
Content Production of Digital Audio/Video,
Illustration and 3D Animation

Android Studio
New Media Fundamentals

Wallace Jackson

www.it-ebooks.info

http://www.it-ebooks.info/

 Android Studio New
Media Fundamentals

 Content Production of Digital
Audio/Video, Illustration

and 3D Animation

Wallace Jackson

www.it-ebooks.info

http://www.it-ebooks.info/

Android Studio New Media Fundamentals

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4842-1640-8 ISBN-13 (electronic): 978-1-4842-9867-1
DOI 10.1007/978-1-4842-9867-1

Library of Congress Control Number: 2015955164

Copyright © 2015 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Chad Darby
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Jana Weinstein and Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

 ■Chapter 1: Enhancing Android Apps: Using New Media Assets 1

 ■Chapter 2: Digital Images: Concepts and Terminology 11

 ■Chapter 3: Digital Image Assets: Data Footprint Optimization 27

 ■Chapter 4: Digital Audio: Concepts and Terminology 33

 ■Chapter 5: Digital Audio Assets: Data Footprint Optimization 43

 ■Chapter 6: Digital Video: Concepts and Terminology 57

 ■Chapter 7: Digital Video Assets: Data Footprint Optimization 65

 ■Chapter 8: Digital Illustration: Concepts and Terminology 77

 ■Chapter 9: Digital Illustration: Data Footprint Optimization 87

 ■Chapter 10: 3D New Media: Concepts and Terminology 101

 ■Chapter 11: 3D New Media: Data Formats and Platforms 117

 ■ Chapter 12: Referencing New Media Assets in
Android Studio .. 129

Index .. 137

iii

www.it-ebooks.info

http://www.it-ebooks.info/

ThiS is a FM Blank Page

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

 ■Chapter 1: Enhancing Android Apps: Using New Media Assets 1

New Media Genres: Multimedia Pie Slices .. 2

Separate Your App from the Crowd: New Media ... 2

Android Studio New Media Support: File Formats .. 2

Downloading and Installing Your Software .. 4

Digital Image Editing and Compositing: GIMP... 4

Digital Audio Editing and Effects: Audacity ... 5

Digital Video Editing and Effects: Lightworks ... 6

Digital Illustration and 2D Modeling: Inkscape ... 7

3D Modeling, Rendering, and Animation: Blender... 8

Summary ... 9

 ■Chapter 2: Digital Images: Concepts and Terminology 11

Pixels: Your Digital Image Building Blocks .. 11

Raster vs. Vector: Imagery vs. Illustration .. 12

Rendering: Convert Vector Shape to Raster Image ... 12

Resolution: The Number of Image Pixels ... 12

Doing the Math: Calculate Your Total Image Pixels ... 13

Matching Image Resolution to Android Devices ... 13

v

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

vi

Aspect Ratio: The 2D Ratio of W:H Pixels .. 14

Screen Shapes: Common Display Aspect Ratios .. 15

Doing the Math: How to Arrive at the Aspect Ratio ... 15

Color Theory: Using Pixel Color Channels .. 15

The Mathematics of RGB Color: Multiplying Your Intensities 16

Representing RGB Color Values: Using Hexadecimal Data Values 17

Color Depth: Bit-Levels That Defi ne Color ... 18

Indexed Color: Using Palettes to Hold 256 Colors ... 18

True Color: Using 24-Bit Color Imagery ... 19

True Color plus Alpha: Using 32-Bit Digital Images .. 19

Alpha Channels: Defi ning Transparency .. 21

PorterDuff: Algorithmic Blending Modes ... 21

Smoothing Edges: Anti-Aliasing .. 22

NinePatch Assets: 9-patch Digital Images... 23

NinePatch Class: Creating NinePatch in Android .. 24

Draw 9-patch: Create a NinePatchDrawable Image ... 24

Summary ... 26

 ■Chapter 3: Digital Image Assets: Data Footprint Optimization 27

Optimizing Digital Imagery: Key Factors ... 27

Image Resolution: Number of Pixels in the Array ... 28

Image Color Depth: Color Channels for Each Pixel ... 28

Image Alpha Channel: Pixel Transparency Channel .. 32

Summary ... 32

 ■Chapter 4: Digital Audio: Concepts and Terminology 33

Audio Concepts and Terminology .. 33

Foundation of Analog Audio: Sound Waves of Air ... 33

Digital Audio: Samples, Resolution, and Frequency .. 34

Digital Audio Data: Transmission and Digitization ... 36

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

vii

Digital Audio in Android: File Formats ... 37

MIDI: Musical Instrument Data Interface .. 38

MPEG-3 Audio: The Popular MP3 Data Format ... 38

FLAC: The 24-Bit Free Lossless Audio Codec.. 39

OGG Vorbis: A Lossy Open Source Audio Codec .. 39

MPEG-4 Audio: Advanced Audio Coding (AAC) .. 40

MPEG-4 AMR: Adaptive Multi-Rate Audio Codecs ... 40

PCM Audio: Pulse-Code Modulation Codec ... 40

Summary ... 41

 ■Chapter 5: Digital Audio Assets: Data Footprint Optimization 43

Audio Optimization: Device Compatibility .. 43

Digital Audio Optimization: Work Process .. 44

Trim an Audio Sample: Removing Unused Audio .. 45

Noise Reduction: Removing Background Noise .. 47

Establishing a Baseline: Exporting PCM Format ... 48

Exporting Lossless FLAC: FLAC Audio Files .. 50

Exporting Lossy Ogg Vorbis: OGG Audio Files ... 51

Exporting Lossy MPEG-3 Format: MP3 Audio Files ... 52

Exporting Lossy MPEG-4 Format: M4A Audio Files ... 53

Exporting Narrow Band Format: AMR Audio Files ... 54

Summary ... 55

 ■Chapter 6: Digital Video: Concepts and Terminology 57

Digital Video Concepts and Terminology ... 57

Digital Video Concepts: Frames and Frame Rates .. 57

Digital Video Mathematics: Doing the Multiplication .. 58

Digital Video Algorithms: Digital Video Codecs ... 59

Video in Android: MPEG-4 H.264 AVC and WebM .. 59

Digital Video Resolutions: Industry Standards .. 60

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

viii

Digital Video Storage: Captive vs. Streaming .. 61

Digital Video Compression: Bit Rates and Playback ... 61

Digital Video Optimization: Encoding Software ... 62

Digital Video Optimization: Encoder Settings .. 62

Summary ... 64

 ■Chapter 7: Digital Video Assets: Data Footprint Optimization 65

Creating Digital Video Content: Terragen ... 65

Creating Uncompressed AVIs: VirtualDub .. 68

Applying Video Compression: Squeeze ... 71

Summary ... 76

 ■Chapter 8: Digital Illustration: Concepts and Terminology 77

Digital Illustration Is Rendered, Not Stored ... 77

Vector Components: Vertices and Curves .. 78

The Vertex: The Foundation for Your 2D Shapes ... 78

The Path: Connecting Vertices to Create a Shape ... 78

The Fill: Filling Your Closed Shapes with Colors ... 82

The Stroke: Controlling How Lines and Curves Look .. 84

SVG Format: Coding Vector Shape Data .. 85

Summary ... 85

 ■Chapter 9: Digital Illustration: Data Footprint Optimization 87

Inkscape: Vector Illustration Shape Data ... 87

The Layout: Overview of Key Areas in Inkscape ... 87

Polygon Shapes: Creating Basic Closed Shapes ... 88

SVG Data Export: Using Inkscape File ➤ Save As .. 89

Spline Shapes: Creating Complex Shapes .. 91

Data Footprint Optimization: Use Integers ... 99

Summary ... 100

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

ix

 ■Chapter 10: 3D New Media: Concepts and Terminology 101

Interactive 3D Assets: 3D Vector Content .. 101

The Foundation of 3D: The Geometry of the Mesh .. 102

Skinning a 3D Model: Texture Mapping Concepts .. 108

3D Animation: Keyframes, Motion Curves, and IK ... 113

Summary ... 116

 ■Chapter 11: 3D New Media: Data Formats and Platforms 117

3D Model Data: Open Source File Formats .. 117

Autodesk: 3D Studio for DOS 3DS ... 118

Wavefront Technologies: Advanced Visualizer OBJ ... 118

Collada: ISO Collaborative Design Activity DAE ... 119

Stereolithography or STL: 3D Systems CAD .. 119

X3D: The ISO Successor to VRML .. 119

FXML: The JavaFX Markup Language Data Format .. 120

Java 3D Support: JavaFX Scene Graph ... 120

3D Modeling: Points, Polygons, Mesh, and Shading ... 121

3D Animation: Timeline, KeyFrame, and Interpolator .. 122

Third-Party Java Scene Graph 3D Engines .. 123

jMonkeyEngine: The JME i3D Game Engine ... 123

LWJGL: Lightweight Java Game Library V3 ... 124

JOGL: Java OpenGL, OpenAL, and OpenCL.. 124

libGDX: Cross-Platform Desktop and Android 3D .. 125

Android OpenGL Package: Android i3D .. 126

Summary ... 127

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

x

 ■ Chapter 12: Referencing New Media Assets in
Android Studio .. 129

Android Assets: Drawables and Raw Data .. 129

Android Resources: Assets Subfolder Hierarchy... 129

Alternate Resource Folders: Custom Folder Names ... 131

Android Drawable: Draw Assets to Any DPI Screen .. 132

Drawable Objects: Referencing Assets in Memory ... 133

Android Layout: Assets Used in XML UI Designs ... 134

Asset Referencing: The Android Resources Class .. 134

Summary ... 136

Index .. 137

www.it-ebooks.info

http://www.it-ebooks.info/

 About the Author

 Wallace Jackson has been writing for leading
multimedia publications about his work in new media
content development since the advent of Multimedia
Producer Magazine nearly two decades ago, when he
wrote about advanced computer processor architecture
for an issue centerfold (a removable “mini-issue”
insert) distributed at the SIGGRAPH trade show. Since
then, Wallace has written for a number of other popular
publications about his work in interactive 3D and new
media advertising campaign design, including 3D Artist
Magazine , Desktop Publishers Journal , CrossMedia
Magazine , AV Video/Multimedia Producer Magazine ,
 Digital Signage Magazine , and Kiosk Magazine .

 Jackson has authored a half-dozen Android book
titles for Apress, including four titles in the popular
 Pro Android series. This particular Java 8 programming

title focuses on the Java and JavaFX programming languages that are used with Android
(and all other popular platforms as well) so that developers can “code once, deliver
everywhere.”

 Jackson is currently the CEO of Mind Taffy Design, a new media content production
and digital campaign design and development agency, located in North Santa Barbara
County, halfway between clientele in Silicon Valley to the north and in Hollywood, “The
OC,” and San Diego to the south.

 Mind Taffy Design has created open source technology–based (HTML5, JavaScript,
Java 8, JavaFX 8, and Android 5) digital new media content deliverables for more than
two decades (since 1991) for a significant number of leading branded manufacturers
worldwide, including Sony, Tyco, Samsung, IBM, Dell, Epson, Nokia, TEAC, Sun, Micron,
SGI, and Mitsubishi.

 Jackson received his undergraduate degree in business economics from the University
of California at Los Angeles (UCLA). He received his graduate degree in MIS Design and
Implementation from the University of Southern California (USC). Jackson also received
his post-graduate degree in marketing strategy at USC and completed the USC Graduate
Entrepreneurship Program. The USC degrees were completed while at USC’s night-time
Marshall School of Business MBA Program, which allowed him to work full-time as a
programmer while he completed his graduate and post-graduate business degrees.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

ThiS is a FM Blank Page

www.it-ebooks.info

http://www.it-ebooks.info/

 About the Technical
Reviewer

 Chád (shod) Darby is an author, instructor, and speaker
in the Java development world. As a recognized
authority on Java applications and architectures, he has
presented technical sessions at software development
conferences worldwide (the United States, the United
Kingdom, India, Russia, and Australia). In his 15 years
as a professional software architect, he’s had the
opportunity to work for Blue Cross/Blue Shield, Merck,
Boeing, Red Hat, and a handful of startup companies.

 Chád is a contributing author to several Java
books, including Professional Java E-Commerce
(Wrox Press, 2001), Beginning Java Networking
(Wrox Press, 2001), and XML and Web Services Unleashed
(Sams Publishing, 2002). Chád has Java certifications
from Sun Microsystems and IBM. He holds a BS in
computer science from Carnegie Mellon University.

 Visit Chád’s blog at www.luv2code.com to view his
free video tutorials on Java. You can also follow him on Twitter @darbyluvs2code .

xiii

www.it-ebooks.info

http://www.luv2code.com/#_blank
http://www.it-ebooks.info/

1© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_1

 CHAPTER 1

 Enhancing Android Apps:
Using New Media Assets

 Welcome to Android Studio New Media Fundamentals . This book will take you through
the foundation of new media principles and concepts so that you have a firm foundation
regarding what Android Studio and the Android OS offer in the area of new media
support. New media , sometimes referred to as rich media or multimedia , spans a
number of professional artist occupations, which is why a multimedia producer has to be
good at producing all forms of new media. This book seeks to enhance your knowledge
of new media fundamentals and how they apply to Android Studio, so that you can make
Android apps that are more stimulating to the senses—and thus more popular!

 In this chapter, you’ll take a look at the different forms of new media supported
by the Android OS and how they can help your applications stand apart from the
competition. You will also install professional-quality, open source software applications
for each of the new media genres, so that you will be able to produce new media content
for Android applications.

 This book makes the assumption that you’re already up to speed on Android
Studio and its feature set—you have downloaded and installed it, and you are busy
programming Android applications. I wrote this book to bolster your knowledge of
the new media portion of the Android Studio equation, so that you will be able to add
 custom multimedia assets to your Android application instead of using the canned UI
components that come with the operating system.

 Throughout the rest of the book, there are two chapters per new media type (genre)
to get you up to speed on the fundamentals and to learn how these new media types
are supported in Android Studio; you’ll also learn about the principles of data footprint
optimization.

 This book does not cover Android Studio, at least not directly; I assume that you have
already downloaded and installed Android Studio, and that you know the basics. I have
an Android Apps for Absolute Beginners (Apress, 2014) title that covers these topics if you
need that foundational knowledge .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

2

 New Media Genres: Multimedia Pie Slices
 There are a number of different types (or genres) of new media, and all of these are
supported in Java and JavaFX (which power Android, along with the Linux Kernel) as
well as in Android OS. These support adding what I like to call new media “assets” to the
Android application code. You’re familiar with most of them I imagine: digital images
like those on Pinterest or Instagram, or digital audio like that on Spotify or Pandora.
 Digital video can be used to stream movies or your favorite television show. Less prolific
new media types include 2D vector or digital illustration media that looks like 2D
cartoons, and 3D vector, or interactive 3D media, like you see people using on popular
game consoles like Xbox to play sports or adventure games. All of these examples are
high-sensory user experiences, so adding new media assets or elements to your Android
application development process is how to take your app to the next level !

 Separate Your App from the Crowd: New Media
 The major advantage to incorporating new media assets into your Android application
development in Android Studio is the visual and aural “wow factor” that you can add to
an application. This sets it apart from other applications and generates a word-of-mouth
marketing effort on the behalf of your users, and that you will not have to pay for. This is
what I’d call a “windfall profit,” and it is what this book targets to bring to your Android
application development knowledge base and to your new media assets for Android
Studio content production. For example, where digital imagery is concerned, instead of
having a solid background color, use a subdued texture or a subtle color gradient, which is
actually digital illustration, as you’ll learn over the course (no pun intended) of this book.

 Where digital audio is concerned, with custom audio user interface sounds for user
interaction feedback, users will feel like they’re more closely tied into, or are a part of,
your Android application. Digital audio can enhance the user experience more than you
are probably giving high-quality audio credit for!

 Digital video and interactive 3D are more on the content production side of the
application enhancement spectrum, rather than on the user interface design side of
things; however, they are just as important. Digital video that is well optimized may play
back more smoothly via slower connections, and interactive 3D, or i3D, applications are
rare, other than popular 3D games.

 Next let’s take a look at the new media file formats the Android operating system
includes. What I mean by “includes” is a decoder for the file format’s codec (cod e-
 dec ode) is actually a part of the Android OS, and already installed on the hardware!

 Android Studio New Media Support: File Formats
 The key to bridging your new media content production to your Android Studio development
environment is those new media file formats currently supported in Android 5 or later.
Most of them are supported in Android 4. Many of these are also supported in earlier
versions of Android, such as 1.6, 2.37, and 3.2. Devices running these versions of Android
are becoming hard to find; soon all you will have to worry about is 32-bit Android 4.4 and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

3

64-bit Android 5.4. Specialized versions of Android—such as the Android Wear, Android
TV, or Android Auto SDK—support these same new media file (data) formats and codecs.
So no worries there! Table 1-1 summarizes these popular new media file formats.

 Table 1-1. Android New Media File Format Support by Version

 New Media File Format New Media Genre Android OS Version Level

 PNG8, PNG24, PNG32 Digital image All OS versions

 JPEG Digital image All OS versions

 WebP Digital image Android OS 4.0+

 GIF Digital image All OS versions

 SVG Digital illustration All OS versions

 OpenGL 3D All OS versions

 WebM (VP8, VP9) Digital video Android OS 2.3.3+

 MPEG-4 Digital video & audio All OS versions

 MPEG-3 Digital audio All OS versions

 OGG Vorbis Digital audio All OS versions

 FLAC Digital audio Android OS 3.1+

 WAVE Digital audio All OS versions

 AIFF Digital audio All OS versions

 AMR Digital audio All OS versions

 Android Studio digital image support currently includes JPEG, PNG, GIF, and WebP.
You’ll learn the attributes of each of these in Chapter 3 , which covers digital imagery
optimization, but I’m sure you know that JPEG is the most widely used digital image
format, the CompuServe GIF is the oldest digital image format, and that PNG (Portable
Network Graphics) is the newest digital image format. WebP is the same codec as your
WebM video codec, except that it is compressing one frame, often called a “still” image.

 Android Studio digital audio support currently includes MPEG4 Audio (M4A),
MPEG3 Audio (MP3), Free Lossless Audio Codec (FLAC), OGG Vorbis, Windows Wave
(WAV) Audio, Audio Interleaved File Format (AIFF) for Macintosh, and a number of
others. You’ll go over the attributes of each of these in Chapter 5 , which covers digital
audio data footprint optimization.

 Android Studio digital video support currently includes MPEG4 AVC and WebM
(VP8 and VP9). Whereas the digital audio support is expansive, the digital video support
includes only two codec offerings—the same two that are supported in HTML5. Both
codec offerings are open source, as Google purchased ON2 and made the VP8 and VP9
(WebM) codecs open source. MPEG patents expire in 2027 (all of them), although some
have expired already. HTML5 and Android have licensed MPEG4, so you can use that in
Android. You’ll learn about each of these codecs in Chapter 7 , which covers digital video
data footprint optimization.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_3
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

4

 Android Studio uses Scalable Vector Graphics (SVG) for its digital illustration
support; in fact, Java (via JavaFX) supports an entire library of classes that allow you
to create, read, render, and animate SVG digital illustration data. You’ll learn about
the attributes of each of these in Chapter 9 , when digital illustration data footprint
optimization is covered.

 3D modeling and animation support OpenGL, as well as all the 3D data formats that
the OpenGL importers support, such as .FBX, .DAE (Collada), .3DS (3D Studio), .OBJ
(WaveFront), .X3D, .STL (Stereolithography), and other open 3D geometry formats. You’ll
find out about each of these i3D data formats in Chapter 10 , which covers 3D modeling,
rendering, and animation concepts.

 Downloading and Installing Your Software
 I’m going to take a few pages in the second half of the chapter to show you a
professional-level open source software package for each of the five new media genres
that are covered in this book. This is so that if you do not have a software package that
covers that type of new media development, you can download and install one that’s free
for commercial use and has all the professional features that a paid software package
features. You will be amazed at the value that these software packages provide once you
install and launch them.

 Digital Image Editing and Compositing: GIMP
 You need to have a digital imaging software package of one kind or another. If you do not
own any digital imaging software, you can use the free-for-commercial-use GIMP 2.8.14,
which is the current stable version, at least until GIMP 3.0 comes out some time in 2016.

 To download GIMP 2.8.14, go to the www.gimp.org web site, and click the orange
 Download button; or alternately, click the Downloads link, seen on the right in Figure 1-1 .

 Figure 1-1. Go to gimp.org and click the Download button

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_9
http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://www.gimp.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

5

 Download the GIMP-2.8.14.exe installer file for your OS, and double-click it to start
an installation. The installer can determine whether you need a 32-bit or a 64-bit version,
so all you have to do is select a language that you want to use in the software, and then
click the OK button. You’ll get a GIMP Setup dialog, where you click the Install button to
start the installation process.

 If you want to customize the installation, you can click the Customize button and
select exactly which components you want installed on your system. I recommend that
you use a full install. This gives you a basic GIMP software installation with all the stable
plug-ins, filters, and file export support.

 Once the install process has completed, click the Finish button and create a shortcut
icon for the Quick Launch taskbar for your OS, so that you can launch GIMP using a
single click.

 Digital Audio Editing and Effects: Audacity
 You need to have a digital audio editing-and-effects software package for working with
audio. If you do not own Reason, you can use the open source Audacity 2.1 software .

 To download Audacity 2.1.1, which is the current, stable version, go to
 www.audacityteam.org and click the blue Download Audacity 2.1.1 link, shown in
Figure 1-2 ; or, alternately, click the Download tab under the Audacity logo.

 Figure 1-2. Go to audacityteam.org and click Download

 Download the audacity-win-2.1.1.exe installer file (mine was for the Windows 8 OS).
When it finishes downloading, double-click it to start the installation. The software is
currently a 32-bit version, unless you are on 64-bit Linux, so all you have to do is select
the setup language that you want to use in the software, and click the OK button. Next,
you get the Welcome to the Audacity Setup Wizard dialog, which recommends that you
close all of your open programs.

www.it-ebooks.info

http://www.audacityteam.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

6

 Click the Next button and review a licensing information screen, and then click the
 Next button to advance to a Destination Location Specification dialog, and then click
 Next to accept the default installation location in a C:\Program Files(x86)\Audacity
folder. Click Next and the Select Additional Tasks dialog appears, allowing you to select
options to Create a desktop icon and Reset Preferences .

 Click Next to get the Ready to Install dialog, and then click the Install button to
begin the installation process. The Installing dialog shows you the progress bar, and
when your install is done, you get a dialog with an option to Launch Audacity . Select
this option and click the Finish button. Take a look at Audacity—you will find that it is
quite impressive.

 Create a shortcut icon for the Quick Launch taskbar on your OS, so that you can
launch Audacity using a single click.

 Digital Video Editing and Effects: Lightworks
 All Android developers should have a professional digital video editing and special effects
software package of one type or another, whether it is Adobe AfterEffects, Sony Vegas Pro,
or Apple Final Cut Pro. If you do not own any of these, you can download the free-for-
commercial-use Editshare Lightworks 12.5.

 To download Lightworks 12.5, go to www.lwks.com . If you do not have an account,
create one so that you are able to download a free version of Lightworks 12.5. Click the
blue Downloads button, seen at the top left of Figure 1-3 , and then click the tab for the OS
you’re running.

 Figure 1-3. Go to lwks.com and click the Downloads tab

www.it-ebooks.info

http://www.lwks.com/
http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

7

 In my case, this was Windows 8.1 OS. Click the version that matches your OS; for
most of you, this should be 64-bit .

 To find out if your computer is 32-bit or 64-bit, right-click the Computer link in
your Start menu (Window 7, XP, or Vista) and select Properties . In Windows 8.1 or 10,
right-click the Windows menu icon, and select the System menu option, which displays a
computer system information dialog.

 On other operating systems, you can also look in the OS control panel under
Computer or System for this information, which states whether the computer system is
running a 32-bit or a 64-bit OS.

 I clicked the 64-bit Download button to download the lightworks_12.5_full_64bit_
setup.exe installer file for Windows and double-clicked it to start the installation.

 The first Installer Language dialog asks you to select a language that you want to
use in the software. Click the OK button, which gives you the Welcome to the Lightworks
Setup.

 Click Next . In the License Agreement dialog, select an option that reads “I accept
the terms of the License Agreement” and click the Next button again. Leave the default
settings for the Choose Components dialog, and again click the Next button.

 Leave the default settings for the Choose Install Location dialog, and then click
 Next to install Lightworks in a C:\Program Files\Lightworks folder. Click Next . A
 Choose Start Menu Folder dialog appears, allowing you to again accept an obvious
Lightworks folder name default setting.

 Once you click the Next button, you’ll get a progress bar for an Installing dialog,
where you can observe the installation process—if you’re a speed reader, that is. Once the
install is finished, click the Next button and then the Finish button.

 Create a shortcut icon for your Quick Launch taskbar for the OS, so that you can
launch Lightworks using a single click.

 Digital Illustration and 2D Modeling: Inkscape
 Since Java, JavaFX, and Android all 100% support SVG, you’ll also need to have digital
illustration software of one flavor or another, whether it is Adobe Illustrator, or Corel
Draw, or Macromedia Freehand. If you do not own any of these, you can use the free-for-
commercial-use Inkscape software package, which has all the features that you’ll need to
work on a professional level with SVG 2D vector data.

 To download Inkscape 0.91, which is the current, stable version of Inkscape, go
to www.inkscape.org and click the green Download button, seen in Figure 1-4 ; or
alternately click the Download link at the top-left side of the web site. Inkscape supports
32-bit and 64-bit versions of its software; I assume you’ve ascertained the bit-level for
your OS by now! The file I downloaded was the inkscape-0.91-x64.msi installer file.
Double-click the installer file for your OS bit-level to begin.

www.it-ebooks.info

http://www.inkscape.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

8

 Once you launch the Inkscape installer, you get the Welcome to the Inkscape Setup
Wizard dialog. Click the Next button to proceed to the End-User License Agreement
dialog.

 Select the “I accept the terms in the license agreement” checkbox, and click the
 Next button to proceed to the Choose Setup Type dialog. Click the Typical button and
then the Install button to begin your installation. You see the Installing Inkscape dialog,
which tells you what is being installed.

 Once the install process has completed, click the Finish button, and create a
shortcut icon for the Quick Launch taskbar for your OS so that you can launch Inkscape if
you need it with just one mouse click.

 3D Modeling, Rendering, and Animation: Blender
 Java, JavaFX, and Android also support 3D new media via an open source 3D graphics
library known as OpenGL . Therefore, you also need to have 3D modeling and animation
software of one flavor or another, whether it is Autodesk 3D Studio Max, or Cinema
4D XL, or NewTek Lightwave. If you do not own any of these, you can use the free-for-
commercial-use Blender software package, which has all the features that you need to
work on a professional level with OpenGL 3D vector data and 3D formats.

 To download Blender 2.76, the current stable version of Blender (prior to the next
version 2.8, due out some time in 2016, and the predecessor to the much anticipated
Blender 3.0), go to www.blender.org and click the blue Download button, or you can
click the Download link, seen in Figure 1-5 .

 Figure 1-4. Go to inkscape.org and click the Download button

www.it-ebooks.info

http://www.blender.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ ENHANCING ANDROID APPS: USING NEW MEDIA ASSETS

9

 Blender supports both 32-bit and 64-bit versions for the software; I assume you’ve
ascertained the bit-level for your OS by now, so select the version that matches up with
your OS. The file I downloaded was the blender-2.75a-windows64.msi installer file.
Double-click the installer file to begin an installation.

 Once you click the OK button, you’ll get a Welcome to the Blender Setup Wizard
dialog. Click the Next button, and proceed to the End-User License Agreement dialog.

 Select the “I accept the terms in the license agreement” checkbox, and click the
 Next button to proceed to the Custom Setup dialog. Accept the default feature settings
and click the Next button. Then click the Install button to begin installation. You see the
 Installing Blender dialog, which tells you what is being installed in real time.

 Once the install process has completed, click the Finish button and create a shortcut
icon for the Quick Launch taskbar for the OS, so that you can launch Blender 3D when
you need it.

 Summary
 This chapter provided an overview of new media, both generally and in the context of
Android Studio and the Android OS. You took a look at the different new media genres
and discovered why they can help your Android apps stand out from the crowd. You
looked at the different file formats that Android OS and Android Studio allow you to
leverage to add visual and aural impact to your Android software creations.

 In the second part of the chapter, you made sure that you had the leading, open
source, new media content production software packages installed and ready to explore.

 In the next chapter, you take a look at how pixels are stored in X,Y arrays and you
learn about aspect ratios, color depth, anti-aliasing, and some of the other important
imaging concepts.

 Figure 1-5. Go to blender.org and click the download cloud

www.it-ebooks.info

http://www.it-ebooks.info/

11© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_2

 CHAPTER 2

 Digital Images: Concepts
and Terminology

 Now that you have an understanding of the primary areas of new media content and the
file formats that Android Studio and the Android OS support, it is time to knock these
pieces of the multimedia pie down one by one, two chapters at a time. Let’s start with
 digital imaging , as it is the most prolific, popular, and mainstream type of new media.
I’ll cover everything in this chapter, from a pixel building block that makes up these
raster images to the array that contains the pixels and the resolution and aspect ratio that
defines that array. You will look at pixel characteristics such as location, color channel,
alpha channel, color depth, and even advanced topics, like PorterDuff blending modes
and NinePatchDrawables, both of which are supported in the Android API, with their
own classes, methods, and constants.

 You will learn the difference between 2D pixel-based raster images and a 2D (or 3D)
vertex and line (or curve) –based vector image. Since you now own GIMP, I can show
concepts in the book using GIMP, and you can follow right along with me.

 Whereas a single pixel is just one point in space, which is called 1D , or one
dimensional (do not call your spouse this), an image is actually a 2D array, or grid, of
pixels, using both an X and a Y dimension.

 Pixels: Your Digital Image Building Blocks
 Digital images are made up of two-dimensional, or 2D, arrays (or grids) containing
something called “pixels.” This industry term pixel is the combination of two terms:
 pictures (commonly called “pix”) and elements (shortened to “els”). Thus, the
foundation for any digital image that you’ll be working with in Android Studio is its
picture elements. These pixels dictate everything about the digital image asset, like its
file size, dimension, color, transparency, and shape. It is important to note that digital
illustration assets aren’t made up of pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

12

 Raster vs. Vector : Imagery vs. Illustration
 Besides this term pixel, let’s distinguish some key terminology related to pixels, right
here up front, so that the difference between digital imagery and digital illustration are
defined clearly. Images comprised of pixels are technically termed as raster images .
The reason for this is because the array of pixels are “rasterized” by the device display
screens that are displaying the pixels. These hardware devices include everything from
an iTV set to a tablet to an e-book reader to a smartphone to a smartwatch to a Netbook
to a laptop to a PC.

 There is another type of digital image called a “vector” image, which is defined using
mathematics rather than pixels. A vector image uses points in 2D space, which are called
 vertices , along with lines or curves that connect these vertices together to “draw” out
your digital illustration, based on instructions, which are text-based and could be looked
at as markup or code.

 “Digital illustration” is what the vector images are popularly referred to in
the new media industry. Vector imagery has its own “genre” of 2D software, called
 digital illustration software. You already downloaded and installed Inkscape in the
previous chapter, so that you have it in place for Chapter 8 . A 3D vector image is called
a 3D rendering , and an animated 3D vector project is called 3D animation . Add
programming logic and the 3D vector project is called interactive 3D , or i3D . You’ll be
taking a look at i3D new media in Chapter 10 .

 Rendering: Convert Vector Shape to Raster Image
 Vector imagery can be converted into raster imagery by using a process called
“rendering.” A rendered image is inherently a raster image, and both 2D vector artwork,
as well as 3D vector artwork, can be rendered into raster imagery, which as you know
now, is pixel-based imagery. Raster imagery has a significantly larger data footprint than
vector imagery, because instead of a concise set of text instructions (kilobytes), you have
an array of pixels (megabytes) that you need to store to re-create your image.

 At this point, all the concepts that are outlined in this chapter and the next can be
applied, or do apply, to these pixel-format raster image assets.

 When rendering vector artwork into a raster image format, it is important to
remember to keep a backup of the “original” vector artwork, so that you can enhance or
refine it more later on, and the re-render it again, at any time that you wish.

 The primary advantage of vector illustration over raster imagery is that, since it’s
defined using math, it can scale up or down to any size. Scaling up, or “upsampling,” 2D
raster imagery causes what is termed pixelation . Next, let’s look at arrays!

 Resolution: The Number of Image Pixels
 The number of pixels contained in your digital image assets should be expressed using
a term called resolution . This is the number of pixels contained in your image. Images
have a width , which is usually denoted using a W , or alternatively, by using an X , which
stands for your x-axis , as well as a height , which is usually denoted using an H , or using a
 Y for the y-axis . The image resolution gives you the digital imagery’s 2D dimensions.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_8
http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

13

 The resolution of an image asset in Android Studio needs to be expressed by using
two integer numbers, a Width, or an X, value, and a Height, or a Y value, in either XML
markup or Java code. Image resolution is generally expressed using two integer numbers
with an × in the middle. For instance, a VGA resolution is expressed by specifying
 640 × 480 . Alternately, you could also use the word “by,” such as 640 by 480 pixels.

 Let’s take a look at the basic mathematics of resolution so that you can see how
to calculate the number of pixels there are in the image, which has a lot to do with the
amount of memory it uses.

 Doing the Math: Calculate Your Total Image Pixels
 To find the total number of pixels that are contained in any 2D digital image, you will want
to multiply width pixels by height pixels, or, in Java terms: Resolution = Width * Height;
if you’re writing code. Hopefully, you remember that area of a rectangle equation from
grade school. Here it is again, in a professional Android digital imaging application
context. When I was in grade school, I didn’t realize that there were professional
applications for what was being taught, so I didn’t really listen, and therefore I had to go
back and relearn my math and physics.

 For an example, an HDTV-resolution 1920×1080 image contains 2,073,600 pixels
if you multiplied the width and the height. If you’re into digital photography, you’ll be
familiar with the term two megapixels , which is referring to 2.0 million pixels. This is
essentially what HDTV resolution is giving you.

 The more pixels that are contained in the digital image, the higher its resolution
will be. Higher resolution images give the viewer more detail or image subject matter
definition. This is why HDTV stands for high-definition television , and why the new
4K-resolution UHD TVs are ultra-high definition .

 Next, let’s take a closer look at some popular Android 5 consumer electronic device
resolutions, which range from 240 to 4096 pixels, which is more than a seventeen-fold
(i.e., 17 times) difference from a smartwatch device and a 4K iTV device. UI (user interface)
design in Android needs to be able to “morph” between different resolutions. This is
covered in my book Pro Android UI (Apress, 2014).

 Matching Image Resolution to Android Devices
 One objective in developing optimized digital image assets for use in Android Studio is
 matching the number of pixels in your digital image to the target hardware device that it is
going to be viewed on. There used to be dozens of different resolution Android devices on
the market. Recently, the number of different resolutions found on Android devices has
been decreasing, which is great for developers. The reason for this is that more and more
displays, especially smartphones, e-readers, and tablets, have been conforming to the
three major iTV set resolutions. This has become possible since the display screen’s pixel
pitch (dot size) has been getting smaller, thanks to display technologies, such as OLED
(organic light-emitting diodes). These flexible screens allow laser-printer-like resolution
on display screens.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

14

 The first HDTV screen was what I call “pseudo HD,” and was 1280×720 Blu-ray
DVD resolution (1280×720 = 921,600 pixels, so you’re talking almost 1.0 megapixels).
For Android 5, a 1280×720 resolution is used in entry-level smartphones or in entry-level
tablets, Netbooks, and laptops, so it’s a common resolution. The reason for this
commonality is because a lot of film, video, and TV content are being produced for this
Blu-ray (1280×720) resolution. Matching content resolution to device resolution is going
to give you the best image quality result, because there is zero pixel scaling. Pixel scaling
is covered next.

 The next HDTV resolution to appear in the market was the True HD resolution,
which is a 1920×1080 resolution. As you know, this gives you 2.0 megapixels in contrast
to the 1.0 megapixels that you get with 1280 pseudo HD resolution. Android OS devices
that use True HD resolution include iTV sets, smartphones, mid-size tablets, and e-book
readers. You also see this resolution on high-end Windows and Mac OS X laptops (or
notebook computers).

 The most recent type of high-definition display that has become available in today’s
marketplace is called the Ultra HD , or UHD , which is a 4096×2160 resolution. If you do
the math, this display screen resolution contains 8,847,360 pixels. There will be UHD iTV
sets out running Android TV SDK by the time you read this book, so interactive IMAX
resolution apps are coming soon!

 This is 9.0 megapixels in contrast to the 2.0 megapixels that you get with 1920×1080
True HD resolution. You already see Ultra HD resolution on UHD iTV sets, leading-edge
smartphones, high-end tablets, and high-end e-book readers, and the latest UHD laptops
(also called UHD notebook computers).

 There’s one other category of consumer electronic device called smartwatches
that has resolutions of 320×320 and 400×400 (Huawei). Look for higher pixel density
(pixel pitch) by 2016 in the smartwatch space, affording 480×480 pixel screens, and
hopefully, 560×560 or 640×640 pixel screens by 2017.

 Aspect Ratio: The 2D Ratio of W:H Pixels
 Closely related to the number of pixels in your digital image is the ratio of X to Y in
the digital image. This is called the aspect ratio . The concept of aspect ratio is more
complicated than the image resolution, because it is the ratio of width to height, or W:H ,
within your image resolution dimensions. If you like to think in terms of an image x-axis
and y-axis, it would be X:Y . Interestingly, Java, JavaFX, and Android use width and height,
and X and Y, interchangeably (that is, inconsistently), so I can’t make a recommendation
as to how you should think about pixel referencing. This aspect ratio defines the shape of
your image, and also applies to the shape of a display screen. For instance, a smartwatch
has a square aspect (1:1), and a widescreen iTV set has a rectangular aspect (2:1).

 A 1:1 aspect ratio digital image (or display screen) is perfectly square. Since this is
the aspect ratio, by its very definition, a 1:1 aspect ratio is the same as a 2:2 or a 3:3 aspect
ratio image. It is important to note that it is this ratio between these two numbers that
defines the shape of the image or screen, not the numbers themselves, and that’s why it is
called an aspect ratio, although it’s often called aspect for short. A 2:1 aspect ratio creates
a widescreen aspect .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

15

 Screen Shapes: Common Display Aspect Ratios
 Many HDTV resolution display screens discussed in the previous section use a 16:9 HDTV
widescreen aspect ratio. However, some displays use a less wide, or taller, 16:10 (or 8:5, if
you prefer the lowest common denominators) aspect ratio. Even wider screens will also
surely appear on the market soon, so look for 16:8 (or 2:1, if you prefer a lowest common
denominator) ultra-widescreens , which will feature a 2160×1080 screen resolution.

 Early television screens were almost square; they used a 3:2 aspect ratio. Computer
screens featured a 4:3 aspect ratio, such as Macintosh’s 512×384 or the PC’s 640×480 VGA
screen resolution. Once you learn how to calculate aspect ratio in the next section of this
chapter, you can check the math yourself.

 As time goes on, PC displays keep getting wider. 2:1 widescreen 2160×1080 displays
appeared in 2013 and it won’t be long before UHD 2:1 displays (4096×2048) show up
in the market. A recent aspect ratio change was introduced in 2015 with the Android
smartwatch, which use 1:1 aspect ratio displays. Custom screen aspect ratios can get fairly
extreme; you’ve all seen the 9:1 aspect ratio screens ringing the tops of sports stadiums.

 Doing the Math : How to Arrive at the Aspect Ratio
 An image aspect ratio is generally expressed using the smallest set or pair of numbers that
can be achieved (reduced) on either side of the aspect ratio colon. If you paid attention in
high school, when you were learning about the lowest (or least) common denominator,
then the aspect ratio mathematics should be fairly easy for you to calculate.

 I would do this mathematical matriculation by continuing to divide each side by two.
Let’s take a fairly weird 1280×1024 (termed SXGA) resolution as an example.

 Half of 1280:1024 is 640:512; thus, half of 640:512 is 320:256. Half of that is 160:128,
and half of that is 80:64. Half of that is 40:32, and half of that is 20:16. Half of that is 10:8,
and half of that is 5:4. Therefore, an SXGA resolution uses a 5:4 aspect ratio.

 Interestingly, all the preceding ratios are the same aspect ratio, and all are valid.
Thus, if you want to take the really easy way out, replace that “×” in your image resolution
with a colon, and you’ll have an aspect ratio for the image. The industry standard involves
distilling an aspect ratio down to its lowest format, as you’ve done here, as that is a far
more useful ratio.

 Color Theory : Using Pixel Color Channels
 Within the image array of pixels that makes up your resolution and its aspect ratio, each
of your pixels is holding color values using three color channels in Android, which uses
an RGB color space . Color channels were originally used in digital image compositing
programs like GIMP for compositing digital imagery for use on display screens, or to
be printed using inks on printers, which use a different color space called CMYK . Color
channels are sometimes referred to as “color plates” in the printing industry, due to
older printing presses that used metal plates, some of which are still in use today. In
GIMP, the color channels have their own channels palette, and allow you to work on
just that color channel (or plate), which can be quite useful for special effects or other
advanced image operations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

16

 Android allows you to access the RGB components for each pixel using the
drawables APIs, which I cover in my Pro Android Graphics (Apress, 2013) title. RGB stands
for red, green, blue. Using the additive color model, these three colors of light can create
any color in the visible color spectrum (think rainbow).

 The opposite of additive color (RGB) is subtractive color (CMYK) , which is used in
printing and involves using inks. Inks subtract color from each other, rather than adding
color, which is what happens when you combine colors by using light.

 Using red and green as an example of additive color, results in Red + Green = Yellow .
Using subtractive color, Red + Green = Purple . So as you can see, additive gives
you brighter colors (adds light), whereas subtractive gives you darker colors
(i.e., subtracts light).

 To create millions of different color values using these RGB color channels, what
you need to do for Android using Java code is to vary the levels or intensities for each
of the individual RGB color values. I will show you how to do this for Android with
hexadecimal notation after I cover the mathematics of RGB color, which gets into the
bits and bytes of color.

 The Mathematics of RGB Color: Multiplying
Your Intensities
 The amount, or numbers, of red, green, and blue values, or levels of intensity, of light that
you have available to mix together determines the total number of colors that you are able
to reproduce. For Android devices today, pixels can produce 256 levels of light intensity
for each red, green, and blue (RGB) color. Color needs to be generated for each image
pixel; thus, every pixel in an image has 256 levels of color intensity for each of these RGB
(red, green, and blue) color data values.

 Each of these RGB channels, plates, or planes, uses one byte, or eight bits , of color
intensity data. Eight bits of data, as you know as an Android programmer, holds up to 256
different values, so you have 256 levels of brightness for each pixel’s red, green, and blue
color channel component.

 The color intensity (brightness) data inside each of the digital image pixels is
represented with a brightness level for each color. This can range between 0 (brightness
turned off) and 255 (brightness fully on), and controls the amount of color contributed by
each pixel for each of these red, green and blue colors in your digital image.

 To calculate a total amount of available colors is easy, as it is again simple
multiplication. If you multiply 256 × 256 × 256, you get 16,777,216 colors. This represents
unique color combinations of red, green, and blue, that you can obtain using these
256 levels (data values) per color that you have to work with across these three different
additive color channels.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

17

 Representing RGB Color Values: Using Hexadecimal
Data Values
 In Android, you need to represent data for these 256 levels of brightness for each red,
green, and blue pixel color channel. This is done by specifying 8 bits (worth) of numeric
data value, which allows the Java code, or XML markup, to control color brightness
variation for each of the red, green, and blue color channel values, from a minimum of 0
to a maximum of 255.

 The number of bits that are used to represent a digital image pixel color can be coded
by using base 16 , or hexadecimal , notation. Base 16 counts from 0 to F, so that you have
16 values (bits) to represent color with. Two of these hexadecimal values give you 16 × 16
= 256 values, which is the number of levels of intensity that you have available for each
RGB color channel.

 In Android Studio, and conveniently, also in HTML5, CSS3, and JavaScript, this is
done by using a hash or pound sign (#). For instance, to represent the color BLACK ,
which is all values off, or zero, in Java code or XML markup, this would look like the
following:

 colorValue = #000000 // Android, HTML5, JS, CSS3 Hexadecimal Color Value

 The color WHITE , on the other hand, is all pixels fully on:

 colorValue = #FFFFFF // Android, HTML5, JS, CSS3 Hexadecimal Color Value

 The color RED turns on only the red channel pixels:

 colorValue = #FF0000 // Android, HTML5, JS, CSS3 Hexadecimal Color Value

 The color GREEN turns on your green channel pixels:

 colorValue = #00FF00 // Android, HTML5, JS, CSS3 Hexadecimal Color Value

 The color BLUE turns on your blue channel pixels:

 colorValue = #0000FF // Android, HTML5, JS, CSS3 Hexadecimal Color Value

 The color Yellow turns on red and green channels:

 colorValue = #FFFF00 // Android, HTML5, JS, CSS3 Hexadecimal Color Value

 In the next section of the chapter, you look at how these bit depths apply to different
digital image file formats, such as an 8-bit GIF, or a 24-bit JPEG, or a 32-bit PNG. Android
OS also supports 48-bit HDR (high-dynamic-range) color for cameras in some of the
more advanced smartphone hardware coming out! As you may have surmised, 48-bit
color uses 16-bit color channels.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

18

 Color Depth: Bit-Levels That Define Color
 The amount of color available to each pixel in a digital image is referred to in the
industry as the color depth of an image. Common color depths used in digital image
assets include 8-bit, 16-bit, 24-bit, 32-bit, 48-bit, and 64-bit. Android supports three of
these color depths: 8-bit using GIF and PNG8 , 24-bit using JPEG and PNG24 , and
32-bit using PNG32 . The Android Camera 2 API also supports a new high-dynamic-
range imaging (HRDI) format, which can hold 48 bits of color data. A 64-bit HDRI
image supports three 16-bit (RGB) channels and a 16-bit alpha channel. Alpha
channels are covered later in this section.

 A high color depth image features the 24-bit color depth and thus contains
16,777,216 colors. File formats supporting 24-bit color depth include JPEG (or JPG),
PNG, BMP, XCF, PSD, TGA, TIFF, and WebP. JavaFX supports three of these, JPG, PNG24
(24-bit), and PNG32 (32-bit). Using 24-bit color depth gives you the highest quality level.
This is why I’m recommending the use of PNG24 or PNG32 for your Java games. Next,
let’s take a look at how you represent indexed image color using palettes!

 Indexed Color: Using Palettes to Hold 256 Colors
 The lowest color depth exists in 8-bit indexed color images . These feature a maximum
of 256 color values, which is why they are 8-bit images, and use an indexed “palette” of
colors, which is why they are called indexed color images. Popular image file formats
for indexed color include GIF, PNG, TIFF, BMP, or Targa. The indexed color palette is
created by the indexed color codec when you “export” your file from an imaging software
package, such as GIMP. Codec stands for COde-DECode and is an algorithm that can
optimize a file size to be smaller using compression .

 Android OS supports two indexed color image formats: GIF and PNG. The way you
convert 24-bit, true color image data to an indexed color image format (GIF or PNG) in
Photoshop is to use the File ➤ Save for Web menu sequence. This opens your Save for Web
dialog, which allows you to set a file format (GIF or PNG), the number of colors (from 2
up to 256), a color conversion algorithm (perceptual, selective, adaptive, or restrictive),
the dithering algorithm (diffusion, pattern, or noise), and a number of other advanced
options, such as progressive interlacing. I’d recommend using perceptual color
conversion, 256 colors, and a diffusion dither algorithm for the best visual results.

 To convert true color image data into indexed color image data using GIMP 2.8.14,
use the Image ➤ Mode ➤ Indexed menu sequence. This calls up an Indexed Color
Conversion dialog. This has fewer options than your Photoshop Save for Web dialog,
but the important ones are there, so you can specify color depth and diffusion dithering.
I recommend using the GIMP Floyd-Steinberg diffusion dithering algorithm. There is
even an algorithm that reduces color bleeding, keeping image edges clean and sharp.

 As an example of color depth, if you select 2 colors it would be a 1-bit (PNG1) image,
4 colors would be a PNG2 (2-bit color depth) image, 16 colors would be a 4-bit PNG4
color depth image, 64 colors would be a 6-bit PNG6, and 128 colors would be a 7-bit
PNG7 image.

 Next, let’s take a look at the other major formats that are recommended for use in
Android, 24-bit true color or 32-bit.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

19

 True Color: Using 24-Bit Color Imagery
 One of the most widely used digital image file formats in the world is the JPEG file format,
and it only comes in one flavor: 24-bit color . Other file formats that support 24 bits of
color data include Windows BMP, TIFF, Targa (TGA), Photoshop (PSD), and PNG24.
Since PNG also supports 8-bit (PNG8) or 32-bit (PNG32) color, I call a 24-bit PNG format
PNG24, to be precise. Android supports two of these popular formats: JPEG and PNG.

 Android true color (or truecolor) imagery uses an RGB_888 color space (or color
channels data configuration). The primary difference in these true color file formats
supported in Android comes down to one, primary differentiating factor: lossy vs. lossless
compression.

 Lossy compression means that an algorithm, which is also called a codec, is
throwing away some of the data to achieve a smaller data footprint. For this reason, save
your original uncompressed file format using a lossless data format, prior to applying any
lossy compression, in this case, JPEG.

 Lossless compression —used by the PNG, BMP, TGA, and TIFF formats—doesn’t
throw away any original image data; it applies an algorithm that finds patterns that result
in less data used, and that can 100% reconstruct all the original pixel values.

 True color 24-bit images are used primarily with Android user interface design,
or for actual applications content. They can also be used in other digital content that
is displayed on Android devices, such as web sites, e-books, iTV programs, games,
smartwatches, digital signage, and social media sharing forums.

 Using more than one image in your Android application is called image
compositing . Compositing involves using more than one image layer. The background
or backplate image uses 24-bit image data. All the other layers in the compositing stack
above a background plate needed to support transparency, and therefore, need 32 bits of
data, which is also known as ARGB or RGBA .

 This transparency is provided by a fourth channel, known as the “alpha channel.”
I’m going to introduce you to this in the next section of the chapter, as it’s a key
compositing concept.

 If you are interested in learning more about using image compositing pipelines
in Android, I cover this in detail in Pro Android Graphics . Using images for an Android
application gives it a lot more pizzazz, but using an image compositing pipeline allows
the next level of special effects and interactivity, to be achieved using digital imaging in
your Android application development work process. This is a great reason for me to
include coverage of alpha channels here!

 True Color plus Alpha: Using 32-Bit Digital Images
 Besides 8-bit, 16-bit, and 24-bit digital images, there are also 32-bit digital images.
Formats that support 32-bit color data include PNG, TIFF, TARGA (TGA), bitmap (BMP),
and Photoshop. I like to use PNG32 because it is supported in HTML5, Java, JavaFX,
CSS3, JavaScript, and Android; whereas the other file formats are not integrated with the
open source operating systems and browsers, like the PNG (pronounced “ping”) format
is. These 32 bits of image data include 24 bits of RGB color data, plus 8 bits of “alpha” or
 transparency value data , held in what is commonly referred to as an alpha channel .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

20

 Since you now know that 8 bits holds 256 values, it makes sense that an alpha
channel holds 256 different levels of transparency data values for each pixel in a digital
image. This is important for digital image compositing, because it allows layers that hold
this 32-bit image data to allow some portion (from 0 to 255, or all of that pixel’s color) of
the color data to bleed through to (or to blend with) layers below.

 Let’s take a look at how four data channels translate in Android Studio. That’s right,
you’re using hexadecimal notation, with two additional alpha slots, thus an ARGB_8888
data format.

 In Android Studio, as well as in HTML5, CSS3, JavaScript, and XML, hexadecimal for
color plus alpha takes an ARGB format, so, the two alpha value positions need to go first.

 For example, to represent the TRANSPARENT color, which is all values off, or 0 in
code, it would look like this:

 colorValue = #00000000 // Android, HTML5, JS, CSS3 Alpha+Color (ARGB)

 The color WHITE with 50% translucency , on the other hand, is all RGB pixels fully
on for WHITE plus 8 (which is 7 when you count from 0) in each of the alpha channel
data value slots:

 colorValue = #77FFFFFF // Android, HTML5, JS, CSS3 Alpha+Color Value

 The color RED with 25% translucency uses a value of 3 for each alpha channel slot,
and turns on only the red channel pixels using FF, or fully on, and leaves green and blue
fully off:

 colorValue = #33FF0000 // Android, HTML5, JS, CSS3 Alpha+Color (ARGB)

 The color GREEN and 37.5% translucency use a value of 5 for each alpha channel,
and turns on only the green channel pixels using FF, or fully on, and leaves red and blue
fully off:

 colorValue = #5500FF00 // Android, HTML5, JS, CSS3 Alpha+Color (ARGB)

 The color BLUE with 75% translucency uses a value of B for each alpha channel slot
and turns on only the blue channel pixels using FF, or fully on, and leaves green and red
fully off:

 colorValue = #BB0000FF // Android, HTML5, JS, CSS3 Alpha+Color (ARGB)

 Next, let’s take a close look at what alpha channels do.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

21

 Alpha Channels: Defining Transparency
 Let’s take a look at how alpha channels define digital image pixel transparency value, and
how they can be used to composite digital imagery in Android. Alpha channels provide
 transparency inside of digital image compositing software packages such as GIMP, which
I would term “static” use, but can also be used via PNG32 image assets to composite
digital imagery in real time using open platforms such as Android Studio, HTML5, CSS3,
Java, or JavaFX. I would term this “dynamic” use, as the code allows you to access the
pixel transparency values in a millisecond, so you can animate the data in any way that
you like; for example, in games, animated user interfaces, or interactive e-books.

 Digital image compositing involves the seamless blending of more than one layer
of digital imagery, and as you might imagine, per-pixel transparency is an important
concept. Digital image compositing is used in graphic design, feature films, game design,
and Android Studio application development.

 Digital image compositing needs to be used when you want to create an image
on your display that appears as though it is one single image (or an animation), but is
actually the seamless collection of more than one composited image layer. One of the
principle reasons you would want to set up image, or animation, composition is to allow
you more control over various elements in an image composite by having components on
different layers. Android Studio has a LayerDrawable class that provides exactly the same
multilayer image compositing capability that you would find in GIMP, except optimized
for use in your Android applications.

 To accomplish multilayer compositing, you always need to have an alpha channel
transparency value, which you can utilize to precisely control the blending of the pixel’s
color with the pixels in the same X,Y image location on other layers below it.

 Like the RGB color channels, the alpha channel has 256 levels of transparency from
100% transparent (0) to 100% opaque (255). Each pixel has different alpha transparency
data, just like each pixel has different RGB color data.

 Almost everything in Android Studio that can be drawn on a display screen supports
alpha channel values via an ARGB_8888 digital image format using hexadecimal notation.
This includes user interface elements, themes, styles, and drawables. I showed you how
this is formatted using the hash (pound) sign, and you can use this hexadecimal numeric
format in both your XML markup and in your Java code. Remember this, because few
developers use it!

 PorterDuff: Algorithmic Blending Modes
 There is another powerful aspect of image compositing called a blending mode . Any
of you who are Photoshop or GIMP users have seen that each layer in a digital image
compositing software package is able to be set to use a different blending mode.
Blending modes are algorithms that specify how the pixels for a layer are blended
(mathematically) with the previous layers (underneath that layer). The Android API has
a PorterDuff class that allows you to access all of these blending mode algorithms in
your Android applications.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

22

 These pixel blending algorithms take into account a pixel transparency level; so,
between the two image compositing controls, you can achieve virtually any compositing
result that you want in Android Studio.

 The major difference with Android is that blending modes can be controlled interactively,
using custom Java programming logic. This is the exciting part for Android developers.

 These powerful PorterDuff class blending modes include XOR, SCREEN, OVERLAY,
DARKEN, LIGHTEN, MULTIPLY, and ADD. Pro Android Graphics covers how to
implement PorterDuff blending modes inside a complex image compositing pipeline,
if you are interested in diving into this area of Android in greater detail.

 Smoothing Edges : Anti-Aliasing
 Anti-aliasing is an imaging technique that is also implemented by using an algorithm.
What the algorithm does is find where two adjacent colors meet along an edge, and
blend those pixels around that jagged edge. Anti-aliasing adds averaged colors along the
edge between two colored areas to visually smooth those two colors together along that
(formerly) jagged edge. This makes the jagged edge appear to be smooth, especially when
the image is zoomed out and the pixels aren’t individually visible. What anti-aliasing does
is trick your eyes into seeing smoother edges, to eliminate what is commonly called “the
jaggies.” Anti-aliasing provides impressive results, using few (usually fewer than eight)
intermediary averaged color values for those pixels that lie along edges within the image
and need to look smoother.

 By “averaged colors” I mean colors or a spectrum of color that is between the two
colors, intersecting along the edge that is being anti-aliased. I created a visual example of
anti-aliasing for you to show the resulting effect.

 I first created the seemingly smooth red circle, seen in Figure 2-1 , against a yellow
background. I zoomed into the edge of that circle, and then I grabbed this screenshot.

 Figure 2-1. A zoomed in view (right) shows anti-aliasing effect

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

23

 I placed this alongside of the zoomed out circle to show the anti-aliasing (orange)
pixel values, for colors between red and yellow, the color values bordering each other
along an edge of the circle. Notice that there are seven or eight averaged colors used to
create this visual effect.

 One of the tricks that I utilize in Android to implement my own anti-aliasing effect is
to use the Gaussian Blur via the ConvolutionMatrix class in Android. This also works in
GIMP and Photoshop. Be sure to use a low blur value (0.125 to 0.375) on the object
(as well as its alpha channel) with jagged edges.

 This provides the same anti-aliasing that you see in Figure 2-1 , and not only that, it
“blurs” the alpha channel transparency values as well.

 Blurring the alpha channel allows that alpha channel to anti-alias a 32-bit image
object with any background imagery you may be attempting to seamlessly composite it
against. Next, let’s look at image optimization!

 In the next chapter, you dive into how to use alpha channel data in Photoshop and
GIMP; it just gets more exciting.

 NinePatch Assets : 9-patch Digital Images
 There is another type of digital image “drawable” in Android OS called the
 NinePatchDrawable ; it allows Android developers to develop a special type of morphable
PNG8, PNG24, or PNG32 image asset. An image asset created with the Android
 Draw 9-patch tool is essentially an XY-axis-independently-scalable PNG raster image that
uses nine distinct quadrants within the image asset to support axis-independent scaling.

 Due to a built-in NinePatchDrawable class, and NinePatch class support, Android
can automatically resize the developer’s 9-patch image assets to accommodate the
contents of any Android View object, inside of which the developer has placed a 9-patch
image asset as a background (or source) image asset reference.

 This is accomplished via algorithms that exist inside of the Android NinePatch class
and the Android NinePatchDrawable class, as well as inside of the Draw 9-patch software
tool. This tool can be found in the /sdk/tools subfolder in the Android SDK folder.

 An example of a use for a NinePatch image asset is on the inside of a background
image using an android:background XML parameter, which is commonly used with the
standard Android Button widget. Button UI widgets almost always need to stretch, in at
least one dimension and often in both X and Y dimensions, in order to accommodate text
using different character strings and different font styles and sizes.

 This NinePatchDrawable object uses Android’s recommended PNG digital image
format; it also includes an extra one-pixel-wide border to hold the scaling guidelines.
To be recognized by Android as 9-patch image assets, they need to be saved using the
 .9.png file name extension. The one-pixel border that I mentioned is not visible to your
end users, and instead is utilized by the Android NinePatch class algorithm to define the
areas of the image asset that are scalable , and the areas of the image asset that are static
(fixed, that is, not scalable).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

24

 NinePatch Class: Creating NinePatch in Android
 The Android NinePatch class is a direct subclass of the Java java.lang.Object base class,
which means that it was coded uniquely to define NinePatch objects in Android. An
object constructed using the Android NinePatch class allows Android to scale and then
render a 9-patch image asset using nine discreet scalable sections or areas within the
9-patch PNG image asset. As you might have guessed, this class is stored inside of the
 android.graphics package . Its class hierarchy looks like this:

 java.lang.Object
 > android.graphics. NinePatch

 A great analogy is a compass. The four corners for these 9-patch images (at NE, NW,
SE, and SW) are unscaled; whereas the four edges (N, E, S, or W) are scaled along one
axis. The middle of the compass (the 9-patch image) is scaled along both of its axes, just
like any normal image is scaled in Android OS.

 Optimally, the middle of your 9-patch source image asset is 100% transparent.
This is so that a 9-patch can provide a scalable image framework around an open,
compositable content area for your View object, in case you are using that View as a
miniature compositing container, since some View objects, like an ImageView , can
have a source and a background image (as well as other elements) that would show
through transparent areas.

 The Android Draw 9-patch tool gives developers a simple, useful tool for creating
NinePatch images using a WYSIWYG (What You See Is What You Get) image editor.
Let’s look at this now.

 Draw 9-patch: Create a NinePatchDrawable Image
 This section covers how to create a 9-patch image asset using the Android Draw 9-patch
tool. You need a source PNG image with which to create a NinePatchDrawable object;
I provide a sample PNG32 image asset named NinePatchFrame.png . If you are interested
in creating 9-patch image assets, I will take you through it in the final section of the
chapter so that you understand the basic 9-patch tool work process.

 Start by locating your Draw 9-patch tool in the Android SDK folder hierarchy in the
 tools subfolder. Once you open the tools subfolder, you see the draw9patch.bat Windows
batch file, which is what you need to launch to run draw9patch.

 There are two ways to open your PNG32 images for 9-patch development. You can
drag your PNG image into your Draw 9-patch window and onto the drop-it arrow in the
center, or you can use the File ➤ Open 9-patch work process to locate the file in your
NinePatch images subfolder.

 Once you find the NinePatchFrame source image PNG asset, select it and click the
 Open button. You see your Draw 9-patch software, with the PNG file in the editor and
preview area. The left pane is where you edit, creating patches using one-pixel black
lines, defining patches, or scaling areas, as well as your center content area, defined by
padding lines.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

25

 Place your cursor over the fine line and it changes into a double arrow. Click and
drag a grayed-out area until it fits pixel-perfectly with the transparent area in the center
of the NinePatchFrame.png image. You can also right-click to erase the previously
drawn line.

 Look for a check box next to the Show patches option; select it to turn this
feature on. As shown in Figure 2-2 , this provides colors in your selected areas using a
combination of purple and green. This makes it clear which area in your image asset is
being affected. You can see that several other useful controls exist at the bottom of the
editing pane. These include a Zoom slider, which allows you to adjust the zoom level of
the source graphic in the editing area, and a Patch scale slider, which allows you to adjust
the scale for your preview imagery.

 The Show lock option allows you to visualize the non-drawable area of the graphic
when you mouse-over it. The Show content option highlights your content area in a
preview image, where purple shows the area that content can be placed.

 Finally, at the top of the editing area, there is a Show bad patches button. This adds
a red border around patch areas that may produce artifacts in the image when it scales.
Visual excellence for your scaled images can be achieved if you strive to eliminate all of
these bad patches in your 9-patch design.

 The right pane is the resulting 9-patch preview area, as shown in Figure 2-2 , where
you can view what your 9-patch image asset will look like after it is scaled. To define a
patch, click in the transparent top border, and then drag toward your left to draw a black
line that defines the X-dimension scalable patch. Once you draw an approximation of
what you want, you can fine-tune it using the fine lines at each end of the line segment.

 Figure 2-2. Defining patches in the Android Draw 9-patch tool

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ DIGITAL IMAGES: CONCEPTS AND TERMINOLOGY

26

 Figure 2-2 shows a 9-patch image asset with the top and the left one-pixel border
black-line definitions. As you can see, due to the Show patches option, I have now
defined the static areas, and scalable areas with surgical precision.

 Also notice in Figure 2-3 , in the right-hand side preview, that the result of the 9-patch
image definition is giving me a professional scaling result. I grabbed the scrollbar on
the right side of my screen and pulled it down, so you can see the 9-patch scales in both
 portrait and landscape shapes.

 Figure 2-3. Draw 9-patch preview shows axis-independent scaling

 You can also see the padding areas that I have defined, using the one-pixel black
border lines on the right and the bottom of the editing pane. Figure 2-3 shows that I’m in
the process of drawing a one-pixel black border line segment on the bottom side to define
an X dimension for the center padding area for a 9-patch image.

 Summary
 In the second chapter, you took a look at digital image concepts, terms, and Android
classes that implement image assets. You looked at pixels, resolution, aspect ratio, color
channels, color depth, alpha channels, anti-aliasing, blending modes and PorterDuff,
and NinePatchDrawable objects. In the next chapter, you’ll take a closer look at image
 data footprint optimization .

www.it-ebooks.info

http://www.it-ebooks.info/

27© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
 DOI 10.1007/978-1-4842-9867-1_3

 CHAPTER 3

 Digital Image Assets: Data
Footprint Optimization

 Now that you have an understanding of the fundamental concepts, terms, and principles
of digital image new media content and the file formats that Android Studio and Android
OS support, it is time to get a bit more advanced and take a look at data footprint
optimization . Data footprint optimization involves saving your digital image asset in a
way that it takes up the least amount of data storage; that is, it has the smallest possible
file size. In this chapter, you will be looking at data footprint optimization for all the
new media areas, because the smaller you make the new media assets for your Android
application, the smaller that Android application will be in the Google Play Store, and the
faster it will download, load into memory, and run once it is in memory.

 You will look at the difference between 2D pixel-based raster images and a 2D
(or 3D) vertex and line (or curve)–based vector image. Since you now own GIMP, I can
show concepts in the book using GIMP—and you can follow right along with me.

 Optimizing Digital Imagery: Key Factors
 There are a number of technical factors that affect digital image compression , which is
the process of using a codec or algorithm that looks at your image data and finds a way
to save it as a file that uses less data. A codec encoder essentially finds “data patterns”
in an image and turns these patterns into a form of data that the decoder part of the
codec can algorithmically reconstruct original image data from. A great codec is part
of the data footprint equation, but image data that you hand a codec to compress can
make the difference!

 Let’s start out by discussing image attributes that affect a data footprint the most,
and examine how each of these aspects can contribute to the data footprint optimization
for any given digital image. Interestingly, these are similar to the order of digital imaging
concepts that you covered during Chapter 2 .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://www.it-ebooks.info/

CHAPTER 3 ■ DIGITAL IMAGE ASSETS: DATA FOOTPRINT OPTIMIZATION

28

 Image Resolution: Number of Pixels in the Array
 The most critical contributor to the resulting image file size, or data footprint, is the
number of pixels, or the resolution , of your digital image. This is logical because each
of these pixels needs to be stored, along with the color values for each of the RGB color
channels. Thus, the smaller you can make your image resolution, while still having
good detail, the smaller the resulting file size will be, because there is less data to be
compressed, as an image is simply an array of pixel values.

 As you know, a raw uncompressed image size is calculated using the formula
 width × height × color channels . There are three RGB color channels for 24-bit RGB
images and there are four ARGB color channels for 32-bit imagery. It is important to note
this raw (uncompressed) image data footprint also happens to be the amount of system
memory that your image will occupy once a decoder decompresses its compressed
format into system memory.

 The key to data footprint optimization at this level is to follow my advice in Chapter 2 ,
and match image resolution to the device that the image is targeted to be viewed on.

 What virtually everyone out there is doing wrong is using print resolution imagery,
which uses camera resolution CCDs (charge-coupled devices), to create digital image
file data, which contains 24 to 48 megapixels. Popular HD display devices, as you have
already learned, have a 1- or 2-megapixel resolution, or, in the case of 4K or UHDTV,
9-megapixel resolution at the most. For this reason, you should downsample print
resolution to a 4K resolution, at the most, using bicubic (Photoshop), or cubic (GIMP)
interpolation algorithms.

 With new super-fine dot-pitch displays on most of today’s Android devices,
you are even able to upsample (upscale) an HDTV (2-megapixel) image up to UHD
(8 megapixels) and there will still be enough pixels present for your resulting image to
look quite crisp and photorealistic on any fine dot-pitch display.

 The most optimal way to downsample an image is by what’s termed “power of two,”
which is like binary: 2, 4, 8, 16, and so on. So if your camera gives you a 8192×6144
(48-megapixel) image, downsampled by 2 on each axis to 4096×3072, or by 4 on each axis
to 2048×1536, or by 8 on each axis to 1024×768.

 A lot of people ask me why a lot of smartphones use a 2560×1440 resolution. The
answer is that manufacturers know that most video content is in Blu-ray (1280×720)
format, and if you double that on each axis, you get 2560×1440, so a full-screen video is
scaling by a power of two and gets the best image quality because there are no partial
pixels involved in the scaling algorithm. Mathematically, this means that there is only
even division, no remainders if you will, so edges remain crisp and clear. This holds true
for upsamples or downsamples.

 Image Color Depth: Color Channels for Each Pixel
 Since each of the pixels in an array (resolution) for an image in Android has a color
depth of either 8 bits (one channel of color data), 24 bits (three channels of color data), or
32 bits (four channels of color and alpha data). Therefore, this is the next most important
contributor to an image data footprint. I suspect this is one of the reasons indexed
color (8-bit or one color channel) images are still widely used, usually in the PNG8
image format, which features a superior, lossless compression algorithm, at least when
compared to the GIF codec.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://www.it-ebooks.info/

CHAPTER 3 ■ DIGITAL IMAGE ASSETS: DATA FOOTPRINT OPTIMIZATION

29

 As you know, lossless compression algorithms such as PNG lose zero image data and
maintain 100% quality; whereas a lossy compression algorithm, such as JPEG and WebP,
throws away data, and therefore image quality, to achieve more data compression.

 PNG32: Using True Color Images that Have an Alpha Channel
 If you are using compositing layer image assets —that is, PNG32 images that include an
alpha channel containing an object mask or that contain translucency (variation) special
effects—there is only one option in Android, which is the PNG32 image format. These
images have the most data to compress, so hopefully the PNG codec will do a good job at
compressing the image data.

 Each image contains a unique collection of pixel values, so you never know if any given
image is going to compress well or not, because it is ultimately all math in the algorithm.

 In general, the more chaos (fine details) the image has, and the more clearly
defined edges the image has, the larger the resulting file size will be. The fewer sharp
pixel transitions (edges), and the more smooth color gradients it contains, as smooth
transitions are easier to compress, the smaller your resulting file size will be.

 True Color Images: Using 24-Bit Color Depth with JPEG and PNG
 The same considerations as to chaos and edges goes for 24-bit images , but there is
another codec besides PNG if you want to get smaller file sizes, albeit by throwing away
original image data and introducing visual artifacts. As you know, the JPEG is a lossy
codec, but it can give you smaller file sizes at the cost of visual quality. So, if you are
seeking the highest quality digital image results, try to utilize the PNG codec and format,
as it does not introduce artifacts (unless you use PNG8 and diffusion dithering, which
are looked at in more depth later on in the chapter when you delve into indexed color
images). As I mentioned, some PNG24 images compress quite well; you really just need to
run the data through a codec and find out!

 So if you are using 24-bit images, with no alpha channel data, and the range of color
used in the image is limited, then consider using a PNG8 indexed color format, with
256 colors and diffusion dithering, to reduce the data footprint by 300% to 400% with no
quality loss. Indexed color imagery looks great on super-fine dot-pitch displays, as the
dithering dots are too small to see!

 This same super-fine dot-pitch advantage also applies to JPEG compression artifacts,
making them too small to see. It is important to note, however, that Android recommends
using PNG24 or PNG32 over JPEG whenever possible, to make application image quality
the best that it can possibly be, which is what Android wants as the end objective, as it is
in a fierce competition as far as operating systems are concerned. Android OS has been
steadily winning new market share since it was released; let’s keep it that way!

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ DIGITAL IMAGE ASSETS: DATA FOOTPRINT OPTIMIZATION

30

 Indexed Color: Using Up to 8-Bit Color with Diffusion Dithering
 Indexed color images can simulate true color images, if the total number of colors that are
used to make up the image do not vary too widely. As you know, indexed color imagery
uses only 8 bits of data, or 256 colors, to define the image pixel color plate. This is done
using a palette of optimally selected colors. For instance, if you have a picture of clouds in
a sky, or a beautiful sprawling forest, or a bouquet of roses, there may be enough slots in
the palette to reproduce these few colors and the gradients they contain, especially if you
use diffusion dithering and have a device with a super-fine dot-pitch.

 Depending on the number of colors that are used in a 24-bit source image, using 256
colors to represent an image containing 24-bit color depth could cause an effect called
 banding . This is where the transfer between adjoining colors in your resulting palette is
not visually gradual, and thus doesn’t appear to be a smooth color gradient.

 Indexed color images have the option to visually correct for banding, which is called
 dithering . As you know already, dithering is an algorithmic process for creating dot
patterns along the edge between any adjoining colors within the image. This tricks your
eye into thinking that there is a third color being used.

 Dithering gives you the maximum perceptual number of colors using the 256 color
palette. If each of those 256 colors borders on each of the other 256 colors, you could
simulate the maximum number of 65,536 colors (16-bit color), but this seldom occurs.
You can still see the potential for creating additional colors, and you will be amazed at
the results that the indexed color codec and data formats (PNG8 or GIF) can achieve in
compression scenarios involving certain imagery, featuring the right number of colors
and subject matter that is optimal for indexed color.

 Let’s optimize a true color image, such as the one that’s shown in Figure 3-1 , and
save it using the PNG5 indexed color image format, to show you diffusion dithering.
You will take a look at the dithering effect on the driver’s side rear fender on the Audi 3D
image, as it contains a gray gradient.

 Figure 3-1. A PNG24 image created with Autodesk 3DS MAX to compress as PNG5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ DIGITAL IMAGE ASSETS: DATA FOOTPRINT OPTIMIZATION

31

 It is interesting to note that it is permissible to use less than the 256 maximum colors
that can be used in an 8-bit indexed color image. This is often done to further reduce your
digital image data footprint.

 For instance, an image that can attain great results by using only 32 colors would
actually be a 5-bit image, and would technically be called a PNG5, even though this
format itself is generally called PNG8, for its maximum 256-color usage level.

 You will set this indexed color PNG image, which is shown in Figure 3-2 , to use 5-bit
color (32 colors, or PNG5). This is so you can see the dithering effect clearly. As you can see
in an image preview area on the left side of Figure 3-2 , dithering creates dot patterns between
your adjacent colors in order to create additional colors. In this case, it’s grayscale value.

 Figure 3-2. Select Diffusion Dither and 32 colors creating PNG5

 Also, notice that you can set a percentage of dithering . I often select either the 0% or
100% setting; however, you can fine-tune the diffusion dithering effect anywhere between
these two extreme values.

 You can also choose between dithering algorithms; as you probably have surmised
already, the dithering effect is created using dithering algorithms that are a part of the
indexed file format (PNG8 in this case) encoder’s compression routines.

 I prefer diffusion dithering, which has a smooth effect, especially along irregularly
shaped gradients, as can be seen in the Audi’s driver’s side rear fender shown in Figure 3-2 .

 You can use a Noise option, which is more randomized, or a Pattern option, which
is less randomized. A Diffusion option usually gives the best results, which is why I use it
when I’m using indexed color (which is not that often, as I use PNG32).

 Dithering, as you might imagine, adds data patterns into an image, which are more
difficult to compress. This is because smooth areas in an image, such as gradients, are easier
for the compression algorithm to compress than sharp transition (edges) areas, or random
pixel patterns, such as dithering, or “noise” from your digital camera’s CCDs, for instance.

 Therefore, applying the diffusion dithering option will always increase the data
footprint by a few percentage points. Be sure to check the resulting file size with and
without dithering applied (selected in the Export dialog), to see if it is worth the improved
visual result that it affords. Notice there’s also a Transparency option (check box) for
indexed color PNG imagery. It is important to note that the alpha channel that is used for
PNG8 images is 1-bit (on or off), and not 8-bit, as with PNG32.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ DIGITAL IMAGE ASSETS: DATA FOOTPRINT OPTIMIZATION

32

 Image Alpha Channel: Pixel Transparency Channel
 The final concept you’ve learned about so far that can increase data footprint in an image
is adding an alpha channel to define transparency for compositing. This is because
adding an alpha channel adds an 8-bit transparency channel to your image. If you need
an alpha channel to hold transparency for an image, there’s not much choice but to
include this alpha channel data.

 If your alpha channel contains all zeroes or uses an all-black fill color (which will
define your alpha channel as being completely transparent), or contains FF values, or
uses a white fill color (which would define your alpha channel as completely opaque),
you would essentially (in practical use) be defining an alpha channel that does not
contain useful alpha data values.

 The transparency alpha channel therefore needs to be removed, and an opaque
image needs to be defined as a PNG24 digital image rather than as a PNG32, saving one
data channel.

 Finally, alpha channels that are used to mask objects in the RGB color channels of
your digital image compress very well. This is because these alpha channels are largely
areas of white (opaque) and black (transparent), with some gray values, along the edges
between the two colors to anti-alias the mask.

 These gray areas, which contain your anti-aliasing values in the alpha channel,
provide a visually smooth edge transition between the object in the color channels of
your image with any background color or background imagery that is used behind it.

 The reason for this is because the alpha channel image’s mask contains an 8-bit
 transparency gradient ranging from white to black. This defines levels of transparency,
which should be thought of as per-pixel blending (opacity) strength.

 Therefore, these medium-gray values on the edges of each object in your mask,
which is contained in this alpha channel, will essentially average the colors of the object
edge and any target background. It can do this no matter what color or image data value
each pixel might contain.

 This provides real-time antialiasing with any target background that might be used,
including animated backgrounds, since this alpha channel–based transparency blending
would get calculated on every animation frame by a CPU capable of doing millions (if not
billions) of operations each second.

 Now that you’ve gone over concepts, formats, APIs, terms, and data footprint
optimization for digital images, you are ready get into digital audio—another popular
new media genre—next.

 Summary
 In this chapter, you took a look at digital image data footprint optimization concepts,
principles, and Android formats that compress and decompress your digital image assets.
You looked at how your resolution, color channels, color depth, and alpha channel can
contribute to your data footprint reduction.

 In Chapter 4 you will learn about digital audio new media concepts, terms, and
principles, so that you can add digital audio assets to your Android Studio applications.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_4
http://www.it-ebooks.info/

33© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_4

 CHAPTER 4

 Digital Audio: Concepts and
Terminology

 Now that you have an understanding of the fundamental concepts , terms, and principles
of digital image new media content and the file formats Android Studio and the Android
OS support, it is time to get into digital audio new media content, and the many file
formats that Android Studio and the Android OS support. You will look at the concepts
behind both analog audio and how it is digitized into digital audio, as many of these
analog and digital waveform concepts apply across both audio mediums.

 You will look at how waves, or air, create audio and analog audio concepts, such as
amplitude and frequency, and at digital audio concepts, such as samples and resolution.
You will look at advanced digital audio concepts such as bit-rate, streaming, HD audio, and
captive digital audio. Finally, you’ll look at all the powerful digital audio formats supported
by Android 5 OS, which you can use to develop Android Studio new media applications.

 Audio Concepts and Terminology
 In this chapter, I am going to get you up to speed on both analog audio concepts and
terminology, as well as digital audio concepts and terminology. You will see how the
transition is made between analog and digital audio using a process called sampling,
which those of you who do sound design and music synthesis are already quite familiar
with. You will look at encoding audio using bit-rates, streaming, and the new 24-bit HD
Audio standard now being used for broadcast radio and satellite. You will also learn about
the audio codecs (audio file formats) supported in Android Studio. You will go over digital
audio data footprint optimization in Chapter 5 . I need to make sure that you have a deep
understanding of the digital audio new media assets that you will eventually be creating,
optimizing, and “rendering” using Android’s digital audio compatible classes, such as
 SoundPool and MediaPlayer .

 Foundation of Analog Audio: Sound Waves of Air
 Just like digital imaging, digital audio can be quite complex, especially at the professional
level. Part of this complexity comes from the need to bridge analog audio technology
and digital audio technology together, because modern-day devices are digital.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

34

Analog audio used to be generated by using speaker cones of different sizes
manufactured using resilient membranes made out of one space-age material or
another. These speakers would generate sound waves by vibrating, or pulsing, them
into existence. Our ears receive this analog audio, still used at live concerts, in exactly
the opposite fashion: by catching and receiving those pulses of air, or vibrations, with
different wave lengths, and then turning them back into “data” that our brain can process.
This is how you “hear” these sound waves, and our brain then interprets these different
audio sound wave frequencies as different notes or tones .

 A sound wave generates a different tone depending on the frequency of that sound
wave. Wide, long, or infrequent wave cycles produce lower (bass) tones; whereas a more
frequent (shorter) wavelength produces a higher (treble) tone. It is interesting to note that
different frequencies of light produce different colors, so there is a very close correlation
between analog sound (audio) and analog light (colors), which also carry through to
digital production techniques and principles.

 The volume of the sound wave is predicated upon the amplitude of that sound
wave, or the height (vertical size) of the wave. Thus, frequency of sound waves equates to
how closely together the waves are spaced, along an x axis, if you look at it in 2D, and the
amplitude equates to how tall the waves are, as measured along the y axis.

 Sound waves can be uniquely shaped, which allows them to mimic different sound
effects. Your baseline sound wave type is called a sine wave , which you learned about in
high school math with the sine, cosine, and tangent math functions.

 Those of you who are familiar with synthesizer keyboards are aware that there are
other shapes of sound waves that are used in sound design, such as the saw wave that
looks like the edge of a saw (hence its name), or the pulse wave , which is shaped using
right angles, resulting in immediate on and off sounds that translate into pulses.

 Even randomized waveforms, such as noise , can be used in sound design to obtain
an edgy sound result. As you might have ascertained using data footprint optimization
knowledge from Chapter 3 , the more “chaos” or noise that is present in your sound waves,
the harder they are to compress for the codec. This results in a larger digital audio data
footprint for that particular sound.

 Next, you’re going to take a closer look at how an analog sound wave is turned into
digital audio data by using sampling, which is one of the core tools of sound design and
music synthesis.

 Digital Audio: Samples, Resolution, and Frequency
 The process of turning analog audio (sound waves) into digital audio data is called
 sampling . If you work in the music industry, you have probably heard about a type of
keyboard (or rack-mount equipment) called a “sampler.” Sampling is the process of
slicing an audio wave into segments, so that you can store the shape of that wave as digital
audio data by using a digital audio format. This turns an infinitely accurate sound wave
into a discreet amount of digital data; that is, into zeroes and ones. The more zeroes and
ones used, the more accurate the reproduction of the infinitely accurate (original) analog
sound wave. The sample accuracy or resolution determines the number of zeroes and
ones used to reproduce the analog sound wave (you will get to that topic next).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_3
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

35

 Each digital slice of the sampled sound wave is called a sample , because it takes
a sample of a sound wave at that exact point in time. The precision of the sample is
determined by the amount of data that is used to define each wave slice’s height. Just like
with digital imaging, this precision is termed your resolution, or more accurately (no pun
intended), the sample resolution .

 Audio sample resolution is defined as 8-bit, 12-bit, 16-bit, 24-bit, or 32-bit. In digital
imaging and digital video, the resolution is quantified by the number of color channels;
and in digital audio, the resolution is quantified by the bits of data that are used to define
each of the audio samples being taken. In digital images, more colors yield better quality;
and in audio, a higher sample resolution yields better sound reproduction.

 Thus, higher sampling resolutions, or using more data to reproduce a given sound
wave sample, yields a higher audio playback quality at the expense of a larger data
footprint.

 This is the reason why 16-bit audio, termed “CD quality audio,” sounds better than
8-bit audio; just like true-color images always look better than an indexed color image.

 In digital audio, there is now a 24-bit audio sampling, known as “HD audio,” in the
consumer electronics industry. HD digital audio broadcast radio uses a 24-bit sample
resolution, so each audio sample, or slice of a sound wave, contains a 16,777,216 potential
sample resolution. Some the newer Android devices now support HD audio, such as the
smartphones that you see advertised featuring “HD quality” digital audio playback.

 In order for an Android hardware device to play back this HD audio format, you
must have 24-bit audio hardware; so I recommend using 16-bit audio, as you will see in
Chapter 5 when you look at audio data footprint optimization.

 Besides a digital audio sample resolution, you also have a digital audio sampling
 frequency . This defines the number of samples, at any given sample resolution, that
are taken during one second of sample time. In digital images, sampling frequency is
analogous to the number of pixels that are contained in an image. Sampling frequency
can also be called the sampling rate. CD quality audio is defined as using a 16-bit
sample resolution and a 44.1 kHz sampling rate. This is taking 44,100 samples, each
of which contains 16 bits of sample resolution, or the potential maximum 65,536 data
values, for digital audio data held in each sample.

 Let’s do some math to find out the number of bits of data in one second of
raw (uncompressed) digital audio data. This can be calculated by multiplying the
65,536 sample resolution by the 44,100 sample frequency. This yields a data value of
2,890,137,600 values, which are available to represent one second of CD quality audio.
Audio codecs compress this down to an amazingly small file size, as you will see in
Chapter 5 .

 The point is that the exact same trade-off that you have in digital imaging exists
using digital audio. If you include more data, you get a higher-quality result, at the cost
of a larger data footprint. Fortunately, audio codecs do a better job, giving an even better
quality-to–file size result than digital imaging codecs provide.

 Common audio sample rates for the digital audio industry include 8 kHz, 11.25 kHz,
22.5 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 KHz, 192 kHz, and recently, 384 kHz. As you may
have guessed, I like to use the ones that are evenly divisible by the power of two (8-bit),
and so I gravitate toward 8 kHz (low quality), 32 kHz (medium quality), and 48 kHz (high
quality), as you’ll see in Chapter 5 .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

36

 Lower sampling rates, such as 8 kHz, 11 kHz, or 22 kHz are optimal for sampling
“voice-based” digital audio, such as a movie dialog track or an e-book narration track,
for instance.

 Higher audio sample rates, such as 32 kHz or 48 kHz, are more appropriate for
music and possibly sound effects, such as rumbling thunder, which absolutely needs
high-dynamic range for high-fidelity reproduction.

 Some sound effects can get away with using a lower 11 kHz or 22 kHz sampling rate,
as long as the sampling resolution used is 16-bit quality. Ultimately, you’ll have to use
your ears as your guide during the digital audio optimization process to ascertain your
aural quality to digital audio asset file size trade-off.

 Digital Audio Data: Transmission and Digitization
 As I mentioned, an industry baseline for superior audio quality is known as CD quality
audio, which is defined as a 16-bit data sample resolution and a 44.1 kHz data sample
frequency. This is what was used to produce audio CD products way back in the 20th
century, and it is still used as the minimum quality standard today. There’s also the
more recent HD audio standard using a 24-bit data sample at a 48 kHz or 96 kHz sample
frequency. This is used today in HD radio, as well as in HD audio–compatible Android
devices such as “Hi-Fi” HD audio smartphones. Since the Android OS supports 16-bit
48 kHz audio, I tend to use this as my high-quality audio compromise, because the data
footprint is smaller. Let’s take a look at how to use these assets in Android Studio. Do you
store the audio inside the app or stream it from a remote server? What audio playback or
streaming bit-rate would you use?

 Digital Audio Transmission: Streaming Audio or Captive Audio ?
 Just like with digital video, which covered in Chapters 6 and 7 , digital audio assets can
either be captive , or contained within the Android application APK file, with audio files
in a /raw folder, or digital audio assets can be streamed by using remote data servers.
Similar to digital video, the upside to streaming digital audio data is that it can reduce
the data footprint of the Android application APK file. The downside is reliability. As
you will see in this book, many of the same concepts apply equally well to images,
audio, and video.

 Streaming audio saves data footprint, because you do not have to include all that
data-heavy new media digital audio in your APK file. Thus, if you are planning on coding
a Jukebox application, you would want to consider streaming digital audio data, as you
would not want to pack your song library into your APK file because it would be 10
gigabytes (for a large library).

 Otherwise, for application audio, such as user interface feedback sounds, gameplay
audio, and so forth, try to optimize your digital audio data so that you can include it inside
of your APK file as a captive asset. In this way, it is available to your application users
when needed. You’ll learn about optimization in Chapter 5 after audio fundamentals in
this chapter.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_6
http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

37

 The downside to streaming digital audio is that if your user’s connection (or your
audio server) goes down, your audio file might not be present for your end users to play
and listen to! This reliability and availability of a digital audio data stream is a key factor to
consider on the other side of this streaming audio vs. captive digital audio decision.

 The same trade-off is discussed in Chapter 7 for digital video data footprint
optimization considerations.

 Streaming Digital Audio Data: Optimally Setting Your Bit-Rates
 One of the primary concepts in streaming your digital audio is the bit- rate of the digital
audio data. Again, this is very similar to digital video; the reason you are learning about
digital audio before digital video is because digital video is made up of both digital image
sequences and digital audio, so I need to cover those concepts and terminologies first.

 The digital audio bit-rate is defined during compression by the settings that you
give to a codec during an optimization work process. You’ll look at data footprint
optimization, as it relates to digital audio, in Chapter 5 , where you’ll use Audacity 2.1 to
optimize your own sample digital audio assets.

 As with digital video, digital audio files that need to support a lower bit-rate to
accommodate slower bandwidth networks are going to have more compression applied
to the digital audio data, which results in a lower audio quality level.

 These play back smoothly across a greater number of devices. This is because if there
are fewer bytes for transfer, over any given data network, then there are also fewer bytes to
be processed by the CPU in the hardware device as well.

 As a processor gets faster, it can process more bytes per second. As a data bandwidth
connection gets faster, it can more comfortably send or receive more bytes per second.

 Therefore, it is important to remember that you are not only optimizing your file size
for fast network transfers, but you are also optimizing the new media asset for an amount
of system memory that asset will use, as well as the amount of processing cycles the CPU
will use to process the new media asset’s data (play audio, play video, display image,
render vectors, etc.).

 Digital Audio in Android: File Formats
 There are considerably more digital audio codecs in Android than there are digital
imaging codecs (there are only four image codecs: PNG, JPEG, GIF, and WebP). Android
audio support includes .MP3 (MPEG-3) files; .WAV (PCM or Pulse Code Modulated)
Wave files; .MP4 or .M4A (MPEG-4) files; .OGG (OGG Vorbis) audio files; .MKS
(Matroska) files; .FLAC (Free Lossless Audio Codec) files; and .MID, .MXMF, and .XMF
MIDI (Musical Instrument Data Interface) files, which technically aren’t really even
digital audio data at all.

 Let me explain what MIDI is first. It is not a format that you will likely use in your
Android Studio application, but it underlies the history of digital audio and is unique in
its digital player piano performance playback approach. I’m including it in this chapter
because it has some unique and highly data footprint–optimized applications. After that
I’ll cover all of the sampled digital audio formats.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

38

 MIDI: Musical Instrument Data Interface
 MIDI stands for Musical Instrument Data Interface and it is one of the very first ways that
you could work with audio using your computer. The origins of MIDI date all the way
back to the 1980s, so MIDI has been around for several decades now.

 The first computer to feature MIDI dataport hardware was the Atari ST 1040. This
computer allowed me to plug my keyboard synthesizer (at the time it was a Korg M1) into
its MIDI port. MIDI allowed me to play and record performance data using the computer,
which used MIDI data format along with audio software known as a MIDI sequencer ,
because it sequenced playback data.

 MIDI files contain no sample data; that is, they contain no audio data, only the
 performance data . When this performance data is played back into the synthesizer by
the computer, using the MIDI hardware (interface, cables, and ports) the synthesizer
generates the audio tones using the MIDI performance data.

 MIDI records when and which keys on the synth or sampler keyboard are pressed,
along with the keypress duration, how hard it is pressed (aftertouch), and similar
performance nuances.

 When MIDI files are played back through the synthesizer, it replicates the exact
performance of a performer or composer; even though that person is no longer playing
the performance track, the computer is. You can play your instrument track, record your
instrument play performance using MIDI data, and the MIDI sequencer will then play
the performance for you, while at the same time, you play a second instrument track
alongside of the first one.

 MIDI enables songwriters to assemble complex musical arrangements using only
their computers. This is certainly less expensive than hiring a studio and musicians.
If you want to be a songwriter, you can download open source MIDI software called
 Rosegarden at http://rosegardenmusic.com . Not only is Rosegarden a MIDI sequencer,
but it also includes music notation , also known as scoring . This means that you don’t
have to know how to write notes and clefs on staffs in order to publish your music!

 The Android OS supports playback of MIDI files, but does not implement a MIDI
class for their creation. Hopefully, this will change in the future, but as it sits right now,
it would not be an easy job to code MIDI sequencers in Android Studio; however, some
people on the coding forums are talking about it.

 For that reason, MIDI is beyond the scope of this book. I cover it here only to educate
you on the history and scope of digital audio support in Android Studio (Android OS).
MIDI holds an important role in the evolution of digital audio and it is a key component
of music synthesis and sound design .

 MPEG-3 Audio: The Popular MP3 Data Format
 The most popular digital audio format in Android Studio is the MP3 digital audio file
format. Most of you are familiar with MP3 digital audio files that are found on music
download web sites, like Napster. Most of us have collected songs in this format to use on
popular MP3 players and in our CD-ROM music collections.

 The reason that this MP3 digital audio file format is popular is because it has a
relatively good compression-to-quality ratio and because the codec needed to play MP3
audio files is found everywhere, even in the Android OS.

www.it-ebooks.info

http://rosegardenmusic.com/
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

39

 MP3 would be an acceptable format to use in your Android Studio application as
long as you get the highest quality level possible out of it by using the optimal encoding
work process on audio data footprint optimization using the open source Audacity
2.1 audio software (covered in Chapter 5). Because of software patents, Audacity can’t
include MP3 encoding software or distribute MP3 software from its own web site, so be
sure to download and install a free LAME encoder for Audacity.

 It’s important to note that the MP3 codec outputs a lossy audio file format (like JPEG
does for images), where some of the audio data, and thus quality, is discarded during the
compression process and cannot be recovered.

 Android does support an open source lossless audio codec called FLAC . This stands
for Free Lossless Audio Codec . Support for FLAC is as widespread as MP3 due to the free
nature of the software decoder (codec is encoder-decoder, as in CO de- DEC ode).

 FLAC: The 24-Bit Free Lossless Audio Codec
 FLAC uses a fast algorithm, so the decoder is highly optimized for speed. FLAC supports
24- bit audio, and there are no patent concerns for using it. This is a great audio codec to
use in Android Studio if you need high-quality audio with a reasonable data footprint.
FLAC supports a range of sample resolutions, from 4-bit data per sample, up to 32-bit
data sampling. It also supports a wide range of sampling frequencies, from 1Hz to
65,535 Hz (or 65 kHz), using 1 Hz increments, so it is extremely flexible. From an audio
playback hardware standpoint, I suggest using a 16-bit sample resolution, and either a
44.1 kHz or a 48 kHz sample frequency, unless you are targeting HD audio.

 FLAC is supported in Android 3.1 or later. Therefore, if your end users are using
current Android devices, you should be able to safely utilize this FLAC codec. It is possible
to use completely lossless new media assets in Android application development (such
as PNG8, PNG24, PNG32, or FLAC), as long as your application is targeting Android 3.1 or
later hardware devices. Next, let’s take a look at another impressive open source codec.

 OGG Vorbis: A Lossy Open Source Audio Codec
 Another open source digital audio codec supported by Android is the OGG Vorbis
format . This lossy audio codec is brought to you by the Xiph.Org Foundation. The Vorbis
codec data is most often held inside an .OGG audio data file extension, and thus, Vorbis is
commonly called the Ogg Vorbis digital audio data format.

 Ogg Vorbis supports sampling rates from 8 kHz to 192 kHz and supports 255
discrete channels of digital audio. As you now know, this represents 8-bits worth of audio
channels. OGG Vorbis is supported across all Android versions or API level releases.

 Vorbis is quickly approaching the quality of MPEG HE-AAC and Windows Media
Audio Professional and it is superior in quality to MP3, AAC-LC, and WMA. It’s a lossy
format, so the FLAC codec has superior reproduction quality over Ogg Vorbis, as FLAC
contains all the original digital audio sample data.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

40

 MPEG-4 Audio: Advanced Audio Coding (AAC)
 Android supports all MPEG-4 AAC (Advanced Audio Coding) codecs, including the
 AAC-LC , HE-AAC , and AAC-ELD . These should each be contained using an MPEG-4
file container (.3gp, .mp4, or .m4a file extensions). AAC-LC and HE-AAC can be decoded
with all versions of Android. The AAC-ELD is only supported after Android OS 4.1. ELD
stands for Enhanced Low Delay ; this codec is intended for use in real-time, two-way
communications applications, such as a digital walkie-talkie or a Dick Tracy–style
smartwatch app.

 The simplest AAC codec is AAC-LC (Low Complexity) codec, which is the most
widely used. This is sufficient for most digital audio encoding applications. AAC-LC yields
a higher quality result, at a lower data footprint, than the MP3 codec.

 The most complicated AAC codec, HE-AAC (High Efficiency) codec supports
sampling rates from 8 kHz to 48 kHz, and both stereo and Dolby 5.1 channel encoding.
Android decodes both V1 and V2 levels of HE-AAC. Android can also encode audio using
the HE-AAC-V1 codec in Android devices later than version 4.1.

 Because of software patents, Audacity does not include an MPEG-4 encoder.
Be sure to download and install the free FFMPEG 2.2.2 encoder for Audacity from
 http://lame.buanzo.org before you start Chapter 5 , where you’ll be using the latest
Audacity 2.1.1!

 MPEG-4 AMR: Adaptive Multi-Rate Audio Codecs
 For encoding speech, which usually features a different type of sound wave than music
does, there are also two other AMR (Adaptive Multi-Rate) audio codecs, which are
extremely efficient for encoding things like speech or “short-burst” sound effects.

 There is an AMR-WB (Adaptive Multi-Rate Wide- Band) codec in Android that
supports nine discrete settings, from 6.6 kbps bit-rates up to 23.85 kbps, sampled at
16 kHz. This is a pretty high sampling rate where voice is concerned! This is the codec to
use on narrator tracks if you’re creating interactive e-book Android Studio applications,
for instance.

 There’s also an AMR-NB (Adaptive Multi-Rate Narrow- Band) codec in Android that
supports eight discrete settings, from 4.75 kbps to 12.2 kbps audio bit-rates sampled at
8 kHz, which is an adequate sample rate if the data going into the codec is of high-quality
or if resulting audio samples do not require a high quality due to the noisy nature of the
content (e.g., a bomb blast).

 PCM Audio: Pulse-Code Modulation Codec
 Finally, Android supports PCM (pulse-code modulation) codecs, commonly known as
Windows WAVE (.WAV) audio format or Apple AIFF (Audio Interchange File Format).
Most of you are familiar with this lossless digital audio format from one of these two
popular operating systems. It is lossless because there is zero compression applied. PCM
audio is commonly used for CD-ROM content, as well as telephony applications. This is

www.it-ebooks.info

http://lame.buanzo.org/
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 4 ■ DIGITAL AUDIO: CONCEPTS AND TERMINOLOGY

41

because PCM Wave audio is an uncompressed digital audio format, and it has no
CPU-intensive compression algorithms applied to the data stream, and thus decoding
(CPU overhead) is not an issue for telephony equipment or for CD players.

 For this reason, when you start compressing digital audio assets into various file
formats in Chapter 5 , you can use PCM as your “baseline” file format. You probably won’t
put PCM into your APK file, however, because there are other formats, such as FLAC and
MPEG-4 AAC, which give you the same quality using an order-of-magnitude less data.

 Ultimately, the only way to find out which Android-supported audio formats have
the best digital audio result for any given audio data is to actually encode digital audio in
all the primary codecs that you know are well-supported and efficient. I show you how
this is accomplished in Chapter 5 .

 Summary
 In this chapter, you took a look at digital audio concepts, principles, and the Android
audio file formats that compress and decompress your digital audio assets. You looked
at audio sound waves, frequency, amplitude, sampling, sample resolution, and bit-rates,
and how these define your digital audio assets.

 In the next chapter, you will learn about digital audio data footprint optimization
concepts, terms, and principles.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

43© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_5

 CHAPTER 5

 Digital Audio Assets: Data
Footprint Optimization

 You now have an understanding of the fundamental concepts, terms, and principles of
digital audio new media content and the file formats that Android Studio and the Android
OS support. So it’s time to get into digital audio data footprint optimization and getting
the smallest possible digital audio file size for your audio assets while also getting high-
quality audio playback .

 You will look at the open source Audacity 2.1.1 software package and learn how it
can be used to record, edit, enhance, compress, and optimize digital audio assets, as you
take the analog and digital waveform concepts that you learned in Chapter 4 , and apply
them to Android Studio.

 You’ll look at primary considerations for optimizing your Android digital audio
assets (including device compatibility), a baseline asset to gauge compression against,
and at each codec.

 Audio Optimization: Device Compatibility
 Optimizing your digital audio assets for playback across the widest range of Android
 devices in the marketplace is going to be easier than optimizing digital video or digital
imagery. This is because there is a much wider disparity of screen resolutions and display
aspect ratios than there is a disparity of digital audio playback hardware support, except
for Android hardware featuring new 24-bit HD audio playback compatibility.

 A person’s ears can’t perceive the quality difference in digital audio that the eyes can
in digital images. There are two important “sweet spots” for digital audio support across
Android devices that you should target. A lower-quality audio (narration tracks, short
sound effects) can use an 11 kHz or 22 kHz sampling rate, with 8-bit, 12-bit, or 16-bit
sampling resolution. High-quality audio targets include CD or HD quality audio using
16-bit or 24-bit resolution at a 48 kHz sample rate.

 Your logical work process for optimizing a digital audio asset across Android devices
involves creating a 16-bit asset, because all Android devices support 16-bit audio. You’ll
use a sample rate of 48 kHz so that you have a high-quality uncompressed starting point,
and then optimize (compress) the PCM format with all the different codecs supported in
Android.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_4
http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

44

 Once that work process is completed, you will be able to ascertain which resulting
digital audio assets provide you with the highest quality digital audio playback in
conjunction with the lowest possible data footprint. Let’s get right to it!

 Digital Audio Optimization: Work Process
 Let’s launch Audacity 2.1.1 by clicking the Quick Launch icon on your taskbar. Click
the Sampling Frequency drop-down menu located at the bottom left of Audacity.
This is shown in use in Figure 5-1 ; as you can see, I selected a 48 kHz sample rate. Next
to the sample rate selector are settings for Snap To, and hours, minutes, seconds, and
milliseconds displays for Selection Start, End, or Length and Audio Position, for micro-
fine-tuning.

 Figure 5-1. Set a sampling rate to 48 kHz in the drop-down menu

 Now you are ready to record your voice-over. I recorded a phrase using the name
of this book, Android Studio New Media Fundamentals . The way that you record audio
in Audacity 2.1 is to click the Record button (a red dot on the right side of the Audacity
transport, at the top left of the program), as shown in Figure 5-1 . Speak your voice-overs
into your desktop microphone ; I used a Logitech stand microphone that I purchased at
Walmart, originally to use in Skype, for just a few dollars.

 Using a “consumer” microphone would introduce background noise issues, but this
gives me the opportunity to show you some of the professional-level features of Audacity
2.1, such as noise reduction . Prepare to be amazed. I included the recording of my voice
in the Chapter 5 .wav file included with this book, in case you don’t have a microphone
and just want to follow along.

 I suggest you practice using Audacity to record your own phrase, however. In any
event, once you’ve recorded your voice, you see a Left and Right channel waveform
displayed inside Audacity, as shown in the center of Figure 5-2 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

45

 Since you set the sample rate to 48 kHz before recording the vocal track, you now
need to set the sample resolution from the 32-bit setting that Audacity utilizes to record.
This gives you the greatest amount of data resolution to work with; it is displayed by
selecting the Audio Track ➤ Set Sample Format ➤ 32-bit float setting, as shown in
Figure 5-2 .

 Your first step in this data footprint optimization work process is to change the raw
audio sample data format from 32-bit 48 kHz to a 16-bit 48 kHz raw audio sample data
format, which is what you are using for our PCM WAV format baseline.

 In Figure 5-2 , this is shown in the bottom-left portion of the screen. Select 16-bit
PCM as the sample format option (instead of the 32-bit float option that Audacity set as
its default) in the Set Sample Format submenu.

 This reduces the amount of audio data going into the encoder by 100% right off the
bat! You want to set a reasonable 16-bit 48 kHz audio data baseline so that you can see a
compression result for each format relative to the uncompressed PCM result.

 Trim an Audio Sample : Removing Unused Audio
 The next thing that you need to do to reduce the overall data footprint is remove any
extra audio data that is not a part of the voice-over sample. This data is usually before you
start speaking and after you finish, before you hit the Stop button to end the recording
function. To do this, use the vertical bar (select audio) tool at the right side of your
Transport buttons to select only the relevant audio data, as shown in Figure 5-3 .

 Figure 5-2. Click the Audio Track drop-down menu ; select Set Sample Format ➤ 16-bit
PCM to convert 32-bit resolution to 16-bit

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

46

 Now you are ready to use the Audacity Trim feature , used to trim away unused audio
data. The icon that you want to click to trim away the unselected (unused) portion of your
sample is shown circled in Figure 5-3 , along with its tool-tip pop-up.

 This provides only your vocal phrase audio portion, and you will probably have
enough room in your display to zoom into the audio waveform so that you can see what
you’re working on with greater accuracy.

 The magnifying glass zoom tool is right under the select tool; it is a vertical bar that
looks like a text-insertion cursor. Select the zoom tool and click the waveform to zoom
into it. You can resize the Audacity window toward your right to show the end of the audio
sample so that you can see the entire waveform, as I did in Figure 5-4 .

 Figure 5-3. Setting audio sample resolution to 16-bit PCM (uncompressed) before you
export to various formats

 Figure 5-4. Select an area with only noise and use the Effect ➤ Noise Reduction menu sequence

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

47

 To listen to your trimmed waveform, click the Play icon, located in the transport.
This is a green right-facing arrow on the left side of the record-and-playback transport UI
panel that controls what your audio does as you are working on it.

 Noise Reduction : Removing Background Noise
 As you play back the digital audio sample, you hear noticeable background noise that
is not professional enough to have in your Android Studio application. Let’s get some
experience in using the Audacity Effect menu to remove background noise.

 The work process for removing noise in Audacity—perfect for use with voice-over
tracks—is to use the vertical bar tool select a portion of the audio sample that has only
noise in it. The Noise Reduction algorithm uses this data to ascertain what data to remove
from the entire audio sample in the second step of its noise removal work process.

 As you can see in Figure 5-4 , I’ve selected a section of the sample data that has
noise in it but no vocal content. Then I selected the Audacity Effect menu ➤ Noise
Reduction option.

 This opens the Noise Reduction dialog shown in Figure 5-5 , where you can click the
 Get Noise Profile button.

 Figure 5-5. Click the Get Noise Profile button in the Noise Reduction dialog, and then
apply the algorithm by clicking OK

 Here you enter your selected noise-only data (see Figure 5-4) and pass this data to
the Noise Reduction algorithm as step 1 of a noise reduction work process outlined for
you in the Noise Reduction dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

48

 It’s important to note that even though the dialog tells you to select a “few seconds”
of noise data, you don’t have that much noise, so you are selecting a tenth of a second,
which works just as well, as a tenth of a second of digital audio contains a significant
amount of data. If you have long samples, such as reading a paragraph, you could select a
couple seconds.

 Alternately, you could have applied Noise Reduction before executing the Trim
operation, giving you plenty more unused noise data at the beginning and end of the
audio sample.

 Once you click the Get Noise Profile button, which gives the Noise Reduction
algorithm the data it needs to process, the OK button becomes enabled. You then proceed
to step 2, which actually processes the noise data and removes it from your vocal audio
sample entirely. The Audacity Effect feature (more of a filter, really) alone is worth the
cost of Audacity. Wait a minute—Audacity is free! Sorry about that, I forgot.

 Establishing a Baseline: Exporting PCM Format
 The next step in the work process is to export your “baseline” 16-bit uncompressed PCM
codec format as a WAV audio (.wav) file (Windows) or an AIFF audio file (Macintosh).
You’ll use this to see what the largest possible audio file size is, to use as the baseline, and
to see how much system memory will be used for this 16-bit 48 kHz audio sample of your
3.45-seconds voice-over.

 The way that you export (save) digital audio file format assets in Audacity is by
selecting a File ➤ Export Audio menu sequence, as seen on the left side of Figure 5-6 .
If you want to select and save (export) only a section of the audio sample, there is also a
 File ➤ Export Selected Audio menu sequence.

 Figure 5-6. Use the File ➤ Export Audio menu sequence to export

 The Export Selected Audio feature is quite handy if your audio sample contains
audio “snippets” that you wish to extract from a longer audio data sample. In this case,
you can use this feature to extract each individual word from the complete vocal.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

49

 The Export Audio dialog is seen in Figure 5-7 , featuring key areas for name, options,
file location, and codec selection.

 Figure 5-7. Export a PCM file named Chapter5noiseReduced.wav to use as a baseline to
measure other codec compression results

 The Save in folder specifier, which I have pointing to a CH05 book assets folder,
tells Audacity where I want to save an audio asset. The File List Pane , shows the folder
contents. The File name data entry field is where you name your file; in this case,
Chapter 5 noiseReduced.wav. Underneath that is the Save as type drop-down selector,
which contains all the file formats that Audacity exports to.

 For this drop-down to give you all the codec formats that are supported in Android
Studio, you need to have the most current LAME and FFmpeg codec libraries installed on
your system so that Audacity can locate them on start-up.

 Notice that I have the Export File dialog set to export Chapter 5 noiseReduced.
wav in WAV (Microsoft) signed 16-bit PCM format. You do not need to specify the .wav
extension part for the file name if you don’t want to, due to the codec specifier.

 If you click your Options button, which is located in the bottom-right corner of
the Export Audio dialog, you’ll find that for WAV audio format you’ll get a dialog that
informs you that there is No encoding option for PCM files. This is because PCM contains
uncompressed data, so there are no options to set.

 Once you click the Save button, the Edit Metadata dialog appears for you to enter
any metadata that you want included in your audio file (see Figure 5-8). This data is
stored in each file format along with the audio data; it can be accessed by Android. This
dialog appears for each audio format’s export.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_5
http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

50

 This dialog has data fields to contain text values, such as Artist Name, Track Title,
Album Title, Track Number, Year, Genre, and Comments.

 Since I’m optimizing for a baseline data footprint, and the application doesn’t
require audio metadata, I’m leaving these fields blank for now, so that you can get an
accurate read on what a precise file size is; that is, one containing only the audio data.
If you’re wondering how Android Studio applications can read and support audio
metadata, and you want to install this data in the audio file, the answer is Android’s
 MediaMetadataRetriever class , which developers utilize for this very specific purpose.

 If your Android application needs to use audio media metadata, you should use the
 Edit Metadata dialog along with the Android MediaMetadataRetriever class, which you
can learn more about at http://developer.android.com/reference/android/media/
MediaMetadataRetriever.html .

 If you look at the Chapter5noiseReduced.wav 16-bit PCM WAV file that you just
saved, you see that the file size, at 558 KB, is a little bit more than half a megabyte.

 So our baseline uncompressed data (and memory) footprint for this 3.45 seconds
button sound effect sample is 558 KB. You can use this number to determine the amount
of compression that you’ll be getting in all the Android digital audio formats.

 Exporting Lossless FLAC: FLAC Audio Files
 The first format you are going to try out is the FLAC audio codec, because it uses lossless
compression. This gives you a good idea of what kind of data footprint reduction you can
get using compression that does not throw away any of the original audio data, and this
gives you as perfect a result as the 16-bit PCM WAV audio does!

 Figure 5-8. Export an M4A AAC audio file named buttonaudio.m4a using the maximum
quality setting of 500

www.it-ebooks.info

http://developer.android.com/reference/android/media/MediaMetadataRetriever.html
http://developer.android.com/reference/android/media/MediaMetadataRetriever.html
http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

51

 To do this, you’ll again use the File ➤ Export Audio menu sequence, and this time,
you will drop-down a Save as type menu, and select the FLAC Files format, as is shown
in Figure 5-9 .

 Figure 5-9. Export a FLAC file named Chapter5.flac with Level 8 compression and a Bit
depth of 16-bit

 Again, name this file Chapter5.flac. I’m going to save it into my CH05 folder for this
book. Notice that there will only be FLAC files listed within your center area of this dialog.
This is because now that you have selected the FLAC file format, this region in the center
of your dialog only shows FLAC files, and currently there are none in the CH05 folder.
Because I wanted to show a file size for each format, I saved the file prior, so the size is
included in the screenshot, as well as the settings and options dialog.

 To set the FLAC codec options, click the Options button, and set the quality Level
to 8 (best), and the Bit depth to use 16-bit data resolution. Note that under the Bit depth
drop-down you can also use this FLAC codec for lossless, 24-bit HD audio. Notice that I
am putting the Export Audio and Options dialog in one unified screen to cut down on the
number of screenshots I’m using.

 Once you’ve output your buttonaudio.flac audio asset, go into the file manager, and
take a look at the file size. You will see that it is 212 KB, or reduced by over 100%. 212 ÷ 558
= 0.38, or only 38% as large as the PCM file was.

 Next, let’s take a look at the other open source format, Ogg Vorbis, to see if it can give
us an even smaller data footprint. Since Ogg Vorbis is a lossy file format, it should provide
an even smaller file size than the FLAC did.

 Exporting Lossy Ogg Vorbis: OGG Audio Files
 Again use the File ➤ Export Audio work process, as you have been previously to open this
Export Audio dialog, and select the Ogg Vorbis Files option from your Save as type drop-
down menu. I named the file Chapter5, which produces a Chapter5.ogg file name, and

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

52

put it into the CH05 folder, as can be seen in Figure 5-10 . Click the Options button, and
select a Quality setting level between 0 and 10. I used a maximum setting of 10 to start
with. During a real data footprint optimization session, you’d probably try several settings
to see how the data footprint–to-quality trade-off is affected by this Quality setting slider.

 Figure 5-10. Export an OGG Vorbis file named Chapter5.ogg using a Quality level of 10

 Once you have output your Chapter5.ogg audio asset, take a look at the file size. You
see that it is 149 KB, which is a 400% reduction in the file size: 149 ÷ 558 = 0.27, or roughly
equal to one-fourth, or four times smaller. This is a significant size reduction, and the
audio sounds the same as it did before using lossy compression at 350 out of 500, or 70%
quality (350 ÷ 500=0.7).

 Next, let’s take a look at MP3, which is currently the most common lossy audio
format. It should be quite interesting to see if MP3 can provide a smaller data footprint
than the Ogg Vorbis open source codec provided of 149 KB.

 Exporting Lossy MPEG-3 Format: MP3 Audio Files
 Use the File ➤ Export Audio menu sequence again to bring up the Export Audio dialog
and set the Save as type drop-down selector to MP3 Files , as is shown in Figure 5-11 .
I named the file Chapter5 and selected the CH05 folder, and then clicked the MP3
 Options button to open the Specify MP3 Options dialog, which is shown on the right side
of Figure 5-11 . I used the maximum bit-rate Quality setting of 320 kbps, which is quite
high for audio data, but I was trying to get a high-end baseline for MP3 compression, and
still compare what MP3 can do against an uncompressed PCM baseline. I also selected
 Constant Bit Rate Mode because it is the easiest to decode, and Stereo Channel Mode
because the file is in stereo.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

53

 If you like, you can also try different Quality Bit Rate settings as well as Variable and
Average Bit Rate Modes, to see how it affects the MP3 audio file data footprint. If you
decide to do this, to differentiate your files from each other, simply name the file with
the settings in your filename. For instance, a file with a 320 kbps Quality setting with a
Variable Bit Rate Mode should be named: Chapter6_320_kbps_vbr.mp3 , for instance.

 This way, you can compare the MP3 (or any other codec file format) and audio file
sizes, and do simple math to figure out your percentage data footprint reduction.

 The Chapter5.mp3 file size is 119 KB, representing a 469% data footprint reduction.
Let’s calculate this: 119 ÷ 558 = 0.21326, which is 21% of the original, uncompressed file
size; 100% – 21% = 79% file size reduction.

 If you use your 1/x (inversion) key on a calculator, you can get a percentage
reduction from the other direction. Inverting 0.21326 results in 4.689, which means that
you reduced the file size by 4.689 times, which equates to a 469% reduction. This is a fairly
impressive data footprint reduction!

 Now that you have seen that the .MP3 file size is smaller than the Ogg Vorbis, let’s
see how the MPEG-4 AAC in an M4A file format data compression can improve your file’s
size-to-quality ratio compared to MPEG-3. Since MPEG-4 uses a more advanced (and
more recent) codec algorithm, M4A should provide you with a much better file size–to-
quality optimization ratio.

 Exporting Lossy MPEG-4 Format: M4A Audio Files
 Follow the usual File ➤ Export Audio work process to invoke the Export Audio dialog and
select M4A (AAC) Files (FFmpeg) from the Save as type drop-down selector. As usual,
name the file Chapter5, which is named Chapter5.m4a by the Exporter after you click Save.
Save it in the CH05 directory, or whatever your digital audio assets folder, and then click the
 Options button to open a Specify AAC Options dialog, as shown in Figure 5-12 . I chose to set
my Quality setting at 350 . Click OK to set Quality, and Save to export your Chapter 5 .m4a file.

 Figure 5-11. Export an MP3 file named Chapter5.mp3 using Stereo Channel Mode, a
Quality of 320 kbps and Constant Bit Rate Mode

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

54

 Your Chapter5.m4a file size is 74 KB, representing 13% of an uncompressed data
footprint, or an 87% reduction in data. To figure this out, 74 ÷ 558 = 0.1326, which is 13%
of an original, uncompressed file size; 100% – 13% = 87% file size reduction. Invert 0.1326
and you get 7.54, or 754% data footprint reduction.

 Now that you have seen that your M4A AAC file size is the most impressive data
footprint reduction thus far, let’s see if the much more specialized AMR-NB (Narrow
Band) data compression codec gives any further data footprint improvements over
MPEG-4 AAC.

 Since this codec is optimized for voice, chances are the results are going to be
significantly better than any that you have encountered thus far. So hold on to your hat!
One thing to note about recording voice is that it does not require stereo.

 Exporting Narrow Band Format : AMR Audio Files
 Even though this MPEG-4 AMR-NB codec and data format was designed and
optimized specifically for use for voice recording applications, there may be some other
applications; for example, certain short-burst sound effects that might obtain reasonable
if not great results by using this codec. As you know, any codec is simply a complex,
mathematical algorithm implemented using software. It doesn’t discriminate, so the only
way to really find out which codec will give you the best compression-to-quality result
with any given asset is to run the original uncompressed audio data through the codec
and see what happens.

 Let’s do that next, and then you’ll be finished comparing the audio codecs that are
supported in Android Studio and are also available in Audacity 2.1.1. Fortunately, all the
ones I would want to use for my Android applications are in Audacity.

 Follow the usual File ➤ Export Audio work process, so as to invoke the Audacity
Export File dialog, and then select your AMR (narrow band) Files (FFmpeg) option
from the Save as type drop-down menu selector. As usual, name the file Chapter5, which
is named Chapter5.amr by the Exporter after you click Save . Save the file in your CH05

 Figure 5-12. Export an M4A file named Chapter5.m4a using a Quality of 350 out of 500

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

55

directory, or whatever your digital audio assets folder is called, and then click the Options
button to open the Specify AMR-NB Options dialog (seen on the right of Figure 5-13).
I chose to use the 12.20 kbps Bit Rate setting to get the maximum quality result for this
codec.

 Figure 5-13. Export an AMR file named Chapter5.amr using a Bit Rate of 12.20 kbps

 Click Save, and as you can see, this is the smallest data footprint that you’ve obtained
thus far, using only 5 KB of data.

 Interestingly, when you play this AMR audio sample back, it still sounds a lot like
the audio contained inside the other supported codec formats that you have generated
thus far.

 The Chapter5.amr file size is 5 KB, representing more than a 99% data footprint
reduction. Let’s figure this out: 5 ÷ 558 is 0.0089 which is 0.89% of the original,
uncompressed file size; 100% – 1% = 99% file size reduction. If you invert 0.00896, you get
111.6, which represents an 11,600% reduction in data footprint.

 I don’t know about you, but since it’s only a talking app, my decision for a voice-over
would be the 5 KB audio asset, rather than a 74 KB, 119 KB, 149 KB, or 212 KB audio asset.

 Summary
 In this chapter, you looked at digital image data footprint optimization concepts and
principles regarding the six primary Android digital audio formats that can decompress
your digital audio assets (created using the open source Audacity 2.1.1 professional audio
editing and effects software application).

 You also went over how to match the specifications for your digital audio assets
to the hardware capabilities of your target Android device. For high-quality audio, this
means using 24-bit 48 kHz audio for HD Audio devices, or 16-bit 48 kHz audio to cover all
the Android devices out there.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ DIGITAL AUDIO ASSETS: DATA FOOTPRINT OPTIMIZATION

56

 You learned how to use Audacity to record audio, trim an audio clip, apply noise
reduction algorithms to the stereo audio track, and export into a half-dozen of the
most widely utilized digital audio codec formats used in Android Studio applications
development today.

 You learned how to calculate a data footprint reduction percentage, and applied this
to the six different data formats, to see a range of reductions from 62% to more than 99%
spanning FLAC to AMR-NB codecs.

 In the next chapter, you will learn about digital video concepts, terms, and
principles.

www.it-ebooks.info

http://www.it-ebooks.info/

57© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_6

 CHAPTER 6

 Digital Video: Concepts
and Terminology

 Now that you have an understanding of the fundamental concepts , terms, and principles
of digital audio new media content and the file format optimization for Android Studio, it is
time to get into digital video new media concepts, terms, and principles. The two popular
file formats that Android Studio supports are WebM and MPEG-4 AVC. You will look at the
concepts behind both analog video (film) and learn how it is digitized into digital video,
as many of these analog film and digital video concepts apply across both mediums.

 You will look at how digital video is created using image frames displayed at a rapid
rate of speed, and you will learn digital video concepts such as frame rate and resolution.
You will also look at advanced digital video playback concepts, such as bit-rates, video
streaming, HD audio, and captive digital video.

 Finally, you’ll look at open source digital video codecs and the digital video file
formats supported by Android Studio, which you will use to develop Android new media
applications.

 Digital Video Concepts and Terminology
 Digital video is comprised of both digital imagery and digital audio, which is why I covered
those chapters in the first half of this book. Digital video assets use Android’s digital video
 compatible classes , such as the VideoView , MediaController , and MediaPlayer . The
MediaPlayer and MediaController classes are also compatible with digital audio assets,
and therefore can be used for either digital audio or digital video playback.

 Digital video can be used for a number of things in your Android Studio application
development besides video clip playback. You can use digital video in your user interface
design, in the background, or in conjunction with an i3D project design.

 Digital Video Concepts: Frames and Frame Rates
 Digital video extends digital images into 4D, the fourth dimension of time. This is done
with something called frames in the digital video and film industry. A frame is simply
a digital image, one that’s contained in a collection of slightly different digital images,
making it a digital video asset.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

58

 Your digital video assets are comprised of an ordered sequence of frames that display
rapidly and create the intended illusion of motion imagery.

 The primary concept regarding frames in 2D digital video assets builds upon the
primary concepts for 2D digital imaging. Digital video frames also contain pixels , for each
image frame, which means that the digital video asset also has a resolution , as well as an
 aspect ratio and a color depth . All of the frames in your digital video asset must use the
exact same resolution, aspect ratio, and color depth.

 Most digital video assets use a 24-bit color depth, and this is what is supported in
Android as well. Indexed color video does exist, as Microsoft Video 1 codec operates
either in 8-bit palletized color mode or in a 15-bit RGB _565 color space. Animated GIF (a
GIF or AnimGIF) can index the color palette for motion video graphics assets, but neither
Microsoft Video 1 nor animated GIF are currently supported in the Android API.

 Like pixels do in digital imagery, digital video frames multiply your data footprint
with each frame used, as you will see in Chapter 7 . In digital video, not only does your
digital video frame’s resolution greatly impact your resulting file size, but so does the
number of frames per second , which a codec needs to analyze and compress, during the
video encoding process. As you know, more data to compress equals larger file sizes, even
if the compression algorithm is reducing that data.

 This number of frames per second is commonly referred to as FPS , and is also
commonly referred to as the “frame rate” in the digital video and film production
industries.

 Common frame rates include 60 FPS for i3D console games, 30 FPS for digital videos,
24 FPS for feature films, and 20 FPS for multimedia. As you will see in Chapter 7 , there is
some new media content that support lower frame rates, such as 15 FPS or 12 FPS.

 To find out how long each frame is displayed, based on a frames per second (FPS)
value, divide the 1 by the FPS value.

 Thus, 20 FPS frames display for .05 of a second, 30 FPS frames display for .033 of a
second, 24 FPS frames display for .04167 of a second, and 60 FPS for frames for .0167 of
a second, and so forth. Next, let’s look at the mathematics to calculate raw video data, or
the amount of system memory that is needed.

 Digital Video Mathematics : Doing the Multiplication
 In Chapter 2 , you learned that if you multiply the number of pixels in your image by the
number of color channels, you get the raw data footprint for that image. With digital
video, you multiply that number against the number of frames per second, which the
digital video is set to play back to get the data footprint per second. To get the total data
footprint, you multiply that number again by the number of seconds that represent the
duration of the video clip.

 So with a VGA, or SD video, with a 640×480 resolution and a 24-bit color depth,
you have [(640x480)x3]=921,600 for just one frame of video. At 30 FPS this is
 921,600x30=27,648,000 bytes of data. Divide this by 1024, and you have 27,000 KB of
data, or 27 MB of raw data (or system memory) for one second of video.

 You can see why having a powerful video codec that compresses this raw data
footprint down by an order of magnitude—given the optimal compression settings—is
extremely important! Let’s take a look at digital video codec algorithms next, so you can
see how the codec is able to accomplish this.

www.it-ebooks.info

https://en.wikipedia.org/wiki/List_of_software_palettes#Adaptive_palettes#List of software palettes
https://en.wikipedia.org/wiki/Palette_(computing)#Palette (computing)
https://en.wikipedia.org/wiki/List_of_monochrome_and_RGB_palettes#15-bit_RGB#List of monochrome and RGB palettes
http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

59

 Digital Video Algorithms : Digital Video Codecs
 You will be amazed by some of the digital video data compression ratios that you will
achieve using MPEG-4 and WebM video file formats once you know exactly how to best
optimize a digital video compression work process. This is done by using the correct bit-
rate, frame rate, frame resolution, and color depth for your digital video content and the
specific application.

 You’ll be taking a hands-on approach to learning this in Chapter 7 , when you create
(render) 3D video content in Terragen 3.3 , encapsulate it using an AVI file format , and
then compress it with Sorenson Squeeze Pro software. So you can focus on the software
in the next chapter; I try to cover all concepts and theories that apply to your digital video
data footprint optimization work process in this chapter. I am doing one chapter on
theory and one on using software for each new media genre.

 Let’s take a look at how the digital video codec differs from a digital audio or
digital image codec. There are some elements of both digital image and digital audio
compression in digital video compression algorithms, but it can be an order of magnitude
more complex because it has to ascertain and compress inter-frame pixel movements.
So, not only does a codec compress in 2D space (pixels and waveform), but it also
compresses in 4D space; that is, any changes between frames. For this reason, talking-
head videos, or video with no panning or zoom, compress better because there are pixels
that don’t move between frames.

 Video in Android: MPEG-4 H.264 AVC and WebM
 Android Studio supports the same two open source digital video formats that HTML5
supports: the MPEG-4 H.264 AVC and the ON2 VP8 and ON2 VP9 codecs, which were
acquired by Google from ON2 Technologies. Google renamed these WebM, and then
released them in an open source licensing schema. This is great news from a content
production standpoint, as video content that developers produce and optimize could be
used in HTML5 apps, browsers, and hardware devices, as well as in an Android Studio
application. Android 5.0 and later also adds support for MPEG-4 H.265 HEVC
(playback only).

 This digital video format cross-platform support affords content developers with the
“produce once, deliver everywhere,” production scenario that every content producer
and programmer dreams about. This could reduce content development costs, thus
increasing your revenues, as long as these “economies of scale” in content development
are taken advantage of by developers.

 Since all Android devices these days have displays that use the medium-(1280×720)
to high- (1920×1800) resolution, and some use an ultra-high (4096×2160) resolution, you
would utilize the MPEG-4 H.264 AVC format. This is the digital video format most often
used in the world today for Android or HTML5.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

60

 MPEG-4 H.264 AVC: The Most Widely Used and Supported
Codec
 This MPEG-4 H.264 AVC (Advanced Video Coding) video file format is supported
across every Android version for playback, and in Android 3.0 and later versions, for
video recording.

 If you are a video content producer, you will find that this MPEG-4 H.264 AVC format
gives the best compression result, especially if you are using one of the more advanced
encoding suites, like the Sorenson Squeeze Professional software, which you’ll be using to
optimize our 3D video asset in Chapter 7 .

 File extension support for MPEG-4 digital video includes .3GP (MPEG4 SP or
Standard Play), and .MP4 (MPEG4 H.264 AVC). I suggested using the latter MPEG-4 AVC,
which is what I use for HTML5; MP4 is more common to stream with an AVC format, but
either type of extension should work just fine in Android apps.

 ON2 VP8 and VP9: The Newcomer WebM or WebMovie Format
 A recent digital video format Android Studio supports is called the WebM digital video
format. This format also provides high-quality results in a small data footprint. This is the
reason why Google acquired ON2, which is the company that developed the VP8 and VP9
codecs. Playback of WebM video was first natively supported in Android 2.3. The term
“native support” is used with API code; in this case, it’s a codec that has become part of
Android OS.

 WebM also supports video streaming, which you’ll also be learning about in a later
section of this chapter. A WebM video streaming playback capability is supported on
Android 4 and later versions.

 For this reason, I recommend using WebM for captive video assets, as non-
streaming WebM codec supported in Android 2.3 through 5.4.

 In case you’re wondering, captive video is video that is not streamed, where video
assets are captive inside a /res/raw/ folder. You first encountered captive vs. streaming
concepts in Chapter 3 , which coves digital audio concepts and techniques.

 If you’re only going to stream video, use an MPEG-4 H.264 AVC, as that codec has
been supported across all the Android Studio versions and all the Android API levels
since 1.5.

 Digital Video Resolutions: Industry Standards
 Let’s start out by covering the primary resolutions used in commercial video. Before
HDTV (high-definition television) came along, video was called “SD,” or standard
definition, and used a standard vertical resolution of 480 pixels. The original aspect ratio
for SD was 4:3 (640×480). More recently, a widescreen aspect ratio was added, making SD
video a 720×480 resolution.

 HD resolution video comes in two different resolutions: 1280×720, which I call
“pseudo HD,” and 1920×1080, which the video industry calls “true HD.” Both use a 16:9
widescreen aspect ratio, and are now used not only in film, HD television, and iTV sets, but
also in smartphones (Razor HD is 1280×720) and tablets (the Kindle Fire HD is 1920×1200).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://dx.doi.org/10.1007/978-1-4842-9867-1_3
http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

61

 The 1920×1200 resolution is, by the way, a less wide, or taller, 16:10 pixel aspect ratio.
It is becoming more common as a widescreen device aspect ratio, as is the 16:8, or 2:1
aspect ratio, with 2160×1080 screens out in the market since 2013.

 There is also 16:10 pseudo HD resolution, which features 1280×800 pixels. In fact,
this is a common laptop, notebook, Netbook, and mid-size tablet resolution. I will not be
surprised to see a 16:8 1280×640 screen offered at some point.

 Generally, content developers try to match the video content resolution to the
resolution (and thus the aspect ratio as well) of each Android device that their video asset
will be viewed upon.

 Similarly, manufacturers try to match display screen resolution to popular
content resolutions. Blu-ray is 1280×720, and so there are a lot of 1280×720 screens and
2560×1440 screen sizes (two times 1280×720 on each axis scales up perfectly with a
4-pixel (2x2) matrix, for each pixel in the Blu-ray content.

 Digital Video Storage: Captive vs. Streaming
 Regardless of the resolution you choose for your digital video content, video can be
accessed by an Android Studio application in a couple of different ways. The way I do it,
because I am a data optimization freak, is captive within an application. This means the
data is inside of the Android application’s APK file itself, inside of the / res/raw/ raw data
resource folder.

 The other way to access video inside your Android app is by using a remote video
data server. In this case, the video is streamed from the remote server, over the Internet,
and to your user’s Android device as the video plays in real time. Let’s hope your video
server doesn’t crash, which is one of the downsides of streaming video, relative to
captive video.

 Video streaming is inherently more complicated than playing captive digital video.
This is because the Android device is communicating in real time with a remote data
server, receiving video data packets, decoding the data packets as the video plays, and
then writing the frames to an Android hardware display. Video streaming is supported via
WebM on Android 4 and later devices using the WebM format, or by using MPEG-4 on all
Android OS versions.

 Digital Video Compression: Bit Rates and Playback
 Another important digital video concept that you need to learn is bit-rates . A bit-rate
is a key setting used in the video compression process, as you will see when you utilize
Sorenson Squeeze Pro 10 in Chapter 7 . Bit-rates represent the target bandwidth , or the
 data pipe size , that is able to accommodate a certain number of data bits that stream
through it every second. Bit-rates also need to take into consideration the CPU processing
power within any given Android phone, making video data optimization even more
important to your Android Studio application’s playback quality.

 This is because once the bits travel through a data pipe, they also need to be
processed and then displayed on the device screen. In fact, captive video assets included
in Android APK files, only need optimizations for processing power. The reason for this
is because if you are using captive video files, there is no data pipe for the video asset

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

62

to travel through, and thus no data transfer overhead. So the bit-rate for digital video
assets needs to be optimized not only for data bandwidth but also with an anticipation of
variances in CPU capability.

 In general, the smaller the video data file size, the faster the data will travel through a
data pipe, the easier to decode that data using the codec and the CPU, and the smaller the
Android APK file size.

 Single-core CPUs in devices such as smartwatches may not be able to decode high-
resolution, high bit-rate digital video assets without “dropping” frames. This is a playback
quality issue, so make sure to thoroughly optimize lower bit-rate video assets if you are
going to target older (or cheaper) devices.

 Digital Video Optimization: Encoding Software
 I will go over digital video optimization theory in the last part of the chapter so you can
focus on work process and software during Chapter 7 . The decoder side of your digital
video codec is always optimized for speed, because smoothness of playback is the key
issue; the encoder side is optimized to reduce the data footprint for the digital video
asset that it is generating. For this reason, an encoding process may take a long time,
depending on how many processing cores a workstation contains. Most video content
production workstations should support eight, twelve, or sixteen processor cores, so that
encoding is faster and special effects are rendered quickly.

 Codecs on an encoder side are like plug-ins in the sense that they can be installed
into different digital video editing software packages to encode different digital video
asset file formats. Since the Android OS supports H.263, H.264 and H.265 MPEG-4
formats and ON2 VP8 and VP8 WebM formats for video, you need to make sure that
you’re using one of these codecs that encodes video data into digital video file formats.

 More than one software manufacturer makes MPEG4 encoding software, so there
is MPEG codec encoder software that yields different (better or worse) results, as far as
encoding speed and file size goes.

 If you wish to encode digital video assets, I recommend professional encoding
solution Sorenson Squeeze Pro from Sorenson Media, which is currently at version 10.

 Squeeze has a professional-level version, which I will use in this book; it costs about
$1,000, but its value is in excess of the suggested list price if you consider what it can do.
There are also less expensive versions of the software that are available.

 There is also an open source solution called Editshare Lightworks 12.5, but the free
version does not currently support output using an MPEG-4 AVC and WebM VP8 or VP9
codecs; although the WebM codec is open sourced, so that support could potentially
be added. So I’ll have to use Sorenson Squeeze Pro 10 for the book. (Perhaps the codec
support for Android Studio and HTML5 will be added to Editshare Lightworks 12.5,
or later. Visit the Lightworks forum—users are requesting WebM support be added to
Lightworks).

 Digital Video Optimization: Encoder Settings
 When optimizing for digital video asset file size using encoder settings , there are a
number of important settings that directly affect a data footprint. I’ll cover these in the
order in which they affect the file size, from the most impact to the least impact, so you

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

63

know which parameters to “tweak” or adjust to obtain the results that you’re looking for.
As with digital image compression, the resolution, or number of pixels in each frame of
video is the optimal place to start your data optimization process. If you are targeting
1280×720 smartphones or tablets, you do not need to use 1920×1080 resolution to get
great visual results from your digital video assets.

 With high density, also termed “fine dot-pitch” displays (Android’s HDPI, XHDPI,
XXHDPI, and XXXHDPI) currently common in the Android market, you can scale up
1280 video by 33% and it will look reasonably good. The exception to this is iTV apps on
Android TV, which has a medium MDPI dot pitch due to large 55- to 95- inch screen sizes.
If you are developing applications for iTV sets, you want to use a 1920×1080 “true HD”
resolution so that your content hits every pixel. This can be scaled up to 3840×2160, to
support UHD with good results.

 The next level of optimization comes in the number of frames used for each second
of video (FPS). This assumes the actual seconds contained in the video itself can’t be
shortened through editing. This is known as the frame rate; so instead of setting a video
standard 30 FPS frame rate, consider using the film standard frame rate of 24 FPS, or the
multimedia standard frame rate of 20 FPS. You may be able to use a low 15 FPS frame
rate, depending upon your content.

 Note that 15 FPS is half as much source data as 30 FPS, which is a 100% reduction of
data going into the encoder. For some video content, this plays back the same as 30 FPS
content. The only reliable way to test how low you can get the FPS before it starts to affect
your video playback quality is to set, encode, and review the result with different frame
rate settings during your digital video (encoder) content optimization work process.

 The next optimal setting to tweak or experiment with to obtain a smaller data
footprint is the bit-rate for a codec. Bit-rate settings equate to the amount of compression
applied, and thus set the visual quality for video data. It is important to note that you
could simply use 30 FPS, HD 1920×1080 video and specify a low bit-rate ceiling. If you do
this, however, the results would not look as good as if you first experimented with lower
frame rates and resolutions using the higher (quality) bit-rate settings.

 The next most effective setting in obtaining a small data footprint is the number of
keyframes. The codec uses your keyframe settings to know when to sample the digital
video. Video codecs apply compression by looking at a frame, and then encoding only
the changes, or offsets, over the next few frames so that it does not have to encode every
single frame in the video data stream. This is why a talking-head video encodes better
than a video where every pixel moves on every frame, such as video with fast panning or
rapid zooming, for instance.

 The keyframe setting in the encoder forces the codec to take a fresh frame sample
of a video data asset every so often. There is usually an auto setting for keyframes; this
allows the codec to decide the number of keyframes to sample. There is also a manual
setting that allows you to specify a keyframe sampling every so often, usually a certain
number of times per second, or a certain number of times over the duration of the video
(total frames).

 The next most effective setting in obtaining a small data footprint is the quality or
the sharpness setting , which is usually implemented using a slider. Sharpness controls
the amount of blur that the codec applies to the video pixels before compression. In case
you are wondering how this trick works so that you can apply it in GIMP during your own
digital image optimization work process, applying a slight blur to your image or video,
which is usually not desirable, allows better compression. The reason for this is that a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ DIGITAL VIDEO: CONCEPTS AND TERMINOLOGY

64

sharp transition in an image (such as sharp edges between colors) is more difficult for the
codec to encode optimally; that is, it uses less data. More precisely (no pun intended),
sharp or abrupt transitions in color take more data to reproduce than soft transitions do.
I recommend keeping the quality or sharpness slider between an 85% and 100% quality
setting, and try to get your data footprint reduction using the other variables discussed here.

 Ultimately, there are a significant number of different variables that you’ll need
to fine-tune to achieve the best data footprint optimization for each particular video
data asset. Each is different (mathematically) to the codec, as each video asset may be
a different array (collection) of pixel color data. For this reason, there is no “standard”
collection of settings that can be developed to achieve any given result.

 Your experience tweaking various settings may eventually allow you to get a better
feel of the settings you need to change to get your desired compression results.

 Again, you get some hands-on experience with all of this in Chapter 7 .

 Summary
 In this chapter, you took a look at the digital video concepts, principles, and Android
formats that compress and decompress digital video assets. You looked at how resolution,
color depth, frame rates, bit-rates, and codec settings can contribute to digital video asset
data footprint reduction.

 In the next chapter, you will learn about digital video data footprint optimization
using popular software packages.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7
http://www.it-ebooks.info/

65© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_7

 CHAPTER 7

 Digital Video Assets: Data
Footprint Optimization

 Now that you have an understanding of the fundamental concepts, terms, and
principles of digital video new media content and the digital video asset optimization
considerations for the two primary codecs that are supported in Android Studio, it is time
to get into the work process for creating, encoding, and optimizing a digital video asset
from scratch using the popular software packages Terragen, VirtualDub, and Squeeze .

 Since 3D-rendered content is more “orderly” because it’s created by algorithms
(math) rather than random CCD data, it’ll compress better. Plus, I can show you how
to create 2D video content out of “thin air.” I can also show you a complex workflow
involving multiple software packages, most of them open source. You can substitute
Lightworks for Squeeze for 100% open sourced workflow, if you prefer.

 Creating Digital Video Content: Terragen
 You need to learn how to create digital video content from scratch, as well as how to
optimize its data footprint. To do this, I am going to use Terragen 3.3, a world-creation
3D animation software package from Planetside Software; it is not only an impressive
3D software package, but it is also a professional-level 3D production software package.
Fortunately, there is a free version, as well as a paid Pro version that I suggest you
purchase if you are serious about having all the best production tools in your toolkit.
Go to the web site at planetside.co.uk , shown in Figure 7-1 , and download the latest
version of Terragen 3. After you download and install the software, launch it with a
shortcut icon. You see the Credits and Support tabs, also shown in Figure 7-1 , in the
various rendered start-up screens for the software. You can see exactly what this software
is capable of by viewing these different start-up screens; they are truly magnificent.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

66

 As you can see, this software package rocks in the hands of the seasoned user! Next,
so that you don’t have to learn all the intricacies of Terragen, open a seamless looping
3D camera fly-over of a virtual world, which you’ll find in the book assets folder named
 loopingOrbit_v03.tgd .

 A .tgd file is a TerraGen Data format file ; it contains native Terragen projects. You
should use Terragen’s File ➤ Open menu sequence to open these types of files in your
Terragen 3.3 software package.

 Once you open this file, you should see the Terragen 3.3 software package , with areas
for 3D world creation preview, and panes for settings and visual programming (shown in
Figure 7-2).

 Figure 7-1. Using Terragen 3.3 to create video (credits screen)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

67

 In the top part of your render dialog (shown on the left), set an image width of
480 pixels, and an image height of 800 pixels. This is one of the more popular Android
hardware device resolutions. The WVGA resolution has enough pixels to scale up or down
with good results. Leave all the other render settings at their default settings.

 If you just want to render a single frame, you could use the Render Image button,
seen in the middle of this dialog, but this will not create a sequence of frames, which you
need to create motion video data. At the bottom of this dialog, you see seven tabs, which
control your advanced settings.

 Click your seventh (rightmost) tab, which is labeled Sequence/Output , to set the
 output file specifications as well as the image sequence settings .

 Enter your project files directory, in your Output image file name field, as shown in
Figure 7-2 . As you can see in the screenshot, mine is named C:\Terragen3\Project_Files.
Make sure that your Sequence first field is set to a value of 1 , and then set a value of 400
in your Sequence last field.

 Set your Sequence step to 1 frame . Once you have set all of your parameters for your
render, click your Render Sequence button, which instructs Terragen to generate 400
frames of custom digital video fly-over for you.

 Since Terragen outputs numbered BMP files instead of the AVI format that Squeeze
requires, you need to learn about a cool software utility called VirtualDub. Next, you will
utilize a VirtualDub workflow that allows you to generate an AVI file that is termed in the
digital video industry as being “full frames uncompressed.”

 Figure 7-2. Start Terragen: Use File ➤ Open on loopingOrbit_v03

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

68

 Creating Uncompressed AVIs: VirtualDub
 The next software package you need to use is VirtualDub , which takes the 400 frames
you created in Terragen and loads them into an AVI file format. Then you can import the
AVI in Squeeze for the compression work process. Download and install VirtualDub from
 www.virtualdub.org and then launch it. You see an empty screen (shown in Figure 7-3),
where you can use the Video ➤ Compression menu sequence. Set compression for the
resulting file to use the Uncompressed RGB/YCbCr data format.

 Figure 7-3. Launch VirtualDub and use Video ➤ Compression menu

 Select the Video ➤ Frame Rate , Video ➤ Color Depth and the Video ➤ Select
Range menu sequences to set the compression parameters to 10 FPS , 24-bit color ,
and 0 to 400 , respectively, as seen in the series of dialogs shown in Figure 7-4 .

 Figure 7-4. Setting the frame rate, video color depth, and frame range for an uncompressed
 AVI digital video data file

www.it-ebooks.info

http://www.virtualdub.org/
http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

69

 Now you are ready to load the 400 numbered BMP frames (shown in Figure 7-5)
using the File ➤ Open file menu sequence.

 Figure 7-5. Use File ➤ Open to open the first frame in a 400-frame 3D rendering sequence
of numbered BMP files

 Select the first frame in the 400 frame BMP sequence and click the Open button to
open all 400 frames in VirtualDub. You will see Frame 0 displayed in the software, once
all 400 frames have loaded. There should be a 400-frame duration timeline located at the
bottom, as shown in Figure 7-5 .

 Next, use the File ➤ Save AVI 2.0 File menu sequence to open the dialog shown
in Figure 7-6 . Name the file whatever you want (I used intro.avi), and then use the Save
button to save the AVI file to your hard disk drive (I created an AVIs folder).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

70

 After you click the Save button, you see the AVI building processing start. I call this a
“building” process and not a compression process because the AVI that you are creating
is a full-frame uncompressed digital video file format; thus there is no compression,
simply placement of numbered BMP files in what appears to be a digital video file format
to Squeeze, so it imports this data for compression.

 A real-time progress dialog is shown in VirtualDub (see Figure 7-7) as the frame
buffer is written (not compressed) into the AVI file container.

 Figure 7-6. Use the File ➤ Save AVI 2.0 File dialog to save an uncompressed AVI file in a
Terragen3/Project_Files/AVIs folder

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

71

 Figure 7-7. VirtualDub loads 400 frames into a full-frames uncompressed AVI format
while showing the build progress

 The reason you are using an uncompressed AVI file is twofold. First of all, this is a
format that Sorenson Squeeze is able to read. Squeeze does not currently support reading
numbered files, which must make 3D animators scratch their heads in disbelief.

 More importantly, you want to give your codec uncompressed (raw) pristine data in
order to get the optimal visual quality–to–file size trade-off result.

 Now that you have 400 frames of digital video data in an AVI format that Squeeze
can import, you can launch Squeeze and proceed with your data footprint optimization
work process.

 Applying Video Compression: Squeeze
 You’re going to use Sorenson Squeeze 10 to compress our digital video asset. One of the
reasons I used Terragen and VirtualDub is to create completely uncompressed source video
that has zero compression artifacts. If you want to get close to the same pristine data from
using a camera, you would use FireWire, capturing full-frame uncompressed (raw) video
data to your hard disk drive, instead of using on-camera MPEG, or M-JPEG, compression .

 Install Squeeze and launch it. Next, click the Import File icon in the upper-right
(see Figure 7-8). Notice that the Squeeze software has left panels for holding codec, filter,
and publishing options, a top preview area, and the bottom timeline area (which you’ll
be using soon), to apply MPEG-4 codec presets(or WebM presets if you want to use that
format) to intro.avi.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

72

 Figure 7-8. Launch Squeeze and click the Import File icon

 Figure 7-9. The Import File dialog showing the intro.avi file

 Once you click the Import File icon, you’ll see a Select one or more source media
files to open dialog, which uses a folder name as the dialog title; in this case, this is AVIs ,
as shown in Figure 7-9 at the top of the screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

73

 If you can’t find this file, navigate into the Terragen3 Project_Files subfolder, and
then to your AVIs subfolder. Click your intro AVI file to select it and then click the Select
File icon , seen in the upper-left corner of Figure 7-9 as the document icon with a red
check mark inside of it. This loads an uncompressed AVI file into Sorenson Squeeze for
data footprint optimization.

 As you can see in Figure 7-10 , on the left-hand side, the video data loads into
Squeeze and displays this intro.avi file in the bottom area of the software, where you apply
the codec presets once you create them, which you are going to do next.

 Figure 7-10. Squeeze showing AVI file loaded and codecs (left); right-click an MPEG-4
codec and click Edit (right)

 Click the right-facing arrow next to the MPEG-4 codecs to open the MPEG-4 codecs
submenu. Right-click the 768Kbps_360p preset, which comes with Sorenson Squeeze.

 Select the Edit menu option so that you can edit the presets. Editing existing presets,
giving them unique names, and saving them as your own customized presets is an easy
way to create your own data compression setting files to use on your 480×800 intro.mp4
file, which you will create next.

 This Edit context-sensitive (right-click) menu option opens the Preset dialog, shown
in Figure 7-11 . You can use the dialog to set the different compression options, which you
learned about in Chapter 6 .

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_7#Fig11
http://dx.doi.org/10.1007/978-1-4842-9867-1_6
http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

74

 First, let’s name the preset FlyOver_480x800p and enter a description, 3D Planet Fly
Over Video at 480 pixels width by 800 pixels height , at the top of the dialog.

 Make sure that your Stream Type is set to Non-Streaming , since the video is going
to be in an Android Studio app folder. Format Constraints should be set to None .

 Select the MainConcept H.264 MPEG-4 encoder by selecting and then using the
 Codec drop-down menu. Using the Method drop-down menu, select a Multi-Pass
compression algorithm approach.

 Multiple passes should certainly take the longest amount of time to compress your
digital video content; however, using this setting also yields the finest compression-to–
quality ratio result possible using this encoder’s algorithms.

 Leave the Frame Rate drop-down at 1:1 so that each frame is included in the target
digital video asset, and then set the target Data Rate to 1000 Kbps.

 Select the Constrain Maximum Date Rate check box. Set a Max Data Rate of 150% ,
which gives you a bit-rate ceiling of 1500 Kbps.

 On the right side of the Presets dialog, set Frame Size to match the source AVI
resolution of 480×800 by selecting the Same as source option.

 In the Key Frames area in the bottom right of the dialog, set the Key Frame Every
drop-down to 40 seconds, as this is your duration for the 400-frame video that is
compressed in VirtualDub, at 10 FPS . This yields a 40-second duration.

 Also, be sure to select the Auto Key Frame on Scene Change option. This allows the
MainConcept codec to determine when to take a new data sample; that is, a keyframe of
your digital video frame data. Since a video codec looks at “deltas” between frames—that
is, which pixels have moved from one frame to the next, sampling new keyframe data
improves quality. But it also may increase your data footprint since frame image data is
stored so that the frames that follow it can later be re-created.

 Figure 7-11. Showing MPEG-4 codec settings for 3D fly-over at 480x800 and 1000Kbps

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

75

 The reason you are selecting the auto keyframe option is to allow the MainConcept
codec to decide, algorithmically, the optimal number of keyframe samples to take during
a compression pass. When everything is set correctly, click the OK button.

 As you can see at the bottom of Figure 7-12 , this preset has been added underneath
your Source intro.avi. You can now right-click the preset, shown on the left side of
Figure 7-12 , and select the Apply Preset option from the context menu , which adds this
compression preset to your Squeeze project.

 Figure 7-12. Right-click and Apply Preset (left), showing applied preset (center), Ready to
Compress message (right)

 Once you’ve applied the preset to your intro.avi file, as shown in Figure 7-12 , you
can click the Squeeze It! button and create the MPEG-4 file by using the codec preset
that you just designed. The file name includes your source file name plus the codec
preset name. This is so that if you change the preset settings, you’ll be sure to get
different resulting file names.

 Use the uncompressed AVI file in the same way that you used the PCM WAV file as
a baseline; and do the same math to find the percentage by which you have reduced the
data footprint.

 Be sure to look at the quality level in the video playback as well, and then adjust
those codec settings, such as Bit-Rates, Keyframe Samples, and Frame Rates, until your
visual quality starts to visibly suffer due to the introduction of motion pixel artifacts.

 This is the point in your work process at which you have the maximum possible data
footprint reduction (optimization) for your digital video asset. Any further reductions
required by your Android Studio application will have to be achieved by reducing the
resolution of the source AVI file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ DIGITAL VIDEO ASSETS: DATA FOOTPRINT OPTIMIZATION

76

 Summary
 In this chapter, you took a look at the work process for digital video data footprint
optimization using several popular software packages, including Planetside Software
Terragen 3.3, VirtualDub 1.9.11, and Sorenson Squeeze Pro Desktop 10.

 You created a 3D virtual world fly-over using Terragen 3, and then created a source
AVI using VirtualDub, and then used the professional Sorenson Squeeze Pro Desktop 10
software to create an MPEG-4 H.264 AVC file that can be used in Android Studio.

 You looked at how the source video resolution, keyframes, aspect ratio, frame rate,
bit-rate, and auto-keyframe settings can be set using the codec presets dialog, and how
they should contribute to the digital video asset data footprint reduction.

 In the next chapter, you will learn more about digital illustration concepts and
terminology using popular software packages.

www.it-ebooks.info

http://www.it-ebooks.info/

77© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
 DOI 10.1007/978-1-4842-9867-1_8

 CHAPTER 8

 Digital Illustration: Concepts
and Terminology

 Now that you have an understanding of the fundamental concepts, terminology,
principles, and data footprint optimization for your digital imagery, digital audio,
and digital video new media content for Android Studio, it’s time to get into the areas
of 2D and 3D vector new media. Android Studio only supports one open source 2D
vector format, called SVG , or Scalable Vector Graphics , so that makes things easy. In
this chapter, you can focus on concepts and terminology, and then on creating and
optimizing scalable vector graphics assets in the next chapter. In Chapter 10 , you can take
2D vector imagery into the third dimension by looking at 3D vector imagery.

 In this chapter, you’ll look at how digital illustration is created, using points in
2D space, lines and curves connecting those points to create shapes, and color fills,
gradients, and patterns inside of these 2D vector shapes. You will also look at the open
source digital illustration SVG data file format that is supported by Android Studio, as well
as other open platforms, such as Java and HTML5.

 Digital Illustration Is Rendered, Not Stored
 As you learned in Chapter 2 , pixel-based digital imagery is technically called raster
imagery , because an array of pixel values is rasterized to a screen, displaying the image
created using these pixels. Digital illustration, or vector imagery , is not stored as an
array of image elements (pixels); instead, it’s drawn or “rendered” to the screen, just like
you would draw it if someone was watching you draw, only with instructions that the
computer uses to do exactly what you did when you created it. This is the equivalent of
the MIDI concept you learned about in Chapter 4 , where the performance (in that case,
it was composing music) is re-created by the computer processor, which renders it to the
screen (SVG) or synthesizer (MIDI) using playback instructions.

 With vector images this is accomplished with coordinates in the 2D X,Y space along
with mathematics that define curves, and conveyed using SVG instructions that look a
lot like code. You need to learn the basic constructs of vector illustration first, however,
so that you understand how it all goes together. After that, you will look at how the SVG
format turns these into instructions, which can be processed in Android Studio, by using
Java or JavaFX SVG –compatible classes. SVG can also be processed by HTML5 devices.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://dx.doi.org/10.1007/978-1-4842-9867-1_4
http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

78

 Vector Components : Vertices and Curves
 Digital illustration vector images are composed of points using coordinates in 2D space,
and lines or curves that connect those points together. You will look at concepts and
terminology for these points and lines in this section. If you create a “closed” shape, that
is, one where there are no openings, for a fill (color, pattern, or gradient) to escape, you
can also fill a vector shape, so that the shape looks solid instead of empty.

 The Vertex: The Foundation for Your 2D Shapes
 The foundation for any 2D or 3D vector asset is called a vertex . Multiple vertices are
required to create a line or arc , which require two vertices, or a closed shape , which
requires at least three vertices. Vertices are used in both 2D vector (SVG) data processing,
as well as in 3D vector (OpenGL ES) data processing, both of which are integrated into
Android Studio.

 Vertex data is outlined in SVG using X,Y coordinates , as you might have guessed,
which tell the processor where a vertex is located in a 2D space. Without these vertex
coordinates, the lines and the curves cannot be drawn because they must have an origin
and a destination vertex coordinate as part of the line drawing operation. A line and an
arc are examples of an open shape .

 When you get into creating and looking at SVG data, you’ll notice that these X,Y
numeric pairs are the majority of the SVG data, which can be contained using the XML
format, or in a Java SVG object for an Android Studio application. SVG data can also be
used in your JavaScript (HTML5) code, as well as in JavaFX (Java 8 or Java 9) code, so it is
compatible across each of your open platform application development work flows.

 An X,Y coordinate all by its lonesome is what is termed one dimensional, or 1D .
(Make sure not to use this term around your spouse, and if you do, make sure it references
something other than your spouse.) It takes two vertex coordinates to be considered two
dimensional, or 2D; so a line or a curve (open shapes), or a closed shape is a 2D object.

 The Path: Connecting Vertices to Create a Shape
 A path is defined in SVG using a “path” data element . Both an open shape and a closed
shape are technically a path according to the SVG specification. An SVG path represents
the outline of an open or closed shape that can be filled or stroked, or used as a clipping
path. These concepts are covered in detail in the chapter, but a fill deals with the interior
of a path, a stroke deals with the lines or curves that make up a path, and a clipping path
is used for Boolean operations.

 In SVG data, an SVG Path object represents 2D “geometry” used to outline a Path object.
In fact, in JavaFX, the class is actually called the SVGPath class. SVG path data can be defined
in terms of SVG commands, which I outline later in the chapter using Table 8-1 . Some of
these include a moveto command, which sets your current point; a lineto command, which
draws straight lines; a curveto command , which draws cubic Bézier curves; the elliptical
arc command , which draws an elliptical arc; and the closepath command, which closes a
current shape, drawing a line to its starting point. There are also advanced SVG commands.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

79

 Table 8-1. SVG Commands to Use for Creating SVG Path Data

 SVG Command Symbol Type Parameter Description

 moveto M Absolute X, Y Defines a Start Of Path at the
X,Y using absolute coordinates

 moveto M Relative X, Y Defines a Start Of Path at the
X,Y using relative coordinates

 closepath Z Absolute None Closes the SVG Path by drawing
a line from last to first point

 closepath Z Relative None Closes the SVG Path by drawing
a line from last to first point

 lineto L Absolute X, Y Draws a Line from the current
point to the next point

 lineto L Relative X, Y Draws a Line from the current
point to the next point

 horizontal
lineto

 H Absolute X Draws a Horizontal Line from
current point to next point

 horizontal
lineto

 H Relative X Draws a Horizontal Line from
current point to next point

 vertical lineto V Absolute Y Draws a Vertical Line from
current point to next point

 vertical lineto V Relative Y Draws a Vertical Line from
current point to next point

 curveto C Absolute X,Y, X,Y, X,Y Draws a cubic Bezier curve
from current point to next point

 curveto C Relative X,Y, X,Y, X,Y Draws a cubic Bezier curve
from current point to next point

 Short and
smooth curve

 S Absolute X,Y, X,Y Draws a cubic Bezier curve
from current point to next point

 Short and
smooth curve

 S Relative X,Y, X,Y Draws a cubic Bezier curve
from current point to next point

 quadratic
Bezier curve

 Q Absolute X,Y, X,Y Draws a quadratic Bezier curve
(current point to next point)

 quadratic
Bezier curve

 Q Relative X,Y, X,Y Draws a quadratic Bezier curve
(current point to next point)

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

80

 Compound paths are also possible in SVG; these allow you to create complex,
Boolean-shaped special effects. For instance, you could use a compound path to create a
hole in your shape.

 Lines : The Simplest of the Path Components
 The simplest way to connect point coordinates along a path is to use straight lines.
Different shapes such as triangles, squares, pentagons, and hexagons can be created
using the lineto commands . There are three lineto commands: a lineto, a horizontal
lineto, and a vertical lineto, as outlined in Table 8-1 .

 To code an octagon using SVG, you use a moveto (M) command from a point
(vertex) at 60,0 and then draw seven lines using a lineto (L) command. This looks like the
following:

 M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60

 Next let’s take a look at the elliptical arc, which is a simple curve by nature with a
complex set of specification data for its SVG command, which is why I usually stick with
curves, from a modeling perspective, as you will see in Chapter 9 .

 Elliptical Arcs : Circular and Elliptical Arcs
 The last of the three types of curve commands is the elliptical arc, which uses a capital
 A (absolute arc) or a lowercase a (relative arc). The arc command draws a segment of an
ellipse. It takes the largest number of parameters of any of these curve drawing–related
commands and uses the following basic format:

 M x,y A rx,ry x-axis-rotation large-arc-flag sweep-flag x,y

 Here, M (moveto) x,y is the starting point of the arc; rx is the x-radius for the ellipse;
 ry is the y-radius for the ellipse; x-axis-rotation is the number of degrees to rotate the
x-axis, two on/off flags for a large/small arc, and a sweep/no-sweep arc; and the final x,y
coordinate is the end point of the arc.

 SVG Command Symbol Type Parameter Description

 short quadratic
Bezier

 T Absolute X,Y Draws a short quadratic Bezier
(current point to next point)

 short quadratic
Bezier

 T Relative X,Y Draws a short quadratic Bezier
(current point to next point)

 elliptical arc A Absolute rX, rY, Rot Draws an elliptical arc from
current point to next

 elliptical arc A Relative rX, rY, Rot Draws an elliptical arc from
current point to next

Table 8-1. (continued)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_9
http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

81

 It is important to note that setting both an x and a y radius (the rx and ry values) as
identical values creates a circle instead of an ellipse, because this makes the curvature
 symmetrical .

 The elliptical arc has a number of parameters, including a coordinate pair, the size of
the ellipse being described, an angle, and two flags that alter the rendering. This example
also allows you to modify whether the arc coordinates are absolute (A) or relative (a), to
the starting point (defined by the red blob). An example of the elliptical arc command
and coordinate sequence is shown in Figure 8-1 . If you want the missing segment for this
ellipse at the bottom, deselect (or set to zero) the large arc flag and the sweep flag, which
draws the smaller part of the arc and mirrors it around an x axis. The command for this
looks like the following:

 M 125,300 A 225,100 0 1 1 375,300

 Figure 8-1. Elliptical arc with Sweep and Large Arc Flags on

 As you can see, the rx,ry parameters create different angles, which distort the shape
from being a circle, making it instead elliptical. There are numerous SVG curve generators
on the Internet if you want to experiment with these parameters.

 Cubic Bezier Curve
 If you have ever used the Pen tool in Photoshop or GIMP, or used Inkscape as you will in
Chapter 9 , or any of the 3D modeling tools out there, then you are probably familiar with
 Bézier curves . I am not going to go into all the math behind how curves are constructed
mathematically, as this is a fundamentals book and not an advanced book, but you will
look at how to use open source tools to generate the digital illustration vector assets that

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_9
http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

82

you need for your Android Studio applications. In a nutshell, you draw cubic Bézier
curves using SVG commands by defining your start and end points, as well as two control
points: one control point for the start point and one control point for the end point. These
control the curvature of a curve, also called a spline in the industry, going away from the
first point and coming into a second point.

 The cubic Bézier curve command utilizes this format:

 M x,y C (or c) x1,y1 x2,y2 x,y

 The starting point is defined by moveto M x,y , and the C (or c) defines an absolute
or relative cubic Bézier curve type. The x1,y1 is your control point for the beginning of
the curve, and the x2,y2 is your control point for the end of the curve. Finally, your x,y
coordinate at the end of the command string is an end point for the cubic Bézier curve.
You will look at how to create Bézier curves in real time with Inkscape in the next chapter.

 Quadratic Bezier Curve
 There is the inclination to assume that quadratic Bézier curves are more complicated,
given that “quad” means four, and therefore that there are even more control points
for this type of curve. However, the exact opposite of this is actually the case, because a
quadratic Bézier curve actually has only one control point that connects to both the start
and the end points of the curve segment, and moving it controls how the curve is shaped
between the two points. So if you are looking for coordinate data reduction of 100% as far
as control point specification goes, use quadratic Bézier curves. Thus, an SVG command
specification for a quadratic Bézier curve looks like the following:

 M x,y Q (or q) x1,y1 x,y

 So the quadratic Bézier command requires only one single control point, which
is then used as the control point for both the start and end points. So, it’s like the two
control points in a cubic Bézier curve are connected as one control point, which moves
the curvature from the start point and into the end point at the same time. There are
numerous SVG curve generators on the Internet, if you want to experiment with the
parameters.

 The Fill: Filling Your Closed Shapes with Colors
 Once you have defined your shape using lines, arcs, and curves, you can fill it to make
it solid rather than hollow or empty. A fill can be a color, a gradient, or a tiling image
pattern. You can fill an open shape if you like, and the (imaginary) line connecting the
start point to the end point defines the fill boundary, so the fill does not go all over the
place in your digital illustration! The fill operation and the stroke operation, which is
covered next, are known as painting operations . This is defined in Android Studio using
the Paint and Canvas classes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

83

 Color Fill : Filling Your Shape with a Solid Color Value
 To fill the octagon you looked at earlier in the line section, a fill="green" statement
would be added after the data statement, which creates the shape that is filled with a
green color. Using SVG XML, these two declarations would be inside of a path XML tag,
using the following XML mark-up SVG data structure:

 <path>
 d = "M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill = "green"
 </path>

 Solid fill color is not as useful as gradients, however, as careful use of gradients can
even simulate a 3D result using 2D SVG graphics. Defining a gradient is more complex,
so, let’s take a look at linear and circular gradients next.

 Gradient Fills : Linear Gradients and Radial Gradients
 There are two types of gradients in SVG, a linear gradient and a radial gradient . A linear
gradient is the most common type of gradient that you will encounter, so let’s start with
that type first. Much of what applies to how a linear gradient is set up also applies to the
radial gradient, which simply uses a different XML tag. I will show you how to set up
a <linearGradient> tag using SVG in XML and you can simply change it later to be a
 <radialGradient> to change your gradient type.

 Gradients are defined in the <defs> or “definitions” tag in SVG XML. The <defs> tag
goes inside the “parent” <svg> tag, and has the <linearGradient> tag as its “child” tag.
Inside the <linearGradient> tag are two <stop> child tags. Stops are used to define the
colors in the gradient, the percentage that they make up in the overall gradient, and the
alpha or transparency value for that section of the gradient. There must be at least two
stops. You can use any amount of gradient sections that you need.

 Make sure that your stop offset values add up to 100% in the end. Here is how you
would fill your octagon with red and yellow linear gradients; as you can see, it’s much
more complex:

 < svg xmlns=' http://www.w3.org/2000/svg ' height="300" width="300">
 < defs >
 < linearGradient id=" LinearGradient " x1="0%" y1="0%" x2="100%" y2="0%">
 < stop offset="0%" style="stop-color:rgb(255,255,0);stop-opacity:1" />
 < stop offset="100%" style="stop-color:rgb(255,0,0);stop-opacity:1" />
 </linearGradient>
 </defs>
 <path>
 d="M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill="url(# LinearGradient)"
 </path>
 </svg>

www.it-ebooks.info

http://www.w3.org/2000/svg
http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

84

 You wire the gradient into your fill using the id="name" parameter inside of the
 <linearGradient> tag, and then reference that name inside of your fill="url(#name)"
parameter inside of your <path> tag.

 Pattern Fill : Filling Your Shape with a Tileable Image Pattern
 Patterns are also defined in the <defs> tag in SVG XML. The <pattern> tag goes inside
the parent <defs> tag, and has the 
 </pattern>
 </defs>
 <path>
 d="M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill="url(# pName)"
 </path>
 </svg>

 Although I am showing you how to do this because the book is for Android Studio
programmers or developers, most of us use software packages such as Inkscape or
Illustrator to create vector artwork and export it to SVG format.

 At the end of the work day, however, you’ll need to know how to bridge the SVG
command structure with your Java code. I will cover the basic SVG commands in this
chapter so that you have knowledge of these SVG basics for Android Studio application
development.

 The Stroke : Controlling How Lines and Curves Look
 Finally, let’s take a look at how to stroke (or color) and style (or thicken) the lines, arcs,
and curves that you create using these SVG commands. The stroke parameters allow
you to define stroke color, opacity, width in pixels, dash array pattern, and how lines will
be capped or joined together, using round, square, or bevel constants. Let’s add these

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://www.w3.org/2000/svg
http://www.it-ebooks.info/

CHAPTER 8 ■ DIGITAL ILLUSTRATION: CONCEPTS AND TERMINOLOGY

85

stroke -related parameters to the <path> that you created earlier for the octagon and give
it a 3-pixels-thick black border with rounded corners, a dashed line, and a 50% opacity,
using the following SVG XML markup:

 <path>
 d = "M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill = "green"
 stroke = "black" stroke-width = "3" stroke-dasharray = "5, 10, 5"
 stroke-linecap = "square" stroke-linejoin = "round" stroke-opacity = "0.5"
 </path>

 Next, let’s finish up by looking at the primary SVG data commands that you will use
in your Android Studio coding, as well as in your CSS3 and JavaFX programming.

 SVG Format : Coding Vector Shape Data
 There are ten different letters that can be utilized with the numeric (X,Y data point
coordinate location) data in SVG data strings. Each has an uppercase (absolute reference)
and a lowercase (relative reference) version. As you can see in Table 8-1 , SVG data
commands provide a great deal of flexibility for defining custom curves in your Android
Studio applications development. You can even combine all of these SVG commands
with your Java code to create interactive vector (digital illustration) artwork that has never
been experienced. Since this is an Android Studio new media fundamentals title, you’re
going to focus on the new media asset creation process for the majority of the book rather
than on an application coding focus, like most of the other books out there.

 An optimal way to see how to use these powerful SVG data path drawing commands
is to learn a work process for creating SVG data with vector illustration tools and export
work flows. You will learn how to do this with Inkscape, using the “quick and dirty”
approach; that is, let Inkscape do 90% of the path creation work, and then cut and paste
the command data strings into your Java code.

 If you’re a game programmer, you can also use these path data constructs as
collision detection polygons and for similar non-graphical uses of vector data relating
to boundaries rather than visual 2D-rendered digital illustration artwork. If you’re
interested, I cover a workflow to do this using JavaFX’s SVGPath class in Beginning Java 8
Games Development (Apress, 2015).

 Summary
 In this chapter, you took a look at digital illustration, also known as 2D vector
illustration , and its related concepts, principles, and SVG formats that are supported in
Android Studio, as well as JavaFX and HTML5, using CSS3 and JavaScript. You looked at
how vertices or point coordinates, lines, arcs, curves, fills, patterns, gradients, and path
stroking can contribute to the digital illustration asset creation process.

 In the next chapter, you’ll learn digital Illustration asset creation and data
footprint optimization using Inkscape.

www.it-ebooks.info

http://www.it-ebooks.info/

87© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_9

 CHAPTER 9

 Digital Illustration: Data
Footprint Optimization

 Now that you have an understanding of the fundamental concepts, terminology, and
principles regarding digital illustration, it’s time to get into how to create 2D vector new
media, as well as how to optimize a data footprint.

 The real optimization of 2D or 3D vector assets is using it, since raster imagery is
inherently data-heavy due to storing large arrays of individual pixel elements in digital
images, and individual frames in digital video.

 In this chapter, you’ll look at how digital illustration is created using the popular
open source Inkscape software, so you don’t have to write SVG commands and
coordinate data by hand with XML markup or Java code. You’ll also learn how to export
these commands and coordinate data strings using a work process that has Inkscape
write your SVG vector object’s data as XML or Java code for you.

 Inkscape : Vector Illustration Shape Data
 Since vector new media assets are inherently optimized, as long as you use the smallest
number of vertices possible to create 2D and 3D assets, and the correct types of Bezier
splines for your objective, you can focus on how to use Inkscape to create 2D vector
assets. In this chapter, you’ll also learn how to use Export functions to turn these into
command data and XML markup that you can use in Android Studio, and in JavaFX and
HTML5 as well.

 With vector images this is accomplished with coordinates in the 2D X,Y space, along
with mathematics that define curves conveyed using SVG instructions, which look a lot
like code. Let’s cover the basic constructs of vector illustration.

 The Layout : Overview of Key Areas in Inkscape
 The Inkscape user interface is quite complex, as this software gives you virtually
everything you need for your 2D vector new media asset creation workflow. In a nutshell,
there are three vertical toolbars: the primary function tools on the left, the snap settings
on the far right, and the command tools on the inside right toolbar (see Figure 9-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

88

There is also the floating palette docking area on the right side of the canvas , which
is the white area that occupies the majority of your UI. At the very top are menus, and
underneath that is a horizontal toolbar containing options for the selected tool; in
Figure 9-1 this is the Edit paths by nodes tool, as a pop-up tooltip shows on the left.
(I’m featuring it in this screenshot because it is a tool you’ll use to create complex spline
data for your Android Studio games and applications.) At the bottom of the UI is a color
swatch selector for shape fills and curve stroking, and underneath that is a status bar for
numeric representation of what you are doing and other important workflow settings. The
square in the middle of your UI is the page you are working on.

 Figure 9-1. Inkscape tools, floating palettes, option selectors

 Let’s get right to learning how to use shape creation tools in Inkscape and how to
export the XML path command data.

 Polygon Shapes : Creating Basic Closed Shapes
 Polygon shapes, which are covered further in Chapter 10 , are shapes that have straight
lines on their perimeter, like triangles, squares, pentagons, hexagons, and octagons.
Let’s use the Inkscape polygon tool to create the green octagon you created with SVG
commands in Chapter 9 . Select the Create stars and polygons tool shown in Figure 9-2 .
Then select the polygon option on the top left of the options toolbar. Set your Corners
spinner to 8 , and then click the middle of the page and pull out the octagon. You can use
the Fill and Stroke color palette, seen on the top right, to set the fill color to green.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://dx.doi.org/10.1007/978-1-4842-9867-1_9
http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

89

 You can control the size and the rotation of this polygon when you pull it out from
the center. I made the sizes align with the top, bottom, and sides of the page.

 As you can see at the bottom left, the stroke and fill attributes are summarized, as
is the layer that you are drawing the shape on. The Opacity of 100% is shown in gray in a
palette on the right side of the screen, for both the fill and Layer 1, as you’ll see in the SVG
path data you’re about to export. Let’s take a look at how to turn this shape into SVG path
data next.

 SVG Data Export : Using Inkscape File ➤ Save As
 Many open source packages, such as GIMP and Blender, use a File ➤ Save as menu
sequence to save their native file format, and use a File ➤ Export menu sequence to save
different data formats. Inkscape uses File ➤ Save As to save (export) into different data
formats, as shown in Figure 9-3 . Use Plain SVG to get XML data that you can edit and
extract your Path command data from.

 Figure 9-2. Create a green octagon using the polygon tool

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

90

 Name the file octagon.svg and open it in a text editor, as shown in Figure 9-4 . Your
Path data string is shown in blue.

 Figure 9-3. Use File ➤ Save As menu sequence; select Plain SVG

 Figure 9-4. Open this octagon.svg file in your OS text editor

 You may have noticed the JavaFX and HTML5 export support, as well as other
platforms, such as PostScript and Flash, in the Save As dialog in Figure 9-3 . If you are
going to use JavaFX in Android or iOS, you use this option, but using plain SVG is the
best way to extract the raw SVG command data string for the path that you are creating
in Inkscape. If you have a complex, multi-layer construct, there is also the Layers as
Separate SVG option, so you can keep your SVG path command data modularized.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

91

 Spline Shapes : Creating Complex Shapes
 I’ll let you play around with the other basic shape tools, like the elliptical arc tool and
the text tool. In this chapter, the focus is on drawing polygons and Bezier splines. These
topics are also covered in the next chapter, which focuses on 3D new media, so I’ll get
you used to them in a 2D vector software package. Besides, most of what you create for
your Android Studio applications will be made out of polygons or Bezier splines, so it is
practical to focus on these shape creation tools in Inkscape.

 Using the Draw Bezier Curves Tool: Drawing Your Rough Shape
 Start a New Project in Inkscape with a File ➤ New menu sequence. Select the Draw
Bezier curves and straight lines tool . This is seen on the left side of the screen in
Figure 9-5 , about halfway down the Inkscape toolbar. I left the tooltip visible so that you
could see it more easily. You can mouse-over tools and other user interface elements to
see what they do simply by using this handy pop-up tooltip functionality. Now, let’s create
a complex Bezier spline shape, such as a heart, and only use four data points to do it
(since this chapter is about optimization). As I mentioned, the way to optimize a vector is
to use fewer data points and leverage spline tensioning handles.

 Figure 9-5. Click start point, click to right, pull out handles

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

92

 To create a heart in Inkscape, select the Draw Bezier curves and straight lines tool,
and click in the center of your page about 25% down from the top. The starting point in
Inkscape is shown by using a hollow square point.

 Click a second point to the right of this starting point, close to the page’s right side. In
Figure 9-5 , this is shown where blue spline tensioning handles meet and the green curve
segment (one) and red current curve segment (two) meet.

 Pull out the spline handles from the second point as you click (and drag) it to create
the rough curve. You’ll fine-tune this later on, so it does not have to be perfect. Once
you let go (released the mouse-down to stop the drag handles mode), you can move the
spline down, toward the bottom of the heart.

 Next, click the point that will be the bottom point for the heart shape, which should
be directly underneath the start point and about 60% down from the top of the page, or
40% up from the bottom of the page.

 Draw your third segment of the heart curve up to a point that is the opposite, or
mirror image of, the second point, on the left side of your starting point this time. This
should be about the same distance from the left edge of the page as your second point
was from the right side of your page, as shown in Figure 9-6 . Click your third point to
the left of the starting point, close to the page’s left side. This is shown where blue spline
tensioning handles meet, and where the green curve segment (three) and red current
curve segment (four) meet, as seen in Figure 9-6 .

 Figure 9-6. Click bottom point, click to left of start, pull out handles, and then place end
point of heart over start point

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

93

 Again, pull out your spline handles from the third point as you click and drag it to
create a rough curve. Once you have let go (released the mouse-down to stop the drag
handles mode), you can move the fourth curve segment end point, this time over the
starting point of your heart shape (path). If you position the end point of a path draw
operation over your starting point for the path draw operation, the mutual point will turn
red, as seen in Figure 9-6 . You can then click to close the heart’s path .

 Once you click the start point, the fifth end point and the start point become the
same (start) point, so you have used only four points and only four curve segments to
create an optimized closed heart shape (path).

 Once you close the shape, the green and red segment color guides disappear, and
your entire Bezier spline curve is colored black and is one pixel in thickness. Note that
this simply shows you where your Bezier curve path is, because a path actually has no
thickness, mathematically speaking.

 As you can see in Figure 9-7 , the left side of the heart actually came out better than
the right side did. In this next section of the chapter, you will look at how to edit spline
curve constructs in Inkscape.

 Figure 9-7. Click end point on start point and close the heart’s path

 Editing a path is done with a different Inkscape tool, called the Edit paths by nodes
tool. It is provided so that an artist can go back and fine-tune node (control point or
vertex) handles, or so vector artists can further edit existing paths.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

94

 Notice that there are many different terms used for the points (control points), or
vertices, or nodes, or coordinates, which make up a path (shape) comprised of Bezier
spline curves.

 Next, let’s refine the heart and improve its path shape using the Edit paths by nodes
tool, one of the most often-used tools in Inkscape, as indicated by its location right
underneath the Arrow (Selection) tool in the Inkscape primary toolbar.

 Using the Edit Paths by Nodes Tool: Refining Your Heart Shape
 The icon for the Edit Path tool (for short) shows an acute triangle cursor selecting a node
for editing, with spline tensioning handles telescoping out of the node. Once you select
this tool, your heart shape shows the nodes (points, or vertices), which are between Bezier
curve segments, as hollow points. This tool is shown selected (in blue) in Figure 9-8 .

 Figure 9-8. Select the Edit Paths tool and click the second node

 Let’s start by selecting the second node, located on the right side of the heart. Once
you click and select this node, it turns red and spline tensioning handles emerge from the
node. These control curvature for two different curve segments on each side of the node.
The top handle, moved using the circle at the end of the handle, controls the curvature of
where line segment one is coming into vertex number two.

 The bottom handle, which is also moved with the circle at the end of the handle,
controls the curvature of where line segment two is coming out of vertex two.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

95

 Moving the spline handle’s end point changes the angle of the handle and affects the
curvature of your curve, which is attached to the vertex and defined with that vertex, as
you learned in Chapter 8 .

 If you shorten or lengthen the handles by moving the end points closer to (or farther
from) the vertex itself, the curve becomes more curved by using longer handles, or less
curved by using shorter spline tensioning handles.

 If you put your handle points on top of, or retract them back into, the vertex, it then
becomes a corner point, and the curve coming out of the point becomes a line (polygon).

 There are also different keyboard modifiers that turn on angle snap (Control), lock
your curvature (Alternate), or handle length, and break the handle symmetry coming out
of the vertex or node (Shift). This is a tool that you will need to practice using for a length
of time to become proficient or professional in its usage. Be sure to explore the Edit Paths
by Node Tool option toolbar at the top-left of Inkscape, as well.

 The first thing you need to fix in this currently imperfect heart path is the bulbous
right side. To fix this curvature, you need to adjust the curve coming out of your second
vertex, which is done by using the lower segment of the tensioning handle, shown (along
with the heart defect) in Figure 9-8 ; it is shown selected in red (fixed) in Figure 9-9 .

 Figure 9-9. Adjusting spline tensioning handle for second curve

 If you want to follow along with the heart surgery you’re doing in Inkscape, you can
open your InkscapeProject_heart.svg file in the repository for this book.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_8
http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

96

 To reduce the ballooning of the curve on the right side of the heart, pull the end
point of the lower handle closer, until the second curve becomes symmetrical to the third
curve, as shown in Figure 9-9 .

 As you can see if you compare Figure 9-8 and Figure 9-9 , I have shortened the handle
length about 15%, reducing the amount of curve as well.

 Using the Edit paths by nodes tool requires what’s often called “tweeking,” which
means making slight adjustments to the vertices and their tensioning handles more than
one time around so as to gradually refine a shape, in this case, it is a heart.

 Now that the bottom part (curve) of vertex two is adjusted, let’s work on the top part;
that is, the curve coming into vertex two.

 As you can see in Figure 9-9 , the top-right half of the heart is square-ish and needs to
be more rounded like the left half.

 As you can see in Figure 9-10 , I have shortened the top part of the spline tensioning
handle by about 15% to make the curvature match the other (left) side of the heart shape
better again by reducing an amount of curvature coming into the second vertex.

 Figure 9-10. Adjust the top tensioning handle to make the shape rounder

 Now the top half of the heart is improved, and you should now start to tweak the
center points on the top and the bottom to continue to refine this heart shape even more.

 Pull down the bottom vertex to refine the height of the heart, as shown in Figure 9-11 .
Since the tip of the heart does not have any round curves (it is sharp), this means that spline
tensioning handles are directly on top of the third vertex.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

97

 If you want to stylize the bottom of the heart, hold down the Shift key and pull out
the spline tensioning handle of the vertex. I show this in Figure 9-13 so that you can see
what I mean.

 You can pull down the top point, as seen in Figure 9-12 .

 Figure 9-11. Pull down the bottom vertex and center it with top

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

98

 At this point in the tweaking process, the heart’s shape is just a matter of taste, so
continue to tweak the four Bezier curve vertices until you have the result that you desire.

 If you want to stylize the tip of the heart, located at vertex three, you can drag the
tensioning handles back out of the sharp corner, as is seen in Figure 9-13 , by holding
down the Shift keyboard modifier , clicking the selected vertex, and dragging your mouse
away from the selected (red) control point (node or vertex).

 Figure 9-12. Pull down the top vertex and center it with bottom

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

99

 Since this is a data footprint optimization chapter, I will show you how to trim 47
characters (about half) of the SVG command string data from your heart path vector
definition.

 Data Footprint Optimization: Use Integers
 Use the File ➤ Save As ➤ Plain SVG work process that you learned in the first part of
this chapter and name the file heart_PlainSVG (as is shown at the top (title bar) of the
screen in Figure 9-14). Format your data (I did it for you here) using the indented XML
convention, and take a look at the command data, which is in the quotes after the d=
inside of the child <path> tag.

 Figure 9-13. Use the Shift key and drag handle out of vertex #3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ DIGITAL ILLUSTRATION: DATA FOOTPRINT OPTIMIZATION

100

 Figure 9-14. View the floating point version of your path data

 As you see, the coordinate data has extremely precise floating-point accuracy, which
is not necessarily accuracy in an Android Studio application writing to a screen that
addresses pixels using integer values. Round these floating-point values to the nearest
integer value, as shown in Figure 9-15 .

 Figure 9-15. Convert your floating-point data into integer data

 This reduces the vector data footprint by about 100%.

 Summary
 In this chapter, you looked at digital illustration data footprint optimization as well as how
to use the Inkscape vector illustration software. You saw how to create spline and polygon
shapes, as well as how to export the SVG command data and how to optimize if for use in
Android Studio and Java.

 In the next chapter, you will learn 3D asset creation and data footprint
optimization using Blender.

www.it-ebooks.info

http://www.it-ebooks.info/

101© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_10

 CHAPTER 10

 3D New Media: Concepts
and Terminology

 Now that you have an understanding of the fundamental concepts, terminology,
principles, and data footprint optimization for your 2D digital image, digital audio, digital
video, and vector digital illustration new media content for Android Studio, it’s time to
get into the more complicated area of 3D new media assets, which in Android Studio can
become i3D, or interactive 3D, assets for game applications, e-learning, and simulations.

 Android Studio only supports one open source, real-time, i3D vector rendering
platform, called OpenGL , which stands for Open Graphics Library . Unlike SVG, which
is relatively simple in comparison with OpenGL, I cannot cover i3D in just a couple of
chapters, or even within a couple of books for that matter.

 If you are creating i3D OpenGL apps with Android Studio, however, this is entirely a
different type of app. If you want to develop 3D apps for Android, you need to get books
dedicated to and specializing in that specifically, as 3D is a whole different ballgame
compared to other new media asset support found in Android Studio and the Android
OS. Like those new media assets that are supported in Android, Android i3D support is
entirely open source, so that is certainly good news.

 In this chapter, I’ll give you as much of an overview of 3D as I can, as it is far more
expansive than your 2D new media assets, and not just because it has the third dimension
(depth) or fourth dimension (animation) that digital video and digital audio also have.
The primary reason is its use to create photo-realistic environments out of thin air, which
has been primarily driven by the console game industry as well as by the Hollywood film
industry. You can take advantage of these 3D advancements!

 You’ll look at the basic concepts, principles, and formats used in 3D vector images,
3D animation, 3D modeling, 3D texture mapping, 3D particle effects, 3D physics
simulations, character animation, and all the similarly complex i3D-related topics.

 Interactive 3D Assets: 3D Vector Content
 Interactive 3D vector objects can be created with Android code, using Java 7 or JavaFX
classes and methods, or with 3D software packages, such as Autodesk 3D Studio Max
(which is what I use), or Blender, an open source software nearing a similar level of
professional features.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

102

 Interactive 3D, commonly known as i3D, vector assets are primarily comprised of 3D
vector geometry, or vertices, in a 3D space. This is surfaced with 2D raster images, which
you learned about in Chapter 2 , and animated using keyframes, which you saw used in
Chapter 6 . To make 3D interactive, you define your 3D object (internal) hierarchy , and
imbed programming logic for each part of the 3D object that tells it how to function.
There are a lot more “layers” to creating a static 3D or dynamic i3D object than you find in
the 2D new media areas of Android Studio.

 It is important to note that all of your other new media assets are incorporated in
i3D new media assets. This means everything you learned about in the first nine chapters
are a part of a complex i3D model creation work process as well, as you will soon see.
Digital imagery is used to skin 3D model geometry, digital video provides animated
texture maps, SVG geometry is used or rendered onto 3D surfaces for texture mapping
effects, and digital audio is used for sound effects or to make i3D characters speak. The
possibilities are endless.

 Let’s start from the vertex on up, like you did in the 2D vector illustration chapter.
I will show you various attributes that take a 3D asset from being 3D geometry to being a
 3D model to being a 3D hierarchy to being a 3D animation to being an i3D object .

 The vertex is the least commonly used new media asset type; it is found in HTML5
(web sites and smartphones) by using WebGL 2, in Android by using OpenGL ES 3.1, and
in Java 7, 8, and 9 by using JavaFX.

 The Foundation of 3D: The Geometry of the Mesh
 Just as with 2D SVG new media, the lowest level of 3D new media assets is the vertex and
its connection with other vertices. With 3D, connections between vertices become more
complicated, not only because these occur in three dimensions, but also because 3D
introduces triangular faces commonly called polygons or “polys,” or rectangular faces,
called quadrilaterals , or “quads.” The connections between vertices are called “edges.”
Before 3D geometry is texture mapped, it’s referred to in the 3D industry as a “mesh,” or a
“wireframe,” since that is what your 3D geometry looks like before it is texture mapped or
“skinned” using digital imagery. You will cover this in the next section.

 Data Points in a 3D Space: Origins of the 3D Vertex
 Just like the 2D vertices (or “anchor points” as they’re called in Illustrator, or “path
nodes” as they are called using Inkscape) the vertex is the foundation of 3D geometric
and organic modeling. Just as 2D polygons use straight lines, 3D geometric models use
straight lines, and 3D organic models use 3D curves defined with NURBS (non-uniform
rational B-spline), Catmull-Rom splines, and Hash patches. The vertex defines where your
model’s infrastructure—whether it is edges or splines—is located in 3D space.

 In 3D geometry, vertex data can hold surface color data, surface normals data,
 UVW texture mapping data, as well as the vertex X, Y, Z location data. This is similar to
pixels in 2D, which hold X and Y data; RGB data; and alpha channel data.

 Those of you who are familiar with 3D data scanners know the term “point clouds.”
So vertices are still the foundation for everything that you create in the 3D industry, from
games to simulations to virtual worlds and beyond.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://dx.doi.org/10.1007/978-1-4842-9867-1_6
http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

103

 For Java 7, 8, and 9 programming, the JavaFX VertexFormat class holds vertex
data that includes vertex location, normal information (normal are covered soon), and
3D texture coordinates. So you can place the vertices for your game or IoT application
with JavaFX code, or you can use a 3D modeler such as Hexagon, or a 3D modeler and
animation package like Blender.

 Connect the 3D Vertices: Edges Bridge 3D Vertices Together
 3D geometric models use something called an edge to connect two vertices together.
An edge is a vector , or straight line, so it looks like the edge of a razor in 3D space, as
you can see in Blender in Figure 10-1 . Three edges are needed to form polygons, and
four edges are needed to form quads. Polygons and quads are called “faces,” which are
covered in the next section. When you’re modeling 3D geometric objects, you can select
components of a model, such as a vertex, an edge, or a polygon.

 Figure 10-1. Blender 3D geometry having 8 vertices and 12 edges

 If you’ve created 3D geometry using a more advanced spline-based modeling
paradigm, such as NURBS using MoI 3D, or quads using SILO 2 (only $160), or Hash
patches using Animation:Master (only $80), you’ll need to “decimate” your model into
polygons (triangles), which is what Android Studio (OpenGL, Java, JavaFX) uses for its 3D
rendering.

 Currently, there is no OpenGL “native” rendering support for splines or quads
in Android, JavaFX, or HTML5. All of these use OpenGL ES 3.1. The ES stands for
“Embedded Systems,” and refers to portable, low-power consumer electronics devices.

 The algorithmic process of decimation from other spline or quadrilateral
representations of 3D geometry into polygons turns the infinitely smooth curves used in
these modeling paradigms into a collection of triangular faces with straight edges.

 This is done by using a decimation or smoothness numeric factor , via a slider or
dialog setting. This is either the decimation function inside of the 3D software or it is
supplied in a File Export function that outputs the spline modeling format from a curve-
based modeler into a polygonal geometric model format. A great example of this is in
the Moment of Inspiration V3 NURBS modeling software. Now let’s take a look at how
polygons, quads, and splines form 3D surfaces .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

104

 Surface: Three Edges Form a Polygon, Four Edges Form a Quad
 Once you have three edges together in the format of a triangle, you have a polygon. This
can be used as a surface and can host a “skin” or “texture” to make the 3D data look more
realistic. The rule of thumb is that the more uniform (square) a triangle is, the better it will
render. Slivered (long, thin triangles) can cause rendering “artifacts” or visual anomalies,
but often do not. You feeling lucky? Then use slivered polygons. Modelers often prefer
modeling with quads and keep them as square as possible using quad modelers such as
the popular Silo 2.3 from NeverCenter (shown in Figure 10-2), which is only $109.

 Figure 10-2. Silo quad modeling software is affordable at $109

 Figure 10-3. Hash A:M character modeling software is only $79

 As you can see, Silo (currently at version 2.3.1) can be used for character
modeling. This is usually accomplished using organic spline modelers, such as Hash
Animation:Master (seen in Figure 10-3) using a proprietary Hash patch spline algorithm .

 Once you have a surface, which needs to be a triangle for Android, you have also
defined your surface normal . In the Blender 2.76 project shown in Figure 10-1 , the faces
on the basic cube are quads, but as you will see, quads, just like tris, have surface normals
as well.

 Normals are one of the things used to apply the texture map to 3D mesh geometry to
make it look solid.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

105

 Texture mapping is covered in the next major section of this chapter. There is a
principle that is related to adjacent polygons or faces that is called a smoothing group ,
which you will take a look at after surface normals.

 Therefore, at the very least, a surface polygon, triangle, quad, or face contains data
for one normal, several texture maps, and a smoothing group. As I mentioned, i3D assets
are significantly more advanced than 2D media assets. 3D assets are rendered on the
client side, or on the device that they’re being viewed on. I cover rendering later on in the
chapter as well. Lots of i3D topics to cover!

 The Direction a Surface is Facing: The Concept of Surface
Normals
 If you know how to turn the “show normals” feature on in the 3D software, you can see
your 3D face surface normals , which are displayed at the exact center of the face, as you
can see in light blue in Figure 10-4 . There are also buttons in Blender for showing vertex
 normals , which point outward from a vertex; so for this model, vertex normals point out
diagonally from the corners of the cube (45 degrees), the exact opposite result from the
face normals, which point straight up (90 degrees, like a skyscraper) from the center of
each face.

 Figure 10-4. Display face normals as lines button shows normals

 As you can see in Figure 10-4 , two of the normals seen are actually aligned with
the X (red) and Y (green) axes, which intersect the cube at 90 degrees. Your axis guide,
in the lower-left corner of the 3D Edit Mode view, shows which axis is X, which is Y, and
which is Z.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

106

 The function for this surface normal is fairly simple. A surface normal tells a
rendering engine the direction a surface is facing: inward or outward. The same logic
applies to a vertex normal; it shows the rendering engine which side of the 3D geometry
to process for surface rendering.

 If your normals for this cube geometry had been pointing inward, instead of
outward, this cube would not be visible at all when rendered. There’s a flip normals
operation (algorithm) in 3D software that is used to reverse your normal directions. This
is done for the model universally; all normals are flipped 180 degrees.

 Flip normals are utilized when you render the scene and your imported 3D object
is not visible after you render the scene. This is almost always because a 3D import
utility points (flips) the surface normals for the imported 3D geometry in the wrong
direction. An exporter from a 3D modeling tool might have exported the surface normal
in the wrong direction, relative to the software you are importing them in. This is a fairly
common occurrence, so, expect to use flip normals regularly if you are going to work with
3D or i3D new media assets.

 If you need something—like a house, for instance—in which the 3D geometry has to
render from the outside and from the inside (this is common in 3D virtual worlds, which
are also inherently i3D simulations), because you have to be able to navigate through
them, you have to create your geometry’s faces as double-sided polygons . You need to
apply a double-sided texture map, which I’ll cover in the next section.

 It is important to note that in i3D, using double-sided geometry and double-sided
textures requires significantly more real-time rendering engine processing by your CPU
and FPU.

 Smoothing a Faceted Surface: Using Smoothing Groups
 You have seen 3D models that are rendered as solid (instead of wireframe) but look like
they are chiseled; that is, you can see the polygons (faces) rendered as if they were flat,
as seen in Figure 10-5 . This is often called flat shaded ; no smoothing is applied by the
rendering engine. If you render the same geometry with smoothing turned on, this effect
disappears and the 3D geometry looks as it was intended to, which is infinitely smooth,
like it was created using splines, when it is actually using polygons. It is more efficient
to have the rendering engine do the smoothing than to have a ton of mesh (polygon)
data. The renderer applies smoothing using something called smoothing group , which
is applied to each face to tell the renderer when to smooth between two faces and when
not to, which leaves what is commonly referred to as a “seam.” A smoothing group uses
simple integer numbers. If the numbers match on each side of an edge (for each adjacent
face on the opposite side of that edge), it renders as a smooth color transition. If the
numbers are different, it renders a seam and the edge is clearly visible because the color
gradients on each side of the edge are different, so the color gradient is not seamless
across the two faces (polygons).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

107

 In some 3D software packages, such as Autodesk 3D Studio Max, the smoothing
group numbering schema is in the user interface. In others, such as Blender, the
numbering is hidden and the smoothing group’s function is “exposed” by using the Mark
Seam, Clear Seam, Mark Sharp, or Clear Sharp commands in the Blender Edges menu,
which is seen on the left of Figure 10-6 with the Mark Sharp option selected in blue.

 Figure 10-5. Set faceted shading via Transform ➤ Shading ➤ Flat

 Figure 10-6. The Blender Edges menu allows you to set smoothing

 In Blender, some 3D modelers (people, not software) make the mistake of trying to
expose a seam or a sharp edge in their 3D geometry by actually splitting an edge in 3D
geometry itself, which achieves this visual effect but could also cause a problem during
the 3D geometry topology refinement work process, as your model is continually refined.
Splitting geometry edges to achieve a seam can be avoided by using the Mark Seam or the
Mark Sharp edge modifiers in Blender.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

108

 These particular Blender modifiers are smoothing groups–based, and therefore
achieve a smoothing (or edge seam) effect without actually affecting the 3D geometry
topology itself. The 3D geometry topology is how the polygons are laid out relative to
each other.

 A modifier in Blender is applied right before rendering, and therefore doesn’t
actually affect your actual mathematical topology for your underlying 3D geometry. If you
are familiar with the term “topography” used in mapping, then topology is very similar, as
it is a 3D term that refers to how the surface of the 3D geometry is constructed.

 Using the Blender modifier is always a more flexible i3D content creation approach,
as it applies a smoothness or other desired effects or results at the rendering engine level,
and not at the 3D geometry topological level. This leaves a 3D mesh intact and ultimately
simpler. As always, simpler is better.

 You can apply smoothing to a 3D model globally (to all faces at the same time) by
using the Transform panel and the Shading panel area, and then clicking the Smooth
button, as shown in Figure 10-7 . This applies the smoothing group to the entire model,
resulting in a smooth surface color gradient.

 Figure 10-7. Set smoothing using Transform ➤ Shading ➤ Smooth

 Next, let’s take a look at how to apply a “skin” to your mesh geometry surface, using
something called texture mapping .

 Skinning a 3D Model: Texture Mapping Concepts
 Once your 3D geometry is completed, which is the foundation for your 3D model, you
can apply texture maps to it to create a solid appearance for your 3D model. Texture
maps can also be used to add detail and special effects to a 3D model, making it appear
more realistic. If you are wondering what the difference is between 3D geometry and a
3D model, 3D geometry is just the mesh or wireframe, whereas a 3D model should have
texture maps already applied. If you purchase third-party 3D models, you expect them
to look as they are supposed to when rendered, instead of being flat gray, which is what a
 rendered model looks like without any texture mapping (and no vertex color) information
applied, as seen in Figure 10-7 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

109

 Texture Map Basics: Channels, Shading, Effects, and UVW Maps
 Texture mapping is almost as complex an area of 3D as creating topologically correct
geometry. In fact, each area of 3D is equally complex, which is what makes 3D the most
complex new media type overall. This is why 3D feature films employ artists to specifically
focus on (work on) and handle each of the areas you are looking at in this chapter. Texture
mapping is one of the primary areas in 3D new media asset production that is able to use
2D vector and 2D raster image assets.

 It’s important to note that there is also a more complex area of 3D texture mapping
that uses 3D texture algorithms. It is commonly termed volumetric texturing ; it uses
algorithms to create true 3D texturing effects that go all the way through a 3D object, as
though it were a solid, and not a hollow or a 3D object that requires double-sided texture
mapping.

 A basic concept behind texture mapping is taking the assets that you have learned
about in this book, and applying 2D assets to the surface of the 3D geometry. This is
accomplished by using UVW mapping coordinates. These 3D coordinates show how
you want the 2D image (plane) oriented to or projected on your 3D geometry surface
topology. UVW used to be different than XYZ, but they represent the same dimensions
(width, height, depth). There’s a need to use different letters than XYZ, thus the three
letters in the alphabet before XYZ (UVW-XYZ, so that you don’t get confused applying
your texture mapping coordinates!).

 You can add more than one texture map to the surface of your 3D geometry by using
 texture channels . These are analogous to the color and alpha channels that you use in
your 2D image to define each pixel’s characteristics. Open platforms such as Android,
HTML5, and JavaFX currently support four of the most important texture channels. These
include the diffuse texture map (basic ARGB color values), the specular texture map
(where surface is shiny or dull), the illumination texture map (also called a glow map),
and the bump texture map .

 3D software supports other advanced texture map channel types used for additional
texturing effects. To bring them into Android, you have to use a process called “texture
baking.”

 Baking texture maps involves rendering all the texture’s channels into a primary
diffuse texture map, since that is what Android supports. This provides a similar visual
result to what you get when you render your 3D object in your 3D package.

 As you can see in Figure 10-8 , Blender 2.76 also uses a scene graph, just like
most modern-day 3D software packages do, and JavaFX offers this same scene graph
functionality as well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

110

 This sphere geometry and its texture mapping are grouped together in a scene graph
hierarchy, which I have expanded for you. The texture map definition contains one or
more texture channel; in this case, diffuse (color) and specular (surface characteristics
such as shininess, metalicity, and the like).

 As you can see in Figure 10-8 , you can get a lot of good skinning results out of the few
texture channels that are now supported in open platforms such as Android, JavaFX, and
HTML5.

 As time goes on, OpenGL ES 3.1 could add even more texture channel support, giving
developers increased visual flexibility for their 3D new media asset usage. Transparency
areas (opacity maps) and surface details (normal maps) are two of the most important
areas of advanced texture mapping support that needs to be added to Android Studio,
JavaFX, and HTML5.

 These will ultimately need to be added to Android Studio either by supporting the
JavaFX API so that developers are able to create realistic 3D models for Java 7, 8 or 9, or
by using Android Extension Package (AEP) from nVidia, which you currently have to
install, but eventually will become a permanent part of Android Studio, Android APIs,
and the Android OS.

 A shader definition is a collection of texture channels and any code governing these
channels’ relationship to each other, as well as how they are composited, applied, and
rendered relative to each other.

 Shaders are also commonly referred to as “materials” in the industry. Shaders and
shader languages (another specialized and complex area of 3D and i3D Android Studio
applications development) are covered in the next section. As you can see, there are a lot
of “layers” to i3D production—and where shaders are concerned, sublayers!

 Figure 10-8. Using a scene graph (right) to apply a gold texture map and shader (bottom)
to a sphere object in Blender

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

111

 Shader Design : Shader Channels and GLSL Shader Language
 As are each of the areas of 3D object creation covered in this chapter, texture map shader
design is another art form in and of itself. Hundreds of shader artists work on 3D movies,
popular console games, and television shows, ensuring that the shaders used to texture or
skin the 3D geometry makes the resulting 3D model look as real as possible. This is often
the primary objective of 3D and i3D: to replace more expensive video camera shoots (and
subsequent reshoots) by creating a virtual world and having the computers (render farm)
create all the camera movements for you, turning them into pixels (imagery), frames
(video), or experiences (game or apps).

 The basic shader is made up of a series of vector shapes and raster images (or
algorithmic, volumetric textures) held in different types of texture channels. These
texture channels use the vector and raster assets to apply various types of effects, such
as diffusion (RGB color channels), opacity (transparency), glow (self-illumination),
specularity (surface characteristics), environmental (surroundings), bump (height),
normal (topology), and similar detail effect channels that increase photo-realism.

 On top of this, advanced shader languages like the Open GL Shader Language
(GLSL) use code to define how these channels interrelate to each other, how to apply or
process the data contained in the channels, and other complex applications of the data
within these channels based on factors such as time, orientation, or a position in i3D
space. The complex nature of shaders also means that the more complex that a shader
becomes, the more time-consuming the render-time processing cycle becomes.

 This is probably the primary reason OpenGL ES3 currently supports the four basic
easiest-to-process shaders. As hardware becomes more powerful (4- or 8-core CPUs in
consumer electronics products), OpenGL ES will probably add the last two important
shader channels: opacity (alpha channel) and normals mapping.

 Once texture channels are defined inside of the shaders, you need to orient the 2D
assets to the 3D geometry, which is done by using texture mapping coordinates . Each
channel has its own coordinate system, if needed, to apply each of the effects to the mesh
to achieve the desired effect.

 This is accomplished using something called UVW mapping , which is also be
covered in the next section before you move into the fourth dimension and learn about
3D animation principles and terminology.

 Texture Map Orientation : Projection Types and UVW Coordinates
 It is important to align the detail features in your 2D texture map channels (especially the
foundational diffuse color channel as it paints or colors the surface of your object) to your
i3D geometry correctly. If you don’t do this correctly, some fairly odd, or at least visually
incorrect, results appear when the 3D object is rendered. The alignment needs to be done
in 3D space, because texture mapping this is UVW (especially with a volumetric “true 3D”
texture, but also for 2D textures) to define how they project onto, on top of, or envelop
around i3D geometry.

 One of the easier ways this is done is by applying a texture map projection type and
its related settings. This automatically sets your UVW mapping numeric values for you.
These UVW map coordinate values define how your 2D imagery plane maps onto the 3D

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

112

geometry in 3D space. This provides your “mathematical bridge,” between your 2D space
and your 3D space. UVW map floating point values can be set or tweaked manually to
fine-tune the visual result of the texture mapping.

 The simplest type of projection is the planar projection , because a plane is a simple
2D square. You visualize this type of mapping as if your 2D texture map image were in
front of the 3D object, and you were shining a light through it, so it looks like the colors
in your diffuse texture map were projected onto the 3D object. A planar projection is also
the simplest for the computer to process, so use it if you can get the result that you need
for your Android Studio application. Planar mapping is often used for static 3D objects
such as billboards, because once you move (the camera) around to the sides of the 3D
model, this type of projection mapping does not provide photo-real results.

 Camera projection is very similar to planar projection, because a camera projects
the texture from the camera lens onto a 3D object surface much like a slide projector
does. The projection is 100% parallel to the front of the lens. This should be used for
projecting video backgrounds onto your scene, so that you can model, or eventually
animate, your 3D assets in front of the projection. If the camera moves, camera projection
mapping stays parallel to the front of your lens. This is sometimes termed billboard
mapping mode (billboard projection) .

 Your next simplest type is cylindrical projection , which provides more of a 3D
application for your texture map. A cylindrical map surrounds the object in your up and
down (a 3D z axis) dimension, projecting your image all the way around your object!
If you walked around the 3D object, there would be unique texture details in another
dimension, which planar or camera projection does not provide. Make sure that your
texture maps tile seamlessly along their y axis!

 An even more complex projection mapping type is called a spherical projection .
This provided an even more complete 3D application of your texture map than the
cylindrical projection does. Spherical projection attempts to address all three (x, y, and z
axis) projection directions. Again, you want to make sure that your texture map is tileable
to avoid any “visual seams.”

 Similar to a spherical projection is a cubic projection . It is like having six planar
projections in a cube format and gives a result similar to spherical projection, using a
special cubic texture map data format.

 When you apply a cubic projection mapping type to your i3D object, the object’s
faces are assigned to a specific face in a cubic texture map , as you may have guessed.
This is based on the orientation of each of the 3D object’s polygon’s normal, or by the
proximity of the face to the cubic texture map (coordinate) UVW mapping space. The
cubic texture is then projected from the faces of the cubic texture map using planar
projection methods.

 If you use volumetric textures, the spatial projection is a three-dimensional UVW
texture projection that is projecting through the 3D object’s volume. It is typically used
with procedural or volumetric textures that need to have an internal structure, such as
wood, marble, sponge, agate, and so forth. If you slice a 3D object, or transform texture
map coordinates relative to the 3D object, different parts of the volumetric or procedural
texture are subsequently revealed.

 There’s also a simpler texture mapping called UV mapping (no W dimension).
This applies your textures in two dimensions instead of three, and it is easier to process
because it has less data. You will probably map your 3D models outside of Android Studio

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

113

by using 3D software, and then use a model importer to import your already texture
mapped 3D object into Java or JavaFX. Now you’re ready to take a look at the fourth
dimension and 3D animation.

 3D Animation : Keyframes, Motion Curves, and IK
 After you have created your 3D geometry and texture mapped it using shaders and UVW
mapping coordinates, you may want to make it move in some fashion; let’s take a flying
a helicopter model, for instance. Concepts you learned about for digital video assets
apply equally as well for 3D animation assets, as you might imagine, because both use
keyframes. 3D software packages have what are generally termed “track editors,” which
allow you to add keyframes and a “motion curve” to tracks. Each track relates to a 3D
model. If a 3D model uses subcomponent grouping, then there can be tracks for groups
and subgroups necessary to achieve any complex animation or simulation for your
Android Studio application, game, or 3D virtual world.

 Linear Animation : Tracks, Keyframes, Looping, and Ranges
 The simplest type of 3D and 2D animation is linear animation . Linear animation uses the
least amount of processing power, so it is the most efficient. If you can use linear animation
to accomplish the 3D animation objective, use the fewest number of tracks and the fewest
number of keyframes, as this uses the least amount of system memory. Figure 10-9 shows
how to add a keyframe to the cube object in Blender 2.76 by using an “I” hotkey to access
an Insert Keyframe menu with a cube object selected. I selected the Delta Scale keyframe
type that adds a delta (difference) scaling value from the current scaling value.

 Figure 10-9. Use Insert Keyframe menu; add Delta Scale keyframe

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

114

 If animation motions are repetitive, use a seamless loop instead of a long range
containing duplicate keyframe data. One seamless motion loop can take up less memory
than a long range, especially when that range contains multiple copies of the same
motion, which is heavily redundant. So looping is a great optimization principle in linear
3D animation.

 Next let’s take a look at some of the more complex types of animation, including
those that aren’t linear. They will not be in a straight line, with evenly spaced keyframes.
You’ll also take a look at character animation and at procedural animation used for things
like physics simulations and particle systems.

 Non-Linear Animation: Motion Paths and Motion Curves
 A more complex type of non-linear animation, which is less regular and often looks more
realistic, especially where human motion and simple physics simulation is concerned,
implements a motion path for the animated 3D object or element (sub-object in a
hierarchy) to move along. To add even more complexity to the motion along that path,
it is possible to use a motion curve so that the movement itself can speed up or slow
down, simulating things like gravity or friction. The mathematical algorithms that are
represented visually using these motion curves are called interpolators . JavaFX has an
 Interpolator class that contains a wide variety of the most standard (yet quite powerful,
if used effectively) motion curve algorithms. You’ll get into JavaFX in the next chapter,
which covers 3D formats, platforms, scene graph, and programming-related topics.

 A good example of non-linear irregular motion keyframing is a rubber ball
bouncing down a windy road. The curved path of the road uses a motion path to make
sure that the ball stays on the road curvature and that the ball floor conforms to the
slope (angle) of the road. The bouncing of the ball should use a motion curve, also called
a motion interpolator , to make each bounce look more realistic in the timing of the
acceleration or deceleration of its movement through space. In this case, this is how the
ball reacts to the ground.

 Figure 10-10 shows a Blender Timeline editor at the bottom of the screen; it has two
rotation keyframes represented as vertical yellow lines and the current frame setting is a
vertical green line.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

115

 Complex physics simulation and character animation could be done using
keyframes if you wanted to spend months on it; however, it is actually easier to write
algorithms and code routines to achieve this than it is to lay down motion curves and
keyframes to try and simulate these phenomena.

 Therefore, character animation principles and procedural animation principles
are covered next, as you are progressing from less advanced concepts to more advanced
concepts.

 Let’s overview character animation next because it is the type of 3D animation that is
likely to be supported in JavaFX and similar 3D platforms for Android Studio.

 Character Animation : Bones, Muscles, and Inverse Kinematics
 An even more complex type of animation is character animation. Character animators are
one of the popular positions on a 3D film, game, or television content production team.
Character animation involves a number of complex layers, including setting up bones
using inverse kinematics to control a skeleton that attaches to the muscles and skin;
so things with character animation are about as complex as they can get without using
straight coding, which is called procedural animation . There is an animation software
package that is customized for doing character animation called Hash Animation:Master,
or A:M, and fortunately it has an affordable $79 annual fee to own it and to get free
upgrades. It was shown in Figure 10-3 . As you can see, it is an amazing product, in its 18th
revision over two decades, starting as Playmation on the Amiga 3000.

 At the lowest level of character animation you have your bone, which uses an inverse
kinematics algorithm. This controls the range of movement (rotation), so you don’t
have elbows that bend the wrong way, or heads that spin around like something in The
Exorcist .

 Figure 10-10. The Blender 2.75 Timeline editor with two keyframes at Frame 0 and Frame
10 and current Frame 6 setting

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ 3D NEW MEDIA: CONCEPTS AND TERMINOLOGY

116

 Bones are connected in a hierarchy that forms a skeleton. This is what you will
animate (keyframe) later on to bring your character to life. You can also simulate muscles
and skin by attaching them to the bones, and defining how the bone movement should
flex the muscles and stretch the skin for the character. The muscle flexing and skin
deformations are complex algorithms as well, just like the IK algorithm that controls a
range of movement for the skeleton’s component parts.

 As you can imagine, setting all of this up can be a very long and complex process; it is
an area of character animation called “rigging.” And yes, as I have mentioned for all of these
areas of 3D and i3D asset creation, rigging is its very own job area if you want to work on it in
the film or the console game industries. 3D is so complex that each area is its own specialty.

 Procedural Animation : Physics, Fluid, Hair, and Particle Systems
 The most complex type of animation is procedural animation , because it needs to be done
using algorithms. In 3D packages, this is usually done using C++, Python, or Java. Procedural
3D animation in your Android Studio applications should be done using a combination of
Java APIs, JavaFX APIs, and third-party APIs, which you will look at in the next chapter.

 This is the most complex and also the most powerful type of 3D animation. It is the
reason why a procedural animation programmer is another one of the more popular 3D
job openings in the 3D film, games, IoT, and television production industries. You are
beginning to see why i3D is the most complex new media genre, and why I saved it for the
final part of the book.

 There are a lot of features in 3D modeling and animation packages such as Blender,
A:M, Silo, and 3D Studio Max that are actually procedural animation algorithm plugins.

 The plugins expose the user interface to the user to specify parameters that control
the result of a procedural animation once it is applied to 3D models or a complex 3D
model hierarchy created using the 3D software.

 Here are some examples of procedural animation algorithms with simulated and
controlled features: particle systems, fluid dynamics, cloth dynamics, rope dynamics, hair
and fur dynamics, soft body dynamics, rigid body dynamics, and video motion tracking.
Many of these include real-world physics simulation support, which are often plugins
added to advanced 3D animation software packages. There are many other advanced
features that require algorithms to be implemented with a reasonable amount of effort.
3D is all about leveraging the computer processor and memory to create content!

 Summary
 In this chapter, you took a look at 3D new media concepts and terminology. You looked
at 3D mesh geometry and how adding texture mapping makes this a complete 3D model.
You looked at UVW mapping and how to easily apply it using projection mapping,
shaders and shader language, and different types of 3D animation—from simple linear
animation to complex animation types, such as character animation and procedural
or algorithmic animation. You saw how complex this area of 3D new media is due to its
support of advanced console games and feature film and television production.

 In the next chapter, you’ll learn 3D platforms and 3D file formats using scene graph
hierarchy 3D asset organization.

www.it-ebooks.info

http://www.it-ebooks.info/

117© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_11

 CHAPTER 11

 3D New Media: Data Formats
and Platforms

 Now that you have an understanding of the fundamental concepts, terminology,
principles, and workflow for creating 3D new media assets, it’s time to take a look at how
you get that 3D vector new media asset into the Android Studio environment and an
Android application. Android Studio only supports one open source 3D rendering engine,
called OpenGL , or Open Graphics Library , but does not yet support a scene graph
hierarchy with which you can construct i3D or interactive 3D applications. The JavaFX
API, which is actually a part of Java 7 and Java 8, but not yet included in the Android API,
would solve that problem.

 There are also some third-party Java platforms that now support Android and some
iOS, as well as HTML5, that add scene graph capabilities to Java 7 and Android just like
JavaFX does.

 You will look at JavaFX and its scene graph capabilities, since JavaFX is actually a
part of the Java 7, Java 8, and soon the Java 9 programming language, and also supports
delivery of JavaFX applications to both the Android OS and iOS.

 Then, you will look at other third-party Java scene graph platforms that you can
use to create 3D or i3D applications for Android OS. You will also look at popular 3D file
(data) formats that are supported in OpenGL ES 3.1 (Android), JavaFX, HTML5 WebGL,
and WebGL 2. In fact, let’s get that out of the way first, and then get to JavaFX scene graph
and 3D platforms.

 3D Model Data: Open Source File Formats
 There are a number of 3D file (data) formats that used to be proprietary, such as Autodesk
3D Studio Max and Wavefront Object file formats, which are widely supported; although
I am not sure if they have officially been open sourced. There are also a couple such
as Collada and X3D that were intended to be open 3D data exchange formats, and a
proprietary JavaFX format, which is also open source .

 There is also a manufacturing 3D data file format used for injection molding
machines and 3D printers, which is called the ST ereo L ithography file format, or STL for
short. These are outlined in Table 11-1 , and most platforms import these 3D formats into
their scene graph and support all of their features.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

118

 Let’s take a look at these formats and see what data can be transferred using each of
them into Java 3D APIs.

 Autodesk: 3D Studio for DOS 3DS
 The Autodesk 3DS format is a 3D data import and export format. It includes only the 3D
mesh geometry, texture maps and light location data. The 3DS format is also supported
by Autodesk 3DS Max 3D modeling, animation and rendering software, because it was
the native file format of the retired Autodesk 3D Studio for DOS software, which was
popular until 3D Studio MAX replaced it in 1996.

 This 3DS format was designed for use with 3D Studio DOS. It was released in 1990, so
it only contains basic mesh (geometry) and texture map channel data, making it a great fit
for limited 3D data support currently found in OpenGL ES in Android Studio, Java (using
JavaFX APIs), and HTML5 (using WebGL and WebGL 2).

 The 3DS data format has become the industry standard for transferring 3D model
data between 3D platforms or for offering 3D models in 3D resource data archives or 3D
model storefronts.

 Another popular model archiving file format is the OBJ or 3D Object file format from
Wavefront. Let’s look at that next.

 Wavefront Technologies : Advanced Visualizer OBJ
 The Wavefront Technologies Advanced Visualizer OBJ data format is an open source,
3D geometry definition data format. The data format has been adopted by other 3D
applications and platforms.

 The OBJ file format is a universally accepted basic data file format that represents 3D
geometry only. Texture map data is not included in an OBJ data file, but can be referenced
in a separate MTL (this stands for “materials”) data file. Materials can then be referenced
by data inside of the OBJ file and have to be included along with the OBJ file, which is why
often 3D Objects using this format will be distributed in a ZIP file.

 This OBJ data format can contain the different types of 2D and 3D data that you have
learned about in Chapters 8 through 10, including vertex data, spline curves data, model
hierarchy grouping data, rendering attributes data, surface (normal) attributes data,

 Table 11-1. 3D Data File Formats Compatible with JavaFX in Java

 3D Format File Extension JavaFX 3D Model Importer Version

 Autodesk 3D Studio .3ds 3dsModelImporterJFX 0.7

 Collada .dae or .zae ColModelImporterJFX 0.6

 JavaFX FXML .fxml FxmlModelImporterJFX 0.5

 Wavefront Object .obj ObjModelImporterJFX 0.8

 STereoLithography .stl StlModelImporterJFX 0.7

 X3D Version 3.3 .x3d or .x3dz X3dModelImporterJFX 0.4

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_8
http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

119

and similar advanced 3D model data structures. The most common 3D data elements
are geometric vertex data, texture UVW coordinate data, face or vertex normal data, and
polygon face data.

 Next, let’s take a look at the Collada i3D data format.

 Collada: ISO Collaborative Design Activity DAE
 The ISO COLLADA data format stands for COLLA borative D esign A ctivity. It is the i3D
data interchange format for interactive 3D or i3D new media applications. It is managed
by non-profit technology consortium The Khronos Group. This DAE , or Digital Asset
Exchange, file format has been adopted by ISO as a publicly available i3D data file
specification (ISO PAS 17506).

 The COLLADA DAE format is the most advanced of all the 3D data formats covered
in this section, as it specifically supports i3D, and therefore advanced features like physics
simulations used in games, for example.

 The DAE data format uses an open-standard DAE XML schema to facilitate the
exchange of i3D new media assets among i3D software applications and i3D rendering
platforms such as HTML5 WebGL and WebGL2, Android, and JavaFX. You learned about i3D
in Chapter 10 . A COLLADA data file describing i3D new media assets is actually an XML file
and is identified using a .dae or .zae (a ZAE is a compressed DAE) file name extension.

 Stereolithography or STL: 3D Systems CAD
 The ST ereo L ithography , or STL, data format was originally a file format that was native to
the 3D Systems Stereolithography CAD software package. The STL data format is supported
by other 3D software packages as well, because it is widely used for rapid prototyping, 3D
printing, and computer-aided manufacturing. STL files describe only the surface geometry
of 3D models, and do not include any colors, textures, or other 3D model attributes.

 Because the STL file only includes polygon data, it could be looked upon as the “raw”
3D data format of these six formats you are looking at in this section of the chapter.

 The data consists of triangulated surface data organized by the unit normal and
the vertices for each triangle using the 3D Cartesian coordinate system. An STL vertex
coordinate has to be a positive number, and there is no object scale information.

 This STL data format is able to specify either an ASCII, or a binary, 3D geometry data
representation. Binary files are the most common format, because it is more compact.
Let’s take a look at another popular ISO 3D format, the X3D data format.

 X3D: The ISO Successor to VRML
 The X3D 3D data format is an ISO standard, open source, free for commercial use,
XML-defined file format for transferring 3D model and 3D scene (light and camera
location) data. It is a successor to VRML, the Virtual Reality Modeling Language.

 X3D includes the CAD, Geospatial, Humanoid Animation, and NURBS extensions
to VRML. It has the ability to encode a scene graph hierarchy using XML syntax. It
also supports VRML syntax, binary data formatting, and an enhanced application
programming interface. This X3D data format supports multi-stage and multi-texture
rendering, if the implementing platform allows these.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

120

 The X3D data format also supports shaders that use light mapping and normal
mapping, which would be appropriate once the OpenGL ES platforms add rendering
support for advanced texture map shading features (covered in Chapter 10).

 FXML: The JavaFX Markup Language Data Format
 Java (via JavaFX) has its own FXML 3D scene graph data format as well. This is another
XML-based format and it is scriptable. It is used for constructing Java 3D object scene
graphs. FXML provides an alternative to constructing scene graph hierarchies by using
Java code. It is optimized for defining i3D content or defining the user interface structures
for JavaFX applications.

 The hierarchy structure of an FXML document needs to closely mirror, or emulate,
the structure of your JavaFX scene graph. FXML is suited to constructing a pure 3D scene
graph, or a 3D SubScene scene graph, or simply a 3D model consisting of JavaFX 8 Node
subclasses.

 You start with a Group class from the javafx.scene package at the top of the scene
graph hierarchy, and use your javafx.scene.shape library classes—specifically Box ,
 MeshView , Sphere , and Cylinder —to create a 3D object’s geometry data.

 You use the AmbientLight and PointLight classes to light your scene and the
 ParallelCamera or PerspectiveCamera to photograph or record video of a scene. Next,
let’s take a close look at the JavaFX platform, since it is built right into Java.

 Java 3D Support: JavaFX Scene Graph
 Because JavaFX libraries (or APIs) were integrated into Java 7, Java 8, and Java 9 to replace
AWT and Swing as the “front-end” user interface design libraries for Java, I am going
to cover this i3D solution first. Later on in the chapter, I will discuss other “third-party”
Java solutions that work with Android, as well as iOS in some cases. Since JavaFX is now
100% integrated with Java, spanning three versions, it is just a matter of time before these
libraries are added to the Android API, which upgraded from Java 6 in Android 1.x, to
Java 7 in Android 5.x, and may well upgrade to Java 8 in Android 6.x, due out in 2016.

 There are currently three “top-level” packages in JavaFX that contain all the support
for both 2D and 3D new media asset types. The javafx.geometry package supports the
low-level 3D geometric constructs, such as vertices, with the Point2D and Point3D
classes; and areas, with the Bounds and the BoundingBox classes. A javafx.animation
package offers low-level animation constructs such as timelines, keyframes, and motion
curves, with the Timeline , KeyFrame , KeyValue , and Interpolator classes.

 The javafx.scene package offers several nested packages, which I like to call
subpackages, including javafx.scene.shape containing 3D shape constructs, such as
the Mesh , TriangleMesh , and MeshView classes. A javafx.scene.transform package
supports 2D and 3D transformations, including a Rotate , Scale , Shear , and Transform
class. The javafx.scene.paint package contains shader classes, such as the Material and
 PhongMaterial classes. The javafx.scene.media package supports digital video with 3D
geometry, using the MediaPlayer and MediaView classes.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_10
http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

121

 3D Modeling: Points, Polygons, Mesh, and Shading
 I split the JavaFX 3D asset support into two diagrams: one for static 3D, or rendered “still”
imagery, and one for animated 3D. Interactive 3D would use all the JavaFX 3D capabilities,
plus many of the Java 7, 8, and 9 API capabilities. The first diagram shows four major areas
that are supported in JavaFX packages and that are important for creating 3D models ,
which can be used for static 3D imagery, as well as with other JavaFX APIs, to create
animated 3D content, and with Java APIs to create interactive 3D games, IoT applications,
wearable apps, and 3D simulations. Figure 11-1 shows 3D models asset support.

 Figure 11-1. JavaFX 3D Modeling asset support showing geometry, shape, transform, and
paint JavaFX APIpackages

 The javafx.geometry package contains the foundation for all the 2D and 3D
geometry in Java and JavaFX. This includes vertex (coordinated and points) and space
(bounds). The Point2D class supports both vertex (a point in 2D space) and vector (a line
in 2D space, emanating from that point) representations. A Point3D class also supports
vertex and vector representations.

 The Bounds superclass is used to represent your boundary of a JavaFX scene
graph node, and the objects that it contains. The BoundingBox subclass, of the Bounds
superclass, is the more specialized incarnation of a scene graph node object’s boundary
in 2D or 3D space, depending on the data (X,Y or X,Y,Z) used.

 The javafx.scene. shape package contains a Mesh, MeshView, and TriangleMesh
object (class). These can be used to create 3D geometry. The javafx.scene.transform
package contains a Rotate, Scale, Shear, and Transform object (class). These can be used
to apply 3D spacial transformations to your 3D mesh geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

122

 The javafx.scene.paint package contains the Material and the PhongMaterial object
(class). These allow you to texture 3D objects in JavaFX.

 Next, let’s take a look at how the JavaFX 8 API supports the fourth dimension, with
3D animation features for an Android Studio application such as a 3D game, a wearables
app, or an IoT app. After that, you can look at other third-party Java 3D platforms.

 3D Animation : Timeline, KeyFrame, and Interpolator
 As you probably have guessed, the important classes for implementing 2D and 3D
vector animation in JavaFX are stored in the javafx.animation package, which is seen in
Figure 11-2 . The exception to this is the Camera superclass and two subclasses named
PerspectiveCamera (used in perspective camera projection) and ParallelCamera (used in
orthographic camera projection). As Camera classes record your scene, these are in the
 javafx.scene package, which is the highest-level JavaFX scene graph package.

 Figure 11-2. JavaFX 3D Animation support showing animation and scene packages

 A Timeline object (class) holds an animation definition, which is made up of
 KeyFrame objects (class), which are in turn made up of KeyValue objects (class), which
contain your actual rotation, movement, and scaling transformation instruction data.

 A KeyFrame object holds an array of KeyValue objects; so a KeyFrame holds several
different KeyValue data objects. There is also an Interpolator class , which contains a
number of advanced algorithms. These apply motion curves to your KeyValue objects
inside of your KeyFrame objects, inside of your Timeline object. The currently supported
Interpolator algorithms include DISCRETE, EASE_IN, EASE_OUT, EASE_BOTH (easing
in and out), and LINEAR straight line (even spaced) interpolation, which is the least
memory and processor (processing) intensive.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

123

 Third-Party Java Scene Graph 3D Engines
 There are a number of third-party engines that add scene graph and 3D capabilities to
Java as well as Android Studio, and recently some of these have expanded to support
iOS and HTML5. You will take a look at some of these in this section so that you have an
overview of what is out there. These are all free for commercial use, and some of them
provide an exceptionally professional user interface and feature set, including things
like collision detection, physics simulations, 3D audio using OpenAL, 3D shaders using
OpenCL, and much more.

 jMonkeyEngine: The JME i3D Game Engine
 The jMonkeyEngine , which you can find on jmonkeyengine.org , is a free, open source
3D Java game engine targeting Java game developers who wish to create 3D games using
an i3D scene graph technology. The software is coded entirely using Java, intended
to promote widespread accessibility and rapid deployment cycle. jMonkeyEngine
games can be published to Windows, Mac, and Linux, as well as Android or iOS.
jMonkeyEngine also supports hardware peripherals for AR and VR technologies
such as the Oculus Rift. As you can see in Figure 11-3 , it has impressive, professional
development environment organization, which looks similar to the IntelliJ 14 Android
Studio IDEA in a great many ways.

 Figure 11-3. jMonkeyEngine 3.1 has a plethora of new features

 jMonkeyEngine conforms to BSD licensing. jME 3.1 SDK supports its very own
plugin framework, with automatic updates.

www.it-ebooks.info

http://jmonkeyengine.org
http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

124

 LWJGL: Lightweight Java Game Library V3
 The LWJGL 3D Java library is a multiple platform implementation of popular native APIs
used for the development of 3D scene graphs (OpenGL), audio (OpenAL), and parallel
computing (OpenCL) applications. LWJGL provides low-level access and is not a drag-
and-drop i3D development framework, so it does not provide higher-level utilities than
what the native libraries expose. LWJGL is also open source software, as everything else
covered in this book, and freely available for commercial use.

 It is important to note that if you are a beginning Java programmer, you may want
to try using one of the frameworks, or game engines, that build a user interface on top
of this LWJGL3 platform before you try coding directly to the LWJGL3 library. Some of
these include libGDX, which you’ll look at next, as well as Slick2D, PlayN, JOGE, JMugen,
GoldenT, jMonkeyEngine, Clyde, Ardor3D, Xith3D, Bonzai, Homura, JPCT, Gooei, TWL,
and FengGUI.

 Figure 11-4. Lightweight Java Game Library 3 web site lwjgl.org

 Next, let’s take a look at another popular framework for 3D technology “bridging”
to Java that not only makes the OpenGL framework accessible but also the OpenAL (3D
Audio Library) and OpenCL (3D Computing Library) frameworks available for Java.

 JOGL: Java OpenGL, OpenAL, and OpenCL
 JOGL (Java OpenGL) is a wrapper library allowing OpenGL to be used in Java. It
was developed by Kenneth Bradley Russell and Christopher Kline, and then further
developed by Sun Microsystems.

 JOGL has been an independent open source project under a BSD license since
2010. It’s a JSR-231 reference implementation for OpenGL Java Bindings . JOGL allows
OpenGL feature access via C programming language through the use of Java Native
Interface (JNI). JOGL allows you to access the standard OpenGL functions, as well

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

125

as OpenGL Utilities. The www.jogamp.org web site shown in Figure 11-5 has more
information on these JOGL , JOAL , and JOCL Java language bindings, as well as other
interesting information.

 Figure 11-5. The jogamp.org web site, home of 3D Java libraries

 Next, you are going to look at Google Code’s libGDX, which allows you to code 3D
applications in Java that can span both a desktop delivery and Android delivery i3D
development scenario.

 libGDX: Cross-Platform Desktop and Android 3D
 There is a 3D game development application framework written in Java called libGDX .
It has C and C++ components for performance-optimized code as well. This allows
development of desktop and mobile games with one codebase. It supports Windows,
Linux, Mac OS X, Android Studio, iOS, and WebKit including WebGL or WebGL2.
The libGDX uses third-party libraries LWJGL3, OpenGL, FreeType, MPG123, Vorbis,
SoundTouch Audio, Box2D, OpenAL, and Kiss FFT.

 Using libGDX, developers can design, code, test, and debug their application using a
desktop PC, and use that same code in Android Studio. The libGDX platform assimilates
the differences between Windows, Linux, and Mac desktop applications and Android
Studio applications. The developer work process involves coding on your workstation
while verifying that your 3D project still runs under Android. The libGDX web site is
shown in Figure 11-6 .

www.it-ebooks.info

http://www.jogamp.org/
http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

126

 If you don’t need a code-once-run-everywhere development scenario, and you only
wish to deliver on Android OS using Android Studio, there is an android.opengl package
that allows this as well. Let’s take a look at this integrated solution next.

 Android OpenGL Package : Android i3D
 Android Studio includes real-time 3D rendering support with the Open Graphics Library
OpenGL using an OpenGL ES API . OpenGL ES is the OpenGL specification intended
for embedded device usage. Android supports all versions of OpenGL ES including 1.1,
found in Android 1.5 to 2.2; 2.0, found in Android 2.2 to 4.3; 3.0, found in Android 4.3 to 5;
and 3.1, found in Android 5 or later.

 The most important Android classes that you will need to implement to leverage
Android Studio to process 3D applications are the GLSurfaceView base class and the
 GLSurfaceView.Renderer Java interface, which makes the rendering engine refresh
calls. You can find more information on these classes with at developer.android.com/
reference/android/opengl/GLSurfaceView.html and developer.android.com/
reference/android/opengl/GLSurfaceView.Renderer.html .

 The GLSurfaceView subclass provides the base SurfaceView class implementation
that provides a dedicated surface for your display of OpenGL ES rendering calls. Your
GLSurfaceView object can support a number of key features, including managing the
3D surface (canvas), an area of OS memory reserved for compositing OpenGL rendered
content for Android’s View rendering ecosystem.

 Figure 11-6. libgdx.badlogicgames.com cross-platform Java site

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ 3D NEW MEDIA: DATA FORMATS AND PLATFORMS

127

 GLSurfaceView manages the EGL display enabling OpenGL to render to a surface,
as well as rendering on a dedicated thread so that Android can decouple rendering
performance from your UI thread. Both on-demand and continuous rendering are
supported.

 A GLSurfaceView object accepts a developer-provided GLSurfaceView.Renderer
object, which does the actual rendering. Developers can optionally wrap, trace, or check
for errors using this GLSurfaceView.Renderer object’s OpenGL calls.

 As a default, the GLSurfaceView object creates a surface using the PixelFormat.
RGB_888 format surface. If you require an alpha—that is, a translucent surface, then you
use the .getHolder().setFormat(PixelFormat.TRANSLUCENT) method call structure
instead, so that you get the PixelFormat.ARGB_8888 format.

 Implement GLSurfaceView by subclassing it and overriding one of the View
system input event methods. If your application doesn’t require event processing,
GLSurfaceView may be used as-is. A GLSurfaceView object can be customized by
calling . set() methods (instead of subclassing). Unlike a normal View, drawing is
delegated to a separate GLSurfaceView.Renderer object, which is registered with
GLSurfaceView by using a .setRenderer(Renderer) call. To initialize GLSurfaceView,
call .setRenderer(Renderer) .

 Summary
 In this chapter, you took a look at popular open i3D file formats as well as some i3D
platforms for Java, such as JavaFX, jMonkeyEngine, LWJGL3, libGDX, and the android.
opengl package, all of which can be used in conjunction with Android Studio.

 In the next chapter, you will take a look at how the new media assets that you’ve
been learning in book are referenced inside of Android Studio 1.4, which as you know,
develops applications for the Android 5.4 OS.

www.it-ebooks.info

http://www.it-ebooks.info/

129© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1_12

 CHAPTER 12

 Referencing New Media
Assets in Android Studio

 Now that we have covered new media content for Android Studio, it’s time to take a look
at how these new media assets , which you will create using all your newfound multimedia
production knowledge, are integrated in Android Studio. The foundation for this knowledge
is where these assets need to be in your Android Studio project, in order to be referenced
correctly in the Java code or in the XML markup, if you prefer to set things up that way.

 This chapter covers the different Drawable-DPI folders for image assets and the raw
folder for video or audio assets. You will also learn how a 2D or 3D vector asset should be
referenced in Android Studio. And you’ll look at how new media assets are referenced in
app user interface design and for straight content display.

 Android Assets: Drawables and Raw Data
 As you learned in Chapter 2 , pixel-based digital imagery is technically called raster
imagery , because an array of pixel values is rasterized to a screen displaying the image
created using these pixels. Digital illustration, or vector imagery, is not stored as an
array of image elements (pixels), it’s instead drawn, or “rendered,” to the screen, just like
you would draw it if someone were watching you draw, only using instructions that the
computer uses to do exactly what you did when you created it.

 This is the equivalent of the MIDI concept that you learned about in Chapter 4 , which
focused on digital audio, where the performance is re-created by the computer processor,
which renders it to the screen (SVG) or the synthesizer (MIDI) using playback instructions.

 Android Resources : Assets Subfolder Hierarchy
 If you want to add custom animation, custom themes, digital video, digital audio, or
vector assets to your Android project, you might have to add new folders to your project
folder hierarchy ; you will learn how to do this in this chapter. In this section, I want to
give you an overview of different project resource folder names, and the new media
asset types that are possible in an Android Studio application. This gives you a high-level
overview of what’s possible in Android development.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://dx.doi.org/10.1007/978-1-4842-9867-1_4
http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

130

 Your external new media assets—that is, those primarily created outside of Android,
using software such as GIMP 2.8 and Audacity 2.1—are kept in the resources folder. In
Figure 12-1 , this folder is open to show various resource subfolders for the 2D project that
I created for my Pro Android Wearables (Apress, 2015) book. These are only half of the
potential folder names.

 Figure 12-1. Resource subfolders for ProAndroidWearable project

 Other non-multimedia resource assets can also be kept in the project resource
directory’s subfolders, including styles, constants, themes, colors, animation, application
icon mipmaps, XML definition files, and user interface layout definitions.

 Externalizing resources allows an Android Studio project development work process
to be more modular and organized, and therefore more quickly accessed during apps
development. There are many different resource types in Android and they either have
their own subfolders in a /res project folder, or their own XML files in a /res/values
folder. I’ll outline the ten primary resource subfolder names and the asset types that they
hold in Table 12-1 . Because they are very important to Android development, I’ll discuss
the ones that relate to the new media assets you have learned in this book. The ones that
relate to new media are anim , drawable , mipmap , and raw .

 Table 12-1. Android Studio Project Resource Subfolder Types

 Resource Subfolder Types of Assets That the Resource Subfolder Contains

 Animator XML definitions containing property animation

 Anim XML definitions containing 2D frame animation

 Color XML definitions containing color constants

 Drawable Digital image assets (PNG8, PNG24, PNG32)

 Mipmap Digital image application icons (PNG32)

 Layout XML definitions for user interface layouts

 Menu XML definitions containing menu structures

 Raw Digital video, digital audio, SVG, 3D formats

 Values XML definitions containing property values

 Xml XML definitions containing non-Android XML

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

131

 The primary types of new media resources include digital image assets that go
in the /res/drawable folder; digital video and digital audio resources that go in the
/res/raw folder; digital image or digital video procedural animation, or movement,
rotation, and scaling, which go in the /res/anim folder; and finally, the Android
application icon PNG32 digital image assets, which go into the /res/mipmap folder.

 The names defined in Table 12-1 are standardized Android Studio folder names; that
is, they’re “hard-coded” into the OS and have code that specifically looks for them in this
 /res folder. You can define your own customized folder names as long as you follow basic
 folder naming rules . These folders are termed “alternate” folders, because they provide
 alternative assets .

 Alternate Resource Folders: Custom Folder Names
 You can also provide something called alternate resource folders in your Android
application project folder hierarchy. The alternate resource folders provide custom asset
support for a wide array of device physical hardware specifications by grouping new
media assets, user interface designs, styles, and theme definitions into specifically named
alternate resource folders. A good example of this is the /res/drawable-dpi folder
hierarchy, which the Eclipse IDE created for you prior to Android 5. Android used to
create a /res/drawable-hdpi folder and a /res/drawable-xhdpi folder for different pixel
density image assets to be stored in. Different density drawable image assets are covered
in the next section of this chapter.

 Alternate resource folders allow developers to design an app so that it works across
a range of consumer electronics hardware devices, from smartwatches to UHD iTV sets.
For digital images, this equates to providing more than one version for each asset, using
different pixel densities, or lower to higher resolution assets to fit widely different screen
hardware resolutions.

 For user interface designs, this equates to providing more than one design. Different
UI layouts use different aspect ratios, specifically portrait, known as port in Android, and
landscape, known as land in Android. UI layouts take screen resolution into account as
well, using a width (w#dp), height (h#dp) and a smallest width (sw#dp) folder naming
convention. There’s also a widescreen folder naming convention called long , and a
normal screen naming convention, called notlong . Screen sizes are also grouped into
four basic naming convention categories: small , normal (medium), large , and xlarge
(extra-large). Table 12-2 shows these folder naming conventions, all in one location.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

132

 At runtime—that is, when your application is being run—Android OS uses your
appropriate alternate resource folder assets based on the device screen hardware
specifications.

 For example, if you want to provide different UI design layouts that conform to
physical screen sizes, shapes, or orientations (portrait and landscape), you can define a
user interface layout design using custom UI layout folder names.

 For instance, you could define a /res/layout-land folder for a landscape-specific
UI layout design or a /res/layout-port for a portrait-specific UI layout design. If you
wanted to make sure that you have at least 720 pixels of screen width for your portrait UI
design, you would create a / res/layout-port-sw720dp folder. For a UI design for HDTV
or UHDTV, you could specify a /res/layout-land-sw1920dp folder that targets HD or
UHD iTV set widescreen resolutions. To target only UHD devices, you could use
 /res/layout-land-sw3840dp , /res/layout-port-sw4096dp , or /res/layout-port-sw2160dp
for UHD smartphones.

 Next, let’s take a look at Android Drawable objects and screen density modifiers,
because these also directly relate to what you have learned in this book.

 Android Drawable : Draw Assets to Any DPI Screen
 A drawable in Android is any graphic that can be drawn on your display. I’ve listed device
DPI density constants in Table 12-3 .

 Table 12-2. Android OS Alternate Folder Naming Conventions

 Name Modifier Purpose for Using This Alternate Folder Name Modifier

 Land Screen uses a landscape or sideways orientation

 Port Screen uses a portrait or up-and-down orientation

 Long Screen uses a widescreen aspect ratio

 notlong Screen uses a normal screen aspect ratio (not wide)

 sw#dp Smallest screen width required by name modifier

 w#dp Width of screen required by folder name modifier

 h#dp Height of screen required by folder name modifier

 small Small display screen (smartwatch, flip phone)

 normal Medium display screen (smartphone, mini tablet)

 large Large display screen (tablet, netbook, laptop)

 xlarge Extra-large display screen (HD or UHD iTV set)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

133

 Drawables—that is, your digital image and digital video assets—need to be categorized
for your Android apps according to the seven screen density constants listed in Table 12-3 .

 If you look at the three columns on the right side of Table 12-3 , you see that you need
to create UI elements such as application launch, notification, and action bar icons for
each of these screen density levels to support all the thousands of hardware devices in the
market that use the Android OS. If you need more advanced digital imaging than what is
covered in Chapters 2 and 3 , there is a Digital Image Compositing Fundamentals (Apress,
2015) book that might help take your digital image editing and compositing knowledge
up a level or two. This work process is also discussed in my Android Apps for Absolute
Beginners Third Edition title (Apress, 2013).

 There are several types of drawable assets that need to be placed (located, kept, or
stored) in the drawable folder for these assets to be visible to and accessible to an Android
application. The primary one is BitmapDrawable, which I cover in the next section, as
well as media assets that are created with bitmaps, such as frame animation .

 Any assets that reference bitmaps or frame animation in an XML definition file
format are also kept in this folder, as would any XML definitions creating ShapeDrawables
(2D vector illustration). Vector shapes are covered in detail in my Digital Illustration
Fundamentals (Apress, 2015) book.

 Drawable Objects : Referencing Assets in Memory
 There are many different types of drawable objects in Android, each of which has its own
class to allow you to fine-tune the attributes of that drawable and to reference it in system
memory as a Java object so that you can use it in an app.

 Table 12-3. Seven Android Studio Device Density DPI Constants

 Device DPI Screen Size
Constant

 Pixel
Density
in DPI

 Pixel
Multiply
Index

 Minimum
Screen
Dimension

 Launch
Icon Size

 Action
Bar Icon

 Notify
Icon
Size

 LDPI Low
Density

 small 120 0.75 426×320 36×36 24×24 18×18

 MDPI
Medium

 normal 160 1.0 470×320 48×48 32×32 24×24

 TVDPI HD
1280

 HDTV 213 1.33 1280×720 64×64 48×48 32×32

 HDPI High
Density

 large 240 1.5 640×480 72×72 48×48 36×36

 XHDPI
Extra High

 xlarge 320 2.0 960×720 96×96 64×64 48×48

 XXHDPI
Super High

 xxlarge 480 3.0 1280×960 144×144 96×96 72×72

 XXXHDPI
Ultra High

 xxxlarge 640 4.0 1920×1080 192×192 128×128 96×96

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-9867-1_2
http://dx.doi.org/10.1007/978-1-4842-9867-1_3
http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

134

 Some of the important Drawable types are BitmapDrawable , which references
your digital image asset ShapeDrawable , which references your digital illustration
assets; NinePatchDrawable , which references tileable PNG 9-patch assets;
 AnimationDrawable , which references your animation assets; LayerDrawable , which
is used to composite image assets into layers; TransitionDrawable , which is used to
transition or fade your image assets into each other; ScaleDrawable , which can be used
to resample (scale) any image assets; ClipDrawable , which can be used to clip (crop)
an image asset; InsetDrawable , which is used to place an image asset inside of another
drawable; StateListDrawable , which defines image assets for different states; and
 LevelListDrawable , which defines an image asset for each level, such as signal levels
on your smartphone signal level indicator, for instance. You will want to research each
Drawable class, before using it!

 If you want to dive into these graphics classes at the professional Android level,
check out Pro Android Graphics (Apress 2013), which covers all of these Drawable
objects, classes, and assets, as well as the workflow necessary to implement them inside
of your Android Studio applications. Next, let’s take a look at how new media assets can
be utilized for Android user interface design.

 Android Layout: Assets Used in XML UI Designs
 The layout in Android is aptly named, as it is a definition of how your user interface
elements and Drawable assets are going to be “laid out” relative to each other on your
Android device display screen. Chances are that if you want an Android app to have a
custom design for each genre of device (iTV set, smartphone, tablet, smartwatch), you
are going to have a number of these custom /res/layout folders, not just a /res/layout-
land and a /res/layout-port folder, as I used as examples earlier.

 You’ll probably also have a large number of complex alternate resource folders,
such as /res/layout-sw800dp-land for tablets, /res/layout-sw1280dp-port-long for
smartphones, and /res/layout-sw240dp-land for smartwatches. The more of them you
define, the more perfectly the app will morph between different manufacturers’ Android
hardware device products.

 Your /res/layout folder and any custom layout alternate resource folders that you
may create generally contain UI layout XML definition files.

 These are user interface designs, which are handcrafted using XML markup and
stored in filenamehere .xml files. These files are located in the /res/layout folder or one
of the alternate layout resource folders that you have created.

 Since this is your Android Studio New Media Fundamentals book and not an
Android programming book, I will leave both XML and Java programming to other more
specialized books, such as my Pro Android UI (Apress, 2014) title, for instance.

 Asset Referencing: The Android Resources Class
 Android OS has an application resource system that keeps track of all non-programming
assets associated with your application. You can use an Android Resource class to
access the application resources. This Resource class is a public class, which extends

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

135

the java.lang.Object base class, meaning it was scratch-coded by the Android OS
development team specifically to provide resources for your Android Studio project.
The Java class hierarchy for the Resources class therefore looks like the following:

 java.lang.Object
 > android.content.res. Resources

 The Resources class has one known direct subclass named MockResources .
Another unrelated class, ResourceCompat , can also be used to access resources
across all previous versions of the Android OS. Generally, however, you want to use
the Resources class. You should acquire the Resources instance associated with your
application with getResources() . So to import one of your digital image assets, you would
use a .getResources.getDrawable (int id, Resources.Theme theme) method call.

 It is important to note that the simpler version of this method call, .getResources.
getDrawable (int id) was deprecated in Android API Level 22. This was probably to
force developers to explicitly declare the Theme object when getting a drawable.

 So in your existing Android Java code, if you have a Java statement that looks like this:

 getResources() .getDrawable(R.drawable .your_drawable_name_here)

 You should replace it with the following Java statement:

 Resources .getDrawable(getResources() , R.drawable.your_drawable_name, null)

 The null means “use the current Theme object defined for my application.” The R , as
you know as an Android developer, equates to the /res folder, and the .drawable to your
 /drawable subfolder. These are symbols that are used to reference a new media asset. So
the layout definition is in R.layout.name, which references an XML UI layout definition
file. Again, this is all information that you should already know. I am just including it here
for the sake of completeness.

 Therefore, R.drawable.filename in Android Studio Java is the equivalent of the path
structure /res/drawable/filename.png , but then again, as an Android developer, you
already know that.

 Android’s SDK tool compiles an application resources hierarchy into your
application binary at build time. To use a new media asset as a resource, you must install
it correctly in your project /res directory folder hierarchy, and then build an application
once all the assets are installed in the correct folder names, as I outlined in this chapter.

 As part of the application’s Gradle build process, the SDK tool generates symbols
for each resource, which you can use in your application code to then directly access the
resources.

 Using application resources such as external new media assets, UI layout definitions,
and constants make it easy to update various characteristics of your application without
having to modify your Java code, which is really convenient as your application size and
complexity increases.

 More importantly, by providing a significant number of alternative resources
using the alternate resource subfolder naming conventions, you are able to optimize
an application for a wide variety of Android hardware device genres and different
manufacturer device configurations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ REFERENCING NEW MEDIA ASSETS IN ANDROID STUDIO

136

 You can also leverage this capability to fine-tune and customize an application for
different languages, screen sizes, aspect ratios, and pixel densities, all based upon the
constant tables saliently outlined in this chapter.

 Along with using the new media asset knowledge from this book to its maximum
capability, using the resources “tricks and tips” in this last chapter should be a very
important aspect of developing your Android application. If you make an application
that is widely compatible across different types of devices, it equates to significantly more
sales, which improves the profits for your bottom line.

 Summary
 In this final chapter, you took a look at some of the key issues in Android Studio regarding
referencing new media assets inside of the Android SDK and OS. You looked at supported
folder naming constants, seven pixel density constants, almost a dozen different types of
Drawable objects, how to correctly create alternate resource folder names, and how to
use the Resources or ResourcesCompat classes to import your new media assets into the
system memory for use inside of your multimedia-savvy Android Studio applications.

 Of course, this has only been a review for all of you Android developers, but I wanted
to include it here to be thorough and to show you how all the new media asset types
covered over the course of this book hook into Android Studio projects and the Android
SDK and OS.

 I hope you have enjoyed this exploration of what Android can do with new media
assets, and that you’ll explore using new media in your Android Studio applications in the
near future.

www.it-ebooks.info

http://www.it-ebooks.info/

137© Wallace Jackson 2015
W. Jackson, Android Studio New Media Fundamentals,
DOI 10.1007/978-1-4842-9867-1

 A
 Adaptive Multi-Rate (AMR) audio codecs , 40
 Adaptive Multi-Rate Narrow-Band

(AMR-NB) , 40
 Adaptive Multi-Rate Wide-Band

(AMR-WB) , 40
 Advanced Audio Coding (AAC) , 40
 Algorithmic blending mode , 21
 Android Extension Package (AEP) , 110
 Android i3D , 126
 Android media asset references

 alternate resource folders , 131
 application resource system , 134
 DPI constants , 133
 drawable objects , 133
 layout , 134
 MIDI concept , 129
 raster imagery , 129
 resources , 129

 Application resource system , 134
 Aspect ratio digital image

 math , 15
 screen shapes , 15
 2D radio , 14
 ultra-widescreens , 15
 widescreen aspect , 14

 Asset resources
 alternate resource folders , 131
 naming conventions , 132
 ProAndroidWearable project , 130
 project folder hierarchy , 129
 sub folder hierarchy , 129

 Audacity , 5
 Audio concepts and terminology

 adaptive multi-rate audio codecs , 40
 advanced audio coding (AAC) , 40

 bit-rate optimization , 37
 fi le formats , 37
 frequency , 35
 MP3 data format , 38
 Musical Instrument Data Interface , 38
 OGG Vorbis format , 39
 pulse-code modulation codec , 40
 resolutions , 35
 sampling , 34
 SoundPool and MediaPlayer

methods , 33
 sound wave frequencies , 34
 streaming audio/captive audio , 36
 transmission and digitization , 36
 24-bit FLAC , 39

 Autodesk 3DS format , 118

 B
 Billboard mapping mode (billboard

projection) , 112
 Blender , 8

 C
 Camera projection , 112
 Character animation , 115
 Collaborative design activity DAE , 119
 Color fi lls , 83
 Color theory

 alpha channel , 19
 ARGB/RGBA , 19
 CMYK , 15
 compression , 18
 depth , 18
 Floyd-Steinberg , 18
 hexadecimal data values , 17

 Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

138

 image compositing , 19
 indexed color images , 18
 intensities , 16
 lossless compression , 19
 lossy compression , 19
 mathematics , 16
 RGB color space , 15
 subtractive color (CMYK) , 16
 32-bit color data , 19
 transparency value data , 19
 24-bit color , 19

 ConvolutionMatrix class , 23
 Cubic Bezier curve , 79
 Cubic projection , 112
 Cylindrical projection , 112

 D
 Data footprint optimization

 audio sample resolution , 45
 codec compression results , 49
 color and alpha data , 28
 compositing layer , 29
 desktop microphone , 44
 device compatibility , 43
 digital image compression , 27
 drop-down menu , 44–45
 edit metadata dialog , 49
 FLAC audio fi les , 50
 glass zoom tool magnifi cation , 46
 indexed color images , 30
 JPEG and PNG , 29
 M4A (AAC) fi les , 53
 MediaMetadataRetriever class , 50
 menu sequence-export , 48
 MP3 fi le format , 52
 narrow band format , 54
 noise reduction , 47
 OGG Vorbis fi les option , 51
 PCM codec format , 48
 PNG32 images , 29
 resolution , 28
 system memory , 28
 technical factors , 27
 transparency alpha channel , 32
 trim feature , 46
 24-bit images , 29
 2D/3D vertex and line , 27
 work process , 44

 Drawable
 DIP screen , 132
 referencing assets , 133
 system memory , 133

 E
 Elliptical arc , 80
 Encoding software , 62

 F
 Frame animation , 133
 Free Lossless Audio Codec (FLAC) , 39

 G
 Gradient fi lls , 83

 H
 Hexadecimal data values , 17
 High-dynamic-range imaging (HRDI) , 18
 Horizontal Line format , 79

 I
 Illustration concepts and terminology

 raster imagery , 77
 scalable vector graphics , 77
 SVG format , 85
 vector imagery , 77
 vertices and curves. see Vector

components
 Illustration data footprint optimization

 fl oating point version , 100
 inkscape. see Inkscape
 integers , 99
 path data , 100

 Image concepts and terminology
 alpha channels , 21
 anti-aliasing eff ect , 22
 aspect ratio , 14
 blending mode , 21
 color depth , 18
 color theory , 15
 digital illustration , 12
 interactive , 12
 LayerDrawable class , 21
 matching images , 13

Color theory (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

139

 megapixels , 13
 NinePatch assets , 23
 pictures and elements , 11
 pixels , 11
 PorterDuff class , 21
 raster images , 12
 rectangle equation , 13
 rendering image , 12
 resolution , 12
 smoothing edges , 22
 3D rendering and animation , 12
 total image pixels , 13
 transparency defi nition , 21
 vector images , 12
 vertices , 12

 Imagery vs. Illustration , 12
 Indexed color images

 8-bit color , 30
 banding , 30
 codec , 18
 diff usion dither and 32 colors , 31
 dithering , 30
 palette , 30
 PNG24 image , 30

 Inkscape
 color swatch selector , 88
 complex shapes. see Spline shapes
 fl oating palette docking , 88
 layout , 87
 octagon.svg fi le , 90
 OS text editor , 90
 polygon shapes , 88
 primary function tools , 87
 software packages , 7
 status bar , 88
 SVG data export , 89
 vector data , 87

 J, K
 JavaFX markup language data format , 120
 JavaFX scene graph

 animation , 122
 interface design libraries , 120
 interpolator class , 122
 javafx.scene package , 120
 KeyFrame objects , 122
 models , 121
 points, polygons, mesh, and

shading , 121
 shape package , 121

 timeline object , 122
 Java OpenGL (JOGL) , 124
 jMonkeyEngine , 123

 L
 libGDX , 125
 Lightweight Java Game Library

(LWJGL) , 124
 Lightworks , 6
 Linear animation

 delta scale keyframe type , 113
 insert keyframe menu , 113
 seamless loop , 114

 Linear gradients , 83
 Line (lineto) , 79
 Lossless compression , 19
 Lossy compression , 19

 M
 Matching image resolution , 13
 Motion interpolator , 114
 Multimedia assets

 advantage , 2
 audacity 2.1 software , 5
 Blender , 8
 fi le formats , 2
 foundational

knowledge , 1
 genres , 2
 GIMP , 4
 Inkscape , 7
 Lightworks , 6
 software packages , 4

 Musical Instrument Data Interface
(MIDI) , 38

 N
 NinePatch assets

 android.graphics package , 24
 axis-independent scaling , 26
 ImageView , 24
 NinePatch class , 24
 NinePatchDrawable , 23
 9-patch image asset , 24
 9-patch tool , 23
 patches creation , 24
 scalable , 23
 static , 23

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

140

 Non-linear animation
 interpolators , 114
 motion curve , 114
 motion interpolator , 114
 motion path , 114

 O
 OpenGL package , 126
 Optimization theory

 codecs , 62
 decoder , 62
 encoder settings , 62
 encoding software , 62
 frames , 63
 keyframe , 63
 open source solution , 62
 sharpness setting , 63
 tweak/experiment , 63

 Organic light-emitting diodes (OLED) , 13

 P
 Painting operations , 82
 Path components

 cubic Bézier curves , 82
 elliptical arcs , 80
 lines , 80
 lineto commands , 80
 moveto (M) command , 80
 quadratic Bezier curve , 82

 Pattern fi lls , 84
 Planar projection , 112
 Portable Network Graphics (PNG) , 3
 PorterDuff class , 21
 Procedural animation , 115–116
 Pulse-Code Modulation (PCM) , 40

 Q
 Quadratic Bezier curve , 79

 R
 Radial gradients , 83
 Raster vs. vector , 12
 Resolution , 12

 S
 Scalable Vector Graphics (SVG)

 coding vector shape data , 85
 illustration concepts and

terminology , 77
 path data , 79

 Short and smooth curve , 79
 Short quadratic Bezier , 80
 Smartwatches , 14
 Spatial projection , 112
 Spherical projection , 112
 Spline shapes

 Draw Bezier curves and straight lines
tool , 91

 edit path tool (nodes) , 94
 heart’s path shape , 93–94
 nodes tool , 96
 pull down , 97–98
 shift keyboard modifi er , 98–99
 spline handles , 92
 tensioning handle , 95

 Squeeze
 Apply Preset option , 75
 compression , 71, 75
 context menu , 75
 Edit context-sensitive menu option , 73
 fi le loading and codecs , 73
 import fi le icon , 72
 intro.avi fi le , 72
 MPEG-4 codecs , 74
 PCM WAV fi le , 75

 STereoLithography (STL) , 119

 T
 Terragen

 credits screen creation , 65
 output image fi le , 67
 software package , 66
 TerraGen data format fi le , 66

 Texture mapping concepts
 animation , 113
 baking texture maps , 109
 billboard mapping mode (billboard

projection) , 112
 bump texture map , 109

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

141

 camera projection , 112
 channels , 109
 cubic projection , 112
 cubic texture map , 112
 cylindrical projection , 112
 fl oating point values , 112
 illumination texture map , 109
 map orientation , 111
 planar projection , 112
 rendered model , 108
 scene graph and sphere object , 110
 shader defi nition , 110
 shader design , 111
 spatial projection , 112
 specular texture map , 109
 spherical projection , 112
 UV mapping , 112
 UVW map coordinate , 111
 volumetric texturing , 109

 Th ird-party Java 3D engines
 jMonkeyEngine , 123
 JOGL , 124
 libGDX , 125
 LWJGL , 124

 3D media concepts and terminology
 algorithmic process , 103
 Blender Edges menu , 107
 connection , 103
 data points , 102
 decimation/smoothness numeric

factor , 103
 double-sided polygons , 106
 edge and vector , 103
 fl at shaded , 106
 fl ip normals operation , 106
 geometry , 102
 hash patch spline algorithm , 104
 interactive 3D vector objects , 101
 OpenGL , 101
 polygons , 102
 quadrilaterals , 102
 smoothing groups , 106
 Silo quad modeling software , 104
 surface , 104
 3D model. see Texture

mapping concepts
 topology , 108
 Transform panel and Shading

panel , 108
 vertex and surface normals , 105

 3D media data formats and platforms

 autodesk format , 118
 collada. see Collaborative design

activity DAE
 data fi le format , 117
 FXML , 120
 JavaFX libraries. see JavaFX scene

graph
 OpenGL/Open Graphics

Library , 117, 126
 open source fi le formats , 117
 STereoLithography , 119
 third-party engines , 123
 wavefront technologies , 118
 X3D , 119

 Tileable Image Pattern , 84

 U
 UV mapping , 112

 V
 Vector components

 clipping path , 78
 compound paths , 80
 curveto command , 78
 elliptical arc command , 78
 fi ll , 82
 linear gradient , 83
 lines/curves , 78, 84
 path data element , 78
 radial gradient , 83
 shapes and colors , 82
 solid color value , 83
 stroke , 78, 84
 tileable image pattern , 84
 2D shapes , 78
 vertex , 78

 Vector imagery , 12
 Vertical Line , 79
 Video assets data footprint optimization

 Squeeze , 71
 Terragen , 65
 VirtualDub , 68

 Video concepts and terminology
 algorithms/codecs , 59
 AVI fi le format , 59
 compatible classes , 57
 compression (bit rates and

playback) , 61
 encoder settings , 62

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

142

 frames and rates , 57
 fundamental concepts , 57
 inter-frame , 59
 mathematics/multiplication , 58
 MPEG-4 H.264 AVC , 59
 optimization theory , 62
 resolutions/industry standards , 60
 storage/captive vs. streaming , 61
 VideoView, MediaController and

MediaPlayer , 57
 VirtualDub

 build progress , 71
 compression menu sequence , 68

 fi le menu sequence , 69
 full-frames , 71
 3D rendering

sequence , 69
 uncompressed AVI data

fi le , 68

 W
 Wavefront technologies , 118

 X, Y, Z
 X3D 3D data format , 119

Video concepts and terminology (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Enhancing Android Apps: Using New Media Assets
	New Media Genres: Multimedia Pie Slices
	Separate Your App from the Crowd: New Media
	Android Studio New Media Support: File Formats

	Downloading and Installing Your Software
	Digital Image Editing and Compositing: GIMP
	Digital Audio Editing and Effects: Audacity
	Digital Video Editing and Effects: Lightworks
	Digital Illustration and 2D Modeling: Inkscape
	3D Modeling, Rendering, and Animation: Blender

	Summary

	Chapter 2: Digital Images: Concepts and Terminology
	Pixels: Your Digital Image Building Blocks
	Raster vs. Vector: Imagery vs. Illustration
	Rendering: Convert Vector Shape to Raster Image

	Resolution: The Number of Image Pixels
	Doing the Math: Calculate Your Total Image Pixels
	Matching Image Resolution to Android Devices

	Aspect Ratio: The 2D Ratio of W:H Pixels
	Screen Shapes: Common Display Aspect Ratios
	Doing the Math: How to Arrive at the Aspect Ratio

	Color Theory: Using Pixel Color Channels
	The Mathematics of RGB Color: Multiplying Your Intensities
	Representing RGB Color Values: Using Hexadecimal Data Values

	Color Depth: Bit-Levels That Define Color
	Indexed Color: Using Palettes to Hold 256 Colors
	True Color: Using 24-Bit Color Imagery
	True Color plus Alpha: Using 32-Bit Digital Images

	Alpha Channels: Defining Transparency
	PorterDuff: Algorithmic Blending Modes
	Smoothing Edges: Anti-Aliasing
	NinePatch Assets: 9-patch Digital Images
	NinePatch Class: Creating NinePatch in Android
	Draw 9-patch: Create a NinePatchDrawable Image

	Summary

	Chapter 3: Digital Image Assets: Data Footprint Optimization
	Optimizing Digital Imagery: Key Factors
	Image Resolution: Number of Pixels in the Array
	Image Color Depth: Color Channels for Each Pixel
	PNG32: Using True Color Images that Have an Alpha Channel
	True Color Images: Using 24-Bit Color Depth with JPEG and PNG
	Indexed Color: Using Up to 8-Bit Color with Diffusion Dithering

	Image Alpha Channel: Pixel Transparency Channel

	Summary

	Chapter 4: Digital Audio: Concepts and Terminology
	Audio Concepts and Terminology
	Foundation of Analog Audio: Sound Waves of Air
	Digital Audio: Samples, Resolution, and Frequency
	Digital Audio Data: Transmission and Digitization
	Digital Audio Transmission: Streaming Audio or Captive Audio?
	Streaming Digital Audio Data: Optimally Setting Your Bit-Rates

	Digital Audio in Android: File Formats
	MIDI: Musical Instrument Data Interface
	MPEG-3 Audio: The Popular MP3 Data Format
	FLAC: The 24-Bit Free Lossless Audio Codec
	OGG Vorbis: A Lossy Open Source Audio Codec
	MPEG-4 Audio: Advanced Audio Coding (AAC)
	MPEG-4 AMR: Adaptive Multi-Rate Audio Codecs
	PCM Audio: Pulse-Code Modulation Codec

	Summary

	Chapter 5: Digital Audio Assets: Data Footprint Optimization
	Audio Optimization: Device Compatibility
	Digital Audio Optimization: Work Process
	Trim an Audio Sample: Removing Unused Audio
	Noise Reduction: Removing Background Noise
	Establishing a Baseline: Exporting PCM Format
	Exporting Lossless FLAC: FLAC Audio Files
	Exporting Lossy Ogg Vorbis: OGG Audio Files
	Exporting Lossy MPEG-3 Format: MP3 Audio Files
	Exporting Lossy MPEG-4 Format: M4A Audio Files
	Exporting Narrow Band Format: AMR Audio Files

	Summary

	Chapter 6: Digital Video: Concepts and Terminology
	Digital Video Concepts and Terminology
	Digital Video Concepts: Frames and Frame Rates
	Digital Video Mathematics: Doing the Multiplication
	Digital Video Algorithms: Digital Video Codecs
	Video in Android: MPEG-4 H.264 AVC and WebM
	MPEG-4 H.264 AVC: The Most Widely Used and Supported Codec
	ON2 VP8 and VP9: The Newcomer WebM or WebMovie Format

	Digital Video Resolutions: Industry Standards
	Digital Video Storage: Captive vs. Streaming
	Digital Video Compression: Bit Rates and Playback
	Digital Video Optimization: Encoding Software
	Digital Video Optimization: Encoder Settings

	Summary

	Chapter 7: Digital Video Assets: Data Footprint Optimization
	Creating Digital Video Content: Terragen
	Creating Uncompressed AVIs: VirtualDub
	Applying Video Compression: Squeeze
	Summary

	Chapter 8: Digital Illustration: Concepts and Terminology
	Digital Illustration Is Rendered, Not Stored
	Vector Components: Vertices and Curves
	The Vertex: The Foundation for Your 2D Shapes
	The Path: Connecting Vertices to Create a Shape
	Lines: The Simplest of the Path Components
	Elliptical Arcs: Circular and Elliptical Arcs
	Cubic Bezier Curve
	Quadratic Bezier Curve

	The Fill: Filling Your Closed Shapes with Colors
	Color Fill: Filling Your Shape with a Solid Color Value
	Gradient Fills: Linear Gradients and Radial Gradients
	Pattern Fill: Filling Your Shape with a Tileable Image Pattern

	The Stroke: Controlling How Lines and Curves Look

	SVG Format: Coding Vector Shape Data
	Summary

	Chapter 9: Digital Illustration: Data Footprint Optimization
	Inkscape: Vector Illustration Shape Data
	The Layout: Overview of Key Areas in Inkscape
	Polygon Shapes: Creating Basic Closed Shapes
	SVG Data Export: Using Inkscape File ➤ Save As
	Spline Shapes: Creating Complex Shapes
	Using the Draw Bezier Curves Tool: Drawing Your Rough Shape
	Using the Edit Paths by Nodes Tool: Refining Your Heart Shape

	Data Footprint Optimization: Use Integers
	Summary

	Chapter 10: 3D New Media: Concepts and Terminology
	Interactive 3D Assets: 3D Vector Content
	The Foundation of 3D: The Geometry of the Mesh
	Data Points in a 3D Space: Origins of the 3D Vertex
	Connect the 3D Vertices: Edges Bridge 3D Vertices Together
	Surface: Three Edges Form a Polygon, Four Edges Form a Quad
	The Direction a Surface is Facing: The Concept of Surface Normals
	Smoothing a Faceted Surface: Using Smoothing Groups

	Skinning a 3D Model: Texture Mapping Concepts
	Texture Map Basics: Channels, Shading, Effects, and UVW Maps
	Shader Design: Shader Channels and GLSL Shader Language
	Texture Map Orientation: Projection Types and UVW Coordinates

	3D Animation: Keyframes, Motion Curves, and IK
	Linear Animation: Tracks, Keyframes, Looping, and Ranges
	Non-Linear Animation: Motion Paths and Motion Curves
	Character Animation: Bones, Muscles, and Inverse Kinematics
	Procedural Animation: Physics, Fluid, Hair, and Particle Systems

	Summary

	Chapter 11: 3D New Media: Data Formats and Platforms
	3D Model Data: Open Source File Formats
	Autodesk: 3D Studio for DOS 3DS
	Wavefront Technologies: Advanced Visualizer OBJ
	Collada: ISO Collaborative Design Activity DAE
	Stereolithography or STL: 3D Systems CAD
	X3D: The ISO Successor to VRML
	FXML: The JavaFX Markup Language Data Format

	Java 3D Support: JavaFX Scene Graph
	3D Modeling: Points, Polygons, Mesh, and Shading
	3D Animation: Timeline, KeyFrame, and Interpolator

	Third-Party Java Scene Graph 3D Engines
	jMonkeyEngine: The JME i3D Game Engine
	LWJGL: Lightweight Java Game Library V3
	JOGL: Java OpenGL, OpenAL, and OpenCL
	libGDX: Cross-Platform Desktop and Android 3D

	Android OpenGL Package: Android i3D
	Summary

	Chapter 12: Referencing New Media Assets in Android Studio
	Android Assets: Drawables and Raw Data
	Android Resources: Assets Subfolder Hierarchy
	Alternate Resource Folders: Custom Folder Names
	Android Drawable: Draw Assets to Any DPI Screen
	Drawable Objects: Referencing Assets in Memory
	Android Layout: Assets Used in XML UI Designs
	Asset Referencing: The Android Resources Class

	Summary

	Index

