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Introduction

0.1 Data taking the form of time series, where observations appear sequen-

tially, usually with a fixed time interval between their appearance (every

day, week, month, etc.,), are ubiquitous. Many such series are followed

avidly: for example, the Dow Jones Industrial stock market index opened

2017 with a value of 20,504, closing the year on 24,719; a rise of 20.6%,

one of the largest annual percentage increases on record. By January 26,

2018, the index had reached an intraday high of 26,617 before declining

quickly to close on February 8 at 23,860; a value approximately equal to that

of the index at the end of November 2017 and representing a fall of 10.4%

from its peak. Five days later, it closed on February 13 at 24,640; 3.3%

above this “local minimum.” By the end of May 2018, the index stood at

24,415; little changed over the ensuing 3 months.

This “volatility,” which was the subject of great media and, of course,

stock market attention, was surpassed by the behavior of the price of the

crypto-currency bitcoin during a similar period. Bitcoin was priced at $995

at the start of 2017 and $13,850 at the end of the year; an astonishing almost

1300% increase. Yet, during December 17, just a fortnight before, it had

reached an even higher price of $19,871; an almost 1900% increase from the

start of the year. The decline from this high point continued into the new

year, the price falling to $5968 on February 6 (a 70% decline from the peak

price less than 2 months prior), before rebounding again to close at $8545 on

February 13. Since then the price has increased to $11,504 on March 4

before falling back to $6635 on April 6. At the end of May 2018, the price

stood at $7393.

0.2 While financial time series observed at high frequency often display

such wildly fluctuating behavior, there are many other time series, often

from the physical world, which display interesting movements over longer

periods. Fig. I.1 shows the decadal averages of global temperatures from the

1850s onward. The behavior of temperature time series, whether global or

regional, have become the subject of great interest and, in some quarters,

great concern, over the past few decades. Fig. I.1 shows why. Global tem-

peratures were relatively constant from the 1850s to the 1910s before

increasing over the next three decades. There was then a second “hiatus”

between the 1940s and 1970s before temperatures began to increase rapidly

ix



from the 1980s onward. Such behavior, in which trends are interspersed with

periods of relative stability, is a feature of many time series.

0.3 How to model time series statistically is the concern of this book, in

which, as its title suggests, I emphasize the practical, applied, aspects of sta-

tistical time series modeling. While a formal theoretical framework is, as we

shall see, an unavoidable necessity, I do not overburden the reader with

“technical niceties” that have little practical impact—my aim is always to

provide methods that may be used to analyze and understand time series that

occur in the “real world” that researchers face.1 Examples are, therefore,

drawn from a variety of fields that I am familiar with and have indeed

researched in.

0.4 Chapter 1, Time Series and Their Features, initiates our analysis by

considering some of the features that may be exhibited by an individual time

series or a group of time series, and this leads naturally to Chapter 2,

Transforming Time Series, where a variety of transformations are introduced

that enable observed time series to become more amenable to statistical anal-

ysis. Chapter 3, ARMA Models for Stationary Time Series, introduces the

basic formal concepts of stochastic processes and stationarity that underpin

all statistical time series models. It then develops the basic class of univariate

time series models, the autoregressive-moving average (ARMA) process,

which is the core model used throughout the book. Not every time series is
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FIGURE I.1 Average decadal global temperatures, 1850�2010.
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stationary, however: indeed, many require transforming to stationarity.

Integrated processes, which may be made stationary by differencing, are an

important class of nonstationary processes and Chapter 4, ARIMA Models

for Nonstationary Time Series, thus extends ARMA models to the AR-

integrated-MA (or ARIMA) class of processes.2

An important aspect of applied modeling is that of determining whether a

time series is stationary or nonstationary and, if found to be the latter, of

determining what form of nonstationarity it takes. Chapter 5, Unit Roots,

Difference and Trend Stationarity, and Fractional Differencing, considers

this problem within the context of testing for unit roots, discriminating

between difference and trend stationarity, and investigating whether frac-

tional differencing is required. The analysis is extended in Chapter 6,

Breaking and Nonlinear Trends, to consider models having breaking and

nonlinear trends.

An important use of time series models is in forecasting future, and hence

unobserved, values of a series. Chapter 7, An Introduction to Forecasting

With Univariate Models, thus introduces the theory of univariate time series

forecasting based on the range of models introduced so far. Chapter 8,

Unobserved Component Models, Signal Extraction, and Filters and

Chapter 9, Seasonality and Exponential Smoothing, both focus on other types

of univariate models, the former on unobserved component models, the latter

on exponential smoothing techniques, which are particularly useful when

seasonality, which is also discussed in this chapter, is a feature of the time

series.

Chapter 10, Volatility and Generalized Autoregressive Conditional

Heteroskedastic Processes, considers volatility, characterized by a time-

varying variance, and consequently introduces the generalized autoregressive

conditional heteroskedastic (GARCH) process to model such volatility. A

time-varying variance may be regarded as a form of nonlinearity, but there

are many other types of nonlinear processes and these are reviewed in

Chapter 11, Nonlinear Stochastic Processes.

The remainder of the book deals with multivariate models, beginning in

Chapter 12, Transfer Functions and Autoregressive Distributed Lag

Modeling, with an introduction to transfer functions and autoregressive-

distributed lag (ARDL) models, in which an “endogenous” time series is

influenced by one or more “exogenous” series. The endogenous/exogenous

distinction may be relaxed to allow a group of time series to all be consid-

ered endogenous. This leads to the vector autoregressive (VAR) model and

the related concept of (Granger) causality which is the topic of Chapter 13,

Vector Autoregressions and Granger Causality.

These two chapters are restricted to analyzing groups of stationary time

series, but when integrated series are allowed, some important new concepts

need to be introduced. The inclusion of integrated series in an ARDL model
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requires consideration of the related concepts of error correction and cointe-

gration, as outlined in Chapter 14, Error Correction, Spurious Regressions,

and Cointegration. Chapter 15, VARs With Integrated Variables, Vector

Error Correction Models, and Common Trends, extends these concepts to a

VAR setting, which leads to the vector error correction model (VECM) and

the concept of common trends.

Chapter 16, Compositional and Count Time Series, focuses on both

the modeling of time series that come as “counts,” that is, small integer

values for which the usual assumption of a continuous measurement scale

is untenable, and the implications of modeling a set of time series that form

a “composition.” These are series that are shares of a whole and must,

therefore, satisfy the twin constraints of taking only values between zero

and unity and of summing to unity for every observation, constraints which

must, for example, be satisfied by forecasts of future shares. Chapter 17,

State Space Models, introduces a general setup known as the state space

form, which enables many of the models introduced in the book to be cast

in a single framework, which may be analyzed using a powerful technique

known as the Kalman filter. Chapter 18, Some Concluding Remarks,

provides some concluding remarks about the nature of applied time series

modeling.

0.5 Each chapter contains applied examples, some of which are “devel-

oped” over several chapters. All computations use the Econometric Views,

Version 10 (EViews 10) software package and full details on how the compu-

tations were performed are provided in the computing exercises that accom-

pany each chapter. EViews 10 was used as it is an excellent and popular

package developed specifically for the time series techniques discussed in

the book. However, I am aware that many researchers outside the economics

and finance area use the statistical programming language R, and EViews 10

contains links between EViews routines and R routines, which those

researchers may wish to consult.

0.6 It is assumed that the reader has a background in introductory statistics

(at the level of Mills, 2014, say) and some basic knowledge of matrix alge-

bra (Mills, 2013a, Chapter 2, provides a convenient presentation of the mate-

rial required).

0.7 A brief word on notation. As can be seen, chapter sections are denoted

x.y, where x is the chapter and y is the section (this chapter is numbered 0).

This enables the latter to be cross-referenced as §x.y. Matrices and vectors

are always written in bold font, upper case for matrices, lower case for

vectors wherever possible. The latter are regarded as column vectors unless

otherwise stated: thus, A denotes a matrix while a is a vector.
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ENDNOTES

1. There are several highly technical treatments of time series analysis, most notably Brockwell

and Davis (1991) and Hamilton (1994), which the interested reader may wish to consult.

2. Acronyms abound in time series analysis and have even prompted a journal article on them

(Granger, 1982), although in the almost four decades since its publication many, many more

have been suggested!
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1.1 As stated in the Introduction, time series are indeed ubiquitous, appear-

ing in almost every research field where data are analyzed. However, their

formal study requires special statistical concepts and techniques without

which erroneous inferences and conclusions may all too readily be drawn, a

problem that statisticians have found necessary to confront since at least

Udny Yule’s Presidential Address to the Royal Statistical Society in 1925,

provocatively titled “Why do we sometimes get nonsense-correlations

between time series? A study in sampling and the nature of time series.”1

1.2 In general, a time series on some variable x will be denoted as xt,

where the subscript t represents time, with t5 1 being the first observation

available on x and t5 T being the last. The complete set of times

t5 1; 2; . . .; T will often be referred to as the observation period. The obser-

vations are typically measured at equally spaced intervals, say every minute,

hour, or day, etc., so the order in which observations arrive is paramount.

This is unlike, say, data on a cross section of a population taken at a given

point in time, where the ordering of the data is usually irrelevant unless

some form of spatial dependence exists between observations.2

1.3 Time series display a wide variety of features and an appreciation of

these is essential for understanding both their properties and their evolution,

including calculating future forecasts and, therefore, unknown values of xt at,

say, times T 1 1; T 1 2; . . .; T 1 h, where h is referred to as the forecast

horizon.

Fig. 1.1 shows monthly observations of an index of the North Atlantic

Oscillation (NAO) between 1950 and 2017. The NAO is a weather phenome-

non in the North Atlantic Ocean and measures fluctuations in the difference

1
Applied Time Series Analysis. DOI: https://doi.org/10.1016/B978-0-12-813117-6.00001-6

© 2019 Elsevier Inc. All rights reserved.
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of atmospheric pressure at sea level between two stable air pressure areas,

the Subpolar low and the Subtropical (Azores) high. Strong positive phases

of the NAO tend to be associated with above-normal temperatures in eastern

United States and across northern Europe and with below-normal tempera-

tures in Greenland and across southern Europe and the Middle East. These

positive phases are also associated with above-normal precipitation over

northern Europe and Scandinavia and with below-normal precipitation over

southern and central Europe. Opposite patterns of temperature and precipita-

tion anomalies are typically observed during strong negative phases of the

NAO (see Hurrell et al., 2003).

Clearly, being able to identify recurring patterns in the NAO would be

very useful for medium- to long-range weather forecasting, but, as Fig. 1.1

illustrates, no readily discernible patterns seem to exist.

AUTOCORRELATION AND PERIODIC MOVEMENTS

1.4 Such a conclusion may, however, be premature for there might well be

internal correlations within the index that could be useful for identifying

interesting periodic movements and for forecasting future values of the

index. These are typically referred to as the autocorrelations between a

current value, xt, and previous, or lagged, values, xt2k, for k5 1; 2; . . .. The
lag-k (sample) autocorrelation is defined as

rk 5

PT

t5k11

xt 2 xð Þ xt2k 2 xð Þ
Ts2

ð1:1Þ
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FIGURE 1.1 NAO index: monthly, January 1950�December 2017. NAO, North Atlantic Oscillation.

Data from Climate Prediction Center, NOAA Center for Weather and Climate Prediction.
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where

x5 T21
XT

t51

xt ð1:2Þ

and

s2 5 T21
XT

t51

xt2xð Þ2 ð1:3Þ

are the sample mean and variance of xt, respectively. The set of sample auto-

correlations for various values of k is known as the sample autocorrelation

function (SACF) and plays a key role in time series analysis. An examination

of the SACF of the NAO index is provided in Example 3.1.

1.5 A second physical time series that has a much more pronounced

periodic movement is the annual sunspot number from 1700 to 2017 as

shown in Fig. 1.2. As has been well-documented, sunspots display a

periodic cycle (the elapsed time from one minimum (maximum) to the

next) of approximately 11 years; see, for example, Hathaway (2010).

The SACF can be used to calculate an estimate of the length of this cycle,

as is done in Example 3.3.

1.6 Fig. 1.3 shows the temperature of a hospital ward taken every hour for

several months during 2011 and 2012 (see Iddon et al., 2015, for more

details and description of the data). Here there is a long cyclical move-

ment—an annual swing through the seasons—superimposed upon which are

short-term diurnal movements as well as a considerable amount of random
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FIGURE 1.2 Annual sunspot numbers: 1700�2017. Data from WDC-SILSO, Royal Observatory

of Belgium, Brussels.
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fluctuation (known as noise), typically the consequence of windows being

left open on the ward for short periods of time and more persistent move-

ments which are related to external temperatures and solar irradiation

(sunshine).

SEASONALITY

1.7 When a time series is observed at monthly or quarterly intervals an

annual seasonal pattern is often an important feature. Fig. 1.4 shows quar-

terly United Kingdom beer sales between 1997 and 2017 that have a pro-

nounced seasonal pattern that has evolved over the years: first quarter sales

are always the lowest, fourth quarter sales are usually, but not always, the

highest, while the relative size of second and third quarter sales seems to

fluctuate over the observation period.

STATIONARITY AND NONSTATIONARITY

1.8 An important feature of Figs. 1.1�1.3 is the absence of any sustained

increase or decline in the level of each series over the observation period; in

other words, they fluctuate around a constant mean level which is clearly to

be expected from the physical nature of each series. A constant mean level is

one, but not the only, condition for a series to be stationary. In contrast, beer
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FIGURE 1.3 Hourly temperatures in �C of a ward in Bradford Royal Infirmary during 2011

and 2012. Data from Iddon, C.R., Mills, T.C., Giridharan, R., Lomas, K.J., 2015. The influence

of ward design on resilience to heat waves: an exploration using distributed lag models. Energy

Build., 86, 573�588.
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sales in Fig. 1.4 show a decline throughout the observation period, most

noticeably from 2004 onwards. Clearly beer sales have not fluctuated around

a constant mean level; rather, the mean level has fallen in recent years which

has been a well-documented concern of UK brewers.

1.9 If the mean level cannot be regarded as constant then a series is said to

be nonstationary. Nonstationarity, however, can appear in many guises.

Fig. 1.5 plots daily observations on the US dollar�UK sterling ($�d)
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FIGURE 1.4 United Kingdom beer sales (thousands of barrels): quarterly, 1997�2017. Data

from the British Beer & Pub Association.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1975 1980 1985 1990 1995 2000 2005 2010 2015

$–
£ 

E
xc

ha
ng

e 
ra

te

FIGURE 1.5 $�d Exchange rate: daily observations, January 1975�December 2017. Data

from Bank of England.

Time Series and Their Features Chapter | 1 5



exchange rate from 1975 to 2017, a period in which this exchange rate fluc-

tuated widely. The rate fell from around $2.50 at the start of the 1980s to

almost parity by the middle of that decade, before rebounding to about $2 at

the beginning of the 1990s. In the past 25 years it has undergone three fur-

ther steep declines, known as depreciations, corresponding to the United

Kingdom’s exit in October 1992 from the European Exchange Rate

Mechanism, the onset of the global financial crisis during 2008, and the

Brexit referendum of June 2016, interspersed by a major appreciation from

around $1.4 to over $2 between 2003 and 2008.

Clearly, the assumption of a constant mean level for the exchange

rate would not be appropriate either statistically or, indeed, economi-

cally, for this would imply an equilibrium level for the exchange rate

which would, consequently, provide a “one-way bet” for dealers when-

ever the rate got too far from this level, either above or below. The

exchange rate thus exhibits a form of nonstationarity that can be termed

random walk or unit root nonstationarity, terms that will be defined and

discussed in detail in Chapter 4, ARIMA Models for Nonstationary

Time Series, and Chapter 5, Unit Roots, Difference and Trend

Stationarity, and Fractional Differencing.

TRENDS

1.10 Just as clearly, the exchange rate does not exhibit an overall trend

throughout the observation period, this being informally thought of as a

generally monotonic upward or downward movement, which would here

imply either a perpetual appreciation or depreciation of the currency; a

movement that could not happen in practice as it would, again, offer a one-

way bet to dealers in what is perhaps the most efficient of financial

markets.

1.11 Trends, however, are to be found in many time series.3 Fig. 1.6 shows

per capita wine and spirits consumption for the United Kingdom from 1950

to 2015. Both show positive trends; that for wine being stronger than that for

spirits with, to a first approximation, both trends having reasonably constant

slopes. The two series, thus, appear to exhibit linear trends.

1.12 Many trends, though, do not have constant slopes and hence are non-

linear. Monthly observations from 1948 to 2017 on the UK retail price index

are shown in Fig. 1.7, and the index clearly has a nonconstant slope. Since

the slope measures the change in the index, it is related to, but is not identi-

cal with, inflation and the shifting slopes thus reveal the evolution of price

increases in the United Kingdom during the postwar period (how measures

of inflation might in practice be constructed from a price index is discussed

6 Applied Time Series Analysis



in Chapter 2: Transforming Time Series). Note the sequence of falling prices

in the latter half of 2008 at the height of the global financial crisis which

produced a brief period of deflation; a rare event in developed economies in

the postwar era.
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FIGURE 1.6 Annual consumption of wines and spirits in the United Kingdom: liters of alcohol

per capita, 1950�2015. Data from megafile_of_global_wine _data_1835_to_2016 _031117.xlxs.

Available from: ,www.adelaide.edu.au/wine-econ/databases..
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1.13 Ascertaining whether a time series contains a trend may be quite diffi-

cult. Consider Fig. 1.8 which shows monthly global temperatures from 1850

to 2017. While there is certainly a general upward movement during the

observation period, it is by no means monotonic, with several sustained peri-

ods of relative constancy and even decline, thus seeming to rule out a linear

trend for the entire observation period. For the anthropogenic global warm-

ing hypothesis to hold, this series must exhibit random walk nonstationarity

with a positive drift. Whether the drift is significantly positive will be con-

sidered in Example 4.3.

VOLATILITY

1.14 A second condition of stationarity is that of constant variance.

Fig. 1.9 shows the daily percentage change in the $�d exchange rate

plotted in Fig. 1.5. Although the plot of the percentage changes is domi-

nated by the 8% point decline in sterling on June 24, 2016, after the

announcement of the Brexit referendum result, the entire sequence of

changes is characterized by periods of relative calm interspersed by bursts of

volatility, so that the variance of the series changes continuously. Thus,

although the daily percentage change in the $�d rate certainly fluctuates

around a mean that is constant and virtually zero (being 20.003) it is never-

theless nonstationary as the variance cannot be regarded as constant. A spe-

cific time series process, the GARCH process, is introduced in Chapter 7, An
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FIGURE 1.8 Global temperature: monthly, January 1850�December 2017. Data from Met

Office Hadley Centre for Climate Science and Services.
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Introduction to Forecasting With Univariate Models, to model a variance that

changes through time.4

COMMON FEATURES

1.15 Two or more time series may contain common features. Consider

Fig. 1.10 where the top panel shows long (the yield on 20-year gilts, R20)

and short (the yield on 3-month Treasury bills, RS) UK interest rates monthly

from 1952 to 2017. Both exhibit random walk nonstationarity, but appear to

have a strong tendency to be “bound together” over time, as will be demon-

strated in Example 14.1.

The bottom panel of Fig. 1.10 shows the “spread” between the rates,

defined as S5R202RS, which is stationary, albeit exhibiting persistent

(highly positively autocorrelated) deviations from the sample mean of 1.2%.

The nonstationarity in the individual series has, thus, been “annihilated” by

taking the difference between them. The interest rates thus share a common

trend and are said to cointegrate; a potential property of nonstationary time

series that will be extensively developed in Chapter 14, Error Correction,

Spurious Regressions, and Cointegration, and Chapter 15, VARs with

Integrated Variables, VECMs, and Common Trends.
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TIME SERIES HAVING NATURAL CONSTRAINTS

1.16 Some time series have natural constraints placed upon them.

Fig. 1.11, for example, shows the consumption (c), investment (i), govern-

ment (g), and “other” (x) shares in the United Kingdom’s gross final expen-

diture for the period 1955q1 to 2017q2. Because these shares must be lie

between zero and one and must also add up to one for each observation,

these restrictions need to be accounted for, as to ignore them would make
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FIGURE 1.10 Long (R20) and short (RS) interest rates for the United Kingdom and their

spread S5R202RS: monthly, January 1952�June 2017. Data from Bank of England.
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standard analysis of covariances and correlations invalid. Such compositional

time series require distinctive treatment through special transformations

before they can be analyzed, as is done in Chapter 16, Compositional and

Count Time Series.

1.17 All the time series introduced so far may be regarded as being mea-

sured on a continuous scale, or at least can be assumed to be well-

approximated as being continuous. Some series, however, occur naturally as

(small) integers and these are often referred to as counts. Fig. 1.12 shows the

annual number of North Atlantic storms and hurricanes (the latter being a

subset of the former) between 1851 and 2017. The annual number of storms

ranges from a minimum of one (in 1914) to a maximum of 28 in 2005; that

year also saw the maximum number of hurricanes, 15, while there were no

hurricanes in either 1907 and 1914. The figure uses spike graphs to empha-

size the integer nature of these time series and this feature requires special

techniques to analyze count data successfully, and will be discussed in

Chapter 16, Compositional and Count Time Series.

1.18 Understanding the features exhibited by time series, both individually

and in groups, is a key step in their successful analysis and clearly a great

deal can be learnt by an initial plot of the data. Such plots may also suggest

possible transformations of the data which may expedite formal analysis and

modeling of time series, and it is to this topic that Chapter 2, Transforming

Time Series, is devoted.
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FIGURE 1.11 Shares in the United Kingdom’s total final expenditure: c consumption; i invest-

ment; g government; x “other.” Quarterly, 1955q1�2017q2. Data from U.K. Office for National

Statistics.
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ENDNOTES

1. This was published as Yule (1926). George Udny Yule was a famous British statistician during the

first half of the 20th century, working in many areas and making fundamental contributions in most

of them. Mills (2017a) is the first biography of this important figure in the history of statistics.

2. Arbia (2014) is an introductory text on modeling spatial data.

3. As Phillips (2010) remarks, “trends have an elusive quality. No one understands them, but

everyone sees them in the data.” A history of modeling trends, albeit with an emphasis on

economics, is provided by Mills and Patterson (2015), while formal definitions of many vari-

eties of trends may be found in White and Granger (2011).

4. Daily financial data often display volatility of this type. Financial time series are also avail-

able at frequencies higher than daily, these often being referred to as high frequency or tick-

by-tick data. Such time series typically have various features that are idiosyncratic to financial

markets and a new discipline of high frequency econometrics has, thus, been developed in

recent years. This is too specialized an area of time series analysis to be considered in this

book. For a review see, for example, Aı̈t-Sahalia and Jacod (2014).
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FIGURE 1.12 Number of North Atlantic storms and hurricanes, annually 1851�2017. Data

from Hurricane Research Division, NOAA.
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2.1 Prior to analyzing, statistically, an individual or a group of time series,

it is often appropriate to transform the data, with an initial plot of the series

often providing clues as to what transformation(s) to use. There are three

general classes of transformations for time series—distributional, stationarity

inducing, and decompositional—and these may often be combined to pro-

duce an appropriate variable to analyze.

DISTRIBUTIONAL TRANSFORMATIONS

2.2 Many statistical procedures perform more effectively on data that are

normally distributed, or at least are symmetric and not excessively kurtotic

(fat-tailed), and where the mean and variance are approximately constant.

Observed time series frequently require some form of transformation before

they exhibit these distributional properties, for in their “raw” form they are

often asymmetric. For example, if a series is only able to take positive (or at

least nonnegative) values, then its distribution will usually be skewed to the

right, because although there is a natural lower bound to the data, often zero,

no upper bound exists and the values are able to “stretch out,” possibly to

infinity. In this case a simple and popular transformation is to take loga-

rithms, usually to the base e (natural logarithms).

2.3 Fig. 2.1 displays histograms of the levels and logarithms of the monthly

UK retail price index (RPI) series plotted in Fig. 1.7. Taking logarithms

clearly reduces the extreme right-skewness found in the levels, but it cer-

tainly does not induce normality, for the distribution of the logarithms is dis-

tinctively bimodal.

The reason for this is clearly seen in Fig. 2.2, which shows a time series

plot of the logarithms of the RPI. The central part of the distribution, which

13
Applied Time Series Analysis. DOI: https://doi.org/10.1016/B978-0-12-813117-6.00002-8

© 2019 Elsevier Inc. All rights reserved.
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has the lower relative frequency, is transited swiftly during the 1970s, as this

was a decade of high inflation characterized by the steepness of the slope of

the series during this period.

Clearly, transforming to logarithms does not induce stationarity, but on

comparing Fig. 2.2 with Fig. 1.7, taking logarithms does “straighten out” the

trend, at least to the extent that the periods before 1970 and after 1980 are

both approximately linear with roughly the same slope.1 Taking logarithms
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FIGURE 2.1 Histograms of RPI and its logarithm.
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also stabilizes the variance. Fig. 2.3 plots the ratio of cumulative standard

deviations, si RPIð Þ=si log RPIð Þ, defined using (1.2) and (1.3) as:

s2i xð Þ5 i21
Xi

t51

xt2xið Þ2 xi 5 i21
Xi

t51

xt
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FIGURE 2.2 Logarithms of the RPI: January 1948�December 2017.
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FIGURE 2.3 Ratio of cumulative standard deviations si RPIð Þ=si log RPIð Þ.
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Since this ratio increases monotonically throughout the observation

period, the logarithmic transformation clearly helps to stabilize the variance

and it will, in fact, do so whenever the standard deviation of a series is pro-

portional to its level.2

2.4 It is also clear that for attaining approximate normality, the availability

of a more general class of transformations would be useful. A class of power

transformations that contains the logarithmic as a special case is that pro-

posed by Box and Cox (1964) for positive x:3

f BC xt;λð Þ5 xλt 2 1
� �

=λ λ 6¼ 0

logxt λ5 0

�
ð2:1Þ

Fig. 2.4 shows monthly rainfall for England and Wales between 1875 and

2017. Observed rainfall is plotted in the top panel and the empirical density

shown in the left sidebar reveals that the distribution is markedly skewed to

the right. The lower panel plots the Box�Cox transformed series for λ5 0:5,
essentially a square root transformation, and this series is now symmetric

and, indeed, approximately normally distributed.4

2.5 The restriction to positive values that is required by the Box�Cox

transformation can be relaxed in several ways. A shift parameter may be

introduced in (2.1) to handle situations where x may take negative values but

is still bounded below, but this may lead to inferential problems when λ is

estimated as in y2.6. Possible alternatives are the signed power transforma-

tion proposed by Bickel and Doksum (1981):

f SP xt;λð Þ5 sgn xtð Þ xλt
�� ��2 1

� �
=λ λ. 0 ð2:2Þ

or the generalized power (GP) transformation suggested by Yeo and Johnson

(2000) shown in (2.3)

fGP xt;λð Þ5
xt11ð Þλ 2 1

� �
=λ xt $ 0; λ 6¼ 0

log xt 1 1ð Þ xt $ 0; λ5 0

2 2xt11ð Þ22λ 2 1
� �

= 22λð Þ xt , 0; λ 6¼ 2

2 log 2xt 1 1ð Þ xt , 0; λ 6¼ 2

8>><
>>:

ð2:3Þ

A further alternative is the inverse hyperbolic sine (IHS) transformation

suggested by Burbidge et al. (1988) to deal with extreme values of either

sign:

f IHS xt;λð Þ5 sinh21 λxtð Þ
λ

5 log
λxt 1 λ2x2t 11

� �1=2
λ

λ. 0 ð2:4Þ

2.6 The transformation parameter λ may be estimated by the method of

maximum likelihood (ML). Suppose that for a general transformation f xt;λð Þ,
the model f xt;λð Þ5μt 1 at is assumed, where μt is a model for the mean of

f xt;λð Þ and at is assumed to be independent and normally distributed with
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zero mean and constant variance. The ML estimator λ̂ is then obtained by

maximizing over λ the concentrated log-likelihood function:

‘ λð Þ5Cf 2
T

2

� �XT
t51

logâ2t 1Df xt;λð Þ ð2:5Þ
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FIGURE 2.4 England and Wales rainfall (in mm): monthly, January 1875�December 2017.

Top panel: observed rainfall; bottom panel: Box�Cox transformed with λ5 0:5. Data from Met

Office Hadley Centre for Climate Science and Services.
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where ât 5 f xt;λð Þ2 μ̂t are the residuals from ML estimation of the model,

Cf is a constant and Df xt;λð Þ depends on which of the transformations

(2.1)�(2.4) is being used:

Df xt;λð Þ 5 λ2 1ð Þ
XT
t51

log xtj j for 2:1ð Þ and 2:2ð Þ

5 λ2 1ð Þ
XT
t51

sgn xtð Þlog xtj j1 1ð Þ for 2:3ð Þ

52
1

2

XT
t51

log 11λ2x2t
� �

for 2:4ð Þ

If λ̂ is the ML estimator and ‘ λ̂
� 	

is the accompanying maximized likeli-

hood from (2.5), then a confidence interval for λ can be constructed using

the standard result that 2 ‘ λ̂
� 	

2 ‘ λð Þ
� 	

is asymptotically distributed as

χ2 1ð Þ, so that a 95% confidence interval, for example, is given by those

values of λ for which ‘ λ̂
� 	

2 ‘ λð Þ, 1:92.

2.7 For the rainfall series in Fig. 2.4, μt was chosen to be a linear function

of seasonal means and trends, that is, μt 5
P12

i51 αi 1βitð Þsi;t, where the

“seasonal dummy” si;t takes a value of unity for month i and is zero other-

wise (i5 1 for January, etc.): see Mills (2017b) for a justification for this

choice of model. Since all the values of xt are positive (there has never been

a completely dry month in England and Wales, as residents of these coun-

tries will surely attest!), the Box�Cox transformation (2.1) is appropriate.

The ML estimate is λ̂5 0:55 with an accompanying 95% confidence interval

of (0.48, 0.62), hence the choice of λ5 0:5 with which to transform the

series. Note that both λ5 0, the logarithmic transformation, and λ5 1, effec-

tively no transformation, lie well outside this interval.

2.8 The top panel of Fig. 2.5 shows another monthly rainfall series for the

Greek island of Kefalonia between 2003 and 2017. As is typical for an island

in the Ionian chain, there is little rain in the summer months but often con-

siderable winter rainfall. Consequently, the series contains zero values and is

highly skewed to the right, making it a candidate for either a GP or an IHS

transformation.

The middle panel shows the series after a GP transformation with

λ̂5 0:16 [95% confidence interval (0.08, 0.24)], while the bottom panel

shows the IHS transformation of the series (in both cases the seasonal mean

model μt 5
P12

i51 αisi;t was used). In the IHS transformation the parameter

λ5 1 is used, because although the ML estimate is λ̂5 0:65, it is accompa-

nied by a wide 95% confidence interval running from 0.29 to 1.82; this is a

consequence of an extremely flat likelihood function, thus implying that
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FIGURE 2.5 Kefalonia rainfall (in mm): monthly, January 2003�December 2017. Data from

Personal communication.
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many values of the IHS parameter could be chosen to transform the series.

Clearly both transformed series are now left-skewed but look to be more

stable in terms of variation.

STATIONARITY INDUCING TRANSFORMATIONS

2.9 A simple stationarity transformation is to take successive differences of

a series, on defining the first-difference of xt as rxt 5 xt 2 xt21. Fig. 2.6
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FIGURE 2.6 Annual changes in per capita UK wine and spirits consumption; 1951�2015.
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shows the first-differences of the wine and spirits consumption series plotted

in Fig. 1.6, that is, the annual changes in consumption. The trends in both

series have been eradicated by this transformation and, as will be shown in

Chapter 4, ARIMA Models for Nonstationary Time Series, differencing has

a lot to recommend it both practically and theoretically for transforming a

nonstationary series to stationarity.

First-differencing may, on some occasions, be insufficient to induce sta-

tionarity and further differencing may be required. Fig. 2.7 shows successive

temperature readings on a chemical process, this being Series C of Box and

Jenkins (1970). The top panel shows observed temperatures. These display a

distinctive form of nonstationarity, in which there are almost random

switches in trend and changes in level. Although first differencing (shown as

the middle panel) mitigates these switches and changes, it by no means elim-

inates them; second-differences are required to achieve this, as shown in the

bottom panel.

2.10 Some caution is required when taking higher-order differences. The

second-differences shown in Fig. 2.7 are defined as the first-difference of the

first-difference, that is, rrxt 5r2xt. To provide an explicit expression for

second-differences, it is convenient to introduce the lag operator B, defined

such that Bjxt � xt2j, so that:

rxt 5 xt 2 xt21 5 xt 2Bxt 5 12Bð Þxt ð2:6Þ
Consequently:

r2xt 5 12Bð Þ2xt 5 12 2B1B2
� �

xt 5 xt 2 2xt21 1 xt22 ð2:7Þ
which is clearly not the same as xt 2 xt22 5r2xt, the two-period difference,

where the notation rj 5 12Bj for the taking of j-period differences has been

introduced. The distinction between the two is clearly demonstrated in

Fig. 2.8, where second- and two-period differences of Series C are displayed.

2.11 For some time series, interpretation can be made easier by taking pro-

portional or percentage changes rather than simple differences, that is, trans-

forming by rxt=xt21 or 100rxt=xt21. For financial time series these are

typically referred to as the return. Fig. 2.9 plots the monthly price of gold

and its percentage return from 1980 to 2017. The price is clearly nonstation-

ary, the series being dominated by the upward swing from around $270 per

ounce in the summer of 2001 to almost $1750 in the autumn of 2012, but the

monthly returns are trend-free, albeit with considerable variation, ranging

from 215% to 20%.

2.12 When attention is focused on the percentage change in a price index,

then these changes are typically referred to as the rate of inflation. There

may be several different rates of inflation depending on the frequency of

observation, say monthly, quarterly, or annually, and the span over which

the inflation rate is calculated. For example, the annual rate of inflation of a
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monthly price index is defined as 100r12xt=xt212, so that it is the percentage

change in the index from a given month of one year to that month of the

next year: see Fig. 2.10 for the annual rate of inflation of the monthly RPI.5

2.13 While transforming to an annual rate of inflation certainly eradicates

the trend in the monthly RPI series, it is important to realize that such a
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transformation does not necessarily induce stationarity and it certainly does

not in Fig. 2.10, which can be compared with the monthly rate of inflation

shown in Fig. 2.11, which is more obviously stationary. Why then, are

annual rather than monthly rates of inflation typically discussed by economic

commentators? Stationarity is clearly not much of a concern to them,

whereas the relative smoothness of annual inflation compared to the much

higher volatility of monthly inflation allows the former to be more readily

interpretable in terms of evolving patterns of price behavior.

2.14 There is a useful relationship between the rate of change of a variable

and its logarithm that is often worth bearing in mind, namely:

xt 2 xt21

xt21

5
xt

xt21

2 1 � log
xt

xt21

5 logxt 2 logxt21 5rlogxt ð2:8Þ

where the approximation follows from the fact that log 11 yð Þ � y for small y.

Thus, if yt 5 xt 2 xt21ð Þ=xt21 is small, rates of inflation can be closely

approximated by the change in the logarithms, which is often a more conve-

nient transformation to work with.

DECOMPOSING A TIME SERIES AND SMOOTHING
TRANSFORMATIONS

2.15 It is often the case that the long-run behavior of a time series is of

particular interest and attention is then focused on isolating these “perma-

nent” movements from shorter-run, more “transitory,” fluctuations, that is,

by separating the observations through a decomposition, generally of the

form “data5 fit1 residual.” Because such a decomposition is more than

likely going to lead to a smooth series, this might be better thought of as

“data5 smooth1 rough,” terminology borrowed from Tukey (1977). Tukey

himself favored running or moving medians to do this, but moving averages

(MAs) have become by far the most popular approach to smoothing a time

series.
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2.16 The simplest MA replaces xt with the average of itself, its predeces-

sor, and its successor, that is, by the MA(3) 1
3
xt21 1 xt 1 xt11ð Þ. More com-

plicated formulations are obviously possible: the (2n1 1)-term weighted and

centered MA [WMA(2n1 1)] replaces xt with

WMAt 2n1 1ð Þ5
Xn
i52n

ωixt2i ð2:9Þ
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FIGURE 2.9 Monthly gold price and return: January 1980�December 2017. Readily available

online.
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where the weights ωi are restricted to sum to unity:
Pn

i52n ωi 5 1. The

weights are often symmetrically valued about the central weight ω0 and

because there is an odd number of weights in (2.9), WMAt 2n1 1ð Þ “matches

up” with xt, hence the use of the term “centered”.

As more terms are included in the MA, the smoother it becomes, albeit

with the trade-off that since n observations are “lost” at the beginning and at

the end of the sample, more observations will be lost the larger n is. If obser-

vations at the end of the sample, the most “recent”, are more important than
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FIGURE 2.11 Monthly % rate of RPI inflation: February 1948�December 2017.
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FIGURE 2.10 Annual % rate of inflation of monthly RPI: January 1949�December 2017.
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those at the start of the sample, then an uncentered MA may be considered,

such as
Pn

i50 ωixt2i, where only current and past observations appear in the

MA, which is then said to be “backward looking” or “one-sided,” in contrast

to the two-sided WMA of (2.9).

2.17 WMAs may also arise when a simple MA with an even number of

terms is used but centering is required. For example, a four-term MA may be

defined as:

MAt21=2 4ð Þ5 1

4
xt22 1 xt21 1 xt 1 xt11ð Þ

where the notation makes clear that the “central” date to which the MA

relates to is a noninteger, being halfway between t2 1 and t, that is,

t2 1=2
� �

, but of course xt2 1=2ð Þ does not exist and the centering property is

lost. At t1 1, however, the MA is:

MAt1 1=2ð Þ 4ð Þ5 1

4
xt21 1 xt 1 xt11 1 xt12ð Þ

which has a central date of t1 1=2
� �

. Taking the average of these two sim-

ple MAs produces a weighted MA centered on the average of t2 1=2
� �

and

t1 1=2
� �

, which is, of course, t:

WMAt 5ð Þ5 1

8
xt22 1

1

4
xt21 1

1

4
xt 1

1

4
xt11 1

1

8
xt12 ð2:10Þ

This is an example of (2.9) with n5 2 and where there are “half-weights”

on the two extreme observations of the MA.

2.18 Fig. 2.12 plots two simple MAs for the daily observations on the $�d

exchange rate shown in Fig. 1.5. The centered MA(251) has a span of

approximately one year, while the backward looking one-sided MA(60) has

a span stretching back over the last three months (5-day working weeks and

20-day working months being assumed here). Naturally, the former MA is

much smoother, missing out on the sharper peaks and troughs captured by

the latter, but reproducing the longer-term undulations of the exchange rate,

known as “long swings.” It also loses the last 125 days (approximately 6

months), which might be regarded as a drawback if recent movements are

thought to be of special importance.

2.19 Weighted MAs lie behind many of the trend filters that have been pro-

posed over the years and which will be introduced in Chapter 8, Unobserved

Component Models, Signal Extraction, and Filters: see Mills (2011, chapter

10) for a historical discussion. Fig. 2.13 shows the global temperature series

originally plotted in Fig. 1.8 with a popular trend filter, known as the

Hodrick�Prescott (H�P) filter, superimposed. Details of this filter are pro-

vided in yy8.13�8.18, it being a symmetric weighted MA with end-point cor-

rections that allow the filter to be computed right up to the end of the sample,
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thus avoiding any loss of observations. This is important here, because global

temperatures are quite volatile and extracting the recent trend is essential for

providing an indication of the current extent of any global warming. The

weights of the MA depend on choosing a value for the smoothing parameter:

here a large value has been chosen to produce a relatively “smooth trend” that

focuses on the longer run movements in temperature.
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FIGURE 2.13 Monthly global temperatures with HP trend superimposed. HP,

Hodrick�Prescott.
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2.20 The MAs fitted in the previous examples have been interpreted as

trends; the long-run, smoothly evolving component of a time series, that is,

the “smooth” of a two-component decomposition (recall y2.15). When a time

series is observed at a frequency greater than annual, say monthly or quar-

terly, a three-component decomposition is often warranted, with the observed

series, now denoted Xt, being decomposed into trend, Tt, seasonal, St, and

irregular, It, components. The decomposition can either be additive:

Xt 5 Tt 1 St 1 It ð2:11Þ
or multiplicative

Xt 5 Tt 3 St 3 It ð2:12Þ
although the distinction is to some extent artificial, as taking logarithms of

(2.12) will produce an additive decomposition for logXt. The seasonal com-

ponent is a regular, short-term, annual cycle, while the irregular component

is what is left over after the trend and seasonal components have been

removed; it should with thus be random and hence unpredictable.

The seasonally adjusted series is then defined as either:

XSA;A
t 5Xt 2 St 5 Tt 1 It ð2:13Þ

or

XSA;M
t 5

Xt

St
5 Tt 3 It ð2:14Þ

depending on which form of decomposition is used.

2.21 The dominant features of the beer sales series shown in Fig. 1.4 were

the downward trend in the second half of the observation period and the

prominent seasonal pattern of sales. A simple method of seasonal adjustment

is to first estimate the trend component using a MA. Since beer sales are

observed quarterly, (2.10) may be used as the centered MA, and assuming an

additive decomposition (2.11), the “trend-free” series may then be obtained

by subtracting this MA from the observed series:

Xt 2 Tt 5Xt 2WMAt 5ð Þ5 St 1 It

This trend-free series is the sum of the seasonal and irregular components,

which somehow need to be disentangled. To do this the “identifying”

assumption that It should, on average, be zero may be made (if it was not

then a portion of It would be predictable and should be part of either the

trend or the seasonal). This allows St to be calculated by taking the average

of each quarter across years; for example, the seasonal factor for the first

quarter is given by:

St Q1ð Þ5 X1997Q1 1X1998Q1 1?1X2017Q1

21
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with the factors for the other three quarters being given analogously. For

beer sales, these factors are calculated to be6:

St Q1ð Þ52 1523:2 St Q2ð Þ5 485:1 St Q3ð Þ5 151:2 St Q4ð Þ5 886:9

The large negative first quarter factor is compensated by offsetting posi-

tive factors for the other three quarters, by far the largest being the fourth.

Hence, beer sales tend to be highest in the fourth quarter of the year, in the

run up to Christmas and the New Year, with sales being lowest during the

subsequent quarter in the aftermath of these festivities.

6500

7000

7500

8000

8500

9000

9500

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

(A)

T
ho

us
an

ds
 o

f 
ba

rr
el

s

–1500

–1000

–500

0

500

1000

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

(B)

T
ho

us
an

ds
 o

f 
ba

rr
el

s

–400

–200

0

200

400

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

(C)

T
ho

us
an

ds
 o

f 
ba

rr
el

s

FIGURE 2.14 Additive decomposition of quarterly U K beer sales. (A) Trend; (B) Seasonal;

(C) Irregular.
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The trend and seasonal components are shown in Fig. 2.14, panels A and

B, respectively. The declining trend in beer sales from 2003 to 2012 is

clearly seen, although the trend has flattened off since then. The seasonal

pattern is forced by this method to be “constant” over time, which is proba-

bly adequate for the relatively brief period for which observations are avail-

able here, but more sophisticated seasonal adjustment procedures allow

seasonal patterns to evolve.7

2.22 The irregular is now calculated “by residual” as:

It 5Xt 2 Tt 2 St

and is plotted as shown in Fig. 2.14C. It is clearly random, and since it

ranges from 2440 to 540 thousand barrels, is relatively large, reflecting the

many factors that influence beer sales in any quarter. Seasonally adjusted

beer sales are computed from (2.13) and are shown, with unadjusted sales, in

Fig. 2.15. Being the sum of the trend and irregular, the seasonally adjusted

series reflects both the underlying trend and the random, and sometimes

large, shocks that impact on beer sales.

ENDNOTES

1. If xt is generated by the exponential trend xt 5Aeβt then on taking logarithms,

logxt 5 logA1βt is a linear trend function. Thus, the slope β5 dlogxt=dt5 dxt=dt
� �

=xt is

the rate of change of x, i.e., the (instantaneous) rate of inflation if x is a price level.

2. See, for example, Mills (1990, chapter 6.2) for a formal derivation of this result.

3. The “simple” power transformation xλt is modified because the limiting value of xλt 2 1
� �

=λ
as λ-0 is logxt and so continuity is preserved in the region of λ5 0.

4. The moment measures of skewness for observed and transformed rainfall are 0.60 and 20.05

respectively. The square root transformation is recommended when the variance is propor-

tional to the level of the series.

5. Occasionally an “annualized” one-period rate of inflation is used. This is defined for monthly

data as 100 11rxt=xt21

� �12
2 1

� 	
.

6. These factors are required to sum to zero, and so would need adjusting if the raw calculations

lead to a nonzero sum: if this sum is a 6¼ 0, say, then a=4 should be subtracted from each factor.

7. EViews 10 provides several specialist seasonal adjustment procedures that are extremely

sophisticated but too advanced and detailed to be discussed in this book.
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FIGURE 2.15 Observed and seasonally adjusted quarterly UK beer sales.
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STOCHASTIC PROCESSES AND STATIONARITY

3.1 The concept of a stationary time series was introduced informally in

Chapter 1, Time Series and Their Features, but to proceed further it is neces-

sary to consider the concept rather more rigorously. To this end, it is often

useful to regard the observations x1; x2; . . . ; xT on the series xt as a realization

of a stochastic process. In general, such a stochastic process may be described

by a T-dimensional probability distribution, so that the relationship between a

realization and a stochastic process is analogous, in classical statistics, to that

between a sample and the population from which it has been drawn from.

Specifying the complete form of the probability distribution, however,

will typically be too ambitious a task, so attention is usually concentrated on

the first and second moments; the T means:

E x1ð Þ;E x2ð Þ; . . .;E xTð Þ
T variances:

V x1ð Þ;V x2ð Þ; . . .;V xTð Þ
and T T 2 1ð Þ=2 covariances:

Cov xi; xj
� �

; i, j

If the distribution could be assumed to be (multivariate) normal, then this

set of expectations would completely characterize the properties of the stochas-

tic process. As has been seen from the examples in Chapter 2, Transforming
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Time Series, however, such an assumption will not always be appropriate, but

if the process is taken to be linear, in the sense that the current value xt is gen-

erated by a linear combination of previous values xt21; xt22; . . . of the process

itself plus current and past values of any other related processes, then again this

set of expectations would capture its major properties.

In either case, however, it will be impossible to infer all the values of the

first and second moments from just a single realization of the process, since

there are only T observations but T 1 T T 1 1ð Þ=2 unknown parameters.

Consequently, further simplifying assumptions must be made to reduce the

number of unknown parameters to more manageable proportions.

3.2 It should be emphasized that the procedure of using a single realization

to infer the unknown parameters of a joint probability distribution is only

valid if the process is ergodic, which roughly means that the sample

moments for finite stretches of the realization approach their population

counterparts as the length of the realization becomes infinite. Since it is diffi-

cult to test for ergodicity using just (part of) a single realization, it will be

assumed that this property holds for every time series.1

3.3 Perhaps the most important simplifying assumption has already been

introduced in Chapter 1, Time Series and Their Features, that of stationarity,

which, as we have seen, requires the process to be in a state of “statistical

equilibrium.” A stochastic process is said to be strictly stationary if its prop-

erties are unaffected by a change of time origin, that is, the joint probability

distribution at any set of times t1; t2; . . . ; tm must be the same as the joint

probability distribution at t11k; t21k; . . . ; tm1k, where k is an arbitrary shift in

time. For m5 1, strict stationarity implies that the marginal probability dis-

tributions at t1; t2; . . . do not depend on time, which in turn implies that as

long as E x2t
�� ��,N (which is part of a finite second moment assumption)

both the mean and variance of xt must be constant, so that:

E x1ð Þ5E x2ð Þ5?5E xTð Þ5μ

and

V x1ð Þ5V x2ð Þ5?5V xTð Þ5σ2
x

If m5 2, strict stationarity implies that all bivariate distributions do not

depend on time, so that covariances are functions of the time-shift (or lag) k

only, hence implying that for all k,

Cov x1; x11kð Þ5Cov x2; x21kð Þ5?5Cov xT2k; xTð Þ5Cov xt; xt2kð Þ
This leads to the definition of the lag-k autocovariance as:

γk 5Cov xt; xt2kð Þ5E xt 2μð Þ xt2k 2μð Þð Þ
so that

γ0 5E xt2μð Þ2 5V xtð Þ5σ2
x
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and the lag-k autocorrelation may then be defined as

ρk 5
Cov xt; xt2kð Þ

V xtð ÞV xt2kð Þð Þ1=2
5

γk
γ0

5
γk
σ2
x

ð3:1Þ

The set of assumptions that the mean and variance of xt are both constant

and the autocovariances and autocorrelations depend only on the lag k is

known as weak or covariance stationarity.

3.4 While strict stationarity (with finite second moments) thus implies

weak stationarity, the converse does not hold, for it is possible for a process

to be weakly stationary but not strictly stationary. This would be the case if

higher moments, such as E x3t
� �

, were functions of time and an important

example of this is considered in Chapter 10, Volatility and GARCH

Processes. If, however, joint normality could be assumed so that the distri-

bution was entirely characterized by the first two moments, weak stationar-

ity would indeed imply strict stationarity.

3.5 The set of autocorrelations (3.1), when considered as a function of k, is

referred to as the (population) autocorrelation function (ACF). Since:

γk 5Cov xt; xt2kð Þ5Cov xt2k; xtð Þ5Cov xt; xt1kð Þ5 γ2k

it follows that ρ2k 5 ρk and so only the positive half of the ACF is usually

given. The ACF plays a major role in modeling dependencies between the

values of xt since it characterizes, along with the process mean μ5E xtð Þ and
variance σ2

x 5 γ0 5V xtð Þ, the stationary stochastic process describing the

evolution of xt. It therefore indicates, by measuring the extent to which one

value of the process is correlated with previous values, the length and

strength of the “memory” of the process.

WOLD’S DECOMPOSITION AND AUTOCORRELATION

3.6 A fundamental theorem in time series analysis, known as Wold’s decom-

position, states that every weakly stationary, purely nondeterministic, stochas-

tic process xt 2μ can be written as a linear combination (or linear filter) of a

sequence of uncorrelated random variables.2 “Purely nondeterministic” means

that any deterministic components have been subtracted from xt 2μ. Such
components are those that can be perfectly predicted from past values of them-

selves and examples commonly found are a (constant) mean, as is implied by

writing the process as xt 2μ, periodic sequences (e.g., sine and cosine func-

tions), and polynomial or exponential sequences in t.

This linear filter representation is given by:

xt 2μ5 at 1ψ1at21 1ψ2at22 1?5
XN
j50

ψjat2j ψ0 5 1 ð3:2Þ
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The at, t5 0; 6 1; 6 2; . . . are a sequence of uncorrelated random variables,

often known as innovations, drawn from a fixed distribution with:

E atð Þ5 0 V atð Þ5E a2t
� �

5σ2 ,N

and

Cov at; at2kð Þ5E atat2kð Þ5 0; for all k 6¼ 0

Such a sequence is known as a white noise process, and occasionally the

innovations will be denoted as atBWN 0;σ2
� �

.3 The coefficients (possibly

infinite in number) in the linear filter (3.2) are known as ψ-weights.
3.7 It is easy to show that the model (3.2) leads to autocorrelation in xt.

From this equation it follows that:

E xtð Þ5μ

and

γ0 5VðxtÞ5Eðxt2μÞ2

5E at1ψ1at211ψ2at221?
� �2

5E a2t
� �

1ψ2
1E a2t21

� �
1ψ2

2E a2t22

� �
1?

5σ2 1ψ2
1σ

2 1ψ2
2σ

2 1?

5σ2
XN
j50

ψ2
j

by using the white noise result that E at2iat2j

� �
5 0 for i 6¼ j. Now:

γk 5E xt 2μð Þ xt2k 2μð Þ
5E at 1ψ1at21 1?1ψkat2k 1?

� �
at2k 1ψ1at2k21 1?
� �

5σ2 1Uψk 1ψ1ψk11 1ψ2ψk12 1?
� �

5σ2
XN
j50

ψjψj1k

and this implies

ρk 5

PN
j50

ψjψj1k

PN
j50

ψ2
j

If the number of ψ-weights in (3.2) is infinite, the weights must be assumed to

be absolutely summable, so that
PN

j50 ψj

�� ��,N, in which case the linear filter

representation is said to converge. This condition can be shown to be equiva-

lent to assuming that xt is stationary, and guarantees that all moments exist

and are independent of time, in particular that the variance of xt, γ0, is finite.
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FIRST-ORDER AUTOREGRESSIVE PROCESSES

3.8 Although Eq. (3.2) may appear complicated, many realistic models

result from specific choices for the ψ-weights. Taking μ5 0 without loss of

generality, choosing ψj 5φj allows (3.2) to be written as:

xt 5 at 1φat21 1φ2at22 1?
5 at 1φ at21 1φat22 1?ð Þ
5φxt21 1 at

or

xt 2φxt21 5 at ð3:3Þ
This is known as a first-order autoregressive process, often given the acro-

nym AR(1).4

3.9 The lag operator B introduced in y2.10 allows (possibly infinite) lag

expressions to be written in a concise way. For example, by using this opera-

tor the AR(1) process can be written as:

12φBð Þxt 5 at

so that

xt 5 12φBð Þ21at 5 11φB1φ2B2 1?
� �

at

5 at 1φat21 1φ2at22 1?
ð3:4Þ

This linear filter representation will converge if φ
�� ��, 1, which is, therefore,

the stationarity condition.

3.10 The ACF of an AR(1) process may now be deduced. Multiplying both

sides of (3.3) by xt2k, k. 0, and taking expectations yields:

γk 2φγk21 5E atxt2kð Þ: ð3:5Þ
From (3.4), atxt2k 5

PN
i50 φ

iatat2k2i. As at is white noise, any term in

atat2k2i has zero expectation if k1 i. 0. Thus (3.5) simplifies to:

γk 5φγk21 for all k. 0

and, consequently, γk 5φkγ0. An AR(1) process, therefore, has an ACF

given by ρk 5φk. Thus, if φ. 0 the ACF decays exponentially to zero, while

if φ, 0 the ACF decays in an oscillatory pattern, both decays being slow if

φ is close to the nonstationary boundaries of 11 and 21.

3.11 The ACFs for two AR(1) processes with (A) φ5 0:5 and (B) φ52 0:5
are shown in Fig. 3.1, along with generated data from the two processes with at
assumed to be normally and independently distributed with σ2 5 25, denoted

atBNID 0; 25ð Þ, and with starting value x0 5 0 (essentially at is normally dis-

tributed white noise since under normality independence implies uncorrelated-

ness). With φ. 0 adjacent values of xt are positively correlated and the
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generated series tends to be smooth, exhibiting runs of observations having the

same sign. With φ, 0, however, adjacent values are negatively correlated and

the generated series displays violent, rapid oscillations.

FIRST-ORDER MOVING AVERAGE PROCESSES

3.12 Now consider the model obtained by choosing ψ1 52 θ and ψj 5 0,

j$ 2, in (3.2):

xt 5 at 2 θat21 ð3:6Þ
or

xt 5 12 θBð Þat
This is known as the first-order moving average (MA(1)) process and it fol-

lows immediately that:5

γ0 5σ2 11 θ2
� �

γ1 52σ2θ γk 5 0 for k. 1

and, hence, its ACF is described by
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FIGURE 3.1 ACFs and simulations of AR(1) processes. (A) φ5 0.5 (B) φ520.5 (C) φ5 0.5,

x05 0 (D) φ520.5, x05 0. ACFs, Autocorrelation functions.
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ρ1 52
θ

11 θ2
ρk 5 0 for k. 1

Thus, although observations one period apart are correlated, observations

more than one period apart are not, so that the memory of the process is just

one period: this “jump” to zero autocorrelation at k5 2 may be contrasted

with the smooth, exponential decay of the ACF of an AR(1) process.

3.13 The expression for ρ1 can be written as the quadratic equation

ρ1θ
2 1 θ1 ρ1 5 0. Since θ must be real, it follows that ρ1

�� ��, 0:5.6 However,
both θ and 1=θ will satisfy this equation, and thus, two MA(1) processes can

always be found that correspond to the same ACF.

3.14 Since any MA model consists of a finite number of ψ-weights, all
MA models are stationary. To obtain a converging autoregressive representa-

tion, however, the restriction θ, 1 must be imposed. This restriction is

known as the invertibility condition and implies that the process can be writ-

ten in terms of an infinite autoregressive representation:

xt 5π1xt21 1 π2xt22 1?1 at

where the π-weights converge:
PN

j51 πj

�� ��,N. In fact, the MA(1) model can

be written as:

12θBð Þ21xt 5 at

and expanding 12θBð Þ21 yields

11 θB1 θ2B2 1?
� �

xt 5 at:

The weights πj 5 θj will converge if θj j, 1; in other words, if the model is

invertible. This implies the reasonable assumption that the effect of past

observations decreases with age.

3.15 Fig. 3.2 presents plots of generated data from two MA(1) processes

with (A) θ5 0:8 and (B) θ52 0:8, in each case, again, with

atBNID 0; 25ð Þ. On comparison of these plots with those of the AR(1) pro-

cesses in Fig. 3.1, it is seen that realizations from the two processes are

often quite similar (the ρ1 values are 0.488 and 0.5, respectively, for exam-

ple), thus suggesting that it may, on occasion, be difficult to distinguish

between the two.

GENERAL AR AND MA PROCESSES

3.16 Extensions to the AR(1) and MA(1) models are immediate. The gen-

eral autoregressive model of order p (AR(p)) can be written as:

xt 2φ1xt21 2φ2xt22 2?2φpxt2p 5 at

or

ARMA Models for Stationary Time Series Chapter | 3 37



12φ1B2φ2B
2 2?2φpB

p
� �

xt 5φ Bð Þxt 5 at

The linear filter representation xt 5φ21 Bð Þat 5ψ Bð Þat can be obtained by

equating coefficients in φ Bð Þψ Bð Þ5 1.7

3.17 The stationarity conditions required for convergence of the ψ-weights
are that the roots of the characteristic equation:

φ Bð Þ5 12 g1Bð Þ 12 g2Bð Þ? 12 gpB
� �
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FIGURE 3.2 Simulations of MA(1) processes. (A) θ5 0:8 (B) θ52 0:8. MA, Moving

average.

38 Applied Time Series Analysis



are such that gi
�� ��, 1 for i5 1; 2; . . . ; p. The behavior of the ACF is deter-

mined by the difference equation:

φ Bð Þρk 5 0 k. 0 ð3:7Þ
which has the solution

ρk 5A1g
k
1 1A2g

k
2 1?1Apg

k
p

Since gi
�� ��, 1, the ACF is thus described by a mixture of damped expo-

nentials (for real roots) and damped sine waves (for complex roots). As an

example, consider the AR(2) process:

12φ1B2φ2B
2

� �
xt 5 at

with characteristic equation

φ Bð Þ5 12 g1Bð Þ 12 g2Bð Þ5 0

The roots g1 and g2 are given by:

g1; g2 5 1
2
φ1 6 φ2

114φ2

� �1=2� �

and can both be real, or they can be a pair of complex numbers. For stationar-

ity, it is required that the roots be such that g1
�� ��, 1 and g2

�� ��, 1, and it can

be shown that these conditions imply this set of restrictions on φ1 and φ2:
8

φ1 1φ2 , 1 2φ1 1φ2 , 1 21,φ2 , 1

The roots will be complex if φ2
1 1 4φ2 , 0, although a necessary condition

for complex roots is simply that φ2 , 0.

3.18 The ACF of an AR(2) process is given by:

ρk 5φ1ρk21 1φ2ρk22

for k$ 2 with starting values ρ0 5 1 and ρ1 5φ1= 12φ2

� �
. The behavior of

this ACF for four combinations of φ1;φ2

� �
is shown in Fig. 3.3. If g1 and g2

are real (cases (A) and (C)), the ACF is a mixture of two damped exponen-

tials. Depending on their sign, the autocorrelations can also damp out in an

oscillatory manner. If the roots are complex (cases (B) and (D)), then the

ACF follows a damped sine wave. Fig. 3.4 shows plots of generated time

series from these four AR(2) processes, in each case with atBNID 0; 25ð Þ.
Depending on the signs of the real roots, the series may be either smooth or

jagged, while complex roots tend to induce “periodic-type” behavior.

3.19 Since all AR processes have ACFs that “damp out”, it is sometimes

difficult to distinguish between processes of different orders. To aid with

such discrimination, the partial ACF (PACF) may be used. In general, the

correlation between two random variables is often due to both variables

being correlated with a third. In the present context, a sizeable portion of the

correlation between xt and xt2k may be due to the correlation that this pair
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have with the intervening lags xt21; xt22; . . . ; xt2k11. To adjust for this

“internal” correlation, the partial autocorrelations may be calculated.

3.20 The kth partial autocorrelation is the coefficient φkk in the AR(k) process:

xt 5φk1xt21 1φk2xt22 1?1φkkxt2k 1 at ð3:8Þ
and measures the additional correlation between xt and xt2k after adjustments

have been made for the intervening lags.

In general, the φkk can be obtained from the Yule�Walker equations that cor-

respond to (3.8). These are given by the set shown in Eq. (3.7) with p5 k and

φi 5φii, and solving for the last coefficient φkk using Cramer’s Rule leads to:

φkk 5

1 ρ1 . . . ρk22 ρ1
ρ1 1 . . . ρk23 ρ2
^ ^ . . . ^ ^

ρk21 ρk22 . . . ρ1 ρk

��������

��������
1 ρ1 . . . ρk22 ρk21

ρ1 1 . . . ρk23 ρk22

^ ^ . . . ^ ^
ρk21 ρk22 . . . ρ1 1

��������

��������
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FIGURE 3.3 ACFs of various AR(2) processes. (A) φ1 5 0:5, φ2 5 0:3 (B) φ1 5 1, φ2 52 0:5
(C) φ1 52 0:5, φ2 5 0:3 (D) φ1 52 0:5, φ2 52 0:3. ACF, Autocorrelation function.

40 Applied Time Series Analysis



Thus, for k5 1, φ11 5 ρ1 5φ, while for k5 2,

φ22 5

1 ρ1
ρ1 ρ2

����
����

1 ρ1
ρ1 1

����
����
5

ρ2 2 ρ21
12 ρ21

It then follows from the definition of φkk that the PACFs of AR processes

follow the pattern:
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FIGURE 3.4 Simulations of various AR(2) processes. (A) φ1 5 0:5, φ2 5 0:3, x0 5 x1 5 0

(B) φ1 5 1, φ2 52 0:5, x0 5 x1 5 0. AR, Autoregressive.
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ARð1Þ: φ11 5 ρ1 5φ φkk 5 0 for k. 1

ARð2Þ: φ11 5 ρ1 φ22 5
ρ2 2 ρ21
12 ρ21

φkk 5 0 for k. 2

^
ARðpÞ: φ11 6¼ 0; φ22 6¼ 0; . . .; φpp 6¼ 0 φkk 5 0 for k. p

Hence, the partial autocorrelations for lags larger than the order of the pro-

cess are zero. Consequently, an AR(p) process is described by:

1. an ACF that is infinite in extent and is a combination of damped expo-

nentials and damped sine waves, and

2. a PACF that is zero for lags larger than p.

3.21 The general MA of order q (MA(q)) can be written as:

xt 5 at 2 θ1at21 2?2 θqat2q

or

xt 5 12 θ1B2?2 θqBq
� �

at 5 θ Bð Þat
The ACF can be shown to be:

ρk 5
2 θk 1 θ1θk11 1?1 θq2kθq

11 θ21 1?1 θ2q
k5 1; 2; . . .; q

ρk 5 0 k. q

The ACF of an MA(q) process therefore cuts off after lag q; the memory of

the process extends q periods, observations more than q periods apart being

uncorrelated.

3.22 The weights in the AR(N) representation π Bð Þxt 5 at are given by

π Bð Þ5 θ21 Bð Þ and can be obtained by equating coefficients of Bj in

π Bð Þθ Bð Þ5 1. For invertibility, the roots of

12 θ1B2?2 θqBq
� �

5 12 h1Bð Þ? 12 hqB
� �

5 0

must satisfy hij j, 1 for i5 1; 2; . . . ; q.

3.23 Fig. 3.5 presents generated series from two MA(2) processes, again

using atBNID 0; 25ð Þ. The series tend to be fairly jagged, similar to AR(2)

processes with real roots of opposite signs, and, of course, such MA pro-

cesses are unable to capture periodic-type behavior.

3.24 The PACF of an MA(q) process can be shown to be infinite in extent,

so that it tails off. Explicit expressions for the PACFs of MA processes are

complicated but, in general, are dominated by combinations of exponential

decays (for the real roots in θ Bð Þ) and/or damped sine waves (for the com-

plex roots). Their patterns are, thus, similar to the ACFs of AR processes.
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Indeed, an important duality between AR and MA processes exists: while

the ACF of an AR(p) process is infinite in extent, the PACF cuts off after

lag p. The ACF of an MA(q) process, on the other hand, cuts off after lag q,

while the PACF is infinite in extent.

AUTOREGRESSIVE-MOVING AVERAGE MODELS

3.25 We may also entertain combinations of autoregressive and moving

average models. For example, consider the natural combination of the AR(1)
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FIGURE 3.5 Simulations of MA(2) processes. (A) θ1 52 0:5, θ2 5 0:3 (B) θ1 5 0:5, θ2 5 0:3.
MA, Moving average.
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and MA(1) models, known as the first-order autoregressive-moving average,

or ARMA(1,1), process:

xt 2φxt21 5 at 2 θat21 ð3:9Þ
or

12φBð Þxt 5 12 θBð Þat
The ψ-weights in the MA(N) representation are given by:

ψ Bð Þ5 12 θBð Þ
12φBð Þ

so that

xt 5ψ Bð Þat 5
XN
i50

φiBi

 !
12 θBð Þat 5 at 1 φ2 θð Þ

XN
i51

φi21at2i ð3:10Þ

Likewise, the π-weights in the AR(N) representation are given by:

π Bð Þ5 12φBð Þ
12 θBð Þ

so that

π Bð Þxt 5
XN
i50

θiBi

 !
12φBð Þxt 5 at

or

xt 5 φ2 θð Þ
XN
i51

θi21xt2i 1 at

The ARMA(1,1) process, thus, leads to both MA and autoregressive

representations having an infinite number of weights. The ψ-weights con-

verge for φ
�� ��, 1 (the stationarity condition) and the π-weights converge

for θj j, 1 (the invertibility condition). The stationarity condition for the

ARMA(1,1) process is, thus, the same as that for an AR(1).

3.26 It follows from Eq. (3.10) that any product xt2kat2j has zero expecta-

tion if k. j. Thus, multiplying both sides of (3.9) by xt2k and taking expecta-

tions yields:

γk 5φγk21 for k. 1

whilst for k5 0 and k5 1 we obtain, respectively

γ0 2φγ1 5σ2 2 θ φ2 θð Þσ2
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and

γ1 2φγ0 52 θσ2

Eliminating σ2 from these two equations allows the ACF of the ARMA(1,1)

process to be given, after some algebraic manipulation, by:

ρ1 5
12φθð Þ φ2 θð Þ
11 θ2 2 2φθ

and

ρk 5φρk21 for k. 1

The ACF of an ARMA(1,1) process is, therefore, similar to that of an

AR(1) process, in that the autocorrelations decay exponentially at a rate φ.
Unlike the AR(1), however, this decay starts from ρ1 rather than from

ρ0 5 1. Moreover, ρ1 6¼ φ and if both φ and θ are positive with φ. θ, ρ1 can
be much less than φ if φ2 θ is small.

3.27 More general ARMA models are obtained by combining AR(p) and

MA(q) processes:

xt 2φ1xt21 2?2φpxt2p 5 at 2 θ1at21 2?2 θqat2q

or

12φ1B2?2φpB
p

� �
xt 5 12 θ1 2?2 θqBq

� �
at ð3:11Þ

which may be written more concisely as

φ Bð Þxt 5 θ Bð Þat
The resultant ARMA(p,q) process has the stationarity and invertibility

conditions associated with the constituent AR(p) and MA(q) processes

respectively. Its ACF will eventually follow the same pattern as that of an

AR(p) process after q2 p initial values ρ1; . . .; ρq2p, while its PACF eventu-

ally (for k. q2 p) behaves like that of an MA(q) process.

3.28 Throughout this development, it has been assumed that the mean of

the process, μ, is zero. Nonzero means are easily accommodated by repla-

cing xt with xt 2μ in (3.11), so that in the general case of an ARMA (p,q)

process, we have:

φ Bð Þ xt 2μð Þ5 θ Bð Þat
Noting that φ Bð Þμ5 12φ1 2?2φp

� �
μ5φ 1ð Þμ, the model can equiva-

lently be written as:

φ Bð Þxt 5 θ0 1 θ Bð Þat
where θ0 5φ 1ð Þμ is a constant or intercept.
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ARMA MODEL BUILDING AND ESTIMATION

3.29 An essential first step in fitting ARMA models to observed time series

is to obtain estimates of the generally unknown parameters μ, σ2
x , and the ρk.

With the stationarity and (implicit) ergodicity assumptions, μ and σ2
x can be

estimated by the sample mean and sample variance, respectively, of the reali-

zation x1; x2; . . . ; xT , that is, by Eqs. (1.2) and (1.3). An estimate of ρk is

then provided by the lag k sample autocorrelation given by Eq. (1.1), which,

because of its importance, is reproduced here:

rk 5

PT
t5k11

xt 2 xð Þ xt2k 2 xð Þ
Ts2

k5 1; 2; . . .

Recall from y1.2 that the set of rks defines the sample ACF (SACF),

which is sometimes referred to as the correlogram.

3.30 Consider a time series generated as independent observations drawn

from a fixed distribution with finite variance (i.e., ρk 5 0 for all k 6¼ 0). Such

a series is said to be independent and identically distributed or i.i.d. For such

a series the variance of rk is approximately given by T21. If T is large as

well,
ffiffiffiffi
T

p
rk will be approximately standard normal, so that rk B

a
N 0; T21
� �

,

implying that an absolute value of rk in excess of 2=
ffiffiffiffi
T

p
may be regarded as

“significantly” different from zero at the 5% significance level. More gener-

ally, if ρk 5 0 for k. q, the variance of rk, for k. q, is:

V rkð Þ5 T21 11 2ρ21 1?1 2ρ2q
� �

: ð3:12Þ

Thus, by successively increasing the value of q and replacing the ρks by
their sample estimates, the variances of the sequence r1; r2; . . . ; rk can be

estimated as T21; T21 11 2r21
� �

; . . .;T21 11 2r21 1?1 2r2k21

� �
, and, of

course, these will be larger for k. 1 than those calculated using the simple

formula T21. Taking the square root of V rkð Þ gives the standard error to be

attached to rk and these are often referred to as Bartlett standard errors, as

(3.12) was derived in Bartlett (1946).

3.31 The sample partial ACF (SPACF) is usually calculated by fitting auto-

regressive models of increasing order; the estimate of the last coefficient in

each model is the sample partial autocorrelation, φ̂kk.
9 If the data follow an

AR(p) process then for lags greater than p the variance of φ̂kk is approxi-

mately T21, so that φ̂kk B
a
N 0;T21
� �

.

3.32 Given the rk and φ̂kk, the approach to ARMA model building pro-

posed by George Box and Gwilym Jenkins—the Box and Jenkins (1970)

approach—may be followed. This is a three-stage procedure, the first of

which, known as the identification stage, is essentially to match the behavior

of the SACF and SPACF of a time series with that of various theoretical
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ACFs and PACFs. This may be done by assessing individual sample autocor-

relations and partial autocorrelations for significance by comparing them to

their accompanying standard errors computed according to the formulae of

yy3.30�3.31. Additionally, a “portmanteau” statistic based on the complete

set of rks may be constructed. On the hypothesis that xtBWN μ;σ2
� �

, then

Ljung and Box (1978) show that:

Q kð Þ5 T T 1 2ð Þ
Xk
i51

T2ið Þ21r2i B
a χ2 kð Þ ð3:13Þ

and this statistic may be used to assess whether an observed series departs

significantly from white noise (but see y11.5 for more specific assumptions

concerning xt).

3.33 Having picked the best match (or set of matches), the second stage is

to estimate the unknown model parameters (the φis, θis, μ, and σ2). If the

model is a pure autoregression, then ordinary least squares (OLS) is an effi-

cient and perfectly acceptable estimation method as it produces the condi-

tional ML estimates of the parameters; here “conditional” means that the

likelihood function is maximized conditional on regarding x1; x2; . . .; xp as

deterministic and, hence, given by their observed values rather than as being

taken as random variables drawn from the underlying distribution. If the

sample size T is large, then these first p observations make a negligible con-

tribution to the total likelihood and conditional ML will have the same large-

sample distribution for the estimates φ̂1; φ̂2; . . .; φ̂p, μ; σ̂
2 as exact ML.

If there is an MA component, then a simple approach is to condition on

the assumption that ap2q11; ap2q12; . . .; ap all take their expected value of

zero. This is known as conditional least squares (CLS) and, again, is equiva-

lent to exact ML in large samples; the estimates of the additional MA para-

meters being denoted θ̂1; θ̂2; . . .; θ̂q. Other approaches to computing exact ML

estimates in small samples are available if necessary.

3.34 Finally, the third stage, diagnostic checking, is to examine the

residuals:

ât 5 xt 2 φ̂1xt21 2?2 φ̂pxt2p 2 θ̂1ât21 2?2 θ̂qât2q

from the fitted model(s) for any possible misspecifications. Misspecifications

typically take the form of autocorrelated residuals, so that the SACF of the

ât will contain one or more significant values. Significance can be assessed

by comparing individual residual autocorrelations, say r̂k, with their standard

error, which will be T21=2 under the null that the residuals are not misspeci-

fied and, hence, are white noise. Alternatively, the portmanteau statistic

(3.13) may be computed, although the degrees of freedom for Q must now

be decreased to k2 p2 q if an ARMA(p,q) has been fitted.
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A further check on the adequacy of the fitted model is to overfit, say by

estimating an ARMA(p1 1,q) or an ARMA(p,q1 1) process and checking

whether the additional fitted parameter is significant or not. If any deficien-

cies in the model(s) are encountered, then further rounds of model building

must be undertaken until a well-specified model with no obvious deficiencies

is obtained.10

3.35 This three-stage approach, developed in the 1960s when computing

power was extremely limited and software unavailable (indeed, Box and

Jenkins had to write all their programs from scratch), may strike modern

readers as unnecessarily labor intensive, although it will become apparent

that it does have some important advantages in that it enables analysts to

obtain a detailed “feel” of the data. Consequently, an alternative approach

that harnesses modern computer power and software availability is to select

a set of models based on prior considerations of maximum settings of p and

q, estimate each possible model, and select that which minimizes a chosen

selection criterion based on goodness of fit considerations.

3.36 There are a variety of selection criteria that may be used to choose an

appropriate model, of which perhaps the most popular is Akaike’s (1974)

Information Criteria (AIC), defined as:

AIC p; qð Þ5 logσ̂2 1 2 p1 qð ÞT21

although a criterion that has better theoretical properties is the BIC of

Schwarz (1978)

BIC p; qð Þ5 log σ̂2 1 p1 qð ÞT21 log T :

The criteria are used in the following way. Upper bounds, say pmax and

qmax, are set for the orders of φ Bð Þ and θ Bð Þ, with p5 0; 1; . . .; pmax

� 	
and

q5 0; 1; . . .; qmax

� 	
, orders p1 and q1 are selected such that, for example;

AIC p1; q1ð Þ5min AIC p; qð Þ pAp; qAq

with parallel strategies obviously being employed in conjunction with BIC.

One possible difficulty with the application of this strategy is that no specific

guidelines on how to determine p and q seem to be available, although they

are tacitly assumed to be sufficiently large for the range of models to contain

the “true” model, which may be denoted as having orders p0; q0ð Þ: these, of
course, will not necessarily be the same as p1; q1ð Þ, the orders chosen by the

criterion under consideration.

Given these alternative criteria, are there reasons for preferring one to the

other? If the true orders p0; q0ð Þ are contained in the set p; qð Þ, pAp, qAq,

then for all criteria, p1 $ p0 and q1 $ q0, almost surely, as T-N. However,

BIC is strongly consistent in the sense that it will determine the true model

asymptotically, whereas for AIC an over-parameterized model will emerge

no matter how long the available realization. Of course, such properties are
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not necessarily guaranteed in finite samples, so that both criteria are often

used together.11

These model building procedures will not be discussed in any further

detail; rather, they will be illustrated by way of a sequence of examples

designed to bring out many of the features encountered in practice when

using these procedures.

EXAMPLE 3.1 An ARMA Process for the NAO

The monthly observations of the North Atlantic Oscillation (NAO) index from

1950 to 2017 plotted in Fig. 1.1 are clearly stationary around a mean estimated

to be x52 0:015 with standard deviation 1.012. They are also approximately

normally distributed, with moment measures of skewness and kurtosis being

20.10 and 2.67, respectively. These moment measures, which should be zero

and 3 under normality, may be jointly tested for departures from this distribution

by computing the Jarque and Bera (1980) test. This yields a test statistic of 5.13,

which is asymptotically distributed as χ2 2ð Þ (note that T 5 816 here) and, hence,

has a marginal probability (or p-value) of 0.08.12

Fig. 3.6 reproduces the NAO series in its bottom panel along with a simula-

tion of a NID 0; 1ð Þ, that is, standard normal, white noise of the same length

(given that the mean and standard deviation of the NAO series are so close to

zero and one respectively). A visual comparison of the two suggests that the

NAO may not be completely random but may exhibit low order, albeit weak,

autocorrelation.

Is this perceived autocorrelation merely in the “eye of the beholder” or does

it, in fact, really exist? Table 3.1 reports the SACF and SPACF up to k5 12, along

with accompanying standard errors. The lag-one sample autocorrelation r1, and

hence φ̂11, are estimated to be 0.19 and are significant as their accompanying

standard error is 0.035. All other rk and φ̂kk are insignificant so that both the

SACF and SPACF may be regarded as “cutting-off” at lag one, thus identifying

either an AR(1) or MA(1) process as likely to be generating the series.

This lag-one cut-off in both the SACF and SPACF is a common occurrence in

time series that display weak, albeit significant, autocorrelation. From y3.10, an
AR(1) process with φ5 0:2 would have autocorrelations exponentially declining

as ρk 5 0:2k , which, even for a sample size in excess of 800 would lead to sam-

ple autocorrelations that would be insignificantly different from zero for k 5 2

onwards. Q kð Þ statistics are also reported in Table 3.1 for k 51; 2; . . . ;12, and
they confirm that there is evidence of autocorrelation concentrated at lag-one.

Estimating by OLS an AR(1) model obtains:

xt 5 0:186
0:034ð Þ

xt21 1 ât σ̂5 0:994

while the CLS estimated MA(1) process is13

xt 5 ât 1 0:175
0:035ð Þ

ât21 σ̂5 0:995
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where in both regressions standard errors are shown in parentheses. The models

are essentially identical in terms of fit.

The residual SACFs from the two models contain no individually significant

autocorrelations, while the portmanteau statistics computed from (3.13) for the first

12 residual autocorrelations are Q 12ð Þ5 8:4 and Q 12ð Þ510:4, respectively, not-
ing that in both models one degree of freedom is lost when comparing these statis-

tics to χ2 critical values, that is, they are asymptotically distributed as χ2 11ð Þ
variates.

It would, thus, appear that either an AR(1) or MA(1) process adequately fits the

monthly NAO series. However, although the fitted parameter is highly significant

in both models, with the “t-ratios” being over 5 in both cases, little (less than 4%)

of the variation in the NAO can be explained by its past behavior; the traditional

R2 measures of regression goodness of fit being just 0.035 and 0.032, respectively.
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FIGURE 3.6 Normal white noise and monthly NAO.
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EXAMPLE 3.2 Modeling the United Kingdom Interest Rate Spread

The “spread,” the difference between long and short interest rates, is an impor-

tant variable in testing the expectations hypothesis of the term structure of inter-

est rates. Fig. 1.10 showed the spread between 20-year United Kingdom gilts

and three-month Treasury bills using monthly observations from January 1952 to

June 2017 (T 5 786), and Table 3.2 now reports the SACF and SPACF up to

k 512, again with accompanying standard errors.

The evolution of the spread is considerably smoother than one might expect

if it was a realization from a white noise process, and is certainly much smoother

than that of the NAO in Example 3.1. This is confirmed by the SACF, whose

values are all positive and significant, with the accompanying portmanteau sta-

tistic being Q 12ð Þ5 5872! The SPACF has both φ̂11 and φ̂22 significant, after

which there is a cut-off, thus identifying an AR(2) process. Fitting such a model

to the series by OLS regression yields:

xt 5 0:036
0:017ð Þ

1 1:193
0:035ð Þ

xt21 2 0:224
0:035ð Þ

xt22 1 ât σ̂5 0:394

Figures in parentheses are, again, standard errors and the intercept implies a fit-

ted mean of μ̂5 θ̂0= 12 φ̂1 2 φ̂2

� �
51:140, with standard error 0.448. The

model can, therefore, be written in “mean deviation” form as:

TABLE 3.1 SACF and SPACF of the NAO

k rk se rkð Þ φ̂kk se φ̂kk

� �
Q kð Þ

1 0.186 0.035 0.186 0.035 28.34

2 0.054 0.036 0.020 0.035 30.76

3 0.007 0.036 2 0.007 0.035 30.80

4 2 0.048 0.036 2 0.051 0.035 32.67

5 0.024 0.036 0.044 0.035 33.16

6 2 0.016 0.036 2 0.025 0.035 33.37

7 2 0.020 0.036 2 0.016 0.035 33.71

8 2 0.009 0.036 0.015 0.035 33.78

9 0.044 0.036 0.047 0.035 35.39

10 0.040 0.036 0.020 0.035 36.72

11 0.031 0.037 0.018 0.035 37.51

12 0.059 0.037 0.052 0.035 40.37

SACF, sample autocorrelation function; SPACF, sample partial autocorrelation function.

ARMA Models for Stationary Time Series Chapter | 3 51



xt 5 1:1401 1:193 xt21 2 1:140ð Þ2 0:224 xt22 2 1:140ð Þ1 ât

Since φ̂1 1 φ̂2 5 0:969, 2φ̂1 1 φ̂2 52 1:417, and φ̂2 52 0:224, the stationar-

ity conditions associated with an AR(2) process are satisfied, but although φ̂2 is

negative, φ̂
2

1 1 4φ̂2 5 0:526, so that the roots are real, being g1 5 0:96 and

g2 5 0:23. The spread is therefore stationary around an “equilibrium” level of

1.14% per annum: equivalently, in equilibrium long rates are 1.14% higher than

short rates. The closeness of g1 to unity will be discussed further in Example 4.1,

but its size means that shocks that force the spread away from its equilibrium

will take a long time to dissipate and, hence, the spread will exhibit extended

departures away from this level, although as the roots are real these departures

will not follow any periodic or cyclical pattern.

Having fitted an AR(2) process, it is now necessary to establish whether this

model is adequate. With k 5 12, the residuals yield the value Q 12ð Þ5 7:57,
which is asymptotically distributed as χ2 10ð Þ and, hence, gives no evidence of

model inadequacy.

Overfitting may also be undertaken. For example, an AR(3) process or, per-

haps, an ARMA(2,1) may be fitted to the series. These yield the pair of models:

xt 5 0:036
0:017ð Þ

1 1:194
0:036ð Þ

xt21 2 0:224
0:055ð Þ

xt22 2 0:001
0:036ð Þ

xt23 1 ât

xt 5 0:037
0:018ð Þ

1 1:144
0:156ð Þ

xt21 2 0:177
0:152ð Þ

xt22 1 ât 1 0:051
0:158ð Þ

ât21

The additional parameter is insignificant in both models, thus confirming the

adequacy of the original choice of an AR(2) process.

TABLE 3.2 SACF and SPACF of the United Kingdom Interest Rate Spread

k rk se rkð Þ φ̂kk se φ̂kk

� �

1 0.974 0.036 0.974 0.036

2 0.938 0.061 2 0.221 0.036

3 0.901 0.077 0.017 0.036

4 0.865 0.089 2 0.005 0.036

5 0.828 0.099 2 0.044 0.036

6 0.790 0.108 2 0.046 0.036

7 0.751 0.115 2 0.008 0.036

8 0.714 0.121 2 0.006 0.036

9 0.680 0.126 0.043 0.036

10 0.651 0.131 0.039 0.036

11 0.623 0.135 2 0.006 0.036

12 0.595 0.139 2 0.016 0.036

SACF, sample autocorrelation function; SPACF, sample partial autocorrelation function.
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EXAMPLE 3.3 Modeling the Sunspot Number

The annual sunspot numbers from 1700 to 2017 shown in Fig. 1.2 reveals a sta-

tionary series having an approximately periodic cycle of around 11 years.

Fig. 3.7 portrays the SACF and SPACF of the numbers in graphical form for k up

to 50, reflecting the fact that the periodicity in the series imparts a cyclical pat-

tern onto the autocorrelations, which decays only slowly. The SPACF, although

dominated by large values for φ̂11 and φ̂22, also has several other higher-order

partial autocorrelations that are significantly different from zero, thus making the

identification of an ARMA process rather difficult using the Box�Jenkins

approach.

Restricting attention to pure autoregressions, Table 3.3 reports AIC and BIC

values for AR processes up to order 20, with both criteria selecting an AR(9) as

the best fit.14 OLS estimates of the AR(9) model are shown in Table 3.4. The

portmanteau statistic for residual autocorrelation indicates no model misspecifi-

cation and, indeed, none of the first 20 residual autocorrelations approach signif-

icance. On examining the individual estimated φs, φ̂3 to φ̂8 are all insignificant,

with several of them taking on very small values. A restricted AR(9) process was

thus considered, where the restriction φ3 5φ4 5?5φ8 5 0 is imposed. A stan-

dard F-test of this restriction yields a statistic of 0.74 with a p-value of just .62,

so that the restricted model is perfectly acceptable, and the estimates of this

model are also reported in Table 3.4.
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FIGURE 3.7 SACF and SPACF of the sunspot numbers. SACF, Sample autocorrelation func-

tion; SPACF, sample partial autocorrelation function.
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TABLE 3.3 AIC and BIC Values for AR Models of the Sunspot Number

k AIC BIC k AIC BIC

1 10.001 10.024 11 9.231 9.377

2 9.355 9.391 12 9.240 9.398

3 9.342 9.389 13 9.248 9.419

4 9.350 9.410 14 9.254 9.437

5 9.360 9.432 15 9.259 9.455

6 9.349 9.433 16 9.264 9.473

7 9.294 9.390 17 9.248 9.337

8 9.254 9.363 18 9.243 9.478

9 9.213 9.334 19 9.251 9.498

10 9.223 9.377 20 9.258 9.519

Bold values signify minimum AIC and BIC values.

TABLE 3.4 AR(9) Estimates for the Sunspot Number

AR(9) Restricted AR(9) AR(2)

θ̂0 81.044 (8.696) 81.144 (12.339) 79.415 (4.691)

φ̂1
1.169 (0.056) 1.222 (0.044) 1.382 (0.041)

φ̂2
2 0.419 (0.088) 2 0.524 (0.044) 2 0.693 (0.041)

φ̂3
2 0.134 (0.091) � �

φ̂4
0.105 (0.091) � �

φ̂5
2 0.072 (0.091) � �

φ̂6
0.005 (0.091) � �

φ̂7
0.022 (0.091) � �

φ̂8
2 0.053 (0.088) � �

φ̂9
0.222 (0.056) 0.192 (0.026) �

σ̂ 23.848 23.786 25.888

R2 0.858 0.856 0.825

Q 20ð Þ 16.27 [0.132] 17.43 [0.426] 45.67 [0.000]

Standard errors shown in (. . .); p-values shown in [. . .].
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Autoregressions, particularly when, as here, they are of high order, can be dif-

ficult to interpret in terms of just the φ coefficients. Recalling y3.17, interpreta-
tion may be facilitated by considering the roots of the characteristic equation

φ Bð Þ5 0. The behavior of the ACF of an AR process can be described by a mix-

ture of damped exponentials (for the real roots) and damped sine waves (for the

complex roots). The AR(9) process fitted to the sunspot number has nine roots.

From the restricted model, these turn out to be a single real root of 0.95 and four

complex conjugates, 0:806 0:55i, 0:2960:79i, 20:296 0:70i, and

20:6760:28i (the roots from the unrestricted fit are almost identical to these).

For a pair of complex roots α6 βi the period of the related cycle, f, is

obtained by solving:

cos
2π
f

5
αj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 1β2
p

The periods of the four implied cycles are therefore calculated to be 10.43, 5.15,

5.33, and 15.87 years, respectively. The cycle damping factor is given by the

denominator of this expression, and so the factors are 0.97, 0.84, 0.76, and

0.73, respectively, so that the cycle with a period closest to 11 years quickly

dominates (0:9710 5 0:74 while 0:7310 5 0:04, for example).

It is interesting to compare this model with the simpler “single cycle” AR(2)

model originally fitted by Yule (1927), the estimates of which are shown in the

right-hand column of Table 3.4. This model has a pair of complex roots

0:696 0:46i, which imply a cyclical period of 10.63 years with a damping factor

of 0.83. Unfortunately, the fit of the AR(2) is inferior to that of the AR(9) and,

perhaps more importantly, it is a seriously inadequate model in that the Q-statis-

tic signals significant residual autocorrelation, a consequence of omitting the sta-

tistically important lag-nine term.

ENDNOTES

1. Technical details on ergodicity may be found in Granger and Newbold (1986, chapter 1) and

Hamilton (1994, chapter 3.2), with Domowitz and El-Gamal (2001) providing a method of

testing for the property.

2. Wold’s decomposition takes its name from Theorem 7 of Wold (1938, pages 84�89), although

he does not refer to this theorem as a decomposition. Peter Whittle, in “Some recent contribu-

tions to the theory of stationary processes”, which is Appendix 2 of the second edition of

Wold’s book, seems to be the first to refer to it as such. See also Mills (2011, chapter 7) for a

detailed discussion of the theorem.

3. The term “white noise” was coined by physicists and engineers because of its resem-

blance, when examined in the frequency domain, to the optical spectrum of white

light, which consists of very narrow lines close together: see Jenkins (1961). The term

“innovation” reflects the fact that the current error at is, by definition, independent of all

previous values of both the error and x, and hence represents unforecastable “news” that

becomes available at time t.

4. Autoregressions were first introduced by Yule (1927). For details on the historical develop-

ment of these models, see Mills (2013).

5. Moving average processes were introduced and analyzed in detail by Wold (1938).
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6. The solution to the quadratic ρ1θ
2 1 θ1 ρ1 5 0 is:

θ5
2 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 4ρ21

p
2ρ1

The restriction that θ be real requires that 12 4ρ21 . 0, which implies that ρ21 , 0:25 and

hence 20:5, ρ1 , 0:5.
7. As an example of this technique, consider the AR(2) process for which

φ Bð Þ5 12φ1B2φ2B
2. The ψ-weights are then obtained by equating coefficients in

12φ1B2φ2B
2

� �
11ψ1B1ψ2B

2 1?
� �

5 1

or

11 ψ1 2φ1

� �
B1 ψ2 2φ1ψ1 2φ2

� �
B2 1 ψ3 2φ1ψ2 2φ2ψ1

� �
B3 1?5 1

For this equality to hold, the coefficients of Bj, j$ 0, on each side of the equation must be

the same. Thus:

B1: ψ1 2φ1 5 0 ‘ ψ1 5φ1

B2: ψ2 2φ1ψ1 2φ2 5 0 ‘ ψ2
1 5φ2

1 1φ2

B3: ψ3 2φ1ψ2 2φ2ψ1 5 0 ‘ ψ3
1 5φ3

1 1 2φ1φ2

Noting that ψ3 5φ1ψ2 1φ2ψ1, the ψ-weights can then be derived recursively for j$ 2 from

ψj 5φ1ψj21 1φ2ψj22.

8. See Hamilton (1994, pages 17�18) for a derivation of this set of restrictions.

9. The successive sample partial autocorrelations may be estimated recursively using the updat-

ing equations proposed by Durbin (1960), which are known as the Durbin�Levinson

algorithm.

10. This is the classic reference to time series analysis: the latest edition is the fourth: Box et al.

(2008).

11. See Tremayne (2006) for more discussion of information criteria, for which several others

have been proposed, and for a survey of many current issues in ARMA modeling.

12. If m3 and m4 are the estimated moment measures of skewness and kurtosis respectively,

then the Jarque�Bera statistic is:

JB5
T

6


 �
m2

3 1
T

24


 �
m423ð Þ2

13. When intercepts are included in the models they are found to be insignificant.

14. It is interesting to note that when Yule (1927) introduced autoregressive processes his exam-

ple was indeed the sunspot numbers for the truncated period 1749�1924, where he fitted an

AR(2) to the series.
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NONSTATIONARITY

4.1 The autoregressive-moving average (ARMA) class of models relies on

the assumption that the underlying process is weakly stationary, which

restricts the mean and variance to be constant and requires the autocovar-

iances to depend only on the time lag. As we have seen, however, many

time series are certainly not stationary, for they tend to exhibit time-

changing means and/or variances.

4.2 To deal with such nonstationarity, we begin by characterizing a time

series as the sum of a nonconstant mean level plus a random error

component:

xt 5μt 1 εt ð4:1Þ
The nonconstant mean level μt in (4.1) can be modeled in a variety of

ways. One potentially realistic possibility is that the mean evolves as a

(nonstochastic) polynomial of order d in time, with the error εt assumed

to be a stochastic, stationary, but possibly autocorrelated, zero mean pro-

cess. This, in fact, is always possible given Cramer’s (1961) extension of

Wold’s decomposition theorem to nonstationary processes. Thus, we may

have:

xt 5μt 1 εt 5
Xd
j50

βjt
j 1ψ Bð Þat ð4:2Þ

Since:

E εtð Þ5ψ Bð ÞE atð Þ5 0;
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we have

E xtð Þ5E μt

� �
5

Xd
j50

βjt
j

and, as the βj coefficients remain constant through time, such a trend in the

mean is said to be deterministic.

4.3 Trends of this type can be removed by a simple transformation.

Consider the linear trend obtained by setting d5 1, where, for simplicity, the

error component is assumed to be a white noise sequence:

xt 5β0 1β1t1 at ð4:3Þ
Lagging (4.3) one period yields:

xt21 5 β0 1 β1 t2 1ð Þ1 at21 5β0 2β1 1β1t1 at21

and subtracting this from (4.3) itself yields

xt 2 xt21 5β1 1 at 2 at21 ð4:4Þ
The result is a difference equation following an ARMA(1,1) process in

which, since φ5 θ5 1, both autoregressive and moving average roots are

unity and the model is neither stationary nor invertible. If, however, we con-

sider the first-differences wt 5rxt then (4.4) can be written as:

wt 5β1 1rat
and wt is therefore generated by a stationary, since E wtð Þ5β1 is constant,

but not invertible MA(1) process.

4.4 In general, if the trend polynomial is of order d and εt is characterized
by the ARMA process φ Bð Þεt 5 θ Bð Þat, then rdxt 5 12Bð Þdxt, obtained by

first-differencing xt d times, will follow the process:

rdxt 5 θ0 1
rdθ Bð Þ
φ Bð Þ at

where θ0 5 d!βd. Thus, the moving average (MA) part of the process gener-

ating rdxt will also contain the factor rd and will, therefore, have d roots of

unity. Note also that the variance of xt will be the same as the variance of εt
and so will be constant for all t. Fig. 4.1 shows plots of generated data for

both linear and quadratic (d5 2) trend models. Because the variance of the

error component, here assumed to be white noise and distributed as

NID 0; 9ð Þ, is constant and independent of the level, the variability of each of

the series is bounded about the expected value, and the trend components are

clearly observed in the plots.
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4.5 An alternative way of generating a nonstationary mean level is to

employ ARMA models whose autoregressive parameters do not satisfy sta-

tionarity conditions. For example, consider the AR(1) process:

xt 5φxt21 1 at ð4:5Þ
where φ. 1. If the process is assumed to have started at time t5 0, the dif-

ference equation Eq. (4.5) has the solution:

xt 5 x0φt 1
Xt

i50

φiat2i ð4:6Þ

The “complementary function” x0φt can be regarded as the conditional

expectation of xt at time t5 0 and is clearly an increasing function of t. The

conditional expectation of xt at subsequent times t5 1; 2; . . . will depend on

the sequence of random shocks a1; a2; . . . and, hence, since this conditional

expectation may be regarded as the trend of xt, the trend changes

stochastically.

The variance of xt is given by:

V xtð Þ5σ2 φ
2t 2 1

φ2 2 1

which is also an increasing function of time and becomes infinite as

t-N.1In general, xt will have a trend in both mean and variance, and such

processes are said to be explosive. A plot of generated data from the process

(4.5) with φ5 1:05 and atBNID 0; 9ð Þ, and having starting value x0 5 10, is

shown in Fig. 4.2. We see that, after a short “induction period,” the series
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M1: xt = 10 + 2t + at; M2: xt = 10 + 5t–0.03t2 + at

at ~ NID (0,9)

FIGURE 4.1 Simulated linear and quadratic trends.
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essentially follows an exponential curve with the generating ats playing

almost no further part. The same behavior would be observed if additional

autoregressive and moving average terms were added to the model, as long

as the stationarity conditions are violated.

ARIMA PROCESSES

4.6 As we can see from (4.6), the solution to (4.5) is explosive if φ. 1 but

stationary if φ, 1. The case φ5 1 produces a process that is neatly balanced

between the two. If xt is generated by the model:

xt 5 xt21 1 at ð4:7Þ
then xt is said to follow a random walk.2 If we allow a constant, θ0, to be

included, so that:

xt 5 xt21 1 θ0 1 at ð4:8Þ
then xt will follow a random walk with drift. If the process starts at t5 0,

then:

xt 5 x0 1 tθ0 1
Xt

i50

at2i;

so that

μt 5E xtð Þ5 x0 1 tθ0
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xt = 1.05xt–1 + at, x0 = 10; at ~ NID (0,9)

FIGURE 4.2 A simulated explosive AR(1) model.
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γ0;t 5V xtð Þ5 tσ2

and

γk;t 5Cov xt; xt2kð Þ5 t2 kð Þσ2 k$ 0

are all functions of t and, hence, are time-varying.

4.7 The autocorrelation between xt and xt2k is then given by:

ρk;t 5
γk;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiγ0:tγ0;t2k

p 5
t2 kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t t2 kð Þ

p 5

ffiffiffiffiffiffiffiffiffiffi
t2 k

t

r

If t is large compared to k, then all the ρk;t will be approximately unity.

The sequence of xt values will, therefore, be very smooth, but will also be

nonstationary since both the mean and variance of xt will change with t.

Fig. 4.3 shows generated plots of the random walks (4.7) and (4.8) with
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FIGURE 4.3 Simulated random walks. (A) xt5 xt211 at, x05 10; at B NID(0,9) and (B)

xt5 21 xt211 at, x05 10; at B NID(0,9).
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x0 5 10 and atBNID 0; 9ð Þ. In part (A) of the figure the drift parameter, θ0, is
set to zero while in part (B) we have set θ0 5 2. The two plots differ consid-

erably, but neither show any affinity with the initial value x0: indeed, the

expected length of time for a random walk to pass again through an arbitrary

value is infinite.

4.8 The random walk is an example of a class of nonstationary models

known as integrated processes. Eq. (4.8) can be written as:

rxt 5 θ0 1 at

and so first-differencing xt leads to a stationary model, in this case the white

noise process at. Generally, a series may need first-differencing d times to

attain stationarity, and the series so obtained may itself be autocorrelated.

If this autocorrelation is modeled by an ARMA(p,q) process, then the

model for the original series is of the form:

φ Bð Þrdxt 5 θ0 1 θ Bð Þat ð4:9Þ
which is said to be an autoregressive-integrated-moving average (ARIMA)

process of orders p, d and q, or ARIMA(p,d,q), and xt is said to be integrated

of order d, denoted I dð Þ.3
4.9 It will usually be the case that the order of integration d or, equiva-

lently, the degree of differencing, will be 0, 1 or, occasionally, 2 (recall the

examples in yy2.9�2.10). It will continue to be the case that the autocorrela-

tions of an ARIMA process will be close to 1 for all nonlarge k. For exam-

ple, consider the (stationary) ARMA(1,1) process:

xt 2φxt21 5 at 2 θat21

whose ACF has been shown to be (y3.26)

ρ1 5
12φθð Þ φ2 θð Þ
11 θ2 2 2φθ

ρk 5φρk21 for k. 1

As φ-1, the ARIMA(0,1,1) process:

rxt 5 at 2 θat21

results, and all the ρk tend to unity.

4.10 Several points concerning the ARIMA class of models are of impor-

tance. Consider again (4.9), with θ0 5 0 for simplicity:

φ Bð Þrdxt 5 θ Bð Þat
This process can equivalently be defined by the two equations:

φ Bð Þwt 5 θ Bð Þat
and

wt 5rdxt ð4:10Þ
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so that, as previously noted, the model corresponds to assuming that rdxt
can be represented by a stationary and invertible ARMA process.

Alternatively, for d$ 1, (4.10) can be inverted to give:

xt 5 Sdwt ð4:11Þ
where S is the infinite summation, or integral, operator defined by

S5 11B1B2 1?
� �

5 12Bð Þ21 5r21

Eq. (4.11) implies that xt can be obtained by summing, or “integrating,” the

stationary series wt d times; hence, the term integrated process.

4.11 This type of nonstationary behavior is often referred to as homogenous

nonstationarity, and it is important to discuss why this form of nonstationar-

ity is felt to be useful when describing the behavior of time series from

many fields. Consider again the first-order autoregressive process (4.2). A

basic characteristic of the AR(1) model is that, for both φ
�� ��, 1 and φ. 1,

the “local” behavior of a series generated from the model is heavily depen-

dent on the level of xt. In the former case local behavior will always be dom-

inated by an affinity to the mean, while in the latter the series will

eventually increase rapidly with t. For many time series, however, local

behavior appears to be roughly independent of level, and this is what we

mean by homogenous nonstationarity.

4.12 If we want to use ARMA models for which the behavior of the pro-

cess is indeed independent of its level, then the autoregressive polynomial

φ Bð Þ must be chosen so that:

φ Bð Þ xt 1 cð Þ5φ Bð Þxt
where c is any constant. Thus:

φ Bð Þc5 0

implying that φ 1ð Þ5 0, so that φ Bð Þ must be able to be factorized as

φ Bð Þ5φ1 Bð Þ 12Bð Þ5φ1 Bð Þr;
in which case the class of processes that need to be considered will be of the

form

φ1 Bð Þwt 5 θ Bð Þat
where wt 5rxt. Since the requirement of homogenous nonstationarity pre-

cludes wt increasing explosively, either φ1 Bð Þ is a stationary operator or

φ1 Bð Þ5φ2 Bð Þ 12Bð Þ, so that φ2 Bð Þw�
t 5 θ Bð Þat, where w

�
t 5r2xt. Since this

argument can be used recursively, it follows that for time series that are

homogenously nonstationary, the autoregressive lag polynomial must be of

the form φ Bð Þrd, where φ Bð Þ is a stationary polynomial. Fig. 4.4 plots gener-

ated data from the model r2xt 5 at, where atBNID 0; 9ð Þ and x0 5 x1 5 10,
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and such a series is seen to display random movements in both level and

slope.

4.13 In general, if a constant is included in the model for dth differences,

then a deterministic polynomial trend of degree d is automatically allowed

for. Equivalently, if θ0 is taken to be nonzero, then:

E wtð Þ5E rdxt
� �

5μw 5
θ0

12φ1 2φ2 2?2φp

� �
is nonzero, so that an alternative way of expressing (4.9) is as

φ Bð Þ ~wt 5 θ Bð Þat
where ~wt 5wt 2μw.

Fig. 4.5 plots generated data for r2xt 5 21 at, where, again,

atBNID 0; 9ð Þ and x0 5 x1 5 10. The inclusion of the deterministic quadratic

trend has a dramatic effect on the evolution of the series, with the nonsta-

tionary “noise” being completely swamped after a few periods.

Model (4.9) therefore allows both stochastic and deterministic trends to

be modeled. When θ0 5 0 only a stochastic trend is incorporated, while if

θ0 6¼ 0 the model may be interpreted as representing a deterministic trend (a

polynomial of order d) buried in nonstationary and autocorrelated noise, the

latter containing a stochastic trend. The models presented in yy4.2�4.4 could

be described as deterministic trends buried in stationary noise, since they

can be written as:

φ Bð Þrdxt 5φ 1ð Þβdd!1rdθ Bð Þat
the stationary nature of the noise in the level of xt being manifested in d

roots of the moving average lag polynomial being unity.

(1−B)2 xt = at, x0 = x1 = 10 ; at ~ NID (0,9)
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FIGURE 4.4 A simulated “second-difference” model.
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ARIMA MODELING

4.14 Once the order of differencing d has been established, then since

wt 5rdxt is, by definition, stationary, the ARMA model building techniques

discussed in yy3.29�3.35 may be applied to the suitably differenced series.

Establishing the correct order of differencing is by no means straightforward

however, and is discussed in detail in yy5.4�5.7. We content ourselves here

with a sequence of examples illustrating the modeling of ARIMA processes

when d has already been chosen; the suitability of these choices will be

examined through examples in Chapter 5, ARIMA Models for Nonstationary

Time Series.

EXAMPLE 4.1 Modeling the United Kingdom Spread as an Integrated
Process

In Example 3.2, we modeled the spread of UK interest rates as a stationary,

AR(2), process. There we noted that the roots of this process were 0.96 and 0.23,

so that the model could be written as:

120:23Bð Þ 120:96Bð Þ xt 2 1:14ð Þ5 at

or as

12 0:96Bð Þ xt 2 1:14ð Þ5 0:23 12 0:96Bð Þ xt21 2 1:14ð Þ1 at

i.e., as being close to an ARIMA(1,1,0) process. Consequently, here we consider

modeling the spread assuming that it is an I(1) process, so that we examine the

behavior of the SACF and SPACF of wt 5rxt . Table 4.1 provides these estimates

up to k 5 12 and suggests that as both functions cut-off at k 5 1, either an AR(1)

(1−B)2 xt = 2 + at, x0 = x1 = 10 ; at ~ NID (0,9)

0
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10 20 30 40 50 60 70 80 90 100

t

xt

FIGURE 4.5 A simulated “second-difference with drift” model.
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(as suggested previously) or an MA(1) process could be identified. Estimation of

the former obtains:

wt 52 0:0017
0:0142ð Þ

1 0:209
0:035ð Þ

wt21 1 ât ; σ̂5 0:398

The residuals are effectively white noise, as they yield a portmanteau statistic

of Q 12ð Þ5 8:81, and the mean of wt is seen to be insignificantly different from

zero. The spread can therefore be modeled as an ARIMA(1,1,0) process but with-

out drift. In fact, fitting an ARIMA(0,1,1) process obtains almost identical esti-

mates, with θ estimated to be 20.204 and σ̂5 0:398.
The implication of this model is that the spread evolves as a driftless random

walk with AR(1) innovations. Being nonstationary, the spread therefore has no

equilibrium level to return to and thus “wanders widely” but without any drift up

or, indeed, down. All innovations consequently have permanent effects, in direct

contrast to the AR(2) model of Example 3.2, in which the spread is stationary

about an equilibrium level, so that since the series always reverts back to this

level, all innovations can have only temporary effects. A method of distinguish-

ing between these alternative models is introduced in Chapter 5, ARIMA Models

for Nonstationary Time Series.

TABLE 4.1 SACF and SPACF of the First Difference of the UK Spread

k rk s:e: rkð Þ φ̂kk s:e: φ̂kk

� �

1 0.209 0.036 0.209 0.036

2 2 0.027 0.038 2 0.018 0.036

3 2 0.020 0.038 2 0.023 0.036

4 0.015 0.038 0.026 0.036

5 0.033 0.038 0.026 0.036

6 0.003 0.038 2 0.011 0.036

7 2 0.016 0.038 2 0.014 0.036

8 2 0.071 0.039 2 0.066 0.036

9 2 0.082 0.039 2 0.057 0.036

10 2 0.037 0.039 2 0.009 0.036

11 2 0.009 0.039 2 0.001 0.036

12 2 0.021 0.039 0.024 0.036

66 Applied Time Series Analysis



EXAMPLE 4.2 Modeling the $�d Exchange Rate

As was noted in y1.6, the daily observations of the $�d exchange rate plotted in

Fig. 1.5 exhibit the wandering movement of a driftless random walk: the SACF in

fact has r1 5 0:999, r2 5 0:997, r10 5 0:986, r50 5 0:919, and r100 5 0:829, thus

displaying the slow, almost linear, decline typical of an I(1) process (this is dis-

cussed further in y5.2).
The differences are almost identical to the percent daily change in the rate

shown in Fig. 1.9 and are stationary about zero and appear to show no discern-

ible autocorrelation pattern. Indeed, they are close to being white noise, the only

significant sample autocorrelation being r1 5 0:06, on noting that here the stan-

dard error of r1 is 1081821=2 � 0:010. Although the parameter estimates are sig-

nificant on fitting either an AR(1) or MA(1) process, the R2 statistic associated

with each model is around 0.0036, which, of course, is equal to r21 . Thus,

although changes in the exchange rate bear some correlation with past changes,

this correlation is small and, although seemingly statistically significant, it is

unlikely that it will be economically significant in the sense that it could be used

to develop trading rules, say. A resolution to this apparent departure from the

efficient markets hypothesis will be provided in Example 10.1.

EXAMPLE 4.3 Modeling Global Temperatures

The anthropogenic global warming (AGW) hypothesis may be taken to imply

that the global monthly temperature series shown in Fig. 1.8 must be nonstation-

ary, for if it was not then temperatures would fluctuate around a constant mean

and all discussion of global warming would be moot. On the assumption, there-

fore, that d 51, Fig. 4.6 shows the SACF and SPACF of the first-differences of

temperatures. Whilst only r1 and r3 are significant, the SPACF exhibits a decline

toward zero, with all the first 12 sample autocorrelations being negative, most

being significantly so. An ARIMA(0,1,3) process may therefore be identified,

which was estimated by CLS to be:

rxt 5 0:00052
0:00078ð Þ

1 ât 2 0:506
0:022ð Þ

ât21 2 0:090
0:025ð Þ

ât22 2 0:119
0:022ð Þ

ât23

σ̂5 0:1236 Q 12ð Þ5 11:75

This model shows no misspecification, but it does have an interesting impli-

cation. The intercept, which measures the drift of the series and, hence, in this

case, the slope of a deterministic linear trend in temperatures, implies a trend

increase of 0:00052312005 0:62�C per century, but is, in fact, insignificantly

different from zero, having a t-ratio of just 0.66. The model therefore implies that

although temperatures are nonstationary, they can be interpreted as evolving as

an autocorrelated but driftless random walk, so that there is no long-run ten-

dency for temperatures to drift inexorably upward over time, which must put the

model at odds with the AGW hypothesis.
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ENDNOTES

1. This expression for the variance of xt is obtained by noting that:

V xtð Þ 5E x2t
� �

5E at1φat211φ2at221?1φ2t21a1
� �2

5σ2 11φ2 1φ4 1?1φ2t21
� �

5σ2 12φ2t

12φ2
5σ2 φ

2t 2 1

φ2 2 1

on using the white noise assumptions and the standard result that

11 z1 z2 1?1 zt21 5
12 ztð Þ
12 zð Þ

with z5φ2.

2. The term random (or drunkard’s) walk was coined by Karl Pearson in correspondence with

Lord Rayleigh in the journal Nature in 1905. Although first employed by Pearson to describe
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FIGURE 4.6 SACF and SPACF of global temperatures.
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a mosquito infestation in a forest, the model was subsequently, and memorably, used to

describe the optimal “search strategy” for finding a drunk who had been left in the middle of

a field in the dead of night! The solution is to start exactly where the drunk had been placed,

as that point is an unbiased estimate of the drunk’s future position, and then walk in a ran-

domly selected straight line, since he will presumably stagger along in an unpredictable and

random fashion.

Pearson’s metaphor was, of course, in terms of spatial displacement, but the time series

analogy should be clear. Random walks were, in fact, first formally introduced in continuous

time by Louis Bachelier in his 1900 doctoral dissertation Theorie de Speculation to describe

the unpredictable evolution of stock prices. They were independently discovered by Albert

Einstein in 1905 and have since played a fundamental role in mathematics and physics as

models of, for example, waiting times, limiting diffusion processes, and first-passage

problems.

3. This terminology was introduced in Box and Jenkins (1970).
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DETERMINING THE ORDER OF INTEGRATION OF A
TIME SERIES

5.1 As we have shown in yy4.5�4.13, the order of integration, d, is a cru-

cial determinant of the properties exhibited by a time series. If we restrict

ourselves to the most common values of zero and one for d, so that xt is

either I 0ð Þ or I 1ð Þ, then it is useful to bring together the properties of these

two processes.

If xt is I 0ð Þ, which we will sometimes denote xtBI 0ð Þ even though such a

notation has been used previously to denote the distributional characteristics

of a series, then, if we assume for convenience that xt has zero mean;

1. the variance of xt is finite and does not depend on t;

2. the innovation at has only a temporary effect on the value of xt;

3. the expected length of time between crossings of x5 0 is finite, so that xt
fluctuates around its mean of zero;

4. the autocorrelations, ρk, decrease steadily in magnitude for large enough

k, so that their sum is finite.
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If, on the other hand, xtBI 1ð Þ with x0 5 0, then;

1. the variance of xt goes to infinity as t goes to infinity;

2. an innovation at has a permanent effect on the value of xt because xt
is the sum of all previous innovations: recall from y4.10 that

xt 5r21at 5 Sat 5
Pt21

i50 at2i;

3. the expected time between crossings of x5 0 is infinite;

4. the autocorrelations ρk-1 for all k as t goes to infinity.

5.2 As was shown in Chapter 2, Transforming Time Series, the fact that a

time series is nonstationary is often self-evident from a plot of the series.

Determining the actual form of nonstationarity, however, is not so easy from

just a visual inspection and, consequently, an examination of the SACFs for

alternative differences of the series may be required.

To see why this may be so, recall from y3.17 that a stationary AR(p) pro-

cess requires that all roots gi in

φ Bð Þ5 12 g1Bð Þ 12 g2Bð Þ. . . 12 gpB
� �

must be such that jgij, 1. Now suppose one of them, say g1, approaches 1,

so that g1 5 12 δ, where δ is a small positive number. The autocorrelations

ρk 5A1g
k
1 1A2g

k
2 1?1Apg

k
p

will then become dominated by the lead term A1g
k
1, since all others will go

to zero more rapidly, i.e., ρkDA1g
k
1. Moreover, because g1 is close to 1, the

exponential decay A1g
k
1 will be slow and almost linear, since

A1g
k
1 5A1 12δð Þk 5A 12 δk1 δ2k2 2 . . .

� �
DA1 12 δkð Þ

Hence, the failure of the SACF to die down quickly is an indication of

nonstationarity, its behavior tending to be rather that of a slow, linear decline.

If the original series xt is found to be nonstationary, the first-difference rxt is
then analyzed. If rxt is still nonstationary, the second-difference r2xt is ana-

lyzed, the procedure being repeated until a stationary difference is found,

although in practice d will not exceed 2.

5.3 Sole reliance on the SACF can sometimes lead to problems of overdif-

ferencing. Although further differences of a stationary series will themselves

be stationary, overdifferencing can lead to serious difficulties. Consider the

stationary MA(1) process xt 5 12 θBð Þat. The first-difference of this is

rxt 5 12Bð Þ 12 θBð Þat
5 12 11 θð ÞB1 θB2
� �

at
5 12 θ1B2 θ2B2
� �

at:

We now have a more complicated model containing two parameters rather

than one and, moreover, one of the roots of the θ Bð Þ polynomial will be unity

since θ1 1 θ2 5 1: The model is, therefore, not invertible, so that the AR(N)
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representation of rxt does not exist and attempts to estimate this model will

almost surely run into difficulties.

TESTING FOR A UNIT ROOT

5.4 Given the importance of choosing the correct order of differencing, we

should have available a formal testing procedure to determine d. To intro-

duce the issues involved in developing such a procedure, we begin by con-

sidering the simplest case, that of the zero mean AR(1) process:

xt 5φxt21 1 at t5 1; 2; . . .; T ð5:1Þ
where atBWN 0;σ2

� �
and x0 5 0. The OLS estimator of φ is given by

φ̂T 5

PT
t51 xt21xtPT

t51 x
2
t

As we have seen, xt will be I 0ð Þ if φ
�� ��, 1, but will be I 1ð Þ if φ5 1, so

that testing this null hypothesis, that of a “unit root,” becomes a method of

determining the correct order of differencing/integration. Given the estimate

φ̂T , a conventional way of testing the null hypothesis would be to construct

the t-statistic

tφ 5
φ̂T 2 1

σ̂φ̂T

5
φ̂T 2 1

s2T=
PT

t51 x
2
t21

� �1=2 ð5:2Þ

where

σ̂φ̂T
5

s2TPT
t51 x

2
t21

 !1=2

is the usual OLS standard error for φ̂T and s2T is the OLS estimator of σ2:

s2T 5

PT
t51 xt2φ̂Txt21

� �2
T 2 1

5.5 Unfortunately, the distribution of tφ does not have the usual limiting

standard normal distribution when φ5 1. Rather, its distribution is as shown

in Fig. 5.1, where it is called the τ-distribution in recognition of its nonnorm-

ality. The test statistic (5.2) is renamed τ, rather than tφ, and is often known

as the Dickey�Fuller test, as indeed is the distribution.1

Fig. 5.1 shows that the limiting distribution of τ is approximately stan-

dard normal, but shifted to the left by roughly 0.3: the large T 5%, 2.5%, and

1% critical values for τ are 21.95, 22.23, and 22.58, rather than the stan-

dard normal critical values of 21.65, 21.96, and 22.33.
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5.6 This case has the merit of being simple, but is not particularly realis-

tic, for it implies that the alternative to a driftless random walk is a sta-

tionary AR(1) process about a zero mean, which would rule out series that

can take only positive values, of which there are many (most economic

and financial time series, for example). A more sensible alternative would

be for the AR(1) process to fluctuate about a nonzero mean, so that we

have the model:

xt 5 θ0 1φxt21 1 at t5 1; 2; . . .; T ð5:3Þ
in which the unit root null is parameterized as θ0 5 0, φ5 1. The presence of

an intercept alters the distribution of the test statistic, which is now denoted τμ
to emphasize that a nonzero mean is allowed for in the regression (5.3).2

Fig. 5.2 presents the distribution of τμ. With a nonzero mean, the distribution

under the unit root null deviates further from the standard normal than when

the mean is zero (compare with Fig. 5.1), with the large T 5%, 2.5%, and 1%

critical values now being 22.86, 23.12, and 23.43.

–5 –4 –3 –2 –1 0 1 2 3 4

N (0,1)τ

FIGURE 5.1 Limiting distribution of τ.

–5 –4 –3 –2 –1 0 1 2 3 4

N (0,1)τμ

FIGURE 5.2 Limiting distribution of τμ.
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5.7 A further generalization is to allow the innovations to be autocorre-

lated. Suppose that xt is generated by the AR(p) process:

12φ1B2φ2B
2 2?2φpB

p
� �

xt 5 θ0 1 at

or

xt 5 θ0 1
Xp
i51

φixt2i 1 at ð5:4Þ

A more convenient representation is obtained by defining

φ5
Xp
i51

φi

δi 52
Xp21

j5i11

φj i5 1; 2; . . .; p2 1

so that (5.4) can be written, with k5 p2 1,

xt 5 θ0 1φxt21 1
Xk
i51

δirxt2i 1 at ð5:5Þ

The unit root null is, thus, φ5
Pp

i51 φi 5 1.3 OLS provides consistent esti-

mators of the coefficients of (5.5) and a test of φ5 1 can be constructed as

τμ 5
φ̂T 2 1

se φ̂T

� �

where se φ̂T

� �
is the OLS standard error attached to the estimate φ̂T (recall

y5.4). This statistic is also denoted τμ because it has the same limiting distri-

bution as the statistic obtained from the AR(1) model (5.3), although it is

often referred to as the augmented Dickey�Fuller (ADF) test. In a similar

vein, Eq. (5.5) is known as the ADF regression.

5.8 The analysis of yy5.4�5.7 has implicitly assumed that the AR order p

is known, so that we are certain that xt is generated by a pth order autore-

gression. If the generating process is an ARMA(p,q), then the τμ statistic

obtained from estimating the model:

xt 5 θ0 1φxt21 1
Xp
i51

δirxt2i 1 at 2
Xq
j51

θjat2j

has the same limiting distribution as that calculated from (5.5). The prob-

lem here, of course, is that p and q are assumed known, and this is unlikely

to be the case in practice. When p and q are unknown, the test statistic

obtained from (5.5) can still be used if k, the number of lags of rxt
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introduced as regressors, increases with the sample size T. Typically, set-

ting k at T0:25
� �

should work reasonably well in practice, where U½ � denotes
the operation of taking the integer part of the argument: for example,

for T 5 50, T0:25 5 2:659, so that k is set at 2; for T 5 500, T0:25 5 4:729
and, hence, k5 4. This adjustment is necessary because, as the sample

size increases, the effects of the correlation structure of the residuals on

the shape of the distribution of τμ become more precise. A more accurate

setting of k may be determined by using, for example, information

criteria or by implementing a sequence of t-tests on the lags, once a

suitable maximum value for k has been chosen, perhaps by the rule of

thumb discussed.

EXAMPLE 5.1 Unit Root Tests on the Spread and the $�d Exchange Rate

Examples 3.2 and 4.1 examined two models for the United Kingdom interest rate

spread: a stationary AR(2) process and an I 1ð Þ process without drift. We are now

able to discriminate between the two through the application of a unit root test.

The fitted AR(2) model:

xt 5 0:036
0:017ð Þ

1 1:193
0:035ð Þ

xt21 2 0:224
0:035ð Þ

xt22 1 ât

can equivalently be written as

xt 5 0:036
0:017ð Þ

1 0:969
0:008ð Þ

xt21 1 0:224
0:035ð Þ

rxt21 1 ât

so that τμ 5 2 0:0314=0:007852 4:03, which is significant at the 1% level, this

critical value being 23.44. Note that the τμ statistic can be obtained directly as

the t-ratio on xt21 from rewriting the model again as

rxt 5 0:036
0:017ð Þ

2 0:031
0:008ð Þ

xt21 1 0:224
0:035ð Þ

rxt21 1 ât

We may, therefore, conclude that the spread does not contain a unit root and

that the appropriate specification is the stationary AR(2) model in which there

are temporary, albeit highly persistent, deviations away from an equilibrium

level of 1.14%.

A similar approach to testing for a unit root in the $�d exchange rate, the

presence of which was assumed in Example 4.2, leads to the estimated equation:

rxt 5 0:0019
0:0007ð Þ

2 0:0012
0:0004ð Þ

xt21 1 0:0607
0:0096ð Þ

rxt21 1 ât

Here we have τμ 52 2:96, and since the 1% critical value is 23.43, this is insig-

nificant at this level, although it is certainly significant at the 5% level (the

P-value is .039). Thus, even though the largest autoregressive root is estimated to

be 0.9988, there is still some doubt as to whether the appropriate model for the

$�d exchange rate is indeed a (possibly autocorrelated) random walk or whether

it is stationary around an “equilibrium” level, estimated here to be 1.712.4 This

latter model would have the implication that any deviation from this level would

only be temporary and foreign exchange traders would then have a “one-way”
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bet in that such deviations must eventually be reversed, which seems highly

unlikely in such a competitive and efficient market. A resolution of this apparent

“paradox” will be provided in Example 10.1.

EXAMPLE 5.2 Is There a Unit Root in Global Temperatures?

It was assumed in Example 4.3 that global temperatures were I 1ð Þ. A proponent

of the absence of global warming would require this series to be I 0ð Þ, and

should, thus, demand that a unit root test be carried out to determine the appro-

priate level of differencing. Since the AR order in the ADF regression is

unknown, k may be selected using the rule of thumb suggested in y5.8, which

here gives k 5 20160:25
� �

56. Using the BIC to select the lag augmentation also

gives this value for k, so leading to the ADF regression

rxt 52 0:002
0:003ð Þ

2 0:032
0:009ð Þ

xt21 1
X6
i51

δ̂irxt2i 1 ât

Here τμ 5 2 0:0319=0:009252 3:48, which is significant at the 1% level, this

critical value being 23.43 (the p-value is .009). There is, thus, considerable

doubt as to whether this global temperature series is actually I 1ð Þ, as is necessary
for the AGW hypothesis, although it is not sufficient because, as we have seen in

Example 4.3, even on the I 1ð Þ assumption the drift is insignificantly different

from zero.

TREND VERSUS DIFFERENCE STATIONARITY

5.9 In the unit root testing strategy outlined previously, the implicit null

hypothesis is that the series is generated as a driftless random walk with,

possibly, autocorrelated innovations. In popular terminology introduced by

Nelson and Plosser (1982), xt is said to be difference stationary (DS),

rxt 5 εt ð5:6Þ
where εt 5 θ Bð Þat, while the alternative is that xt is stationary in levels.

While the null of a driftless random walk is appropriate for many time series,

others often do contain a drift, so that the relevant null becomes

rxt 5 θ1 εt ð5:7Þ
In this case, a plausible alternative is that xt is generated by a linear trend

buried in stationary noise (see y4.13), now termed trend stationarity (TS):

xt 5β0 1β1t1 εt ð5:8Þ
Unfortunately, the τμ statistic obtained from (5.5) is incapable of distin-

guishing a stationary process around a linear trend [model (5.8)] from a process
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with a unit root and drift [model (5.7)]. Indeed, rejection of a null hypothesis

of a unit root is unlikely using this statistic if the series is stationary around a

linear trend and becomes impossible as the sample size increases, i.e., the test

is inconsistent, results that were first announced by Perron (1988).5

5.10 A test of (5.7) against (5.8) is, however, straightforward to carry out

by using an extension of the testing methodology previously discussed: the

ADF regression (5.5) is simply extended by the inclusion of the time trend t

as an additional regressor,

xt 5 β0 1 β1t1φxt21 1
Xk
i51

δirxt2i 1 at ð5:9Þ

and the statistic

ττ 5
φ̂T 2 1

se φ̂T

� �

is calculated. This “t-statistic” is denoted ττ to distinguish it from τμ because

it has a different limiting distribution, which is shown in Fig. 5.3. The large

T 5%, 2.5%, and 1% critical values are now 23.41, 23.66, and 23.96, and

since these are “more negative” than their τμ counterparts, a greater devia-

tion from φ5 1 is required before the DS null can be rejected.

EXAMPLE 5.3 Trends in Wine and Spirit Consumption

Fig. 1.6 showed annual United Kingdom wine and spirits consumption, in which

positive linear trends were clearly apparent, thus suggesting that these series may

have been generated as TS processes. The first-differences of these series (i.e.,

the annual changes) were shown in Fig. 2.6, and here the trends have been erad-

icated, implicitly suggesting that the series could be DS processes. To distinguish

between these two possibilities, the trend-included ADF regressions (5.9) were

estimated, with lag augmentation being determined using the BIC (k5 0 for both

wine and spirits):

ττ

–6 –5 –4 –3 –2 –1 0 1 2 3 4

N (0,1)

FIGURE 5.3 Limiting distribution of ττ .
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Wine

rxt 52 0:048
0:035ð Þ

1 0:0093
0:0030ð Þ

t 2 0:213
0:072ð Þ

xt21 1 ât

Spirits

rxt 5 0:112
0:047ð Þ

1 0:0022
0:0016ð Þ

t 2 0:121
0:061ð Þ

xt21 1 ât

The ττ statistics are 22.97 and 21.89 respectively, so both are clearly insig-

nificant as the 10% critical value is 23.17. Each series is, thus, confirmed as a

DS, rather than TS, process.

EXAMPLE 5.4 Are United Kingdom Equity Prices Trend or Difference
Stationary?

Fig. 5.4 plots, on a logarithmic scale, monthly observations from 1952 to 2017

on the FTSE All Share stock market index; the broadest based of the London

Stock Exchange’s price indices. The index has a pronounced tendency to drift

upwards, albeit with some major “wanderings” about trend, most notably over

the past decade and a half of the sample period, roughly since the beginning of

the 2000s. We may, thus, investigate whether a DS representation of the loga-

rithms of the index is appropriate or whether a TS model would be preferable.

Setting the lag augmentation at k 5 1, as suggested by the BIC, leads to the

trend-included ADF regression:

rxt 5 0:049
0:020ð Þ

1 0:000064
0:000033ð Þ

t 2 0:011
0:005ð Þ

xt21 1 0:118
0:035ð Þ

rxt21 1 ât

This yields the test statistic ττ 52 2:13. Since the 10% critical value is 23.13,

there is no evidence against the hypothesis that the logarithm of the index is DS. If

the logarithms of the index had been TS, this would have implied that they

evolved as autocorrelated deviations about a linear trend, again providing traders

with a one-way bet whenever the index got too far away from this trend. Even a

cursory examination of Fig. 5.4 shows that such a representation is clearly false.
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FIGURE 5.4 FTSE All Share index: monthly, January 1952�December 2017; logarithmic scale.
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EXAMPLE 5.5 Are Shocks to British GDP Temporary or Permanent?

Fig. 5.5 shows the logarithms of British real GDP per capita annually over the

period of 1822�1913, i.e., from just after the end of the Napoleonic wars to the

beginning of World War I, a period which covers the whole of the Victorian era.

A linear trend line has been superimposed on the plot, calculated from a model

of the form of (5.8):

xt 5 0:329
0:019ð Þ

1 0:0103
0:0004ð Þ

t 1 εt

εt 5 0:696
0:076ð Þ

εt21 1 ât

This TS model implies that, since we are dealing with logarithms, trend

growth in real GDP per capita was 1.03% per annum, with there being station-

ary deviations about the trend line. Consequently, all shocks that push real GDP

per capita away from its long-run trend path have only short-run, “transitory”

impacts, with the series always returning to this trend path. Since the error com-

ponent is modeled by an AR(1) process with a parameter of around 0.7, such

shocks die away geometrically and rather quickly; being reduced by over 90%

in size after 7 years (0:77 5 0:082).
Note that the error component displays no evidence of a “business cycle,” for

this would require εt to follow (at least) an AR(2) process with complex roots, for

which there is no evidence, since the inclusion of a second autoregressive term

produces an insignificant coefficient.

This TS representation may be contrasted with the DS representation

rxt 5 0:0104
0:0003ð Þ

1 ât

obtained by replacing the autoregressive coefficient of 0.7 with one of unity.

This model is a drifting random walk with the drift parameter estimated as

1.04% per annum. The interpretation of this model, however, is one in which all

shocks are permanent; remaining in the series for all time with no dissipation.
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FIGURE 5.5 Logarithm of British real GDP per capita, 1822�1913, with linear trend line

superimposed.
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The series, therefore, never returns to a unique trend growth path: each year the

projected trend growth path is reset after the latest shock.

The distinction between the two processes is important for macroeconomists

when determining the impact of economic shocks, perhaps induced by a policy

shift. Are shocks transitory so that real GDP eventually returns to its underlying

trend growth path, in which case policy-induced shocks have only short-run

effects? On the other hand, are shocks permanent and so live on forever, never

dying out and remaining in the series for all time? To determine which of the

two models is appropriate here, a trend-included ADF regression was estimated:

rxt 5 0:108
0:025ð Þ

1 0:00313
0:00080ð Þ

t 2 0:304
0:076ð Þ

xt21 1 ât

from which ττ 52 0:304=0:07652 3:98 is obtained. Since this statistic has a

p-value of just 0.013 a TS representation is clearly appropriate. Note that the DF

statistic may be interpreted as a t-test of the hypothesis that the autoregressive

coefficient of the AR(1) error component in the TS representation is unity, against

the alternative that it is less than unity using the appropriate ττ critical values.

Shocks to real GDP per capita during the period 1822�1913 were, therefore,

transitory and the series grew at a trend growth rate of 1% per annum with

shocks dissipating at a rate of 70% per annum.

TESTING FOR MORE THAN ONE UNIT ROOT

5.11 This development of unit root tests has been predicated on the

assumption that xt contains at most one unit root, so that it is either I(0) or

I 1ð Þ. If the null hypothesis of a unit root is not rejected, then it may be nec-

essary to test whether the series contains a second unit root—in other words

whether xt is I 2ð Þ and, thus, needs differencing twice to induce stationarity.

EXAMPLE 5.6 Is Box and Jenkins’ Series C I(2)?

Fig. 2.7 showed the levels, first- and second-differences of Box and Jenkins’

(1970) Series C, these being successive temperature readings on a chemical pro-

cess. The SACFs for each of these series are now given in Fig. 5.6 and suggest

that some order of differencing is required. Box and Jenkins (1970, page 185), in

their discussion of these SACFs, thought that the SACF for rxt showed an expo-

nential decline from an r1 of around 0.8, thus suggesting an ARIMA(1,1,0) pro-

cess, although they did not rule out the possibility that second-differencing might

be required, in which case, given that the SACF for r2xt is that of white noise,

an ARIMA(0,2,0) process would be identified.

The choice between the two models can be decided using a unit root test on

rxt , the appropriate ADF regression being

r2xt 52 0:187
0:038ð Þ

rxt21 1 ât

This produces a τ statistic of 24.87, noting that neither a constant or trend is

included in the regression as their presence would imply that there was at least a
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quadratic trend in xt itself, which is clearly not the case. The hypothesis of two

unit roots is, thus, clearly rejected in favor of there being just one, i.e., the test

supports the ARIMA(1,1,0) model for Series C.

However, are we really certain that Series C even contains one unit root?

Could it be stationary, having highly persistent cyclical fluctuations produced by

complex roots with a modulus that is less than, albeit close to, unity? This would

certainly seem plausible, since the series is made up of temperature readings from
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FIGURE 5.6 SACFs for alternative differences of Box and Jenkins Series C.
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a presumably regulated chemical process. To investigate this possibility, one not

considered by Box and Jenkins, we report an ADF regression for a single unit root:

rxt 5 0:277
0:101ð Þ

2 0:0124
0:0044ð Þ

xt21 1 0:815
0:038ð Þ

rxt21 1 ât

From this we obtain τμ 52 2:85, which is close to the 5% critical value of

22.87, the p-value being .053. Thus, the unit root null can be rejected at almost

the 5% level and, if we were to do so, the stationary AR(2) model implied by the

ADF regression can be written as

xt 5 22:86
0:071ð Þ

1 1:807
0:038ð Þ

xt21 222:86ð Þ2 0:820
0:038ð Þ

xt22 2 22:86ð Þ1 ât

This provides a pair of complex roots 0:906 0:06i. From the expression given in

Example 3.3, the implied cycle is then 113, which is exactly half the available

sample of observations and suggests that the cycle is far too long to be anything

other than a statistical artefact of imposing a stationary autoregressive structure

rather than that of a unit root. On balance, we would agree with Box and

Jenkins that their series C is best modeled by the ARIMA(1,1,0) process

rxt 5 0:813
0:038ð Þ

rxt21 1 ât

OTHER APPROACHES TO TESTING FOR A UNIT ROOT

5.12 An alternative unit root test to the ADF for dealing with autocorrela-

tion in at, which also allows for heterogeneity of variance, has been proposed

by Phillips and Perron (1988). Rather than including extra lags of rxt to

ensure that the errors of (5.4) are indeed white noise, the idea here is to esti-

mate an “unaugmented” model—(5.3), say—and to modify the test statistics

so that the effects of any autocorrelation are accounted for. This will enable

the same DF limiting distributions and, hence, critical values to be used.

Under a specific set of conditions placed upon at, known as weak depen-

dency, which are described in detail by Phillips (1987), the τμ statistic

obtained from the estimation of (5.3) is modified to

Z τμ
� �

5 τμ σ̂0=σ̂‘

� �
2

1

2
σ̂2
‘ 2 σ̂2

0

� �
=Σ‘ ð5:10Þ

in which

σ̂2
0 5 T21

XT
t51

â2t

σ̂2
‘ 5 σ̂2

0 1 2T21
X‘
j51

wj ‘ð Þ
XT
t5j11

âtât2j

 !

Σ2
‘ 5 T22σ̂2

‘

XT
t52

xt212x21ð Þ2 x21 5 T21ð Þ21
XT21

t51

xt

ð5:11Þ
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σ̂2
‘ is a consistent estimator of the long-run variance and employs a window

or kernel function wj ‘ð Þ to weight the sample autocovariances appearing in

the formula. This ensures that the estimator remains positive, with ‘ acting

as a truncation lag, much like k in the ADF regression. A range of kernel

functions are available, such as the “triangular” set of lag weights

wj ‘ð Þ5 ‘2 j= ‘1 1ð Þ. Z τμ
� �

is often referred to as the Phillips�Perron (PP)

non-parametric unit root test.

Z τμ
� �

has the same limiting distribution as τμ, so that the latter’s critical

values may again be used. If xt has zero mean, the adjusted statistic, Z τð Þ, is
as in (5.10) with x21 removed and has the same limiting distribution as τ. If
a time trend is included then a further adjustment is required to enable the

statistic, now denoted Z ττð Þ, to have the limiting ττ distribution (Mills and

Markellos, 2008, page 87, for example, provide details).

5.13 Many alternative unit root tests have been developed since the initial

ADF and PP tests were introduced. A recurring theme of unit root testing is

the low power and severe size distortion inherent in many tests: see, espe-

cially, the review by Haldrup and Jansson (2006). For example, the PP tests

suffer severe size distortions when there are moving average errors with a

large negative root and, although their ADF counterparts are better behaved

in this respect, the problem is not negligible even here. Moreover, many tests

have low power when the largest autoregressive root is close to, but never-

theless less than, unity.

A related issue is that unlike many hypothesis testing situations, the

power of tests of the unit root hypothesis against stationary alternatives

depends less on the number of observations per se and more on the span of

the data (i.e., the length of the observation period). For a given number of

observations, power has been found to be highest when the span is longest;

conversely, for a given span, additional observations obtained using data

sampled more frequently lead to only a marginal increase in power, the

increase becoming negligible as the sampling interval is decreased. Hence, a

series containing fewer annual observations over an extended time period

will often lead to unit root tests having higher power than those computed

from a series containing more observations over a shorter period.

5.14 Several subsequent tests have explicitly concentrated on improving

power and reducing size distortion. Many of these are based on generalized

least squares (GLS) “detrending” prior to calculating a test statistic. The DF-

GLS and point optimal unit root tests of Elliott, Rothenberg, and Stock

(ERS, 1996) were the initial pair of tests based on this approach, both

employing the quasi-differences

dðxt αj Þ5 xt if t5 1

xt 2αxt21 if t. 1
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The quasi-differences of any intercept and trend regressors may similarly

be defined as d 1 αj Þð and d t αj Þð , respectively. The DF-GLS test then pro-

ceeds by first regressing d xt αj Þð on d 1 αj Þð and d t αj Þð to obtain the intercept

and trend estimates β̂0 αð Þ and β̂1 αð Þ and, hence, the detrended series

xdt 5 xt 2 β̂0 αð Þ2 β̂1 αð Þt. The test statistic is then ττ from the ADF-style

regression

xdt 5φxdt21 1
Xk
i51

rxdt2i 1 at

where, because the data has been detrended, neither an intercept nor a trend

need be included as regressors. Critical values for the DF-GLS test are pro-

vided by ERS, although if no trend is included in the first-stage detrending

regression then τμ critical values may continue to be used.

To make the DF-GLS test operational a value of α must be chosen to

perform the initial quasi-differencing. ERS suggest using α5 12 13:5=T
when both an intercept and trend are included in the first-stage regression

and α5 12 7=T when just an intercept is included.

The point optimal test is the most powerful test of a unit root against a

simple point alternative. If we define the residual sum of squares from the

first-stage regression as S αð Þ, then the point optimal test of the null φ5 1

against the alternative φ5φ, 1 is then defined as

Pτ 5
S φ
� �

2φS 1ð Þ
σ̂2
‘

where σ̂2
‘ is the estimate of the long-run variance given in (5.10). Critical

values of Pτ are provided by ERS, with the null of a unit root being rejected

if the test statistic is too small.

5.15 Ng and Perron (2001) construct four further tests that are based on the

GLS-detrended data xdt . It is useful to define the term

κ5 T22
XT21

t51

xdt
� �2

whereupon the test statistics are defined as

MZd φð Þ5 T21 xdT
� �

2 σ̂2
‘

2κ

MSBd 5
κ
σ̂2
‘

 !1=2

MZd
t 5MZd φð Þ3MSBd
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and

MPdT kð Þ5 c2kκ2 ck 2 kð ÞT21 xdT
� �2

σ̂2
‘

In this last statistic, k5 0 if just an intercept is included in the first-stage

GLS regression, and k5 1 if both an intercept and trend are included;

c0 52 7 and c1 52 13:5.
MZd φð Þ and MZd

t are modified versions of non-parametric tests and

incorporate the feature that a series converges in distribution with different

rates of normalization under the unit root null and stationary alternative

hypotheses. The MPdT kð Þ statistics are similarly modified versions of the

point optimal Pτ test, while MSBd is a modified version of Bhargava’s

(1986) earlier R1 statistic. On the stationary alternative, MSBd tends to zero,

so the unit root null is rejected when the statistic is below the critical value.

5.16 Throughout the development of unit root testing procedures, the null

hypothesis has been that of a unit root, with a stationary hypothesis (either

trend or level stationarity) as the alternative. How might a null of stationarity

be tested against a unit root alternative? Consider the ARIMA(0,1,1)

process:

rxt 5 θ0 1 at 2 θat21

Reversing the argument in y4.3, a TS process is obtained if θ5 1, so that this

restriction parameterizes the trend stationary null, with the unit root alterna-

tive being θ, 1. The statistic proposed to test this null is the KPSS test (after

Kwiatkowski et al., 1992), which is defined as

ητ 5 T22
XT

t51
Ŝ
2

t =σ̂
2
e‘

Here

Ŝt 5
Xt
i51

ei et 5 xt 2 β̂0 2 β̂1t

and σ̂2
e‘ is defined analogously to σ̂2

‘ in (5.10). If there is no trend in xt under

the null, then the residuals are defined as et 5 xt 2 x and the resulting “level

stationarity” test statistic is denoted ημ. On the null of θ5 1, ητ 5 0, while

under the alternative, ητ . 0. Critical values of the test statistics are reported

in KPSS: the 5% critical value of ητ is 0.146, the 1% critical value is 0.216.

For ημ these critical values are 0.463 and 0.739, respectively.

EXAMPLE 5.7 More Unit Roots Tests on the All Share Index

In Example 5.4 an ADF test could not reject the null hypothesis that the loga-

rithms of the All Share index were DS and, hence, contained a unit root. Is this
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conclusion confirmed by the other available tests? The PP test yields

Z ττð Þ521:98, which has a p-value of just .61. The ERS test statistics are

DF-GLS52 2:17 and Pτ 5 9:50, while the modified tests of Ng and Perron

(2001) produce MZd φð Þ52 9:82, MZd
t 52 2:17, MSBd 5 0:220, and

MPdT 1ð Þ5 9:51. None of these statistics come close to being significant at the

10% level. The KPSS statistic, on the other hand, is ητ 5 0:372, which comfort-

ably exceeds the 1% critical value of 0.216 and so rejects the TS null in favor of

the DS alternative, so that the entire battery of tests consistently points to the

index having a unit root.

ESTIMATING TRENDS ROBUSTLY

5.17 Consider again the linear trend model (5.8): xt 5β0 1β1t1 εt. As
we have seen, correct specification of the trend is crucially important for

unit root and stationarity testing. As was pointed out in y5.9, incorrectly
excluding a linear trend renders the τμ statistic inconsistent, while it is also

the case that unnecessarily including a trend vastly reduces the power of

the ττ test, with similar problems affecting the KPSS stationarity statistics

ημ and ητ .
Often, however, the trend parameter β1 is of direct interest, especially

when ascertaining whether a trend is present β1 6¼ 0ð Þ or not β1 5 0ð Þ. This
may be assessed by either constructing a direct test of the no trend hypothe-

sis β1 5 0 or by forming a confidence interval for β1. Such tests rely on

whether εt, and hence, xt, is either I 0ð Þ or I 1ð Þ, but this can only be estab-

lished after a unit root or stationarity test has been performed—yet the prop-

erties of these latter tests rely, in turn, on whether a trend has been correctly

included or not! This circularity of reasoning has prompted the development

of trend function testing procedures that are robust, in the sense that, at least

asymptotically, inference on the trend function is unaffected as to whether εt
is I 0ð Þ or I 1ð Þ.
5.18 To develop robust tests of trend, we start with the simplest case

in which εt 5 ρεt21 1 at, where εt is I 0ð Þ if ρ
�� ��, 1 and I 1ð Þ if ρ5 1. We

then wish to test H0:β1 5 β0
1 against the alternative H1:β1 6¼ β0

1. If εt is

known to be I 0ð Þ then an optimal test of H0 against H1 is given by the

“slope” t-ratio

z0 5
β̂1 2β0

1

s0
s0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2
εPT

t51 t2tð Þ2

s
ð5:12Þ

where σ̂2
ε 5 T22ð Þ21PT

t51 xt2β̂02β̂1t
� �2

is the error variance from OLS

estimation of (5.8). Under H0, z0 will be asymptotically standard normal.

On the other hand, if εt is known to be I 1ð Þ then the optimal test of H0

against H1 is based on the t-ratio associated with the OLS estimator of β1 in

the first-differenced form of (5.8),
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rxt 5β1 1 νt t5 2; . . .;T ð5:13Þ
where νt 5rεt:

z1 5
~β1 2β0

1

s1
s1 5

ffiffiffiffiffiffiffiffiffiffiffi
~σ2
ν

T 2 1

s

Here

~β1 5 T 2 1ð Þ
XT
t52

rxt 5 T 2 1ð Þ xT 2 x1ð Þ

is the OLS estimator of β1 in (5.13) and ~σ2
ν 5 T22ð Þ21PT

t52 rxt2 ~β1

� �2
.

Again, under H0, z1 will be asymptotically standard normal.

5.19 What if it is not known whether εt is I 0ð Þ or I 1ð Þ? Harvey, Leybourne,

and Taylor (HLT, 2007) show that a weighted average of z0 and z1, say

zλ 5 12λ U; Sð Þð Þz0 1λ U; Sð Þz1 ð5:14Þ
where U is a standard unit root test statistic, S is a standard trend-stationarity

test statistic and

λ5 exp 2κ
U

S

� �2
 !

ð5:15Þ

will be asymptotically standard normal under H0, so providing a convenient

test of the trend hypothesis without having to assume a model for the error

generating process.

The asymptotic standard normality of zλ enables approximate confidence

bounds for β1 to be constructed, which hold regardless of whether the errors

are I 0ð Þ or I 1ð Þ. If cα=2 is the α=2 percentage point of the standard normal

distribution, e.g., c0:025 5 1:96, then an approximate 12αð Þ% two-sided con-

fidence interval for β1 is given by

β̂1;λ 6 cα=2
s0s1

12λ U; Sð Þð Þs1 1λ U; Sð Þs0
ð5:16Þ

where

β̂1;λ5
12λ U; Sð Þð Þβ̂1s1 1λ U; Sð Þ ~β1s0

12λ U; Sð Þð Þs1 1λ U; Sð Þs0
with β̂1;λ being a consistent and asymptotically efficient estimator of β1,

again regardless of whether εt is I 0ð Þ or I 1ð Þ.
5.20 In typical applications, the error specification εt 5 ρεt21 1 at needs to

be extended to incorporate additional autocorrelation, whereupon σ̂2
ε and ~σ2

ν
may be replaced by their long-run variance counterparts by using (5.11) to

compute s0 and s1 and, hence, zλ and β̂1;λ.
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5.21 HLT suggest using the DF-GLS statistic for U and the KPSS ητ statis-

tic for S, along with setting the constant in (5.15) to κ5 0:00025. In a typical

case in which there is autocorrelation, the augmented versions of these tests

should be employed.

5.22 The HLT approach has the advantage that it may be computed using

only statistics that are readily available, but no claims can be made for its

optimality and other tests may have better size and power properties. Two

alternative approaches have been proposed by Bunzel and Vogelsang (2005)

and Perron and Yabu (2009), but while the latter approach appears to have

some good statistical properties, its resulting trend estimate is rather more

complicated to obtain.

EXAMPLE 5.8 Estimating the Trend in Central England Temperatures
Robustly

Fig. 5.7 shows the annual Central England temperature (CET) series. This is the

longest available recorded instrumental temperature series in existence, begin-

ning in 1659, and establishing its trend is clearly of great interest for debates

concerning global warming. If it is assumed that deviations from a linear trend

are I 0ð Þ, then estimating (5.8) with an autocorrelation correction obtains

β̂1 5 0:002749 with s0 5 0:000745, thus yielding z0 53:689, which, when com-

pared to a standard normal distribution, implies that the trend β1 is significantly

positive at 0.27�C per century.

On the other hand, assuming that the deviations are I 1ð Þ obtains, from estimat-

ing (5.13) with an autocorrelation correction, ~β1 5 0:004777, s1 5 0:007769, and
z1 50:615, thus implying that although the estimate of the trend is nearly 50%

higher than the I 0ð Þ deviations estimate, it is nevertheless insignificantly different
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FIGURE 5.7 Central England temperatures, annual, 1659�2016.
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from zero, a consequence of s1 being over ten times as large as s0. Determining

which of the two estimates to use is not resolved by computing unit root and sta-

tionarity tests, for DF 2GLS52 9:212 and ητ 5 0:189, the former rejecting the

unit root null at the 1% level, the latter rejecting the TS null at the 5% level!

This is clearly a situation when estimating the trend robustly is called for.

With the information presented, we obtain λ5 0:554, z0:554 5 1:987,
β̂1;0:554 5 0:002965, and a 95% confidence interval for β1 of

0:0029656 0:002925, i.e., approximately 0�0.6�C per century. The CET, there-

fore, has a trend that, with a p-value of .023, is a significantly positive 0.3�C per

century.

FRACTIONAL DIFFERENCING AND LONG MEMORY

5.23 Our analysis has so far only considered cases where the order of

differencing, d, is either zero, one, or possibly two. Concentrating on the first

two cases, if xtBI 1ð Þ then its ACF declines linearly, whereas if xtBI 0ð Þ its
ACF exhibits an exponential decline, so that observations far apart may be

assumed to be independent, or at least nearly so. Many empirically observed

time series, however, although appearing to satisfy the assumption of statio-

narity (perhaps after differencing), nevertheless seem to exhibit some depen-

dence between distant observations that, although small, is by no means

negligible. This may be termed long range persistence or dependence,

although the term long memory is now popular.6

Such series have particularly been found in hydrology, where the long-

range persistence of river flows is known as the Hurst effect (see, e.g.,

Mandelbrot and Wallis, 1969; Hosking, 1984), but many financial time series

also exhibit similar characteristics of extremely long persistence. This may

be characterized as a tendency for large values to be followed by further

large values of the same sign, in such a way that the observations appear to

go through a succession of “cycles,” including long cycles whose length is

comparable to the total sample size.

5.24 The class of ARIMA processes may be extended to model this type of

long-range persistence by relaxing the restriction to just integer values of d,

so allowing fractional differencing within the class of AR-fractionally inte-

grated-MA (ARFIMA) processes. This notion of fractional differencing/inte-

gration seems to have been proposed independently by Granger and Joyeux

(1980) and Hosking (1981) and is made operational by considering the bino-

mial series expansion of rd for any real d. 2 1:

rd 5 12Bð Þd 5
XN
k50

d!

d2 kð Þ!k! 2Bð Þk

5 12 dB1
d d2 1ð Þ

2!
B2 2

d d2 1ð Þ d2 2ð Þ
3!

1?
ð5:17Þ
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With this expansion we may define the ARFIMA(0,d,0) process as

rdxt 5 12π1B2π2B
2 2?

� �
xt 5 at ð5:18Þ

where, using the gamma function Γ nð Þ5 n2 1ð Þ!, the π-weights are given by

πj 5
Γ j2 dð Þ

Γ 2dð ÞΓ j1 1ð Þ
This process can, thus, be interpreted as an infinite autoregression and is

often referred to as fractional white noise. Inverting (5.18) yields the infinite

MA representation

xt 5r2dat 5 12ψ1B2ψ2B
2 2?

� �
at

with

ψj 5
Γ j1 dð Þ

Γ dð ÞΓ j1 1ð Þ
For 21, d, 0:5, d 6¼ 0, the autocorrelations are given by

ρk 5
Γ 12 dð Þ
Γ dð Þ

Γ k1 dð Þ
Γ k1 12 dð Þ �

Γ 12 dð Þ
Γ dð Þ k2d21 5A dð Þk2d21 ð5:19Þ

where Stirling’s approximation for large k, Γ k1 að Þ=Γ k1 bð Þ � ka2b, has

been used. The autocorrelations thus exhibit hyperbolic decay, the speed of

which depends on d, and this property is also found in both the π- and

ψ-weights. This decay, being a function of k2d21, is often referred to as a

“power law” decay and will appear for all processes exhibiting long range

persistence, and is not restricted to just ARFIMA processes (see Lieberman

and Phillips, 2008).

Examples of this hyperbolic decay of the autocorrelations are shown in

Fig. 5.8 and these may be contrasted with the autocorrelations from an ARMA

model, which, for large k, are approximately of the form Aθk with θj j, 1

(recall y3.10). These tend to zero at an exponential rate and thus decay quicker

than the hyperbolic decline of the autocorrelations given by (5.19).

5.25 As is apparent from (5.19), the process (5.18) will be weakly stationary

for d, 0:5 and invertible for d. 2 0:5. For d$ 0:5 the variance of xt is infi-

nite and so the process is nonstationary, but arguably “less nonstationary” than

a unit root process (see Robinson, 1994), so smoothly bridging the gulf between

I(0) and I(1) processes. Smooth persistent trending behavior and positive depen-

dencies are obtained only when d is positive. Processes having negative d are

characterized by a nonsmooth form of persistence, often referred to as antiper-

sistence, which is associated with negative short- and long-range dependencies.

These properties are also displayed by the more general ARFIMA(p,d,q)

process, although parametric expressions for the π- and ψ-weights are partic-

ularly complicated: see Baillie (1996) for these, and Lieberman and Phillips
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(2008) and Phillips (2009) for more general expressions concerning the auto-

covariance functions of long memory processes.

5.26 As mentioned in y5.23, the long range persistence exhibited by frac-

tionally differenced processes is often referred to as long memory and the

intuition behind this concept and the limitations of the integer-d restriction

emerge more clearly in the frequency domain representation of a time series.

While Wold’s decomposition (3.2) provides a time domain representation

of a stationary series as a linear filter of white noise, an equivalent represen-

tation is given by its spectral density. Theorem 5 of Wold (1938) states that

a necessary and sufficient condition for a stationary process to exist is for

the autocorrelations ρk to be the coefficients of a nondecreasing function

F ωð Þ, such that F 0ð Þ5 0, F πð Þ5π, and

ρk 5
1

π

ðπ
0

cos kωUdF ωð Þ

This expression can be inverted to yield the Fourier transform

F ωð Þ5ω1 2
XN
k51

ρk
k
sin kω

which is also known as the generating function of the ρk. The convergence

condition described in y3.7 then implies that the derivative of F ωð Þ exists

and is given by

f ωð Þ5 dF ωð Þ
dω

5
XN

k52N

ρk cos kω5 11 2
XN
k51

ρk cos kω ð5:20Þ
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FIGURE 5.8 ACFs of ARIMA(0,d,0) processes with d5 0:30 and d5 0:45.
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F ωð Þ is known as the integrated power spectrum and f ωð Þ as the spectral

density (or just spectrum), with ω being termed the frequency. Defining

z5 e2iω enables (5.20) to be written, using the well-known trigonometric

Euler equation identity, as

f ωð Þ5
XN

k52N

ρkz
k

5.27 For the AR(1) process xt 5φxt21 1 at, the spectrum is given by

f ωð Þ5 11 2
XN
k51

φk cos kω5
σ2
a

2π
12φ2

11φ2 2 2φ cos ω
ð5:21Þ

where σ2 is the variance of the white noise innovation at. If, as is typically

the case, φ is positive then the spectrum will be large at low frequencies ω
and small at high frequencies, the reverse being true for φ negative: these

are termed low- and high-frequency spectra respectively. If φ5 0 the spec-

trum of white noise is obtained, this being simply the constant σ2=2π for all

ω.
Clearly, if φ5 1 then (5.21) is undefined, so that the spectrum does not

exist for an integrated process. However, if yt 5rdxt, where xtBI dð Þ, then
ytBI 0ð Þ and will have a well-defined spectrum of the form of (5.20), denoted

fy ωð Þ, say. Although xt does not strictly possess a spectrum, it can be thought

of as having the “pseudo-spectrum”

fx ωð Þ5 12zj j22dfy ωð Þ5 2sin ω=2
�� ��� �22d

fy ωð Þ ð5:22Þ
which uses the result 12zj j22d 5 2sinω=2

� �22d
. If yt has the ARMA repre-

sentation φ Bð Þyt 5 θ Bð Þat then, because yt is stationary, the limiting value of

its spectrum fy ωð Þ, as ω becomes small, must be a positive constant, say

c5
σ2

2π
θ 1ð Þ
φ 1ð Þ

� �
. 0

It then follows that, for ω small, 2sin ω=2
�� �� � ω and fx ωð Þ~ cω22d, so that

if d5 1 the pseudo-spectrum takes the form fx ωð Þ � cω22-N as ω-0. If,

however, d can take on noninteger values then a much richer range of spec-

tral behavior at low frequencies becomes possible, allowing long memory

behavior to be captured.

TESTING FOR FRACTIONAL DIFFERENCING

5.28 The “classic” approach to detecting the presence of long memory in a

time series is to use the range over standard deviation or rescaled range

(R=S) statistic. This was originally developed by Hurst (1951) when studying

river discharges and a revised form was later proposed in an economic context
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by Mandelbrot (1972). It is defined as the range of partial sums of deviations

of a time series from its mean, rescaled by its standard deviation, i.e.,

R0 5 σ̂21
0 max

1# i# T

Xi
t51

xt 2 xð Þ2 min
1# i# T

Xi
t51

xt 2 xð Þ
" #

σ̂2
0 5 T21

XT
t51

xt2xð Þ2

ð5:23Þ
The first term in brackets is the maximum of the partial sums of the first

i deviations of xt from the sample mean. Since the sum of all T deviations of

the xts from their mean is zero, this maximum is always nonnegative. The

second term is the minimum of the same sequence of partial sums, and hence

is always nonpositive. The difference between the two quantities, called the

“range” for obvious reasons, is therefore always nonnegative, so that R0 $ 0.

5.29 Although it has long been established that the R=S statistic is certainly

able to detect long-range dependence, it is nevertheless sensitive to short-run

influences. Consequently, any incompatibility between the data and the pre-

dicted behavior of the R=S statistic under the null of no long run dependence

need not come from long memory, but may merely be a symptom of short-

run autocorrelation.

The R=S statistic was, thus, modified by Lo (1991), who incorporated

short-run dependence into the estimator of the standard deviation, replacing

(5.23) with

Rq 5 σ̂21
q max

1# i# T

Xi
t51

xt 2 xð Þ2 min
1# i# T

Xi
t51

xt 2 xð Þ
" #

ð5:24Þ

where

σ̂2
q 5 σ̂2

0 11
2

T

Xq

j51
wqjrj

� �
wqj 5 12

j

q1 1
; q, T

The rj, j5 1; . . . ; q, are the first q sample autocorrelations of xt, which are

given linearly declining weights in the “correction factor” designed to adjust

the estimate of the standard deviation for short-run autocorrelation [cf. (5.10)].

Lo (1991) provides the assumptions and technical details to allow the

asymptotic distribution of Rq to be obtained, showing that T21=2Rq converges

in distribution to a well-defined random variable whose significance levels

are reported in Table II of his paper. The statistics are consistent against a

class of long-range dependent alternatives that include all ARFIMA(p,d,q)

models with 20:5# d# 0:5.

5.30 Some difficulties have been encountered when applying the R=S
statistic. The appropriate choice of q (i.e., how to distinguish between short-

and long-range dependencies) remains an unresolved issue. There is also evi-

dence that if the distribution of xt is fat-tailed then the sampling distribution
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of Rq is shifted to the left relative to the asymptotic distribution. This would

imply that rejection rates in favor of d, 0 (antipersistence) are above the

nominal sizes given by the asymptotic distribution, whereas rejection rates in

favor of d. 0 (persistent long memory) are below the nominal size. Lo, con-

sequently, argues that the R=S approach should best be regarded as a kind of

exploratory test that may complement, and come prior to, a more compre-

hensive analysis of long-range dependence.

5.31 An obvious approach to testing for fractional differencing is to con-

struct tests against the null of either d5 1 or d5 0. ADF and nonparametric

tests of d5 1 and KPSS tests of d5 0 are consistent against fractional d

alternatives, but have the drawback that rejection of the respective nulls can-

not be taken as evidence of the presence of fractional d.

Extensions of the Dickey�Fuller testing approach have, thus, been pro-

posed, which evaluate the null hypothesis δ5 0 in the model rd1δxt 5 at.

Breitung and Hassler (2002), building upon the Lagrange Multiplier (LM)

approach of Agiakloglou and Newbold (1994), show that a simple test of

this null is the t-statistic testing φ5 0 from the regression

rdxt 5φx
�
t21 1 at ð5:25Þ

where

x
�
t21 5

Xt21

j51

j21rdxt2j

Note that when d5 1, xt21 5rx1 1?1rxt21, so that the only differ-

ence between (5.25) and the simple DF regression is the introduction of the

weights j21 in the definition of the regressor. The t-statistic has the advan-

tage of being asymptotically standard normal, so that testing is immediate.

To incorporate deterministic components and autocorrelation, a first-stage

regression may be performed, e.g.,

rdxt 5 α̂0 1 α̂1t1
Xp
i51

β̂irdxt2i 1 ε̂t

from which the regressor

ε
�
t21 5

Xt2p21

j51

j21ε̂t2j

is defined and the second-stage regression

εt 5φε
�
t21 1

Xp
i51

γirdxt2i 1 at ð5:26Þ

estimated. The LM t-statistic testing φ5 0 is again standard normal.
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Dolado et al. (2002) propose a similar DF regression to (5.25) for testing

the null that xtBI d0ð Þ against the alternative that xtBI d1ð Þ, where d0 and d1
are real numbers. Their “FD-F” regression is

rd0xt 5φrd1xt21 1 at

in which rd0xt and rd1xt21 have been differenced according to their order of

integration under the null and alternative hypothesis, respectively. When

d0 5 1 and d1 5 0 the conventional Dickey�Fuller testing framework is

obtained, so that the t-statistic testing φ5 0 will require DF critical values.

More generally, the FD-F test statistics will be standard normal if the pro-

cesses under both hypotheses are stationary (d0; d1 , 0:5) or when the pro-

cess is nonstationary under the null (d0 $ 0:5) and d0 2 d1 , 0:5; otherwise
they will have nonstandard distributions, for which critical values are pro-

vided by Dolado et al. (2002).

ESTIMATING THE FRACTIONAL DIFFERENCING PARAMETER

5.32 A drawback of the FD-F procedure is that, if d1 is not known a priori,

as it is in the standard Dickey�Fuller case, then a consistent estimate must

be provided. A variety of estimators have been suggested, many of which

involve quite complex calculations. Perhaps the simplest is suggested by R=S
analysis and is

~d5
log R0

log T
2 0:5

A popular and relatively simple estimator is the log-periodogram regres-

sion proposed by Geweke and Porter-Hudak (1983, GPH). From (5.22) the

spectral density of xt can be written as

fx ωð Þ5 4 sin2
ω
2

� �� �2d

fy ωð Þ

or, on taking logs,

log fx ωð Þ5 log fy ωð Þ2 d log 4 sin2
ω
2

� �

This leads GPH to propose estimating d as (minus) the slope estimator of

the regression

log I ωj

� �
5 a2 d log 4 sin2

ω
2

� �
ð5:27Þ

where

I ωj

� �
5 2σ̂2

0 11 2
XT21

s51

rscos sωj

 !
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is the periodogram estimate of fx ωð Þ at frequencies ωj 5 2π j=T , j5 1; . . . ;K,
for a suitable choice of K, typically K5 T0:5

� �
. It has been shown that the

GPH estimator d̂ is consistent for 20:5, d, 1 and asymptotically normal, so

that the estimated standard error attached to d̂ can be used for inference.

Alternatively, the asymptotic result
ffiffiffiffi
K

p
d̂2 d
� �

BN 0;π2=24
� �

may be used.

5.33 With an estimate d̂, the “truncated” form of (5.17) may be used to

compute the fractionally differenced series

yt 5rd̂xt 5
Xt21

k50

d̂ !

d̂2 k
� �

!k !
21ð Þkxt2k

where it is explicitly assumed that yt 5 0 for t# 0, and this series can then

be modeled as an ARMA process in the usual way.

5.34 Several other estimators of d have been proposed, going under the

name of semiparametric estimators, but these typically require numerical

optimization methods, while it is also possible to estimate d jointly with the

ARMA parameters in the ARFIMA process, although specialized software is

required for this, which is now available in EViews 10.

EXAMPLE 5.9 Persistence in the Nile River Flow

The impetus for H.E. Hurst’s initial statistical analysis of persistence in river flow

(Hurst, 1951: recall y5.22) was provided by his position as Director General of

the Physical Department of Egypt, where he was responsible for, amongst other

things, studying the hydrology of the Nile basin. For thousands of years the Nile

has helped to sustain civilization in an otherwise barren desert, but the eco-

nomic development of the basin has been severely impeded by the river’s regular

floods and irregular flows.7 Hurst and his department were consequently tasked

with devising a method of water control for the entire Nile basin, from its

sources in the African great lakes, through the Ethiopian plains, to the delta on

the Mediterranean, and analyzing the river flow was, thus, central to this.

Fig. 5.9 shows the mean annual flow of the Nile from 1872 to 1970 along

with its SACF, which is accompanied by a 2.5% upper bound of

1:96=
ffiffiffiffi
T

p
5 0:20 under the assumption that river flow is i.i.d. (recall y3.30). All

the first 20 sample autocorrelations are positive, with 11 of the first 13 signifi-

cantly so, and the overall pattern is one of approximately hyperbolic decline,

thus indicating the possibility of long memory in Nile river flow.

The calculation of the LM t-statistic for testing the null that d 50 against the

fractional alternative d . 0 proceeds with a first-stage regression in which river

flow is regressed on a constant and two lags. The residuals are then used in the

augmented regression (5.26) to yield φ̂50:313 with a standard error of 0.076,

thus producing a t-statistic of 4.09, which clearly rejects the null in favor of a

positive value of d.

Estimating an ARFIMA(0, d, 0) process yields d̂ 5 0:361, which has an asymp-

totic standard error of 0.071, so providing evidence in favor of stationary long
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memory. Note that the residuals from this model show no evidence of any

remaining autocorrelation, so that river flow may indeed be characterized as

fractional white noise. The GPH estimate of d is d̂ 5 0:471.

EXAMPLE 5.10 Is There Long Memory in the S&P 500 Stock Market Index?

Fig. 5.10 shows, on a logarithmic scale, the daily price of the S&P 500 stock

market index from January 1928 to August 1991, a series of T 5 17054 observa-

tions that has been analyzed, in considerable detail, by Granger and his

co-workers (see, e.g., Ding et al., 1993). The logarithms of the index are, not

surprisingly, nonstationary and are, in fact, DS, with ττ 52 2:58 and having a

p-value of just .29.
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FIGURE 5.9 Mean annual flow of the Nile, 1872�1970, and accompanying SACF with 95%

confidence upper bound under the i.i.d. null hypothesis.
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On denoting the index as pt , the daily return may be defined as rt 5rlogpt ,
and Fig. 5.11 shows the first 200 lags of the SACFs for rt and the squared and

absolute returns, r2t and rtj j, along with 6 1:96=
ffiffiffiffi
T

p
5 6 0:015 bounds, which

correspond to a 95% confidence interval for the estimated sample autocorrela-

tions if rt is i.i.d. A considerable number of sample autocorrelations lie outside

these bounds, particularly noticeable ones being the first, estimated to be 0.063,

and the second, 20.039, so that returns cannot be regarded as a realization from

an i.i.d. process.

If rt really was an i.i.d. process then any transformation, such as r2t or rtj j,
would also be i.i.d. These transformations would then also have sample autocor-

relations with standard errors 1=
ffiffiffiffi
T

p
under the i.i.d. null if r2t has finite variance

and rtj j has finite kurtosis. In Fig. 5.11, it is seen that all sample autocorrelations
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FIGURE 5.10 S&P 500 stock market index: daily, January 1928�August 1991.

–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

25 50 75 100 125 150 175 200

Sa
m

pl
e 

au
to

co
rr

el
at

io
ns

Lags

r

r2

|r|
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with 95% confidence bands under the i.i.d. hypothesis.
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for these transformations also fall well outside the i.i.d. 95% confidence bands

and, moreover, that they are all positive, with those for absolute returns always

being larger than those for squared returns for every one of the first 200 lags. The

daily return on the S&P 500 is clearly not an i.i.d. process, but an interesting

question is whether the squared and absolute returns display long memory, for

the declines in the SACFs of these transformations shown in Fig. 5.11 are clearly

indicative of such a property, being neither linearly nor exponentially declining

but somewhere “in between.”

R=S statistics with q5 4 were calculated to be 1.42, 10.17, and 17.82 for

actual, squared and absolute returns, respectively, the latter two being highly sig-

nificant and, hence, suggestive of long-range persistence. GPH estimates of d,

using the common choice of K 5 T 0:5
� �

5 130 to compute the periodogram in

(5.21), were d̂ 5 0:04, d̂ 5 0:43, and d̂ 5 0:47, respectively: since the standard

error in each case is 0.06 then again there is evidence that squared and absolute

returns exhibit long memory. Fig. 5.12 shows the SACFs of fractionally differ-

enced squared and absolute returns computed using these estimates of d, and

these clearly indicate that long memory has been eradicated.

However, the GPH estimates of d produce fitted autocorrelations for squared

and absolute returns that are much larger than the sample autocorrelations (see

Ding and Granger, 1996, Fig. 4) and this has led to a variety of more sophisticated

models being fitted to these series (see Ding et al., 1993; Granger et al., 2000).
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ENDNOTES

1. The seminal article on what has become a vast topic, and which gives the distribution and

test their eponymous names, is Dickey and Fuller (1979). The statistical theory underlying

the distribution is too advanced to be considered here, but see, for example, Patterson (2010)

and, at a rather more technical level, Patterson (2011). As will be seen from these texts (and

from yy5.12 to 5.16), there are now a considerable number of unit root tests, differing in both

their size and power properties. Nevertheless, the original Dickey�Fuller tests remain popular

and widely used.

2. Strictly, τμ tests φ5 1 conditional upon θ0 5 0, so that the model under the null is the drift-

less random walk xt 5 xt21 1 at . The joint hypothesis θ0 5 0; φ5 1 may be tested by con-

structing a standard F-test, although clearly the statistic, typically denoted Φ, will not follow
the conventional F 2;T 2 2ð Þ distribution. For large samples, the 5% and 1% critical values

of the appropriate distribution are 4.59 and 6.53, rather than the 2.99 and 4.60 critical

values of the F 2; T2 2ð Þ distribution: see Dickey and Fuller (1981).

3. This generalization is seen most clearly when p5 2, so that

xt 5 θ0 1φ1xt21 1φ2xt22 1 at

This can be written as

xt 5 θ0 1φ1xt21 1φ2xt21 2φ2xt21 1φ2xt22 1 at
5 θ0 1 φ1 1φ2

� �
xt21 2φ2Δxt21 1 at

5 θ0 1φxt21 1 δ1Δxt21 1 at

which is (5.5) with k5 1.

4. The mean deviation form of the implied stationary AR(2) model for the $�d rate is estimated

to be

xt 5 1:7131 1:060 xt21 2 1:713ð Þ2 0:061 xt22 2 1:713ð Þ1 at

which has two real roots of 0.9998 and 0.06.

5. A consistent test is one for which the power of rejecting a false null hypothesis tends to unity

asymptotically, i.e., as the sample size becomes infinite.

6. An interesting historical account of “long range dependence,” “long range persistence,” and

“long memory” is provided by Graves et al. (2016), where a much wider perspective of the

topic is given than can be provided here.

7. These were later colorfully named the “Joseph Effect” by Mandelbrot and Wallis (1968), a

term which alludes to the Old Testament story of Joseph’s interpretation of the Pharaoh’s

dream of seven fat cows and seven gaunt ones to mean that there would be seven prosperous

years followed by seven lean ones, this being an example of “long memory” in practice.
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BREAKING TREND MODELS

6.1 The trend stationary (TS) versus difference stationary (DS) dichotomy

and associated testing procedure outlined in yy5.9�5.10 is both simple and

straightforward to implement, but is it necessarily realistic? Could the TS

alternative of a “global” linear trend be too simplistic in some situations,

thus indicating that a more sophisticated trend function might be warranted?

Often a more plausible candidate for a trend is a linear function that “breaks”

at one or more points in time.

There are several ways in which a trend may break. Assume, for simplic-

ity, that there is a single break at a known point in time Tc
b 1, Tc

b , T
� �

,

with the superscript “c” denoting the “correct” break date, a distinction that

will become important in due course. The simplest breaking trend model is

the “level shift” in which the level of xt shifts from μ0 to μ1 5μ0 1μ at Tc
b .

This may be parameterized as

xt 5μ0 1 μ1 2μ0

� �
DUc

t 1β0t1 εt 5μ0 1μDUc
t 1β0t1 εt ð6:1Þ

where DUc
t 5 0 if t# Tc

b and DUc
t 5 1 if t. Tc

b . This shift variable may be

written more concisely as DUc
t 5 1 t. Tc

b

� �
, where 1 Uð Þ is the indicator func-

tion, so that it takes the value 1 if the argument is true and 0 otherwise.

Another possibility is the “changing growth” model in which the slope of the

trend changes from β0 to β1 5β0 1β at Tc
b without a change in level. In this

case, the trend function is joined at the time of the break and is often referred

to as a segmented trend. This model may be parameterized as

xt 5μ0 1 β0t1 β1 2β0ð ÞDTc
t 1 εt 5μ0 1β0t1βDTc

t 1 εt ð6:2Þ
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where DTc
t 5 1 t. Tc

t

� �
t2 Tc

t

� �
models the shift in growth. Both forms of

break could, of course, occur simultaneously, so that we would then have the

combined model

xt 5μ0 1 μ1 2μ0

� �
DUc

t 1β0t1 β1 2 β0ð ÞDTc
t 1 εt

5μ0 1μDUc
t 1β0t1 βDTc

t 1 εt
ð6:3Þ

so that xt undergoes both a shift in level and slope at Tc
b .

6.2 In models (6.1)�(6.3) the error process εt has been left unspecified. An

obvious choice is that it is an ARMA process, say φ Bð Þεt 5 θ Bð Þat, in which

case (6.1)�(6.3) will be breaking trend-stationary models. Suppose that the

autoregressive polynomial can be factorized as φ Bð Þ5 12φBð Þφ1 Bð Þ. If

φ Bð Þ contains a unit root then φ5 1 and φ Bð Þ5rφ1 Bð Þ (cf. y4.12), with
(6.1) becoming

rxt 5β0 1μrDUc
t 1 ε

�
t 5β0 1μD TBcð Þt 1 ε

�
t ð6:4Þ

where φ1 Bð Þε�
t 5 θ Bð Þat and where we have defined

D TBcð Þt 5rDUc
t 5 1 t5 Tc

b 1 1
� �

. This model, therefore, specifies xt to be

an I 1ð Þ process with drift plus a dummy variable that takes the value of one

at Tc
b and zero elsewhere. Similarly, a unit root in the error process for (6.2)

leads to

rxt 5β0 1βrDTc
t 1 ε

�
t 5β0 1βDUc

t 1 ε
�
t ð6:5Þ

M1: xt = 10 + 30DUt + 2t + at xt = 10 + 2t + 3DTt+ at 

xt = 10 + 30DUt + 2t + 3DTt + at 

M2:

M3:

TB = 50 at ~ NID(0,9)
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TB
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FIGURE 6.1 Examples of TS breaking trend functions.
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so that the drift changes from β0 to β1 at the break point Tc
b . The combined

model then becomes

rxt 5β0 1μD TBcð Þt 1βDUc
t 1 ε

�
t ð6:6Þ

Examples of these types of breaking trend functions are shown in

Fig. 6.1 (for TS breaking trends) and Fig. 6.2 (for breaking DS processes).

BREAKING TRENDS AND UNIT ROOT TESTS

6.3 How can we distinguish between TS breaking trends and breaking DS

processes? Clearly unit root tests should be applicable, but what is the influ-

ence of breaking trends upon such tests? Perron (1989, 1990: see also Perron

and Vogelsang, 1993) was the first to consider the impact of breaking trends

and shifting levels on unit root tests, showing that standard tests of the type

discussed in Chapter 5, Unit Roots, Difference and Trend Stationarity, and

Fractional Differencing, are not consistent against TS alternatives when the

trend function contains a shift in slope. Here the estimate of the largest auto-

regressive root is biased toward unity and, in fact, the unit root null becomes

impossible to reject, even asymptotically. Although the tests are consistent

against a shift in the intercept of the trend function, their power is neverthe-

less reduced considerably because the limiting value of the estimated

autoregressive root is inflated above its true value.

M4: xt = xt–1 + 2 + 30D(TB)t + at 

xt = xt–1 + 2 + 30D(TB)t + 5DUt + at 

xt = xt–1 + 2 + 5DUt + at M5:

M6:

x1 = 10 TB = 50 at ~ NID(0,9)
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FIGURE 6.2 Examples of breaking DS processes.
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6.4 Perron (1989) consequently extended the Dickey�Fuller unit root test-

ing strategy to ensure consistency against shifting trend functions by devel-

oping two asymptotically equivalent procedures. The first uses initial

regressions in which xt is detrended according to either model (A), the level

shift (6.1); model (B), the segmented trend (6.2); or model (C), the combined

model (6.3). Thus, let ~xit, i5A, B, C, be the residuals from a regression of xt
on (1) i5A: a constant, t, and DUc

t ; (2) i5B: a constant, t, and DTc
t ; and

(3) i5C: a constant, t, DUc
t , and DTc

t . For models (A) and (C) a modified

ADF regression (cf. (5.5)) is then estimated:

~xit 5
~φ
i
~xit21 1

Xk
j50

γjD TBcð Þt2j

Xk
j51

δjr ~xit2j i5A; C ð6:7Þ

and a t-test of ~φ
i
5 1 is performed (ti, i5A; C). The inclusion of the k1 1

dummy variables D TBcð Þt; . . .;D TBcð Þt2k is required to ensure that the limit-

ing distributions of tA and tC are invariant to the correlation structure of the

errors (see Perron and Vogelsang, 1993). For model (B) the “unmodified”

ADF regression

~xBt 5
~φ
i
~xBt21 1

Xk
j51

δjr ~xBt2j 1 at ð6:8Þ

may be estimated to obtain tB.

6.5 Asymptotic critical values for ti, i5A; C, are provided by Perron

(1989, Tables IV.B, VI.B), and for tB by Perron and Vogelsang (1993,

Table 1). These depend on where the break occurs and so are a function of

the break fraction τc 5 Tc
b=T . For example, for model (A) and τc 5 0:5 (a

break known to occur at the midpoint of the sample), the 5%, 2.5%, and 1%

critical values of tA for testing ~φ
A
5 1 are 23.76, 24.01, and 24.32, respec-

tively, while if the break occurs near the start (τc 5 0:1) or end (τc 5 0:9) of
the sample, then these critical values are smaller in absolute value, being

23.68, 23.93, 24.30 and 23.69, 23.97, and 24.27, respectively. This is

to be expected because the critical values are identical to the standard DF

critical values when τc 5 0 or 1, since in these extreme cases no break can

occur. Models (B) and (C) have critical values that are larger in absolute

value: for the latter model the midpoint critical values of tC for testing
~φ
C
5 1 are 24.24, 24.53, and 24.90. All statistics are naturally larger in

absolute value, for a given size of test, than the standard DF critical values.

6.6 Perron (1989) pointed out a possible disadvantage of the prior detrend-

ing approach, which is that it implies that the change in the trend function

occurs instantaneously, so that the shift is akin to what is known as an “addi-

tive outlier” (AO) effect in the literature on outliers in time series (see, e.g.,

Tsay, 1986a). A transition period in which the series reacts gradually to a
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shock to the trend function may thus be considered. Taking model (A) as an

example, this may be specified as:

xt 5μ0 1μψ Bð ÞDUc
t 1 β0t1 εt

where ψ Bð Þ is stationary and invertible with ψ 0ð Þ5 1. The immediate impact

of the shock is μ but the long-run change is μψ 1ð Þ.
6.7 One way to incorporate such a gradual change into the trend function is

to suppose that xt responds to a trend shock in the same way as it reacts to

any other shock. Recalling the ARMA specification for εt made in y6.2, viz.,
φ Bð Þεt 5 θ Bð Þat, this would imply that ψ Bð Þ5φ Bð Þ21θ Bð Þ, which would be

analogous to an “innovation outlier” (IO) model. With this specification, tests

for the presence of a unit root can be performed using a direct extension of

the ADF regression framework to incorporate dummy variables as appropriate:

xt 5μA 1 θADUc
t 1βAt1 dAD TBcð Þt 1φAxt21 1

Xk
i51

δirxt2i 1 at ð6:9Þ

xt 5μB 1 θBDUc
t 1βBt1 γBDTc

t 1φBxt21 1
Xk
i51

δirxt2i 1 at ð6:10Þ

xt 5μC 1 θCDUc
t 1βCt1 γCDTc

t 1 dCD TBcð Þt 1φCxt21 1
Xk
i51

δirxt2i 1 at

ð6:11Þ
The null hypothesis of a unit root imposes the following parameter

restrictions on each model: Model (A): φA 5 1, θA 5βA 5 0; Model (B):

φB 5 1, βB 5 γB 5 0; and Model (C): φC 5 1, βC 5 γC 5 0. The asymptotic

distributions for testing φA 5 1 and φC 5 1 are the same as those for ~φ
A
5 1

and ~φ
C
5 1 from (6.7), but the correspondence does not hold for the t-statis-

tic from (6.10). Indeed, Perron argues that testing the segmented trend model

should only be done using (6.8).

EXAMPLE 6.1 The Great Crash, the Oil Price Shock, and ADF Tests of
Breaking Trend Processes

A key assumption in Perron’s testing procedure is that the break date Tc
b is

assumed to be known or, equivalently, that the shock producing the break in

trend is exogenously determined. Perron’s context was that of the United States

economy during the 20th century and he postulated that two exogenous shocks

to the economy had occurred—the Great (stock market) Crash of 1929 and the

oil price shock of 1973. Fig. 6.3 shows the logarithms of the S&P 500 stock mar-

ket index annually from 1871 to 2016 with a breaking trend of the form ~xCt with

Tc
b 5 59 (1929) superimposed, which clearly shows the potential for a breaking

TS process to adequately model the evolution of the index.
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Estimating (6.11) with k 5 1 obtains ~φ
C
50:757 0:045ð Þ with tC 52 5:38,

which, with τc 558=1455 0:4, is significant at the 1% level. Furthermore, βC

and γC are both significantly different from zero, so that overall, convincing evi-

dence is provided that the logarithms of the S&P 500 index can indeed be mod-

eled as a TS process with a one-time break at 1929. As shown in Fig. 6.3, the

pre-break trend growth rate of the index is 1.9% per annum, while post-break it

is 6.7%, the Crash also producing a 45% fall in the trend level of the index.

Fig. 6.4 shows quarterly observations on the logarithms of the United States

real GNP from 1947 to 2016, with a segmented trend ~xBt with a break at 1973q1

(λc 5 105=2845 0:37 � 0:4) superimposed. Here the pre-break trend growth

rate is 1.0% per quarter while post-break it is reduced to 0.7%. Estimating (6.8)

with k 5 2 obtains ~φ
B
5 0:960 0:014ð Þ and tB 522:86. As the 5% critical value is

23.91, this statistic is clearly insignificant and, hence, we cannot reject the unit

root null hypothesis. This contrasts with Perron’s original finding that a unit root

could be rejected in favor of a TS segmented break model of the form of Model

(B), but this was based on a sample period that ended in 1986q3.1 Clearly, the
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FIGURE 6.3 S&P 500 index, 1871�2016, with breaking trend at 1929.
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accumulation of another 30 years of data has altered the conclusion in favor of

breaking difference stationarity, the estimated form of (6.5) being:

rxt 5 0:0099
0:0011ð Þ

2 0:0034
0:0017ð Þ

DUc
t 1 εt

εt 5 0:350
0:048ð Þ

εt21 1 at

This implies that the logarithms of real GNP follow a correlated random walk

with a one-time shift in the drift from 1.0% per quarter to 0.65% in 1973q1.

6.8 On the face of it, the finding that the S&P 500 index may be character-

ized as a breaking TS process looks odd, as it would suggest that (the loga-

rithms) of stock prices evolve as transitory deviations from a linear trend

(albeit with a single break at the Great Crash) and, hence, would allow tra-

ders to bet successfully on a reversal of price whenever the index moved too

far away from the trend line, in sharp contrast to the findings for the UK All

Share Index in Example 5.4.

Perron (1989) argued, however, that the rejection of the null hypothesis

of a unit root, conditional on the possibility of shifts in the underlying trend

function at known dates, does not imply that the series can necessarily be

modeled as stationary fluctuations around a completely deterministic trend

function. To do this, Perron invoked the general statistical principle that a

rejection of a null hypothesis does not imply the acceptance of any specific

alternative hypothesis. What Perron had in mind was the class of maintained

hypotheses that could be parameterized as

xt 5 ηt 1 εt ηt 5μt 1βtt

rμt 5 υ Bð Þvt rβt 5ω Bð Þwt
ð6:12Þ

where φ Bð Þεt 5 θ Bð Þat. The intercept and slope of the trend function, μt and

βt, are taken to be integrated processes with υ Bð Þ and ω Bð Þ being stationary

and invertible. However, the timing and occurrence of the shocks vt and wt

are assumed to be sporadic relative to the sequence of innovations at, per-

haps being Poisson processes with arrival rates specified such that their

occurrences are rare relative to the frequency of the realizations in the at
sequence.

6.9 The intuitive idea behind the model (6.12) is that the coefficients of the

trend function are determined by long-term “fundamentals” which rarely

change. The exogeneity assumption about the changes in the trend function

is then a device that allows us to take these rare shocks out of the noise and

into the trend without having to model specifically the stochastic behavior of

μt and βt. Perron’s framework is then to test whether the noise εt is an inte-

grated process or not by removing those events that occur at dates where

nonzero values of vt and wt are believed to have occurred and to model these

as part of the trend function.
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UNIT ROOTS TESTS WHEN THE BREAK DATE IS UNKNOWN

6.10 The procedure set out in yy6.3�6.5 is only valid when the break date

is known independently of the data, for if a systematic search for a break is

carried out then the limiting distributions of the tests are no longer appropri-

ate. Problems also occur if an incorrect break date is selected exogenously,

with the tests then suffering size distortions and loss of power.

Consequently, several approaches have been developed that treat the occur-

rence of the break date as unknown and needing to be estimated: see, for

example, Zivot and Andrews (1992), Perron (1997), and Vogelsang and Perron

(1998). Thus, suppose now that the correct break date Tc
b is unknown. Clearly,

if this is the case then the models of yy6.3�6.5 are not able to be used until

some break date, say T̂b, is selected, since none of the dummy variables that

these models require can be defined until this selection has been made.

6.11 Two data-dependent methods for choosing T̂b have been considered,

both of which involve estimating the appropriate detrended AO regression,

(6.7) or (6.8), or IO regression (6.9�6.11), for all possible break dates. The

first method chooses T̂b as the break date that is most likely to reject the unit

root hypothesis, which is the date for which the t-statistic for testing φ5 1 is

minimized (i.e., is most negative).

The second approach involves choosing T̂b as the break date for which

some statistic that tests the significance of the break parameters is maximized.

This is equivalent to minimizing the residual sum of squares across all possible

regressions, albeit after some preliminary trimming has been performed, that is,

if only break fractions τ5 Tb=T between 0, τmin; τmax , 1 are considered.

6.12 Having selected T̂b by one of these methods, the procedure set out in

yy6.3�6.5 may then be applied conditional upon this choice. Critical values

may be found in Vogelsang and Perron (1998) for a variety of cases: typi-

cally, they are more negative than the critical values that hold when the

break date is known to be at Tc
b .

An important limitation with both these approaches to selecting the break

point endogenously is that it must be assumed that no break occurs under the

null hypothesis of a unit root, so that μ5β5 0 in (6.4)�(6.6), with the

break only occurring under the alternative. Vogelsang and Perron (1998) pro-

vide some results on what happens to the limiting distributions of unit root

tests when μ and β are nonzero under the null, but a full treatment was not

developed until Kim and Perron (2009). Unfortunately, the correct testing

procedure in this more general framework is rather difficult to implement

and is too advanced to be discussed here.2

EXAMPLE 6.2 Determining a Break Point for United States Stock Prices

The minimum unit root method of selecting the break point for the S&P 500

index does indeed select 1929, which yields a DF statistic of 25.11 with a
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marginal significance level of 0.06. Maximizing the significance of a test on the

break parameters also selects 1929.

ROBUST TESTS FOR A BREAKING TREND

6.13 Of course, the broken trend will typically be of interest in itself, and

so it is natural for the robust trend analysis of yy5.17�5.22 to have been

extended to cover such specifications, most notably by Harvey, Leybourne,

and Taylor (HLT, 2009). If the break date is known to be at Tc
b with break

fraction τc then, focusing on the segmented trend model (B), the HLT

method is extended by focusing on autocorrelation corrected t-tests of β5 0

in (6.2) and (6.5), which we denote as t0 τcð Þ and t1 τcð Þ. A weighted average

of these two statistics is again considered,

tλ 5λ S0 τcð Þ; S1 τcð Þð Þ3 t0 τcð Þ
�� ��1 12λ S0 τcð Þ; S1 τcð Þð Þð Þ3 t1 τcð Þ

�� �� ð6:13Þ
with the weight function now being defined as

λ S0 τcð Þ; S1 τcð Þð Þ5 exp 2 500S0 τcð ÞS1 τcð Þð Þ2� �
Here S0 τcð Þ and S1 τcð Þ are KPSS ητ statistics (cf. y5.16) computed from the

residuals of (6.2) and (6.5) respectively. Under H0:β5 0, tλ will be asymp-

totically standard normal.

6.14 When τc is unknown but is assumed to lie between 0, τmin; τmax , 1

then (6.13) can be replaced by

tλ 5λ S0 τ̂ð Þ; S1 ~τð Þð Þ3 t0 τ̂ð Þ
�� ��1mξ 12λ S0 τ̂ð Þ; S1 ~τð Þð Þð Þ3 t1 ~τð Þ

�� ��
Here τ̂ and ~τ are the break fractions that maximize t0 τð Þ

�� �� and t1 τð Þ
�� �� across

all break fractions in the range τmin , τ, τmax. In these circumstances tλ is

no longer asymptotically standard normal. The constant mξ is chosen so that,

for a given significance level ξ, the asymptotic null critical value of tλ is the

same irrespective of whether the errors are I 0ð Þ or I 1ð Þ.
6.15 If we have model (C), that is, Eqs. (6.3) and (6.6), then the procedures

outlined in yy6.10�6.11 may again be followed using the t-statistics relating

to the null β5 0. HLT (2009) provide these critical values and mξ values for

tλ in the unknown break case:

Model (A) Model (C)

ξ Critical Value mξ Critical Value mξ

0.10 2.284 0.835 2.904 1.062
0.05 2.563 0.853 3.162 1.052
0.01 3.135 0.890 3.654 1.037
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CONFIDENCE INTERVALS FOR THE BREAK DATE AND
MULTIPLE BREAKS

6.16 When the break date is estimated it is often useful to be able to pro-

vide a confidence interval for the unknown Tc
b . Perron and Zhu (2005) show

that for the segmented trend model (B) and I 1ð Þ errors
ffiffiffiffi
T

p
τ̂2 τcð ÞBd N 0; 2σ2=15β2

� �
while for I 0ð Þ errors

T3=2 ~τ2 τcð ÞBd N 0; 4σ2= τc 12 τcð Þβ2
� �� �

so that, for example, a 95% confidence interval for τc when the errors are

I 1ð Þ is given by

τ̂6 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ̂2

15Tβ̂
2

vuut

The limiting distributions for the break date do not depend on the auto-

correlation structure of the errors, only requiring an estimate of the error var-

iance σ2. When the errors are I 1ð Þ the limiting distribution is invariant to the

location of the break, whereas for I 0ð Þ errors, the limiting distribution

depends on the location of the break in such a way that the variance is smal-

ler the closer the break is to the middle of the sample. In both cases the vari-

ance decreases as the shift in slope increases.

For model (C) the limiting distributions for the break date are no longer

normal but are complicated functions of nuisance parameters and, thus, can

only be simulated, so that no simple results are available.

6.17 In theory, all the procedures available when there is only one break,

may be extended to the case of multiple breaks, but, in practice, when there

are multiple breaks at unknown times, only the sequential procedure of

Kejriwal and Perron (2010), which requires specialized programming, is cur-

rently available.

NONLINEAR TRENDS

6.18 A breaking linear trend may be interpreted as a form of nonlinear

trend and their use begs the question of why not model nonlinear trends

explicitly, particularly when the shift in the trend evolves smoothly over a

sequence of observations rather than occurring instantaneously with a sharp

break. While many types of deterministic nonlinear trends could be speci-

fied, the logistic smooth transition (LSTR) and exponential smooth transition

(ESTR) have proved to be popular. The LSTR function may be defined as

112 Applied Time Series Analysis



St γ;mð Þ5 11exp 2γ t2mTð Þð Þð Þ21 ð6:14Þ
while the ESTR takes the form

St γ;mð Þ5 12 exp 2γ t2mTð Þ2� � ð6:15Þ
Analogous to (6.1)�(6.3), three alternative smooth transition trend mod-

els may then be specified as

xt 5μ0 1μSt γ;mð Þ1 εt ð6:16Þ
xt 5μ0 1β0t1μSt γ;mð Þ1 εt ð6:17Þ
xt 5μ0 1β0t1μSt γ;mð Þ1βtSt γ;mð Þ1 εt ð6:18Þ

The parameter m determines the timing of the transition midpoint, since for

γ. 0, S2N γ;mð Þ5 0, S1N γ;mð Þ5 1, and SmT γ;mð Þ5 0:5. The speed of the

transition is determined by the parameter γ. If γ is small then St γ;mð Þ takes
a long time to traverse the interval 0; 1ð Þ, and in the limiting case where

γ5 0, St γ;mð Þ5 0:5 for all t and there is, thus, no transition. For large values

of γ, St γ;mð Þ traverses the interval 0; 1ð Þ rapidly, and as γ approaches 1N,

it changes from zero to one instantaneously at time mT, so that a level shift

model emerges.

6.19 Thus, in (6.16) xt is stationary around a mean that changes from an initial

value of μ0 to a final value of μ1 5μ0 1μ. Model (6.17) is similar with the

intercept again changing from μ0 to μ1 5μ0 1μ, but it also allows for a fixed

slope. In model (6.18) the slope also changes, with the same speed of transition,

from β0 to β1 5β0 1β. If γ, 0 then the initial and final model states are

reversed but the interpretation of the parameters remains the same. Examples of

the smooth transitions of models (6.16)�(6.18) are shown in Fig. 6.5.

6.20 The smooth transition St γ;mð Þ does, however, impose the restriction

that the transition path is both monotonic and symmetric around the mid-

point. More flexible specifications, which allow for nonmonotonic and asym-

metric transition paths, could be obtained by including a higher-order time

polynomial in the exponential term of St γ;mð Þ. The constraints that the tran-

sitions in intercept and slope occur only once, simultaneously and at the

same speed, could also be relaxed, although at some cost to interpretation

and ease of estimation.3

6.21 Indeed, the ease with which smooth transition models may be esti-

mated may be of some concern because nonlinear least squares (NLS) must

be used to estimate models of the form of (6.16)�(6.18), usually with some

form of autocorrelation adjustment to deal with an ARMA specification for

εt (cf. the discussion in y6.2). NLS estimation can often be problematic in

terms of the convergence of estimates and the computability of the variances

and covariances to be attached to these estimates. Consequently, approximat-

ing a nonlinear trend by a Fourier series expansion has also become popular.

Breaking and Nonlinear Trends Chapter | 6 113



Such a model can be written as:

xt 5μ1 βt1
Xn
f51

γ1f sin
2πft
T

� �
1

Xn
f51

γ2f cos
2πft
T

� �
1 εt ð6:19Þ
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FIGURE 6.5 Smooth transitions (6.16)�(6.18): (A) γ5 0:1; (B) γ5 1; μ0 5 10, μ1 5 20,

β0 5 0:5, β1 5 1, m5 0:5.

114 Applied Time Series Analysis



Here f 5 1; 2; . . .; n# T=2 are the frequencies contained in the approxima-

tion, but it is usual to consider only a limited number of such frequencies,

with n typically chosen to be no more than three. This is because a Fourier

approximation using a small number of frequency components will often

capture the essential characteristics of an unknown nonlinear function. It is

also because the evolution of the nonlinear trend is usually assumed to be

gradual rather than exhibiting the sharp shifts that will occur when n is cho-

sen to be large.

EXAMPLE 6.3 LSTR and Fourier Models for United States Stock Prices

In Example 6.1 a breaking trend model with both a level and trend shift at 1929

was fitted to the S&P 500 index. Here an equivalent LSTR model of the form

(6.18) is fitted by NLS with AR(2) errors to obtain:

xt 5 1:278
0:182ð Þ

1 0:0198
0:0046ð Þ

t 2 3:891
0:414ð Þ

St 0:685; 0:507ð Þ1 0:0507
0:0056ð Þ

tSt 0:685; 0:507ð Þ1 et

et 5 0:913
0:085ð Þ

et21 2 0:172
0:085ð Þ

et21 1 at

This model can be interpreted as implying that the intercept decreased from 1.28

to 22.61, while trend growth increased from 2.0% per annum to 7.1% per annum

across the transition. The midpoint of the smooth transition is estimated to be

1951 and, as γ̂5 0:685, the speed of the transition is reasonably swift. As can be

seen from the smooth transition trend shown in Fig. 6.6, the transition takes about

six years to complete and occurs two decades later than the Great Crash of 1929.

Also shown is an n5 3 component Fourier approximation obtained by fitting

(6.19) by OLS, again with AR(2) errors. This provides a reasonable approxima-

tion to the LSTR fit, but tends to produce a sequence of “long swings” rather

than a smooth transition from one essentially linear segment to another.
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FIGURE 6.6 S&P 500 index, 1871�2016, with LSTR trend having a midpoint at 1951 and an

n5 3 component Fourier approximation.
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6.22 Of course, the error εt in (6.16)�(6.18) may contain a unit root rather

than be assumed stationary as in Example 6.3. A simple procedure to test for

a unit root when there are smooth transition breaks is to detrend xt by fitting

one of (6.16)�(6.18) and to compute an ADF test using the residuals. Once

again standard DF percentiles are invalid but Leybourne et al. (1998) and

Kapetanios et al. (2003) provide the necessary critical values, which depend

on which smooth transition model is fitted. If the null hypothesis is an I 1ð Þ
process without drift then all three models are possible alternatives, while if

a drift is included under the null then only (6.17) and (6.18) can be consid-

ered as realistic alternatives.

A similar procedure may be employed after having fitted a Fourier

approximation (6.19), although Enders and Lee (2012) prefer an alternative

approach based on the Lagrange Multiplier methodology, which they find to

have better size and power properties.

EXAMPLE 6.4 LSTR Versus a Unit Root in United States Stock Prices

A DF unit root test computed using the residuals from the LSTR model fitted in

Example 6.3, albeit without an AR(2) error, yielded a value of 24.46. From

Table 1 of Leybourne et al. (1998) this is close to being significant at the 10%

level and the residuals from the model are well fitted by an AR(4) process with

two pairs of complex roots of 0:686 0:23i and 20:2060:57i. There is, thus,

some modest confirmation that stock prices can reasonably be modeled as the

sum of a deterministic nonlinear trend and a stationary innovation, although, as

we have seen, the transition occurs some 20 years after the Great Crash break in

the trend function fitted in Example 6.1.

6.23 As has been repeatedly emphasized, the interaction between specify-

ing a trend component and ascertaining whether a time series has a unit root

or not is of considerable importance. Failure to correctly specify the deter-

ministic component of a time series will typically result in inconsistent unit

root tests, while the power of such tests to reject the unit root null under a

stationary alternative can be markedly reduced when deterministic compo-

nents are unnecessarily included in the specification.

These issues are magnified when nonlinear trends are being considered.

Unless one is committed to a specific parametric trend specification, such as one

of the smooth transitions, then a Fourier expansion approximation is required,

for which a choice of n in (6.19) is required. If this is to be selected empirically

via a statistical test, then knowing whether the errors contain a unit root or not is

essential for deriving the correct form of the test, but this knowledge is itself

only available after conducting a test whose validity, as we have just pointed

out, depends on the very trend specification we are attempting to ascertain.

6.24 This circularity of reasoning must, therefore, be broken by a robust

procedure of the type introduced in yy6.10�6.12, and this has been
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provided by Harvey, Leybourne, and Xiao (HLX, 2010). Their focus is on

deriving a test of the null of linearity against the alternative of a nonlinear

trend in (6.19) that is robust to whether εt contains a unit root or not, that

is, a test of

H0:γ1f 5 γ2f 5 0; f 5 1; . . .; n

against

H1: at least one of γ1f ; γ2f 6¼ 0; f 5 1; . . .; n

The test is developed using the “partially summed” counterpart to (6.19):

zt 5μt1βyt 1
Xn
f51

γ1f
Xt

s51

sin
2πfs
T

� �
1

Xn
f51

γ2f
Xt

s51

cos
2πfs
T

� �
1 ηt ð6:20Þ

where zt 5
Pt

s51 xs, yt 5
Pt

s51 s, and ηt 5
Pt

s51 εs. Let RSSU denote the

residual sum of squares from OLS estimation of (6.20) and RSSR the residual

sum of squares from the OLS regression of (6.20) under H0, that is, the

regression of zt on just t and yt. A suitable test of H0 against H1 (i.e., of the

null of zero frequencies against the alternative of n$ 1 frequencies) is then

given by the Wald statistic

Wn
0 5

RSSR 2RSSU

RSSU=T

HLX show that a modified form of this Wald statistic is robust to

whether the errors are I 0ð Þ or I 1ð Þ, in the sense that its critical values and sig-

nificance levels do not depend on this distinction. The modification that they

favor is

MWn
0 5 T21Wn

0 exp 2 bξ= DFj j� �
where DF is the Dickey�Fuller t-statistic testing φ5 0 from the OLS

regression

ret 5φet21 1
Xk
i51

δiret2i 1 at

the et being the residuals from OLS estimation of (6.19). Values of bξ for

significance level ξ and critical values for n up to 3 are given in Table 1 of

HLX. For example, for n5 1, ξ5 0:05 with a trend included, b0:05 5 9:484
and the critical value is 3.708; if the trend is omitted, b0:05 5 7:096 and the

critical value is 7.439.

6.25 HLX found that the maximum number of frequencies used in the

Fourier approximation, n, was a key factor in the performance of the MWn
0

test. Choosing too large a value naturally results in a sacrifice of power, but

choosing n too small can also lead to dramatic losses in power. A method of
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determining n is, therefore, needed and HLX begin by considering robust

tests of m versus at most m2 1 frequencies, that is, tests of:

H
�
0:γ1m 5 γ2m 5 0; γ1f ; γ2f ; f 5 1; . . .;m2 1 unrestricted

against

H
�
1:at least one of γ1m; γ2m 6¼ 0

The hypothesis H
�
0 can be tested by the same approach using the Wald

statistic:

Wm
m21 5

RSSR 2RSSU

RSSU=T

where RSSR now denotes the residual sum of squares from OLS estimation

of (6.20) with n replaced by m2 1 and RSSU is the residual sum of squares

from (6.20) with n replaced by m. The modified statistic is then:

MWm
m21 5 T21Wm

m21exp 2
bξ

DFj j

� �

The procedure for selecting n is then as follows. In the first step, a maxi-

mum value nmax is selected and the sequence of tests MWi
0, i5 1; . . . ; nmax,

are conducted. If none of these tests reject, then we conclude that n5 0. If

any of these tests do reject, we identify the largest value of i for which the

null is rejected and set m to this value. If m5 1 we conclude that n5 1; oth-

erwise, if m. 1 we conclude that m is the largest value that n might take.

MWm21
0 is then considered and if this fails to reject we set n5m. If MWm21

0

does reject, however, MWm
m21 is then considered; if this rejects we again con-

clude that n5m, otherwise m is reduced by one and the loop repeated.

6.26 A natural alternative is to identify n using a model selection criterion.

Astill et al. (2015) suggest fitting two sequences of regressions; the first being

rxt 5μ1βt1φxt21 1
Xn
f51

γ1f sin
2πft
T

� �
1

Xn
f51

γ2f cos
2πft
T

� �

1
Xk
i51

δirxt2i 1 εt ð6:21Þ

the second being (6.21) with the restriction φ5 0 imposed, for

n5 0; 1; . . . ; nmaxf g and k5 0; 1; . . . ; kmaxf g. From these two sequences the

regression that produces the minimum value of, say, BIC then provides the

value of n to use in the testing procedure.

Astill et al. also provide an alternative set of test statistics that they claim

have superior finite sample size and power properties to the MW-type statis-

tics. These are, however, rather more complicated to construct but may be

used if so desired.
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EXAMPLE 6.5 Determining a Fourier approximation for United States
Stock Prices

In Example 6.3 a Fourier approximation with n5 3 was fitted to the S&P 500

index. The HLX procedure was then applied to ascertain whether this choice

was warranted. The sequence of Wald statistics were obtained as W 1
0 5 6914:76,

W 2
0 5 7268:96, and W 3

0 5 18129:54. With DF 52 4:551, and choosing ξ50:05
as the significance level, so that the bξ values are 9.484, 14.193, and 18.349,

the modified Wald statistics are MW 1
0 5 5:893, MW 2

0 5 2:101, and

MW 3
0 5 2:203 respectively. Since the critical values are 3.708, 6.124, and

8.468, this procedure selects n5 1 as the appropriate value to use in the Fourier

approximation.

Estimating the two sequences of regressions from (6.21) with nmax 53 and

kmax 54 finds that the joint minimum BIC is provided by n5 0 at k 5 0 i.e., that

the most appropriate model is actually a pure random walk with drift, although

focusing only on the unrestricted regression yields n51 at k 5 0, which is the

regression with the second smallest BIC value.

ENDNOTES

1. Repeating the test for the restricted sample ending in 1986q3 yields ~φ
B
5 0:885 0:029ð Þ with

tB 52 3:92, which is on the border of significance at the 5% level and is similar in value to

the statistic obtained by Perron (1989) for an earlier vintage of real GNP data.

2. Tests of stationarity in the presence of structural breaks occurring at unknown times have

also been developed: see Busetti and Harvey (2003) and Harvey and Mills (2003, 2004).

3. The LSTR trend model was introduced by Leybourne et al. (1998) and extensions were pro-

vided by Sollis et al. (1999) and Harvey and Mills (2002).
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FORECASTING WITH AUTOREGRESSIVE-INTEGRATED-
MOVING AVERAGE (ARIMA) MODELS

7.1 An important feature of the univariate models introduced in previous

chapters is their ability to provide forecasts of future values of the observed

series. There are two aspects to forecasting: the provision of a forecast for a

future value of the series and the provision of a forecast error that can be

attached to this point forecast. This forecast error may then be used to con-

struct forecast intervals to provide an indication of the precision these fore-

casts are likely to possess. The setup is, thus, analogous to the classic

statistical problem of estimating an unknown parameter of a model and pro-

viding a confidence interval for that parameter.

What is often not realized when forecasting is that the type of model

used to construct point and interval forecasts will necessarily determine the

properties of these forecasts. Consequently, forecasting from an incorrect or

misspecified model may lead to forecasts that are inaccurate and which

incorrectly measure the precision that may be attached to them.1

7.2 To formalize the forecasting problem, suppose we have a realization

x12d; x22d ; . . .; xTð Þ from a general ARIMA (p,d,q) process

φ Bð Þrdxt 5 θ0 1 θ Bð Þat ð7:1Þ
and that we wish to forecast a future value xT1h, h being known as the lead

time or forecast horizon.2 If we let

α Bð Þ5φ Bð Þrd 5 12α1B2α2B
2 2?2αp1dB

p1d
� �
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then (7.1) becomes, for time T 1 h,

α Bð ÞxT1h 5 θ0 1 θ Bð ÞaT1h

that is,

xT1h 5α1xT1h21 1α2xT1h22 1?1αp1dxT1h1p2d 1 θ0 1 aT1h

2 θ1aT1h21 2?2 θqaT1h2q

Clearly, observations from T 1 1 onwards are unavailable, but a minimum

mean square error (MMSE) forecast of xT1h made at time T (known as the

origin), and denoted fT ;h, is given by the conditional expectation

fT ;h 5Eðα1xT1h21 1α2xT1h22 1?1αp1dxT1h2p2d 1 θ0
1aT1h 2 θ1aT1h21 2?2 θqaT1h2qjxT ; xT21; . . .Þ: : ð7:2Þ

This is the forecast that will minimize the variance of the h-step ahead fore-

cast error eT ;h 5 xT1h 2 fT ;h, that is, it will minimize E e2T ;h

� �
. Now it is clear

that

E
�
xT1jjxT ; xT21; . . .

�
5

�
xT1j; j# 0

fT ;j; j. 0
;

and

E aT1jjxT ; xT21; . . .
� �

5
aT1j; j# 0

0; j. 0
;

�

so that, to evaluate fT ;h, all we need to do is: (1) replace past expectations

j# 0ð Þ by known values, xT1j and aT1j, and (2) replace future expectations

(j. 0) by forecast values, fT ;j and 0.

7.3 We will use three processes to illustrate the procedure, with

further actual forecasting applications developed as worked examples.

Consider first the AR(2) process 12φ1B2φ2B
2

� �
xt 5 θ0 1 at, so that

α Bð Þ5 12φ1B2φ2B
2

� �
. Here

xT1h 5φ1xT1h21 1φ2xT1h22 1 θ0 1 aT1h;

and, hence, for h5 1, we have

fT ;1 5φ1xT 1φ2xT21 1 θ0

For h5 2 we have

fT ;2 5φ1fT ;1 1φ2xT 1 θ0

and, for h. 2,

fT ;h 5φ1fT ;h21 1φ2fT ;h22 1 θ0

An alternative expression for fT ;h can be obtained by noting that

fT ;h 5 φ1 1φ2

� �
fT ;h21 2φ2 fT ;h21 2 fT ;h22

� �
1 θ0
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from which, by repeated substitution, we obtain

fT ;h 5 φ11φ2

� �h
xT 2φ2

Xh21

j50

φ11φ2

� �j
fT ;h212j 2 fT ;h222j

� �
1 θ0

Xh21

j50

φ11φ2

� �j

where, by convention, we take fT ;0 5 xT and fT ;21 5 xT21. Thus, for stationary

processes, that is, those for which φ1 1φ2 , 1; jφ2j, 1,

fT ;h-
θ0

12φ1 2φ2

5E xtð Þ5μ

as h-N, so that for long lead times the best forecast of a future observation

will eventually be the mean of the process. This is a general result: for all sta-

tionary processes, forecasts will eventually converge on the mean of the process,

reflecting the mean reversion property of such models. Short-term (small h)

forecasts may, of course, be different from the mean, as they respond to recent

developments in the realization, and the speed with which the forecasts mean

revert will depend upon the strength of the autocorrelation in the series (in the

AR(2) context, the closer φ1 1φ2 is to unity, the slower the mean reversion).

7.4 Next consider the ARIMA(0,1,1) model rxt 5 12 θ1Bð Þat. Here

α Bð Þ5 12Bð Þ so that

xT1h 5 xT1h21 1 aT1h 2 θ1aT1h21:

For h5 1, we have

fT ;1 5 xT 2 θ1aT

for h5 2

fT ;2 5 fT ;1 5 xT 2 θ1aT

and, in general,

fT ;h 5 fT ;h21 5 fT ;1; h. 1:

Thus, for all lead times, forecasts from origin T will follow a straight line

parallel to the time axis and passing through fT ;1. Note that since

fT ;h 5 xT 2 θ1aT
and

aT 5 12Bð Þ 12θ1Bð Þ21xT

the h-step ahead forecast can be written as

fT ;h 5 12 θ1ð Þ 12θ1Bð Þ21xT
5 12 θ1ð Þ xT 1 θ1xT21 1 θ21xT22 1?

� �
so that the forecast for all future values of x is a weighted moving average of

current and past values, with the weights geometrically declining (this is also

known as an exponentially weighted moving average: see y 9.14).
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The nonstationary nature of the ARIMA(0,1,1) model asserts itself in the

absence of mean reversion, with forecasts remaining at fT ;1 for all lead times.

Note that if θ1 5 0 then the model is a pure random walk and fT ;h 5 xT for all

h, that is, for a random walk without drift the optimal forecast for all lead

times is the current value of the series.

If there is a drift, then we have

rxt 5 θ0 1 12 θ1Bð Þat
and

xT1h 5 xT1h21 1 θ0 1 aT1h 2 θ1aT1h21:

For h5 1, we now have

fT ;1 5 xT 1 θ0 2 θ1aT ;

for h5 2

fT ;2 5 fT ;1 1 θ0 5 xT 1 2θ0 2 θ1aT

and, in general,

fT ;h 5 fT ;h21 1 θ0 5 fT ;1 1 h2 1ð Þθ0 5 xT 1 hθ0 2 θ1aT ; h. 1

Thus, the inclusion of a drift into the model introduces a linear trend into the

forecasts. If again θ1 5 0 and we have a random walk with drift, the

sequence of forecasts is then a linear trend emanating from the last available

observation with the slope given by the drift.

7.5 Finally, we consider the ARIMA(0,2,2) process

r2xt 5 12 θ1B2 θ2B2
� �

at, with α Bð Þ5 12Bð Þ2 5 12 2B1B2
� �

:

xT1h 5 2xT1h21 2 xT1h22 1 aT1h 2 θ1aT1h21 2 θ2aT1h22

For h5 1, we have

fT ;1 5 2xT 2 xT21 2 θ1aT 2 θ2aT21

for h5 2,

fT ;2 5 2fT ;1 2 xT 2 θ2aT

for h5 3,

fT ;3 5 2fT ;2 2 fT ;1

and, thus, for h$ 3,

fT ;h 5 2fT ;h21 2 fT ;h22 5 h2 1ð ÞfT ;2 2 h2 2ð ÞfT ;1
Hence, for all lead times, the forecasts from origin T will follow a straight

line passing through the forecasts fT ;1 and fT ;2.

7.6 These results may be generalized to ARIMA(p,d,q) processes having

d at most 2. After the impact that the autoregressive and moving average
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components have on short-term forecasts has dissipated, the behavior of

long-term forecasts is dependent upon the order of differencing and

whether an intercept is included in the process or not. For stationary pro-

cesses, forecasts will eventually revert to the mean of the process, which

will be zero if no intercept is included. For I 1ð Þ processes, long-term fore-

casts will either be horizontal, if there is no intercept, or follow a linear

trend when the intercept is nonzero. For I 2ð Þ processes a linear trend is

automatically inserted if there is no intercept. Including an intercept in an

I 2ð Þ process will, thus, introduce a quadratic trend into the forecasts, which

would in most applications be felt inappropriate; its absence is consistent

with the typical finding that estimated intercepts are insignificant in fitted

I 2ð Þ models.

7.7 The h-step ahead forecast error for origin T, defined in y 7.2, may be

expressed as

eT ;h 5 xT1h 2 fT ;h 5 aT1h 1ψ1aT1h21 1?1ψh21aT11 ð7:3Þ
where ψ1; . . .;ψh21 are the first h2 1 ψ-weights in ψ Bð Þ5α21 Bð Þθ Bð Þ. The
forecast error is, therefore, a linear combination of the unobservable future

shocks entering the system after time T, although the one-step ahead forecast

error is simply

eT ;1 5 xT ;1 2 fT ;1 5 aT11:

Thus, for a MMSE forecast, the one-step ahead forecast errors must be

uncorrelated. However, h-step ahead forecasts made at different origins will

not be uncorrelated, and neither will forecasts for different lead times made

at the same origin.3

7.8 From (7.3), the variance of the forecast error is given by

V eT ;h
� �

5σ2 11ψ2
1 1ψ2

2 1?1ψ2
h21

� � ð7:4Þ
For the AR(2) model, we have ψ1 5φ1; ψ2 5φ2

1 1φ2 and, for j. 2,

ψj 5φ1ψj21 1φ2ψj22 (recall y3.16). Since we are assuming stationarity,

these ψ-weights converge absolutely, which implies that
Ph

j51 ψ
2
j ,N.

Consequently V eT ;h
� �

converges to a finite value, which is the variance of

the process about the ultimate forecast μ. For stationary models then, fore-

cast error variances are bounded by the intrinsic variability of the series

itself.

7.9 For the ARIMA(0,1,1) process, ψj 5 12 θ; j5 1; 2; . . .. Thus, we

have

V eT ;h
� �

5 σ2 11 h2 1ð Þ 12θð Þ2� �
which is a linear function of h, so that forecast uncertainty increases with the

forecast horizon at a linear rate. Similarly, the ARIMA(0,2,2) model has

ψ-weights given by ψj 5 11 θ2 1 j 12 θ1 2 θ2ð Þ; j5 1; 2; . . ., and an h-step

ahead forecast error variance of
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V eT ;h
� �

5σ2
�
11 h2 1ð Þ 11θ2ð Þ2 1 1

6
h h2 1ð Þ 2h2 1ð Þ 12θ12θ2ð Þ2

1 h h2 1ð Þ 11 θ2ð Þ 12 θ1 2 θ2ð Þ
�

This is a cubic function of h so that forecast uncertainty may increase sub-

stantially as the forecast horizon increases.

7.10 These examples show how the degree of differencing (equivalently

the order of integration) determines not only how successive forecasts are

related to each other, but also the behavior of the associated error var-

iances. Having obtained the forecast error variance V eT ;h
� �

, a 100 12 ςð Þ%
forecast interval may be constructed as fT ;h 6 zς=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V eT ;h
� �q

, where zς=2 is

the ς=2 percentage point of the standard normal distribution, for example,

z0:025 5 1:96.

EXAMPLE 7.1 ARIMA Forecasting of the Spread

Example 3.2 fitted an AR(2) model to the United Kingdom interest rate spread,

yielding parameter estimates φ̂1 5 1:192, φ̂2 52 0:224, and θ̂0 50:036. With

the last two observations being xT21 5 1:69 and xT 5 1:63, forecasts are

obtained as

fT ;1 5 1:192xT 2 0:223xT21 1 0:0365 3:034

fT ;2 5 1:192fT ;1 2 0:224xT 1 0:0365 1:580

fT ;3 51:192fT ;2 2 0:224fT ;1 1 0:0365 1:562

and so on. As h increases, the forecasts eventually tend to 1.195, the sample

mean of the spread. The ψ-weights are given by:

ψ1 5φ1 5 1:192

ψ2 5φ2
1 1φ2 5 1:199

ψ3 5φ3
1 1 2φ1φ2 5 1:163

ψ4 5φ4
1 1 3φ2

1φ2 1φ2
2 51:119

and, hence:

ψh 5 1:192ψh21 2 0:224ψh22:

With σ̂50:394, the forecast error variances are

V eT ;1
� �

50:3942 5 0:155

V eT ;2
� �

5 0:3942 11 1:1922
� �

5 0:377

V eT ;3
� �

5 0:3942 11 1:1922 1 1:1992
� �

5 0:602

V eT ;4
� �

5 0:3942 11 1:1922 1 1:192 1 1:1632
� �

5 0:814
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the forecast error variances eventually converging to the sample variance of the

spread, 3.284.

Forecasts of the spread out to the end of 2020, accompanied by approxi-

mate 95% (2 standard error) forecast intervals, calculated as fT ;h 6 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V eT ;h
� �q

,

are shown in Fig. 7.1, and clearly demonstrate both the slow convergence of

the forecasts to the sample mean and the bounded nature of the forecast

uncertainty.

If, on the other hand, we use the ARIMA(0,1,1) process of Example 4.1 to

model the spread, with θ̂520:204 and σ̂50:398 (and conveniently setting the

insignificant drift to zero), then our forecasts are (using the final residual

âT 52 0:081):

fT ;1 5 1:631 0:2043 20:081ð Þ5 1:613

and, for h.1,

fT ;h 5 fT ;1 5 1:613

so that there is no tendency for the forecasts to converge to the sample mean

or, indeed, to any other value. Furthermore, the forecast error variances are

given by:

V eT ;h
� �

5 0:3982 11 1:2042 h2 1ð Þ� �
5 0:1581 1:450 h2 1ð Þ52 0:0721 0:230h

which, of course, increase with h, rather than tending to a constant. This exam-

ple thus illustrates, within the forecasting context, the radically different proper-

ties of ARMA models which have, on the one hand, a unit autoregressive root

and, on the other, a root that is large but less than unity.
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FIGURE 7.1 Forecasts of the United Kingdom interest rate spread: July 2017 to December

2020.
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EXAMPLE 7.2 Forecasting Global Temperatures

In Example 4.3, an ARIMA(0,1,3) process was fitted to monthly global temperatures,

which we now use to produce temperature forecasts out to 2020. Omitting the insig-

nificant intercept, the fitted model is rxt 5 12 0:506B2 0:090B2 2 0:119B3
� �

at
with σ̂5 0:1236, âT 52 0:020, and xT 5 0:585. Extending the method of y7.4 in an

obvious way, we obtain fT ;1 5 0:609, fT ;2 5 0:619, and fT ;h 5 0:621 for h.2.

Fig. 7.2 shows these forecasts and their accompanying 95% forecast intervals: by the

end of 2020 these intervals range from 0.12�C to 1.12�C, thus showing the high

degree of uncertainty inherent in such forecasts, a consequence of the natural vari-

ability that exists in this series. Including the insignificantly positive intercept intro-

duces a small upward trend into the forecasts, which increase to 0.642 by the end of

the forecast period (with accompanying forecasting interval from 0.14�C to 1.14�C).

FORECASTING A TREND STATIONARY PROCESS

7.11 Let us now consider the trend stationary (TS) process

xt 5β0 1β1t1 εt φ Bð Þεt 5 θ Bð Þat ð7:5Þ
The forecast of xT1h made at time T is

fT ;h 5β0 1β1 T 1 hð Þ1 gT ;h

where gT ;h is the forecast of εT1h, which from (7.2) is given by:

gT ;h 5Eðφ1εT1h21 1φ2εT1h22 1?1φpxT1h2p 1 aT1h

2 θ1aT1h21 2?2 θqaT1h2q εT ; εT21; . . .Þ
��
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FIGURE 7.2 Forecasts of global temperatures: January 2018 to December 2020.
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Since εt is, by assumption, stationary, we know that gT ;h-0 as h-N.

Thus, for large h, fT ;h 5β0 1β1 T 1 hð Þ and forecasts will be given simply by

the extrapolated linear trend. For smaller h there will also be the component

gT ;h, but this will dissipate as h increases. The forecast error will be

eT ;h 5 xt 2 fT ;h 5 εT1h 2 gT ;h

and, hence, the uncertainty in any TS forecast is due solely to the error in fore-

casting the ARMA component. As a consequence, the forecast error variance

is bounded by the sample variance of εt, this being in contrast to the error var-

iances of the ARIMA(p,2,q) process and the ARIMA(p,1,q) with an intercept

included, which, from yy7.4�7.5, also have forecasts that lie on a linear trend,

but have unbounded error variances. In the simplest case in which εt is white
noise, all forecasts of a TS process have the same error variance, σ2.

7.12 Of course, the linear trend in (7.5) may be replaced with a breaking or

nonlinear trend of the types discussed in Chapter 6, Breaking and Nonlinear

Trends. Again, the uncertainty in any forecasts will be solely attributable to

the error in forecasting the ARMA component, with the forecast error vari-

ance remaining bounded by the sample variance of the noise component.

EXAMPLE 7.3 Forecasting the All Share Index as a TS Process

A TS model fitted to (the logarithms of) the All Share index was estimated to be:

xt 5 3:9141 0:0060t 1 εt

εt 5 1:106εt21 2 0:118εt22 1 at

That this is a misspecified model is clear from Fig. 7.3, which superimposes the

fitted linear trend and reveals that there are highly persistent deviations of the
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FIGURE 7.3 Logarithms of the All Share index with linear trend superimposed: 1952�2017.
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series from the trend, confirmed by the largest autoregressive root being esti-

mated to be 0.99. The artificiality of this example notwithstanding, extremely

long horizon forecasts of xT1h are given by fT ;h 53:91410:0060 T 1 hð Þ,
although shorter horizon forecasts will have appended to fT ;h the forecast of the

stationary AR(2) component gT ;h 5 1:106gT ;h21 2 0:118gT ;h22.

ENDNOTES

1. Throughout this chapter we use “forecast” rather than “predict.” This is because in the mod-

ern literature on the econometrics of forecasting they have different, albeit subtle and rather

deep, definitions. For a detailed discussion of these different definitions, see Clements and

Hendry (1998, Chapter 2). Briefly, predictability is defined as a property of a random variable

in relation to an information set (the conditional and unconditional distributions of the vari-

able do not coincide). It is a necessary, but not sufficient, condition for forecastability, as the

latter requires knowledge of what information is relevant and how it enters the causal

mechanism.

2. A detailed exposition of forecasting from ARIMA models is provided by Box and Jenkins

(1970, Chapter 5). A wide ranging and detailed discussion of forecasting economic time

series is to be found in Granger and Newbold (1986).

3. See, for example, Box and Jenkins (1970, Appendix A5.1).
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UNOBSERVED COMPONENT MODELS

8.1 A difference stationary, that is, I(1), time series may always be decom-

posed into a stochastic nonstationary trend, or signal, component and a sta-

tionary noise, or irregular, component:

xt 5 zt 1 ut ð8:1Þ
Such a decomposition can be performed in several ways. For instance,

Muth’s (1960) classic example assumes that the trend component zt is a ran-

dom walk

zt 5μ1 zt21 1 vt

while ut is white noise and independent of vt, that is, utBWN 0;σ2
u

� �
and

vtBWN 0;σ2
v

� �
, with E utvt2ið Þ5 0 for all i. Thus, it follows that rxt is the

stationary process

rxt 5μ1 vt 1 ut 2 ut21 ð8:2Þ
which has an autocorrelation function that cuts off at lag one with coefficient

ρ1 52
σ2
u

σ2
u 1 2σ2

v

ð8:3Þ

It is clear from (8.3) that 20:5# ρ1 # 0, the exact value depending on the rela-

tive sizes of the two variances, so that rxt can be written as the MA(1) process:

rxt 5μ1 et 2 θet21 ð8:4Þ
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where etBWN 0;σ2
e

� �
. On defining κ5σ2

v=σ
2
u to be the signal-to-noise vari-

ance ratio, the relationship between the parameters of (8.2) and (8.4) can be

shown to be:

θ5
1

2
κ1 2ð Þ2 κ214κ

� �1=2� �
; κ5

12θð Þ2
θ

; κ$ 0; θj j, 1

and

σ2
u 5 θσ2

e

Thus, κ5 0 corresponds to θ5 1, so that the unit roots in (8.4) “cancel

out” and the overdifferenced xt is stationary, while κ5N corresponds to

θ5 0, in which case xt is a pure random walk. A test of the stationarity null

of θ5 1 has been set out in y5.16, which can, therefore, also be regarded as

a test of the null σ2
v 5 0, for if this is the case then zt is a deterministic linear

trend.

8.2 Models of the form of (8.1) are known as unobserved component (UC)

models, a more general formulation for the components being:

rzt 5μ1 γ Bð Þvt
and

ut 5λ Bð Þat
ð8:5Þ

where vt and at are independent white noise sequences with finite variances

σ2
v and σ2

a, and where γ Bð Þ and λ Bð Þ are stationary polynomials having no

common roots. It can be shown that xt will then have the form:

rxt 5μ1 θ Bð Þet ð8:6Þ
where θ Bð Þ and σ2

e can be obtained from:

σ2
e

θ Bð Þθ B21
� �

12Bð Þ 12B21ð Þ 5σ2
v

γ Bð Þγ B21
� �

12Bð Þ 12B21ð Þ 1 σ2
aλ Bð Þλ B21

� � ð8:7Þ

From this we see that it is not necessarily the case that the parameters of

the components can be identified from knowledge of the parameters of (8.6)

alone: indeed, in general the components will not be identified. However, if

zt is restricted to be a random walk γ Bð Þ5 1ð Þ, then the parameters of the

UC model will be identified. This is clearly the case for Muth’s model since

σ2
u can be estimated by the lag one autocovariance of rxt [the numerator of

(8.3)] and σ2
v can be estimated from the variance of rxt [the denominator of

(8.3)] and the estimated value of σ2
u.

8.3 This example illustrates, however, that even though the variances are

identified, such a decomposition may not always be feasible, for it is unable

to account for positive first-order autocorrelation in rxt. To do so requires

relaxing either the assumption that zt is a random walk, so that the trend

component contains both permanent and transitory movements, or the
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assumption that vt and at are independent. If either of these assumptions are

relaxed, the parameters of the Muth model will not be identified.

8.4 The assumption that the trend component, zt, follows a random walk is

not as restrictive as it may at first seem. Consider the Wold decomposition

for rxt:

rxt 5μ1ψ Bð Þet 5μ1
XN
j50

ψjet2j ð8:8Þ

Since ψ 1ð Þ5 P
ψj is a constant, we may write:

ψ Bð Þ5ψ 1ð Þ1C Bð Þ
so that:

C Bð Þ5ψ Bð Þ2ψ 1ð Þ
5 11ψ1B1ψ2B

2 1ψ3B
3 1?2 11ψ1 1ψ2 1ψ3 1?

� �
52ψ1 12Bð Þ2ψ2 12B2

� �
2ψ3 12B3

� �
2?

5 12Bð Þ 2ψ1 2ψ2 11Bð Þ2ψ3 11B1B2
� �

2?
� �

that is,

C Bð Þ5 12Bð Þ 2
XN
j51

ψj

 !
2

XN
j52

ψj

 !
B2

XN
j53

ψj

 !
B2 2?

 !
5r ~ψ Bð Þ

Thus,

ψ Bð Þ5ψ 1ð Þ1r ~ψ Bð Þ
implying that:

rxt 5μ1ψ 1ð Þet 1r ~ψ Bð Þet
This gives the decomposition due to Beveridge and Nelson (1981), with

components

rzt 5μ1
XN
j50

ψj

 !
et 5μ1ψ 1ð Þet ð8:9Þ

and

ut 52
XN
j51

ψj

 !
et 2

XN
j52

ψj

 !
et21 2

XN
j53

ψj

 !
et22 2?5 ~ψ Bð Þet

Since et is white noise, the trend component is, therefore, a random walk

with rate of drift equal to μ and an innovation equal to ψ 1ð Þet, which is

therefore proportional to that of the original series. The noise component is
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clearly stationary, but since it is driven by the same innovation as the trend

component, zt and ut must be perfectly correlated, in direct contrast to the

Muth decomposition that assumes that they are independent. For example,

the Beveridge�Nelson decomposition of the ARIMA(0,1,1) process (8.4) is:

rzt 5μ1 12 θð Þet ð8:10Þ
ut 5 θet ð8:11Þ

8.5 The relationship between the Beveridge�Nelson and Muth decomposi-

tions is exact. Rather than assuming ut and vt to be independent, suppose

that vt 5αut. Equating (8.2) and (8.4) then yields:

rxt 5μ1 11αð Þut 2 ut21 5μ1 et 2 θet21

so that et 5 11αð Þut and θet 5 ut, thus recovering (8.11) and implying that

θ5 1= 11αð Þ. The trend (8.10) then becomes:

rzt 5μ1 12 θð Þet 5μ1
12 θð Þ
θ

ut 5μ1αut 5μ1 vt

which recovers the Muth trend.

8.6 Following Newbold (1990), a straightforward way of estimating the

Beveridge�Nelson components is to approximate the Wold decomposition

(8.8) by an ARIMA(p,1,q) process by setting ψ Bð Þ5 θ Bð Þ=φ Bð Þ:

rxt 5μ1
θ Bð Þ
φ Bð Þ et 5μ1

12 θ1B2?2 θqBq
� �
12φ1B2?2φpB

p
� � et ð8:12Þ

so that

rzt 5μ1ψ 1ð Þet 5μ1
θ 1ð Þ
φ 1ð Þ et 5μ1

12 θ1 2?2 θq
� �
12φ1 2?2φp

� � et ð8:13Þ

Eq. (8.12) can also be written as

φ Bð Þ
θ Bð Þ ψ 1ð Þrxt 5μ1ψ 1ð Þet ð8:14Þ

and comparing (8.13) and (8.14) shows that

zt 5
φ Bð Þ
θ Bð Þ ψ 1ð Þxt 5ω Bð Þxt

The trend is, thus, a weighted average of current and past values of the

observed series, with the weights summing to unity since ω 1ð Þ5 1. The noise

component is then given by:

ut 5 xt 2ω Bð Þxt 5 12ω Bð Þð Þxt 5 ~ω Bð Þxt 5
φ 1ð Þθ Bð Þ2 θ 1ð Þφ Bð Þ

φ 1ð Þθ Bð Þ xt
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Since ~ω 1ð Þ5 12ω 1ð Þ5 0, the weights for the noise component sum to zero.

Using (8.12), this component can also be expressed as:

ut 5
φ 1ð Þθ Bð Þ2 θ 1ð Þφ Bð Þ

φ 1ð Þφ Bð Þr et ð8:15Þ

As ut is stationary, the numerator of (8.15) can be written as

φ 1ð Þθ Bð Þ2 θ 1ð Þφ Bð Þ5rϕ Bð Þ, since it must contain a unit root to cancel out

the one in the denominator. As the order of the numerator is max p; qð Þ, ϕ Bð Þ
must be of order r5max p; qð Þ2 1, implying that the noise has the ARMA

(p,r) representation

φ Bð Þut 5
ϕ Bð Þ
φ 1ð Þ et

For example, for the ARIMA(0,1,1) process (8.4), the components are:

zt 5 12θBð Þ21 12 θð Þxt 5 11 θB1 θ2B2 1?
� �

12 θð Þxt 5 12 θð Þ
XN
j50

θjxt2j

and

ut 5
12 θBð Þ2 12 θð Þ

12 θBð Þ xt 5
θ 12Bð Þ
12 θBð Þ xt 5 θ 12θBð Þ21rxt 5 θ

XN
j50

θjxt2j

Thus, the trend can be recursively estimated as:

ẑt 5 θ ẑt21 1 12 θð Þxt ût 5 xt 2 ẑt

with starting values ẑ1 5 x1 and û1 5 0.

8.7 In a more general context, it is possible for a time series xt with Wold

decomposition (8.8) to be written as (8.1) with zt being a random walk and

ut being stationary and where the innovations of the two components are cor-

related to an arbitrary degree. However, only the Beveridge�Nelson decom-

position is guaranteed to exist.

EXAMPLE 8.1 Beveridge�Nelson Decomposition of the All Share Index

The following ARIMA(2,1,2) model was found to adequately fit the logarithms of

the All Share index:

11 1:047B1 0:839B2
� � rxt 5 0:00571 11 1:155B1 0:884B2

� �
et

Thus,

ψ 1ð Þ5 θ 1ð Þ
φ 1ð Þ 5

11 1:1551 0:884ð Þ
11 1:0471 0:839ð Þ 5

3:039

2:886
5 1:053

and the Beveridge�Nelson trend is, thus,

rzt 5 0:00571 1:053et
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or, equivalently,

zt 52 1:155zt21 2 0:884zt22 1 1:053xt 1 1:102xt21 1 0:931xt22

Since,

φ 1ð Þθ Bð Þ2 θ 1ð Þφ Bð Þ52 0:1531 0:151B1 0:002B2 5r 20:1531 0:002Bð Þ
the noise component is, thus, the ARMA(2,1) process:

ut 5
ϕ Bð Þ

φ 1ð Þφ Bð Þ et 52 1:047ut21 2 0:839ut22 2 0:053et 2 0:0007et21

SIGNAL EXTRACTION

8.8 Given a UC model of the form of (8.1) and models for zt and ut, it is

often useful to provide estimates of these two unobserved components, a pro-

cedure that is known as signal extraction. A MMSE estimate of zt, is an esti-

mate ẑt which minimizes E ζ2t
� �

, where ζ t 5 zt 2 ẑt is the estimation error (cf.

y7.2). From, for example, Pierce (1979), given an infinite sample of observa-

tions, denoted xt; 2N# t#Nf g, such an estimator is:

ẑt 5 νz Bð Þxt 5
XN
j52N

νzjxt2j

where the filter νz Bð Þ is defined as:

νz Bð Þ5 σ2
vγ Bð Þγ B21

� �
σ2
eθ Bð Þθ B21ð Þ

in which case the noise component can be estimated as:

ût 5 xt 2 ẑt 5 12 νz Bð Þð Þxt 5 νu Bð Þxt
For example, for the Muth model of a random walk overlaid with white

noise:

νz Bð Þ5 σ2
v

σ2
e

12θBð Þ21 12θB21
� �21

5
σ2
v

σ2
e

1

12 θ2
� � XN

j52N

θ jj jBj

so that, using σ2
v 5 12θð Þ2σ2

e , obtained using (8.6), we have:

ẑt 5
12θð Þ2
12 θ2

XN
j52N

θ jj jxt2j

Thus, for values of θ close to unity, ẑt will be given by an extremely long

moving average of future and past values of x. If θ is close to zero, however,

ẑt will be almost equal to the most recently observed value of x. From (8.3),

large values of θ are seen to correspond to small values of the signal-to-

noise variance ratio κ5σ2
v=σ

2
u. When the noise component dominates, a
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long moving average of x values will provide the best estimate of the trend,

while if the noise component is only small then the trend is essentially given

by the current position of x.

8.9 The estimation error can be written as:

ζ t 5 zt 2 ẑt 5 νz Bð Þzt 2 νu Bð Þut
and Pierce (1979) shows that ζ t will be stationary if zt and ut are generated

by processes of the form of (8.4). In fact, ζ t will follow the process:

ζ t 5 θζ Bð Þξt
where

θζ 5
γ Bð Þλ Bð Þ
θ Bð Þ σ2

ξ 5
σ2
aσ

2
v

σ2
e

and ξtBWN
�
0;σ2

ξ

�
.

For the Muth model ζ t follows the AR(1) process

12 θBð Þζ t 5 ξt

and the mean square error of the optimal signal extraction procedure is:

E ζ2t
� �

5
σ2
aσ

2
v

σ2
e 12 θ2
� �

8.10 As noted earlier, if we are given only a realization of xt and its model,

that is, (8.6), then component models for zt and ut are in general unidentified.

If xt follows the ARIMA(0,1,1) process

rxt 5 12 θBð Þet ð8:16Þ
then the most general signal-plus-white-noise UC model has zt given by:

rzt 5 12ΘBð Þvt ð8:17Þ
and for any Θ value in the interval 21#Θ# θ there exists values of

σ2
a and σ2

v such that zt1 ut yields (8.16). It can be shown that setting

Θ52 1 minimizes the variance of both zt and ut, which is known as the

canonical decomposition of xt. Choosing this value implies that

γ Bð Þ5 11B, and we have:

ẑt 5
σ2
v 11Bð Þ 11B21

� �
σ2
e 12 θBð Þ 12 θB21ð Þ

and

12 θBð Þζ t 5 11Bð Þξt:
8.11 In this development, we have assumed that in estimating zt the future

as well as the past of xt is available. In many applications, it is necessary to
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estimate zt given only data on xt up to s5 t2m, for finite m. This includes

the problems of signal extraction based either on current data (m5 0) or on

recent data (m, 0), and the problem of forecasting the signal m. 0ð Þ. We,

thus, need to extend the analysis to consider signal extraction given only the

semi-infinite sample xs; s# t2mf g. Pierce (1979) shows that, in this case,

an estimate of zt is given by:

ẑ mð Þ
t 5 ν mð Þ

z Bð Þxt
where

ν mð Þ
z Bð Þ5 12Bð Þ

σ2
eθ Bð Þ

σ2
vγ Bð Þγ B21

� �
12Bð Þθ B21ð Þ

� �
m

in which we use the notation

h Bð Þ½ �m 5
XN
j5m

hjB
j

Thus, for the Muth model we have

ν mð Þ
z Bð Þ5 σ2

v 12Bð Þ
σ2
e 12 θBð Þ

12Bð Þ21

12θB21ð Þ

� �
m

and Pierce (1979) shows that this becomes, for m$ 0,

ν mð Þ
z Bð Þ5 σ2

vB
m

σ2
e 12 θð Þ

XN
j50

θBð Þj 5 12 θð ÞBm
XN
j50

θBð Þj

while, for m, 0,

ν mð Þ
z Bð Þ5 θ2m 12 θð ÞBm

XN
j50

θBð Þj 1 1

12 θBð Þ
X2m21

j50

θjB2j

Thus, when either estimating zt for the current observation (m5 0) or

forecasting zt (m. 0), we apply an exponentially weighted moving average

to the observed series, beginning with the most recent data available, but not

otherwise depending on the value of m. For m, 0, when we are estimating zt
based on some, but not all, of the available future observations of xt, the fil-

ter comprises two parts: the same filter as in the m$ 0 case applied to the

furthest forward observation but with a declining weight θ2mð Þ placed upon

it, and a second term capturing the additional influence of the observed

future observations.

8.12 UC models can also be analyzed within a state space framework, in

which the Kalman filter plays a key role in providing both optimal forecasts

and a method of estimating the unknown model parameters. In this frame-

work, models such as the random-walk-plus-white noise are known as
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structural models, and a thorough discussion of the methodological and tech-

nical ideas underlying such formulations is contained in Harvey (1989) and

Durbin and Koopman (2012), while Koopman et al. (1999) and Koopman

et al. (2009) provide computer software: Chapter 17, State Space Models,

discusses state space modeling in further detail.

FILTERS

8.13 The UC model (8.5) is also related to the Hodrick�Prescott trend filter

(Hodrick and Prescott, 1997), which is a popular method of detrending eco-

nomic time series. This filter is derived by minimizing the variation in the noise

component ut 5 xt 2 zt, subject to a condition on the “smoothness” of the trend

component zt. This smoothness condition penalizes acceleration in the trend, so

that the minimization problem becomes that of minimizing the function:

XT
t51

u2t 1λ
XT
t51

zt112ztð Þ2 zt2zt21ð Þð Þ2

with respect to zt, t5 0; 1; . . .; T 1 1, where λ is a Lagrangean multiplier

that can be interpreted as a smoothness parameter. The higher the value of λ,
the smoother the trend is, so that in the limit, as λ-N, zt becomes a linear

trend. The first-order conditions are:

052 2 xt 2 ztð Þ1 2λ zt 2 zt21ð Þ2 zt21 2 zt22ð Þð Þ2 4λ zt11 2 ztð Þ2 zt 2 zt21ð Þð Þ
1 2λ zt12 2 zt11ð Þ2 zt11 2 ztð Þð Þ

which may be written as:

xt 5 zt 1λ 12Bð Þ2 zt 2 2zt11 1 zt12ð Þ5 11λ 12Bð Þ2 12B21
� �2� �

zt

so that the Hodrick�Prescott (H�P) trend estimator is

ẑt λð Þ5 11λ 12Bð Þ2 12B21
� �2� �21

xt ð8:18Þ

The MMSE trend estimator can be written using (8.7) as:

ẑt 5
σ2
νγ Bð Þγ B21

� �
σ2
eθ Bð Þθ B21ð Þ xt 5

γ Bð Þγ B21
� �

γ Bð Þγ B21ð Þ1 σ2
a=σ2

ν

� �
λ Bð Þλ B21ð Þ xt

Comparing this with the H�P trend estimator (8.18) shows that, for the latter

to be optimal in the MMSE sense, we must set

γ Bð Þ5 12Bð Þ21; λ Bð Þ5 1; δ5
σ2
a

σ2
ν

In other words, the underlying UC model must have the trend component

r2zt 5 νt and ut must be white noise.
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8.14 Setting λ5 100 is often suggested when extracting a trend from an

annual series. Theoretical and simulation analyses have, however, suggested

using a much higher value when using annual data (see Harvey and Trimbur,

2008; Flaig, 2015, for example): other choices are discussed by Ravn and

Uhlig (2002) and Maravall and del Rio (2007). For example, Ravn and

Uhlig suggest that, if there are s periods per year (e.g., 12 if the data is

observed monthly), then the smoothing parameter should be set at

λ5 1600 s=4
� �m

, where m is set at either 2 or 4 (if the former this yields

λ5 100 for annual data; if the latter then λ5 6:25).
However, if, as is likely in practice, the object of using an H�P filter has

the purely descriptive aim of extracting a smooth trend component with a

smoothly evolving growth rate, then some experimentation with different,

and possibly high, values of λ is probably warranted.

8.15 In filtering terminology the H�P filter (8.18) is a low-pass filter. To

understand this terminology, some basic concepts in filtering theory are use-

ful. A linear filter of the observed series xt may be defined as the two-sided

weighted moving average:

yt 5
Xn
j52n

ajxt2j 5 a2nB
2n 1 a2n11B

2n11 1?1 a0 1?1 anB
n

� �
xt 5 a Bð Þxt

Two conditions are typically imposed upon the filter a Bð Þ: (1) that the fil-

ter weights either (a) sum to zero, a 1ð Þ5 0, or (b) sum to unity, a 1ð Þ5 1;

and (2) that these weights are symmetric, aj 5 a2j If condition (1,a) holds

then a Bð Þ is a “trend-elimination” filter, whereas if (2,b) holds it will be a

“trend-extraction” filter. If the former holds then b Bð Þ5 12 a Bð Þ will be the

corresponding trend-extraction filter, having the same, but oppositely signed,

weights as the trend-elimination filter a Bð Þ except for the central value,

b0 5 12 a0, thus ensuring that b Bð Þ5 1.

8.16 The frequency response function of the filter is defined as

a ωð Þ5Pje
2iωj for a frequency 0#ω# 2π. The power transfer function is

then defined as:

a ωð Þ
�� ��2 5 X

j

aj cosωj

 !2

1
X
j

aj sinωj

 !2

and the gain is defined as a ωð Þ
�� ��, measuring the extent to which the ampli-

tude of the ω-frequency component of xt is altered through the filtering oper-

ation. In general, a ωð Þ5 a ωð Þ
�� ��e2iθ ωð Þ, where:

θ ωð Þ5 tan21

P
jaj sinωjP
jaj cosωj

is the phase shift, indicating the extent to which the ω�frequency component

of xt is displaced in time. If the filter is indeed symmetric then

a ωð Þ5 a 2ωð Þ, so that a ωð Þ5 a ωð Þ
�� �� and θ ωð Þ5 0, known as phase neutrality.
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8.17 With these concepts, an “ideal” low-pass filter has the frequency

response function:

aL ωð Þ5 1 if ω,ωc

0 if ω.ωc

	
ð8:19Þ

Thus, aL ωð Þ passes only frequencies lower than the cutoff frequency ωc, so

that just slow-moving, low-frequency components of xt are retained. Low-

pass filters should also be phase-neutral, so that temporal shifts are not

induced by filtering. The ideal low-pass filter will take the form:

aL Bð Þ5 ωc

π
1
XN
j51

sinωcj

π j
Bj 1B2j
� �

In practice, low-pass filters will not have the perfect “jump” in aL ωð Þ
implied by (8.19). The H�P trend-extraction filter, that is, the one that pro-

vides an estimate of the trend component μ̂t 5 aH2P Bð Þxt, where the weights

are given by (8.18), has the frequency response function:

aH2P ωð Þ5 1

11 4λ 12cosωð Þ2 ð8:20Þ

while the H�P trend-elimination filter, which provides the cycle estimate

ψ̂t 5 bH2P Bð Þxt 5 12 aH2P Bð Þð Þxt, has the frequency response function:

bH2P ωð Þ5 12 aH2P ωð Þ5 4λ 12cosωð Þ2
11 4λ 12cosωð Þ2

8.18 Rather than setting the smoothing parameter at an a priori value,

such as λ5 100, it could also be set at the value that equates the gain to

0.5, that is, at the value that separates frequencies between those mostly

associated with the trend and those mostly associated with the cycle. Since

the H�P weights are indeed symmetric, the gain is given by (8.20), so

equating this to 0.5 yields λ5 1=4 12cosω0:5ð Þ2, where ω0:5 is the frequency

at which the gain is 0.5 (for more on this idea, see Kaiser and Maravall,

2005).

8.19 The ideal low-pass filter removes high-frequency components while

retaining low-frequency components. A high-pass filter does the reverse, so

that the complementary high-pass filter to (8.19) has aH ωð Þ5 0 if ω,ωc and

aH ωð Þ5 1 if ω$ωc. The ideal band-pass filter passes only frequencies in the

range ωc;1 #ω#ωc;2, so that it can be constructed as the difference between

two low-pass filters with cutoff frequencies ωc;1 and ωc;2. It will have the fre-

quency response function aB ωð Þ5 ac;2 ωð Þ2 ac;1 ωð Þ, where ac;2 ωð Þ and ac;1 ωð Þ
are the frequency response functions of the two low-pass filters, since this

will give a frequency response of unity in the band ωc;1 #ω#ωc;2 and zero

elsewhere. The weights of the band-pass filter will, thus, be given by
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ac;2;j 2 ac;1;j, where ac;2;j and ac;1;j are the weights of the two low-pass filters,

so that:

aB Bð Þ5 ωc;2 2ωc;1

π
1
XN
j51

sinωc;2j2 sinωc;1j

π j
Bj 1B2j
� � ð8:21Þ

8.20 As an example of the use of band-pass filters, a conventional defini-

tion of the economic business cycle emphasizes fluctuations of between one

and a half and eight years (see Baxter and King, 1999), which leads to

ωc;1 5 2π=85π=4 and ωc;2 5 2π=1:55 4π=3. Thus, a band-pass filter that

passes only frequencies corresponding to these periods is defined as

yt 5 aB;n Bð Þxt with weights:

aB;0 5 ac;2;0 2 ac;1;0 5
4

3
2

1

4
2 ζc;2;n 2 ζc;1;n
� �

aB;j 5 ac;2;j 2 ac;1;j 5
1

πj
sin

4π j
3

2 sin
π j
4

0
@

1
A2 ζc;2;n 2 ζc;1;n

� �
j5 1; . . .; n

ð8:22Þ
where

ζc;i;n 52

Pn
j52n ac;i;n

2n1 1
i5 1; 2

The infinite length filter in (8.21) has been truncated to have only n leads

and lags and the appearance of the ζc;i;n terms ensures that the filter weights

sum to zero, so that aB;n Bð Þ is a trend-elimination (i.e., cycle) filter. The filter

in (8.22) is known as the Baxter�King (B�K) filter, with further extensions

being provided by Christiano and Fitzgerald (2003).

8.21 The previously introduced filters all imply that the observed series is

generated by heavily restricted ARIMA(0,d,q) processes. A rather less

restrictive approach is to begin by assuming that the observed series has an

ARIMA(p,d,q) representation and to then derive filters with the desired

properties from this representation (see Proietti, 2009a,b, for technical

details):

8.22 The H�P and B�K filters are often referred to as being ad hoc, in the

sense here that they are invariant to the actual process generating xt. This

has the potential danger that such filters could produce a cyclical component,

say, that might display cyclical features that are absent from the observed

series, something that is known as the Slutsky�Yule effect. For example, it

has been well documented that when the H�P filter is applied to a random
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walk, which obviously cannot contain any cyclical patterns, the detrended

series can nevertheless display spurious cyclical behavior. The (ARIMA)

model based filters are designed to overcome these limitations.

EXAMPLE 8.2 Fitting H�P Trends to Global Temperatures

Fig. 8.1 shows three H�P trends for monthly global temperatures, obtained using

the smoothing parameter values λ514,400, 129,600, and 500,000 respectively.

The Ravn�Uhlig rule with m equal to 2 and then 4 is used for the first two set-

tings. These trends exhibit a good deal of “wriggling,” whereas the largest setting

of λ5 500; 000 (which was used for the H�P trend shown in Fig. 2.13) displays

a considerably greater degree of smoothness and may, thus, be thought to be a

better representation of an underlying trend movement.

EXAMPLE 8.3 Fitting an H�P Trend to British Real Per Capita GDP

Example 5.5 investigated the trend in the logarithms of British real per capita

GDP for the period of 1822�1913. The top panel of Fig. 8.2 shows this series

for the much longer period of 1270�1913 with an H�P trend calculated with

λ510; 000 superimposed. This trend looks to display a suitable degree of

smoothness and this is confirmed by the annual trend growth rates shown in the

bottom panel of Fig. 8.2. These are “smoothly varying” and show neatly two
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FIGURE 8.1 Alternative H�P trends for monthly global temperatures,

1850�2017. H�P, Hodrick�Prescott.
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growth “takeoffs,” the first in the middle of the 17th century and the second a

century or so later with the onset of the industrial revolution.1

ENDNOTES

1. A detailed analysis of this important series (and others related to it) in the historiography of

the British economy is provided by Crafts and Mills (2017), who also provide bounds for the

trend growth rates using the approach of Giles (2011).
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FIGURE 8.2 British real per capita GDP, 1270�1913. Top: with superimposed H�P trend

with λ5 10; 000; bottom: H�P trend annual growth rate. H�P, Hodrick�Prescott.

144 Applied Time Series Analysis



Chapter 9

Seasonality and Exponential
Smoothing

Chapter Outline

Seasonal Patterns in Time Series 145

Modeling Deterministic Seasonality 145

Modeling Stochastic Seasonality 147

Mixed Seasonal Models 152

Seasonal Adjustment 153

Exponential Smoothing 153

Endnotes 159

SEASONAL PATTERNS IN TIME SERIES

9.1 In yy2.16�2.17 we introduced the idea of seasonal patterns appearing

in time series observed at frequencies greater than annual, typically monthly

or quarterly. The presence of seasonality is often immediately apparent from

a plot of the series (recall the quarterly United Kingdom beer sales series of

Fig. 1.4), but it will also manifest itself in the sample autocorrelation func-

tion (SACF) of the appropriately differenced data. Fig. 9.1 shows the SACF

of the first differences of beer sales, which is dominated by a pronounced

seasonal pattern, and a similar effect is seen in Fig. 9.2, which shows the

SACF for the square root of monthly England and Wales rainfall (recall

yy2.3�2.6 and Fig. 2.4). Clearly a seasonal pattern is a predictable feature of

these series and is, therefore, susceptible to either modeling explicitly or to

being removed by a suitable seasonal adjustment procedure, as in

yy2.16�2.17.

MODELING DETERMINISTIC SEASONALITY

9.2 A simple model for seasonality was alluded to in yy2.6�2.7, which is

to use a “seasonal mean” model in which there is a different mean for each

season, that is, the model for xt is:

xt 5
Xm

i51
αisi;t 1 εt ð9:1Þ

where the seasonal dummy variable si;t takes the value 1 for the ith season

and zero otherwise, there being m seasons in the year. Thus, for example, if the
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data is monthly then i5 1 for January, etc., and m5 12. The noise εt may be

modeled as an ARIMA process, say φ Bð ÞEt 5 θ Bð Þat, if required. The regres-

sion model (9.1) thus assumes that the seasonal pattern is deterministic, in the

sense that the seasonal means αi, i5 1; . . . ;m, remain constant through time.1

EXAMPLE 9.1 A Deterministic Seasonal Model for England and Wales
Rainfall

The regression model (9.1) was fitted to the square root transformed monthly

England and Wales rainfall series with εt taken to be white noise, an assumption

that was found to be supported by diagnostic tests. Since a square root transfor-

mation of rainfall has been taken, the mean rainfall for month i is given by α2
i ,

estimates of which are:

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
843 620 612 562 609 607 716 803 716 914 929 917

The seasonal pattern is both clear and perhaps surprising. The driest period

is from February to June, which averages 602 mm per month, whereas the

period from July through to January averages almost 40% more, being 834 mm.
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FIGURE 9.2 SACF of the square root of England and Wales monthly rainfall, 1875�2017.
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FIGURE 9.1 SACF of the first-difference of quarterly UK beer sales, 1997�2017.
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Since there is no evidence that this simple model is misspecified, a further con-

clusion is that this seasonal pattern has remained constant throughout the entire

sample period of over 140 years.

MODELING STOCHASTIC SEASONALITY

9.3 It would, however, be imprudent to rule out the possibility of an evolv-

ing seasonal pattern: in other words, the presence of stochastic seasonality.

As in the modeling of stochastic trends, ARIMA processes have been found

to do an excellent job in modeling stochastic seasonality, albeit in an

extended form to that developed in previous chapters.

9.4 An important consideration when attempting to model a seasonal time

series with an ARIMA model is to determine what sort of process will best

match the SACFs and PACFs that characterize the data. Concentrating on the

beer sales series, we have already noted the seasonal pattern in the SACF for

rxt shown in Fig. 9.1. In considering the SACF further, we note that the sea-

sonality manifests itself in large positive autocorrelations at the seasonal lags

(4k; k$ 1) being flanked by negative autocorrelations at the “satellites”

[4 k2 1ð Þ; 4 k1 1ð Þ]. The slow decline of these seasonal autocorrelations is

indicative of seasonal nonstationarity and, analogous to the analysis of “non-

seasonal nonstationarity,” this may be dealt with by seasonal differencing, that

is, by using the r4 5 12B4 operator in conjunction with the usual r operator.

Fig. 9.3 shows the SACF of rr4 transformed beer sales and this is now

clearly stationary and, thus, potentially amenable to ARIMA identification.

9.5 In general, if we have a seasonal period of m then the seasonal

differencing operator may be denoted as rm. The nonseasonal and seasonal

differencing operators may then be applied d and D times, respectively, so

that a seasonal ARIMA model may take the general form

rdrD
mφ Bð Þxt 5 θ Bð Þat ð9:2Þ
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FIGURE 9.3 SACF of rr4 transformed beer sales.
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Appropriate forms of the θ Bð Þ and φ Bð Þ polynomials can then, at least in

principle, be obtained by the usual methods of identification and/or model

selection. Unfortunately, two difficulties are typically encountered. First, the

PACFs of seasonal models are difficult both to derive and to interpret, so

that conventional identification is usually based solely on the behavior of the

appropriate SACF. Second, since the θ Bð Þ and φ Bð Þ polynomials need to

account for the seasonal autocorrelation, at least one of them must be of min-

imum order m. This often means that the number of models which need to

be considered in model selection procedures can become prohibitively large.

9.6 This difficulty is amply illustrated in Fig. 9.3. On the white noise null

the standard error of a sample autocorrelation is 0.11, so that many of the

values shown in the SACF are significantly different from zero, making the

identification of a model of the type of (9.2) practically impossible and, if

achieved, undoubtedly difficult to interpret. Box and Jenkins (1970, chapter 9)

consequently developed an argument for using a restricted version of (9.2)

which, they felt, could provide an adequate fit to many seasonal time series.

9.7 By way of introducing this model, consider the first 10 years of obser-

vations (1997�2006) on beer sales arranged in a year-by-quarter format,

which emphasizes the fact that, in seasonal data, there are not one, but two,

time intervals of importance.

Q1 Q2 Q3 Q4

1997 7369 9464 9586 10,193
1998 7283 9748 8892 9837
1999 7215 9032 9315 10,265
2000 6852 9070 8865 9785
2001 6811 8972 8906 9939
2002 7137 9305 8820 9879
2003 7048 9286 9270 9896
2004 7318 9485 8795 10,043
2005 7090 9087 8995 9730
2006 6966 9500 8399 9582

These intervals correspond here to quarters and years and we would,

therefore, expect two relationships to occur: (1) between observations for

successive quarters in each year, and (2) between observations for the same

quarters in successive years. This is clear in the data, where the seasonal

effect implies that an observation for a particular quarter, say Q4, is related

to the observations for previous Q4s.

9.8 The Q4 observations may then be linked by a model of the form:

Φ Bmð ÞrD
mxt 5Θ Bmð Þαt ð9:3Þ

where m5 4 in the example and Φ Bmð Þ and Θ Bmð Þ are polynomials in Bm of

orders P and Q respectively, that is,
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Φ Bmð Þ5 12Φ1B
m 2Φ2B

2m 2?2ΦPB
Pm

Θ Bmð Þ5 12Θ1B
m 2Θ2B

2m 2?2ΘQB
Qm

which satisfy standard stationarity and invertibility conditions. Now suppose

that the same model holds for the observations from each quarter. This

implies that all errors that correspond to a fixed quarter in different years are

uncorrelated. However, the errors corresponding to adjacent quarters need

not be uncorrelated, that is, the error series αt;αt21; . . . may be autocorre-

lated. For example, beer sales in 2016Q4, while related to previous Q4

values, will also be related to the values in 2016Q3, 2016Q2, etc. These

autocorrelations may be modeled by a second, nonseasonal, process:

φ Bð Þrdαt 5 θ Bð Þat ð9:4Þ
so that αt is ARIMA p; d; qð Þ with at being a white noise process.

Substituting (9.4) into (9.3) yields the general multiplicative seasonal model:

φp Bð ÞΦP Bmð ÞrdrD
mxt 5 θq Bð ÞΘQ Bmð Þat ð9:5Þ

The subscripts p;P; q;Q have been added for clarity so that the orders of

the various polynomials may be emphasized and the ARIMA process in

(9.5) is said to be of order p; d; qð Þ P;D;Qð Þm. A constant θ0 can always be

included in (9.5) and this will introduce a deterministic trend component into

the model. A comparison with the “nonmultiplicative” model (9.2) shows

that the θ Bð Þ and φ Bð Þ polynomials have been factored as:

φp1P Bð Þ5φp Bð ÞΦP Bmð Þ
and

θq1Q Bð Þ5 θq Bð ÞΘQ Bmð Þ

9.9 Because the general multiplicative model (9.5) is rather complicated,

explicit expressions for its ACF and PACF are difficult to provide. This led

Box and Jenkins to consider a particularly simple case, in which an ARIMA

(0,1,1) is used to link the xts one year apart:

rmxt 5 12ΘBmð Þαt

and a similar model is used to link αts one observation apart:

rαt 5 12 θBð Þat
where, in general, θ and Θ will have different values. On combining the two

equations we obtain the multiplicative ARIMA(0,1,1) (0,1,1)m model:

rrmxt 5 12 θBð Þ 12ΘBmð Þαt ð9:6Þ
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For invertibility, we require the roots of 12 θBð Þ 12ΘBmð Þ to satisfy the

conditions θj j; Θj j, 1. The model (9.6) can be written as:

wt 5 12B2Bm 1Bm11
� �

xt 5 12 θB2ΘBm 1 θΦBm11
� �

at

so that the autocovariances of wt may be obtained from:

γk 5E wtwt2kð Þ
5E at 2 θat21 2Θat2m 1 θΘat2m21ð Þ
3 at2k 2 θat212k 2Θat2m2k 1 θΘat2m212kð Þ

these being

γ0 5 11 θ2
� �

11Θ2
� �

σ2

γ1 52 θ 11Θ2
� �

σ2

γm21 5 θΘσ2

γm 52Θ 11 θ2
� �

σ2

γm11 5 θΘσ2

with all the other γks equal to zero. Hence, the ACF is:

ρ1 5 2
θ

11 θ2

ρm21 5
θΘ

11 θ2ð Þ 11Θ2ð Þ
ρm 5 2

Θ
11Θ2

ρm11 5 ρm21 5 ρ1ρm

and ρk 5 0 otherwise.

9.10 On the assumption that the model is of the form of (9.6), the variances

for the estimated sample autocorrelations at lags higher than m1 1 are given by:

V rkð Þ5 T21 11 2 r21 1 r2m21 1 r2m 1 r2m11

� �� �
k.m1 1 ð9:7Þ

Using this result in conjunction with the known form of the ACF will enable

the ARIMA 0; 1; 1ð Þ 0; 1; 1ð Þm model to be identified.2 Of course, if the SACF

follows a more complicated pattern, then other members of the

ARIMA p; d; qð Þ P;D;Qð Þm class will need to be considered.3

9.11 Forecasts for the ARIMA(0,1,1) (0,1,1)m model may be computed

using the approach outlined in y7.2, so that:

fT ;h 5EðxT1h21 1 xT1h2m 2 xT1h2m21 1 aT1h 2 θaT1h21

2ΘaT1h2m 1 θΘaT1h2m21jxT ; xT21; . . .Þ
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It can be shown that the ψ-weights in the process xt 5ψ Bð Þat, where:
ψ Bð Þ5 12Bð Þ21 12Bmð Þ21 12 θBð Þ 12ΘBmð Þ

are given by:

ψrm11 5ψrm12 5?5ψ r11ð Þm21 5 12 θð Þ r1 12 rΘð Þ

ψ r11ð Þm 5 12 θð Þ r1 12 rΘð Þ1 12Θð Þ
and these may be used to calculate the h-step ahead forecast error variance

as in (7.4).

EXAMPLE 9.2 Seasonal ARIMA Modeling of Beer Sales

The SACF for the rr4 transformation of beer sales shown in Fig. 9.3 has

r1 52 0:56, r2 52 0:03, r3 5 0:44, r4 52 0:65, and r5 5 0:30. Since r2 � 0 and

r1r4 5 0:36, these first five sample autocorrelations are, within reasonable sam-

pling limits, consistent with the ACF of an ARIMA 0;1;1ð Þ 0;1; 1ð Þ4 airline model.

Using (9.7) the standard error of the sample autocorrelations for lags greater than

5 is calculated to be 0.20. Only r16 exceeds two-standard errors, suggesting that

this airline model could represent a satisfactory representation of the beer sales

data. Fitting this model obtains4:

r1r4xt 5 12
0:694
0:098ð ÞB

� �
12

0:604
0:110ð ÞB

4

� �
at σ̂5 271:9

The more general seasonal ARIMA model is estimated to be:

rr4xt 5 12
0:802
0:072ð ÞB2

0:552
0:095ð ÞB

4 1
0:631
0:098ð ÞB

5

� �
at σ̂5 265:0

The multiplicative model imposes the nonlinear restriction θ1θ4 1 θ5 5 0. The

log-likelihoods of the two models are 2547.76 and 2545.64, leading to a likeli-

hood ratio test statistic of 4.24, which is distributed as chi-square with one

degree of freedom and so is not quite significant at the 2.5% level, although a

Wald test does prove to be significant.

Using θ5 0:7 and Θ5 0:6 for simplicity, then the ψ-weights of the airline

model are given, in general, by:

ψ4r11 5ψ4r12 5ψ4 r11ð Þ21 5 0:3 r 1 120:6rð Þ50:31 0:12r

ψ4 r11ð Þ 5 0:3 r 1 12 0:6rð Þ1 0:45 0:71 0:12r

Thus,

ψ1 5ψ2 5ψ3 50:3

ψ4 50:7

ψ5 5ψ6 5ψ7 50:42

ψ8 5 0:82

ψ9 5ψ10 5ψ11 50:54; etc:
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Forecasts, with two-standard error bounds, for beer sales out to 2020Q4 are

shown in Fig. 9.4, where their seasonal pattern is quite apparent. These forecasts

show a slow decline for each quarter: the 2018Q1 forecast is 5370, the 2020Q1

forecast 5275, while the 2017Q4 forecast is 7266 compared to the 2020Q4 fore-

cast of 7124. As expected, the forecast standard errors increase from 272 to 598

over the forecast horizon.

MIXED SEASONAL MODELS

9.12 The deterministic and stochastic seasonal models, (9.1) and (9.5), may

be combined to form, on setting d5D5 1 for both simplicity and because

these are the settings that are typically found,

xt 5
Xm

i51
αisi;t 1

θq Bð ÞΘQ Bmð Þ
φp Bð ÞΦP Bmð Þrrm

at ð9:8Þ

“Pure” stochastic seasonality simply requires that no seasonal dummies

are significant in (9.8), i.e., that α1 5α2 5?5αm 5 0. Establishing

whether there is “pure” deterministic seasonality is somewhat more compli-

cated, for it requires both that the seasonal moving average polynomial

ΘQ Bmð Þ contains a seasonal unit root, i.e., that it can be factorized as

ΘQ Bmð Þ5rmΘQ21 Bmð Þ, so that the seasonal difference “cancels out,” and

also that ΘQ21 Bmð Þ5ΦP Bmð Þ, so that the seasonal polynomials in (9.8) also

cancel out. Formally testing these hypotheses is quite complicated and will

not be discussed here.5
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FIGURE 9.4 Airline model forecasts of beer sales out to 2020Q4 accompanied by two-

standard error bounds.
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SEASONAL ADJUSTMENT

9.13 In y2.16 we introduced a decomposition of an observed time series

into trend, seasonal, and irregular (or noise) components, focusing attention

on estimating the seasonal component and then eliminating it to provide a

seasonally adjusted series. Extending the notation introduced in (8.1), this

implicit UC decomposition can be written as

xt 5 zt 1 st 1 ut ð9:9Þ
where the additional seasonal component st is assumed to be independent of

both zt and ut. On obtaining an estimate of the seasonal component, ŝt, the

seasonally adjusted series can then be defined as xat 5 xt 2 ŝt.

9.14 An important question is why we would wish to remove the seasonal

component, rather than modeling it as an integral part of the stochastic pro-

cess generating the data, as in fitting a seasonal ARIMA model, for example.

A commonly held view is that the ability to recognize, interpret, or react to

important nonseasonal movements in a series, such as turning points and

other cyclical events, emerging patterns, or unexpected occurrences for

which potential causes might be sought, may well be hindered by the pres-

ence of seasonal movements. Consequently, seasonal adjustment is carried

out to simplify data so that they may be more easily interpreted by “statisti-

cally unsophisticated” users without this simplification being accompanied

by too large a loss of information.

This qualifier is important because it requires that the seasonal adjust-

ment procedure does not result in a “significant” loss of information.

Although the moving average method introduced in y2.16 is both intuitively

and computationally simple, it may not be the best available method.

Historically, seasonal adjustment methods have been categorized as either

empirically- or model-based. The moving average method falls into the for-

mer category, as are the methods developed by statistical agencies, such as

the sequence of procedures developed by the United States Bureau of the

Census, the latest incarnation being known as X-13. Model-based methods

employ signal extraction techniques based on ARIMA models fitted either to

the observed series or to its components. The most popular of these methods

is known as TRAMO/SEATS: see Gómez and Maravall (1996) and Mills

(2013b). The distinction between empirical and model-based methods is,

however, becoming blurred as X-13 also uses ARIMA models in its

computations.6

EXPONENTIAL SMOOTHING

9.15 Returning to the two-component UC model, (8.1), where xt 5 zt 1 ut,

then a simple model for the signal or “level” zt is to assume that its current
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value is an exponentially weighted moving average of current and past

observations of xt:

zt 5αxt 1α 12αð Þxt21 1α 12αð Þ2xt22 1?5α
PN

j50 12αð Þjxt2j

5α 11 12αð ÞB1 12αð Þ2B2 1?1 12αð ÞjBj 1?
� �

xt

ð9:10Þ
Since,7

11 12αð ÞB1 12αð Þ2B2 1?1 12αð ÞjBj 1?5 12 12αð ÞBð Þ21

Eq. (9.10) can be written as:

12 12αð ÞBð Þzt 5αxt

or,

zt 5αxt 1 12αð Þzt21 ð9:11Þ
This shows that the current level, zt, is a weighted average of the current

observation, xt, and the previous level, zt21, the weight being given by the

“smoothing constant” α. Alternatively, (9.11) can be expressed in “error cor-

rection” form as:

zt 5 zt21 1α xt 2 zt21ð Þ5 zt21 1αet

so that the current level is updated from the previous level by a proportion

of the current error et 5 xt 2 zt21, the proportion again being given by the

smoothing constant α.
9.16 Eq. (9.11) is the basic algorithm of simple (or single) exponential

smoothing. Substituting (9.3) into (8.1) obtains:

12α 12 12αð ÞBð Þ21
� �

xt 5 ut

This, in turn, may be written as rxt 5 12 θBð Þat on setting θ5 12α and

at 5 et=θ. Thus, simple exponential smoothing will be an optimal method of

forecasting if xt follows an ARIMA 0; 1; 1ð Þ process and the smoothing con-

stant is set equal to 12 θ. Indeed, it follows immediately that fT ;h 5 zT for all

h, as was shown in y7.4.
Through its equivalence with the ARIMA 0; 1; 1ð Þ process, simple expo-

nential smoothing will also be optimal for Muth’s UC model of y8.1 with

level component given by zt 5 zt21 1 vt (i.e., when there is no drift), where

now the signal-to-noise variance ratio is related to the smoothing parameter

by κ5α= 12αð Þ.
9.17 Because the invertible region of an ARIMA 0; 1; 1ð Þ process is

2 1, θ, 1, this suggests that the range of the smoothing parameter is

0,α, 2. Often a small value of α is found to work well, say α, 0:3, but
the smoothing constant may be estimated by minimizing the sum of squared

154 Applied Time Series Analysis



one-step forecast errors, and this is now typically available in software

routines.

9.18 Simple exponential smoothing is, therefore, a suitable forecasting proce-

dure for a series in which a trend is absent. To capture a linear trend, the

approach may be generalized by extending (9.11) to include a trend component,

zt 5αxt 1 12αð Þ zt21 1 τt21ð Þ
5 zt21 1 τt21 1αet

ð9:12Þ

where the error correction is now et 5 xt 2 zt21 2 τt21, and defining a second

updating equation for the trend τt:

τt 5β zt 2 zt21ð Þ1 12βð Þτt21

5τt21 1αβet
ð9:13Þ

This pair of updating equations are together known as the Holt�Winters

model.8 Forecasts are given by:

fT ;h 5 zT 1 τTh ð9:14Þ
and, therefore, lie on a “local” linear trend whose intercept and slope get

updated each period by Eqs. (9.12) and (9.13). Using these recurrence rela-

tions, it can be shown that the Holt�Winters model is equivalent to the

ARIMA 0; 2; 2ð Þ process:
r2xt 5 12 22α2αβð ÞB2 β2 1ð ÞB2

� �
at

so that, in terms of the general process

r2xt 5 12 θ1B2 θ2ð Þat ð9:15Þ
the smoothing parameters are given by α5 11 θ2 and

β5 12 θ1 2 θ2ð Þ= 11 θ2ð Þ. Note that when α5β5 0, then

τt 5 τt21 5?5 τ, say, and zt 5 zt21 1 τ5 z0 1 τt, where z0 is the initial

value of the level component. Forecasts are then given by the “global” linear

trend fT ;h 5 z0 1 τ T1 hð Þ. Moreover, in this case θ1 5 2 and θ2 52 1, so that:

r2xt 5 12 2B1B2
� �

at 5r2at

which is equivalent to a trend stationary (TS) model for xt.

9.19 A related approach is that of double exponential smoothing, which is

defined by the pair of recursions:

zt 5 γxt 1 12 γð Þzt21

τt 5 γ zt 2 zt21ð Þ1 12 γð Þτt21

so that only a single smoothing parameter is used.9 Forecasts are computed

using (9.14), so that they, again, follow a local linear trend with an intercept

and slope that get updated every observation.
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Double exponential smoothing is equivalent to the restricted

ARIMA 0; 2; 2ð Þ process
r2xt 5 12 12γð ÞBð Þ2at 5 12 2 12 γð ÞB1 12γð Þ2B2

� �
at

which places the restriction θ21 1 4θ2 5 0 on the parameters of (9.15). If

α5 γ 22 γð Þ and β5 γ= 22 γð Þ, or equivalently that γ2 5αβ (i.e., that γ is

the geometric mean of α and β), then Holt�Winters and double exponential

smoothing are identical.

EXAMPLE 9.3 Forecasting Global Temperatures Using Exponential
Smoothing

In Example 4.3, an ARIMA 0;1; 3ð Þ process without drift was fitted to monthly

global temperatures, and in Example 7.2 this model was used to provide forecasts

out to 2020. As θ̂2 and θ̂3, although significant, are both small when compared to

θ̂1, an ARIMA 0;1;1ð Þ process should provide a decent fit to the series, and indeed

it does, with θ̂50:55 and a root mean square error (RMSE) of 0.1255 [compared

with 0.1236 for ARIMA 0;1; 3ð Þ]. From the equivalence of simple exponential

smoothing and the ARIMA 0;1;1ð Þ, we would expect the former model to produce

a similar fit and forecasts for a smoothing parameter of α5 0:45. Fitting the series

by simple exponential smoothing and estimating α does indeed lead to this value

for the smoothing parameter, an RMSE of 0.1257, and forecasts given by

fT ;h 5 zT 5 0:581. These should be compared to the ARIMA 0;1;3ð Þ forecasts

obtained in Example 7.2, which, for h. 2, are equal to 0.621.

Acknowledging the possibility of a linear trend in global temperatures would

require the use of either double exponential smoothing or Holt�Winters. The for-

mer estimates the single smoothing parameter to be γ5 0:196, accompanied by

an RMSE of 0.1319. Interestingly, double exponential smoothing gives zT 5 0:569
and τT 520:014, so that, using (9.14), forecasts will contain a negatively sloped,

albeit small, linear trend. Holt�Winters estimates the smoothing parameters as

α5 0:45 and β5 0, which implies that the trend component is a constant, so that

τt 5 τt21 5?5 τ, a value that is estimated by x2 2 x1 50:0005. The

Holt�Winters forecasts thus include a small positive linear trend which increases

the forecasts from 0.582 to 0.599 by the end of the forecast period, December

2020. In either case, there is an absence of a significant positive drift in the fore-

casts, consistent with our earlier findings. Given that the RMSE of Holt�Winters

was 0.1256, this implies that simple exponential smoothing is the most appropri-

ate of these three techniques for forecasting monthly global temperatures.

9.20 Seasonality can easily be accommodated within the Holt�Winters

framework. Based on (9.9), the additive Holt�Winters level updating equa-

tion (9.12) becomes

zt 5α xt 2 st2mð Þ1 12αð Þ zt21 1 τt21ð Þ5 zt21 1 τt21

1α xt 2 st2m 2 zt21 2 τt21ð Þ5 zt21 1 τt21 1αet
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The trend updating equation remains as (9.13) and there is an additional sea-

sonal updating equation

st 5 δ xt 2 ztð Þ1 12 δð Þst2m 5 st2m 1 δ 12 βð Þet
Forecasts are then given by

fT ;h 5 zT 1 τT 1 sT1h2m

These updating equations can be shown (Newbold, 1988) to be equivalent

to the ARIMA model:

rrmxt 5 θm11 Bð Þat ð9:16Þ
where

θ1 5 12α2αβ

θ2 5?5 θm21 52αβ

θm 5 12αβ2 12αð Þδ
θm11 52 12αð Þ 12 δð Þ

If β5 0, so that the trend is constant, then if θ1θm 1 θm11 5 0 as well, or

equivalently 22 2δ1αδ5 0, (9.16) reduces to the ARIMA 0; 1; 1ð Þ 0; 1; 1ð Þm
airline model. Indeed, the airline model will also result if both αβ and αδ
are negligibly small.

9.21 When modeling seasonal time series, it may be the case that the addi-

tive decomposition of (9.9) is felt to be inappropriate, for seasonal move-

ments are often thought to be proportional to the level while the noise

component still enters additively, that is, the decomposition takes the form:

xt 5 ztst 1 ut

This, of course, rules out using a logarithmic transformation, which requires

that all components enter multiplicatively. If this is the case then the multi-

plicative Holt�Winters model may be used, with the updating equations:

zt 5α
xt

st2m

� �
1 12βð Þ zt21 1 τt21ð Þ5 zt21 1 τt21 1

αet
st2m

τt 5 β zt 2 zt21ð Þ1 12βð Þτt21 5 τt21 1
αβet
st2m

st 5 δ
xt

zt

� �
1 12 δð Þst2m 5 st2m 1 δ 12αð Þ et

zt

Forecasts are then given by:

fT ;h 5 zT 1 τThð ÞsT1h2m
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This model does not appear to have an equivalent ARIMA representa-

tion. Note that setting δ5 0 in both the additive and multiplicative

Holt�Winters models does not eliminate the seasonal component, it sim-

ply restricts the seasonal factors to be constant through time, since now

st 5 st2m.

9.22 The exponential smoothing class of models has been extended and

placed within a state space framework (see Chapter 17: State Space

Models). The main extension has been to include “damping” effects into

the trend specification: for example, (9.14) may be replaced with:

fT ;h 5 zT 1 τT φ1φ2 1?1φh
� �

where 0,φ, 1 is a damping parameter which reduces the impact of the

trend over the forecast horizon. The state space framework enables a variety

of specifications to be placed in a consistent framework that allows for ready

estimation and model and forecast comparison.10

EXAMPLE 9.4 Holt�Winters Seasonal Modeling of Beer Sales

In Example 9.2, an airline model and its unrestricted ARIMA counterpart was fit-

ted to quarterly United Kingdom beer sales and forecasts were obtained out to

2020Q4. We now use both the additive and multiplicative Holt�Winters sea-

sonal models to forecast this series. The smoothing parameters for the additive

model were estimated to be α5 0:10, β50:79, and δ5 0:33. These imply an

equivalent ARIMA model rr4xt 5 θ5 Bð Þat with coefficients θ1 5 0:82,
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FIGURE 9.5 Airline and additive and multiplicative Holt�Winters forecasts of beer sales out

to 2020Q4.
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θ2 5 θ3 52 0:08, θ4 5 0:62, and θ5 52 0:60, which are close to the fitted mod-

el’s estimates of 0.80, 0, 0.55, and 20.62, respectively. Since these smoothing

parameters imply that the airline restriction θ1θ4 1 θ5 takes the value 20.09, and

noting that αβ5 0:08 and αδ50:03, this suggests that the Holt�Winters additive

forecasts should be similar to the airline model forecasts.

The multiplicative Holt�Winters smoothing parameters are estimated to

be α5 0:10;β5 0:81, and δ5 0. While the level and trend parameters are

essentially identical to their additive counterparts, a value for δ of zero implies

that the seasonal component is constant. The airline model and the two

Holt�Winters forecasts are shown in Fig. 9.5. The three sets of forecasts are

quite close, with the airline model forecasts being smaller than their

Holt�Winters counterparts.

Incorporating a damping factor into the trend yields an estimate of φ5 0:94
for the additive model and 0.95 for the multiplicative model: such slow damp-

ing produces forecasts that are almost identical to their “undamped”

counterparts.

ENDNOTES

1. An equivalent formulation of (9.1) is to use only m2 1 dummies, but to also include an

intercept, in which case the αi coefficients have the interpretation of being seasonal devia-

tions from the value taken by the intercept. Our preference is for the simpler and more

direct interpretation afforded by (9.1), which also avoids having to choose which of the

dummies to omit. Of course, including the full set of m dummies plus the intercept will

lead to perfect collinearity between the regressors and a consequent inability to estimate the

regression.

2. The ARIMA 0; 1; 1ð Þ 0; 1; 1ð Þm model is often referred to as the “airline model,” as Box and

Jenkins first illustrated its use on airline travel data previously used by Brown (1963).

3. The ACFs for various low-order multiplicative seasonal models may be found in, for exam-

ple, Box and Jenkins (1970, Appendix A9.1). For such models, the PACF can be thought of

as a repetition of a combination of the autocorrelation and partial autocorrelation functions of

the seasonal component about the seasonal partial values (see Hamilton and Watts, 1978). In

general, the seasonal and nonseasonal moving average components introduce exponential

decays and damped sine waves at the seasonal and nonseasonal lags, whereas with autore-

gressive processes the PACF cuts off.

4. On examining the residual ACF a significant autocorrelation of 0.27 is found at lag 8. Fitting

an extended ARIMA 0; 1; 1ð Þ 0; 1; 2ð Þ4 provides a marginally improved fit with the additional

seasonal moving average term being just significant.

5. There is an important literature on testing for seasonal unit roots: see Choi (2015, chapter 6)

for a comprehensive textbook treatment. Examples of mixed seasonal models using regional

United Kingdom rainfall data are provided in Mills (2017b).

6. Details and software for all these methods are provided in EViews 10.

7. This uses the well-known series expansion 11 y1 y2 1?5 12yð Þ21 for y
�� ��, 1, with

y5 12αð ÞB.
8. Holt’s original paper was published as a (U.S.) Office of Naval Research memorandum in

1957, but was republished as Holt (2004a), along with a short reflection by the author on the

genesis of the method (Holt, 2004b). Holt’s ideas gained much wider acceptance with the

publication of Winters (1960), which tested the methods on sales data with such success that

they became known as the Holt�Winters forecasting system.
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9. This approach, developed independently of Holt, was formalized in Brown and Meyer

(1961) and D’Esopo (1961), and given a book-length treatment in Brown (1963). Harrison

(1965, 1967) provided the first synthesis of the exponential smoothing methodology, with

later updates being given by Gardner (1985, 2006): see Mills (2011, pages 308�313) for a

summary.

10. Hyndman et al. (2008) is a textbook development of this approach, which is too advanced to

be discussed in any detail here. The ETS, which stands for Error-Trend-Seasonal, approach,

as it has become known, is available in EViews 10, where details of its implementation may

be found.
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VOLATILITY

10.1 Following initial research on portfolio theory during the 1950s, vola-

tility became an extremely important concept in finance, appearing regularly

in models of, for example, asset pricing and risk management. Although

there are various definitions of volatility, in the context of a time series it is

generally taken to be a period in the evolution of the series that is associated

with high variability or, equivalently, high variance. This was prompted by

the observation that many time series, not just financial returns, appear to be

characterized by alternating periods of relative tranquility in which variabil-

ity is low and relative volatility where variability is considerably higher.

10.2 Much of the initial interest in volatility had to do with it not being

directly observable, and several alternative measures were consequently

developed to approximate it empirically.1 In the early 1980s, it was proposed

that volatility should be embedded within a formal stochastic model for the

observed time series. This was prompted by the fact that, although some

series appeared to be serially uncorrelated, they were certainly not indepen-

dent through time. They, thus, had the potential to exhibit rich dynamics in

their higher moments, these often being accompanied by interesting non-

Gaussian distributional properties. Under such circumstances, attention

should be focused on the characteristics of the higher moments of the series,

rather than just on modeling the conditional mean.
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10.3 A straightforward way of doing this is to allow the variance (or typi-

cally, the conditional variance) of the process generating the series xt to

change either continuously or at certain discrete points in time. Although a

stationary process must have a constant variance, certain conditional var-

iances can change, so that although the unconditional variance V xtð Þ may be

constant for all t, the conditional variance V xt xt21; xt22; . . .j Þð , which depends

on the realization of xt, is able to alter from observation to observation.

10.4 A stochastic model having time-varying conditional variances may be

defined by supposing that xt is generated by the product process:

xt 5μ1σtUt ð10:1Þ
where Ut is a standardized process, so that E Utð Þ5 0 and

V Utð Þ5E U2
t

� �
5 1 for all t, and σt is a sequence of positive random vari-

ables such that:

V xtjσtð Þ5E xt2μð Þ2 σtj Þ5σ2
t E U2

t

� �
5 σ2

t

�

σ2
t is, thus, the conditional variance and σt the conditional standard devia-

tion of xt.

Typically, Ut 5 xt 2μð Þ=σt is assumed to be normal and independent of

σt: we will further assume that it is strict white noise, so that E UtUt2kð Þ5 0

for k 6¼ 0. These assumptions imply that xt has mean μ, variance:

E xt2μð Þ2 5E σ2
t U

2
t

� �
5E σ2

t

� �
E U2

t

� �
5E σ2

t

� �
and autocovariances

E xt 2μð Þ xt2k 2μð Þ5E σtσt2kUtUt2kð Þ5E σtσt2kð ÞE UtUt2kð Þ5 0

so that it is white noise. However, note that both the squared and absolute

deviations, St 5 xt2μð Þ2 and Mt 5 xt 2μ
�� ��, can be autocorrelated. For

example,

Cov St; St2kð Þ 5E St 2E Stð Þð Þ St2k 2E Stð Þð Þ5E StSt2kð Þ2 E Stð Þð Þ2
5E σ2

t σ
2
t2k

� �
E U2

t U
2
t2k

� �
2 E σ2

t

� �� �2
5E σ2

t σ
2
t2k

� �
2 E σ2

t

� �� �2
so that

E S2t
� �

5E σ4
t

� �
2 E σ2

t

� �� �2
and the kth autocorrelation of St is

ρk;S 5
E σ2

t σ
2
t2k

� �
2 E σ2

t

� �� �2
E σ4

t

� �
2 E σ2

t

� �� �2
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This autocorrelation will only be zero if σ2
t is constant, in which case xt can

be written as xt 5μ1 at, where at 5σUt has zero mean and constant vari-

ance σ2, which is just another way of defining at as white noise.

AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTIC
PROCESSES

10.5 Up until this point we have said nothing about how the conditional

variances σ2
t might be generated. We now consider the case where they are a

function of past values of xt:

σ2
t 5 f xt21; xt22; . . .ð Þ

A simple example is:

σ2
t 5 f xt21ð Þ5α0 1α1 xt212μð Þ2 ð10:2Þ

where α0 and α1 are both positive to ensure that σ2
t . 0. With

UtBNID 0; 1ð Þ and independent of σt, xt 5μ1σtUt is then conditionally

normal,

xtjxt21; xt22; . . .BN μ;σ2
t

� �
so that

V xtjxt21ð Þ5α0 1α1 xt212μð Þ2

If 0,α1 , 1 then the unconditional variance is V xtð Þ5α0= 12α1ð Þ and
xt is weakly stationary. It may be shown that the fourth moment of xt is finite

if 3α2
1 , 1 and, if so, the kurtosis of xt is given by 3 12α2

1

� �
= 12 3α2

1

� �
.

Since this must exceed 3, the unconditional distribution of xt is fatter tailed

than the normal. If this moment condition is not satisfied, then the variance

of xt will be infinite and xt will not be weakly stationary.

10.6 This model is known as the first-order autoregressive conditional het-

eroskedastic [ARCH(1)] process and was originally introduced by Engle

(1982, 1983). ARCH processes have proven to be extremely popular for

modeling volatility in time series. A more convenient notation is to define

εt 5 xt 2μ5Utσt, so that the ARCH(1) model can be written as:

εtjxt21; xt22; . . .BNID 0;σ2
t

� �

σ2
t 5α0 1α1ε2t21

On defining νt 5 ε2t 2σ2
t , the model can also be written as:

ε2t 5α0 1α1ε2t21 1 νt
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Since E νtjxt21; xt22; . . .ð Þ5 0, the model corresponds directly to an AR(1)

model for the squared innovations ε2t . However, as νt 5 σ2
t U2

t 2 1
� �

, the

errors obviously have a time-varying variance.

10.7 A natural extension is to the ARCH(q) process, where (10.2) is

replaced by:

σ2
t 5 f xt21; xt22; . . .; xt2q

� �
5α0 1

Xq
i51

αi xt2i2μð Þ2

where αi $ 0, 0# i# q. The process will be weakly stationary if all the roots

of the characteristic equations associated with the ARCH parameters are less

than unity. This implies that
Pq

i51 αi , 1, in which case the unconditional

variance is V xtð Þ5α0= 12
Pq

i51 αi

� �
. In terms of εt and σ2

t , the conditional

variance function is:

σ2
t 5α0 1

Xq
i51

αiε2t2i

or, equivalently, on defining α Bð Þ5α1 1α2B1?1αqB
q21,

ε2t 5α0 1α Bð Þε2t21 1 νt

10.8 A practical difficulty with ARCH models is that, with q large,

unconstrained estimation will often lead to violation of the nonnegativity

constraints that must be placed on the αis to ensure that the conditional

variance σ2
t is always positive. In early applications of the model a rather

arbitrary declining lag structure was imposed on the αis to ensure that these

constraints were met. To obtain more flexibility, a further extension, to the

generalized ARCH (GARCH) process, was introduced by Bollerslev (1986).

The GARCH(p,q) process has the conditional variance function:

σ2
t 5α0 1

Xq
i51

αiε2t2i 1
Xp
i51

βiσ
2
t2i

5α0 1α Bð Þε2t21 1β Bð Þσ2
t21

where p. 0 and βi $ 0, i# 1# p. For the conditional variance of the

GARCH(p,q) process to be well defined, all the coefficients in the corre-

sponding ARCH(N) model σ2
t 5 θ0 1 θ Bð Þε2t must be positive. Provided that

α Bð Þ and β Bð Þ have no common roots and that the roots of 12β Bð Þ are all

less than unity, this positivity constraint will be satisfied if, and only if, all

the coefficients in θ Bð Þ5α Bð Þ= 12β Bð Þð Þ are nonnegative. For the GARCH

(1,1) process,

σ2
t 5α0 1α1ε2t21 1β1σ

2
t21
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a model that has proved extremely popular for describing financial time

series, these conditions simply require that all three parameters are

nonnegative.

The equivalent form of the GARCH(p,q) process is

ε2t 5α0 1 α Bð Þ1β Bð Þð Þε2t21 1 νt 2β Bð Þνt21 ð10:3Þ
so that ε2t is ARMA(m,p), where m5max p; qð Þ. This process will be weakly

stationary if, and only if, the roots of 12α Bð Þ2β Bð Þ are all less than unity,

so that α 1ð Þ1β 1ð Þ, 1.

10.9 If α 1ð Þ1β 1ð Þ5 1 in (10.3) then 12α Bð Þ2β Bð Þ will contain a unit

root and we say that the model is integrated GARCH, or IGARCH. It is

often the case that α 1ð Þ1β 1ð Þ is close to unity and, if so, a shock to the con-

ditional variance will be persistent in the sense that it remains important for

all future observations.

10.10 Although we have assumed that the distribution of εt is conditionally
normal, this is not essential. For example, the distribution could be Student’s

t with unknown degrees of freedom υ that may be estimated from the data:

for υ. 2 such a distribution is leptokurtic and, hence, has thicker tails than

the normal. Alternatively, the error distribution could be generalized expo-

nential (GED) with parameter ς, which may again be estimated from the

data. A normal distribution is characterized by ς5 2, with ς, 2 implying

that the distribution is thick-tailed. Whatever the assumed error distribution,

estimation will require nonlinear iterative techniques, and maximum likeli-

hood estimation is available in many econometric packages.

10.11 The analysis has also proceeded on the further assumption that

εt 5 xt 2μt is serially uncorrelated. A natural extension is to allow xt to

follow an ARMA(P,Q) process, so that the combined ARMA(P,Q)�ARCH

(p,q) model becomes:

Φ Bð Þ xt 2μð Þ5Θ Bð Þεt
σ2
t 5α0 1α Bð Þε2t21 1 β Bð Þσ2

t21

TESTING FOR THE PRESENCE OF ARCH ERRORS

10.12 Let us suppose that an ARMA model for xt has been estimated, from

which the residuals et have been obtained. The presence of ARCH may lead

to serious model misspecification if it is ignored. As with all forms of hetero-

skedasticity (i.e., nonconstant error variance), analysis assuming its absence

will result in inappropriate parameter standard errors, these typically being

too small. For example, ignoring ARCH will lead to the identification of

ARMA models that tend to be overparameterized, as parameters that should

be set to zero will show up as significant.
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10.13 Methods for testing whether ARCH is present or not are, therefore,

essential, particularly as estimation incorporating ARCH innovations requires

complicated iterative techniques. Eq. (10.3) has shown that if εt is GARCH

(p,q) then ε2t is ARMA(m,p), where m5max p; qð Þ, and standard ARMA the-

ory follows through in this case. This implies that the squared residuals e2t
from the estimation of a pure ARMA process can then be used to identify m

and p, and therefore q, in a similar fashion to the way the residuals them-

selves are used in conventional ARMA modeling. For example, the sample

autocorrelations of e2t have asymptotic variance T21 and portmanteau statis-

tics calculated from them are asymptotically χ2 if the ε2t are independent.

10.14 Formal tests are also available. A test of the null hypothesis that εt
has a constant conditional variance against the alternative that the conditional

variance is given by an ARCH(q) process, which is a test of

α1 5?5αq 5 0 conditional upon β1 5?5 βp 5 0, may be based on the

Lagrange Multiplier (LM) principle. The test procedure is to run a regression

of e2t on e2t21; . . .; e
2
t2q and to test the statistic TUR2 as a χ2

q variate, where R2

is the squared multiple correlation coefficient of the regression. An asymp-

totically equivalent form of the test, which may have better small sample

properties, is to compute the standard F test from the regression (these tests

were introduced by Engle, 1982). The intuition behind this test is clear. If

ARCH effects are absent from the data, then the variance is constant and

variations in e2t will be purely random. If ARCH effects are present, how-

ever, such variations will be predicted by lagged values of the squared

residuals.

Of course, if the residuals themselves contain some remaining autocorre-

lation or, perhaps, some other form of nonlinearity, then it is quite likely that

this test for ARCH will reject, since these misspecifications may induce

autocorrelation in the squared residuals. We cannot simply assume that

ARCH effects are necessarily present when the ARCH test rejects.

10.15 When the alternative is a GARCH(p,q) process, some complications

arise. In fact, a general test of p. 0, q. 0 against a white noise null is not

feasible, nor is a test of GARCH(p1 r1, q1 r2) errors, where r1 . 0 and

r2 . 0, when the null is GARCH(p,q). Furthermore, under this null, the LM

test for GARCH(p,r) and ARCH(p1 r) alternatives coincide. What can be

tested is the null of an ARCH(p) process against a GARCH(p,q) alternative

(see Bollerslev, 1988).

10.16 Several modifications to the standard GARCH model result from

allowing the relationship between σ2
t and εt to be more flexible than the qua-

dratic relationship that has so far been assumed. To simplify the exposition,

we shall concentrate on variants of the GARCH(1,1) process:

σ2
t 5α0 1α1ε2t21 1β1σ

2
t21 5α0 1α1σ2

t21U
2
t21 1β1σ

2
t21 ð10:4Þ
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An early alternative was to model conditional standard deviations rather

than variances (Schwert, 1989):

σt 5α0 1α1jεt21j1β1σt21 5α0 1α1σt21jUt21j1β1σt21 ð10:5Þ
This makes the conditional variance the square of a weighted average of

absolute shocks, rather than the weighted average of squared shocks.

Consequently, large shocks have a smaller effect on the conditional variance

than in the standard GARCH model.

Rather than concentrating on the variance or standard deviation, a more

flexible and general class of power GARCH models can be obtained by esti-

mating an additional parameter (see Ding et al., 1993):

σγ
t 5α0 1α1 εt21j jγ 1 β1σ

γ
t21

10.17 An asymmetric response to shocks is made explicit in the exponen-

tial GARCH (EGARCH) model of Nelson (1991):

log σ2
t

� �
5α0 1α1g

εt21

σt21

� �
1β1log σ2

t21

� � ð10:6Þ

where

g
εt21

σt21

� �
5 θ1

εt21

σt21

1
εt21

σt21

����
����2E

εt21

σt21

����
����

� �

The “news impact curve,” g Uð Þ, relates conditional volatility, here given by

log σ2
t

� �
, to “news,” εt21. It embodies an asymmetric response, since

@g=@εt21 5 11 θ1 when εt21 . 0 and @g=@εt21 5 12 θ1 when εt21 , 0 (note

that volatility will be at a minimum when there is no news, εt21 5 0). This

asymmetry is potentially useful as it allows volatility to respond more rap-

idly to falls in xt than to corresponding rises, which is an important stylized

fact for many financial assets, and is known as the leverage effect. The

EGARCH model also has the advantage that no parameter restrictions are

needed to ensure that the variance is positive. It is easy to show that

g εt21=σt21

� �
is strict white noise with zero mean and constant variance, so

that log σ2
t

� �
is an ARMA(1,1) process and will be stationary if β1 , 1.

10.18 A model which nests (10.4)�(10.6) is the nonlinear ARCH model of

Higgins and Bera (1992), a general form of which is:

σγ
t 5α0 1α1g

γ εt21ð Þ1β1σ
γ
t21

while an alternative is the threshold ARCH process:

σγ
t 5α0 1α1h

γð Þ εt21ð Þ1β1σ
γ
t21

where
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h γð Þ εt21ð Þ5 θ1 εt21j jγ 1 εt21 . 0ð Þ1 εt21j jγ1 εt21 # 0ð Þ
1 Uð Þ being the indicator function introduced in y6.1. If γ5 1, we have

Zakoian’s (1994) threshold ARCH (TARCH) model, while for γ5 2 we

have the GJR model of Glosten et al. (1993), which allows a quadratic

response of volatility to news but with different coefficients for good and

bad news, although it maintains the assertion that the minimum volatility

will result when there is no news.

10.19 An alternative formalization of the GARCH(1,1) model (10.4) has

been proposed by Engle and Lee (1999), who define α0 5ϖ 12α1 2β1ð Þ,
where ϖ is the unconditional variance, or long-run volatility, to which the

process reverts to:

σ2
t 5ϖ1α1 ε2t21 2ϖ

� �
1β1 σ2

t21 2ϖ
� �

This formalization may be extended to allow reversion to a varying level

defined by qt:

σ2
t 5 qt 1α1 ε2t21 2 qt21

� �
1β1 σ2

t21 2 qt21

� �

qt 5ϖ1 ξ qt21 2ϖð Þ1 ζ ε2t21 2σ2
t21

� �
Here qt is the permanent component of volatility, which converges to ϖ

through powers of ξ, while σ2
t 2 qt is the transitory component, converging

to zero via powers of α1 1β1. This component GARCH model can also be

combined with TARCH to allow asymmetries in both the permanent and

transitory parts: this asymmetric component GARCH model automatically

introduces asymmetry into the transitory equation.

There are many other variants to the basic GARCH model, but these

typically require specialized software to estimate them and consequently are

not discussed here.

FORECASTING FROM AN ARMA-GARCH MODEL

10.20 Suppose we have the ARMA(P,Q)-GARCH(p,q) model of y10.11:

xt 5Φ1xt21 1?1ΦPxt2P 1Θ0 1 εt 2Θ1εt21 2?2ΘQεt2Q ð10:7Þ

σ2
t 5α0 1α1ε2t21 1?1αpε2t2p 1 β1σ

2
t21 1?1βqσ

2
t2q ð10:8Þ

Forecasts of xT1h can be obtained from the “mean equation” (10.7) in the

manner outlined in yy7.1�7.4. When calculating forecast error variances,

however, it can no longer be assumed that the error variance itself is

constant. Thus, (7.4) must be amended to:

V et;h
� �

5σ2
T1h 1ψ2

1σ
2
T1h21 1?1ψ2

h21σ
2
T11

with the σ2
T1h being obtained recursively from (10.8).
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EXAMPLE 10.1 GARCH Models for the $�d Exchange Rate

Table 10.1 presents the results of fitting various AR-GARCH models to the first

differences of the $�d exchange rate, rxt . The choice of an AR(1) model for the

conditional mean equation is based on our findings from Example 4.2. Assuming

homoskedastic (GARCH(0,0)) errors produces the estimates in the first column of

Table 10.1. The ARCH(1) statistic; the LM test for first-order ARCH, shows that

there is strong evidence of conditional heteroskedasticity.

A GARCH(1,1) conditional variance is fitted in the second column, using the

estimation technique of quasi-maximum likelihood, which enables standard

errors to be adjusted for the presence of time-varying variances: see Bollerslev

and Wooldridge (1992). Both GARCH parameters are significant, and the LM

test for any neglected ARCH is insignificant. The GARCH parameters sum to just

under unity, suggesting that shocks to the conditional variance are persistent.

The autoregressive coefficient, although remaining significantly positive, is now

even smaller in magnitude, confirming that the deviation from a “pure” random

walk for the exchange rate has little economic content. The estimated “pure”

GARCH(1,1) model is shown in the third column, with the omission of the auto-

regressive term being seen to have no effect on the remaining estimates of the

model.2

If the lagged level of the exchange rate is added to the mean equation then

this will provide a test of a unit root under GARCH(1,1) errors: doing so yields a

coefficient estimate of 20.00001 with a t-statistic of just 20.26. The paradox

found in Example 4.2 thus disappears: once the error is correctly specified as a

GARCH process, there is no longer any tangible evidence against the hypothesis

that the exchange rate is a random walk.

The conditional standard deviations from this model are shown in Fig. 10.1.

Large values of σ̂t are seen to match up with periods of high volatility in the

TABLE 10.1 $�d Exchange Rate: GARCH Estimates: rxtBAR(1)-GARCH(p,q)

GARCH(0,0) GARCH(1,1) GARCH(1,1)

~Φ1 0.0603 (0.0096) 0.0456 (0.0106) �

~α0 1.36 (0.066) 1.36 (0.066)

~α1 0.068 (0.009) 0.068 (0.009)

~β1
0.921 (0.011) 0.921 (0.011)

~α1 1 ~β1
0.989 (0.007) 0.989 (0.007)

ARCH(1) 165.6 [0.00] 0.8 [0.38] 1.2 [0.27]

ℒ 34237 35237 35230

Figures in ( ) are standard errors; Figures in [ ] are marginal significance levels. ℒ is the log-
likelihood. Estimates of α0 are scaled by 106. GARCH, Generalized autoregressive conditional
heteroskedastic; ARCH, autoregressive conditional heteroskedastic.
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exchange rate, most notably around the United Kingdom’s departure from the

Exchange Rate Mechanism in September 1992; during the financial crisis of

2008�2009, in which the $�d rate dropped by over a quarter in just a few

months (recall Figs. 1.5 and 1.9); and in the aftermath of the Brexit referendum

of June 2016. Note also the “asymmetric” nature of σ̂t : rapid increases are

followed by much slower declines, thus, reflecting the persistence implied by

the fitted models.

EXAMPLE 10.2 Forecasting the $�d Exchange Rate

In Example 10.1 we found that the exchange rate could be modeled as:

xt 5 xt21 1 εt

σ2
t 5 1:3631026 1 0:068ε2t21 10:921σ2

t21

Forecasts of the exchange rate are given by fT ;h 5 1:351 for all h, this being the

end-December 2017 rate. Since a pure random walk has ψi 5 1 for all i, the fore-

cast error variances are given by:

V et ;h
� �

5σ2
T ;h 1σ2

T ;h21 1?1σ2
T ;1

where, using the final residual eT 5 0:0074 and conditional error variance

σ̂2
T 5 0:0000482,

σ2
T ;1 5 1:363 1026 1 0:068ε2T 1 0:921σ2

T

5 1:363 1026 1 0:0683 0:00742 1 0:9213 0:0000482
5 0:0000495

σ2
T ;j 5 1:363 1026 1 0:921σ2

T ;j21 j$ 2
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FIGURE 10.1 Conditional standard error of the $�d exchange rate.
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Fig. 10.2 shows the exchange rate enclosed by two-conditional standard error

bounds for 2016 and 2017 and with forecasts for 100 days ahead from the begin-

ning of 2018. Note how the width of the bounds interval varies through time,

most notably increasing during the large fall in the exchange rate after the Brexit

referendum of June 2016. Note also how the conditional standard error bounds

increase rapidly in the forecast period, so that the forecasts quickly become

imprecise: the 100-step ahead forecast “interval” is 1.17�1.53 $�d.

ENDNOTES

1. Baillie (2006) and Mills and Markellos (2008, pages 157�162) provide short surveys of these

“informal” measures of volatility. Since the impetus for modeling volatility came originally

from analyzing financial markets, this area has seen the emergence of the integrated or real-

ized variance nonparametric estimator of volatility: see, for example, Andersen et al. (2007)

for a review of this growing literature.

2. Note that overfitting using GARCH(1,2) and GARCH(2,1) models proved unsuccessful. An

improved fit was, however, obtained by estimating the model with GED errors and an

IGARCH restriction, which reduces the estimate of the autoregressive coefficient even further

to 0.019 with standard error 0.008.
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FIGURE 10.2 $�d exchange rate, daily 2016�17 with two-standard error bounds and fore-

casts for a horizon of 100 days.
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MARTINGALES, RANDOM WALKS, AND NONLINEARITY

11.1 In y10.2 a distinction was drawn between serial uncorrelatedness

and independence. Although this distinction lies at the heart of GARCH

modeling, it is also of more general importance, manifesting itself in the con-

cept of a martingale; a stochastic process that is a mathematical model of

“fair play.”1 A martingale may be defined as a stochastic process xt having

the following properties:2

1. E jxtjð Þ,N for each t;

2. E xtjxs; xs21; . . .ð Þ5 xs.

Written as

E xt 2 xsjxs; xs21; . . .ð Þ5 0; s, t; ð11:1Þ
the martingale property implies that the MMSE forecast of a future incre-

ment of a martingale is zero. This property can be generalized to situations

where:

E xt 2 xsjxs; xs21; . . .ð Þ$ 0; s, t;

in which we have a sub-martingale, and to the case where this inequality is

reversed, giving us a super-martingale.

11.2 The martingale given by (11.1) can be written equivalently as:

xt 5 xt21 1 at;

where at is known as the martingale increment or martingale difference.

When written in this form, xt looks superficially identical to a random walk,
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where at is defined to be a stationary and uncorrelated sequence drawn from

a fixed distribution, i.e., to be white noise (cf. y4.6).
Alternative definitions are, however, possible. For example, at could be

defined to be strict white noise, so that it is both a stationary and

independent sequence, rather than just being uncorrelated. Moreover, it is

possible for at to be uncorrelated but not necessarily stationary. While the

white noise assumptions rule this out, such behavior is allowed for

martingale differences. This implies that there could be dependence between

higher conditional moments—most notably, as we have seen in Chapter 10,

Volatility and Generalized Autoregressive Conditional Heteroskedastic

Processes, between conditional variances through time.

11.3 The possibility of this form of dependence leads naturally to the

consideration of nonlinear stochastic processes capable of modeling such

behavior. Nonlinearity can, however, be introduced in many ways, some of

which may violate the martingale model. As an illustration, suppose that xt is

generated by the process rxt 5 ηt, with ηt being defined as:

ηt 5 at 1βat21at22

where at is strict white noise. It follows immediately that ηt has zero mean,

constant variance, and an autocorrelation function given by:

E ηtηt2k

� �
5E

�
atat2k 1βat21at22at2k 1βatat2k21at2k22

1β2at21at22at2k21at2k22

�
For all k 6¼0, each of the terms in this expression has zero expectation, so

that, as far as its second-order properties are concerned, ηt behaves just like
an independent process. However, the MMSE forecast of a future observa-

tion, ηt11, is not zero (the unconditional expectation), but the conditional

expectation:

η̂t11 5E ηt11jηt; ηt21; . . .
� �

5βatat21

It then follows that xt is not a martingale, because:

E xt11 2 xtjηt; ηt21; . . .
� �

5 η̂t11 6¼ 0

and the nonlinear structure of the ηt process could be used to improve the

forecasts of xt over the simple “no-change” forecast associated with the mar-

tingale model.

11.4 Using the results of yy3.30�3.32, if wt 5rxt is strict white noise then

the asymptotic distribution (standardized by
ffiffiffiffi
T

p
) of the sample autocorrela-

tions calculated from a realization of wt will be Nð0; 1Þ, so that the random

walk null would be rejected at the 5% significance level if, for example,ffiffiffiffi
T

p jr1j. 1:96.
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If a set of sample autocorrelations are considered, say r1; . . . ; rK , then
some will probably be significant even if the null is true: on average one out

of 20 will be significant at the 5% level. As noted in y3.32, the portmanteau

statistics Q Kð Þ of (3.13) may be used in these circumstances. On the random

walk null, this statistic is distributed as χ2
K , so that the null would be rejected

for sufficiently high values. Note that this test does not require a specific

alternative hypothesis: it may, thus, be regarded as a “diagnostic” test with,

hopefully, some power against the null for a wide range of alternatives.

11.5 The portmanteau test does, however, require that the innovations to

the random walk be strict white noise. If the innovations are merely uncorre-

lated, rather than independent, then this testing procedure will be unreliable.

To show this, the strict white noise assumption on wt may be relaxed to that

of just satisfying the weak dependence conditions mentioned in y5.12. In this

case,
ffiffiffiffi
T

p
r1 B

a
Nð0; τ2Þ, where:

τ2 5σ24
w V w1w2ð Þ1 2

XN
i51

Cov w1w2;wi11wi12ð Þ
 !

a result provided by Romano and Thombs (1996, Theorem 2.1). An example

of such a process is wt 5 ztzt21, where zt is itself zero mean strict white noise

with Eðz2t Þ5σ2
z and Eðz4t Þ,N. In this case, Romano and Thombs show

that, for all i. 0,

Cov w1w2;wi11wi12ð Þ5 0

V w1w2ð Þ5E w2
1w

2
2

� �
5 E z20

� �� �2
E z41
� �

5σ4
z E z41
� �

and

σ2
w 5E w2

t

� �
5E z2t z

2
t21

� �
5σ4

z

Thus,

τ2 5
E z41
� �
σ4
z

. 1

For example, if zt is standard normal, τ2 5 3 and, in general, τ2 can be

made arbitrarily large. Hence, a test of zero correlation based on, say,ffiffiffiffi
T

p jr1j. 1:96 will lead to a high probability of incorrectly rejecting the

hypothesis of zero correlation.

11.6 Romano and Thombs (1996, Example 3.5) also show that, if wt is not

strict white noise, then Q Kð Þ is no longer asymptotically distributed as χ2
K .

For example, if wt 5 ztzt21, then Q Kð Þ is distributed as a weighted sum of

independent χ2
1 variates, leading to a rejection probability greater than the

nominal significance level using the χ2
K distribution.
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Consequently, Lobarto et al. (2001, 2002) propose modifying the port-

manteau statistic to:

~Q Kð Þ5 T
XK
i51

r2i
vi

� �
Ba χ2

K

where

vi 5 T21
XT
t5i11

wt2wð Þ2 wt2i2wð Þ2
σ̂4
w

They also propose further extensions based on considering the covariance

matrix of the set of sample autocorrelations r1; r2; . . .; rK : see the mentioned

references for details.

NONLINEAR STOCHASTIC MODELS

11.7 As discussed in y3.6, Wold’s decomposition theorem allows us to rep-

resent every weakly stationary, purely nondeterministic, stochastic process as

a linear combination of a sequence of uncorrelated random variables, as in

(3.2). A stochastic process can then be considered nonlinear if it does not

satisfy the assumptions underlying the decomposition, for example, if the

representation is:

xt 2μ5 f ðat; at21; at22; . . .Þ ð11:2Þ
where f ðUÞ is some arbitrary nonlinear function. However, the “curse of

dimensionality” means that this representation is of little practical use.

Consequently, as an approximation to f ðUÞ, consider a Taylor expansion of

(11.2) around zero:

xt 2μ5 f 0; at21; at22ð Þ1 atf
0 0; at21; at22ð Þ1 0:5a2t f v 0; at21; at22ð Þ1?

where f 0 and f v are the first and second derivatives of f with respect to at.

By dropping higher-order terms, we can express xt in terms of its conditional

moments. For example, by keeping only the first two terms, xt can be

expressed as a function of the conditional mean and variance, respectively.

Simple forms of nonlinearity can also be obtained by assuming some low-

order polynomial function for f ðUÞ: for example, the first-order nonlinear

moving average (see Robinson, 1977).

xt 5 at 1ψ1a
2
t21

Polynomial functions of lagged xt can also be used (Jones, 1978), while

another simple way of introducing nonlinearity is to allow xt to respond in a

different manner to innovations depending on their sign. For example,
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Wecker (1981) introduced the asymmetric moving average process, whose

first-order form is:

xt 5 at 1 θat21 1ψ 1 at21 . 0ð Þat21

This model was extended to include both moving average and autoregressive

components by Brännäs and De Gooijer (1994).

11.8 A wide variety of nonlinear models have been developed which allow

for combinations of AR and MA terms and for deterministic or stochastic

variations in their parameters through time. The most popular of these mod-

els will be described in subsequent sections.

BILINEAR MODELS

11.9 An important class of nonlinear model is the bilinear, which takes the

general form

φ Bð Þ xt 2μð Þ5 θ Bð Þεt 1
XR
i51

XS
j51

γijxt2iεt2j ð11:3Þ

Here εtBSWN 0;σ2
ε

� �
, where this notation is used to denote that the innova-

tions εt are strict white noise. The second term on the right hand side of

(11.3) is a bilinear form in εt2j and xt2i, and this accounts for the nonlinear

character of the model, for if all the γij are zero, (11.3) clearly reduces to the

familiar ARMA model. The bilinear model can be thought of as a higher-

order Taylor approximation to the unknown nonlinear function f ðUÞ than that

provided by the Wold decomposition.

11.10 Little analysis has been carried out on this general bilinear form, but

Granger and Andersen (1978) have analyzed the properties of several simple

bilinear forms, characterized as:

xt 5 εt 1 γijxt2iεt2j

If i. j the model is called super-diagonal, if i5 j it is diagonal, and if i, j,

it is sub-diagonal. If we define λ5 γijσ then, for super-diagonal models, xt

has zero mean and variance σ2
ε= 12λ2
� �

, so that jλj, 1 is a necessary

condition for stability.

Conventional identification techniques using the SACF of xt would

identify this series as white noise, but Granger and Andersen show that, in

theory at least, the SACF of the squares of xt would identify x2t as an ARMA

(i,j) process, so that we could distinguish between white noise and this bilin-

ear model by analyzing x2t .
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Diagonal models will also be stationary if 9λ9, 1. If i5 j5 1, xt will be

identified as MA(1), with 0, ρ1, 0.1547 (corresponding to λ5 6 0.605),

while x2t will be identified as ARMA(1,1). However, if xt actually was MA

(1), then x2t will also be MA(1), so that this result allows the bilinear model

to be distinguished from the linear model. In general, the levels of a diagonal

model will be identified as MA(i). Sub-diagonal models are essentially like

super-diagonal models in that they appear to be white noise but generally

have x2t following an ARMA(i,j) process.

11.11 Charemza et al. (2005) discuss nonstationary generalizations of

bilinear models that allow for unit roots. For example, they consider the fol-

lowing simple model:

xt 5 a1 bεt21ð Þxt21 1 εt ð11:4Þ
As shown by Granger and Andersen (1978), this process will be stationary if

a2 1 b2σ2
ε. The process collapses to a random walk if a5 1 and b5 0.

However, if we assume that b differs from zero, while a5 1, we can express

the process in first differences as:

rxt 5 bxt21εt21 1 εt ð11:5Þ
Assuming x0 5 ε0 5 0, it can be shown that E xtð Þ5 bσ2

ε t2 1ð Þ and

E rxtð Þ5 bσ2
ε . Although the process can produce mean reverting behavior, it

is evident that it does not retain the desirable difference stationarity property

of the random walk.

11.12 When a5 1, (11.4) can be considered to be a special case of the

more general process,

xt 5ϕtxt21 1 εt

where ϕt is a random autoregressive coefficient with EðϕtÞ5 1. Charemza

et al. (2005) develop a simple t-ratio type test for detecting bilinearity in a

unit root process. For small values of b, 1=
ffiffiffiffi
T

p
, we can reasonably assume

that rxt � εt and the test regression can be formulated as:

rxt 5 bxt21rxt21 1 ut

The test statistic is simply the t-ratio of b̂ in this regression estimated via

OLS. Under the null of no bilinearity, i.e., a5 1 and b5 0, this test statistic

is asymptotically normally distributed. The test regression can be augmented

by a constant, drift or further autoregressive components in a straightforward

manner by just adding the relevant terms. Charemza et al. suggest a two-step

procedure: first test for a unit root and then test for bilinearity. This is con-

sistent in the sense that the size of the unit root test is not affected by the

possible detection of bilinearity in the second step.
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11.13 Detailed analysis of the properties of bilinear models can be found in

Granger and Andersen (1978) and Subba Rao and Gabr (1984). Most of the

results are of considerable theoretical interest but are of little relevance in

practice: for example, most of the conditions for stationarity and invertibility

are too complicated to be used as constraints on the parameters in actual

models.

11.14 Weiss (1986) provides a detailed comparison of the ARMA-ARCH

model, given by Eqs. (10.7) and (10.8), with the bilinear model (11.3). At

first sight, the models appear quite different: whereas the addition of the

ARCH equation to the pure ARMA process (10.7) introduces nonlinearity

by affecting the conditional variance, the addition of the bilinear terms

contained in (11.3) alters the conditional mean of xt. Weiss, however, argues

that despite these different influences, the two processes can have similar

properties with, for example, the bilinear process often being mistaken for an

ARMA model with ARCH errors.

11.15 Why might this be? Suppose the true model for xt is (11.3) but the

ARMA model

~φ Bð Þ xt 2 ~μð Þ5 ~θ Bð Þ~εt
is fitted. The residual ~εt is given by:

~εt 5ϑ1 Bð Þεt 1ϑ2 Bð Þ
XR
i51

XS
j51

γijxt2iεt2j

where ϑ1 Bð Þ5φ21 Bð Þ~θ21
Bð Þ ~φ Bð Þθ Bð Þ and ϑ2 Bð Þ5 ~φ

21
Bð Þ~θ21

Bð Þφ Bð Þ. On

squaring this expression and taking conditional expectations, it is clear that

E ~ε2t jxt21; xt22; . . .
� �

is not constant but will be a function of lagged ε2t , and
hence may be thought to exhibit ARCH. For example, suppose the true

model is:

xt 5 εt 1 γ21xt21εt21 ð11:6Þ
As E xtð Þ5 0 and E xtxt1ið Þ5 0, i. 0, the use of traditional modeling techni-

ques may identify the trivial ARMA model xt 5 ~εt, where:

~εt 5 εt 1 γ21εt21 ~εt21

Squaring this expression and taking expectations gives:

E ~ε2t jxt21; xt22; . . .
� �

5σ2
ε 1 γ221σ

2
ε ~ε

2
t21

Now, the LM statistic for testing whether ~εt is ARCH(1) is T �R2 from

the regression of ~ε2t on a constant and ~ε2t21: given this expectation, such a

statistic may well be large even if the correct model is really the bilinear pro-

cess (11.3).
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The correct LM statistic for testing xt 5 ~εt against the bilinear alternative

(11.6) is, in fact, T �R2 from the regression of ~εt on a constant, ~ε2t21, and the

additional regressor ~εt21.

11.16 Attempts have been made to combine the bilinear model with

ARCH errors, i.e., the bilinear process (11.3) with the ARCH specification

(10.8): see, for example, Weiss (1986). This modeling procedure is, unfor-

tunately, rather burdensome. If we just want a simple test for nonlinearity

which is sensitive to both ARCH and bilinear alternatives, then Higgins

and Bera (1988) proposed an easily computed simultaneous test for a

joint ARCH and bilinear alternative. This is an LM test whose construction

exploits the result that the individual LM tests for ARCH and bilinearity

are additive, so that the joint test statistic is, thus, the sum of the individual

test statistics. Moreover, because the two forms of nonlinearity are consid-

ered simultaneously, the LM test for bilinearity again has the standard

T �R2 representation, being the test outlined previously.

11.17 Maravall (1983) considers an alternative form of bilinearity in which

xt is given by the ARMA process,

φ Bð Þ xt 2μð Þ5 θ Bð Þat
but where the uncorrelated innovation sequence is bilinear in at and the strict

white noise sequence εt:

at 5 εt 1
XR
i51

XS
j51

γijat2iεt2j

This may be interpreted as a bilinear model “forecasting white noise.”

EXAMPLE 11.1 Is the $�d Exchange Rate Bilinear?

Given the above discussion, is it possible that the GARCH model fitted to

the $�d exchange rate in Example 10.1 is a misspecification and the true

process generating the series is of bilinear form? An obvious way to proceed

is to consider the SACFs and PACFs of the differences and squared differences.

Recall that in Example 4.2, it was found that the SACF of ~εt 5rxt was

consistent with an AR(1) process. For ~ε2t , the first hundred sample

autocorrelations are significantly positive, and many of the partial autocorrela-

tions are as well, which suggests that an ARMA(1,1) process could be

appropriate. This pair of findings is consistent with a diagonal bilinear model

with R5 S51. The LM test for such bilinearity, obtained from regressing ~εt on
~εt21 and ~ε2t21, produces a T �R2 of 64.7, distributed as χ2

1, thus indicating

evidence in favor of bilinearity. Of course, this statistic is only strictly valid in

the absence of ARCH, which we know exists. Construction of the ARCH

adjusted statistic produces a value of 28.1, thus confirming the possible

presence of bilinearity.
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THRESHOLD AND SMOOTH TRANSITION
AUTOREGRESSIONS

11.18 A popular class of nonlinear model is the self-exciting threshold

autoregressive (SETAR) process, which allows for asymmetry by defining a

set of piecewise autoregressive models whose switch points, or “thresholds,”

are generally unknown (see Tong and Lim, 1980; Tong, 1990; Teräsvirta,

2006):

xt 5
Xr
j51

φj;1xt21 1?1φj;pxt2p 1 aj;t
� �

1 cj21 , xt2d # cj
� � ð11:7Þ

Here d is the (integer-valued) delay parameter and c1 , c2 ,?, cr21 are

the thresholds: the model is often denoted SETAR(r: p, d).3 It is assumed

that aj;tBWN 0;σ2
j

� �
, j5 1; . . . ; r, so that the error variance is allowed to

alter across the r “regimes.” A popular version of (11.7) is the two-regime

SETAR(2: p, d) model:

xt 5 φ1;1xt21 1?1φ1;pxt2p 1 a1;t
� �

1 xt2d # c1ð Þ
1 φ2;1xt21 1?1φ2;pxt2p 1 a2;t
� �

12 1 xt2d # c1ð Þð Þ
An important feature of the SETAR model is its ability to generate “limit

cycles”: if (11.7) is extrapolated assuming that the error terms equal zero,

then the extrapolated series displays oscillations of a given length that do not

die out.

As previously stated, asymmetry may be captured by the regimes: for

example, if xt2d measures the phase of an economic business cycle, a two-

regime SETAR could describe processes whose dynamic properties differ

across expansions and recessions. If the transition variable xt2d is replaced

by its difference rxt2d, then any asymmetry lies in the growth rate of the

series so that, for example, increases in growth rates may be rapid but the

return to a lower level of growth may be slow.

If the transition variable xt2d is replaced by t then the model becomes an

autoregression with r2 1 breaks at times c1; . . .; cr21.

11.19 The SETAR formulation requires that the shift from one regime to

another is immediate. Allowing the shift to be smooth is accomplished by

defining the exponential autoregressive (EAR) process:

xt 5φ1xt21 1?1φpxt2p 1G γ; xt2dð Þ ϕ1xt21 1?1ϕpxt2p

� �
1 at ð11:8Þ

where the transition function

G γ; xt2dð Þ5 exp 2γx2t2d

� �
; γ. 0
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is symmetric around zero, where it takes the value unity, and as xt2dj j-N
so G γ; xt2dð Þ-0. From (11.8), the EAR may be interpreted as a linear AR

process with stochastic time-varying coefficients φi 1G γ; xt2dð Þϕi. “Pure”

linearity is obtained when either γ-0 or γ-N. This model, originally

proposed by Haggan and Ozaki (1981), was subsequently extended

by Teräsvirta (1994) to allow for asymmetry in the transition function by

including a location parameter c:

GE γ; c; xt2dð Þ5 exp 2γ xt2d2c
� �2� �

; γ. 0 ð11:9Þ

This is known as the exponential smooth transition AR [ESTAR(p, d)]

model, while an alternative specification of the transition function produces

the logistic STAR (LSTAR) model (cf. the ESTR and LSTR breaking trend

models of yy6.15�6.17):

GL γ; c; xt2dð Þ5 11exp 2γ xt2d2cð Þð Þð Þ21; γ. 0 ð11:10Þ
Note that when γ5 0, GL γ; c; xt2dð Þ5 0:5 and (11.8) reduces to a linear

AR model, while if γ-N the LSTAR model approaches the SETAR,

albeit with σ1 5σ2. If t replaces xt2d in (11.9) then the resulting model is

referred to as a time-varying autoregression, which enables testing for the

null of parameter constancy in linear AR models, with smoothly changing

parameters forming the alternative to the null: see Lin and Teräsvirta

(1994).

11.20 Since the SETAR is a piecewise linear model it can be estimated

by a variant of OLS. Teräsvirta (2006) provides details and discusses

the weak stationarity and ergodicity conditions required for consistent

estimation. Both ESTAR and LSTAR models can be estimated by nonlinear

least squares (NLS) and ML techniques, although the properties of the

ML estimator generally remain unknown. Numerical problems may arise,

however, when the transition parameter γ is large, since then the transition

is rapid and accurate estimation of this parameter requires many

observations to lie in a small neighborhood of the location parameter

c. Convergence of the optimization algorithm may be further exacerbated

if γ is of a much higher order of magnitude than the other parameters.

Teräsvirta (1994) suggests that, when the transition is known to be quick, γ
can be fixed at an appropriately large value rather than being estimated

imprecisely.

EXAMPLE 11.2 A SETAR Model for Sunspots

In Example 3.3 a restricted linear AR(9) model was fitted to the annual sunspot

numbers (recall Table 3.4 where the estimates of this model are provided).
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Tong and Lim (1980), in a paper containing the first detailed exposition of

the SETAR model, used the sunspot numbers as an illustration of fitting the

model and we update their analysis here. Using the same restricted AR(9)

specification for each regime, a SETAR(3:9, 2) was identified and estimated,

leading to:

xt 52 4:874
7:363ð Þ

1 1:953
0:141ð Þ

xt21 2 0:720
0:512ð Þ

xt22 1 0:214
0:048ð Þ

xt29 1 a1;t ; xt22 , 20:2

xt 5 10:742
6:686ð Þ

1 1:520
0:057ð Þ

xt21 2 0:780
0:116ð Þ

xt22 1 0:108
0:033ð Þ

xt29 1 a2;t ; 20:2# xt22 , 94

xt 5 8:783
7:134ð Þ

1 0:787
0:074ð Þ

xt21 2 0:193
0:059ð Þ

xt22 1 0:046
0:069ð Þ

xt29 1 a3;t ; 94, xt24

Here the transition variable is xt22 and the regime thresholds are at 20.2 and

94, the three regimes containing 63, 131, and 115 observations respectively. The

overall residual standard error is 20.413, which represents a 14% improvement

over the linear model. Fig. 11.1 shows the fit of the SETAR for the latter part of

the series from 1970 along with the computed limit cycle out to 2050. The limit

cycle has a distinct period of 11 years, while the unusual behavior of sunspots

over the last observed cycle from 2001 is clearly apparent.
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FIGURE 11.1 Sunspot number: SETAR fit and limit cycle. SETAR, Self-exciting threshold

autoregressive.
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EXAMPLE 11.3 An ESTAR Model for Long Interest Rates

As stated in Example 3.2, the United Kingdom interest rate spread is defined as

the difference between long and short interest rates, the former being the yield

on 20-year gilts. Fig. 11.2 shows the monthly change in this series, which
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FIGURE 11.2 United Kingdom yield on 20-year gilts: monthly changes, 1952�2017.
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FIGURE 11.3 ESTAR weight function. ESTAR, Exponential smooth transition AR.
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indicates that some form of nonlinearity may well be present. An ESTAR model

fitted to this series produced:

x5 0:620
0:146ð Þ

xt21 1GE 36:71; 20:48; xt22ð Þ 2 0:350
0:148ð Þ

xt21 2 0:148
0:040ð Þ

xt22

� �
1 at

The reason why this particular ESTAR(2, 2) specification was chosen will be

discussed in Example 11.5. The midpoint of the transition is at 20.48% and the

exponential transition function,

GE 36:71; 2 0:48; xt22ð Þ5 exp 236:71 xt2210:48ð Þ2� �
is shown in Fig. 11.3, so that large changes in the gilt yield follow (with a delay

of two months) a different AR(2) process to when the changes are more modest.

MARKOV-SWITCHING MODELS

11.21 Yet another way of introducing asymmetry is to consider “regime

switching” models. Hamilton (1989, 1990), Engle and Hamilton (1990),

and Lam (1990) all propose variants of a switching-regime Markov model,

which can be regarded as a nonlinear extension of an ARMA process that

can accommodate complicated dynamics, such as asymmetry and condi-

tional heteroskedasticity. The setup is that of the UC model of y8.1, i.e.,
Eq. (8.1), where zt now evolves as a two-state Markov process:

zt 5α0 1α1St ð11:11Þ
where

P St 5 1jSt21 5 1ð Þ5 p

P St 5 0jSt21 5 1ð Þ5 12 p

P St 5 1jSt21 5 0ð Þ5 12 q

P St 5 0jSt21 5 0ð Þ5 q

The noise component ut is assumed to follow an AR(r) process

φ Bð Þut 5 εt, where the innovation sequence εt is strict white noise but φ Bð Þ
may contain a unit root, so that, unlike the conventional UC specification,

ut can be nonstationary. In fact, a special case of the conventional UC

model results when p5 12 q. The random walk component then has an

innovation restricted to be a two-point random variable, taking the values 0

and 1 with probabilities q and 12 q respectively, rather than a zero-mean

random variable drawn from a continuous distribution, such as the normal.

11.22 The stochastic process for St is strictly stationary, having the AR(1)

representation:

St 5 12 qð Þ1λSt21 1Vt
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where λ5 p1 q2 1 and where the innovation Vt has the conditional proba-

bility distribution

P Vt 5 12 pð ÞjSt21 5 1ð Þ5 p;
P Vt 52 pjSt21 5 1ð Þ5 12 p;
P Vt 52 12 qð ÞjSt21 5 0ð Þ5 q;
P Vt 5 qjSt21 5 0ð Þ5 12 q

This innovation is uncorrelated with lagged values of St, since

E VtjSt2j 5 1
� �

5E VtjSt2j 5 0
� �

5 0 for j$ 1

but it is not independent of such lagged values, as, for example,

E V2
t jSt21 5 1

� �
5 p 12 pð Þ;

E V2
t jSt21 5 0

� �
5 q 12 qð Þ

The variance of the Markov process can be shown to be

α2
1

12 pð Þ 12 qð Þ
22p2qð Þ2

As this variance approaches zero, i.e., as p and q approach unity, so the ran-

dom walk component (11.11) approaches a deterministic trend. If φ Bð Þ con-
tains no unit roots, xt will approach a trend stationary process, whereas if

φ Bð Þ does contain a unit root, xt approaches a difference stationary process.

11.23 ML estimates of the model are obtained by using (11.11) to write the

noise component as

ut 5 xt 2α0 2α1St ð11:12Þ
Using (11.12), the innovations εt 5φ Bð Þut can be expressed as

εt 5φ Bð Þ xt 2α0 2α1Stð Þ
Assuming the innovations are normal, this expression can be utilized to

calculate the log-likelihood function on noting that this can be decomposed

as the sum of the conditional (on past observations) log-likelihoods.

These conditional log-likelihoods depend on unobserved current and past

realizations of the Markov states. A recursive relationship can be shown to

hold between the conditional distribution of the states and the conditional

likelihood of the observations and this can be exploited to obtain an

algorithm for evaluating the log-likelihood function. Inferences about the

unobserved components and states are then obtained as byproducts of this

evaluation: details of the algorithm may be found in Hamilton (1989) and

Lam (1990).
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EXAMPLE 11.4 A Markov-Switching Model for the $�d Exchange Rate

The two-state Markov process (11.11) with an AR(1) noise component

12φBð Þut 5 εt was fitted to the daily $�d exchange rate, with the probabilities

estimated to be p̂5 0:963 and q̂5 0:983, which imply that the exchange rate

stays in the first regime for an average duration of 12p̂
� �21

527 days and in

the second regime for an average duration of 12q̂
� �21

5 58 days, the AR(1)

process for the state being St 5 0:0171 0:946St21 1Vt . The models for the two

states are estimated to be:

St 5 0: xt 5 1:496
0:075ð Þ

; ut 5 0:9972
0:0009ð Þ

ut21 1 εt ; σ̂ε 5 0:015

St 5 1: xt 5 1:495
0:075ð Þ

; ut 5 1:0006
0:0003ð Þ

ut21 1 εt ; σ̂ε 5 0:007

The models are essentially identical in that both may be considered random

walks, which, of course, is unsurprising. However, the variances of the innova-

tions are rather different across the two regimes.

As a byproduct of the estimation algorithm, estimates of the state probabilities

P St 5 0ð Þ and P St 5 1ð Þ may also be calculated, which enable us to provide

some further insights into the two regimes. Fig. 11.4 plots the exchange rate

along with the indicator variable pt 5 1 P St 5 0ð Þ$ 0:5ð Þ, which indicates when

the exchange rate is more likely to be in the “high volatility” regime. This

figure shows that there is a tendency to be in this regime when the exchange

rate is changing rapidly, which accords well with the ARCH representation of

the series in Example 10.1.
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FIGURE 11.4 $�d Exchange rate, daily 1975�2017, with regime indicator.
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NEURAL NETWORKS

11.24 Neural networks (NNs) refer to a broad class of nonparametric

models which have gained a good deal of popularity in recent years

across a wide range of disciplines, including computer science, psychology,

biology, linguistics, and pattern recognition (for a textbook treatment, see,

for example, Haykin, 1999). These models originate from research in the

cognitive sciences on emulating the structure and behavior of the human

brain.

One of the most common types of NN is the multi-layered perceptron

(MLP), which can be used for nonparametric regression and classification.

These models are organized in three basic layers: the input layer of

independent variables, the output layer of dependent variables, and one or

more hidden layers in-between. An activation function regulates the

dependencies between the elements of each layer. A univariate autoregres-

sive MLP model with a single hidden layer can be represented as:

xt 5
Xp
i51

φixt2i 1
Xq
j51

βjG
Xp
i51

ϕixt2i

 !
1 εt ð11:13Þ

G Uð Þ is the activation function and is a bounded nonlinear function that

operates in an analogous manner to that of the transition functions used in

STAR models. Several activation functions are employed in practice, with

the most common being the hyperbolic tangent and the logistic. The second

term in (11.13) refers to the hidden layer in the MLP. Obviously, (11.13)

collapses to a standard AR(p) model when the activation function is linear.

The residual term εt is usually assumed to be a white noise random

variable.

11.25 The high flexibility, rich parameterization and nonlinear nature of

NNs renders estimation particularly difficult (see White, 2006). One of

the main problems is that NNs are highly susceptible to overfitting.

Consequently, the estimation strategy of NNs is rather different to

traditional linear model estimation in that it typically involves two steps:

in-sample optimization (training or learning) with recurrent testing (cross-

validation), and out-of-sample testing. The in-sample optimization is

usually terminated prior to reaching the maximum possible performance,

when the performance of the model in the cross-validation sample starts to

deteriorate. In this way overfitting is avoided and a good forecasting

performance in the testing sample is more likely. The estimation (training)

algorithms used vary considerably and typically involve adjusting the

direction of the negative gradient of some error criterion (e.g., mean

squared or absolute error).
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11.26 Several iterative methods have been proposed for solving the

nonlinear estimation inherent in (11.13), and these are usually combined

with additional constraints to ensure the smoothness of the estimated

function. In the case of MLPs, most of these methods are based on variants

of the back-propagation algorithm, which works backwards from the output

layer and uses a gradient rule to vary biases and weights iteratively. The

algorithm is sensitive to local minima in the error space and is, therefore,

applied several times with different starting values.

An additional pitfall in MLP estimation concerns the selection of the

appropriate model architecture: the number of hidden layers and the number

of elements in each layer. One can either start with a small model and add

hidden layers until performance is optimal, or start with an oversized model

and prune small weights to reduce its size. Sometimes a preliminary

optimization is undertaken to select a good set of starting values and model

architecture and to reduce the computational burden. Model performance is

often evaluated by information criteria.

11.27 A major problem with MLPs is their “black-box” property, since the

parameters and structure of the model offer little intuition and conclusions

can be drawn only implicitly via simulation or sensitivity analysis.

Moreover, assessing the statistical significance of the parameters is problem-

atic. Because of these various difficulties and the requirement for specialized

software, examples of the fitting of NNs is not undertaken here.

NONLINEAR DYNAMICS AND CHAOS

11.28 So far, all the processes introduced in this chapter have the common

aim of modeling stochastic nonlinearities in time series. This would seem

the natural approach to take when dealing with stochastic time series pro-

cesses, but a literature has also developed that considers the question of

whether such series could have been generated, at least in part, by nonlinear

deterministic laws of motion.

11.29 Research in the general area of nonlinear dynamics is concerned

with the behavior of deterministic and stochastic nonlinear systems. Both

applied and theoretical research has flourished over the past four decades

across a variety of disciplines and an extensive overview of the research on

nonlinear dynamics, albeit with a bias toward the natural sciences, is given

by Hilborn (1997). The meaning of the term “nonlinear dynamics” seems to

vary considerably across scientific disciplines and eras. For example, a popu-

lar interpretation, since the early 1980s, associates nonlinear dynamics with

deterministic nonlinear systems and a specific dynamic behavior called

chaos, although this term has itself been given several different

interpretations.
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11.30 This diversity of meanings is mainly a consequence of there being

no formal and complete mathematical definition of a chaotic system (see, for

example, Berliner, 1992). Broadly speaking, chaos is the mathematical

condition whereby a simple (low-dimensional), nonlinear, dynamical system

produces complex (infinite-dimensional or random-like) behavior. Even

though these systems are deterministic, they are completely unpredictable in

the long-run, due to “sensitive dependence on initial conditions,” also known

as Lyapunov instability. Chaotic systems also invariably have “fractal” or

“self-similar” pictorial representations.

11.31 An example of a chaotic process is one that is generated by a deter-

ministic difference equation

xt 5 f xt21; . . .; xt2p

� �
such that xt does not tend to a constant or a (limit) cycle and has estimated

covariances that are extremely small or zero. A simple example is provided

by Brock (1986), where a formal development of deterministic chaos models

is provided. Consider the difference equation,

xt 5 f xt21ð Þ; x0A½0; 1�
where

f xð Þ5 x=α xA 0;α½ �
12 xð Þ= 12αð Þ xA α; 1½ � 0,α, 1

	

Most realizations (or trajectories) of this difference equation generate

the same SACFs as an AR(1) process for xt with parameter φ5 2α2 1ð Þ.
Hence, for α5 0:5, the realization will be indistinguishable from white

noise, even though it has been generated by a purely deterministic nonlin-

ear process. Hsieh (1991) provides further discussion of this function,

called a tent map because the graph of xt against xt21 (known as the phase

diagram) is shaped like a “tent.” Hsieh also considers other relevant

examples of chaotic systems, such as the logistic map

xt 5 4xt21 12 xt21ð Þ5 4xt21 2 4x2t21; 0, x0 , 1

This also has the same autocorrelation properties as white noise, although x2t
has an SACF consistent with an MA(1) process.

11.32 Are such models useful in practice? One must keep in mind

that systematic research on chaos was first undertaken in the natural

sciences, where nonlinear systems tend to be low-dimensional, either by

experimental construction or from first principles, so chaos is a natural

choice for explaining complex empirical behavior. This is because, in

deterministic systems, the standard types of dynamic behavior are limited
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to fixed-point equilibria and limit cycles, and hence complexity can arise

only in the presence of chaos or high-dimensionality. High-dimensional or

“stochastic” chaos is then of little interest, since it is typically considered

to be equivalent to randomness for all practical purposes.

Unfortunately, an analogous deduction is not possible for many

nonscientific disciplines, such as finance, where it is generally accepted that

financial markets and agents are inherently highly stochastic and evolving,

and so there is no practical need to resort to chaos to explain complex

behavior. Although chaos may have a prominent place in the study of

deterministic low-dimensional dynamic behavior, it seems to have a limited

and rather exotic role to play in the context of stochastic linear and nonlinear

dynamics.

11.33 It is, therefore, not surprising that applications of chaos theory in,

say, finance and economics have been far less popular and successful than

in the natural sciences. Nevertheless, the interest in chaotic processes

continues to persist, much of it being motivated by the ability of chaotic

systems to produce complicated behavior without resorting to exogenous

stochastic factors and shocks. An underlying hope has always been that the

apparently stochastic behavior and long-run unpredictability of financial

systems could be the product of a low-dimensional, and hence tractable,

chaotic system.

11.34 Broadly speaking, research on chaos has taken two distinct

directions. The first starts with a nonlinear deterministic theoretical model

and demonstrates that specific configurations can produce chaotic behavior

(see the selective review by Fernández-Rodriguez et al., 2005). For

example, Brock (1988) considers some models of equilibrium asset pricing

that might lead to chaos and complex dynamics. In these models, the idea

that there should be no arbitrage profits in financial equilibrium is

linked with the theory of economic growth to show how dynamics in the

“dividend” process may be transmitted through the equilibrating mecha-

nism to asset prices. These dynamics can be linear, nonlinear, or chaotic

depending on the constraints imposed on the models.

Although several models of this type can produce “mathematical” chaos,

especially in economics, empirical validation was never undertaken.

Furthermore, the underlying strong assumptions regarding deterministic

dynamic behavior are highly questionable (see Granger, 1992).

11.35 The second approach is model-free and uses nonparametric proce-

dures to test observed time series for signs of chaotic behavior (see, for

example, Fernández-Rodriguez et al., 2005; Kyrtsou and Serletis, 2006;

Shintani and Linton, 2006, and the references contained therein). Although

some studies claim to have found “empirical” chaos, such evidence cannot
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be considered as conclusive since the testing procedures used are susceptible

to a variety of statistical problems, such as autocorrelation, small sample

size, heteroskedasticity, and nonstationarity.

More importantly, all the evidence presented has been circumstantial,

since no formal testing procedure has been developed for stochastic time

series where chaos enters as the null hypothesis. Even if chaos was present

in the data, estimating the unknown parameters of the underlying model

would be practically impossible (Geweke, 1993).

Finally, the literature has not provided convincing arguments about the

practical implications of chaos and the marginal benefits of assuming chaotic

behavior. There has also been little empirical evidence of chaotic dynamics

uncovered in time series from many areas, although much evidence of other

types of stochastic nonlinearities. This evidence has been obtained from a

variety of tests for nonlinearity, to which we now turn.

TESTING FOR NONLINEARITY

11.36 As the previous sections have demonstrated, there have been a wide

variety of nonlinear processes proposed for modeling time series. We have,

for example, compared ARCH and bilinear models, and in so doing have

discussed LM tests for each. Nevertheless, given the range of alternative

nonlinear models, it is not surprising that other tests for nonlinearity

have also been proposed. Since the form of the departure from linearity is

often difficult to specify a priori, many tests are diagnostic in nature, i.e., a

clear alternative to the null hypothesis of linearity is not specified. This, of

course, leads to difficulties in discriminating between the possible causes of

any “nonlinear misspecification” that might be uncovered by such tests.

11.37 The detection of nonlinearity is further complicated by the fact that

it has similar symptoms to other types of time series behavior. For example,

Andersson et al. (1999) have shown that long memory may lead to spurious

rejection of the linearity hypothesis. As demonstrated by Granger and

Teräsvirta (1999) and Diebold and Inoue (2001), the opposite may also be

true, since some nonlinear processes exhibit characteristics that might justify

modeling via a long memory model.

11.38 A related approach considers testing and modeling nonlinearity

within a long memory process (see, for example, Baillie and Kapetanios,

2007). Koop and Potter (2001) have shown that unpredictable structural

instability in a time series may also produce erroneous evidence of

threshold-type nonlinearity. An alarming finding by Ghysels et al. (1996) is

that nonlinear transformations, such as the X11 seasonal adjustment proce-

dure, that are routinely applied prior to time series modeling, may also

induce nonlinear behavior. Equally, seasonal adjustments may smooth out

structural shifts and switching between regimes (see Franses and Paap,
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1999). Finally, as discussed by Van Dijk et al. (1999) and De Lima (1997),

neglecting outliers and nonnormalities may also lead to spurious evidence of

nonlinearity.

Despite these difficulties, testing for nonlinearity is usually an effort well

spent, since the burden associated with the specification and estimation of

nonlinear models is often substantial and complex.

11.39 Empirical applications and simulation studies (e.g., Lee et al., 1993;

Barnett et al., 1997) have shown that no nonlinearity test dominates in all

situations and that power varies with sample size and the characteristics of

the underlying stochastic process. This means that, in practice, it is advisable

to apply a variety of nonlinearity tests to the data to guide the model specifi-

cation process.

11.40 Based on Volterra expansions, Ramsey (1969), Keenan (1985), and

Tsay (1986b) provide regression-type tests of linearity against unspecified

alternatives. These appear to have good power against the nonlinear moving

average and bilinear alternatives, but possibly low power against ARCH

models. In developing these tests, we assume that an AR(p) process has been

fitted to the observed series xt and that the residuals, et, and the fitted values,

x̂t 5 xt 2 et, have been calculated.

11.41 Ramsey’s original Regression Error Specification Test (RESET) is

constructed from the auxiliary regression

et 5
Xp
i51

ϕixt2i 1
Xh
j52

δjx̂jt 1 vt

and is the F-test of the hypothesis H0: δj5 0, j5 2,. . .,h. If h5 2, this is

equivalent to Keenan’s test, while Tsay augments the auxiliary regression

with second-order terms:

et 5
Xp
i51

ϕixt2i 1
Xp
i51

Xp
j5i

δijxt2ixt2j 1 v

in which the linearity hypothesis is H0:δij 5 0, for all i and j. These tests

have LM interpretations and Tsay’s test has power against a greater variety

of nonlinear models than the RESET. A further extension is provided by

Teräsvirta et al. (1993), in which the auxiliary regression becomes:

et 5
Xp
i51

ϕixt2i 1
Xp
i51

Xp
j5i

δijxt2ixt2j 1
Xp
i51

Xp
j5i

Xp
k5j

δijkxt2ixt2jxt2k 1 vt

with the linearity hypothesis now being H0:δij 5 0; δijk 5 0, for all i, j, and k.

This is related to the NN test discussed by Lee et al. (1993) and appears to

have better power.
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11.42 A portmanteau test for nonlinearity developed by McLeod and Li

(1983) is based on the Ljung�Box (1978) statistic calculated using the

squared residuals obtained from a linear fit. The test exploits an idea of

Granger and Andersen (1978), that if the residuals from an AR(p) fit are

i.i.d., then the cross-product of their squares should have a correlation

structure that is the same as that of the square of their cross products (see

y11.10). Under the null hypothesis of linearity, the first m autocorrelations

of the squared residuals are zero and the Ljung�Box portmanteau test

statistic is distributed as χ2
m2p. This test has good power against ARCH

behavior and is asymptotically equivalent to the LM test developed by

Engle (1982). As expected, the power of the test is sensitive to departures

from normality.

11.43 When residuals from an ARMA-GARCH model are used, the test

no longer follows a χ2 distribution and must be corrected along the

lines suggested by Li and Mak (1994). Pena and Rodriguez (2005) have

proposed a simple extension of this test that employs information criteria in

the selection of the optimal lag structure for the autoregressive models fit-

ted to the squared residuals. The checking procedure works on the premise

that if the optimal lag structure is nonzero, then it can be inferred that there

are nonlinearities present in the data. Simulation evidence shows that when

the BIC is used, this test performs favorably for a wide variety of nonlinear

processes and sample sizes. However, it was found to have poor power

against threshold nonlinear processes and certain types of heteroskedastic

behavior.

11.44 Once evidence in favor of nonlinearity has been found, Hsieh (1989)

has developed a test that can shed light on the type of nonlinearity present.

More specifically, the test attempts to discriminate between two types of

nonlinearity: “additive” and “multiplicative.” In the former, nonlinearity

enters solely through the conditional mean of the process:

et 5 gðxt21; . . .; xt2k; et21; . . .; et2kÞ1 ut

where g Uð Þ is an arbitrary nonlinear function. This suggests that a bilinear,

threshold, or smooth transition model may be appropriate. Multiplicative

nonlinearity manifests itself through the conditional variance, thus pointing

toward an ARCH-type model:

et 5 gðxt21; . . .; xt2k; et21; . . .; et2kÞut
The test exploits the fact that, unlike additive dependence, multiplicative

dependence implies that

Eðetjxt21; . . .; xt2k; et21; . . .; et2kÞ5 0 ð11:14Þ
Assuming g Uð Þ is at least twice continuously differentiable, then it can be

approximated via a Taylor expansion around zero. The test is based on the
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idea that the residuals ut must be uncorrelated with the terms in this expan-

sion under multiplicative dependence. The test is implemented by estimating

the scaled third moment of the data:

reeeði; jÞ5
T21

P
etet2iet2j

T21
P

e2t
� �1:5

Under the null hypothesis of multiplicative nonlinearity, T0:5reeeði; jÞ is

asymptotically normally distributed with a variance that can be consistently

estimated by:

σ2 5
T21

P
e2t e

2
t2ie

2
t2j

T21
P

e2t
� �3

As discussed by Hsieh (1989), the approach is related to that of Tsay

(1986b), who tests jointly reee i; jð Þ for 0, i; j, k. The difference is that

Tsay’s test assumes that et is i.i.d. while Hsieh’s test assumes only

that the expectation in (11.14) is zero under sufficient moment conditions.

The former test thus captures any departures from linearity, while the latter

rejects the null only in the presence of additive, but not multiplicative,

nonlinearity.

11.45 Nonlinearity tests have also been based on the reversibility of a sto-

chastic process. A stationary process is said to be time reversible if all its

finite dimensional distributions are invariant to the reversal of time indices.

In other words, if the probabilistic structure of a time series is identical

whether going forward or backward in time then the series is time reversible,

otherwise it is said to be irreversible. Sequences that are i.i.d. and stationary

Gaussian, such as ARMA processes, will be time reversible. However, a lin-

ear, non-Gaussian process will, in general, be time irreversible. Ramsey and

Rothman (1996) have proposed the TR test statistic, estimated for various

lags k as:

TR kð Þ5 B̂2;1 kð Þ2 B̂1;2 kð Þ
where B̂2;1 kð Þ and B̂1;2 kð Þ are estimators of the bicovariances E x2t xt2k

� �
and

E xtx
2
t2k

� �
, respectively. These can be estimated using the residuals from a

linear fit as:

B̂i;j kð Þ5 T2kð Þ21
XT
t5k11

eite
j
t2k i; j5 1; 2

Although ARCH processes are irreversible, the TR test has no power

against them since their bicovariances are zero. Under the null hypothesis of

time reversibility, TR has an expected value of zero for all lags. When the

process is i.i.d., TR is asymptotically normally distributed with variance,
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V TR kð Þð Þ5 2
μ4μ2 2μ3

� �
T 2 k

2 2
μ3
2 T 2 2kð Þ
T2kð Þ2 ; μi 5E eit

� �
:

As shown by Rothman (1992), the convergence to asymptotic normality

is adequately fast even when the process is non i.i.d. and the test is applied

to residuals from a linear fit with nonnormal errors. Rothman shows that

the test has reasonable power against simple bilinear and SETAR models

and that the distinct rejection pattern of the test can be utilized in the model

identification process.

11.46 Nonparametric tests of serial independence have also attracted inter-

est as a means of searching for nonlinearity (see Dufour, 1982). These

include a wide variety of procedures, including sign, permutation, and rank

tests for independence. Nonparametric approaches have also been developed

to test against serial dependence of fixed order (see Pinske, 1998). Most of

these nonparametric tests are based on the actual series, rather than on stan-

dardized residuals from some linear fit, and therefore, the applicability of

their limit distributions for, say, AR residuals is mostly unknown.

11.47 A nonparametric test that has created considerable interest is the

BDS (standing for Brock-Dechert-Scheinkman) statistic, based on the con-

cept of the correlation integral: see, for example, Brock (1986), Brock

et al. (1991), and Dechert (1996). The test is based on the idea that the evo-

lution of the next values of any two blocks of observations, which are close

in some metric, should also be close in the same metric. For an observed

series xt, the correlation integral CN ‘;Tð Þ is defined as:

CN ‘; Tð Þ5 2

TN TN 2 1ð Þ
X
t, s

It x
N
t ; x

N
s

� �

where

xNt 5 xt; xt11; . . .; xt1N21ð Þ
and

xNs 5 xs; xs11; . . .; xs1N21ð Þ
are called “N-histories,” It x

N
t ; x

N
s

� �
equals one if :xNt 2 xNs :, ‘ and zero oth-

erwise, :U: being the sup-norm, and TN5 T2N1 1.

The correlation integral is an estimate of the probability that any two N-

histories, xNt and xNs , are within ‘ of each other. If the xts are strict white

noise, then

CN ‘;Tð Þ-C1 ‘; Tð ÞN ; as T-N
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and

wN ‘;Tð Þ5
ffiffiffiffi
T

p
CN ‘; Tð Þ2C1 ‘;Tð ÞN� �

σN ‘;Tð Þ
has a standard normal limiting distribution, where the expression for the

variance σ2
N ‘;Tð Þ may be found in, for example, Hsieh (1989, page 343).

The BDS statistic wN ‘;Tð Þ thus tests the null hypothesis that a series is strict

white noise. It is a diagnostic test, since a rejection of this null is consistent

with some type of dependence in the data, which could result from a

linear stochastic system, a nonlinear stochastic system, or a nonlinear

deterministic system. Additional diagnostic tests are, therefore, needed to

determine the source of the rejection, but simulation experiments do suggest

that the BDS test has power against simple linear deterministic systems as

well as nonlinear stochastic processes.

11.48 Tests are also available for specific nonlinear alternatives. Tests

against ARCH and bilinear alternatives have already been discussed in

yy11.15�11.16 and there is also a fully developed testing procedure against

STAR models. From Teräsvirta (1994), an LM-type test statistic for the null

of linearity against an LSTAR alternative can be constructed from the auxil-

iary regression,

et 5
Xp
i51

ϕixt2i 1
Xp
i51

δ1jxt2ixt2d 1
Xp
i51

δ2jxt2ix
2
t2d 1

Xp
i51

δ3jxt2ix
3
t2d 1 vt

with the linearity hypothesis being H0:δij 5 0, for all i and j. To test against

an ESTAR alternative the same auxiliary regression is estimated, but with-

out the fourth-order terms, i.e., we set δ3j5 0 a priori. This relationship

between the two tests leads naturally to a method for discriminating

between the two types of STAR models (see Teräsvirta, 1994, for details,

and Example 11.5).

11.49 Of course, these tests assume that the delay parameter d is

known. Typically, however, its value will be unknown and Teräsvirta

suggests that it should be chosen on the basis of a sequence of LM tests

for alternative values of d: we choose the value that minimizes the p-value

of the individual tests in the sequence. The auxiliary regression can also

be estimated with xt rather than et as the dependent variable and this may

be preferred as it provides a direct comparison with the AR(p) model under

the null of linearity. Van Dijk et al. (2002) discuss some extensions to this

testing procedure.

11.50 Further tests are discussed in Teräsvirta et al. (2011). It should be

emphasized, however, that all these tests are designed to distinguish between
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linear and nonlinear stochastic dynamics. They are not, however, capable of

distinguishing nonlinear stochastic dynamics from deterministic chaotic

dynamics, although the rejection of linearity may, of course, motivate the

investigation of chaotic models.

EXAMPLE 11.5 Nonlinearity Tests for the Long Interest Rate

The presence of nonlinearity in United Kingdom long interest rates can be

assessed by subjecting the series to a variety of the tests previously discussed. An

AR(2) process for the first-differences was found to be the most appropriate linear

fit, estimated as

xt 5 0:304
0:035ð Þ

xt21 2 0:126
0:035ð Þ

xt22 1 et

The RESET/Keenan test produces an F-statistic of 6.69, which is significant at

the 1% level. Tsay’s test statistic has an F-value of 2.32, this having a p-value of

0.07. The portmanteau statistic calculated using the squared residuals from the

AR(2) fit is highly significant for all values of m, whereas the TR statistic for k51

and 2 are both insignificant. The BDS statistics from N up to 6 are all highly

significant.

The tests for LSTAR for a delay d equal to 1 or 2 have p-values of 0.018 and

0.027, while the analogous ESTAR tests have p-values of 0.029 and 0.011, thus

suggesting that an ESTAR(2,2) model should be considered, which explains the

choice of model in Example 11.3.

FORECASTING WITH NONLINEAR MODELS

11.51 One-step ahead forecasting from nonlinear models is straightforward,

but multistep forecasting may be complicated. If we have the simple nonlin-

ear model, xt 5 g xt21ð Þ1 εt then the one-step ahead forecast is straightfor-

wardly given by fT ;1 5 g xTð Þ. However, the two-step ahead forecast is

fT ;2 5E
�
xT12



xT�5E g g xT11ð Þ1 εT11ð Þð Þ5
ð
ε
g g xT11ð Þ1 εT11ð ÞdF εð Þ

ð11:15Þ
where dF εð Þ is the cumulative distribution function of εt. Numerical

integration of (11.15) may prove difficult, particularly as the forecast

horizon increases. If the error term is ignored, what Tong (1990) calls

the “skeleton” forecast may be used: fT ;h 5 g xT1h21 xTj Þð . This forecast

will, however, be biased. Alternatively, the integral in (11.15) may be

approximated by simulation or by bootstrapping the residuals of the fitted

model.

Some nonlinear models do allow multistep forecasts to be obtained ana-

lytically and for further discussion on all these procedures, see Teräsvirta

(2007).
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ENDNOTES

1. The term martingale, which also denotes part of a horse’s harness or a ship’s rigging, refers

in addition to a gambling system in which every losing bet is doubled, a usage that may be

felt to be rather apposite when considering the behavior of financial data!

2. This is a rather informal definition which conditions only on the past history of the series.

More formal and general definitions are available which use concepts from measure theory.

The Electronic Journal for History of Probability and Statistics devotes an entire issue

(Volume 5, Number 1, 2009) to “The Splendors and Miseries of Martingales.”

3. A more general specification allows the orders of the autoregression to differ in each regime,

producing the natural notation SETAR r:p1; p2; . . . ; pr ; dð Þ.
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TRANSFER FUNCTION-NOISE MODELS

12.1 The models that have been developed so far in this book have all

been univariate, so that the current value of a time series depends, linearly

or otherwise, only on past values of itself and, perhaps, a deterministic

function of time. While univariate models are important in themselves, they

also play a key role in providing a “baseline” to which multivariate models

may be compared. We shall analyze several multivariate models over

the next chapters, but our development begins with the simplest. This is the

single-input transfer function-noise model, in which an endogenous, or

output, variable yt is related to a single input, or exogenous, variable xt
through the dynamic model1

yt 5 υ Bð Þxt 1 nt ð12:1Þ
where the lag polynomial υ Bð Þ5 υ0 1 υ1B1 υ2B2 1? allows x to influence

y via a distributed lag: υ Bð Þ is often referred to as the transfer function and

the coefficients υi as the impulse response weights.

12.2 It is assumed that both input and output variables are stationary, per-

haps after appropriate transformation. The relationship between the two is not,

however, deterministic—rather, it will be contaminated by noise captured by

the stochastic process nt, which will generally be serially correlated. A crucial

assumption made in (12.1) is that xt and nt are independent, so that past x’s

influence future y’s but not vice-versa, so ruling out feedback from y to x.

12.3 In general, υ Bð Þ will be of infinite order and, hence, some restrictions

must be placed on the transfer function before empirical modeling of (12.1)
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becomes feasible. The typical way in which restrictions are imposed is analo-

gous to the approximation of the linear filter representation of a univariate

stochastic process by a ratio of low order polynomials in B, which leads to

the familiar ARMA model (cf. yy3.25�3.27). More precisely, υ Bð Þ may be

written as the rational distributed lag

υ Bð Þ5 ω Bð ÞBb

δ Bð Þ ð12:2Þ

Here the numerator and denominator polynomials are defined as

ω Bð Þ5ω0 2ω1B2?2ωsB
s

and

δ Bð Þ5 12 δ1B2?2 δrBr

with the roots of δ Bð Þ all assumed to be less than unity. The possibility that

there may be a delay of b periods before x begins to influence y is allowed

for by the factorization of the numerator in (12.2): if there is a contempora-

neous relationship then b5 0.

12.4 The relationship between the impulse response weights υi and the

parameters ω0; . . . ;ωs; δ1; . . . ; δr and b can always be obtained by equating

the coefficients of Bj in

δ Bð Þυ Bð Þ5ω Bð ÞBb

For example, if r5 1 and s5 0, so that

υ Bð Þ5 ω0B
b

12 δ1B

then

υi 5 0 i, b

υi 5ω0 i5 b

υi 5 δ1υi21 i. b

Further examples are provided in Box and Jenkins (1970, Table 10.1) and

Mills (1990, Table 13.1).

12.5 The noise process may be assumed to follow an ARMA (p, q) model:

nt 5
θ Bð Þ
φ Bð Þ at

so that the combined transfer function-noise model can be written as

yt 5
ω Bð Þ
δ Bð Þ xt2b 1

θ Bð Þ
φ Bð Þ at ð12:3Þ
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Box and Jenkins (1970, Chapter 11) develop an identification, estimation,

and diagnostic checking procedure for single-input transfer function models

of the form of (12.3). The identification stage uses the cross-correlation

function between the output and input after they have both been transformed

using the filter (i.e., ARMA model) that reduces xt to white noise, which is

known as prewhitening. Estimation and diagnostic checking use extensions

of their univariate counterparts, although these are not necessarily straight-

forward. There have also been several other identification techniques pro-

posed over the years, most notably based on prewhitening the input and

output using individual filters (ARMA models).

12.6 If identifying a univariate ARMA model is often considered to be an

“art form,” then identifying a transfer function in this way is even more so

and, if there are multiple inputs, can become increasingly difficult, for the

model is now:

yt 5
XM
j51

υj Bð Þxj;t 1 nt 5
XM
j51

ωj Bð ÞBbj

δj Bð Þ xj;t 1
θ Bð Þ
φ Bð Þ at ð12:4Þ

where

ωj Bð Þ5ωj;0 2ωj;1B2?2ωj;sjB
sj

and

δj Bð Þ5 12 δj;1B2?2 δj;rjB
rj

The simplest way to proceed is to use the Box�Jenkins approach in a

“piecemeal” fashion, identifying a set of single-input transfer functions

between y and x1, y and x2, etc., and then combining them to identify the noise

model, after which estimation and diagnostic checking can be attempted.

12.7 The problem here is that the sample cross-correlation functions

between each prewhitened input and the correspondingly filtered output may

be misleading if the x’s are intercorrelated. In mitigation, if these input series

have been differenced to induce stationarity then it is well known that such

differencing will reduce intercorrelations between the series. It may then

be the case that the stationary input series are only weakly related and,

analogous to the situation of independent regressors in multiple regression

analysis, this piecemeal approach to identification may often work quite

well, particularly as joint estimation of the combined model and judicious

use of diagnostic checking procedures may then enable an adequately speci-

fied model to be obtained.

AUTOREGRESSIVE DISTRIBUTED LAG MODELS

12.8 Nevertheless, it would clearly be useful if an automatic model selec-

tion procedure could be developed. This has not been done for the multiple
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input model (12.4), but if a restricted form of it is specified then such a pro-

cedure becomes feasible. This restricted form is known as the autoregressive

distributed lag, or ARDL, model and is obtained by placing the following

restrictions on (12.4):

δ1 Bð Þ5?5 δM Bð Þ5φ Bð Þ θ Bð Þ5 1

so that the model is, on defining βj Bð Þ5ωj Bð ÞBbj and including an intercept,

φ Bð Þyt 5β0 1
XM

j51
βj Bð Þxj;t 1 at ð12:5Þ

This is known as the ARDL p; s1; . . . ; sMð Þ model and restricts all the

autoregressive lag polynomials to be the same and excludes a moving

average noise component, although this exclusion is not essential. These

restrictions reduce the noise component to white noise through constraining

the dynamics and enables (12.5) to be estimated by OLS, so that on selecting

a maximum lag order of, say, m, goodness-of-fit statistics, such as informa-

tion criteria, can be used to select the appropriate specification.

12.9 The ARDL representation (12.5) may be recast in a potentially useful

way. Recalling the development of y8.4, each input polynomial may be

decomposed as

βj Bð Þ5βj 1ð Þ1r ~β j Bð Þ
where

~β j Bð Þ5 ~β j;0 1
~β j;1B1 ~β j;2B

2 1?1 ~β j;sj21B
sj21

with

~β j;i 52
Xsj

l5i11
βj;l

Consequently, (12.5) can be written as

yt 5β0 1
Xp

i51
φiyt2i 1

XM

j51
βj 1ð Þxj;t 1

XM

j51
~β j Bð Þrxj;t 1 at ð12:6Þ

Solving for yt then yields

yt 5 θ0 1
XM

j51
θjxj;t 1

XM

j51
~θj Bð Þrxj;t 1 εt ð12:7Þ

in which

θ0 5φ21 1ð Þβ0

θj 5φ21 1ð Þβj 1ð Þ
~θj Bð Þ5φ21 Bð Þ ~β j Bð Þ2�

~φ Bð Þφ21 1ð Þβj 1ð ÞÞ j5 1; . . . ;M

εt 5φ21 Bð Þat
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where

~φ Bð Þ5r21 φ Bð Þ2φ 1ð Þð Þ
has been used.

The representation (12.7) separates out the long-run relationships between

the output and the inputs from short-run effects, but is not amenable to direct

estimation. The estimate of the long-run relationship between y and xj may

be obtained from (12.6) and is given by

θ̂j 5
β̂ j 1ð Þ

12
Pp

i51 φ̂i

5
β̂ j;0 1?1 β̂ j;sj

12
Pp

i51 φ̂i

and an accompanying standard error may be computed accordingly.

Various other re-expressions of the ARDL model (12.5) are available and

are discussed in detail in Banerjee et al. (1993, Chapter 2). One such trans-

formation, known as the error-correction model, will be introduced and used

extensively in Chapter 14, Error Correction, Spurious Regressions, and

Cointegration.

EXAMPLE 12.1 An ARDL Model for UK Interest Rates

In Example 11.3 an ESTAR model was estimated for the monthly change in the

United Kingdom long interest rate, which produced a modest improvement in fit

over the linear AR(2) specification, estimated to be (with DR20 now denoting

the change in the long rate):

DR20t 5
0:304
0:035ð ÞDR20t21 2

0:126
0:035ð ÞDR20t22 1 ât σ̂a 5 0:279

We now fit an ARDL model with the change in the short interest rate, DRS,

included as a single input. Setting the maximum lag order at m5 4, Fig. 12.1

shows the AIC values for the 20 possible ARDL models, from which an ARDL

(2,1) is selected and which is estimated to be

DR20t 5
0:227
0:036ð ÞDR20t21 2

0:109
0:036ð ÞDR20t22 1

0:297
0:021ð ÞDRSt 2

0:073
0:023ð ÞDRSt21 1 ât

σ̂a 50:249

The equivalent form of (12.6) is

DR20t 5
0:227
0:036ð ÞDR20t21 2

0:109
0:036ð ÞDR20t22 1

0:224
0:028ð ÞDRSt 1

0:075
0:023ð Þ rDRSt 1 ât

and the long-run parameter contained in (12.7) is then calculated to be

θ̂5
0:224

12 0:2271 0:109
5

0:254
0:028ð Þ
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The significance of both the contemporaneous and one-month lagged change

in the short rate produces an 11% reduction in the residual standard error over

the univariate model and shows that knowledge of changes in the short interest

rate help to predict changes in the long interest rate.

EXAMPLE 12.2 ARDL Modeling of Global Temperatures

Fig. 12.2 shows global temperature and four possible “forcings”—total radiative

forcing due to both anthropogenic and natural factors (excluding volcanic erup-

tions), radiative forcing due to volcanic stratospheric aerosols, and scaled indices of

the Southern Oscillation and the Atlantic Multidecadal Oscillation—annually for

the period of 1866�2015. From this figure, global temperature and total radiative

forcing are clearly nonstationary, as would be expected, and unit root tests confirm

they are both I(1). Volcanic forcing and the two oceanic-atmospheric phenomena

are, however, clearly stationary, as is also confirmed by unit root tests.

The ARDL model, (12.8), containing only stationary variables, was therefore

considered, using obvious names for the variables to aid interpretation:

rTEMPt 5 β0 1
Pm

i51 φirTEMPt2i 1
Pm

i50 β1;irTRFt2i 1
Pm

i50 β2;iVOLCt2i

1
Pm

i50 β3;iSOt2i 1
Pm

i50 β4;iAMOt2i 1 at

ð12:8Þ
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FIGURE 12.1 AIC values for ARDL models of short and long interest rates. AIC, Akaike

Information criterion; ARDL, Autoregressive distributed lag.

206 Applied Time Series Analysis



All the forcing variables may be considered to be exogenous and, on setting

m5 6, an ARDL(3,2,0,1,4) model was selected, whose parameter estimates are

shown in column (1) of Table 12.1. Various residual checks confirm the ade-

quacy of this specification. Several of the parameter estimates are insignificant
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FIGURE 12.2 Climate data, annual 1866�2015. Top panel: temperature and total radiative

forcing (excluding from volcanic eruptions); middle panel: Southern Oscillation index (SOI) and

Atlantic Multidecadal Oscillation (AMO); bottom panel: radiative forcing from volcanic eruptions.

McDermott, G.R., 2017. Sceptic priors and climate policy. Working paper.; data downloaded

from ,https://github.com/grantmcdermott/sceptic-priors..

Transfer Functions and Autoregressive Chapter | 12 207

https://github.com/grantmcdermott/sceptic-priors


and were, therefore, set to zero, with the restricted model estimates being shown

in column (2). Written in the form of (12.6), this model is

rTEMPt 52
0:518
0:071ð Þ rTEMPt21 2

0:369
0:066ð Þ rTEMPt22 2

0:325
0:067ð Þ rTEMPt23

1
0:560
0:169ð Þ rTRFt22 1

0:086
0:021ð ÞVOLCt 2

0:449
0:082ð Þ SOt 1

0:107
0:063ð Þ rSOt

2
0:007
0:039ð ÞAMOt 1

0:243
0:058ð Þ rAMOt 1

0:147
0:047ð Þ r

4AMOt 1 ât

ð12:9Þ
All the estimates are highly significant except for β4 1ð Þ. Column (3) of

Table 12.1 reports the estimates of the model when this coefficient is set to zero.

With this restriction imposed, the model can be written in terms of the levels of

each variable as

TABLE 12.1 ARDL(3,2,0,1,4) Estimates of (12.8)

Unrestricted ARDL (1) Restricted (2) Restricted (3)

β̂0
2 0.002 (0.007) � �

φ̂1
2 0.519 (0.079) 2 0.518 (0.071) 2 0.520 (0.070)

φ̂2
2 0.350 (0.078) 2 0.369 (0.066) 2 0.370 (0.066)

φ̂3
2 0.333 (0.074) 2 0.325 (0.067) 2 0.324 (0.067)

β̂1;0
0.622 (0.483) � �

β̂1;1
2 1.055 (0.761) � �

β̂1;2
1.160 (0.487) 0.560 (0.169) 0.561 (0.168)

β̂2;0
0.089 (0.022) 0.086 (0.021) 0.085 (0.021)

β̂3;0
2 0.336 (0.058) 2 0.342 (0.056) 2 0.343 (0.056)

β̂3;1
2 0.105 (0.066) 2 0.107 (0.063) 2 0.107 (0.063)

β̂4;0
0.379 (0.051) 0.382 (0.049) 0.385 (0.046)

β̂4;1
2 0.239 (0.067) 2 0.243 (0.058) 2 0.241 (0.057)

β̂4;2
2 0.017 (0.072) � �

β̂4;3
0.028 (0.069) � �

β̂4;4
2 0.154 (0.061) 2 0.147 (0.047) 2 0.144 (�)

σ̂a 0.0696 0.0689 0.0687

ARDL, Autoregressive distributed lag.
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TEMPt 52 0:520TEMPt21 2 0:370TEMPt22 2 0:324TEMPt23 1 0:561TRFt22

10:085
PN

i50 VOLCt2i 2 0:343SOt 2 0:450
PN

i51 SOt2i

10:385AMOt 1 0:144
P3

i51 AMOt2i 1 constant

ð12:10Þ
The level of total radiative forcing, therefore, has a positive effect on tempera-

tures, while it is the cumulative level of volcanic eruptions and the SO that effect

temperatures, positively for the former and negatively for the latter. Because the

long-run effect of the AMO on temperature change is zero, this index has only a

transitory positive effect on temperature levels.

Of especial interest is the long-run coefficient on total radiative forcing, esti-

mated to be

θ̂1 5
0:561

11 0:5201 0:3701 0:324
5

0:253
0:075ð Þ

which has an accompanying 95% confidence interval of 0:1, θ1 , 0:4. The tran-

sient climate response (TCR) is defined as the warming produced after a doubling

of CO2 if CO2 increases at a rate of 1% per annum, i.e., after 70 years. It may be

calculated as TCR5 θ̂1 3 F23 , where F23 is the change in forcing that results

from such a doubling of CO2. A value of F23 5 3:71 is the Intergovernmental

Panel on Climate Change’s (IPCC) best estimate of this parameter. Thus, TCR is

TABLE 12.2 ARDL(4,0,1,1) Estimates of (12.11)

Unrestricted ARDL (1) Restricted (2)

β̂0
2 0.046 (0.012) 20.046 (0.011)

φ̂1
0.310 (0.080) 0.309 (0.078)

φ̂2
0.083 (0.057) 0.094 (0.060)

φ̂3
0.027 (0.063) �

φ̂4
0.133 (0.055) 0.144 (0.048)

β̂1;0
0.189 (0.483) 0.191 (0.032)

β̂2;0
0.050 (0.029) 0.048 (0.011)

β̂2;1
0.048 (0.029) 0.048 (�)

β̂3;0
2 0.307 (0.054) 20.305 (0.053)

β̂3;1
2 0.117 (0.061) 20.114 (0.060)

β̂4;0
0.390 (0.047) 0.393 (0.046)

β̂4;1
2 0.189 (0.012) 20.191 (0.056)

σ̂a 0.0659 0.0655

ARDL, Autoregressive distributed lag.
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estimated to be 0.94�C with a 95% confidence interval for the TCR of

0:4℃, TCR, 1:5℃. This is very much at the lower end of the range that the IPCC

thinks is “most likely,” this being 1.0�C�2.5�C.
An alternative approach is to ignore the “I(1)-ness” of temperatures and total

radiative forcing and to consider the “levels” model:

TEMPt 5β0 1
Pm

i51 φiTEMPt2i 1
Pm

i50 β1;iTRFt2i 1
Pm

i50 β2;iVOLCt2i

1
Pm

i50 β3;iSOt2i 1
Pm

i50 β4;iAMOt2i 1 at

ð12:11Þ
Again setting m5 6, an ARDL(4,0,1,1,1) model was selected, whose esti-

mates are shown in column (1) of Table 12.2. On noting that the coefficient esti-

mates on VOLCt and VOLCt21 are almost identical, the restriction β20 2β21 5 0

was imposed, along with omitting the insignificant third-order lag on tempera-

tures, and this restricted model is shown in column (2) of Table 12.2. Writing it

in the form of (12.6), this model is

TEMPt 52
0:046
0:011ð Þ 1

0:309
0:078ð ÞTEMPt21 1

0:094
0:060ð Þ TEMPt22 1

0:144
0:048ð ÞTEMPt24

1
0:191
0:032ð Þ TRFt 1

0:096
0:022ð ÞVOLCt 2

0:048
2ð Þ rVOLCt

2
0:419
0:078ð Þ SOt 1

0:114
0:060ð Þ rSOt 1

0:202
0:049ð ÞAMOt 1

0:191
0:056ð Þ rAMOt 1 ât

This provides a slightly better fit than (12.9) and continues to pass all diagnos-

tic checks. The long-run coefficient of total radiative forcing is now:

θ̂1 5
0:191

1:0:30920:09420:144
5

0:422
0:021ð Þ

and this gives a 95% confidence interval for the TCR of 1:53�C, TCR,1:61�C.
This is rather higher and much more precise than that obtained from (12.9) and

lies in the central region of the IPCC’s range of likely values of the TCR.

ENDNOTES

1. Other terms that are used are dependent for yt and independent or pre-determined for xt .
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MULTIVARIATE DYNAMIC REGRESSION MODELS

13.1 In a natural extension to the ARDL model of the previous chapter,

suppose that there are now two endogenous variables, y1;t and y2;t, that may

both be related to an exogenous variable xt and its lags as well as to lags of

each other. In the simplest case, such a model would be:

y1;t 5 c1 1 a11y1;t21 1 a12y2;t21 1 b10xt 1 b11xt21 1 u1;t
y2;t 5 c2 1 a21y1;t21 1 a22y2;t21 1 b20xt 1 b21xt21 1 u2;t

ð13:1Þ

The “system” contained in Eq. (13.1) is known as a multivariate dynamic

regression, a model treated in some detail in Spanos (1986, Chapter 24).

Note that the “contemporaneous” variables, y1;t and y2;t, are not included as

regressors in the equations for y2;t and y1;t, respectively, as this would lead to

simultaneity and an identification problem, in the sense that the two equa-

tions making up (13.1) would then be statistically indistinguishable, there

being the same variables in both. Of course, y1;t and y2;t may well be

contemporaneously correlated, and any such correlation can be modeled by

allowing the covariance between the innovations to be nonzero, so that

E u1;tu2;t
� �

5σ12 say, the variances of the two innovations then being

E u21
� �

5 σ2
1 and E u22

� �
5σ2

2.

13.2 The pair of equations in (13.1) may be generalized to a model con-

taining n endogenous variables and k exogenous variables.1 Gathering these

together in the vectors y0t 5 y1;t; y2;t; . . .; yn;t
� �

and x0t 5 x1;t; x2;t; . . .; xk;t
� �

,
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the general form of the multivariate dynamic regression model may be

written as:

yt 5 c1
Xp
i51

Aiyt2i 1
Xq
i50

Bixt2i 1 ut ð13:2Þ

where there is a maximum of p lags on the endogenous variables and a maxi-

mum of q lags on the exogenous variables. Here c0 5 c1; c2; . . . ; cnð Þ is a

13 n vector of constants and A1;A2; . . .;Ap and B0;B1;B2; . . .;Bq are sets of

n3 n and n3 k matrices of regression coefficients, respectively, such that

Ai 5

a11;i a12;i . . . a1n;i
a21;i a22;i . . . a2n;i
^ ^

an1;i an2;i . . . ann;i

2
664

3
775 Bi 5

b11;i b12;i . . . b1k;i
b21;i b22;i . . . b2k;i
^ ^

bn1;i bn2;i . . . bnk;i

2
664

3
775

u0t 5 u1;t; u2;t; . . .; un;t
� �

is a 13 n zero mean vector of innovations (or errors),

whose variances and covariances can be gathered together in the symmetric

n3 n error covariance matrix

Ω5E utu
0
tð Þ5

σ2
1 σ12 . . . σ1n

σ12 σ2
2 . . . σ2n

^ ^
σ1n σ2n . . . σ2

n

2
664

3
775

It is assumed that these errors are mutually serially uncorrelated, so that

E utu
0
sð Þ5 0 for t 6¼ s, where 0 is an n3 n null matrix.

13.3 The model (13.2) may be estimated by (multivariate) least squares if

there are exactly p lags of the endogenous variables and q lags of the exogenous

variables in each equation. If there are different lag lengths in the individual

equations, then a systems estimator is required to obtain efficient estimates.2

VECTOR AUTOREGRESSIONS

13.4 Suppose the model (13.2) does not contain any exogenous variables,

so that all the Bi matrices are zero, and that there are p lags of the endoge-

nous variables in every equation:

yt 5 c1
Xp
i51

Aiyt2i 1 ut ð13:3Þ

Because (13.3) is now simply a pth order autoregression in the vector yt it is

known as a vector autoregression (VAR(p)) of dimension n and, again, can

be estimated by multivariate least squares.3 It is assumed that all the series

contained in yt are stationary, which requires that the roots of the characteris-

tic equation associated with (13.3),

A Bð Þ5 In 2A1B2?2ApB
p 5 0
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have moduli that are less than unity (bearing in mind that some of the np

roots may appear as complex conjugates).

VARs have become extremely popular for modeling multivariate systems

of time series because the absence of xt terms precludes having to make any

endogenous�exogenous classification of the variables, for such distinctions

are often considered to be highly contentious.

GRANGER CAUSALITY

13.5 In the VAR (13.3) the presence of nonzero off-diagonal elements in

the Ai matrices, ars;i 6¼ 0, r 6¼ s, implies that there are dynamic relationships

between the variables, otherwise the model would collapse to a set of n uni-

variate AR processes. The presence of such dynamic relationships is known

as Granger (-Sims) causality.4 The variable ys does not Granger-cause the

variable yr if ars;i 5 0 for all i5 1; 2; . . . ; p. If, on the other hand, there is at

least one ars;i 6¼ 0 then ys is said to Granger-cause yr because if that is the

case then past values of ys are useful in forecasting the current value of yr:

Granger causality is, thus, a criterion of “forecastability.” If yr also Granger-

causes ys, the pair of variables are said to exhibit feedback.

13.6 Within a VAR(p), Granger causality running from ys to yr, which may

be depicted as ys-yr, can be evaluated by setting up the null hypothesis

of non-Granger causality (ys does not-yr), H0:ars;1 5?5 ars;p 5 0, and

testing this with a Wald statistic; a multivariate extension of the standard

F-statistic for testing a set of zero restrictions in a conventional regression

model: see, for example, Mills (2014, y13.3).

13.7 The presence of nonzero off-diagonal elements in the error covariance

matrix Ω signals the presence of simultaneity. For example, σrs 6¼ 0 implies

that yr;t and ys;t are contemporaneously correlated. It might be tempting to

try and model such correlation by including yr;t in the equation for ys;t but, if

this is done, then ys;t could equally well be included in the yr;t equation. As

was pointed out in y13.1, this would lead to an identification problem, since

the two equations would be statistically indistinguishable and the VAR could

no longer be estimated. The presence of σrs 6¼ 0 is sometimes referred to as

instantaneous causality, although we should be careful when interpreting this

phrase, as no causal direction can be inferred from σrs being nonzero (recall

the “correlation does not imply causation” argument found in any basic sta-

tistics text: see, e.g., Mills, 2014, y5.4).

DETERMINING THE LAG ORDER OF A VECTOR
AUTOREGRESSION

13.8 To enable the VAR to become operational the lag order p, which will

typically be unknown, needs to be determined empirically. A traditional way
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of selecting the lag order is to use a sequential testing procedure. Consider

the model (13.3) with error covariance matrix Ωp 5E utu
0
t

� �
, where a p sub-

script is included to emphasize that the matrix is related to a VAR(p). An

estimate of this matrix is given by:

Ω̂p 5 T2pð Þ21ÛpÛ
0

p

where Ûp 5 ðû0
p;1; . . .; û

0
p;nÞ0 is the matrix of residuals obtained by OLS esti-

mation of the VAR(p), ûp;r 5 ðûr;p11; . . .; ûr;T Þ0 being the residual vector from

the rth equation (noting that with a sample of size T, p observations will be

lost through lagging). A likelihood ratio (LR) statistic for testing the order p

against the order m, m, p, is

LR p;mð Þ5 T 2 npð Þlog
Ω̂m

��� ���
Ω̂p

��� ���

0
B@

1
CABχ2

n2 p2mð Þ ð13:4Þ

Thus, if LR p;mð Þ exceeds the α critical value of the χ2 distribution with

n2 p2mð Þ degrees of freedom, then the hypothesis that the VAR order is m

is rejected at the α level of significance in favor of the higher order p. The

statistic uses the scaling factor T 2 np rather than T 2 p to account for possi-

ble small sample bias.

The statistic (13.4) may then be used sequentially beginning with a maxi-

mum value of p, pmax say, testing first pmax against pmax 2 1 using

LR pmax; pmax 2 1ð Þ and, if this statistic is not significant, then testing pmax 2 1

against pmax 2 2 using LR pmax 2 1; pmax 2 2ð Þ, continuing until a significant test
is obtained.

Alternatively, some type of information criterion can be minimized.

These are essentially multivariate extensions of those initially introduced in

y3.35: for example, the multivariate AIC and BIC criteria are defined as:

MAIC pð Þ5 log Ω̂p

��� ���1 21 n2p
� �

T21

MBIC pð Þ5 log Ω̂p

��� ���1 n2pT21ln T p5 0; 1; . . .; pmax

13.9 After an order has been selected and the VAR fitted, checks on its

adequacy need to be performed. These are analogues to the diagnostic checks

used for univariate models introduced in y3.34, but with vector time series

there is probably no substitute for detailed inspection of the residual correla-

tion structure, including cross-correlations, for revealing subtle relationships

that may indicate important directions for model improvement.
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EXAMPLE 13.1 The Interaction of the United Kingdom Bond and Gilt
Markets

Example 12.1 developed an ARDL model in which the change in the long

United Kingdom interest rate, rR20t , was treated as endogenous and the change

in the short interest rate, rRSt , was assumed to be exogenous. It is important to

understand that this exogeneity assumption may not be valid. These series may

be thought of as being representative of the gilt and bond markets in the United

Kingdom, which may interact in a dynamic fashion that could well involve a

feedback from the gilt to the bond market, i.e., from long rates to short rates.

The interaction between the two markets may be investigated by first deter-

mining the order of the two-dimensional VAR for yt 5 ðrRSt ;rR20t Þ0. Table 13.1

shows various statistics for doing this for a maximum setting of pmax 5 4. The LR

and MAIC statistics select an order of two while the MBIC selects an order of

one, although the VAR(1) fit leaves a significant second-order residual autocorre-

lation in the rR20 equation. An order of two was, therefore, chosen with the fit-

ted VAR(2) being:

rRSt
rR20t

" #
5

0:218
0:040ð Þ

0:279
0:061ð Þ

20:011
0:026ð Þ

0:313
0:040ð Þ

2
64

3
75 rRSt21

rR20t21

" #
1

0:021
0:039ð Þ

20:067
0:062ð Þ

0:022
0:026ð Þ

20:140
0:040ð Þ

2
64

3
75 rRSt22

rR20t22

" #
1

û1;t

û2;t

" #

The intercept vector c has been excluded from the model as, consistent with

Example 12.1, it was found to be insignificant. Various checks on the residuals

of the VAR(2) failed to uncover any model inadequacy.

Within the estimated AR(2) model, the Granger causality Wald statistics test

a12;1 5 a12;2 5 0 for the null rR20 does not-rRS, and a21;1 5 a21;2 5 0 for the

TABLE 13.1 Lag Length Determination Statistics for the VAR

Fitted to United Kingdom Interest Rates

p L p
� �

LR p;p2 1
� �

MAIC MBIC

0 2 535.4 � 1.376 1.388

1 2 470.9 128.4 1.221 1.257a

2 2 464.4 13.0a 1.215a 1.274

3 2 463.6 1.6 1.223 1.307

4 2 462.9 1.3 1.232 1.339

LR p;p2 1
� �

Bχ2 4ð Þ: χ2
0:05 4ð Þ5 9:5. VAR, Vector autoregression.

aSelected value.
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null rRS does not-rR20. These statistics are 20.87 and 0.83, respectively, and

reveal that the long rate Granger-causes the short rate, but that there is no feed-

back: movements in the gilt market thus lead, and so help to forecast, move-

ments in the bond market.

This result contradicts the ARDL model of Example 12.1, in which it was

assumed that movements in the bond market influenced the gilt market. Note, how-

ever, that the ARDL model allowed the contemporaneous value of rRSt to appear

as a regressor, which is precluded in the VAR. Nevertheless, it would be expected

that the covariance (correlation) between the residuals of the VAR would be positive

and substantial. The correlation is, in fact, 0.45, confirming that there are strong

contemporaneous movements in the two markets, as might be expected.

VARIANCE DECOMPOSITIONS AND INNOVATION
ACCOUNTING

13.10 While the estimated coefficients of a VAR(1) are relatively easy to

interpret, this quickly becomes problematic for higher order VARs because

not only do the number of coefficients increase rapidly (each additional lag

introduces a further n2 coefficients), but many of these coefficients will be

imprecisely estimated and highly intercorrelated, so becoming statistically

insignificant. This can be seen in the estimated VAR(2) of Example 13.1,

where only â22;2 in Â2 is significant.

13.11 This has led to the development of several techniques for examining

the “information content” of a VAR that are based on the vector moving

average representation (VMA) of yt. Suppose that the VAR is written in lag

operator form as

A Bð Þyt 5 ut

where, as in y13.4,

A Bð Þ5 In 2A1B2?2ApB
p

is a matrix polynomial in B. Analogous to the univariate case (recall

yy3.8�3.9), the (infinite order) VMA representation is

yt 5A21 Bð Þut 5Ψ Bð Þut 5 ut 1
XN
i51

Ψiut2i ð13:5Þ

where

Ψi 5
Xi

j51

AjΨi2j Ψ0 5 In Ψi 5 0 i, 0

this recursion being obtained by equating coefficients of B in Ψ Bð ÞA Bð Þ5 In.

216 Applied Time Series Analysis



13.12 The Ψi matrices can be interpreted as the dynamic multipliers of the

system, since they represent the model’s response to a unit shock in each of

the variables. The response of yr to a unit shock in ys (produced by us;t tak-

ing the value unity rather than its expected value of zero) is, therefore, given

by the impulse response function, which is the sequence ψrs;1;ψrs;2; . . .,
where ψrs;i is the rsth element of the matrix Ψi.

Since Ωp 5E utu
0
tð Þ is not required to be diagonal, the components of

ut may be contemporaneously correlated. If these correlations are high,

simulation of a shock to ys, while all other components of ut are held con-

stant, could be misleading, as there is no way of separating out the

response of yr to a ys shock from its response to other shocks that are cor-

related with us;t. However, if we define the lower triangular matrix S such

that SS0 5Ωp and define vt 5 S21ut, then E vtv
0
tð Þ5 In and the transformed

errors vt are orthogonal to each other (this is known as a Cholesky decom-

position). The VMA representation can then be renormalized into the

recursive form:

yt 5
XN
i50

ΨiSð Þ S21ut2i

� �
5

XN
i50

ΨO
i vt2i

where ΨO
i 5ΨiS (so that ΨO

0 5Ψ0S is lower triangular). The impulse response

function of yr to a ys shock is then given by the sequence ψO
rs;0;ψ

O
rs;1;ψ

O
rs;2; . . .,

where each impulse response can be written compactly as:

ψO
rs;i 5 e0rΨiSes ð13:6Þ

Here es is the n3 1 selection vector containing unity as the sth element and

zero elsewhere. This sequence is known as the orthogonalized impulse

response function. The (accumulated) long-run response is then:

ψO
rs Nð Þ5

XN
i50

e0rΨiSes ð13:7Þ

The entire set of long-run responses may then be gathered together in the

matrix

ΨO Nð Þ5
XN
i50

ΨiS5Ψ 1ð ÞS

13.13 The uncorrelatedness of the vts allows the error variance of the

h-step ahead forecast of yr to be decomposed into components “accounted”

by these innovations, a technique thus known as innovation accounting, a
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term coined by Sims (1981). For example, the proportion of the h-step ahead

forecast error variance of yr accounted by the orthogonalized innovations to

ys is given by:

VO
rs;h 5

Ph
i50 ψO

rs;h

� �2

Ph
i50 e

0
rΨiΩpΨ0

ier
5

Ph
i50 e0rΨiSesð Þ2Ph

i50 e
0
rΨiΩpΨ0

ier

For large h, this orthogonalized forecast error variance decomposition

allows the isolation of those relative contributions to variability that are,

intuitively, “persistent.”

The technique of orthogonalization does, however, have an important dis-

advantage, for the choice of the S matrix is not unique, so that different

orderings of the variables will alter the ψO
rs;i coefficients and, hence, the

impulse response functions and variance decompositions. The extent of these

changes will depend on the size of the contemporaneous correlations

between the innovations.

13.14 Apart from comparing the impulse responses and variance decompo-

sitions for alternative orderings of the variables, one solution to this problem

is to use Pesaran and Shin’s (1997) generalized impulse responses, defined

by replacing S in (13.6) with σ21
r Ωp:

ψG
rs;i 5 σ21

r e0rΨiΩpes

The generalized impulse responses are invariant to the ordering of the

variables, are unique, and fully account for the historical patterns of correla-

tions observed amongst the different shocks. The orthogonalized and gener-

alized impulse responses coincide only when Ωp is diagonal, and in general,

are only the same for s5 1.

EXAMPLE 13.2 Variance Decomposition and Innovation Accounting for
the Bond and Gilt Markets

From Example 13.1, the VAR(2) fitted to yt 5 rRSt ;rR20tð Þ0 has

Â1 5
0:218 0:279

20:012 0:313

� �
Â2 5

0:021 20:067
0:022 20:140

� �

The VMA representation (13.5) then has coefficient matrices given by:

Ψi 5A1Ψi21 1A2Ψi22

so that
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Ψ1 5A1Ψ0 5
0:218 0:279

2 0:012 0:313

� �

Ψ2 5A1Ψ1 1A2Ψ0 5
0:218 0:279

20:012 0:313

� �2
1

0:021 20:067
0:022 20:149

� �

5
0:065 0:081
0:016 20:045

� �

Ψ3 5A1Ψ2 1A2Ψ1 5
0:024 20:010
0:011 20:053

� �

^

The estimated error covariance matrix is

Ω̂2 5
0:183 0:054
0:054 0:078

� �

so that the contemporaneous correlation between the innovations is 0.46, thus

necessitating orthogonalization. The Cholesky decomposition of Ω̂2 for the

ordering rRS;rR20 is

S5
0:428 0
0:127 0:249

� �
5ΨO

0

with

S21 5
2:336 0

2 1:191 4:015

� �

Thus,

ΨO
1 5Ψ1S5

0:128 0:069
0:035 0:078

� �

ΨO
2 5Ψ2S5

0:038 0:020
0:001 2 0:011

� �

ΨO
3 5Ψ3S5

0:009 20:002
2 0:002 20:013

� �

^

The orthogonalized impulse response functions are then, for y1 5rRS and

y2 5rR20,

ψO
12;0 5 0; ψO

12;1 5 1 0
	 
 0:128 0:069

0:035 0:078

� �
0
1

� �
5 0:069; ψO

12;2 5 0:021; . . .

ψO
21;0 5 0:013 ψO

21;1 5 0 1
	 
 0:131 0:069

0:035 0:078

� �
1
0

� �
5 0:035; ψO

21;2 5 0:001; . . .

These response functions, along with their accumulations, are shown in

Fig. 13.1. Also shown are their counterparts when the ordering is reversed. There

is a considerable difference between the two, showing clearly how a sizeable
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contemporaneous correlation between the innovations can alter the impulse

responses. Nevertheless, the response of rRS to an innovation in rR20 is clearly

complete within six months and there is a smooth convergence of the accumu-

lated response to a new positive “level.” The response of rR20 to an rRS inno-

vation is small when rR20 is ordered first.
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FIGURE 13.1 (A) Impulse response function and accumulated response for Cholesky ordering

DRS, DR20 with two-standard error bounds; (B) Impulse response function and accumulated

response for Cholesky ordering DR20, DRS with two-standard error bounds. DRS5rRS,
DR205rR20.

220 Applied Time Series Analysis



Fig. 13.2 shows the generalized impulse response functions. The generalized

responses for rRS are similar to the orthogonalized responses when rR20 is first

in the ordering and vice versa for rR20 itself. Fig. 13.3 shows the associated var-

iance decompositions when rR20 is first in the ordering. These show that inno-

vations to rR20 explain around 25% of the variation in rRS, but that

innovations to rRS explain none of the variation in rR20.
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FIGURE 13.2 Generalized impulse response function and accumulated responses with two-

standard error bounds.
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FIGURE 13.3 Variance decomposition for the ordering DR205rR20, DRS5rRS.
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STRUCTURAL VECTOR AUTOREGRESSIONS

13.15 The “noninvariance property” of VARs has generated much detailed

analysis and criticism of the variance decomposition methodology, mainly

focusing on the inability of VARs to be regarded as “structural” in the tradi-

tional econometric sense, so that shocks cannot be uniquely identified with a

specific variable unless prior identifying assumptions are made, without

which the computed impulse response functions and variance decompositions

would be invalid. The triangular “recursive” structure of S has been criti-

cized for being atheoretical, and has led to the development of other sets of

identifying restrictions that are based more explicitly on theoretical consid-

erations using the structural VAR (SVAR) approach: see Cooley and LeRoy

(1985); Blanchard (1989); and Blanchard and Quah (1989).

13.16 The Cholesky decomposition of y13.12 can be written as ut 5 Svt
with SS0 5Ωp and E vtv

0
tð Þ5 In. A more general formulation is:

Aut 5Bvt

so that

BB0 5AΩpA
0 ð13:8Þ

Since both A and B are n3 n matrices, they contain 2n2 elements, but the

symmetry of the matrices on either side of (13.8) imposes n n1 1ð Þ=2 restric-

tions. A further 2n2 2 n n1 1ð Þ=25 n 3n2 1ð Þ=2 restrictions, at least, must then

be imposed to complete the identification of A and B. These will typically be

specific values for some of the elements: for example, if n5 3 then defining

A5
a11 0 0

a21 a22 0

a31 a32 a33

2
4

3
5 B5

1 0 0

0 1 0

0 0 1

2
4

3
5

imposes 12 restrictions in the form required to obtain the Cholesky decompo-

sition. Equally, the system with

A5
1 0 0

a21 1 0

a31 a32 1

2
4

3
5 B5

b11 0 0

0 b22 0

0 0 b33

2
4

3
5

will also be identified, the coefficients on the diagonal of B giving the stan-

dard deviations of the “unnormalized” structural innovations.

13.17 An alternative form of restriction is also possible. The long-run

impulse response may be written, on generalizing (13.7), as

ψrs Nð Þ5
XN
i50

e0rΨiA
21Bes
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or, in matrix form,

Ψ Nð Þ5
XN
i50

ΨiA
21B5Ψ 1ð ÞA21B

Restrictions may be imposed on the elements of Ψ Nð Þ, typically that they

take on zero values: for example, setting ψrs Nð Þ5 0 restricts the long-run

response of yr to a ys shock to be zero.

EXAMPLE 13.3 Quenouille’s Hog Series Example Revisited

The first empirical analysis of a multivariate time series was provided by

Quenouille (1957, Chapter 8), who analyzed five annual United States time

series from 1867 to 1948. The series were: the number and price of hogs (y1;t
and y2;t ), the price and supply of corn (y3;t and y4;t ), and the farm wage rate

(y5;t ). Exact definitions of each of these variables are given in Quenouille (1957,

Section 8.1), which also provides the actual data in Table 8.1a. These five series

are shown in Fig. 13.4. Although there are some indications of nonstationarity in

the individual series, we shall follow Quenouille and include a linear trend in
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FIGURE 13.4 Quenouille’s data set: annual, 1867�1948.
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the VAR specification (although he approached the modeling using a rather dif-

ferent framework):

yt 5 c1 dt 1
Xp
i51

Aiyt2i 1 ut

where d0 5 d1;d2; . . . ; dnð Þ is a 13 n vector of constants giving the trend terms

for each individual equation in the VAR. The various criteria for selecting the lag

length p for a maximum setting of pmax 5 6 are shown in Table 13.2. The LR test

sequence and the MAIC both select a lag length of four while the MBIC selects a

lag length of two. Fig. 13.5 shows the residual cross-correlation functions for the

longer setting and these reveal little evidence of model misspecification, while

the estimated coefficient matrix for the fourth lag is:

Â4 5

2 0:123
0:117ð Þ

0:138
�

0:042ð Þ
0:126

�

0:057ð Þ
0:092
0:063ð Þ

2 0:085
�

0:091ð Þ

2 0:126
0:309ð Þ

0:108
0:110ð Þ

2 0:359
�

0:150ð Þ
2 0:213

0:166ð Þ
2 0:203

�

0:240ð Þ

2 0:201
0:623ð Þ

0:019
0:022

2 0:032
0:304ð Þ

2 0:471
0:335ð Þ

0:271
�

0:485ð Þ

0:515
0:366ð Þ

0:113
0:130ð Þ

2 0:094
0:178ð Þ

0:463
�

0:196ð Þ
2 0:656

�

0:284ð Þ

0:196
0:159ð Þ

0:040
0:057ð Þ

2 0:146
�

0:078ð Þ
2 0:158

�

0:085ð Þ
2 0:246

�

0:124ð Þ

2
66666666666664

3
77777777777775

As there are eight coefficients that are significantly different from zero at the

10% level (denoted by asterisks), a lag length of four rather than two is clearly

appropriate.5

The inclusion of a trend is significant in the y5;t equation but not in any of the

others, and the 20 characteristic roots of the VAR(4), obtained by solving the

equation

TABLE 13.2 Lag Length Determination Statistics for the VAR Fitted

to the Quenouille Data

p L p
� �

LR p;p2 1
� �

MAIC MBIC

0 2 2211.3 � 58.45 58.76

1 2 2002.2 379.5 53.61 54.69a

2 2 1954.2 81.0 53.00 54.84

3 2 1928.6 39.7 52.99 55.80

4 2 1892.9 50.8a 52.71a 56.08

5 2 1872.2 26.7 52.82 56.96

6 2 1846.0 30.4 52.79 57.70

LR p; p21
� �

Bχ2 25ð Þ: χ2
0:05 25ð Þ5 37:7. VAR, Vector autoregression.

aSelected value.
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Â Bð Þ5 In 2 Â1B2?2 Â4B
4 5 0

and shown graphically in Fig. 13.6, all have modulus less than unity, thus, satis-

fying the stationarity condition.

The Granger causality statistics may conveniently be represented as

Table 13.3. The first two rows show that hog numbers and prices are Granger-

caused by all the variables in the system, so that there is feedback between the

hog population and hog prices. The supply of corn, on the other hand, is exoge-

nous, as there are no significant statistics in the fourth row. From the third row, it

is seen that corn supply Granger-causes corn prices, and from the fifth row this

variable also causes wage rates, as does the price of corn. Wage rates are not,

however, affected by the hog population or hog prices.

The residual correlation matrix is reported as Table 13.4 and shows that there

are four large contemporaneous correlations (the standard error to be attached to

these correlations is approximately 0.11). Since there appear to be no grounds

for choosing one Cholesky ordering over another, this suggests that the
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FIGURE 13.5 Residual cross-correlation functions from VAR(4) fit. VAR, Vector

autoregression.
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information contained in this matrix may be used to place restrictions in a SVAR.

With n5 5 there must be at least 35 restrictions placed on the 50

coefficients contained in the A and B matrices of (13.8). We may conveniently

choose B to be a diagonal matrix in which the diagonal elements have then the

interpretation of being the standard deviations of the structural shocks. Given

the pattern of the residual correlation matrix, A may be chosen to be the lower

triangular matrix:

–1.2

–0.8

–0.4

0.0

0.4

0.8

1.2

–1.2 –0.8 –0.4 0.0 0.4 0.8 1.2

FIGURE 13.6 Roots of the characteristic equation associated with the

VAR(4) fit.

TABLE 13.3 Granger Causality Test Statistics for the Quenouille Data

y1 y2 y3 y4 y5

yiQy1 � 74.0a [.000] 38.6a [.00] 62.3a [.00] 10.8a [.03]

yiQy2 12.1a [.02] � 50.0a [.00] 23.5a [.00] 11.8a [.02]

yiQy3 0.5 [.97] 1.8 [.97] � 18.9a [.00] 1.0 [.91]

yiQy4 3.0 [.55] 3.1 [.54] 4.1 [.39] � 8.8 [.7]

yiQy5 7.8 [.10] 7.4 [.12] 66.6a [.00] 36.5a [.00] �

Figure in brackets are p-values.
aSignificance at 5%.
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A5

1 0 0 0 0

a21 1 0 0 0

0 0 1 0 0

0 0 a43 1 0

0 a52 a53 0 1

2
66666664

3
77777775

These settings impose 41 restrictions, so that there are six overidentifying

restrictions. This structural factorization was then estimated as:

A5

1 0 0 0 0

0:56
0:29ð Þ

1 0 0 0

0 0 1 0 0

0 0 0:35
0:05ð Þ

1 0

0 2 0:18
0:05ð Þ

2 0:06
0:03ð Þ

0 1

2
66666666664

3
77777777775

B5

19:88
1:59ð Þ

0 0 0 0

0 51:09
4:09ð Þ

0 0 0

0 0 105:69
8:46ð Þ

0 0

0 0 0 49:68
3:98ð Þ

0

0 0 0 0 24:40
1:96ð Þ

2
666666664

3
777777775

The overidentifying restrictions may be tested for their validity with an LR

test. This produces a test statistic of 8.9, which is distributed as χ2 6ð Þ and has a

p-value of .18, so that these overidentifying restrictions are acceptable. Fig. 13.7

shows the accumulated 10-year impulse responses of each of the five variables

to the five shocks, while Fig. 13.8 shows the accompanying variance

TABLE 13.4 Contemporaneous Residual Correlation Matrix

y1 y2 y3 y4 y5

y1 1

y2 2 0.21 1

y3 0.13 2 0.03 1

y4 2 0.01 0.08 2 0.60 1

y5 2 0.07 0.35 0.23 0.08 1
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decompositions. In the “long-run,” the hog population y1;t only feeds back onto

the supply of corn y4;t , interestingly in a negative fashion. Wage rates only have

a long-run (positive) effect on hog prices y2;t . The largest long-run responses are

corn prices (y3;t ) and corn supply on hog prices and wage rates.

As an example of using long-run restrictions in the SVAR, we considered,

based on the behavior of the impulse responses shown in Fig. 13.8, the following

restricted long-run impulse response matrix:
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FIGURE 13.7 10-year accumulated impulse responses to short-run restricted structural shocks.
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Ψ Nð Þ5

0 ψ12 Nð Þ ψ13 Nð Þ ψ14 Nð Þ 0

0 ψ22 Nð Þ ψ23 Nð Þ 0 ψ25 Nð Þ
ψ31 Nð Þ 0 ψ33 Nð Þ 0 ψ35 Nð Þ
ψ41 Nð Þ 0 0 ψ44 Nð Þ 0

0 0 ψ53 Nð Þ ψ54 Nð Þ ψ55 Nð Þ

2
66666664

3
77777775

With A set to the identity matrix, the number of zero long-run accumulated

impulse responses imposed on Ψ Nð Þ is sufficient for identification. Fig. 13.9

shows the 10-year accumulated impulse responses so obtained and these are

rather different from those shown in Fig. 13.8. This emphasizes how different
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FIGURE 13.8 Variance decomposition of short-run restricted structural shocks.
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assumptions about the relationships between innovations and structural shocks

can lead to different impulse response functions, so that such analyses should be

undertaken with considerable care and using as much information about the

likely interaction of the variables making up the VAR as is available, which

admittedly may not be a great deal.

ENDNOTES

1. The concepts of endogeneity and exogeneity being used here are the simplest possible: essen-

tially a variable is termed endogenous if it is determined within the model, exogenous if it is

determined outside of the model. These terms are deliberately kept loose but there are various

tighter definitions in use for the models being discussed here. For an introductory text book

discussion of these concepts, see Mills and Markellos (2008, Chapter 8.6); for more detailed

treatment, see Hendry (1995).
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FIGURE 13.9 10-Year accumulated impulse responses to long-run restricted structural shocks.
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2. When the lag lengths p and q are the same across all equations then each of the equations

will contain identical regressors. The model is then of a special type that can be efficiently

estimated by OLS applied to each equation separately, known as multivariate least squares.

When the lag lengths differ across equations this result no longer holds and a systems estima-

tor must be used. A natural estimator is then Zellner’s (1962) seemingly unrelated least

squares.

3. The VAR was brought to the attention of economists by Sims (1980), although a more gen-

eral model, the vector ARMA, had been introduced into the statistical literature over twenty

years earlier by Quenouille (1957).

4. The seminal papers on causality are Granger (1969) and Sims (1972). Although Granger pro-

vided an illustrative example to show the potential usefulness of the concept, he couched cau-

sality in a cross-spectral framework, which is generally unappealing to many economists,

who were his prime audience, although the concept has much wider applicability. Neither did

he develop an estimation and testing methodology. An appreciation of the concept’s impor-

tance, thus, had to wait until a time domain approach to estimation and testing was devel-

oped, and this was provided soon after by Sims, who certainly helped to further popularize

the concept by choosing as an example the then “hot” economic topic of the causal links

between money and income.

Granger fully recognized that a precursor of his causality framework had been proposed

over a decade earlier in Wiener (1956) and he typically referred to it as Wiener�Granger

causality. For a detailed treatment of the concept, see Mills (2013a, Chapter 9).

5. The other estimated lag coefficient matrices are not reported as they convey little information

as to the properties of the fitted VAR.

Vector Autoregressions and Granger Causality Chapter | 13 231





Chapter 14

Error Correction, Spurious
Regressions, and Cointegration

Chapter Outline

The Error Correction Form of an

Autoregressive Distributed Lag

Model 233

Spurious Regressions 234

Error Correction and Cointegration 242

Testing for Cointegration 247

Estimating Cointegrating Regressions 250

Endnotes 253

THE ERROR CORRECTION FORM OF AN AUTOREGRESSIVE
DISTRIBUTED LAG MODEL

14.1 The simplest case of the ARDL (autoregressive distributed lag) model

introduced in y12.7 is the ARDL 1; 1ð Þ:
yt 5β0 1φyt21 1β1;0xt 1β1;1xt21 1 at ð14:1Þ

Suppose now that we recast this ARDL by writing it as

ryt 5β0 2 12φð Þyt21 1 β1;0 1β1;1

� �
xt21 1β1;0rxt 1 at

or

ryt 5β1;0rxt 2 12φð Þ yt21 2
β0

12φ
2

β1;0 1β1;1

12φ
xt21

� �
1 at

i.e., as

ryt 5β1;0rxt 2 12φð Þ yt21 2 θ0 2 θ1xt21ð Þ1 at ð14:2Þ
This representation of the ARDL expresses the current change in the endo-

genous variable, ryt, as a linear function of the current change in the

exogenous variable rxt and a proportion 12φ of the previous discrepancy (or

error) from the long-run “equilibrium” relationship y5 θ0 1 θ1x. The represen-

tation (14.2) is known as the error-correction model or ECM. If the parameters

of the equilibrium relationship are unknown, then they may be estimated either

by using nonlinear least squares on (14.2) or by expressing the ECM as

ryt 5β01β1;0rxt 1 γ yt21 2 xt21ð Þ1 δxt21 1 at ð14:3Þ
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which may be estimated directly by OLS and where a comparison of (14.3)

with (14.2) shows that

θ0 52
β0

γ
θ1 5

γ2 δ
γ

The ECM was introduced originally by Sargan (1964) and further ana-

lyzed by, for example, Davidson et al. (1978). It may readily be extended to

the general ARDL p; s1; . . . ; sMð Þ model. Denoting the error correction as

ect 5 yt 2 θ0 2
XM
j51

θjxj;t

then (14.2) generalizes to

ryt 5β0 2φ 1ð Þect21 1φ
�
Bð Þryt21 1

XM
j51

~βj Bð Þrxj;t21

1
XM
j51

βj Bð Þrxj;t 1 at

ð14:4Þ

where

φ
�
Bð Þ5

Xp
i51

φiB
i 5φ Bð Þ2 1

SPURIOUS REGRESSIONS

14.2 As in Chapter 12, Transfer Functions and Autoregressive Distributed

Lag Modeling, it has been implicitly assumed that all the variables entering

the ARDL/ECM are stationary, so that any nonstationary series have been

appropriately differenced beforehand. What would happen if nonstationary

variables were not prior differenced but were entered as levels? That there is

a theoretical issue is clearly apparent. The standard proof of the consistency

of OLS when there are stochastic regressors, as there are here, relies on the

assumption that the probability limit of T21X0X, where X is a matrix con-

taining the data on the explanatory variables, tends to a fixed matrix; i.e., the

matrix of expectations of sums of squares and cross-products of the data

tends to a matrix of constants (see, for example, Mills, 2013a, yy6.3�6.4). In

other words, as the sample size T increases, the sample moments of the data

settle down to their population values. For there to be fixed population

moments to which these sample moments converge, the data must be station-

ary. If it was not, then, as in the case of integrated series, the data may dis-

play a tendency to increase in magnitude over time, so that there are no
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fixed values in the matrix of expectations of sums of squares and cross-

products of these data.

14.3 What, though, are the practical implications of regressing nonstation-

ary time series? This was a question considered in a famous paper by

Granger and Newbold (1974), who began by focusing attention on the then

widespread practice in the applied econometrics literature of reporting time

series regressions with an apparently high degree of fit, as measured by the

coefficient of multiple correlation, R2, accompanied by extremely low values

of Durbin and Watson’s (1950, 1951) dw statistic testing for autocorrelated

errors. Under the null hypothesis of white noise errors, dw5 2, whereas

under the alternative of positively autocorrelated errors, dw, 2, and, in the

limit, when the errors follow a random walk, dw5 0. Thus, if the dw statistic

is small, there must be a considerable degree of positive autocorrelation in

the residuals, bordering on nonstationarity.

14.4 Granger and Newbold considered the following data generation pro-

cess (DGP):

yt 5φyt21 1 ut utBi:i:d: 0;σ2
u

� � ð14:5aÞ

xt 5φ
�
xt21 1 vt vtBi:i:d: 0;σ2

v

� � ð14:5bÞ

E utvsð Þ5 0 for all t; s E utut2kð Þ5E vtvt2kð Þ5 0 for all k 6¼ 0

i.e., that yt and xt are uncorrelated first-order autoregressive processes. Since

xt neither affects or is affected by yt, it should be hoped that the coefficient

β1 in the regression model

yt 5β0 1β1xt 1 εt ð14:6Þ
would converge in probability to zero, reflecting the lack of any relationship

between the two series, as would the R2 statistic from this regression.

14.5 A point not often recognized is that in (14.6) both the null hypothesis

β1 5 0, which implies that yt 5 β0 1 εt, and the alternative β1 6¼ 0 will in

general lead to false models, since the true DGP, given by (14.5), is not

nested within (14.6). For example, the null β1 5 0 implies that yt is white

noise under the assumptions of OLS regression, which is only the case if

φ5 0. Nevertheless, if yt and xt are stationary autocorrelated processes

ð2 1,φ;φ
�
, 1Þ, then the OLS-estimated regression coefficient β̂1 and its

associated t-statistic ðt5 jβ̂1j=seðβ̂1ÞÞ will both converge to zero as T-N,

although the t-test would over-reject, i.e., with stationary series, regression

of a set of variables independent of the “dependent” variable produces coef-

ficients that converge to zero.
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TABLE 14.1 Statistics Obtained by Regressing Two Independent Random Walks, i.e., (14.6)

A. t-Statistics

t 0�2 2�4 4�6 6�8 8�10 10�12 12�14 14�16 16�18 .18

Frequency 325 281 178 98 67 27 15 3 4 2

B. R2 Statistics

R2 0�0.1 0.1�0.2 0.2�0.3 0.3�0.4 0.4�0.5 0.5�0.6 0.6�0.7 0.7�0.8 0.8�0.9 0.9�1

Frequency 366 172 132 90 70 73 55 32 10 0

C. dw Statistics

dw 0�0.2 0.2�0.4 0.4�0.6 0.6�0.8 0.8�1.0 1.0�1.2

Frequency 283 412 203 66 27 9



In finite samples, however, problems remain. Granger and Newbold

showed that if both φ and φ
�
are large, in the region of 0.9 say, then the

expected value of R2 will be around 0.5, thus implying that a reasonably

high value of this statistic should not be taken as evidence of there being sig-

nificant relationships between autocorrelated series. Often, a high value of

R2 would also be accompanied by a low value of dw, so that Granger and

Newbold argued that the inequality R2 . dw might well arise from an

attempt to fit regressions relating the levels of independent but autocorrelated

time series.

14.6 More serious problems arise when regressions are fitted to indepen-

dent random walks, i.e., when φ5φ
�
5 1 in Eq. (14.5a,b). Panel (A) of

Table 14.1 shows the frequency distribution of t5 β̂1

��� ���=se β̂1

� �
, obtained

from the regressions of 1000 simulations of pairs of independent random

walks, each of length T 5 50, with starting values y0 5 x0 5 0 and each with

standard normal innovations. Panel (B) shows the frequency distribution of

the R2 statistics obtained from each of these 1000 regressions, while panel

(C) shows the frequency distribution of the dw statistics.

Using a traditional t-test at the 5% significance level (so that the critical

t-value is approximately 2), the (correct) null hypothesis of no relationship

between the two series (β1 5 0) would be incorrectly rejected two-thirds of

the time (675 times out of 1000). If β̂1=se β̂1

� �
was distributed as standard

normal then the expected value of t may be shown to be
ffiffiffiffiffi
22

p
=π5 0:8, but

the average value of the t-statistics in Table 14.1 is 3.94, suggesting that the

standard deviation of β̂1 is being underestimated by a factor of around 5.

Thus, instead of using a critical t-value of 2, a value in excess of 10 should

be used when deciding whether an estimated coefficient is significant or not

at the 5% level (there are, in fact, 51 t-statistics greater than 10 reported in

Table 14.1).

The average value of R2 is 0.24 with almost two-thirds (634 out of 1000)

of the values being greater than 0.2. The average value of the dw statistic is

0.34 with a maximum value of 1.17, which is some way below even the 1%

critical value of 1.32, so that this statistic flags the problem of residual auto-

correlation in every one of the 1000 regressions, as indeed should be hoped.

The inequality R2 . dw is found to hold in almost a third of the regressions.

14.7 In further simulations, Granger and Newbold extended the DGP to

include multiple regressors and ARIMA(0,1,1) innovations, and found that

the results of Table 14.1 were repeated. Indeed, as the number of indepen-

dent random walks was increased, so did the proportion of times the null of

no relationship was rejected at conventional significance levels. Granger and

Newbold, thus, argued that regressions using integrated time series were

likely to be spurious, in that they would typically produce an apparently sig-

nificant relationship even when the variables were unrelated to each other.
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14.8 These essentially empirical conclusions were given an analytical foun-

dation by Phillips (1986). Using the DGP (14.5a,b), but with more general

assumptions concerning the innovations ut and vt (essentially the weak

dependency conditions alluded to in y5.12), Phillips showed that neither β̂0

nor β̂1 converged in probability to constants as T-N. Moreover, β̂1 had a

nondegenerate limiting distribution, so that different arbitrarily large samples

would yield randomly differing estimates of β1. The distribution of β̂0 actu-

ally diverges, so that estimates are likely to get further and further away

from the true value as the sample size increases. The uncertainty about the

regression (14.6) stemming from its spurious nature thus persists asymptoti-

cally, being a consequence of the sample moments of yt and xt (and their

joint sample moments) not converging to constants but, upon appropriate

standardization, to random variables.

14.9 Phillips then showed that the conventional t-ratio on β̂1 (similarly for

β̂0) does not have a t-distribution: in fact, it does not have any limiting dis-

tribution, for it diverges as T-N so that there are no asymptotically correct

values for these tests. The rejection rate when these tests use a critical value

given by conventional asymptotic theory (such as 1.96) will, thus, continue

to increase with sample size.

The R2 statistic has a nondegenerate limiting distribution and dw con-

verges to zero as T-N. Low values for this statistic and moderate values

of R2 are, therefore, to be expected in spurious regressions, such as (14.6),

with data generated as integrated processes.

14.10 In fact, an early analysis of spurious or nonsense regressions, as was

termed, was carried out almost a half-century before Granger and Newbold

by Yule (1926). Yule also used simulations but focused on the distributions

of correlation, rather than regression, coefficients (of course, one is just a

scaled version of the other in bivariate models). His analysis remains note-

worthy, however, and considers three situations: (1) both variables are I(0)

and i.i.d.; (2) both variables are I(1) and their differences are i.i.d.; and (3)

both variables are I(2) and their second differences are i.i.d.

Figs. 14.1�14.3 show distributions of correlation coefficients for 1000

simulations of pairs of variables of length T 5 100. Case (1) is shown in

Fig. 14.1, which gives the distribution of the correlation coefficient ruv
between two independent, standard normal white noises ut and vt. This corre-

lation is well behaved and has a symmetric, nearly Gaussian, distribution

centred on zero but bounded by 6 1. Case (2) is shown in Fig. 14.2. Here

the correlation coefficient is ryx, where yt 5 yt21 1 ut and xt 5 xt21 1 vt are

independent random walks. The distribution of ryx is closer to a semiellipse

with excess frequency at both ends of the distribution. Consequently, values

of ryx well away from zero are far more likely here than in case (1).

Fig. 14.3 shows case (3) for the correlation rzw, where
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zt 5 zt21 1 yt 5 2zt21 2 zt22 1 ut and wt 5wt21 1 xt 5 2wt21 2wt22 1 vt. The

distribution of rzw is U-shaped so that the most likely correlations between

two such I 2ð Þ unrelated series are 6 1, precisely the values that would occur

if the two series were perfectly correlated.

14.11 If a test statistic, based on a correlation coefficient, assumes the dis-

tribution to be the one applying to case (1) when, in fact, the correct
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distribution is the one that applies to case (2), the frequency with which the

null hypothesis of independence is rejected will greatly exceed the nominal

size of the test, which is given by the expected number of rejections if (1)

were true. Case (3) is even worse, with the least likely outcome being the

discovery of the truth, for there is almost no chance of finding rzwD0 even

though the population value expected under the null is zero. Indeed, the most

likely sample value is rzw 5 6 1.

14.12 Figs. 14.1�14.3 thus show the inferential difficulties arising from

spurious correlations generated by regressing independent series of the same

order of integration on each other. Difficulties also arise in regressions of an

I(2) on an I(1) series (or vice versa), with Fig. 14.4 showing the distribution

of rzx, which is also U-shaped.

Less serious problems occur in regressions of an I(1) on an I(0) series (or

vice versa). As shown in Fig. 14.5, the distribution of ryv is similar in shape

to that of ruv. The reason for this is that when an I(0) series is regressed on

an I(1) series, the only way that OLS can make the regression consistent and

minimize the sum of squares is to drive the coefficient on the I(1) variable

(equivalently the correlation) to zero. Such possibilities do not arise when

both series are integrated.

14.13 Could the spurious regression problems associated with nonstation-

ary regressors be alleviated by including a time trend in the regression, i.e.,

by replacing (14.6) with

yt 5β0 1β1xt 1 θt1εt ð14:7Þ

0

40

80F
re

qu
en

cy 120

160

200

–1.0 –0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 14.3 Frequency distribution of the correlation coefficient between two I(2) series

with independent second differences.

240 Applied Time Series Analysis



It would appear not, for β̂1 continues to have a nondegenerate distribu-

tion asymptotically (i.e., it does not converge to zero), and tests of β1 5 0

diverge in distribution, tending to result in a false rejection of this null

hypothesis (these results were provided by Durlauf and Phillips, 1988).

Consequently, the spurious regression problem is not resolved by attempting

to remove deterministic trends from the data.
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14.14 What, then, should be done to resolve the spurious regression prob-

lem? After a further and extended simulation analysis, Granger and Newbold

(1977) recommended the approach implicitly adopted in Chapter 12,

Transfer Functions and Autoregressive Distributed Lag Modeling; that of

appropriately differencing the nonstationary regressors. Although they did

not consider it to be a “surefire universal solution,” they did think that

differencing would be useful when the nonstationary series were rather

smooth, with large and positive low-order autocorrelations—in other words,

close to being random walks.

14.15 Of course, the potentially spurious regression (14.6) contains just the

contemporaneous exogenous variable, xt, as a regressor and so may be

regarded as the particularly simple ARDL(0,0) model. What would happen if

a more general ARDL model was fitted to a pair of independent I(1) pro-

cesses? This was the question, in effect, posed by Hendry (1977), focusing

on the ARDL(1,1) of (14.1). Table 14.2 shows the frequency distributions of

the t-statistics testing the nulls β0 5 0 and β1 5 0, denoted t0 and t1 respec-

tively, using the same DGP and simulation setup as employed in y14.6. As
in that experiment, the means of these test statistics should be approximately

0.8 and they are, in fact, found to be 0.80 and 0.83, respectively. Moreover,

4.8% and 6.4% of the two distributions take on values greater than 2, so

these findings are exactly what one would expect from a well-specified

regression in which yt and xt are unrelated to each other.

Fig. 14.6 shows the frequency distributions of β̂0, β̂1, and φ̂. These are

consistent with what we would expect under the DGP (14.5): both coeffi-

cients on the exogenous variable are estimated to be small and, given the

accompanying t-statistics from Table 14.2, invariably insignificantly different

from zero. The coefficient on yt21, on the other hand, is typically estimated

to be close to unity (note that it is well known that φ̂ is biased downward in

estimated ARDL models). Fig. 14.7 provides the frequency distributions of

R2 and dw: the former tends to be quite large (its average value is 0.82),

while the latter is distributed symmetrically around an average value of 1.93

(dw is also biased downward from 2, due to the bias in estimating φ̂). It is
clear that, within the bounds of sampling variation, a random walk model for

yt would typically emerge from estimating an ARDL(1,1) under the DGP

(14.5).

ERROR CORRECTION AND COINTEGRATION

14.16 An equivalent way of expressing the spurious nature of (14.6) is to

note that the error, εt 5 yt 2β0 2β1xt, may, under the DGP (14.5), be

regarded as a linear combination of I(1) processes and should therefore be

I(1) as well, thus invalidating all least squares regression theory. While this

would appear, on the face of it, to be an eminently sensible argument, it
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TABLE 14.2 Statistics Obtained by Fitting an ARDL(1,1) Model to Two Independent Random Walks

t-Statistics

t0 0�0.5 0.5�1.0 1.0�1.5 1.5�2.0 2.0�2.5 2.5�3.0 .3.0

Frequency 380 303 186 83 31 12 5

t1 0�0.5 0.5�1.0 1.0�1.5 1.5�2.0 2.0�2.5 2.5�3.0 .3.0

Frequency 388 267 194 87 43 16 5

ARDL, Autoregressive distributed lag.



FIGURE 14.6 Frequency distributions of coefficients from the simulated ARDL(1,1) model.

ARDL, Autoregressive distributed lag.
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turns out that it is not always true, for it is possible for a linear combination

of I(1) processes to actually be I(0).

14.17 More generally, if ytBI dð Þ and xtBI dð Þ then the linear combination

et 5 yt 2 axt ð14:8Þ
will usually be I dð Þ as well. It is possible, however, that et may be integrated

of a lower order, say I d2 bð Þ, where b. 0, in which case a special constraint

operates on the long-run components of the two series. If d5 b5 1, so that

yt and xt are both I 1ð Þ and, hence, dominated by “permanent” components

(recall y5.1), et will be I 0ð Þ and, hence, will have only transitory compo-

nents: yt and axt must, therefore, have long-run components that cancel out

to produce et. In such circumstances, yt and xt are said to be cointegrated,

although it must be emphasized that it will not generally be true that there

will exist an a that makes etBI 0ð Þ or, in general, I d2 bð Þ.1

FIGURE 14.7 Frequency distributions of summary statistics from the simulated ARDL(1,1)

model. ARDL, Autoregressive distributed lag.
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14.18 The idea of cointegration can be related to the concept of long-run

equilibrium (recall y14.1), which can be illustrated by the bivariate relation-

ship yt 5 axt or

yt 2 axt 5 0

Thus et in (14.8) measures the extent to which the “system” is out of equilib-

rium and can, therefore, be termed the “equilibrium error.” Assuming that

d5 b5 1, so that yt and xt are both I 1ð Þ, the equilibrium error will then be

I 0ð Þ, and et will rarely drift far from zero and will often cross the zero line

(again recall y5.1). In other words, equilibrium will occasionally occur, at

least to a close approximation, whereas if yt and xt are not cointegrated, so

that etBI 1ð Þ, the equilibrium error will wander widely and zero crossings

would be rare, suggesting that, under these circumstances, the concept of

equilibrium has no practical implications.

14.19 Can the concept of cointegration be linked to the analysis of spurious

regressions? Consider again (14.5), but now relax the independence condi-

tion, i.e., let E utvtð Þ5σuv, say, and define the (contemporaneous) innovation

covariance matrix

Σ5
σ2
u σuv

σuv σ2
v


 �

For least squares theory to operate on (14.6), we require that Σ be non-

singular. If, however, it is singular then

Σj j5σ2
uσ

2
v 2σ2

uv 5 0

This implies that Σ 1 2a
� �

5 0, where a5σuv=σ2
v . Singularity of Σ turns

out to be a necessary condition for yt and xt to be cointegrated, since in this

case Σj j5 0 implies that the “long-run” correlation between the innovations

ut and vt, given by ρuv 5 σuv=σuσv, is unity (Phillips, 1986). For ρuv , 1, yt
and xt are not cointegrated and when ρuv 5 0, so that ut and vt are indepen-

dent, we have Granger and Newbold’s spurious regression.

14.20 Cointegration and error correction are also intimately linked. The

equilibrium error (14.8), which will be I 0ð Þ if yt and xt are both I 1ð Þ and

cointegrated, is exactly of the form ect that enters with a lag in the ECM

(14.4). Consequently, if yt and x1;t; x2;t; . . . ; xM;t are all I 1ð Þ and if y is cointe-

grated with the x’s such that

et 5 yt 2 a1x1;t 2?2 aMxM;tBI 0ð Þ
then there will exist an ECM of the form of (14.4), a result that is known as

Granger’s Representation Theorem, which is proved in a more general

framework by Engle and Granger (1987): see y15.5.
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14.21 When there is cointegration between yt and xt, then the cointegrating

regression (14.6) exhibits some interesting properties. If xt does not contain

a drift then the OLS estimate of β1 is super-consistent, in that β̂1 converges

to β1 at the rate T rather than at the rate T1=2, as in the standard regression

case. OLS will, thus, estimate the cointegrating parameter precisely.

However, the distribution of β̂1 will be skewed and the associated t-ratio

will not be asymptotically normal.

The assumption that xt does not contain a drift is not innocuous, however,

for if it does contain a drift then normality of the distribution of β̂1 is recov-

ered. Interestingly, if there are a set of regressors x1;t; x2;t; . . . ; xM;t, some of

which may have drifts, then super-consistency of the cointegration para-

meters continues to hold, but the limiting joint distribution of the estimators

is both nonnormal and singular, since the regressors will be perfectly corre-

lated asymptotically. This is because an I 1ð Þ variable with drift can always

be expressed as the sum of a time trend and an I 1ð Þ variable without drift,

e.g., as

rxt 5π1 vt 5 x0 1πt1r ~xt; r ~xt 5 vt

so that the correlation between two such variables will be dominated by their

trends rather than by the driftless I 1ð Þ components and will reach unity

asymptotically.

TESTING FOR COINTEGRATION

14.22 Given the crucial role that cointegration plays in regression models

with integrated variables, it is clearly important to test for its presence. Tests

may be based on the residuals from the cointegrating regression, i.e.,

êt 5 yt 2 β̂0 2 β̂1x1;t 2?2 β̂MxM;t ð14:9Þ
Such residual-based procedures seek to test a null hypothesis of no coin-

tegration by using the unit root tests developed in yy5.4�5.10 applied to êt
(see Engle and Granger, 1987: these test statistics are denoted EG to distin-

guish them from the conventional Dickey�Fuller tests).

A problem here is that, since êt is derived as a residual from a regression

in which the cointegrating parameters are estimated, and since if the null of

non-cointegration was true such estimates would not be identified, using the

conventional τμ critical values would reject the null too often, because OLS

will seek the set of cointegrating parameters that minimizes the residual vari-

ance and are, hence, most likely to result in a stationary residual series.

An additional factor that influences the critical values is the number of

regressors M. For example, the large T 5% critical τμ value when M5 1 is

23.37, while if M5 5 it is 24.71 (recall from y5.6 that the usual 5% critical

τμ value is 22.86). As with conventional unit root tests, different sets of
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critical values are used if there is no constant in the cointegrating regression

or if there is both a constant and a trend (corresponding to the τ and ττ var-

iants; nonparametric tests analogous to those of y5.12 may also be con-

structed (see Phillips and Ouliaris, 1990).

14.23 Of course, all the variables appearing in the cointegrating regression

(14.9) must be I 1ð Þ, so that this assumption needs to be checked by subject-

ing the M1 1 variables to pretests for a unit root. These tests clearly have

the potential to mislead when attempting to classify the integration properties

of the variables. Pesaran et al. (2001, henceforth PSS), in contrast, propose a

“bounds” test for cointegration, based on the ARDL model, that is robust to

whether the variables are I 0ð Þ, I 1ð Þ, or mutually cointegrated. The condi-

tional error correction (CEC) form of an ARDL model is, with a time trend

included,

ryt 5α0 1α1t2φ 1ð Þyt21 1
XM
j51

βj 1ð Þxj;t21

1φ
�
Bð Þryt21 1

XM
j50

γj Bð Þrxj;t 1 at

ð14:10Þ

where γj Bð Þ5βj 1ð Þ1 ~β j Bð Þ. The null of no long-run relationship (non-coin-

tegration) is then φ 1ð Þ5 β1 1ð Þ5?5βM 1ð Þ5 0, which may be tested using

a standard F- or Wald statistic. PSS provide two sets of asymptotic critical

values corresponding to the polar cases of all variables being purely I 0ð Þ or
purely I 1ð Þ. When the test statistic is below the lower critical value, the null

is not rejected, and it is concluded that cointegration is not possible. If the

test statistic is above the upper critical value, the null can be rejected, and it

may be concluded that cointegration is possible. If, however, the test statistic

falls between the lower and upper critical values the test is inconclusive and

additional analysis and testing is required.

14.24 Although (14.10) is the general form of the CEC, there are several

ways in which the constant and trend can enter the error correction. For

example, both could be omitted from (14.10), so that α0 5α1 5 0 and the

CEC can be written:

ryt 52φ 1ð Þ yt21 2
XM
j51

βj 1ð Þ
φ 1ð Þ xj;t21

 !
1φ

�
Bð Þryt21 1

XM
j51

γj Bð Þrxj;t 1 at

i.e., as

ryt 52φ 1ð Þect21 1φ
�
Bð Þryt21 1

XM
j51

γj Bð Þrxj;t 1 at
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where

ect 5 yt 2
XM
j51

βj 1ð Þ
φ 1ð Þ xj;t

is the error correction. If just the trend is omitted from (14.10) then the CEC

becomes either

ryt 5α0 2φ 1ð Þ yt21 2
XM
j51

βj 1ð Þ
φ 1ð Þ xj;t21

0
@

1
A1φ

�
Bð Þryt21

1
XM
j51

γj Bð Þrxj;t 1 at

or

ryt 52φ 1ð Þ yt21 2
α0

φ 1ð Þ 2
XM
j51

βj 1ð Þ
φ 1ð Þ xj;t21

0
@

1
A1φ

�
Bð Þryt21

1
XM
j51

γj Bð Þrxj;t 1 at

in which the constant is restricted to appear only in the error correction.

Alternatively, both the constant and trend may be restricted to appear only in

the error correction:

ryt 52φ 1ð Þ yt21 2
α0

φ 1ð Þ 2
α1

φ 1ð Þ t � 1ð Þ2
XM
j51

βj 1ð Þ
φ 1ð Þ xj;t21

0
@

1
A

1φ
�
Bð Þryt21 1

XM
j51

γj Bð Þrxj;t 1 at

Different sets of critical values are required and are provided by PSS for

these alternative specifications of the error correction.

EXAMPLE 14.1 Are United Kingdom Interest Rates Cointegrated?

In Example 12.1, an ARDL model was fitted to the changes in United Kingdom

long and short interest rates. Since both R20 and RS are I 1ð Þ processes it is possi-
ble that they may be cointegrated. Two cointegrating regressions may be calcu-

lated here, for there seems to be no compelling reason to select one interest rate

rather than the other as the “dependent” variable:

ê1;t 5R20t 2 β̂0 2 β̂1RSt

and

ê2;t 5RSt 2 β̂
0

0 2 β̂
0

1R20t
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These lead to the ADF-type regressions

rê1;t 52
0:026
0:007ð Þ ê1;t21 1

0:205
0:035ð Þ rê1;t21

and

rê2;t 52
0:031
0:008ð Þ ê2;t21 1

0:226
0:035ð Þ rê2;t21

From these the Engle�Granger cointegration test statistics EG1 52 3:58 and

EG2 52 4:03 are obtained. Since these have p-values of .017 and .004, respec-

tively, the null of non-cointegration is conclusively rejected in favor of R20 and

RS being cointegrated.2

Alternatively, two bounds tests may be computed. An ARDL(2,1) was selected

for RS, leading to the CEC

rRSt 52
0:030
0:007ð Þ ect21 1

0:262
0:030ð Þ rRSt21 1

0:719
0:047ð Þ rR20t 1 â2;t

Neither a constant nor a trend are included as both were found to be insignifi-

cant. The F-statistic for testing the joint null φ 1ð Þ5 β 1ð Þ5 0 is 8.15, which

exceeds the 1% critical value of 6.02 for I 1ð Þ variables, while the t-statistic just

testing φ 1ð Þ50 is 24.04, which also exceeds (is more negative than) the 1%

critical value of 23.22 for I 1ð Þ variables, thus providing a strong rejection of the

non-cointegration null.

An ARDL(3,2) was selected for R20, leading to the CEC:

rR20t 52
0:010
0:004ð Þ ect21 1

0:230
0:036ð Þ rR20t21 2

0:109
0:032ð Þ rR20t22

1
0:302
0:021ð Þ rRSt 2

0:079
0:023ð Þ rRSt21 1 â1;t

Here the F-statistic is only 2.78, which is smaller than the 5% critical value of

3.15 for I 0ð Þ variables, although the t-statistic is 22.36, which is significant at

the 10% level for I 1ð Þ variables, the critical value being 22.28. Notwithstanding

these conflicting results, it nevertheless seems safe to conclude that United

Kingdom interest rates are indeed cointegrated.

ESTIMATING COINTEGRATING REGRESSIONS

14.25 Having found that yt cointegrates with x1;t; . . . ; xM;t, the parameters

in the cointegrating regression

yt 5β0 1β1x1;t 1?1βMxM;t 1 et ð14:11Þ
then need to be estimated. Although OLS estimation produces super-

consistent estimates of the parameters, they nevertheless have biased and

asymmetric sampling distributions even asymptotically. This is a conse-

quence of the potential simultaneity between yt and the xj;t as well as auto-

correlation in et, which is endemic given that the error is only required to be

I 0ð Þ rather than white noise. OLS estimates and accompanying standard

errors, therefore, provide an unreliable basis on which to form inferences

about the cointegrating parameters.

250 Applied Time Series Analysis



The fully modified OLS (FM-OLS) estimator of Phillips and Hansen

(1990) introduces a semiparametric correction to OLS which eliminates this

bias and asymmetry: see, for example, Mills and Markellos (2008,

Chapter 9.4) for technical details.3 Dynamic OLS (DOLS), on the other hand,

deals with these problems by including leads and lags of rxj;t, and possibly

lags of ryt, as additional regressors in (14.10) so that standard OLS may

continue to be used, i.e.,

yt 5β0 1
XM

j51
βj;txj;t 1

Xp

i51
γiryt2i 1

XM

j51

Xp2

i52p1
δj;irxj;t2i 1 et

ð14:12Þ
An estimate of the cointegrating relationship is also provided by the error

correction term in the appropriate form of the CEC set out in y14.23: e.g., if
there is no intercept or trend in the CEC (14.10) then

ect 5 yt 2
XM
j51

βj 1ð Þ
φ 1ð Þ xj;t

will provide estimates of the cointegrating parameters.

EXAMPLE 14.2 Estimating a Cointegrating Relationship Between United
Kingdom Interest Rates

The OLS estimated cointegration regressions used in computing the EG cointe-

gration test statistics are

R20t 5
2:438
0:111ð Þ 1

0:799
0:015ð ÞRSt 1 ê1;t

and

RSt 52
1:005
0:155ð Þ 1

0:974
0:019ð ÞR20t 1 ê2;t

Through the super-consistency property of OLS, the slope estimates are pre-

cisely estimated, but they are asymptotically biased. The semiparametrically cor-

rected FM-OLS estimates are

R20t 5
2:321
0:284ð Þ 1

0:817
0:039ð ÞRSt 1 ê1;t

and

RSt 52
0:989
0:385ð Þ 1

0:973
0:047ð ÞR20t 1 ê2;t

and have slightly different point estimates, but much larger standard errors. The

DOLS estimates are, with the settings p50, p1 5p2 5 1

R20t 5
2:383
0:286ð Þ 1

0:808
0:039ð ÞRSt 1

X1
i521

δ̂irRSt2i 1 ê1;t
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and

RSt 52
0:989
0:389ð Þ 1

0:973
0:048ð ÞR20t 1

X1
i521

δ̂irR20t2i 1 ê2;t

which are similar to the FM-OLS estimates. From the CECs presented in Example

14.1, the estimates of the cointegrating relationships are, on allowing an inter-

cept to appear in the error correction,

R20t 5
0:883
0:169ð ÞRSt 1

1:763
1:237ð Þ 1 ec1;t

RSt 5
0:936
0:128ð ÞR20t 2

0:674
1:043ð Þ 1 ec2;t

Using standard t-tests, the FM-OLS, DOLS, and CEC estimates of β
0
1 are insig-

nificantly different from unity, and neither is the CEC estimate of β1. If these

parameters are set equal to this value, then the error correction becomes

ect 5R20t 2RSt 2β0 5 SPREADt 2 β0

Thus, the data is compatible with R20 and RS both being I 1ð Þ and cointegrated

with a parameter of unity, so that the error correction is the deviation of the

spread from its equilibrium value. Recall from Example 5.1 that the spread has

previously been found to be I 0ð Þ, as it must be to become an error correction.

Using the spread in the error correction leads to the following estimated models:

rR20t 52
0:013
0:005ð Þ SPREADt21 2

1:017
0:710ð Þ

� �
1

0:303
0:021ð Þ rRSt 2

0:080
0:023ð Þ rRSt21

1
0:232
0:036ð Þ rR20t21 2

0:108
0:032ð Þ rR20t22 1 â1;t

σ̂a 5 0:249

and

rRSt 5
0:030
0:008ð Þ SPREADt21 2

1:145
0:446ð Þ

� �
1

0:719
0:047ð Þ rR20t

1
0:261
0:030ð Þ rRSt21 1 â2;t

σ̂a 5 0:428

In this latter model the lagged spread enters significantly and so provides an

improvement over the model fitted to just differences of the interest rates in

Example 12.1. Note also that the intercept in the error correction term of the

CEC for RS is now significant and is estimated to be 1.145, close to the “equilib-

rium level” found when fitting an AR(2) process to the spread in Example 3.2.
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EXAMPLE 14.3 Error Correction Modeling of Global Temperatures

In Example 12.1, two ARDL models were fitted to global temperatures and vari-

ous forcing variables. Since temperature and total radiative forcing were both

found to be I 1ð Þ from unit root pretests, while volcanic stratospheric aerosols and

the SO and AMO indices were found to be I 0ð Þ, Eq. (12.8) was defined in terms

of the differences of temperature and total radiative forcing, so that all variables

are entered as I 0ð Þ processes. Eq. (12.11), on the other hand, ignored the different

orders of integration, with all variables being entered in levels. This led to a

major difference in the estimate of the important transient climate response

(TCR), which is defined as a multiple (3.71) of the long-run coefficient on total

radiative forcing. From (12.8), the TCR was estimated to be 0.94�C with a 95%

confidence interval running from 0.4 to 1.5�C, whereas from (12.11), the TCR

was estimated to be 1.57�C with a confidence interval running from 1.53 to

1.61�C.
The bounds test calculated from the unrestricted version of (12.11) for a

restricted intercept and no trend produced an F-statistic of 11.64, which far

exceeds the 1% critical value of 4.37 and so conclusively rejects the null of no

long-run relationship between temperature and the forcing variables. The

implied error correction was then estimated to be

ect 5 TEMPt 1
0:010
0:021ð Þ 2

0:422
0:021ð ÞTRFt 2

0:218
0:064ð ÞVOLCt

1
0:947
0:234ð Þ SOt 2

0:450
0:080ð ÞAMOt

which yields the same estimate and confidence interval for the long-run coeffi-

cient on total radiative forcing as (12.11). Alternatively, only temperature and

total radiative forcing may be allowed to enter the error correction, so implicitly

assuming that the other forcings are I 0ð Þ and have no long-run effect on tempera-

ture. In this case, the F-statistic is 11.75 with a 1% critical value of 5.58, and the

estimate of the long-run coefficient is unchanged. These findings provide further

evidence that the TCR is precisely estimated at around 1.6�C.

ENDNOTES

1. The concept of cointegration was initially developed by Granger (1981) and extended in

Granger and Weiss (1983) before being introduced to a wider audience by the extremely

influential Engle and Granger (1987), which has become one of the most highly cited articles

in economics. See Mills (2013a, Chapter 10) for more detailed historical discussion and

analysis.

2. The nonparametric test of Phillips and Ouliaris (1990) gives statistics of 23.38 and 23.90,

respectively, with p-values of .030 and .007.

3. A similar approach is taken in the canonical cointegrating regression method of Park (1992).
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VECTOR AUTOREGRESSIONS WITH INTEGRATED VARIABLES

15.1 Having analyzed the impact of I 1ð Þ variables, and hence the possibil-

ity of cointegration, on single-equation autoregressive distributed lag models

in Chapter 14, Error Correction, Spurious Regressions, and Cointegration,

the implications of allowing vector autoregressions to contain I 1ð Þ variables
clearly require discussing. Consider, then, the n-variable VAR pð Þ of y13.11,

A Bð Þyt 5 c1 ut ð15:1Þ
where, as in y13.2, E utð Þ5 0 and

E utusð Þ5 Ωp t5 s

0 t 6¼ s

�

Using the matrix generalization of the “Beveridge�Nelson” decomposi-

tion of y8.4, the matrix polynomial
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A Bð Þ5 In 2
Xp
i51

AiB
i

can always be written, for p. 1, as

A Bð Þ5 In 2ABð Þ2Φ Bð ÞBr
where

A5
Xp
i51

Ai

and

Φ Bð Þ5
Xp21

i51

ΦiB
i21; Φi 52

Xp
j5i11

Aj

The Φi matrices can be obtained recursively from Φ1 5 2A1A1 as

Φi 5Φi21 1Ai, i5 2; . . . ; p2 1. With this decomposition of A Bð Þ, (15.1)

can always be written as

In 2AB2Φ Bð Þrð Þyt 5 c1 ut

or

yt 5 c1Φ Bð Þryt21 1Ayt21 1 ut

An equivalent representation is

ryt 5 c1Φ Bð Þryt21 1Πyt21 1 ut ð15:2Þ
where

Π5A2 In 52A 1ð Þ
is known as the long-run matrix. The representation (15.2) is the multivariate

counterpart of the ADF regression (recall Example 5.1), and it should be

emphasized that it is a purely algebraic transformation of (15.1), as no

assumptions about the properties of yt have been made up to this point.

15.2 Consider first the case where A5 In, so that Π5 0 and ryt follows
the VAR p2 1ð Þ

ryt 5 c1Φ Bð Þryt21 1 ut ð15:3Þ
where yt is an I 1ð Þ process and a VAR in the first differences ryt, as in

(15.3), is the appropriate specification.

15.3 There are some interesting and important results that follow from the

relationships existing between Eqs. (15.1) and (15.3). From the recursions of
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y15.1 there is seen to be a direct link between the coefficient matrices of

(15.1) and (15.2):

Ap 52Φp21

Ai 5Φi 2Φi21; i5 2; . . . ; p2 1

A1 5Π1 In 1Φ1

It can then be shown (see, for example, Hamilton, 1994, Chapter 18.2) that

irrespective of the order of integration of yt, t-tests on individual coefficients

of Ai are asymptotically valid, as are F-tests of linear combinations of the Ai

other than the “unit root” combination A1 1A2 1?1Ap. Likelihood ratio

tests for determining lag order are also asymptotically valid, as is the use of

information criteria. What are not valid, however, are Granger-causality tests,

which turn out not to have the usual χ2 limiting distribution. These results

hold irrespective of whether the variables in yt have drifts or not.

VECTOR AUTOREGRESSIONS WITH COINTEGRATED
VARIABLES

15.4 The condition A5 In implies that

Πj j5 A1 1?1Ap 2 In
�� ��5 0 ð15:4Þ

that is, that the long-run matrix is singular and must, therefore, have a rank

that is less than n. The VAR (15.1) is then said to contain at least one unit

root. Note, however, that (15.4) does not necessarily imply that A5 In and it

is this fact that leads to cointegrated VARs (CVARs). Thus, suppose that

(15.4) holds, so that the long-run matrix Π is singular and Πj j5 0, but

Π 6¼ 0 and A 6¼ In. Being singular, Π will thus have reduced rank, say r,

where 0# r# n. In such circumstances, Π can be expressed as the product

of two n3 r matrices α and β such that Π5βα0.
To see why this is the case, note that α0 can be defined as the matrix con-

taining the r linearly dependent rows of Π, so that Π must be able to be

written as a linear combination of α0:β is then the matrix of coefficients that

are needed to do this. These r linearly independent rows of Π, when written

as the rows of α0
5 α1;. . .;αrð Þ0, are known as the cointegrating vectors and

Π will contain only n2 r unit roots, rather than the n unit roots that it would

contain if Π5 0, which would be the case if r5 0.

15.5 Why are the rows of α0 known as cointegrating vectors? Substituting

Π5βα0 into (15.2) yields

ryt 5 c1Φ Bð Þryt21 1βα0yt21 1 ut ð15:5Þ
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The assumption that ytBI 1ð Þ implies that, since rytBI 0ð Þ, it must be the

case that A1 5Π1 In 1Φ1 to ensure that both sides of (15.5) “balance,”

i.e., they are of the same order of integration. In other words, α0 is a matrix

whose rows, when post-multiplied by yt, produce stationary linear combina-

tions of yt: the r linear combinations α0
1yt; . . . ;α

0
ryt are all stationary and

can, thus, play the role of cointegrating relationships.

15.6 Consequently, if yt is cointegrated with cointegrating rank r, then it

can be represented as the vector error correction model (VECM)

ryt 5 c1Φ Bð Þryt21 1βet21 1 ut ð15:6Þ
where et 5α0yt contains the r stationary error corrections. This is known as

Granger’s Representation Theorem and is clearly the multivariate extension

and generalization of (14.4).

15.7 Several additional points are worth mentioning. The parameter matri-

ces α and β are not uniquely identified, since for any nonsingular r3 r

matrix ξ, the products βα0 and βξ ξ21α0� �
will both equal Π. Some normal-

ization is, therefore, typically imposed—setting some elements of α to unity

is often the preferred choice.

If r5 0, then we have already seen in y15.2 that the model becomes the

VAR p2 1ð Þ (15.3) in the first differences ryt. If, on the other hand, r5 n,

then Π is of full rank and is nonsingular, and yt will contain no unit roots

and will be I 0ð Þ, so that a VAR pð Þ in the levels of yt is appropriate from the

outset.

The error corrections et, although stationary, are not restricted to having

zero means, so that, as (15.6) stands, growth in yt can come about via both

the error correction et and the “autonomous” drift component c. How this

intercept, and perhaps a trend, are treated in (15.6) is important in determin-

ing the appropriate estimation procedure and the set of critical values used

for inference (cf. the alternative forms of the conditional error correction

(CEC) in y14.23). Banerjee et al. (1993, chapter 5) and Mills and Markellos

(2008, chapter 9) provide detailed treatments of the alternative ways in

which intercepts and trends may enter VECMs and the implications of doing

so: an introductory discussion is provided in y15.10.

EXAMPLE 15.1 A Simple Example of the Algebra of VECMs

Let us assume that p5 n5 2 so that we have a VAR(2) in the variables y1 and

y2, with intercepts and trends omitted for simplicity:

y1;t 5 a11;1y1;t21 1 a12;1y2;t21 1 a11;2y1;t22 1 a12;2y2;t22 1 u1;t

y2;t 5 a21;1y1;t21 1 a22;1y2;t21 1 a21;2y1;t22 1 a22;2y2;t22 1 u2;t
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The various coefficient matrices required for (15.2) are

A1 5
a11;1 a12;1
a21;1 a22;1

� �
A2 5

a11;2 a12;2
a21;2 a22;2

� �

A5A1 1A2 5
a11;1 1 a11;2 a12;1 1 a12;2
a21;1 1 a21;2 a22;1 1 a22;2

� �
5

a11 a12
a21 a22

� �

Π5A2 I2 5
π11 π12

π21 π22

� �
5

a11 2 1 a12
a21 a22 2 1

� �

The singularity condition on the long-run matrix Π is

Πj j5 05π11π22 2π12π21

which implies that

Π5
π11 π12

π22=π12

� �
π11 π22=π12

� �
π12

� �

and

β5
1

π22=π12

� �
α

0
5 π11 π12

� 	

Equivalently, on normalizing using ξ5π11,

β5
π11

π22=π12

� �� �
α

0
5 1 π12=π11

� 	

The VECM (15.6) is then, on noting that, with p5 2,

Φ Bð Þ5Φ1 52A1A1 52A2,

ry t 52A2ry t21 1βα
0
y t21 1 ut

or

ry1;t
ry2;t

� �
52

a11;2 a12;2
a21;2 a22;2

� � ry1;t21

ry2;t21

� �
1

π11

π22=π12

� �� �
π11 π12

� 	 y1;t21

y2;t21

� �
1

u1;t
u2;t

� �

Written equation by equation, this is

ry1;t 52 a11;2ry1;t21 2 a12;2ry2;t21 1π11et21 1u1t

ry2;t 52 a21;2ry1;t21 2 a22;2ry2;t21 1
π22

π12


 �
π11et21 1u2t

where

et 5 y1;t 2
π12

π11


 �
y2;t

is the single error correction. The various πrs coefficients can themselves be

expressed in terms of the ars;i coefficients, r ; s; i5 1;2, if desired.
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ESTIMATION OF VECTOR ERROR CORRECTION MODELS AND
TESTS OF COINTEGRATING RANK

15.8 Estimation of the VECM (15.5) is nonstandard because the α and β
matrices enter in nonlinear fashion as the product βα0. Without going into

unnecessary technical details, ML estimates are obtained in the following

way. Consider again (15.5) but now written as:

ryt 5 c1
Xp21

i51

Φiryt2i 1βα0yt21 1 ut ð15:7Þ

The first step is to estimate (15.7) under the restriction βα0
5 0. As this

is simply the “differenced VAR” (15.3), OLS estimation will yield the set of

residuals ût, from which we may calculate the sample covariance matrix

S00 5 T21
XT
t51

ûtû
0
t

The second step is to estimate the multivariate regression

yt21 5 d1
Xp21

i51

Ξiryt2i 1 vt

by OLS, and use the residuals v̂t to calculate the covariance matrices

S11 5 T21
XT
t51

v̂tv̂
0
t

and

S10 5 T21
XT
t51

ûtv̂
0
t 5 S01

These two regressions partial out the effects of the lagged differences

ryt21; . . . ;ryt2p11 from ryt and yt21, leaving us to concentrate on the rela-

tionship between these two variables, which is parameterized by βα0. The
vector α is then estimated by the r linear combinations of yt21 which have

the largest squared partial correlations with ryt: this is known as a reduced

rank regression.

15.9 More precisely, this procedure maximizes the likelihood of (15.7) by

treating it as a generalized eigenvalue problem and solving a set of equations

of the form:

λiS11 2 S10S
21
00 S01

� �
υi 5 0 i5 1; . . . ; n ð15:8Þ
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where λ1 $λ2 $?$λn $ 0 are the set of eigenvalues and

V5 υ1;υ2;. . .;υnð Þ contains the set of associated eigenvectors, subject to the

normalization

V
0
S11V5 In

The ML estimate of α is then given by the eigenvectors corresponding to

the r largest eigenvalues:

α̂5 υ1;υ2;. . .;υrð Þ
and the ML estimate of β is consequently calculated as β̂5 S01α̂, which is

equivalent to the estimate of β that would be obtained by substituting α̂ into

(15.7) and estimating by OLS, which also provides ML estimates of the

remaining parameters in the model.

15.10 This procedure can be straightforwardly adapted when a trend is

included in (15.7) and when various restrictions are placed upon the intercept

and trend coefficients. This involves adjusting the first- and second-step

regressions to accommodate these alterations. Consider again the levels VAR

(15.1) with a linear trend included:

A Bð Þyt 5 c1 dt1 ut ð15:9Þ
Quite generally, the intercept and trend coefficients may be written as:

c5βγ1 1β\γ
�
1 d5βγ2 1β\γ

�
2

where β\ is an n3 n2 rð Þ matrix known as the orthogonal complement of

β, defined such that β
0
\β5 0, γ1 and γ2 are r3 1 vectors, and γ�

1 and γ�
2

are n2 rð Þ3 1 vectors. It then follows that

β
0
c5β

0
βγ1 1β

0
β\γ

�
1 5β

0
βγ1

and, similarly, β0d5β0βγ2. The associated VECM can then be written as

ryt 5Φ Bð Þryt21 1β\ γ
�
1 1γ

�
2t

� �
1β γ1 1γ2 t2 1ð Þ1 et21

� �
1 ut

The trend will be restricted to the error correction if β\γ
�
2 5 0, that is, if

d5βγ2. Similarly, the intercept will be restricted to the error correction if

β\γ
�
1 5 0 ðc5βγ1Þ. Thus, the “trend included” error correction may be

defined as e
�
t 5 et 1γ1 1γ2t.

15.11 Of course, ML estimation is based upon a known value of the cointe-

grating rank r, but in practice this value will be unknown. Fortunately, the

set of Eq. (15.8) also provides a method of determining the value of r. If

r5 n and Π is unrestricted, the maximized log likelihood is given by:

L nð Þ5K2
T

2


 �Xn
i51

log 12λið Þ
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where

K52
T

2


 �
n 11 2log2πð Þ1 log S00j jð Þ

For a given value of r, n, only the first r eigenvalues should be positive,

and the restricted log likelihood is

L rð Þ5K2
T

2


 �Xr

i51

log 12λið Þ

An LR test of the hypothesis that there are r cointegrating vectors against

the alternative that there are n is then given by:

ηr 5 2 L nð Þ2L rð Þð Þ52 T
Xn
i5r11

log 12λið Þ

This is known as the trace statistic and testing proceeds in the sequence

η0; η1; . . . ; ηn21. A cointegrating rank of r is selected if the last significant

statistic is ηr21, which thereby rejects the hypothesis of n2 r1 1 unit roots

in Π. The trace statistic measures the importance of the adjustment coeffi-

cients β on the eigenvectors to be potentially omitted.

15.12 An alternative test is to assess the significance of the largest eigen-

value with

ζr 52 T log 12λr11ð Þ r5 0; 1; . . . ; n2 1

which is known as the maximal-eigenvalue or λ-max statistic. Both ηr and ζr
have nonstandard limiting distributions that are generalizations of the

Dickey�Fuller unit root distributions. The limiting distributions depend on n

and on the restrictions imposed on the behavior of the constant and trend

appearing in the VECM (cf. y15.10).
These tests are often referred to as Johansen system cointegration tests:

see, for example, Johansen (1988, 1995), in which this approach was first

proposed and subsequently developed.

EXAMPLE 15.2 A VECM Representation of United Kingdom Long and Short
Interest Rates

Example 13.1 estimated a VAR(2) for ry t 5 rRSt ;rR20tð Þ0. Given that Example

14.1 has demonstrated that the two interest rates are cointegrated, we now inves-

tigate a VECM for the levels vector y t 5 RSt ;R20tð Þ0. From y15.3, lag order deter-

mination statistics remain appropriate for the levels VAR even if, as has been

found, the two interest rates are both I 1ð Þ. Thus, from Table 15.1, a lag order of

p5 3 is selected.

Since n52, setting the cointegrating rank as r 5 0 would imply that there

was no cointegration and the representation would be that found in Example
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13.1; a VAR(2) in the differences rRS and rR20. If r 51 there will be a single

cointegrating vector with the error correction et 5α1RSt 1α2R20t 1α0, where

an intercept is included. If r 5 2 then there are no unit roots and a VAR(3) in

levels is appropriate.

Including c in (15.1), allowing an intercept in the cointegrating vector and

estimating by ML obtains the eigenvalues λ1 5 0:0202 and λ2 5 0:0014, using
which the trace statistics η0 517:13 and η1 5 1:12 and maximum eigenvalue sta-

tistics ζ0 5 16:01 and ζ1 5 1:12 are calculated. The η0 and ζ0 statistics reject the

null hypothesis of r 5 0 in favor of r .0 with p-values of .03, but the η1 and ζ1
statistics, which, by definition, are equal in this example, cannot reject the null

of r 5 1 in favor of r 5 2, the p-values being .29. We are, thus, led to the conclu-

sion that RS and R20 are indeed cointegrated, implying that using a VAR in the

first differences to model y t 5 RSt ;R20tð Þ0 constitutes a misspecification.

ML estimation of the implied VECM obtains these estimates, written in indi-

vidual equation form for convenience (no intercepts were included in the indi-

vidual equations as, consistent with previous analyses, they were found to be

insignificant):

rRSt 5
0:227
0:040ð Þ rRSt21 1

0:039
0:039ð Þ rRSt22 1

0:270
0:061ð Þ rR20t21 2

0:079
0:062ð Þ rR20t22

1
0:026
0:008ð Þ et21 1 û1;t

rR20t 52
0:013
0:026ð Þ rRSt21 1

0:020
0:026ð Þ rRSt22 1

0:315
0:040ð Þ rR20t21 2

0:139
0:040ð Þ rR20t22

2
0:004
0:005ð Þ et21 1 û2;t

et 5R20t 2
1:044
0:122ð ÞRSt 2

0:898
0:886ð Þ

TABLE 15.1 Lag Length Determination Statistics for yt 5 RSt;R20tð Þ0

p L LR p;p2 1
� �

MAIC MBIC

0 2 3650.3 � 9.365 9.377

1 2 530.2 6216.12 1.375 1.411

2 2 462.4 134.82 1.211 1.271a

3 2 455.9 12.76a 1.205a 1.289

4 2 455.4 0.98 1.214 1.321

5 2 454.4 2.11 1.221 1.353

6 2 451.6 5.41 1.225 1.380

LR p;p2 1
� �

Bχ2 4ð Þ: χ2
0:05 4ð Þ5 9:49. MAIC, multivariate AIC criterion; MBIC, multivariate BIC

criterion.
aDenotes selected value.
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IDENTIFICATION OF VECTOR ERROR CORRECTION MODELS

15.13 The error correction in Example 15.2 has been normalized by setting

α2 5 1. With one cointegrating vector (r5 1), imposing one restriction is

sufficient to identify the cointegrating vector. More generally, the assumption

that the rank of Π is r implicitly imposes n2rð Þ2 restrictions on its n2 coeffi-

cients, leaving n2 2 n2rð Þ2 5 2nr2 r2 free parameters. The two n3 r matri-

ces, α and β, involve 2nr parameters, so that identifying Π5βα0 requires a
total of r2 restrictions.

If, for the moment, the identifying restrictions are imposed only on the α
matrix, if they are linear, and if there are no cross-cointegrating vector

restrictions, then these restrictions can be written for the ith cointegrating

vector as Riαi 5 ai, where Ri and ai are an r3 n matrix and an r3 1 vector,

respectively. A necessary and sufficient condition for α to be uniquely iden-

tified is that the rank of each Riαi is r, while the necessary condition is that

there must be r restrictions placed on each of the r cointegrating vectors.1

Note that the identification of α, and hence Π, is achieved solely through

restrictions on α itself. Long-run relationships cannot be identified through

restrictions on the short-run dynamics: consequently, the Φi coefficients in

(15.6) may be estimated freely.

15.14 If the number of restrictions imposed on α is k, then setting k equal

to r2 constitutes exact identification. The imposition of r restrictions on each

of the r cointegrating vectors does not alter the likelihood L rð Þ, so that,

while their imposition enables a unique estimate of α to be obtained, the

validity of the restrictions cannot be tested. Typically, r restrictions are

obtained by normalization, and if r5 1 then this is all that is required, as

was the case in Example 15.2. For r. 1, a further r2 2 r restrictions are

needed (r2 1 on each equation), and this forms the basis for Phillips’ (1991)

triangular representation. This writes α as

α
0
5 Ir 2Γ
� 	

where Γ is an r3 n2 rð Þ matrix. The r2 just-identifying restrictions are,

thus, made up of r normalizations and r2 2 r zero restrictions, corresponding

to solving α0yt for the first r components of yt.

15.15 When k. r2, there are k2 r2 overidentifying restrictions. If L r:qð Þ
denotes the log-likelihood after the imposition of the q5 k2 r2 overidentify-

ing restrictions, then the validity of these restrictions can be tested using the

LR statistic 2 L rð Þ2L r:qð Þð Þ, which is asymptotically distributed as χ2 qð Þ.

15.16 Restrictions may also be placed on β and may link α and β. One
source of restrictions is to consider hypotheses concerning the weak exogene-

ity of some of the variables. Suppose we make the partition yt 5 x
0
t; z

0
t

� �0,
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where xt and zt are n1 3 1 and n2 3 1 vectors with n1 1 n2 5 n, and write the

VECM (15.7) as the pair of “marginal” models

rxt 5 c1 1
Xp21

i51
Φ1;iryt2i 1β1α

0yt21 1 u1;t ð15:10aÞ

rzt 5 c2 1
Xp21

i51
Φ2;iryt2i 1β2α

0yt21 1 u2;t ð15:10bÞ
where

Φi 5
Φ1;i

Φ2;i

� �
i5 1; . . . ;m2 1 β5

β1

β2

� �
ut 5

u1;t
u2;t

� �

are conformable partitions. The condition for zt to be weakly exogenous for

α;β1ð Þ is β2 5 0, in which case the error correction et 5α0yt does not enter
the marginal model for zt.

2

Such weak exogeneity hypotheses may be tested by including the n2 zero

restrictions on β, that is, under the null hypothesis, β5 β1 0
� 	0, in the q

overidentifying restrictions of the LR test previously outlined in y15.15.

EXAMPLE 15.3 Tests on the VECM of United Kingdom Interest Rates

As well as the normalization α2 5 1, which is enough to just-identify the cointe-

grating vector of the VECM in Example 15.2, two further restrictions are sug-

gested by the estimated coefficients of the model. The first is α1 52 1, since α̂1

is insignificantly different from this value. This restriction defines the error cor-

rection to be the deviation of the spread from its equilibrium value, as was found

in the ARDL model fitted in Example 14.2. Second, the error correction term in

the equation for rR20 is insignificantly different from zero, thus raising the ques-

tion of whether R20 might be weakly exogenous. In the notation of y15.15,
n1 5 n2 5 1, β5 β1 β2

� 	
and we wish to test the hypothesis β2 50 to establish

the weak exogeneity of R20.

As there are two overidentifying restrictions, the LR test is

2 L 1ð Þ2L 1:2ð Þð Þ5 0:67Bχ2 2ð Þ, which has a p-value of just .71, so that the

restrictions are satisfied. Estimation of the restricted model yields

rRSt 5
0:227
0:040ð Þ rRSt21 1

0:039
0:040ð Þ rRSt22 1

0:270
0:061ð Þ rR20t21 2

0:080
0:062ð Þ rR20t22

1
0:030
0:008ð Þ e

R
t21 1 û1;t

rR20t 52
0:013
0:026ð Þ rRSt21 1

0:020
0:026ð Þ rRSt22 1

0:315
0:040ð Þ rR20t21

2
0:138
0:040ð Þ rR20t22 1 û2;t

where the restricted error correction

eRt 5R20t 2RSt 2
1:191
0:454ð Þ
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only enters the rRS equation. Note also that both φ̂1;21 and φ̂2;21 are insignif-

icantly different from zero so that R20 can, in fact, be regarded as strongly exog-

enous, there being no feedback from short rates to long rates.

Forecasts of future values of interest rates may be obtained in the manner

described in Chapter 7, An Introduction to Forecasting With Univariate Models,

on an equation by equation basis. Fig. 15.1 shows forecasts of R20 and RS out to

the end of 2020. The forecasts are shown to quickly stabilize and at the end of

the forecast period are 1.694% and 0.426%, respectively, the difference in these

rates, 1.268%, being close to the equilibrium value of the spread.

STRUCTURAL VECTOR ERROR CORRECTION MODELS

15.17 Following Johansen and Juselius (1994), a “structural VECM” may

be written as

Γ0ryt 5
Xp21

i51
Γiryt2i 1Θα

0
yt21 1υt ð15:11Þ

which is related to the “reduced form” VECM

ryt 5
Xp21

i51

Φiryt2i 1βα
0
yt21 1 ut

through

Γi 5Γ0Φi i5 1; . . . ; p2 1

Γ0β5Θ νt 5Γ0ut

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Jan 2017 Jan 2018 Jan 2019 Jan 2020

R20 RS 

% p.a.

FIGURE 15.1 Interest rate forecasts to December 2020.
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so that

E νtν
0
t

� �
5Γ0ΩpΓ

0
0

Note that this framework assumes that the cointegrating vectors have

already been identified (and their parameters set), so that identification of

the “short-run” structure, that is, the set of parameters Γ0;Γ1; . . . ;Γp21;Θ, is

carried out conditionally on the form of α. This can be done using conven-

tional methods and will typically proceed in an exploratory fashion as little

will usually be known a priori about the short-run structure.

EXAMPLE 15.4 A Structural VECM for United Kingdom Interest Rates

We know from Example 14.1 that rR20t and rRSt are contemporaneously cor-

related and this is confirmed by a correlation of 0.46 between the residuals û1;t

and û2;t of the VECM of Example 15.3. Thus, Γ0, which here is 23 2, must be

non-diagonal and so a structural VECM may be constructed. With p5 3, the

matrices in (15.10a,b) take the form:

Γ0 5
1 γ12;0

γ21;0 1


 �
Γ1 5

γ11;1 γ12;1
γ21;1 γ22;1


 �
Γ2 5

γ11;2 γ12;2
γ21;2 γ22;2


 �
Ψ5

ψ1

ψ2

� �

While two normalization restrictions have been imposed on Γ0, a further

restriction is required for the equation system to be identified. Two possibilities

are available: either γ12;0 5 0 or γ21;0 5 0. Table 15.2 reports the model estimates

under each of these identifications. Under the first identification, three coeffi-

cients are estimated to be insignificantly different from zero and a joint test of

these three zero restrictions produces a test statistic that has a p-value of just .57.

The so restricted model is:

rRSt 5 0:229
0:038ð Þ rRSt21 1

0:253
0:059ð Þ rR20t21 1

0:026
0:008ð Þ e

R
t21 1 υ̂1;t

rR20t 5 0:302
0:021ð Þ rRSt 2

0:080
0:023ð Þ rRSt21 1

0:232
0:036ð Þ rR20t21 2

0:108
0:032ð Þ rR20t22

2
0:013
0:005ð Þ e

R
t21 1 υ̂2;t

Under the second identifying restriction there are six insignificant coefficients

and the accompanying test statistic of these zero restrictions has a p-value of .77,

leading to the restricted model:

rRSt 5 0:709
0:047ð Þ rR20t 1

0:261
0:030ð Þ rRSt21 1

0:030
0:007ð Þ e

R
t21 1 υ̂1;t

rR20t 5 0:304
0:035ð Þ rR20t21 2

0:126
0:035ð Þ rR20t22 1 υ̂2;t

Statistically the two models are indistinguishable as their fits are identical.

There are, however, differences in their interpretations. In the second model

long interest rates are strongly exogenous, as was implied by the VECM of
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Example 15.3. In the first model, by contrast, the error correction appears signifi-

cantly in both equations and there is a short-run feedback from short to long

rates. Which of the two models to select is thus a choice that requires further

knowledge, both theoretical and institutional, about the behavior and interaction

of the gilt and money markets in the United Kingdom.

CAUSALITY TESTING IN VECTOR ERROR CORRECTION
MODELS

15.18 Consider a “fully partitioned” form of the marginal VECM (15.10a,b):

rxt 5 c1 1
Xp21

i51

Φ11;irxt2i 1
Xp21

i51

Φ12;irzt2i 1β1α
0
1xt21 1β1α

0
2zt21 1 u1;t

rzt 5 c2 1
Xp21

i51

Φ21;irxt2i 1
Xp21

i51

Φ22;irzt2i 1β2α
0
1xt21 1β2α

0
2zt21 1 u1;t

where now

Φi 5
Φ11;i Φ12;i

Φ21;i Φ22;i

� �
α

0
5 α1 α2

� 	0

TABLE 15.2 Structural VECM Estimates

γ12;0 5 0 γ21;0 5 0

γ12;0 � 2 0.701a (0.049)

γ21;0 2 0.302a (0.021) �
γ11;1 0.227a (0.040) 0.236a (0.035)

γ12;1 0.270a (0.061) 0.049 (0.056)

γ21;1 2 0.082a (0.024) 2 0.013 (0.026)

γ22;1 0.233a (0.036) 0.315a (0.040)

γ11;2 0.039 (0.039) 0.025 (0.035)

γ12;2 2 0.080 (0.062) 0.017 (0.055)

γ21;2 0.008 (0.023) 0.020 (0.026)

γ22;2 2 0.114a (0.036) 2 0.138a (0.040)

ψ1 0.027a (0.009) 0.030a (0.008)

ψ2 2 0.012a (0.005) 2 0.004 (0.006)

VECM, Vector error correction model.
aDenotes significantly different from zero at 0.05 level.
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The hypothesis that z does not Granger-cause x may then be formalized as

H0 : Φ12;1 5?5Φ12;p21 5 0; β1α
0
2 5 0

The second part of H0, which is often referred to as “long-run noncausality,”

involves a nonlinear function of the α and β coefficients and this compli-

cates testing considerably: see Toda and Phillips (1993, 1994). Basing a test

on the unrestricted Π matrix, that is, Π12 5 0, to use an obvious notation, is

invalid as the Wald test statistic will only be distributed asymptotically as χ2

if it is known that α2 is of rank n2, information that is simply not available

from estimating the “levels” VAR.

15.19 Because of the complexity of testing H0, a simpler, but necessarily

less powerful and inefficient, procedure has been suggested by Toda and

Yamamoto (1995) and Saikkonen and Lütkepohl (1996). Suppose we con-

sider a VAR pð Þ in levels but now augment the order by one, that is, we fit a

VAR p1 1ð Þ. It turns out that the noncausality hypothesis can now be tested

by a conventional Wald statistic, because the additional lag, for which

Φ12;p11 5 0 by assumption, allows standard asymptotic inference to once

again be used.3

If the number of variables in the VAR is small and the lag order quite

large, then including an additional lag might lead to only minor inefficien-

cies, so that, given the ease with which tests can be constructed, this “lag

augmentation” VAR (LA-VAR) approach should be seriously considered

under such circumstances.

EXAMPLE 15.5 LA-VAR Causality Tests for United Kingdom Interest Rates

Since a VAR(3) has been selected for y t 5 RSt ;R20tð Þ0 and we know that RS and

R20 are both I 1ð Þ, Granger-causality between them can be tested using the LA-

VAR approach by fitting a VAR(4). The null R20 does not -RS yields a test sta-

tistic of 26.64, which is highly significant, while the test statistic for the null

RS does not-R20 is 1.52, which has a p-value of just .82. There is, thus, no evi-

dence of a feedback from RS to R20 and this is consistent with the second of the

structural VECMs fitted in Example 15.4.

IMPULSE RESPONSE ASYMPTOTICS IN NONSTATIONARY
VARs

15.20 As shown in yy13.11�13.14, the various impulse responses of the

VAR are computed from the sequence of matrices

Ψi 5
Xi

j51

AjΨi2j; Ψ0 5 In Ψi 5 0; i, 0
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Their computation remains exactly the same in nonstationary VARs, but if

Π52
Pp

j51 Aj is of reduced rank, the elements of Ψi will not die out as i

increases, and this leads to some analytical complications.

15.21 In stationary VARs, where all the roots of the long-run matrix Π are

less than one, the estimated impulse responses may be shown to be consis-

tent and asymptotically normal and both the Ψi and their estimates Ψ̂i tend

to zero. For nonstationary VARs, where the Ψi do not necessarily die out as

i-N, a different limit theory holds for the impulse response estimates, as

shown by the results of Phillips (1998) and Stock (1996).

These results are summarized here. When there are unit roots in the sys-

tem, the long-horizon (large i) impulse responses estimated from a levels

VAR by OLS are inconsistent; the limiting values of the estimated responses

being random variables rather than the true impulse responses. The reason

for this is that, because these true impulse responses do not die out as i

increases, they carry the effects of the unit roots with them indefinitely.

Since the unit roots are estimated with error (i.e., the estimated roots tend

not to be exactly unity), the effects of the estimation error persist in the limit

as T-N. The limiting distribution of Ψ̂i is asymmetric, so that confidence

intervals for impulse responses will be asymmetric as well.

The limiting impulse responses in a CVAR, on the other hand, are esti-

mated consistently if the cointegrating rank is either known or is itself esti-

mated consistently, say by the tests of yy15.10�15.11 or by using an

information criterion. This is because, in a reduced-rank regression, the

matrix product βα0 is estimated rather than Π, so that no unit roots are esti-

mated (either implicitly or explicitly). Nonetheless, these consistent rank

order selection procedures will tend to mistakenly take roots that are close to

unity as actually being unity, so that, rather than dying out, the estimated

impulse responses will converge to nonzero constants, accompanied by

rather wide confidence intervals.

Impulse responses for nonstationary VARs should, therefore, not be com-

puted from an unrestricted levels VAR. Since knowing the number of unit

roots in the system is necessary for obtaining accurate estimates, it is impor-

tant that the cointegrating rank is selected by a consistent method that works

well in practice.

EXAMPLE 15.6 Impulse Responses From the Interest Rate VECM

The VECM fitted in Example 15.3 imposes a single unit root on the long-run

matrix, and the generalized impulse responses shown in Fig. 15.2 reflect this,

with the impulse responses to a shock in the other variable quickly converging

to nonzero constants. The levels VAR does not impose a unit root but estimates

it to be 0.996. Although this is close to unity, the stationarity of the long-run

matrix manifests itself in a (slow) decline of the impulse response functions

toward zero, as shown in Fig. 15.3.
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VECTOR ERROR CORRECTION MODEL-X MODELS

15.22 A straightforward extension of the CVAR/VECM model is to include

a vector of I 0ð Þ exogenous variables, wt say, which may enter each equation:

ryt 5 c1 dt1
Xp21

i51
Φiryt2i 1βα

0
yt21 1Λwt 1 ut ð15:12Þ

Estimation and testing for cointegrating rank remain exactly as before,

although critical values of tests may be affected.
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FIGURE 15.2 Generalized impulse responses from the interest rate VECM. VECM, Vector

error correction model.

VARs With Integrated Variables Chapter | 15 271



EXAMPLE 15.7 A VECM-X Model of Temperature and Total Radiative
Forcing

Example 14.2 found a cointegrating relationship between the I 1ð Þ variables

y t 5 TEMPt ;TRFtð Þ0. It is of interest to embed this cointegrating relationship

within the VECM-X model (15.12) containing the I 0ð Þ exogenous vector

w t 5 VOLCt ; SOt ;AMOt ;AMOt21ð Þ0. Prior analysis suggested setting p5 5 and

including both an intercept and a trend in the cointegrating vector. With this

setup the cointegrating vector is estimated to be

et 5 TEMPt 20:11520:000094t 2
0:418
0:063ð Þ TRFt
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FIGURE 15.3 Generalized impulse responses from the levels VAR.
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and the VECM-X may be written as

rTEMPt
rTRFt

� �
5

c1
c2

� �
1

d1
d2

� �
t1

X4
i51

φ11;i φ12;i

φ21;i φ22;i

� � rTEMPt2i
rTRFt2i

� �
1

β1

β2

� �
et 1

Λ1

Λ2

� �
w t 1

u1;t
u2;t

� �

where

Λ5
Λ1

Λ2

� �
5

λ11 λ12 λ13 λ14

λ21 λ22 λ23 λ24

� �

The estimates of this model are reported in Table 15.3. From these estimates

several sets of restrictions suggest themselves. The first set of restrictions,

φ12;1 5?5φ12;4 50, removes all lags of rTRF from the rTEMP equation. This

has a Wald test statistic of 1:34Bχ2 4ð Þ, which has a p-value of .86. The second

set is φ21;1 5?5φ21;4 5 0, which removes all lags of rTEMP from the rTRF
equation. This has a Wald test statistic of 3:24Bχ2 4ð Þ, which has a p-value of

TABLE 15.3 VECM-X Estimates

rTEMP Equation rTRF Equation

et21 2 0.452 (0.094) 20.024 (0.014)

rTEMPt21 2 0.146 (0.080) 0.018 (0.011)

rTEMPt22 2 0.090 (0.071) 0.015 (0.011)

rTEMPt23 2 0.101 (0.068) 0.014 (0.009)

rTEMPt24 0.039 (0.058) 0.009 (0.009)

rTRFt21 2 0.282 (0.511) 1.461 (0.076)

rTRFt22 0.060 (0.894) 21.322 (0.013)

rTRFt23 0.430 (0.897) 0.800 (0.133)

rTRFt24 2 0.489 (0.515) 20.533 (0.076)

c 2 0.001 (0.012) 20.004 (0.002)

t 0.00015 (0.00017) 0.00026 (0.00002)

VOLCt 0.072 (0.020) 20.003 (0.003)

SOt 2 0.303 (0.057) 0.003 (0.008)

AMOt 0.405 (0.048) 20.000 (0.007)

AMOt21 2 0.209 (0.057) 20.003 (0.008)

σ 0.0676 0.00100

L 192.9 469.9

Ω̂5

��� ��� 4.543 1027

VECM, Vector error correction model.
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.52. The third set is λ21 5?5λ24 5 0, which removes w t from the rTRF equa-

tion and has a Wald test statistic of 1:68Bχ2 4ð Þ, which has a p-value of .79.

Imposing these three sets of restrictions, with the additional restrictions d1 5 0

(no trend in the rTEMP equation) and φ11;4 5 0, produces:

rTEMPt 5
0:011
0:005ð Þ 2

0:174
0:064ð Þ rTEMPt21 2

0:119
0:057ð Þ rTEMPt22 2

0:121
0:053ð Þ rTEMPt23

1
0:076
0:019ð ÞVOLCt 2

0:308
0:052ð Þ SOt 1

0:409
0:045ð ÞAMOt 2

0:205
0:053ð ÞAMOt21

2
0:438
0:078ð Þ et21 1 û1;t

and

rTRFt 5 0:012
0:001ð Þ 1

0:00016
0:00002ð Þ t 1

1:485
0:071ð Þ rTRFt21 2

1:342
0:124ð Þ rTRFt22

1
0:811
0:104ð Þ rTRFt23 2

0:510
0:071ð Þ rTRFt24 2

0:016
0:007ð Þ et21 1 û2;t

The complete set of restrictions provides the test statistic 7:01Bχ2 14ð Þ with a

p-value of just .93. The contemporaneous correlation between the residuals of

the two equations is just 0.07, suggesting that little would be gained by consider-

ing a structural formulation.

This VECM-X model has some interesting implications. There is no short-run

impact of total radiative forcing on temperature: the entire effect comes through

the lagged error correcting term, so that it is the last period’s deviation from the

long-run equilibrium that drives temperature changes. Not surprisingly, there is

no impact from the exogenous climatic variables on total radiative forcing, nor is

there any short-run feedback from temperature. There is, however, a long-run

feedback from temperature to total radiative forcing through the presence of the

lagged error correction. The signs of the error correction term are both negative

so that the system is in a stable equilibrium.

COMMON TRENDS AND CYCLES

15.23 Further implications of the presence of a linear trend in a CVAR are

best analyzed by introducing the infinite-order vector polynomial C Bð Þ,
defined such that

C Bð ÞΠ Bð Þ5rIn ð15:13Þ
Analogous to the decomposition of A Bð Þ in y15.1, we have

C Bð Þ 5 In 1CB1 C
�
1B1C

�
2B

2 1?
� �r

5 In 1C1 C
�
0 1C

�
1B1C

�
2B

2 1?
� �r

5 In 1C1C
�
Bð Þr

5C 1ð Þ1C
�
Bð Þr
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The matrices of C Bð Þ, that is, C0;C1; . . ., are given by the recursions

Ci 5
Xp
j51

Ci2jAj; i. 0; C0 5 In

so that

C5
XN
i51

Ci 5C 1ð Þ2 In

It then follows that

C
�
0 52C

and

C
�
i 5C

�
i21 1Ci; i. 0

The VAR (15.9) can then be written as

ryt 5C Bð Þ c1 dt1 utð Þ
5 C 1ð Þ1C

�
Bð Þr� �

c1 dtð Þ1C Bð Þut
5C 1ð Þc1C

�
1ð Þd1C 1ð Þdt1C Bð Þut

5 b0 1 b1t1C Bð Þut
where

b0 5C 1ð Þc b1 5C 1ð Þd
In levels, this becomes

yt 5 y0 1 b0t1 b1
t t1 1ð Þ

2
1C Bð Þ

Xt

s51

ut

5 y0 1 b0t1 b1
t t1 1ð Þ

2
1 C 1ð Þ1C

�r� �Xt

s51

ut

5 y0 1 b0t1 b1
t t1 1ð Þ

2
1C 1ð Þst 1C

�
Bð Þ ut 2 u0ð Þ

5 y
�
0 1 b0t1 b1

t t1 1ð Þ
2

1C 1ð Þst 1C
�
Bð Þut

ð15:14Þ

where

y
�
0 5 y0 2C

�
Bð Þu0; st 5

Xt

s51

us

15.24 The inclusion of a linear trend in the VAR (15.9) with ytBI 1ð Þ thus
implies a quadratic trend in the levels Eq. (15.14). Furthermore, since

b1 5C 1ð Þd, this quadratic trend will disappear only if C 1ð Þ5 0. From

(15.13), C 1ð ÞA 1ð Þ5 0, so that C 1ð Þ5 0 requires that A 1ð Þ52Π 6¼ 0.

This will only be the case if A Bð Þ does not contain the factor 12B, that is,
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that ytBI 0ð Þ, which has been ruled out by assumption but would imply that

Π is of full rank n.

If, however, A 1ð Þ5 0, so that Π5 0, is of rank zero and contains n unit

roots, then there is no cointegration and C 1ð Þ, and hence b1, are uncon-

strained. In the general case, where the rank of Π is r, it then follows that

the rank of C 1ð Þ is n2 r. The rank of b1, and hence the number of indepen-

dent quadratic deterministic trends, is thus also equal to n2 r, and will,

therefore, decrease as the cointegrating rank r increases.

15.25 Without a restriction on the trend coefficient b1, the solution (15.14)

will have the property that the nature of the trend in yt will vary with the

number of cointegrating vectors. To avoid this unsatisfactory outcome, the

restriction b1 5C 1ð Þd5 0 may be imposed, in which case the solution for yt
will contain only linear trends, irrespective of the value of r. The choice of r

then determines the split between the number of independent linear deter-

ministic trends, r, and the number of stochastic trends, n2 r, in the model.

15.26 Consider then (15.14) with the restriction b1 5 0 imposed and, for

simplicity, initial values y0 5 u0 5 0:

yt 5 b0 1C 1ð Þst 1C
�
Bð Þut 5C 1ð Þ c1 stð Þ1C

�
Bð Þut ð15:15Þ

If there is cointegration, then as we have seen, C 1ð Þ is of reduced rank

h5 n2 r and can be written as the product ρδ0, where both matrices are of

rank h. On defining

τ t 5 δ0 c1 stð Þ ct 5C
�
Bð Þut

(15.15) can then be expressed in the “common trends” representation of

Stock and Watson (1988):

yt 5ρτ t 1 ct ð15:16Þ
τ t 5 τ t21 1 δ0ut

This representation expresses yt as a linear combination of h5 n2 r ran-

dom walks, these being the common trends τ t, plus some stationary “transi-

tory” components ct. In fact, (15.16) may be regarded as a multivariate

extension of the Beveridge�Nelson decomposition (8.9) (cf. y8.4). Through
a similar argument to that made about the cointegrating matrix α in y15.7, δ
is not uniquely defined, so these trends are also not uniquely defined without

introducing some additional identifying restrictions (see Wickens, 1996).

15.27 In the same way that common trends appear in yt when C 1ð Þ is of

reduced rank, common cycles appear if C
�
Bð Þ is of reduced rank, since

ct 5C
�
Bð Þut is the cyclical component of yt. The presence of common cycles

requires that there are linear combinations of the elements of yt that do not
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contain these cyclical components: that is, that there is a set of s linearly

independent vectors, gathered together in the n3 s matrix φ, such that

φ0ct 5φ0C
�
Bð Þut 5 0

in which case

φ0yt 5φ0ρτ t

Such a matrix will exist if all the C
�
i have less than full rank and if

φ0C
�
i 5 0 for all i; a result derived in Vahid and Engle (1993). Under these

circumstances, we can write C
�
i 5G ~C i for all i, where G is an n3 n2 sð Þ

matrix having full column rank and ~C i may not have full rank. The cyclical

component can then be written, on defining ~C Bð Þ5 ~C0 1 ~C1B1?, as

ct 5G ~C Bð Þut 5G~ct

so that the n-element cycle ct can be written as linear combinations of an

n2 sð Þ-element cycle ~ct, thus leading to the common trend-common cycle

representation

yt 5ρτ t 1G~ct ð15:17Þ
The number, s, of linearly independent “cofeature” vectors making up φ

can be at most h5 n2 r, and these will be linearly independent of the coin-

tegrating vectors making up α. This is a consequence of the fact that φ0yt,
being the vector of common trends, is I 1ð Þ, whereas α0yt, being the vector of

error corrections, is I 0ð Þ.

15.28 An interesting special case of the representation (15.17) occurs when

r1 s5 n, for in these circumstances yt has the unique trend-cycle decompo-

sition yt 5 yτt 1 yct , where

yτt 5Θ1φ0yt 5Θ1φ0ρτ t

contains the stochastic trends and

yct 5Θ2α0yt 5Θ2α0ct

contains the cyclical components. Here

Θ1 Θ2

� 	
5

α0

φ0

� �21

Note that yct is a linear combination of the error correction et 5α0yt.
Since both yτt and yct are functions of α and φ, they can easily be calculated

as simple linear combinations of yt.

15.29 The n3 s cofeature matrix φ will be identified only up to an invert-

ible transformation, as any linear combinations of the columns of φ will also
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be a cofeature vector. The matrix can, therefore, be rotated to have an

s-dimensional identity sub-matrix

φ5
Is

φ
�
n2sð Þ3 s

� �

With this specification, the s cofeature vectors can be incorporated into a

VECM along with the r cointegrating vectors, with φ0ryt being considered

as s “pseudo-structural form” equations for the first s elements of ryt. The
system is then completed by adding the unconstrained VECM equations for

the remaining n2 s equations of ryt to obtain:

Is φ
�0

0 n2sð Þ3 s In2s

� �
ryt 5

0s3 n p21ð Þ1rð Þ
Φ

�
1; . . . ;Φ

�
p21β

�

� � ryt21

^
ryt2p11

et21

2
64

3
751 ut ð15:18Þ

where Φ
�
1 contains the last n2 s rows of Φ1, etc. The presence of s common

cycles, hence, implies that φ0ryt is independent of ryt21; . . . ;ryt2p11 and

et21, and hence of all past values of yt.

15.30 The system (15.18) can be estimated by full-information maximum

likelihood or some other simultaneous equation estimation technique. A like-

lihood ratio statistic of the restrictions imposed by the s cofeature vectors

can then be constructed, which will be asymptotically distributed as χ2 with

degrees of freedom given by the number of restrictions that have been

imposed.

Ignoring intercepts, the VECM (15.6) has n n p2 1ð Þ1 rð Þ parameters,

whereas the pseudo-structural model (15.18) has sn2 s2 parameters in the

first s equations and n2 sð Þ n p2 1ð Þ1 rð Þ parameters in the n2 s equations

that complete the system, so imposing a total of s2 1 sn p2 1ð Þ1 sr2 sn

restrictions. Note that if p5 1 and r5 n2 s, the number of restrictions is

zero. The system is then just-identified and no test for common cycles is

needed, for the system will necessarily have r common cycles. As the lag

order p increases, so the system will generally become overidentified and

tests for common cycles become necessary.4

EXAMPLE 15.8 Is There a Common Cycle in United Kingdom Interest
Rates?

In Example 15.3, a VECM with p5 3 and r 5 1 was chosen to model the United

Kingdom interest rate vector y t 5 RSt ;R20tð Þ0. Since n52, there can be at most a

single (s# 1) common cycle, in which case (15.18) would take the form:

rRSt 52φ
�rR20t 1 u1;t

rR20t 5φ
�
11rRSt21 1φ

�
12rRSt22 1φ

�
21rR20t21 1φ

�
22rR20t22 1β

�
et21 1 u2;t
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A likelihood ratio test of the four restrictions imposed by the common cycle

yields χ2 4ð Þ5 88:5, which is highly significant, thus rejecting a common cycle in

interest rates. This is consistent with the structural model fitted in Example 15.4,

in which rRSt21 and the lagged error correction appeared significant along with

rR20t in the equation for rRSt . A common cycle would imply that short interest

rates respond immediately and without any lags to a change in long interest

rates, which is clearly not the case.

ENDNOTES

1. The more general case of nonlinear and cross-vector restrictions is discussed in Pesaran and

Shin (1998).

2. The concept of weak exogeneity was introduced by Engle et al. (1983). Formally, suppose

that the joint distribution of yt 5 x
0
t ; z

0
t

� �0, conditional on the past, is factorized as the condi-

tional distribution of xt given zt times the marginal distribution of zt. Then zt will be weakly

exogenous if two conditions hold: (1) the parameters of these conditional and marginal distri-

butions are not subject to cross-restrictions, and (2) the parameters of interest, here α;β1, can

be uniquely determined from the conditional model alone. Under these conditions zt may be

treated “as if” it was determined outside the conditional model for xt. Here the conditional

model includes rzt as an additional regressor in the marginal model (15.10b).

3. Including one additional lag will suffice if all the series are I 1ð Þ. In general, a VAR p1 dmaxð Þ
should be fitted, where dmax is the maximum order of integration of the series making up yt.

4. The concept of a common feature was introduced initially by Engle and Kozicki (1993), with

further generalizations given in Vahid and Engle (1997). A survey of the area is provided by

Vahid (2006).
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CONSTRAINED TIME SERIES

16.1 In previous chapters we considered time series that generally have no

restrictions placed upon them apart from when they have a natural lower

bound, this often being zero. There are, however, some series, or groups of

series, that are bound by further constraints. When modeling such series, a

“good” model should be unable to predict values which violate the known

constraints, that is, the model should be “forecast coherent.” Two examples

of these types of series are considered in this chapter: (1) compositional time

series in which a group of series are defined as shares of a whole, so that

they must be positive fractions that sum to unity; and (2) “count” time series

that can only take on positive, and typically low, integer values.

MODELING COMPOSITIONAL DATA

16.2 A compositional data set is one in which the T observations on

D5 d1 1 variables, written in matrix form as

X5

x1;1 x1;2
x2;1 x2;2

? x1;D
? x2;D

^ ^
xT ;1 xT ;2

^
? xT ;D

2
64

3
755 x1 x2 ? xD

� � ð16:1Þ
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where xi 5 x1;i; x2;i; . . . ; xT ;i
� �0, i5 1; 2; . . . ;D, are such that xt;i . 0 and

xt;1 1 xt;2 1?1 xt;D 5 1, t5 1; 2; . . . ; T , that is, xi . 0 and

x1 1 x2 1?1 xD 5 ι

where ι5 ½1 1 ? 1� 0 is a T 3 1 unit vector. The sub-matrix

X dð Þ 5 x1 x2 ? xd
� �

then lies in the d-dimensional simplex Sd embedded in D-dimensional real

space with

xD 5 ι2
Xd
i51

xi ð16:2Þ

being the vector of ‘fill-up’ values and X5 X dð Þ xD
� �

.1

16.3 There are several difficulties encountered when analyzing X within the

simplex sample space, these being a consequence of the summation condition

(16.2) rendering standard covariance and correlation analysis invalid.

Aitchison (1982) proposed mapping X dð Þ from Sd to the d-dimensional real

space Rd and then examining the statistical properties of the transformed data

within Rd. Several transformations have been proposed for doing this, the

most popular being the additive log-ratio transformation which is defined as2

Y5 y1 y2 ? yd
� �

5 ad X dð Þ� �

5 log
x1

xD

0
@

1
A log

x2

xD

0
@

1
A ? log

xd

xD

0
@

1
A

2
4

3
5 ð16:3Þ

The inverse transformation, known as the additive-logistic, is

X dð Þ 5 a21
d Yð Þ5

exp y1
� �
y

exp y2
� �
y

?
exp yd
� �
y

" #

xD 5
1

y

where

y5 11
Xd

i51
exp yi
� �

16.4 If we can assume that Y is multivariate normally distributed, denoted

YBNd μ;Σð Þ, where μ and Σ are the mean vector and covariance matrix,

respectively, then X dð Þ will have a logistic-normal distribution, denoted as

X dð ÞBLd μ;Σð Þ5 2π2d=2 Σj j21=2 L
D

i51

xi

� �21

exp 2
1

2
Y2μð Þ0Σ21 Y2μð Þ

� �
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Although μ is the mean of Y, it is the geometric mean of X dð Þ since the

inverse additive-logistic transformation a21
d �ð Þ preserves the ordering of

values in Sd, but does not preserve the mean and modal properties enjoyed

by Y in Rd. Thus, a difficult analysis in the “awkward” sample space Sd

may be transformed using ad �ð Þ to Rd in which more tractable statistical

analyses may be performed before using a21
d �ð Þ to return to the original

variables.

16.5 It is important to note that ad �ð Þ is invariant to the choice of a fill-up

value so that nothing in the statistical analysis hinges on which of the

“shares” or “proportions” xi is chosen for this role. It is possible to avoid

choosing a fill-up variable by using the centered log-ratio transformation,

defined as

Z5 cd X dð Þ� �
5 log

x1

g Xð Þ

0
@

1
A log

x2

g Xð Þ

0
@

1
A ? log

xD

g Xð Þ

0
@

1
A

2
4

3
5

where

g Xð Þ5
x1;1 3 x1;2 3?3 x1;D
� �1=D
x2;1 3 x2;2 3?3 x2;D
� �1=D

^
xT ;1 3 xT ;2 3?3 xT ;D
� �1=D

2
6664

3
7775

is the vector of geometric means. Unfortunately, this has the disadvantage of

introducing a non-singularity since Zι5 0.

16.6 A potential problem with the log-ratio transformation is that it cannot

handle zero values, that is, if xi;t 5 0 then yi;t 5 log xi;t=xD;t
� �

is undefined.

Although zero values for proportions are ruled out in the setup of y16.1, they
can obviously occur in actual datasets and some means of dealing with them

is required. Aitchison (2003, chapter 11) offers a variety of suggestions and

Mills (2007) reviews some further proposals for doing this, which essentially

turn on replacing zeros with a suitably small positive value and adjusting the

positive shares accordingly.

FORECASTING COMPOSITIONAL TIME SERIES

16.7 Let us now denote the tth rows of X and Y as Xt and Yt; respectively,
and let us assume that an h-step ahead forecast of Yt1h, which may not yet

be observed, is available. This may be denoted Yt hð Þ with covariance matrix

Σt hð Þ. Since Yt is multivariate normal, such forecasts may have been

obtained from a wide variety of multivariate models; for example, Brunsdon

and Smith (1998) consider modeling Yt as a vector ARMA process and other
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regression frameworks are available in which covariates and trends may be

introduced (see Mills, 2010).

A forecast for Xt1h is then obtained as

Xt hð Þ5 a21
d Yt hð Þð Þ ð16:4Þ

From y16.4 this forecast can be interpreted as an estimate of the geometric

mean of Xt1hBLd μ;Σð Þ. It is sometimes useful to provide forecasts for the

ratios xi;t1h=xj;t1h and these are given by

xi

xj

� �
t

hð Þ5 exp yi;t hð Þ2 yj;t hð Þ1 1

2
σii;t hð Þ2 2σij;t hð Þ1σjj;t hð Þ� �� �

where yi;t hð Þ and yj;t hð Þ are the ith and jth elements of Yt hð Þ and the σij;t hð Þ
are the appropriate elements of Σt hð Þ.

Under the normality assumption for Yt, a 100 12αð Þ% confidence region

for Xt1h can be formed from:

Yt hð Þ2 log
X

dð Þ
t1h

XD;t1h

 ! !
0Σ21

t hð Þ Yt hð Þ2 log
X

dð Þ
t1h

XD;t1h

 ! !
#χ2

α dð Þ ð16:5Þ

where χ2
α dð Þ is the 100α% point of a χ2 dð Þ distribution, by mapping points

from Rd onto the simplex Sd. Such a region, however, is probably only

informative for D# 3, where graphical representations such as the ternary

diagram are available.

EXAMPLE 16.1 Forecasting Obesity Trends in England

Fig. 16.1 shows the percentage of English adults (161 years of age) that are “not

overweight” [body mass index (BMI) below 25], “overweight” (BMI between 25

and 30), and “obese” (BMI over 30) annually from 1993 to 2015.3 In 1993, 47%

of adults were not overweight, but this proportion has steadily declined by

approximately ten percentage points over the subsequent two decades, while the

percentage of obese adults has increased by the same amount, with the percent-

age of those being overweight, therefore, remaining roughly constant.

Because of the leading role that obesity plays in current health debates, fore-

casts of future obesity levels are clearly a principal factor in helping to inform

public policy in this area. The three BMI categories form a time series composi-

tion of the type (16.1) with D5 3 and T 523. Following the original analysis of

Mills (2009), x1;t , x2;t ; and x3;t were therefore defined to be the proportions “not

overweight,” “overweight,” and “obese” and the log-ratios y1;t 5 log x1;t=x3;t
� �

and y2;t 5 log x2;t=x3;t
� �

were calculated using (16.3). These are shown in

Fig. 16.2.

Given the nonlinear declines of these log-ratios, they were modeled as cubic

polynomials in time as

yi;t 5 β0;i 1 β1;i t 1 β2;i t
2 1 β3;i t

3 1 ui;t i5 1; 2
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Here u1;t and u2;t are assumed to be serially uncorrelated zero-mean errors with

covariance matrix

Σ5
σ2
1

σ12

σ12

σ2
2

� 	

h-step ahead forecasts of the log-ratios made at time T are, thus, given by

yi;T hð Þ5
X3

j50
βj;i T1hð Þj i5 1; 2
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FIGURE 16.1 Percentage of English adults who are not overweight (BMI below 25), over-

weight (BMI between 25 and 30), and obese (BMI over 30): annually, 1993�2015. BMI, Body

mass index.
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FIGURE 16.2 Log-ratios of BMI proportions, 1993�2015. BMI, Body mass index.
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and forecasts of the proportions, xi;T hð Þ, i5 1;2;3, are obtained using the inverse

additive-logistic transformation (16.4).

The estimated log-ratio models are

y1;t 5
1:314
0:039ð Þ 2

0:1260
0:0137ð Þ t 1

0:0065
0:0013ð Þ t

2 2
0:00012
0:00004ð Þ t

3 1 û1;t

R2 5 0:977 dw5 2:20

y2;t 5
1:024
0:032ð Þ 2

0:0754
0:0114ð Þ t 1

0:0034
0:0011ð Þ t

2 2
0:00006
0:00003ð Þ t

3 1 û2;t

R2 5 0:972 dw5 2:45

with

Σ̂5
0:001267
0:000772

0:000772
0:000884

� 	

The cubic trend specification is supported by the data, with all slope coeffi-

cients being significantly different from zero, the fits are good, and there is no

indication of serial correlation in the residuals. Forecasts for 2016 to 2020

(h5 1; . . . ; 5) were then calculated and the fitted proportions and forecasts are

shown in Fig. 16.3. In 2015, the proportions were x1;2015 537:5, x2;2015 5 36:4;
and x3;2015 5 26:1; the forecasts for 2020 are x1;2015 5ð Þ5 35:1, x2;2015 5ð Þ5 35:9;
and x3;2015 5ð Þ5 29:0. Thus, the proportion of English adults “not overweight” is

forecast to fall by a further 2.4 percentage points by 2020, while the proportion

of “obese” adults is forecast to increase by 2.9 percentage points, with the pro-

portion who are merely “overweight” is forecast to fall by the difference in these

two numbers, that is, by 0.5 percentage points. Using (16.5) with χ2
0:05 2ð Þ5 5:99,

95% confidence limits for the 2020 forecasted proportions are calculated to be

23:2, x1;2015 5ð Þ, 47:5, 22:3, x2;2015 5ð Þ, 51:7; and 25:1, x3;2015 5ð Þ, 30:2, so
that although the forecast limits for the “not overweight” and “overweight” pro-

portions are quite wide, those for the “obese” category are much tighter.
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FIGURE 16.3 Fitted BMI proportions and forecasts out to 2020. BMI, Body mass index.
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EXAMPLE 16.2 Modeling Expenditure Shares in the United Kingdom

We illustrate the modeling and forecasting of compositional time series using

multivariate methods by analyzing the consumption (c), investment (i), govern-

ment (g), and “other” (x) shares in the United Kingdom’s gross final expenditure

for the period 1955q1 to 2017q2 and providing forecasts of these shares out to

2020. The shares are shown in Fig. 1.11 and, after normalizing on the “other”

category as the fill-up value, the additive log-ratios, log c=x
� �

, log i=x
� �

, and

log g=x
� �

, are shown in Fig. 16.4. Over the observation period consumption

accounts for around half of final expenditure, with the remaining expenditure by

2017 being roughly accounted equally by the other three categories, although

the size of these shares has fluctuated over time. The log-ratios all show consis-

tent declines throughout the sample period and this (near) nonstationary behav-

ior is confirmed by a fitted VAR(4) (with the trend included and order

determined by information criteria), which has a largest autoregressive root of

0.98.

Consequently, we concentrate on a VAR(3) fitted to the log-ratio differences

rlog c=x
� �

, rlog i=x
� �

and rlog g=x
� �

. At the end of the sample period, 2017q2,

the expenditure shares stood at 48.9%, 12.9%, 14.7%, and 23.5% for c, i, g ;
and x, respectively. Using the fitted VAR, these shares were forecasted to be

48.0%, 12.6%, 14.0%, and 25.4% by the end of 2020. The increased share of

“other” expenditure accompanied by the decreased shares of the other three

expenditure categories clearly reflects the trends in expenditure shares seen at

the end of the sample period.

Many of the coefficients in the fitted VAR(3) are insignificant, and this led,

after some experimentation, to the following restricted model:

rlog c

x


 �
t
52

0:155
0:040ð Þ rlog

c

x


 �
t23
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FIGURE 16.4 Log-ratios of the United Kingdom’s total final expenditure shares.
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rlog i

x

� �
t

52
0:161
0:041ð Þ rlog

c

x


 �
t23

1 û2;t

rlog g
x

 !
t

52
0:163

0:065ð Þ rlog
c
x

 !
t22

2
0:342

0:075ð Þ rlog
c
x

 !
t23

1
0:157

0:063ð Þ rlog
g
x

 !
t22

1
0:183

0:083ð Þ rlog
g
x

 !
t23

1 û3;t

The first equation shows that the growth rate of the consumption/other ratio is

a pure autoregressive process, so that this ratio is exogenous. It does, however,

“drive” the other two ratios with there being no evidence of any feedback

between them. Modeling the log-ratios as a multivariate process, thus, produces

a simple, yet rich, dynamic structure that emphasizes the interactions and driving

forces existing between them.

TIME SERIES MODELS FOR COUNTS: THE IN-AR(1)
BENCHMARK MODEL

16.8 Time series of small numbers of counts arise in various fields and typ-

ically consist of integer values, usually including zero, with a sample mean

perhaps no higher than 10, making it inappropriate to treat the data as if it

were continuous. We will focus here on the so-called integer-valued ARMA

(IN-ARMA) models that provide an interesting class of discrete valued pro-

cesses that are able to specify not only the dependence structure of the series

of counts, but also enable a choice to be made between a wide class of (dis-

crete) marginal distributions.4

16.9 The “benchmark” IN-AR(1) process is defined by the difference

equation:

xt 5 a3xt21 1wt ð16:6Þ
where the xt, t5 1; 2; . . ., take on values in the set of nonnegative integers,

N 5 0; 1; 2; . . .f g. It is assumed that 0# a, 1 and that wt is a sequence of i.i.d.

discrete random variables with mean μw . 0 and variance σ2
w . 0: wt is assumed

to be stochastically independent of xt21 for all t. The process (16.6) is stationary

and the discreteness of xt is ensured by the binomial thinning operation

a3xt21 5
Xxt21
i51

yi;t21 ð16:7Þ

where the yi;t21 are assumed to be i.i.d. Bernoulli random variables with

P yi;t21 5 1
� �

5 a

and

P yi;t21 5 0
� �

5 12 a
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Subsequent thinning operations are performed independently of each other

with a constant probability a, so that thinning is to be regarded as a random

operation with an associated probability distribution.

16.10 The unconditional moments of xt are

E xtð Þ5 μw

12 að Þ
and

V xtð Þ5 aμw 1σ2
w

� �
12 a2ð Þ

while the conditional moments of xt are

E xtjxt21ð Þ5 axt21 1μw

and

V xtjxt21ð Þ5 a 12 að Þxt21 1σ2
w

so that both are linear in xt21. The ACF of (16.6) is easily shown to be

ρk 5 ak . 0, k5 1; 2; . . ., and is thus identical to that of a linear AR(1) process

(cf. y3.10), with the qualification that only positive autocorrelation is permitted.

16.11 Of course, no distributional assumptions have been made so far.

Since the Poisson (Po) distribution is a natural first choice in the analysis of

counting processes, an obvious assumption to make is that wtBPo λð Þ with
λ. 0. From the properties of the Poisson distribution, it then follows that

μw 5σ2
w 5λ. The marginal distribution can then be shown to be

xtBPo λ= 12 að Þ� �
and the resulting IN-AR(1) process with Poisson innova-

tions may be denoted Po-IN-AR(1).

OTHER INTEGER-VALUED ARMA PROCESSES

16.12 The IN-MA(1) process is defined as

xt 5wt 1 b3wt21

where 0# b, 1 and the thinning operation is defined analogously to (16.7) as

b3wt21 5
Xwt21

i51
yi;t21

The autocorrelation function (ACF) of xt is now

ρk 5

bσ2
w

b 12 bð Þμw 1 11 b2ð Þσ2
w

for k5 1

0 for k. 1

8><
>: ð16:8Þ
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which is analogous to the linear MA(1) process (cf. y3.12). It is straightfor-

ward to show that 0# ρ1 # 0:5 and that, if again wtBPo λð Þ,
xtBPo λ 11 bð Þð Þ and the resulting process is Po-IN-MA(1).

16.13 A natural extension of (16.6) is to the IN-AR(2) process

xt 5 a13xt21 1 a23xt22 1wt

where the thinning operations are analogous to (16.7) and, to ensure statio-

narity, we require that a1 1 a2 , 1. The ACF of an IN-AR(2) process may be

shown to be similar to that of a linear ARMA(2,1) and, indeed, a general IN-

AR(p) process has an ACF similar to an ARMA(p,p2 1).

If we assume again that wtBPo λð Þ, then it may be shown, on the assump-

tion that a1 and a2 are independent of each other and of the past history of

the process, that xtBPo λ= 12 a1 2 a2ð Þ� �
and we have a Po-IN-AR(2)

process. The ACF satisfies the second-order difference equation

ρk 5 a1ρk21 1 a2ρk22

for k$ 2 with starting values ρ0 5 1 and ρ1 5 a1. This is different to the

ACF of a linear AR(2) process (cf. y3.18) in that here ρ1 depends solely on

a1 while higher order autocorrelations depend on both a1 and a2. If

a2 , a1 2 a21 the ACF decays exponentially, whereas oscillatory behavior is

found when a2 . a1 2 a21. If a2 5 a1 2 a21 then ρ1 5 ρ2. Jung and Tremayne

(2003, Figs. 2 and 3) provide simulations and associated ACFs and PACFs

for various Po-IN-AR(2) processes.

16.14 It is important to recognize that, under the Poisson assumption, the

mean and variance of xt are restricted to be equal. In time series of counts it

is often the case that the (sample) variance is found to be greater than the

(sample) mean, in which case the counts are said to be “over-dispersed.” An

assumption that captures such over-dispersion is that the innovations have a

negative binomial (NB) distribution with parameters n. 0 and 0, p, 1,

that is, wtBNB n; pð Þ, for in this case:

E wtð Þ5 np

12 pð Þ V wtð Þ5 np

12pð Þ2 5
E wtð Þ
12 pð Þ .E wtð Þ

Although the resulting marginal distribution for xt will not necessarily be

NB, it will nevertheless continue to exhibit over-dispersion.

ESTIMATION OF INTEGER-VALUED ARMA MODELS

16.15 For the Po-IN-AR(1) model, the parameters a and λ must be esti-

mated from the observed sample of counts x1; x2; . . . ; xT : Jung et al. (2005:

henceforth JRT) investigate the performance of various estimators of these

parameters via a Monte Carlo simulation experiment. From their results, they
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recommend using a “bias-corrected” first-order sample autocorrelation to

estimate a, viz., the “bias-corrected Yule-Walker” estimate (recall y3.20):

â5
1

T 2 3
Tr1 1 1ð Þ

The estimate of λ is then based on the moment condition E xtð Þ5λ= 12 að Þ:
λ̂5 12 âð Þx

By extension, the Yule-Walker estimates of a1 and a2 in the Po-IN-AR(2)

model are given by (again see y3.20):

â1 5
r1 12 r2ð Þ
12 r21

â2 5
r2 2 r21
12 r21

and it then follows that an estimate of λ is given by

λ̂2 5 12 â1 2 â2ð Þx
Unfortunately, JRT’s Monte Carlo experiments were restricted to first-

order models so no bias-correction factor is available for the second-order

model. JRT do, however, show that in cases of over-dispersion the bias-

corrected Yule-Walker estimator still performs well and should continue to

be used.

A Yule-Walker type estimate of b in the Po-IN-MA(1) model, obtained

by solving (16.8) with μw 5σ2
w 5λ, is b̂5 r1= 12 r1ð Þ and, using the

moment condition, this leads to λ̂5 x= 11 b̂

 �

.

16.16 Various estimators, ML-type estimators especially, have also been

proposed for higher order IN-AR models, but these all require specialized

routines and are, thus, not suitable for the general user.5

TESTING FOR SERIAL DEPENDENCE IN COUNT TIME SERIES

16.17 Before fitting a member of the IN-ARMA class of models it is

important to establish the nature of the serial dependence, if any, in a time

series of counts. After an extensive Monte Carlo simulation exercise, Jung

and Tremayne (2003) suggest focusing attention on three tests. The first is

the score test, S
�
5

ffiffiffiffi
T

p
r1BN 0; 1ð Þ, under the null hypothesis of i.i.d. Poisson

random variables, with a one-sided test being used that rejects the null for

large values of the statistic. The other two tests are

Qacf 1ð Þ5 r̂22
PT

t51 xt2xð Þ2� �2
PT

t53 xt2xð Þ2 xt222xð Þ2
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and

Qpacf 1ð Þ5 φ̂
2

2

PT
t51 xt2xð Þ2� �2

PT
t53 xt2xð Þ2 xt222xð Þ2

where φ̂2 is the second-order sample partial autocorrelation. Under the i.i.d.

Poisson null hypothesis, these statistics are asymptotically distributed as

χ2 1ð Þ. Note that the first-order sample autocorrelation and partial autocorre-

lation are, perhaps surprisingly, ignored in both statistics.

16.18 The testing strategy suggested by Jung and Tremayne (2003) is as

follows. If none of the three statistics are significant then xt may have no

dependence structure, although this tentative conclusion should be tempered

with the caveat that some higher order dependence, which is not readily

detected by any of the tests, may be present. If both S
�
and Qacf 1ð Þ reject but

Qpacf 1ð Þ does not then an IN-AR(1) process may be tentatively determined,

with an IN-MA(1) being indicated if the behavior of the two Q tests is inter-

changed. Finally, if the Q tests both reject but S
�
does not, then a second-

order model might be entertained.

EXAMPLE 16.3 IN-AR Models for Hurricane and Storm Counts

Fig. 1.12 shows the annual number of North Atlantic storms and hurricanes (the

latter being a subset of the former) between 1851 and 2017. The annual number

of storms ranges from a minimum of one (in 1914) to a maximum of 28 in 2015;

that year also saw the maximum number of hurricanes, 15, while there were no

hurricanes in either 1907 or 1914. The two series are clearly examples of small

count time series and hence may be amenable to fitting by IN-ARMA models.

A necessary first step is to ascertain whether the series contain any serial

dependencies. For the hurricane count, the first two sample autocorrelations are

r1 50:118 and r2 50:088 and the second-order partial autocorrelation is

φ̂2 5 0:055. With T 5167 the three test statistics for serial dependence are

S
�
5 1:53, Qacf 1ð Þ5 1:45; and Qpacf 1ð Þ5 0:56, none of which are close to being

significant. We, therefore, conclude that there is no serial dependence in annual

hurricane counts which may, in turn, be regarded as an i.i.d. sequence. Since

the mean number of hurricanes per year is 5.43 with a variance of 6.46 there is

some indication of over-dispersion, but a standard goodness-of-fit test cannot

reject the hypothesis that annual hurricane counts follow an independent

Poisson process with a mean and variance of 5.4.

For the storm count we have r1 5 0:384, r2 5 0:300; and φ̂2 5 0:179, which

produce S
�
5 4:96, Qacf 1ð Þ5 12:49; and Qpacf 1ð Þ5 4:45; all of which are signifi-

cant at the 5% level. Since, however, Qpacf 1ð Þ is insignificant at the 2.5% level

but Qacf 1ð Þ is significant, we choose to model the series as an IN-AR process. For

the IN-AR(1) process the parameters are estimated to be â5 0:397 and λ̂5 5:78,
while the IN-AR(2) process has estimates â1 5 0:315, â2 5 0:179 and λ̂2 5 4:85.
Thus, storm counts clearly have a dependence structure that can be modeled as
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a low-order IN-AR process, although it is important to note that since

â1 1 â2 5 0:494, this process is nowhere near the nonstationary boundary so that

there is no evidence of a time-changing mean. The mean number of storms is, in

fact, 9.59 with variance 17.48 so here there is more evidence of over-dispersion

and, hence, less chance of the process being Poisson.

Informal evidence on the adequacy of these models is provided by examining

their residuals, defined, respectively, as

ŵ 1;t 5 xt 2 âxt21 2 λ̂

and

ŵ 2;t 5 xt 2 â1xt21 2 â2xt22 2 λ̂2

These residuals will, of course, rarely be integer values, but they can provide a

rough check of model adequacy if their SACFs and PACFs are examined. For

example, the first four sample autocorrelations of ŵ 1:t are 20.08, 0.12, 0.11,

and 20.04, while those for ŵ 2;t are 20.02, 20.04, 0.01, and 20.07, thus sug-

gesting that the second-order process leaves fewer dependencies in the data.

FORECASTING COUNTS

16.19 The approach to forecasting taken in Chapter 7, An Introduction to

Forecasting with Univariate Models, is based on the conditional expectation,

that is,

fT ;h 5EðxT1hjxT ; xT21; . . .; x1Þ
and is known to yield MMSE forecasts (cf. y7.2). The conditional expecta-

tion of the IN-AR(1) model is given in y16.10, so that

fT ;1 5 axT 1μw

fT ;2 5 afT ;1 1μw 5 a2xT 1 11 að Þμw

and

fT ;h 5 ahxT 1 11 a1 a2 1?1 ah21
� �

μw ð16:9Þ
Since 0# a, 1 the forecasts converge as h-N to the unconditional

mean E xtð Þ5μw= 12 að Þ. Despite this optimality property, forecasting based

on (16.9) is beset by the problem that forecasts so obtained will be real,

rather than integer, valued except in very rare cases. Of course, integer-

valued forecasts may be readily obtained by, for example, the simple expedi-

ent of rounding to the nearest integer, but this rather crude solution prevents

proper forecast intervals being obtained and it is not immediately obvious

how forecast values should be incorporated when h. 1. Jung and Tremayne

(2006) suggest a simple, albeit ad hoc, way of acknowledging the arbitrary

nature of the rounding procedure. This is to apportion probabilities to the
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integers on either side of the incoherent real value in proportion to the dis-

tances from either end of that unit interval.

16.20 Such forecasting methods readily extend to the IN-AR(2) model but,

not surprisingly, there have been attempts to develop a more sophisticated

approach to constructing coherent forecasts. Freeland and McCabe (2004) show

that the median has the optimality property of minimizing the expected absolute

forecast error and suggest that the entire h-step ahead (conditional) forecast dis-

tribution should be computed. This has the following (fairly) tractable expres-

sion for the IN-AR(1) model under a Poisson innovation assumption:

ph xjxTð Þ5 xT !exp 2λ
12 ah
� �
12 að Þ

� �� �
Ch xT ; xð Þ x5 0; 1; 2; . . . ð16:10Þ

where

Ch xT ; xð Þ5
Xm

k50

akh 12ah
� �xT2kλx2k

k! x2 kð Þ! xT 2 kj jð Þ! m5min xT ; xð Þ

For higher order models, numerical techniques are required to compute

the forecast distribution ph xjxTð Þ.

EXAMPLE 16.4 Forecasting Storm Counts

Forecasts of storm counts from the IN-AR(1) model are obtained from

f2017;h 50:397hx2017 1 110:3971?1 0:397h21

 �

3 5:78

on using μ̂w 5 12 âð Þx . With x2017 5 17, the forecasted number of storms for

2018 is

f2017;1 5 0:3973 1715:785 12:53

i.e., using the ad hoc approach of Jung and Tremayne (2006) there is a 53%

probability that the number of storms in 2018 will be 13 and a 47% probability

that the number will be 12. To compute the forecast for 2019 we could use:

f2017;2 5 0:3972 3 171 1:3973 5:7850:397312:5315:785 10:75

Equally, we could use:

f2017;2j f2017;1 5 12
� �

5 0:3973 121 5:78510:54

or

f2017;2j f2017;1 5 13
� �

5 0:3973 131 5:78510:94

Using the former forecast there is, thus, a 25% probability of the number of

storms being 10 in 2019 and a 75% probability of there being 11. Using the lat-

ter pair of forecasts there is a 0:4730:461 0:5330:065 25% probability of the

number of storms being 10 and 0:473 0:541 0:533 0:945 75% probability of

there being 11.
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The drawback to this approach is that all the probability mass of the forecast

distribution is concentrated on just two values, here 12 and 13 for h5 1 and 10

and 11 for h5 2. Computation of the entire forecast probability distribution using

(16.10) would, therefore, seem to have an advantage in providing the complete

set of probabilities although a Poisson model must be assumed. Fig. 16.5 pro-

vides the distribution for one-step ahead forecasts from the IN-AR(1) model. The

probability mass is much less concentrated with there now being a 70% proba-

bility of observing a storm count in the range 11 to 16 in 2018. Freeland and

McCabe (2004, Theorem 1) show that the mean and variance of the distribution

at horizon h are given by

f T ;h 5 ahxT 1λ
12 ah
� �
12 að Þ

and

σ2 fT ;h
� �

5 ah 12 ah

 �

xT 1λ
12 ah
� �
12 að Þ

respectively. f T ;h is thus given by the formula used above to produce the point

forecasts for h5 1 and 2; the standard deviations are σ f2017;1
� �

5 3:14 and

σ f2017;2
� �

53:21.
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FIGURE 16.5 Forecast probability distributionof storm counts for 2018 ðh5 1).
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INTERMITTENT AND NONNEGATIVE TIME SERIES

16.21 When a count series contains many zeros, it is sometimes referred to

as being intermittent, as when a stock inventory is only occasionally

demanded. Traditionally, “intermittent demand forecasting” has used variants

of Croston’s (1972) original model in which simple exponential smoothing

(cf. yy9.14�9.17) is applied to both the size of the demand and the time

between demands.

The stochastic models underlying Croston’s approach have been investi-

gated by Shenstone and Hyndman (2005), who found that the implied mod-

els were inconsistent with the properties of intermittent demand data, for

they must be nonstationary and defined on a continuous sample space which

may contain negative values—recall from y9.15 the equivalence of simple

exponential smoothing and the ARIMA(0,1,1) process. This creates difficul-

ties when constructing forecast distributions and prediction intervals.

Consequently, Shenstone and Hyndman (2005) suggest that count-type mod-

els should also be suitable for intermittent demand forecasting.

16.22 General nonnegative time series, in which the integer-value restric-

tion is removed, have been analyzed by Bartlett and McCormick (2012,

2013), who consider ARMA models with non-Gaussian, heavy-tailed innova-

tions, typically taken from the Pareto class of distributions. For example,

they investigate the AR(1) model xt 5φxt21 1 zt, where zt is a nonnegative

random variable with “regular variation” at both the right end-point of infin-

ity and the unknown left end-point θ. 0, known as the location parameter.

The estimators they propose are φ̂min 5min1# t# T ðxt=xt21Þ and

θ̂min 5 min1# t# T ðxt 2 φ̂minxt21Þ, and simulation experiments show that these

perform well.

EXAMPLE 16.5 A Nonnegative AR(1) Model for Storm Counts

The estimates of a nonnegative AR(1) model fitted to the storm count series were

φ̂min 5 0:167 and θ̂min 5 0:00004. The estimate of the autoregressive parameter is

rather smaller than that from the IN-AR(1) model fitted in Example 16.3, but the

estimate of the location parameter is very close to zero, which, of course, is cer-

tainly the lower bound to storm counts but was never actually reached during

the sample period (as mentioned in that example, the minimum count was one

in 1914).

ENDNOTES

1. Compositional datasets clearly may contain either time series or cross-sectional observations,

but obviously the focus is on the former here. Aitchison (2003) is the key textbook on the

general subject of compositional data while Brunsdon and Smith (1998) is a seminal paper on

compositional time series. Mills (2007) provides a concise survey of compositional data with

economic applications.
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2. Note that when d5 1, a1 �ð Þ is the univariate logistic transformation y5 log x= 12 xð Þ� �
, whose

time series application is considered in Wallis (1987).

3. The BMI, defined as the ratio of weight (in kg) to height (in cm) squared, is the most popular

measure of obesity used in official data of the type used here, which was provided by the

Health Survey of England.

4. IN-ARMA models were initially introduced by Al-Osh and Alzaid (1987, 1988), Alzaid and

Al-Osh (1990) and McKenzie (1988). Our development of these models follows that of Jung

and Tremayne (2003) and Jung et al. (2005).

5. Bu et al. (2008) consider ML estimation of IN-AR(p) processes, while other efficient estima-

tors of this model have been analyzed by Drost et al. (2008).

Compositional and Count Time Series Chapter | 16 297





Chapter 17

State Space Models

Chapter Outline

Formulating State Space Models 299

The Kalman Filter 303

ML Estimation and the Prediction

Error Decomposition 305

Prediction and Smoothing 307

Multivariate State Space Models 308

Endnotes 309

FORMULATING STATE SPACE MODELS

17.1 Many time series models can be cast in state space form (SSF), and

this enables a unified framework of analysis to be presented within which,

for example, the differences and similarities of the alternative models may

be assessed.

The state space model for a univariate time series xt consists of both a

measurement equation (alternatively known as the signal or observation

equation) and a transition equation (alternatively state equation: see, e.g.,

Harvey, 1989, Chapters 3 and 4; Hamilton, 1994, Chapter 13; or Durbin and

Koopman, 2012, for full textbook treatments). Although there are various

specifications of the SSF, a popular version has the measurement equation

taking the form:

xt 5 z0tαt 1 dt 1 εt t5 1; 2; . . . ;T ð17:1Þ
Here zt is an m3 1 vector, dt is a scalar, and εt is a serially uncorrelated

error with E εtð Þ5 0 and V εtð Þ5 ht. In general, the elements of the m3 1

state vector αt are unobservable, but are assumed to be generated by the

transition equation

αt 5Ttαt21 1 ct 1Rtηt ð17:2Þ
in which Tt and Rt are m3m and m3 g matrices, respectively, ct is an

m3 1 vector and ηt is a g3 1 vector of serially uncorrelated errors with

E ηt

� �
5 0 and V ηt

� �
5Qt, a g3 g covariance matrix.
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The specification of the state space system is completed by two further

assumptions:

1. The initial state α0 has mean vector E α0ð Þ5 a0 and covariance matrix

V α0ð Þ5P0; and

2. The errors εt and ηt are uncorrelated with each other in all time periods

and uncorrelated with the initial state, that is,

E εtη0
s

� �
5 0 for all s; t5 1; . . . ;T

and

E εtα0
0

� �
5 0 E ηtα

0
0

� �
5 0 for all t5 1; . . . ; T

17.2 The variables zt, dt, and ht in the measurement equation (17.1) and Tt,

ct, Rt, and Qt in the transition equation (17.2) are referred to generically as

the system matrices. They are typically assumed to be nonstochastic so that,

although they may change with time, they do so in a way that is predeter-

mined. Consequently, the system is linear so that, for any t, xt can be

expressed as a linear combination of present and past εt’s and ηt’s and the

initial state vector α0.

If the system matrices do not change over time, the model is said to be time-

invariant or time-homogeneous, a special case of which are stationary models.

17.3 On first sight, the state space model seems to have little connection

with the range of time series models that have been introduced throughout

the book. This lack of connection is illusory, however, as the following illus-

trations reveal:

1. The AR(2) process xt 5φ0 1φ1xt21 1φ2xt22 1 ηt has, on defining the

state vector as

αt 5
xt

φ2xt21

� �

the SSF

xt 5 1 0
� �

αt 1φ0

αt 5
φ1 1

φ2 0

� �
αt21 1

1

0

� �
ηt

i.e., the system matrices are, with m5 2 and g5 1, so that ηt 5 ηt,

zt
0 5R0

t 5 1 0
� �

dt 5φ0 ht 5 0 c0t 5 0 0
� �

Tt 5
φ1 1

φ2 0

� �

Alternatively, we could define
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α
�
t 5

xt
xt21

� �

and the SSF

xt 5 1 0
� �

α
�
t 1φ0

α
�
t 5

φ1 φ2

1 0

� �
α

�
t�1 1

1

0

� �
ηt

2. The MA(1) process xt 5 ηt 1 θηt21 has SSF

xt 5 1 0
� �

αt

αt 5
0 1

0 0

� �
αt21 1

1

θ

� �
ηt

on defining αt 5 xt θηt21

� �0
.

3. Consequently, the general ARMA(p,q) process, written in the form:

xt 5φ1xt21 1?1φmxt2m 1 ηt 1 θ1ηt21 1?1 θm21ηt2m11

where m5max p; q1 1ð Þ, has the SSF
xt 5 1 00m21

� �
αt

αt 5

φ1 ^
φ2 ^
^

φm21

?
φm

^
^
?
^

Im21

?
00m21

2
666664

3
777775
αt21 1

1

θ1
^
^

θm21

2
6664

3
7775ηt

17.4 Other models discussed in earlier chapters may also be cast in SSF

form. The Muth/simple exponential smoothing model (cf. y8.1 and y9.15),
when written in the notation of this chapter, viz.,

xt 5αt 1 εt E εtð Þ5 0 V εtð Þ5 h

αt 5αt21 1 ηt E ηt
� �

5 0 V ηt
� �

5 q5 κh

is seen to be an SSF with m5 g5 1, dt 5 ct 5 0 and zt5Tt 5Rt 5 1.

Similarly, the Holt�Winters local linear trend model of y9.17 can be

written as:

xt 5α1;t 1 εt

α1;t 5α1;t21 1α2;t21 1 η2;t
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α2;t 5α2;t21 1 η3;t

and is in SSF form with m5 g5 2, zt 5 1 0
� �

, Rt 5 I2 and

Tt 5
1 1

0 1

� �

17.5 These illustrations make it clear that the SSF enables a wide variety

of models to be specified in a coherent framework, so emphasizing their

essential similarities and differences. It should be emphasized, however,

that the definition of the state vector αt for any specific model is

determined by construction and, consequently, may not be able to be

identified with components which have a substantive interpretation, such as

a trend or a seasonal. The SSF aims to set up αt in such a way that it

contains all the relevant information on the system at time t using as few

elements as possible.

17.6 As can be seen from the two SSFs given for the AR(2) process in

example (1) of y17.3, there is not necessarily a unique SSF representation

for any particular model: indeed, a unique representation is the exception

rather than the rule. This can be seen easily by defining an arbitrary

nonsingular m3m matrix B and considering a new state vector α�
t 5Bαt.

Premultiplying the original transition equation (17.2) by B yields:

α
�
t 5T

�
tα

�
t21 1 c

�
t 1R

�
tηt

where T
�
t 5BTtB

21, c
�
t 5Bct and R

�
t 5BRt. The corresponding measure-

ment equation is then

xt 5 z
�0
t α

�
t 1 dt 1 εt

where z
�0
t 5 z0tB

21. Thus, the two SSFs for the AR(2) process are connected

by

B5
1 0

0 φ21
2

� �

17.7 The transition equation (17.2) is sometimes shifted forward one period

to become

αt11 5Ttαt 1 ct 1Rtηt ð17:3Þ
While in practice it makes little difference whether (17.2) or (17.3) is used

in conjunction with (17.1), it does have an impact when assumption (2) of

y17.1 is relaxed to allow the errors in the measurement and transition equa-

tions to be correlated.
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THE KALMAN FILTER

17.8 Once a model has been put into state space form, several important

algorithms may be applied. Central to these is the Kalman (�Bucy) filter.

The Kalman filter is a recursive procedure for computing the optimal

estimate of the state vector at time t, based on the information available at

that time, which consists of all the observations up to and including xt.
1 The

system matrices, together with the initial values a0 and P0, are assumed to

be known for all t and so do not need to be included explicitly in the

information set.

17.9 The derivation of the Kalman filter rests on the assumption that the

errors and the initial state vector are normally distributed. It is then possible

to calculate recursively the distribution of αt, conditional on the information

set at time t, for all t5 1; . . . ;T . These conditional distributions are them-

selves normal and so are completely specified by their means and covariance

matrices, which are the quantities that the Kalman filter computes.2

The mean of the conditional distribution of αt is the MMSE estimator of

αt. If the normality assumption is dropped then there is no longer any

guarantee that the Kalman filter will give the conditional mean of the state

vector. However, it will still provide an optimal estimator in the sense that it

will minimize the MSE within the class of all linear estimators.

17.10 Consider, then, the state space model of (17.1) and (17.2). Let at21

be the optimal estimator of αt21 based on observations up to and including

xt21, that is, at21 5Et21 αt21jxt21ð Þ, where xt21 5 xt21; xt22; . . . ; x1f g, and let

Pt21 5E αt21 2 at21ð Þ αt212at21ð Þ0

be the m3m covariance matrix of the estimation error. Given at21 and Pt21,

the optimal estimators of αt and Pt are given by:

atjt21 5Ttat21 1 ct ð17:4Þ
and

Ptjt21 5TtPt21T
0
t 1RtQtR

0
t ð17:5Þ

These two recursions are known as the prediction equations. Once the

new observation xt becomes available, the estimator of αt, atjt21, can be

updated. The updating equations are:

at 5 atjt21 1Ptjt21ztf
21
t xt 2 z0tatjt21 2 dt

� � ð17:6Þ
and

Pt 5Ptjt21 2Ptjt21ztf
21
t z0tPtjt21 ð17:7Þ
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where

ft 5 z0tPtjt21zt 1 ht ð17:8Þ
Taken together, Eqs. (17.4�17.8) make up the Kalman filter. These equa-

tions may also be written as

at11jt 5 Tt11 2Ktz
0
t

� �
atjt21 1Ktxt 1 ct11 2Ktdt ð17:9Þ

where the m3 1 gain vector Kt is given by

Kt 5Tt11Ptjt21ztf
21
t

The recursion for the error covariance matrix, known as the Riccati

equation, is

Pt11jt 5Tt11 Ptjt21 2 f21
t Ptjt21ztz

0
tPtjt21

� �
T0
t11 1Rt11Qt11R

0
t11

17.11 The starting values for the Kalman filter may be specified either

in terms of a0 and P0 or a1j0 and P1j0. Given these initial conditions,

the Kalman filter will deliver the optimal estimate of the state vector as

each new observation becomes available. When all T observations have

been processed, the filter yields optimal estimates of the current state

vector, aT , from (17.6), and the subsequent state vector, aT11jT , from

(17.9). This estimate contains all the information needed to make optimal

predictions of future values of both the state, αT11; . . ., and the observa-

tions, xT11; . . ..

EXAMPLE 17.1 The Muth Model and the Kalman Filter

Consider, again, the Muth model

xt 5αt 1 εt E εtð Þ5 0 V εtð Þ5h

αt 5αt21 1 ηt E ηt
� �

5 0 V ηt
� �

5 q5κh

Since m5 1, the Kalman filter (17.9) becomes

at11jt 5 12 ktð Þatjt21 1 ktxt

where the gain is

kt 5
ptjt21

ptjt21 1 1
� �

and

pt11jt 5 ptjt21 2
p2
tjt21

11ptjt21

� � 1κ

5
ptjt21

ptjt21 1 1
� � 1κ5 kt 1κ
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As it stands, the model does not explicitly specify any initial conditions.

Setting p1j0 5 R, where R is a positive number, would give the first set of recur-

sions as:

a2j1 5 12
R

11 Rð Þ

0
@

1
Aa1j0 1

R
11 Rð Þ x1

5
1

11 Rð Þ a1j0 1
R

11Rð Þ x1

and

p2j1 5 R2
R2

11 Rð Þ 1κ5
R

11 Rð Þ 1κ

However, if the random walk process for αt started at some point in the remote

past then p1j0 should be infinity. Hence, as R-N, a2j1 5 x1 irrespective of the

value of a1j0, while p2j1 5 11κ.
The Kalman filter remains valid even if h or κ is zero. If h50 then there is no

measurement error and the model is a pure random walk. If κ5 0, so that the

mean is fixed at α, say, then

pt11jt 5
ptjt21

ptjt21 1 1

Since now p2j1 5 1, it follows that p3j2 5 1=2, p4j3 5 1=3, and, in general,

pt11jt 51=t. The recursion for the estimator of the mean is, therefore:

at11jt 5
t 2 1

t

� 	
at jt21 1

1

t
xt

The MMSE of α is, thus, the sample mean based on the first t observations and

the MSE is h=t.

ML ESTIMATION AND THE PREDICTION ERROR
DECOMPOSITION

17.12 The system matrices may depend on a set of unknown parameters,

as with the ARMA process whose SSF was given in y17.3. The parameters

may be denoted by an n3 1 vector ψ and will be referred to as the

hyperparameters of the SSF. These hyperparameters may be estimated by

ML, the classical theory of which is based on the T observations x1; . . . ; xT
being i.i.d. This allows the joint density function of the observations to be

written as:

L x :ψð Þ5 L
T

t51

p xtð Þ ð17:10Þ

where x0 5 x1; . . . ; xTð Þ and p xtð Þ is the probability density function of xt.

Once the observations have become available, L x :ψð Þ is reinterpreted as a
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likelihood function and the ML estimator is found by maximizing this func-

tion with respect to ψ.

17.13 Clearly, the principal characteristic of a time series model is that the

observations are not independent so that (17.10) is not directly applicable.

Instead, the definition of a conditional probability density function must be

used to write the joint density as:

L x :ψð Þ5 L
T

t51

p xtjxt21ð Þ ð17:11Þ

where p xtjxt21ð Þ denotes the distribution of xt conditional on the information

set available at time t2 1.

If the errors and initial state vector in (17.1) are normally distributed,

then the distribution of xt, conditional on xt21, will itself be normal, with the

mean and variance of this conditional distribution being given by the

Kalman filter. Conditional on xt21, αt is normally distributed with mean

atjt21 and covariance matrix Ptjt21. If the measurement equation is written

as:

xt 5 z0tatjt21 1 z0t αt 2 atjt21

� �
1 dt 1 εt

then the conditional distribution of xt is normal with mean

Et21 xtð Þ5 x̂tjt21 5 z0tatjt21 1 dt

and variance ft. The likelihood function (17.11) can then be written immedi-

ately as

logL5 ‘5 2
T

2
log2π2

1

2

XT
t51

ft 2
1

2

XT
t51

ν2t =ft ð17:12Þ

where νt 5 xt 2 x̂tjt21 is the prediction error, so that (17.12) is also known as

the prediction error decomposition form of the likelihood function.

17.14 The log-likelihood (17.12) may be computed and then maximized

with respect to the unknown hyperparameters ψ, which will usually be

carried out by utilizing some form of numerical optimization procedure.

Suppose that ψ̂ is the ML estimator and define the information matrix as

I ψð Þ5P21
T . Suppose that I ψð Þ converges to a positive definite matrix IA ψð Þ

when divided by T , that is, IA ψð Þ5 plim T21I ψð Þ. Subject to certain

regularity conditions,
ffiffiffiffi
T

p
ψ̂2ψ

� �
has a limiting multivariate normal distri-

bution with a mean vector of zero and covariance matrix I21
A ψð Þ: equiva-

lently, ψ̂ is said to be asymptotically normal with mean ψ and covariance

matrix T21I21
A ψð Þ.
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PREDICTION AND SMOOTHING

17.15 Applying the Kalman filter to (17.1) and (17.2) yields aT , the

MMSE of αT , based on all T observations. In addition, it gives:

aT11jT 5TT11aT 1 cT11 ð17:13Þ
together with the one-step ahead prediction

x̂T11jT 5 z0T11aT11jT 1 dT11

We may also consider the problem of multistep prediction, that of mak-

ing predictions of future observations at times T 1 2, T 1 3; . . .. Extending
(17.13) by substituting repeatedly into the transition equation at time T1 l

and taking conditional expectations at time T yields

aT1ljT 5 L
l

j51

TT1j

" #
aT 1

Xl21

j51

L
l

i5j11

TT1i

" #
cT1j 1 cT1l

The MMSE of xT1l is then obtained directly from aT1ljT as

x̂T1l 5 z0T1laT1ljT 1 dT1l ð17:14Þ
with the accompanying MSE

MSE x̂T1ljT
� �

5 z0T1lPT1ljTzT1l 1 hT1l ð17:15Þ
The easiest way to calculate aT1ljT and PT1ljt, which are required to eval-

uate (17.14) and (17.15), is to repeatedly apply the Kalman filter prediction

equations (17.4) and (17.5) to obtain

aT1ljT 5TT1laT1l21jT 1 cT1l

and

PT1ljT 5TT1lPT1l21jTT0
T1l 1RT1lQT1lR

0
T1l

17.16 Note that the PT1ljT matrices do not include errors which arise from

estimating any unknown parameters in the system matrices, so that (17.15)

will underestimate the true MSE because it does not incorporate the extra

variation due to using ψ̂ rather than the true ψ.

17.17 While the aim of filtering is to find the expected value of the state

vector, αt, conditional on the information available at time t, that is,

atjt 5E αtjxtð Þ, the aim of smoothing is to take account of the information

available after time t. This will produce the smoothed estimator

atjT 5E αtjxTð Þ and, since it is based on more information than the filtered

estimator, it will have an MSE which cannot be greater than that of the fil-

tered estimator.
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17.18 While there are several forms of smoothing, attention is concentrated

here on fixed-interval smoothing. This is an algorithm that consists of a set

of recursions which start with the final quantities, aT and PT , given by the

Kalman filter and work backward. These equations are:

atjT 5 aT 1P
�
t at11jT 2Tt11at
� �

and

PtjT 5Pt 1P
�
t Pt11jT 2Pt11jT
� �

P
�0
t

where

P
�
t 5PtT

0
t11P

21
t11jt t5 T 2 1; . . . ; 1

with aTjT 5 aT and PTjT 5PT .

EXAMPLE 17.2 Prediction and Smoothing in the Muth Model

From (17.13) and (17.14) it follows immediately that

x̂ T1ljT 5 aT l5 1;2; . . .

The set of predictions, therefore, fall on a horizontal line which passes through

the final estimator of the level of the process. The accompanying MSEs, condi-

tional on κ, are:

MSE x̂ T1ljT
� �

5 pT 1 lκ1 1
� �

h

and so increase linearly with the horizon l.

Noting that p
�
t 5 pt= pt 1κ

� �
, it follows that

atjT 5 12 p
�
t

� �
at 1 p

�
t at11jt t 5 T 2 1; . . . ;1

The smoothed estimator at time t is, thus, a simple weighted moving average of

the smoothed estimator at time t 1 1 and the filtered estimator at time t . If p
�
t is

constant, then at jT is similar in form to the exponentially weighted moving aver-

age of y9.14.

MULTIVARIATE STATE SPACE MODELS

17.19 This development of state space models has been based on modeling

a univariate time series xt. The analysis may readily be extended to modeling

the N3 1 vector Xt of observed series by generalizing the measurement

equation (17.1) to

Xt 5Ztαt 1 dt 1 εt

where Zt is an N3m matrix, dt is an N3 1 vector, and εt is an N3 1 vector

with E εtð Þ5 0 and V εtð Þ5Ht, an N3N covariance matrix. The analysis

then carries through with the necessary changes.
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EXAMPLE 17.3 State Space Modeling of Global Temperatures

In Example 4.3 monthly global temperatures were fitted by an ARIMA(0,1,3) pro-

cess, while in Example 9.3 the series was fitted by simple exponential smooth-

ing. Both models can be recast as SSFs and estimated by the Kalman filter. The

former model, when written in the notation of y17.3, has SSF

rxt 5 1 0 0 0
� �

αt αt 5 α1;t α2;t α3;t α4;t

� �0
α1;t

α2;t

α3;t

α4;t

2
64

3
755

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

2
64

3
75

α1;t21

α2;t21

α3;t21

α4;t21

2
64

3
751

1
θ1
θ2
θ3

2
64

3
75ηt

ML estimation of the model obtains (noting the sign change)

θ̂1 52 0:504 0:017ð Þ, θ̂2 52 0:090 0:020ð Þ, and θ̂3 52 0:116 0:019ð Þ with

RMSE5 0:1236, which are all extremely close to those obtained previously.

Simple exponential smoothing is a special case of the Muth random walk

plus noise model whose SSF was given in y17.4. ML estimation yields variance

estimators ĥ5 0:00868 0:00025ð Þ and q̂ 5 0:00318 0:00024ð Þ, so that the signal-

to-noise variance ratio is estimated to be 0.366, a little lower than the estimate

of the exponential smoothing parameter (0.45). Nevertheless, the one-step ahead

forecast, given by the final state, aT , remains at 0:581 0:084ð Þ.

ENDNOTES

1. The idea of sequentially updating, or recursively estimating, the parameters of a model has a

history stretching back to Gauss in the 1820s, but was only rediscovered by Plackett (1950).

A decade later, the engineer Rudolf Kalman published a recursive state estimation algorithm

(Kalman, 1960) for stochastic dynamic systems described by discrete-time state space

equations, at the core of which was a modified recursive least squares algorithm (although it

was unlikely that Kalman was aware of this at the time). After something of a delay,

Kalman’s ideas eventually led to a huge body of research on recursive estimation across a

range of different disciplines, with the algorithm becoming universally referred to as the

Kalman filter. Young (2011) provides historical discussion of the links running from Gauss,

through Plackett, to Kalman.

It is generally accepted that the reasons for the delay in the uptake of Kalman’s

procedure by the time series community was two-fold. First, the original paper and its

continuous time counterpart (Kalman and Bucy, 1961) were written for an engineering

audience and so used a language, notation, and style that was alien to statisticians. Second,

the original setup of the model assumed that the parameters of the underlying state space

model were known exactly, so that it could only provide estimates and forecasts of the state

variables of the system. This latter restriction was lifted with the development of methods for

computing the likelihood function for state space models (see yy17.12�17.14), while the

1970s saw the Kalman filter introduced to a wider audience by casting it in more familiar ter-

minology: see, for example, Duncan and Horn (1972).

2. A formal derivation of the Kalman filter is provided by, for example, Harvey (1989,

Section 3.2).
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Chapter 18

Some Concluding Remarks

18.1 My aim throughout this book has been to provide readers with a set of

robust and useful techniques that they can call upon to analyze time series

that occur in their own research fields. Clearly, considerations of how

subject-specific theory may be incorporated into the analysis will be field-

dependent but may typically influence the choice of variables to be included

and provide constraints that could be imposed on the models being devel-

oped. My view would be that, in these circumstances, such constraints

should be tested wherever possible, an opinion that reflects my (perhaps

essentially British) “pragmatic” approach to statistical modeling in general.1

Related to this, my preference would always be to begin, wherever possi-

ble, with a general model and then test plausible restrictions with the aim of

moving toward a simpler model that has empirical support, rather than start-

ing with a tightly specified model whose (typically implicit) restrictions have

not been subjected to statistical testing and which might, therefore, be seri-

ously misspecified: in other words, I recommend following a general-to-

specific modeling strategy of the type often associated with Hendry (1995).

18.2 I would also hope that readers will have gained an appreciation of

the principle that the properties a time series displays will impact upon the

behavior to be expected from it. To take an important current issue,

the examples on modeling monthly global temperatures show that this series

can be represented by an ARIMA(0,1,3) process that does not contain a

significant drift term. That the series is I(1) rules out the possibility that tem-

peratures exhibit reversion to a constant mean and so invalidates any theory

that posits that there is an “equilibrium setting” that temperatures inexorably

return to.

However, the absence of a significant drift implies that there is also no

underlying, albeit stochastic, trend, so that after three months forecasts con-

verge on the current level of the series, so ruling out predictions of ever-

increasing future temperatures. In fact, given that innovations are persistent,

and that the innovation variance is relatively small when compared to the

overall variability of the series (the ratio is approximately 15%), it is, thus,

no surprise that there may be extended periods in which the series is gener-

ally increasing, or indeed decreasing, and also extended periods in which the
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series appears to bounce randomly around a locally constant level, all of

which are features of the observed evolution of global temperatures.

The fact that temperatures are I(1) also rules out the common practice of

fitting deterministic trends to the entire or, more usually, segments of the

series: at best these can be interpreted as descriptive exercises to which no

valid statistical inference can be attached.2

18.3 As well as incorporating and testing relevant theory considerations,

“institutional” knowledge can also be important when analyzing data and

time series are no exceptions to this. One, perhaps arcane, but fondly remem-

bered example from my own experience, relates to when I was working for

the Bank of England in the early 1980s on leave from my academic position.

It was here that I became interested in seasonal adjustment and signal extrac-

tion and it was also when the Bank began to monitor closely the evolution of

the monetary aggregates, as monetarism and control of these aggregates was

popular with the Conservative government of the time.

The “narrowest” of the selection of aggregates then available, M0, con-

sisted primarily of the amount of notes and coin in circulation with the pub-

lic, that is, cash. The Bank’s statisticians, who monitored this aggregate on a

weekly basis, were aware of a “spike” in the aggregate during the first two

weeks of July of each year. This was known as the “wakes week” effect,

referring to the practice in northern towns of the United Kingdom, primarily

in Lancashire and Scotland, for all factories to shut at the same time for sum-

mer holidays. Workers and their families consequently drew out much larger

amounts of cash than usual to fund their holidays, so producing the afore-

mentioned spike in M0. The Bank statisticians, adjusted the series to remove

this spike and, hence, eradicate a transitory, but predictable, uptick in the

trend of the data during that month which, if left in the series, might have

provoked the unwary into seeing an acceleration in the growth of this mone-

tary aggregate.

18.4 Effects such as these, often referred to as outliers, are a recurrent fea-

ture of time series and, although mentioned briefly in Chapter 5, Unit Roots,

Difference and Trend Stationarity, and Fractional Differencing, have not

been afforded a chapter of their own in this book: they may, in fact, be ana-

lyzed within the transfer function setup introduced in Chapter 12, Transfer

Functions and ARDL Modeling. Nevertheless, they can be important and

should always be looked out for when initially exploring data.3

Also omitted is any discussion of panel data, which combines time series

with cross-sectional observations. This has become a popular area of

research, particularly in economics, for it enables the analysis of, typically

short, time series available on a set of cross-sectional variables. Panel data

warrants a textbook of its own, with Baltagi (2013) being a well-known

example.
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ENDNOTES

1. I use “pragmatism” here for both its vernacular meaning of indicating a “practical, matter-of-

fact way of solving problems” and as a philosophical tradition that is centered on the linking

of practice and theory, describing a process whereby theory is extracted from practice and

then applied back to practice. Pragmatism as a philosophical movement begun in the United

States during the 1870s and is most closely associated with Charles Sanders Peirce and

William James (see Bacon, 2012). Although often referred to as “American pragmatism,” it

was heavily influenced by Charles Darwin and the earlier “British empiricists” John Locke

and David Hume.

Statistical pragmatism has been proposed by Kass (2011) as a foundation for an eclectic

statistical inference that goes beyond narrow frequentist and Bayesian positions, and empha-

sizes the “identification of models with data,” recognizing “that all forms of statistical infer-

ence make assumptions that can only be tested very crudely and can almost never be

verified.” A link between philosophical and statistical pragmatism has been provided by the

great statistician George Box. As he memorably stated in Box (1979), “all models are wrong,

but some are useful,” and in Box (1984) he emphasized the importance of theory�practice

interaction using many examples from the development of statistical thinking.

2. The finding of no significant drift in the ARIMA model for monthly global temperatures is,

of course, at odds with anthropogenic global warming theories that radiative forcings, such as

those from CO2, which have pronounced upward trends, have a significant impact on tem-

peratures, unless some of these forcings approximately cancel each other out. This cannot be

examined within the context of modeling monthly temperatures, for forcing observations are

not available at this frequency for a sufficiently lengthy period. The use of annual data, as in

Example 12.2, does enable forcing effects to be isolated and there are found to be some

offsets.

3. The seminal references to the identification and modeling of outliers, often referred to as

intervention analysis, are Box and Tiao (1975); Abraham (1980); Tsay (1986b); and Chang

et al. (1988); with Mills (1990, Chapter 13) providing a textbook treatment.

Some Concluding Remarks Chapter | 18 313





References

Abraham, B., 1980. Intervention analysis and multiple time series. Biometrika 67, 73�80.

Agiakloglou, C., Newbold, P., 1994. Lagrange multiplier tests for fractional difference. J. Time

Series Anal. 15, 253�262.

Aitchison, J., 1982. The statistical analysis of compositional data (with discussion). J. R. Stat.

Soc. Ser. B 44, 139�177.

Aitchison, J., 2003. The Statistical Analysis of Compositional Data. Blackburn Press, NJ.

Aı̈t-Sahalia, Y., Jacod, J., 2014. High-Frequency Financial Econometrics. Princeton University

Press, Princeton, NJ.

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom.

Control AC-19, 716�723.

Al-Osh, M.A., Alzaid, A.A., 1987. First-order integer-valued autoregressive (INAR(1)) process.

J. Time Series Anal. 8, 261�275.

Al-Osh, M.A., Alzaid, A.A., 1988. Integer-valued moving average (INMA) process. Stat. Pap.

29, 281�300.

Alzaid, A.A., Al-Osh, M.A., 1990. An integer-valued p-th order autoregressive structure (INAR

(p)) process. J. Appl. Probab. 27, 314�324.

Andersen, T.G., Bollerslev, T., Diebold, F.X., 2007. Parametric and nonparametric volatility

measurement. In: Aı̈t-Sahalia, Y., Hansen, L.P. (Eds.), Handbook of Financial

Econometrics. Elsevier, New York.

Andersson, M.K., Eklund, B., Lyhagen, J., 1999. A simple linear time series model with mis-

leading nonlinear properties. Econ. Lett. 65, 281�284.

Arbia, G., 2014. A Primer for Spatial Econometrics. Palgrave Macmillan, Basingstoke.

Astill, S., Harvey, D.I., Leybourne, S.J., Taylor, A.M.R., 2015. Robust and powerful tests for

nonlinear deterministic components. Oxf. Bull. Econ. Stat. 77, 780�799.

Bacon, M., 2012. Pragmatism: An Introduction. Polity Press, Cambridge.

Baillie, R.T., 1996. Long memory processes and fractional integration in econometrics.

J. Econom. 73, 5�59.

Baillie, R.T., 2006. Modeling volatility. In: Mills, T.C., Patterson, K. (Eds.), Palgrave Handbook

of Econometrics, Volume 1: Econometric Theory. Palgrave Macmillan, Basingstoke,

pp. 737�764.

Baillie, R.T., Kapetanios, G., 2007. Testing for neglected nonlinearity in long memory models.

J. Bus. Econ. Stat. 25, 447�461.

Baltagi, B.H., 2013. Econometric Analysis of Panel Data, fifth ed. Wiley, New York.

Banerjee, A., Dolado, J., Galbraith, J.W., Hendry, D.F., 1993. Co-Integration, Error-Correction,

and the Econometric Analysis of Non-Stationary Data. Oxford University Press, Oxford.

Barnett, W.A., Gallant, A.R., Hinich, M.J., Jungeilges, J.A., Kaplan, D.T., Jensen, M.J., 1997.

A single-blind controlled competition among tests of nonlinearity and chaos. J. Econom. 82,

157�192.

315

http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref1
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref1
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref2
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref2
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref2
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref3
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref3
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref3
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref4
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref5
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref5
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref6
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref6
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref6
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref7
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref7
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref7
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref8
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref8
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref8
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref9
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref9
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref9
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref10
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref10
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref10
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref11
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref11
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref11
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref12
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref13
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref13
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref13
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref14
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref15
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref15
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref15
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref16
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref16
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref16
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref16
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref17
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref17
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref17
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref18
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref19
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref19
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref20
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref20
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref20
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref20


Bartlett, A., McCormick, W.P., 2012. Estimation for nonnegative first-order autoregressive pro-

cesses with an unknown location parameter. Appl. Math. 3, 2133�2147.

Bartlett, A., McCormick, W.P., 2013. Estimation for non-negative time series with heavy-tail

innovations. J. Time Series Anal. 34, 96�115.

Bartlett, M.S., 1946. On the theoretical specification and sampling properties of autocorrelated

time series. J. R. Stat. Soc. B, Suppl. 8, 27�41.

Baxter, M., King, R.G., 1999. Measuring business cycles: approximate band-pass filters for eco-

nomic time series. Rev. Econ. Stat. 81, 575�593.

Berliner, L.M., 1992. Statistics, probability and chaos. Stat. Sci. 7, 69�90.

Beveridge, S., Nelson, C.R., 1981. A new approach to decomposition of economic time series

into permanent and transitory components with particular attention to measurement of the

“business cycle”. J. Monetary Econ. 7, 151�174.

Bhargava, A., 1986. On the theory of testing for unit roots in observed time series. Rev. Econ.

Stud. 53, 369�384.

Bickel, P.J., Doksum, K.A., 1981. An analysis of transformations revisited. J. Am. Stat. Assoc.

76, 296�311.

Blanchard, O.J., 1989. A traditional interpretation of macroeconomic fluctuations. Am. Econ.

Rev. 79, 1146�1164.

Blanchard, O.J., Quah, D., 1989. Dynamic effects of aggregate demand and aggregate supply

fluctuations. Am. Econ. Rev. 79, 655�673.

Bollerslev, T., 1986. Generalised autoregressive conditional heteroskedasticity. J. Econom. 31,

307�327.

Bollerslev, T., 1988. On the correlation structure for the generalised autoregressive conditional

heteroskedastic process. J. Time Series Anal. 9, 121�132.

Bollerslev, T., Wooldridge, J.M., 1992. Quasi maximum likelihood estimation and inference in

dynamic models with time varying covariances. Econometric Rev. 11, 143�172.

Box, G.E.P., 1979. Robustness in the strategy of scientific model building. In: Laumer, R.L.,

Wilkinson, G.N. (Eds.), Robustness in Statistics. Academic Press, New York, pp. 201�236.

Box, G.E.P., 1984. The importance of practice in the development of statistics. Technometrics

26, 1�8.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. J. R. Stat. Soc. B 26, 211�243.

Box, G.E.P., Jenkins, G.M., 1970. Time Series Analysis: Forecasting and Control. Holden-Day,

San Francisco, CA.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 2008. Time Series Analysis: Forecasting and Control,

fourth ed. Wiley, New York.

Box, G.E.P., Tiao, G.C., 1975. Intervention analysis with application to economic and environ-

mental problems. J. Am. Stat. Assoc. 70, 70�79.

Brännäs, K., De Gooijer, J.K., 1994. Autoregressive-asymmetric moving average model for busi-

ness cycle data. J. Forecast. 13, 529�544.

Breitung, J., Hassler, U., 2002. Inference on the cointegrating rank in fractionally integrated pro-

cesses. J. Econom. 110, 167�185.

Brock, W.A., 1986. Distinguishing random and deterministic systems: abridged version. J. Econ.

Theory 40, 168�195.

Brock, W.A., 1988. Nonlinearity and complex dynamics in economics and finance.

In: Anderson, P., Arrow, K.J., Pines, D. (Eds.), The Economy as an Evolving Complex

System. Addison-Wesley, Reading, MA, pp. 77�97.

Brock, W.A., Hsieh, D.A., LeBaron, B., 1991. A Test for Nonlinear Dynamics, Chaos and

Instability. MIT Press, Cambridge, MA.

316 References

http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref21
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref21
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref21
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref22
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref22
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref22
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref23
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref23
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref23
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref24
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref24
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref24
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref25
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref25
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref26
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref26
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref26
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref26
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref27
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref27
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref27
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref28
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref28
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref28
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref29
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref29
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref29
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref30
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref30
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref30
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref31
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref31
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref31
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref32
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref32
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref32
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref33
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref33
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref33
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref34
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref34
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref34
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref35
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref35
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref35
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref36
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref36
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref37
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref37
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref39
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref39
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref38
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref38
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref38
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref40
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref40
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref40
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref41
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref41
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref41
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref42
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref42
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref42
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref43
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref43
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref43
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref43
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref44
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref44


Brockwell, P.J., Davis, R.A., 1991. Time Series: Theory and Methods, second ed. Springer-

Verlag, New York.

Brown, R.G., 1963. Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-

Hall, Englewood-Cliffs, NJ.

Brown, R.G., Meyer, R.F., 1961. The fundamental theorem of exponential smoothing. Oper.

Res. 9, 673�687.

Brunsdon, T.M., Smith, T.M.F., 1998. The time series analysis of compositional data. J. Off.

Stat. 14, 237�253.

Bu, R., McCabe, B., Hadri, K., 2008. Maximum likelihood estimation of higher-order integer-

valued autoregressive processes. J. Time Series Anal. 29, 973�994.

Bunzel, H., Vogelsang, T.J., 2005. Powerful trend function tests that are robust to strong serial

correlation with an application to the Prebish�Singer hypothesis. J. Bus. Econ. Stat. 23,

381�394.

Burbidge, J.B., Magee, L., Robb, A.L., 1988. Alternative transformations to handle extreme

values of the dependent variable. J. Am. Stat. Assoc. 83, 123�127.

Busetti, F., Harvey, A.C., 2003. Further comments on stationarity tests in series with structural

breaks at unknown points. J. Time Series Anal. 24, 137�140.

Chang, I., Tiao, G.C., Chen, C., 1988. Estimation of time series parameters in the presence of

outliers. Technometrics 30, 193�204.

Charemza, W.W., Lifshits, M., Makarova, S., 2005. Conditional testing for unit-root bilinearity

in financial time series: some theoretical and empirical results. J. Econ. Dyn. Control 29,

63�96.

Choi, I., 2015. Almost All About Unit Roots. Cambridge University Press, Cambridge.

Christiano, L.J., Fitzgerald, T.J., 2003. The band pass filter. Int. Econ. Rev. 44, 435�465.

Clements, M.P., Hendry, D.F., 1998. Forecasting Economic Time Series. Cambridge University

Press, Cambridge.

Cooley, T.F., LeRoy, S.F., 1985. Atheoretical econometrics: a critique. J. Monetary Econ. 16,

283�308.

Crafts, N., Mills, T.C., 2017. Six centuries of British economic growth: a time series perspective.

Eur. Rev. Econ. Hist. 21, 141�158.

Croston, J.D., 1972. Forecasting and stock control for intermittent demands. J. Oper. Res. Soc.

23, 289�303.

D’Esopo, D.A., 1961. A note on forecasting by the exponential smoothing operator. Oper. Res.

9, 686�687.

Davidson, J.E.H., Hendry, D.F., Srba, F., Yeo, S., 1978. Econometric modelling of the aggregate

time-series relationship between consumers’ expenditure and income in the United

Kingdom. Econ. J. 88, 861�892.

De Lima, P.J.F., 1997. On the robustness of nonlinearity tests to moment condition failure.

J. Econom. 76, 251�280.

Dechert, W.D., 1996. Testing time series for nonlinearities: the BDS approach. In: Barnett, W.

A., Kirman, A.P., Salmon, M. (Eds.), Nonlinear Dynamics and Economics. Cambridge

University Press, Cambridge, pp. 191�200.

Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series

with a unit root. J. Am. Stat. Assoc. 74, 427�431.

Dickey, D.A., Fuller, W.A., 1981. Likelihood ratio statistics for autoregressive time series with a

unit root. Econometrica 49, 1057�1072.

Diebold, F.X., Inoue, A., 2001. Long memory and regime switching. J. Econom. 105, 131�159.

References 317

http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref45
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref45
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref46
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref46
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref47
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref47
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref47
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref48
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref48
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref48
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref49
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref49
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref49
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref50
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref50
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref50
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref50
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref50
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref51
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref51
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref51
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref52
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref52
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref52
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref53
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref53
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref53
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref54
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref54
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref54
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref54
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref55
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref56
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref56
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref57
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref57
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref58
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref58
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref58
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref59
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref59
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref59
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref60
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref60
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref60
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref61
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref61
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref61
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref62
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref62
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref62
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref62
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref63
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref63
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref63
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref64
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref64
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref64
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref64
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref65
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref65
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref65
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref66
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref66
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref66
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref67
http://refhub.elsevier.com/B978-0-12-813117-6.00028-4/sbref67


Ding, Z., Granger, C.W.J., 1996. Modeling persistence of speculative returns: a new approach.

J. Econom. 73, 185�215.

Ding, Z., Granger, C.W.J., Engle, R.F., 1993. A long memory property of stock returns and a

new model. J. Empirical Finance 1, 83�106.

Dolado, J.J., Gonzalo, J., Moayoral, L., 2002. A fractional Dickey�Fuller test for unit roots.

Econometrica 70, 1963�2006.

Domowitz, I., El-Gamal, M.A., 2001. A consistent nonparametric test of ergodicity for time

series with applications. J. Econom. 102, 365�398.

Drost, F.C., van den Akker, R., Werker, B.J.M., 2008. Local asymptotic normality and efficient

estimation for INAR(P) models. J. Time Series Anal. 29, 784�801.

Dufour, J.-M., 1982. Recursive stability analysis of linear regression relationships: an explor-

atory analysis. J. Econom. 19, 31�75.

Duncan, D.B., Horn, S.D., 1972. Linear dynamic recursive estimation from the viewpoint of

regression analysis. J. Am. Stat. Assoc. 67, 815�821.

Durbin, J., 1960. The fitting of time-series models. Rev. Int. Stat. Inst. 28, 233�244.

Durbin, J., Koopman, S.J., 2012. Time Series Analysis by State Space Methods, second ed.

Oxford University Press, Oxford.

Durbin, J., Watson, G.W., 1950. Testing for serial correlation in least squares regression: I.

Biometrika 37, 409�428.

Durbin, J., Watson, G.W., 1951. Testing for serial correlation in least squares regression: II.

Biometrika 38, 1�19.

Durlauf, S.N., Phillips, P.C.B., 1988. Trends versus random walks in time series analysis.

Econometrica 56, 1333�1354.

Elliott, G., Rothenberg, T.J., Stock, J.H., 1996. Efficient tests for an autoregressive unit root.

Econometrica 64, 813�836.

Enders, W., Lee, J., 2012. A unit root test using a Fourier series to approximate smooth breaks.

Oxf. Bull. Econ. Stat. 74, 574�599.

Engle, C.R., Hamilton, J.D., 1990. Long swings in the dollar: are they in the data and do the

markets know it? Am. Econ. Rev. 80, 689�713.

Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the variance

of UK inflation. Econometrica 50, 987�1008.

Engle, R.F., 1983. Estimates of the variance of UK inflation based on the ARCH model. J.

Money Credit Bank. 15, 286�301.

Engle, R.F., Granger, C.W.J., 1987. Co-integration and error correction: representation, estima-

tion and testing. Econometrica 55, 251�276.

Engle, R.F., Kozicki, S., 1993. Testing for common features. J. Bus. Econ. Stat. 11, 369�380.

Engle, R.F., Lee, G.J., 1999. A permanent and transitory component model of stock return vola-

tility. In: Engle, R.F., White, H. (Eds.), Cointegration, Causality, and Forecasting: A

Festchrift in Honor of Clive W.J. Granger. Oxford University Press, Oxford, pp. 475�497.

Engle, R.F., Hendry, D.F., Richard, J.-F., 1983. Exogeneity. Econometrica 51, 277�304.

Fernández-Rodriguez, F., Sosvilla-Rivero, S., Andrada-Félix, J., 2005. Testing chaotic dynamics

via Lyapunov exponents. J. Appl. Econometrics 20, 911�930.

Flaig, G., 2015. Why we should use high values for the smoothing parameter of the
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bilinear models, 177�180

forecasting with nonlinear models, 198

Markov-switching models, 185�187

martingales, random walks, and

nonlinearity, 173�176

NNs, 188�189

nonlinear dynamics, 189�192

testing for nonlinearity, 192�198

threshold and smooth transition

autoregressions, 181�185

Nonlinear trends, 6, 112�119

Nonlinearity, 173�176

testing for, 192�198

for long interest rate, 198b

Nonmultiplicative model, 149

Nonnegative AR(1) model for storm counts,

296b

Nonnegative time series, 296

Nonparametric models, 188

Nonparametric tests of serial independence,

196

Nonseasonal nonstationarity, 147

Nonsense regressions. See Spurious

regressions

Nonstationarity, 4�6, 57�60, 60f, 191�192

$�d exchange rate, 5f

homogenous, 63

United Kingdom beer sales, 5f

Nonstationary generalizations of bilinear

models, 178

Nonstationary VARs, 269�270

Nonzero means, 45, 74

Normal distribution, 165

North Atlantic Oscillation (NAO), 1�2

ARMA process for, 49b, 50f, 51t

index, 2f

Null hypothesis, 77, 235

of multiplicative nonlinearity, 195

Numerator polynomials, 202

Numerical techniques, 294�296

O
Observation

equation, 299

period, 1

Oil price shock (1973), 107b

OLS. See Ordinary least squares (OLS)

One-step ahead forecast, 198

Optimal search strategy, 68�69

Ordinary least squares (OLS), 47, 75

estimated cointegration regressions, 251

regression, 235

Orthogonal complement, 261

Orthogonalization, 218

Orthogonalized forecast error variance

decomposition, 217�218

Orthogonalized impulse response function,

217, 219

Out-of-sample testing, 188

Over-dispersion, 290

Overdifferencing, 72

P
Partial ACF (PACF), 39�40

of seasonal models, 148

Partial autocorrelations, 39�40, 46�47

Periodic movements, 2�4

Perron’s framework, 109

Persistence in Nile river flow, 97b

Phase diagram, 190

Phase shift, 140

Phillips�Perron non-parametric unit root test

(PP non-parametric unit root test), 84

π-weights converge, 37
Po distribution. See Poisson distribution (Po

distribution)

Point optimal test, 85

Poisson distribution (Po distribution), 289

null hypothesis, 291�292

Po-IN-MA(1) model, 291

Poisson processes, 109

Portmanteau statistic, 176

Portmanteau test, 175

for nonlinearity, 194

Positive drift, 8

Power GARCH models, 167

Power law decay, 91
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Power transfer function, 140

Power transformations, 16

PP non-parametric unit root test.

See Phillips�Perron non-parametric

unit root test (PP non-parametric unit

root test)

Pragmatism, 313

Prediction, 307�308

equations, 303�304

error, 306

decomposition, 305�306

in Muth model, 308b

Prewhitening, 203

Probability distribution, 31

Product process, 162

Pseudo-spectrum, 93

Pseudo-structural form equations, 278

ψ�weights, 34

Pure linearity, 181�182

Purely nondeterministic process, 33

Q
Quadratic trend model, 58, 59f, 275�276

Quasi-differences, 84�85

Quenouille’s Hog series, 223b

R
R/S statistic. See Range over standard

deviation (R/S statistic)

R2 statistic, 238

Random walk(s), 6, 60�61, 61f, 173�176

with drift, 60�61

process, 305

Random-walk-plus-white noise model,

138�139

Range over standard deviation (R/S statistic),

93�94

Rational distributed lag, 201�202

Ravn�Uhlig rule, 140, 143

Realization of stochastic process, 31

Realized variance, 171

Recursion for estimator of mean, 305

Recursive relationship, 186�188

Reduced rank regression, 260

Regime switching models, 185

Regression error specification test (RESET),

193

Regression model, 146

Rescaled range statistic. See Range over

standard deviation (R/S statistic)

RESET. See Regression error specification

test (RESET)

Residual correlation matrix, 225�227

Residual-based procedures, 247

Riccati equation, 304

Robust tests for breaking trend, 111

S
S&P 500 stock market index, 107

long memory in, 98b

Sample autocorrelation function (SACF),

2�3, 46, 53f, 72, 81, 145, 146f.

See also Partial ACF (PACF)

of first difference of UK Spread, 66t

Sample autocorrelations, 46�47

Sample partial ACF (SPACF), 46, 53f

of first difference of UK Spread, 66t

Seasonal adjustment method, 153

Seasonal ARIMA model, 147�148

of beer sales, 151b

Seasonal differencing, 147

Seasonal mean model, 145�147

Seasonal nonstationarity, 147

Seasonal pattern(s), 4

in time series, 145

Seasonality, 4

modeling deterministic, 145�147

modeling stochastic, 147�152

Seasonally adjusted series, 28

Segmented trend model, 103�104, 106,

111�112

Self-exciting threshold autoregressive process

(SETAR process), 181�185

for sunspots, 182b

Semiparametric estimators, 97�101

SETAR process. See Self-exciting threshold

autoregressive process (SETAR

process)

Signal equation, 299

Signal extraction, 136�139

Signal-plus-white-noise UC model, 137

Signal-to-noise variance ratio, 131�132

Signed power transformation, 16

Simple bilinear forms, 177

Simple exponential smoothing, 154

Simple power transformation, 30

Simple t-ratio type test, 178

Simulation studies, 193

Single exponential smoothing, 154

Single-equation autoregressive distributed lag

models, 255
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Single-input transfer function models, 201,

203

Small sample size, 191�192

Smooth transition autoregressions, 181�185

Smooth trend, 26�27

Smoothed estimator, 307

Smoothing, 307�308

in Muth model, 308b

transformations, 23�30

Smoothness condition, 139

SPACF. See Sample partial ACF (SPACF)

Spatial dependence, 1

Spatial displacement, 68�69

Spectral density, 92

Spurious regressions, 234�242, 236t

SSF. See State space form (SSF)

Standardized process, 162

State space

framework, 138�139

models

formulation, 299�302

of global temperatures, 309b

Kalman filter, 303�305

ML estimation and prediction error

decomposition, 305�306

multivariate state space models,

308�309

prediction and smoothing, 307�308

for univariate time series, 299

State space form (SSF), 299

Stationarity, 4�6, 31�33

condition, 35

$�d exchange rate, 5f

inducing transformations, 20�23

annual % rate of inflation, 25f

annual changes in per capita UK wine,

20f

chemical process temperature, 22f

monthly % rate of RPI inflation, 25f

monthly gold price and return, 24f

second-differences, 23f

United Kingdom beer sales, 5f

Stationary linear combinations, 258

Stationary noise, 64

Stationary process, 195

Stationary time series, 31

Statistical pragmatism, 313

Stochastic chaos. See High-dimensional chaos

Stochastic dynamic systems, 309

Stochastic model, 162

Stochastic processes and stationarity, 31�33

Stochastic seasonality modeling, 147�152

Storm counts, IN-AR models for, 292b

Structural factorization, 227

Structural models. See Random-walk-plus-

white noise model

Structural VECM, 266�268, 267b, 268t

Structural vector autoregressions (SVAR),

222�230

Student’s t distribution, 165

Sub-martingale, 173

Sunspot(s)

number, 53b, 54t, 182�183, 183f

SETAR model for, 182b

Super-consistent OLS estimate, 247

Super-diagonal model, 177

Super-martingale, 173

SVAR. See Structural vector autoregressions

(SVAR)

Switching-regime Markov model, 185

System matrices, 300, 305�306

T
T-dimensional probability distribution, 31

T-distribution, 73, 238

t-statistic testing, 78�81, 95

TARCH model. See Threshold ARCH model

(TARCH model)

TCR. See Transient climate response

(TCR)

Temperature, VECM-X models, 272b

Tent map, 190

Testing

for fractional differencing, 93�96

for unit root, 73�77

Theorie de Speculation, 68�69

Thinning operation, 289

Threshold ARCH model (TARCH model),

167�168

Threshold autoregressions, 181�185

Tick-by-tick data, 12

Time domain

approach, 230�231

representation of stationary series, 92

Time series, 57�58

autocorrelation and periodic movements,

2�4

features, 9, 10f

models for counts, 288�289

NAO index, 2f

natural constraints, 10�11, 11f, 12f

order of integration of, 71�73

seasonal patterns in, 145
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Time series (Continued)

seasonality, 4

stationarity and nonstationarity, 4�6

transformations

decomposing time series and smoothing,

23�30

distributional, 13�20

stationarity inducing, 20�23

trends, 6�8

volatility, 8�9

Time-homogeneous model, 300

Time-invariant model, 300

Time-varying coefficients (TV coefficients),

181�182

Total radiative forcing, 272b

TR test statistic, 195

Trace statistic and testing, 262

Traditional modeling techniques, 179

TRAMO/SEATS methods, 153

Transfer function, 201

transfer function-noise models, 201�203

Transient climate response (TCR), 209�210,

253

Transition equation, 299

Trend stationarity (TS), 77�81, 128. See also

Difference stationarity (DS)

forecasting trend stationary process,

128�130

trends in wine and spirit consumption, 78b

United Kingdom equity prices, 79b

Trend-elimination filter, 140

Trend-extraction filter, 140

Trend-free series, 28

Trend(s)

component, 133�134

filters, 26�27

time series and features, 6�8

global temperature, 8f

UK RPI, 7f

Triangular recursive structure, 222

Triangular representation, 264

Trigonometric Euler equation identity, 93

TS. See Trend stationarity (TS)

TV coefficients. See Time-varying

coefficients (TV coefficients)

Two-period difference, 21

Two-state Markov process, 185

Two-step ahead forecast, 198

U
UC models. See Unobserved component

models (UC models)

Unaugmented model, 83

Uncentered MA, 25�26

Unconditional distribution, 130

Uncorrelated innovation sequence, 180

Unit root, 6, 257

approaches to testing for, 83�87

estimating trends robustly, 87�90

in global temperatures, 77b

tests, 73�77

on All Share Index, 86b

as break date, 110�111

breaking trends and, 105�109

for more than one unit root,

81�83

on spread and $�d exchange rate, 76b

in United States stock prices, 116b

United Kingdom (UK)

ARDL model for UK interest rates, 205b

common cycle in United Kingdom interest

rates, 278b

equity prices, 79b

interest rate spread, 51b, 52t, 184�185

LA-VAR causality tests for United

Kingdom interest rates, 269b

long and short interest rates, 262b

spread as integrated process, 65b

tests on VECM of United Kingdom interest

rates, 265b

United States stock prices

break point determination for, 110b

LSTR for, 115b

vs. unit root in United States stock prices,

116b

unit root in, 116b

Univariate autoregressive MLP model, 188

Univariate models, 201

forecasting with

ARIMA models, 121�128

trend stationary process, 128�130

Univariate time series, state space model for,

299

Unmodified ADF regression, 106

Unobserved component models (UC models),

131�136

Unpredictable structural instability, 192�193

Updating equations, 303�304

V
VAR. See Vector autoregressions (VAR)

Variance, 13, 59�60

decompositions, 216�221

for bond and gilt markets, 218b

VECM. See Vector error correction model

(VECM)
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VECM-X models. See Vector error correction

model-X models (VECM-X models)

Vector autoregressions (VAR), 212�213

with cointegrated variables, 257�259

with integrated variables, 255�257

lag order, 213�216

Vector error correction model (VECM),

xi�xii, 258. See also Error-correction

model (ECM)

algebra, 258b

causality testing in, 268�269

identification, 264�266

impulse responses from interest rate, 270b

United Kingdom interest rates

representation of long and short interest

rates, 262b

tests on VECM, 265b

structural, 266�268

and tests of cointegrating rank, 260�263

Vector error correction model-X models

(VECM-X models), 271�274

of temperature and total radiative forcing,

272b, 273t

Vector moving average representation (VMA

representation), 216�217

Volatility, 8�9, 161�163

Volcanic stratospheric aerosols, 206

W
Wald statistic, 117�118

Weak dependency,

83�84

Weak exogeneity, 279

Weak stationarity, 33

White noise, 55�56

process, 34

sequence, 58

Wold’s decomposition theorem, 33�34,

57�58, 133�134

X
X11 seasonal adjustment procedure,

192�193

Y
Yule�Walker equations, 40�41, 291

Z
Zero mean, 57�58, 71, 167, 174, 258�260

AR(1) process, 73�74

strict white noise, 175
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