for Google Maps 48
used, for In-app Billing 49
used, for location 48
used, for Panorama 49
using 48
working 47, 48

Gradle option 21
graphical editor 34, 35

H
heap tab, DDMS 72
hint option 36

I
Iconography | Launcher

URL 84
id option 37
Image option 13
i method 68
In-app Billing

Google Play Services, using for 49
In-app Billing v3 53
Inclusive time 71

Input Controls
URL 85

Input Events
URL 85

installation
preparing for 5

Install button 57
IntelliJ IDEA

URL 22
int object 27
isBillingSupported() 53

J
java/ 20
Javadoc

generating 61, 62
JDK (Java Development Kit) 5

L
Language Injections option 21
Last Edit Location option 29
Launch button 59
layout:width option 36
layout_centerHorizontal property 38
layouts

about 35
URL 85

lib/ 77
Libraries option 22
libs/ 19
Line option 29
location

Google Play Services, using for 48
LogCat 68, 69
Log class 26, 68

M
MainActivity class 62
Managing Virtual Devices

URL 85
MapFragment class 51
mapType 52
MapView class 51
MarkerOptions object 51
Maven option 21

[92]

META-INF/ 77
Method Hierarchy option 30
method profiling, DDMS 71, 72
Minimum required SDK field 12
module 22
Module name field 12
Modules option 22
mText property 68
multiple screens

supporting 38-41
URL 85

N
network statistics tab, DDMS 73
New button 57
New Device button 59
new layout

creating 36
new project

creating 11-13
New Project option 11
Next button 81
Next Highlighted Error option 30
Next Method option 30

O
OK button 58, 62
onAcceptClick method 63, 67, 68, 71
OnClickListener 42
onClick method 44
onClick property 43
OnCreateContextMenu 42
onCreate method 28, 44, 53, 62
OnDragListener 42
OnKeyListener 42
OnLongClickListener 43
onStop method 53
OnTouchListener 43

P
Package name field 12
Panorama

Google Play Services, using for 49
parameter class 27
PlusClient 52

PlusClient.Builder 52
PlusOneActivity class 53
PlusOneButton

about 52
URL 85

PlusShare 53
Previous Highlighted Error option 30
Profiling with Traceview and dmtracedump

URL 85
project

managing, URL 84
navigation panel 18, 19
settings 21, 22
structure 19-21

Project button 18
Project location field 12
Project option 22
Publishing Overview

URL 85

R
Reading and Writing Logs

URL 85
Release 78
res/ 20, 77
resources.arsc 78

S
SDK Manager

about 55-57
URL 85

SDK (Software Development Kit) 5
setText method 68
setUpMap method 51
Shift + Ctrl + Arrows 31
shortcuts

Alt + Arrows 31
Ctrl + / 30
Ctrl + A 31
Ctrl + Alt + I 30
Ctrl + Alt + O 31
Ctrl + D 31
Ctrl + F 31
Ctrl + R 31
Ctrl + Shift + U 31
Ctrl + W 30

[93]

Ctrl + Y 31
Shift + Ctrl + Arrows 31
Tab 31

Show in Explorer button 81
signed APK

generating 80, 81
Smart Keys option 24
smart type code completion 26
Software Development Kit Manager. See

SDK Manager
src/main/ 20
Start button 59
Start Tracking button 73
Stop Tracking button 73
String parameter 26
system information tab, DDMS 74

T
Tab 31
Target SDK field 12
Test option 29
text-based editor 35, 36
Text Fields 35
text option 37
TextView.setText method 71
TGZ file

for Linux systems, URL 6
Theme field 12

threads tab, DDMS 70
troubleshooting

URL 84
tv_greeting object 68
Type Hierarchy option 30

U
uiCompass 52
UI theme

changing 41, 42
uiZoomControls 52
Update from Device button 74
updates

of Android Studio 86

V
VCS 62, 63
Version Control option 21
Version control system. See VCS
View class 42
View object 43
v method 68

W
Widgets 35
w method 68

Thank you for buying
Android Studio Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android Development Tools for
Eclipse
ISBN: 978-1-78216-110-3 Paperback: 144 pages

Set up, build, and publish Android projects quickly
using Android Development Tools and Eclipse

1. Build Android applications using ADT for
Eclipse.

2. Generate Android application skeleton code
using wizards.

3. Advertise and monetize your applications.

Android Application Testing Guide
ISBN: 978-1-84951-350-0 Paperback: 332 pages

Build intensively tested and bug free Android
applications

1. The first and only book that focuses on testing
Android applications.

2. Step-by-step approach clearly explaining the
most efficient testing methodologies.

3. Real world examples with practical test cases
that you can reuse.

Please check www.PacktPub.com for information on our titles

Android User Interface
Development: Beginner's Guide
ISBN: 978-1-84951-448-4 Paperback: 304 pages

Quickly design and develop compelling user
interfaces for your Android applications

1. Leverage the Android platform's flexibility and
power to design impactful user-interfaces.

2. Build compelling, user-friendly applications
that will look great on any Android device.

3. Make your application stand out from the rest
with styles and themes.

4. A practical Beginner's Guide to take you
step-by-step through the process of developing
user interfaces to get your applications noticed!.

Android 4: New Features for
Application Development
ISBN: 978-1-84951-952-6 Paperback: 166 pages

Develop Android applications using the new features
of Android Ice Cream Sandwich

1. Learn new APIs in Android 4.

2. Get familiar with the best practices in
developing Android applications.

3. Step-by-step approach with clearly explained
sample codes.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Configuring Android Studio
	Preparing for installation
	Downloading Android Studio
	Installing Android Studio
	Running Android Studio for the first time

	Configuring the Android SDK
	Summary

	Chapter 2: Starting a Project
	Creating a new project
	Creating a custom launcher icon
	Choosing your type of activity
	Summary

	Chapter 3: Navigating a Project
	The project navigation panel
	Project structure
	Project settings
	Summary

	Chapter 4: Using the Code Editor
	Editor settings
	Code completion
	Code generation
	Navigating code
	Useful actions
	Summary

	Chapter 5: Creating User Interfaces
	The graphical editor
	The text-based editor
	Creating a new layout
	Adding components
	Supporting multiple screens
	Changing the UI theme
	Handling events
	Summary

	Chapter 6: Google Play Services
	How Google Play Services work
	Services available
	Adding Google Play Services to Android Studio
	Google Maps Android API v2
	Google+ Platform for Android
	Google Play In-app Billing v3
	Google Cloud Messaging
	Summary

	Chapter 7: Tools
	Software Development Kit Manager
	Android Virtual Device Manager
	Generating Javadoc
	Version control system
	Summary

	Chapter 8: Debugging
	Running and debugging
	LogCat
	DDMS
	Threads
	Method profiling
	Heap
	Allocation tracker
	Network statistics
	File Explorer
	Emulator control
	System information

	Summary

	Chapter 9: Preparing for Release
	What is an APK file
	Previous steps
	Generating a signed APK
	Summary

	Chapter 10: Getting Help
	Getting help from Android Studio
	Android online documentation
	Updates
	Summary

	Index

