
www.it-ebooks.info

http://www.it-ebooks.info/

Java EE 6 Development with
NetBeans 7

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

David R. Heffelfinger

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Java EE 6 Development with NetBeans 7

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1130611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-70-1

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
David R. Heffelfinger

Reviewers
Allan Bond

Arun Gupta

Bruno Vernay

Acquisition Editor
Douglas Patterson

Development Editor
Kartikey Pandey

Technical Editor
Pallavi Kachare

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Mario Cecere

Indexer
Hemangini Bari

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

David R. Heffelfinger is the Chief Technology Officer of Ensode Technology,
LLC, a software consulting firm based in the greater Washington DC area. He has
been architecting, designing, and developing software professionally since 1995.
He has been using Java as his primary programming language since 1996. He has
worked on many large scale projects for several clients including IBM, Accenture,
Lockheed Martin, Fannie Mae, Freddie Mac, the US Department of Homeland
Security, and the US Department of Defense. He has a Masters degree in Software
Engineering from Southern Methodist University. David is an editor in chief of
Ensode.net (http://www.ensode.net), a web site about Java, Linux, and other
technology topics.

I would like to thank everyone whose help made this book a reality.
I would like to thank the Development Editors, Kartikey Pandey and
Tariq Rakhange; and the Project Coordinator, Shubhanjan Chatterjee.

I would also like to thank the technical reviewers, Allan Bond,
Arun Gupta, and Bruno Vernay for their insightful comments and
suggestions.

Additionally, I would like to thank the NetBeans team at Oracle for
developing such an outstanding IDE.

Finally, I would like to thank my wife and daughter, for putting up
with the long hours of work that kept me away from the family.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Allan Bond is a software developer who has been active in the IT industry for
over 10 years. His primary focus is systems development using Java and related
technologies. He has worked and consulted for a variety of organizations ranging
from small businesses to Fortune 500 companies and government agencies. Allan
holds a Masters degree in Information Systems Management from Brigham Young
University.

I would like to thank my wife and children for their patience during
the nights (and sometimes weekends) I needed to complete the
review of this book.

Arun Gupta is a Java EE and GlassFish evangelist working at Oracle. Arun has
over 15 years of experience in the software industry working in the Java(TM)
platform and several web-related technologies. In his current role, he works to create
and foster the community around Java EE and GlassFish. He has been with the
Java EE team since its inception and contributed to all Java EE releases. Arun has
extensive world wide speaking experience on a myriad of topics and loves to engage
with the community, customers, partners, and Java User Groups everywhere to
spread the goodness of Java.

He is a prolific blogger at http://blogs.oracle.com/arungupta with over 1200
blog entries and frequent visitors from all around the world with cumulative page
visits > 1.2 million. He is a passionate runner and always up for running in any part
of the world. You can catch him at @arungupta.

www.it-ebooks.info

http://www.it-ebooks.info/

Bruno Vernay has been through Database and Web development, Network &
Security, Messaging and Rule Engines, Data Mining, Portal, SSO and Federation. All
this with Java, Linux, and Open Source. He is still asking for more after almost 13
years. He enjoys the "human adventure", engages with the community globally and
locally and also participates in the group AlpesJUG.FR. He likes new technologies as
much as getting rid of old unneeded ones. He tries to take the time to learn new stuff
by reading books. He likes to be useful.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with NetBeans 7

Introduction 7
Obtaining NetBeans 8
Installing NetBeans 12

Microsoft Windows 12
Mac OS X 12
Linux and Solaris 13
Other platforms 13
Installation procedure 13

Starting NetBeans for the first time 20
Configuring NetBeans for Java EE development 21

Integrating NetBeans with a third party application server 21
Integrating NetBeans with a third party RDBMS 25

Adding a JDBC driver to NetBeans 25
Connecting to a third party RDBMS 27

Deploying our first application 29
NetBeans tips for effective development 33

Code completion 33
Code templates 37
Keyboard shortcuts 39
Understanding NetBeans visual cues 43

Summary 45

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Developing Web Applications with Servlets
and JSPs 47

Creating our first web application 48
Modifying NetBeans' generated code 53

Developing the input page 54
Developing the output page 65

Servlet development 72
Adding a Servlet to our Application 72

Securing web applications 82
Implementing form-based authentication 83

Implementing the login page 83
Implementing a login error page 85
Configuring our application for form-based authentication 86

JSP fragments 95
Creating a JSP fragment in NetBeans 96

Summary 98
Chapter 3: Enhancing JSP Functionality with JSTL and
Custom Tags 99

Core JSTL tags 100
Conditionally displaying part of a page with the <c:if> tag 100
Displaying mutually exclusive markup with the <c:choose> tag 103
Iterating through arrays or collections with the <c:forEach> tag 107

SQL JSTL tags 110
Retrieving database data with the <sql:query> tag 113

Modifying database data with the <sql:update> tag 117
Inserting database data 118
Updating database data 121
Deleting database data 124

Closing remarks about JSTL 127
Custom JSP tags 127
Summary 134

Chapter 4: Developing Web Applications using JavaServer
Faces 2.0 135

Introduction to JavaServer faces 135
Developing our first JSF application 136

Creating a new JSF project 136
Modifying our page to capture user data 141
Creating our managed bean 148
Implementing the confirmation page 151
Executing our application 153
JSF validation 155

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Facelets templating 159
Adding a Facelets template to our project 161
Using the template 162

Composite components 167
Summary 172

Chapter 5: Elegant Web Applications with PrimeFaces 173
Our first PrimeFaces project 173
Using PrimeFaces components in our JSF applications 176
Tabbed views 181
Wizard interfaces 187
More information 193
Summary 193

Chapter 6: Interacting with Databases through the
Java Persistence API 195

Creating our first JPA entity 196
Adding persistent fields to our entity 204
Creating a DAO 205

Automated Generation of JPA Entities 211
Named Queries and JPQL 219
Bean Validation 221

Entity Relationships 221
Generating JSF applications from JPA entities 228
Summary 235

Chapter 7: Implementing the Business Tier with
Session Beans 237

Introducing Session Beans 238
Creating a session bean in NetBeans 238
Accessing the bean from a client 248

Executing the client 253
Session bean transaction management 253
Implementing aspect oriented programming with interceptors 255

Implementing the interceptor class 256
Decorating the EJB with the @Interceptors annotation 257

EJB timer service 259
Generating session beans from JPA entities 260
Summary 266

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Contexts and Dependency Injection (CDI) 267
Introduction to CDI 268
Qualifiers 275
Stereotypes 280
Interceptor Binding Types 283
Summary 288

Chapter 9: Messaging with JMS and Message Driven Beans 289
Introduction to JMS 289
Creating the project and JMS resources 290

Creating a JMS destination 292
Sending messages to a message destination 296

Processing JMS messages with message driven Beans 301
Summary 305

Chapter 10: SOAP Web Services with JAX-WS 307
Introduction to web services 307
Creating a simple web service 308

Testing our web service 314
Developing a client for our web service 316

Exposing EJBs as web services 321
Implementing new web services as EJBs 321
Exposing existing EJBs as web services 324
Creating a web service from an existing WSDL 327

Summary 330
Chapter 11: RESTful Web Services with JAX-RS 331

Generating a RESTful web service from an existing database 332
Analyzing the generated code 335

Testing our RESTful web service 340
Developing a RESTful web service client 345
Summary 352

Appendix A: Debugging Enterprise Applications with
the NetBeans Debugger 353

Debugging enterprise applications 353
Summary 360

Appendix B: Identifying Performance Issues with the
NetBeans Profiler 361

Profiling our application 362
Summary 366

Index 367

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Java EE 6, the latest version of the Java EE specification, adds several new features
to simplify enterprise application development. New versions of existing Java EE
APIs have been included in this latest version of Java EE. JSF 2.0 greatly simplifies
web application development. JPA 2.0 features a new criteria API and several other
enhancements. EJB session beans have been enhanced to support asynchronous
method calls as well as a few other enhancements. Servlet 3.0 adds several new
features such as additional method calls and making the web.xml deployment
descriptor optional. Additionally, few new APIs have been added to Java EE,
including JAX-RS, which simplifies RESTful web service development, and CDI,
which helps integrate the different layers in a typical enterprise application.

NetBeans has been updated to support all features of Java EE 6, making development
of Java EE 6 compliant application even quicker and simpler. This book will guide
you through all the NetBeans features that make development of enterprise Java EE
6 applications a breeze.

What this book covers
Chapter 1, Getting Started with NetBeans provides an introduction to NetBeans,
giving time saving tips and tricks that will result in more efficient development
of Java applications.

Chapter 2, Developing Web Applications with Servlets and JSPs covers how NetBeans
aids in the development of web applications using the servlet API and JavaServer
Pages.

Chapter 3, Enhancing JSP Functionality with JSTL and Custom Tags shows how
NetBeans can help us create maintainable web applications by taking advantage of
JavaServer Pages Standard Tag Library (JSTL), and it also covers how to write our
own custom JSP tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 4, Developing Web Applications using JavaServer Faces 2.0 explains how
NetBeans can help us easily develop web applications that take advantage of
the JavaServer Faces 2.0 framework.

Chapter 5, Elegant Web Applications with PrimeFaces covers how to develop elegant
web applications with full Ajax functionality by taking advantage of the PrimeFaces
JSF component library bundled with NetBeans.

Chapter 6, Interacting with Databases through the Java Persistence API explains how
NetBeans allows us to easily develop applications taking advantage of the Java
Persistence API (JPA), including how to automatically generate JPA entities from
existing schemas. This chapter also covers how complete web-based applications
can be generated with a few clicks from an existing database schema.

Chapter 7, Implementing the Business Tier with Session Beans discusses how NetBeans
simplifies EJB 3.1 session bean development.

Chapter 8, Contexts and Dependency Injection (CDI) discusses how the new CDI API
introduced in Java EE 6 can help us integrate the different layers of our application.

Chapter 9, Messaging with JMS and Message Driven Beans addresses Java EE messaging
technologies such as the Java Messaging Service (JMS) and Message Driven Beans
(MDB), covering NetBeans features that simplify application development taking
advantage of these APIs.

Chapter 10, SOAP Web Services with JAX-WS explains how NetBeans can help us
easily develop SOAP web services based on the Java API for XML Web Services
(JAX-WS) API.

Chapter 11, RESTful Web Services with JAX-RS covers JAX-RS, a new addition to the
Java EE specification that simplifies development of RESTful web services.

Appendix A, Debugging Enterprise Applications with the NetBeans Debugger provides an
introduction to the NetBeans debugger, and how it can be used to discover defects in
our application.

Appendix B, Identifying Performance Issues with the NetBeans Profiler covers the
NetBeans profiler, explaining how it can be used to analyze performance issues in
our applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What you need for this book
You need Java Development Kit (JDK) version 1.6 or newer and NetBeans 7.0, Java
EE Edition.

Who this book is for
The book is aimed at three different types of developers:

•	 Java developers (not necessarily familiar with NetBeans) wishing to
become proficient in Java EE 6, and who wish to use NetBeans for
Java EE development.

•	 NetBeans users wishing to find out how to use their IDE of choice to develop
Java EE 6 applications.

•	 Experienced Java EE 6 developers wishing to find out how NetBeans can
make their Java EE 6 development easier.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We simply copied the form from login.
jsp and pasted it into the JSP fragment."

A block of code is set as follows:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Login</title>
</head>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<body>
<p>Please enter your username and password to access the application</
p>
<%@ include file="WEB-INF/jspf/loginform.jspf" %>
</body>

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To create
a JSP fragment in NetBeans, we simply need to go to File | New File, select Web as
the category".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest
@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
NetBeans

In this chapter, we will cover how to get started with NetBeans; topics covered in
this chapter include:

•	 Introduction
•	 Obtaining NetBeans
•	 Installing NetBeans
•	 Starting NetBeans for the first time
•	 Configuring NetBeans for Java EE development
•	 Deploying our first application
•	 NetBeans tips for effective development

Introduction
NetBeans is an Integrated Development Environment (IDE) and platform.
Although initially the NetBeans IDE could only be used to develop Java applications,
as of version 6 NetBeans supports several programming languages, either by
built-in support or by installing additional plugins. Programing languages natively
supported by NetBeans include Java, JavaFX, C, C++ and PHP. Groovy, Scala, Ruby
and others are supported via additional plugins

In addition to being an IDE, NetBeans is also a platform. Developers can use
NetBeans' APIs to create both NetBeans plugins and standalone applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[8]

For a brief history of Netbeans, see http://netbeans.org/about/
history.html.

Although the NetBeans IDE supports several programming languages, because of its
roots as a Java only IDE it is a lot more popular with this language. As a Java IDE,
NetBeans has built-in support for Java SE (Standard Edition) applications, which
typically run in the user's desktop or notebook computer; Java ME (Micro Edition),
which typically runs in small devices such as cell phones or PDAs; and for Java EE
(Enterprise Edition) applications, which typically run on "big iron" servers and can
support thousands of concurrent users.

In this book, we will be focusing on the Java EE development capabilities of
NetBeans, and how to take advantage of NetBeans features to help us develop Java
EE applications more efficiently.

Some of the features we will cover include how NetBeans can help us speed up
web application development using JSF or the Servlet API and JSPs by providing a
starting point for these kind of artifacts, and how we can use the NetBeans palette
to drag and drop code snippets into our JSPs, including HTML and JSP markup.
We will also see how NetBeans can help us generate JPA entities from an existing
database schema (JPA is the Java Persistence API, the standard Object-Relational
mapping tool included with Java EE).

In addition to web development, we will also see how NetBeans allows us to easily
develop Enterprise JavaBeans (EJBs); and how to easily develop web services.
We will also cover how to easily write both EJB and web service clients by taking
advantage of some very nice NetBeans features.

Before taking advantage of all of the above NetBeans features, we of course need to
have NetBeans installed, as covered in the next section.

Obtaining NetBeans
NetBeans can be obtained by downloading it from http://www.netbeans.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

To download NetBeans, we need to click on the button labeled Download Free
NetBeans IDE 7.0 (the exact name of the button may vary depending on the current
version of NetBeans). Clicking on this button will take us to a page displaying all of
NetBeans download bundles.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[10]

NetBeans download includes different NetBeans bundles that provide different
levels of functionality. The following table summarizes the different available
NetBeans bundles and describes the functionality they provide:

NetBeans bundle Description
Java SE Allows development of Java desktop applications.
Java EE Allows development of Java Standard Edition (typically desktop

applications), and Java Enterprise Edition (enterprise application
running on "big iron" servers) applications.

C/C++ Allows development of applications written in the C or C++
languages.

PHP Allows development of web applications using the popular open
source PHP programming language.

All Includes functionality of all NetBeans bundles.

To follow the examples on this book, either the Java EE or the All bundle is needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

The screenshots in this book were taken with the Java EE bundle.
NetBeans may look slightly different if the All Pack is used, particularly,
some additional menu items may be seen.

The following platforms are officially supported:

•	 Windows 7/Vista/XP/2000
•	 Linux x86
•	 Linux x64
•	 Solaris x86
•	 Solaris x64
•	 Mac OS X

Additionally, NetBeans can be executed in any platform containing Java 6 or newer.
To download a version of NetBeans to be executed in one of these platforms, an OS
independent version of NetBeans is available for download.

Although the OS independent version of NetBeans can be executed
in all of the supported platforms, it is recommended to obtain the
platform-specific version of NetBeans for your platform.

The NetBeans download page should detect the operating system being used to
access it, and the appropriate platform should be selected by default. If this is not
the case, or if you are downloading NetBeans with the intention of installing it in
another workstation on another platform, the correct platform can be selected from
the drop down labeled, appropriately enough, Platform.

Once the correct platform has been selected, we need to click on the appropriate
Download button for the NetBeans bundle we wish to install. For Java EE de-
velopment, we need either the Java EE or the All bundle. NetBeans will then be
downloaded to a directory of our choice.

Java EE applications need to be deployed to an application server. Several
application servers exist in the market, both the Java EE and the All
NetBeans bundles come with GlassFish and Tomcat bundled. Tomcat
is a popular open source servlet container, it can be used to deploy appli-
cations using the Servlets, JSP and JSF, however it does not support other
Java EE technologies such as EJBs or JPA. GlassFish is a 100 percent Java
EE-compliant application server. We will be using the bundled GlassFish
application server to deploy and execute our examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[12]

Installing NetBeans
NetBeans requires a Java Development Kit (JDK) version 6.0 or newer to be
available before it can be installed.

Since this book is aimed at experienced Java Developers, we will not
spend much time explaining how to install and configure the JDK, since
we can safely assume the target market for the book more than likely
has a JDK installed. Installation instructions for JDK 6 can be found at
http://www.oracle.com/technetwork/java/javase/
index-137561.html.
Readers wishing to use Mac OS X can get installation instructions and the
JDK download for their platform at http://developer.apple.com/
java/.

NetBeans installation varies slightly between the supported platforms. In the following
few sections we explain how to install NetBeans on each supported platform.

Microsoft Windows
For Microsoft Windows platforms, NetBeans is downloaded as an executable file
named something like netbeans-7.0-ml-java-windows.exe, (exact name depends on
the version of NetBeans and the NetBeans bundle that was selected for download).
To install NetBeans on Windows platforms, simply navigate to the folder where
NetBeans was downloaded and double-click on the executable file.

Mac OS X
For Mac OS X, the downloaded file is called something like netbeans-7.0-ml-java-
macosx.dmg (exact name depends on the NetBeans version and the NetBeans bundle
that was selected for download). In order to install NetBeans, navigate to the location
where the file was downloaded and double-click on it.

The Mac OS X installer contains four packages, NetBeans, GlassFish, Tomcat,
and OpenESB, these four packages need to be installed individually, They can be
installed by simply double-clicking on each one of them. Please note that GlassFish
must be installed before OpenESB.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Linux and Solaris
For Linux and Solaris, NetBeans is downloaded in the form of a shell script. The
name of the file will be similar to netbeans-7.0-ml-java-linux.sh, netbeans-7.0-ml-
java-solaris-x86.sh, or netbeans-7.0-ml-java-solaris-sparc.sh, depending on the
version of NetBeans, the selected platform and the selected NetBeans bundle.

Before NetBeans can be installed in these platforms, the downloaded file needs
to be made executable. This can be done in the command line by navigating to
the directory where the NetBeans installer was downloaded and executing the
following command:

chmod +x ./filename.sh

Substitute filename.sh with the appropriate file name for the platform and the
NetBeans bundle.

Once the file is executable it can be installed from the command line:

./filename.sh

Again substitute filename.sh with the appropriate file name for the platform and
the NetBeans bundle.

Other platforms
For other platforms, NetBeans can be downloaded as a platform-independent zip
file. The name of the zip file will be something like netbeans-7.0-201007282301-ml-
java.zip (exact file name may vary, depending on the exact version of NetBeans
downloaded and the NetBeans bundle that was selected).

To install NetBeans on one of these platforms, simply extract the zip file to any
suitable directory.

Installation procedure
Even though the way to execute the installer varies slightly between platforms,
the installer behaves in a similar way between most of them.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[14]

One exception is the Mac OS X installer, under Mac OS X, each individual
component (NetBeans, GlassFish, Tomcat, and OpenESB) comes with
its own installer and must be installed individually. GlassFish must be
installed before OpenESB.
Another exception is the platform-independent zip file. In this case there
is essentially no installer, installing this version of NetBeans consists of
extracting the zip file to any suitable directory.

After executing the NetBeans installation file for our platform, we should see a
window similar to the one illustrated in the following screenshot:

The packs shown may vary depending on the NetBeans bundle that was
downloaded; the above screen shot is for the "Java EE" bundle.

At this point we should click on the button labeled Next> to continue the installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

NetBeans is dual licensed, licenses for NetBeans include the GNU Public License
(GPL) version 2 with CLASSPATH exception, and the Common Development and
Distribution License (CDDL). Both of these licenses are approved by the Open
Source Initiative (OSI).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[16]

To continue installing NetBeans, click on the checkbox labeled I accept the terms in
the license agreement and click on the button labeled Next>.

We need to either accept the terms of the JUnit license at this point or choose not
to install JUnit

At this point the installer will prompt us for a NetBeans installation directory, and
for a JDK to use with NetBeans. We can either select new values for these or take the
provided defaults.

Once we have selected the appropriate installation directory and JDK, we need to
click on the button labeled Next> to continue the installation.

NetBeans uses the JAVA_HOME environment variable to populate the JDK
directory location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

The installer will now prompt us for an installation directory for the GlassFish
application server; we can either enter a directory or take the default.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[18]

In the next step in the wizard, the installer will prompt us for an installation directory
for Tomcat, a very popular servlet container, which is bundled with NetBeans.

At this point the installer will display a summary of our choices. After reviewing
the summary, we need to click on the button labeled Install to begin the installation.

At this point the installation will begin. The installer displays a progress bar
indicating how far along in the installation it is.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

After NetBeans and all related components have been installed, the installer indicates
a successful installation, giving us the option to contribute anonymous usage data.
After making our selection we can simply click on the Finish button to exit the
installer.

On most platforms, the installer places a NetBeans icon on the desktop, the icon
should look like the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[20]

Starting NetBeans for the first time
We can start NetBeans by double-clicking on its icon, we should see the NetBeans
splash screen while it is starting up.

Once NetBeans starts, we should see a page with links to demos, tutorials, sample
projects, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

NetBeans defaults to showing this start page every time it is started, if we don't wish for
this page to be displayed automatically every time NetBeans is started, we can disable
this behavior by un-checking the checkbox labeled Show on Startup at the bottom of
the page. We can always get the start page back by going to Help | Start Page.

Configuring NetBeans for Java EE
development
NetBeans comes preconfigured with the GlassFish 3 application server, and with
the JavaDB RDBMS. If we wish to use the included GlassFish 3 and JavaDB RDBMS,
there is nothing we need to do to configure NetBeans.

We can, however, integrate NetBeans with other Java EE application servers such as
JBoss, Weblogic, or WebSphere and with other Relational Database Systems such as
MySQL, PostgreSQL, Oracle, or any RDBMS supported by JDBC, which pretty much
means any RDBMS.

Integrating NetBeans with a third party
application server
Integrating NetBeans with an application server is very simple, to do so, we need
to follow the following steps:

In this section we will illustrate how to integrate NetBeans with JBoss,
the procedure is very similar for other application servers or servlet
containers.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[22]

1. First, we need to click on Window | Services.

2. Next, we need to right-click on the node labeled Servers in the tree inside the
Services window, and select Add Server... from the resulting pop up menu.

3. Then we need to select the server to install from the list in the resulting
window, and click on the button labeled Next>.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

4. We then need to enter a location in the file system where the application
server is installed and click Next>.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[24]

5. Finally, we need to select a domain, host, and port for our application server,
and then click on the Finish button.

The Services window should now display our newly added application server.

That's it! We have successfully integrated NetBeans with a third party
application server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Integrating NetBeans with a third party
RDBMS
NetBeans comes with built-in integration with the JavaDB RDBMS system. Addi-
tionally, it comes with JDBC drivers for other RDBMS systems such as MySQL and
PostgreSQL. It also comes with the JDBC-ODBC bridge driver to connect to RDBMS
systems that don't natively support JDBC or for which a JDBC driver is not readily
available.

Although using the JDBC-ODBC bridge allows us to connect to most RDBMS systems
without having to obtain a JDBC driver, it is usually a better idea to obtain a JDBC
driver for our RDBMS. The JDBC-ODBC bridge does not offer the best performance
and there are JDBC drivers available for the vast majority of RDBMS systems.

In this section, we will create a connection to HSQLDB, an open source
RDBMS written in Java. The idea is illustrate how to integrate NetBeans
with a third party RDBMS, the procedure is very similar for other RDBMS
systems such as Oracle, Sybase, SQL Server, and so on.

Adding a JDBC driver to NetBeans
Before we can connect to a third party RDBMS, we need to add its JDBC driver to
NetBeans. To add the JDBC driver, we need to right-click on the Drivers node under
the Databases node in the Services tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[26]

We then need to select a JAR file containing the JDBC driver for our RDBMS,
NetBeans guesses the name of the driver class containing the JDBC driver. If more
than one driver class is found in the JAR file, the correct one can be selected from the
drop down menu labeled Driver Class. We need to click on the OK button to add
the driver to NetBeans.

Once we have followed the above procedure, our new JDBC driver is displayed in
the list of registered drivers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Connecting to a third party RDBMS
Once we have added the JDBC driver for our RDBMS to NetBeans, we are ready to
connect to the third party RDBMS.

To connect to our third party RDBMS, we need to right click on its driver on the
Services tab, then click on Connect Using... on the resulting pop up menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[28]

Then we need to enter the JDBC URL, username, and password for our database.

After clicking on the OK button, NetBeans may ask us to select a database schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

After selecting the schema and clicking on the OK button, our database is shown in
the list of databases in the Services window. We can connect to it by right-clicking
on it, selecting Connect from the resulting pop up, then entering our username and
password for the database (we can choose not to allow NetBeans to "remember" the
password when we add the database).

We have now successfully connected NetBeans to a third party RDBMS.

Deploying our first application
NetBeans comes pre-configured with a number of sample applications. To make
sure everything is configured correctly, we will now deploy one of the sample
applications to the integrated GlassFish application server that comes bundled
with NetBeans.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[30]

To open the sample project, we need to go to File | New Project, then select Samples
| Java Web from the categories list in the resulting pop up window. Once we
have selected Java Web from the categories list, a list of projects is displayed in the
Projects list, for this example we need to select the Servlet Stateless project. This
sample is a simple project, it uses both a servlet and a stateless session bean, which
gives us a chance to use both the GlassFish servlet container and its EJB container.

After clicking on the Next> button, we are prompted to enter a project name and
location, the default values are sensible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

Once we click on the Finish button, our new project is displayed in the
Projects window.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[32]

We can compile, package, and deploy our project all in one shot by right-clicking on
it and selecting Run from the resulting pop up menu.

At this point we should see the output of the build script. Also both the integrated
GlassFish application server and the integrated JavaDB RDBMS system should
automatically start.

As soon as our application is deployed, a new browser window or a tab
automatically starts, displaying the default page for our sample application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

The sample web application we just deployed is a simple application that
demonstrates a nice feature that was introduced in Java EE 6, namely the ability to
use dependency injection on a stateless session bean without the need to implement
a business interface for said bean like it was required in Java EE 5, or without
needing to use a home interface to obtain an instance of the session bean as we had
to do back in the days of J2EE.

If our browser is displaying a page similar to the one above, then we can be certain
that NetBeans and GlassFish are working properly and we are ready to start
developing our own Java EE applications.

NetBeans tips for effective development
Although NetBeans offers a wide array of features that make Java EE development
easier and faster, it also has a lot of features that ease Java development in general.
In the following few sections we cover some of the most useful features.

Code completion
The NetBeans code editor includes very good code completion, for example, if we
wish to create a private variable, we don't need to type the whole "private" word. We
can simply write the first three letters ("pri"), then hit Ctrl+space, and NetBeans will
complete the word "private" for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[34]

Code completion also works for variable types and method return values, for
example, if we want to declare a variable of type java.util.List , we simply need
to type the first few characters of the type, then hit Ctrl+space, NetBeans will try
to complete with types in any packages we have imported in our class. To make
NetBeans attempt to complete with any type in the CLASSPATH, we need to hit
Ctrl+space again.

As we can see in the above screenshot, NetBeans displays JavaDoc for the class we
selected from the code completion options. Another time-saving feature is that the
class we select from the options is automatically imported into our code.

Once we have the type of our variable, we can hit Ctrl+Space again right after the
variable and NetBeans will suggest variable names.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

When we want to initialize our variable to a new value, we can simply hit Ctrl+space
again and a list of valid types is shown as options for code completions.

In our example, our type (java.util.List) is an interface, therefore all classes
implementing this interface are shown as possible candidates for code completion.
Had our type been a class, both our class and all of its subclasses would have been
shown as code completion candidates.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[36]

When we are ready to use our variable, we can simply type the first few characters of
the variable name, then hit Ctrl+Space.

When we wish to invoke a method in our object, we simply type the dot at the
end of the variable name, and all available methods are displayed as code
completion options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Notice how the JavaDoc for the selected method is automatically displayed.

Code templates
Code templates are abbreviations for frequently used code snippets. To use a
code template, we simply type it into the editor and hit the Tab key to expand the
abbreviations into the full code snippet it represents.

For example, typing sout and pressing the Tab key will expand into System.out.
println("");, with the caret placed between the two double quotes.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[38]

Some of the most useful code templates are listed in the table below, please note that
code templates are case sensitive.

Abbreviation Example expanded text
Description

Psf
public static final Useful when declaring

public static final variables.
forc for (Iterator it = list.

iterator();

it.hasNext();) {

Object object = it.next();

}

Use a standard for loop to
iterate through a collection.

fore for (Object object : list) {

}

Use the enhanced for loop to
iterate through a collection.

ifelse if (boolVar) {

} else {

}

Generate an if-else
conditional.

psvm public static void main(String[]
args) {

}

Generate a main method for
our class.

soutv System.out.println("boolVar = "
+

boolVar);

Generate a System.out.
println() statement
displaying the value of a
variable.

trycatch try {

} catch (Exception exception) {

}

Generate a try/catch block.

whileit while (iterator.hasNext()) {

Object object = iterator.
next();

}

Generate a while loop to
iterate through an Iterator.

To see the complete list of code templates, click on Tools | Options, click on the
Editor icon, then on the Code Templates tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[39]

We can add our own templates by clicking on the New button, we will be prompted
for the template's abbreviation. Once we enter it our new template will be added to
the template list and will automatically be selected. We can then enter the expanded
text for our template in the Expanded Text tab.

It would be good to mention that code templates exist not only for Java but for
HTML, CSS, and all other editors in NetBeans.

Keyboard shortcuts
NetBeans offers several keyboard shortcuts that allow very fast navigation between
source files. Memorizing these keyboard shortcuts allow us to develop code a lot
more effectively than relying on the mouse. Some of the most useful NetBeans
keyboard shortcuts are listed in this section, but this list is by no means exhaustive,
the complete list of NetBeans keyboard shortcuts can be found online at http://
netbeans.org/projects/www/downloads/download/shortcuts.pdf.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[40]

One useful keyboard shortcut that allows us to quickly navigate within a large Java
file is Ctrl+F12. This keyboard shortcut will present an outline of the current Java file
in the editor and show all of its methods and member variables.

Typing in the text field labeled Filter narrows the list of member variables and
methods shown. This keyboard shortcut makes it very fast to navigate through
large files.

Hitting Alt+F12 will result in a pop up window outlining the class hierarchy of
the current Java class.

We can use the above shortcut to quickly navigate to a superclass or a subclass of
the current class.

Another useful keyboard shortcut is Alt+Insert, this keyboard shortcut can be used to
generate frequently used code such as constructors, getter, and setter methods, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[41]

The code will be generated at the current location of the caret.

Additionally, when the caret is right next to an opening or closing brace, clicking
Ctrl+[results in the caret being placed in the matching brace. This shortcut works
for curly braces, parenthesis, and square brackets. Hitting Ctrl+Shift+[has a similar
effect, but this key combination not only places the caret in the matching brace, it
also selects the code between the two carets.

Sometimes, we would like to know all the places in our project where a specific
method is invoked. Hitting Alt+F7 while the method is highlighted allows us to
easily find out this information.

The above keyboard shortcut works with variables as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[42]

NetBeans will indicate compilation errors in our code by underlining the offending
line with a squiggly red line. Placing the caret over the offending code and hitting
Alt+Enter will allow us to select from a series of suggestions to fix our code.

Sometimes navigating through all the files in a project can be a bit cumbersome,
especially if we know the name of the file we want to open but we are not sure of its
location. Luckily, NetBeans provides the Shift+Alt+O keyboard shortcut that allows
us to quickly open any file in our project.

Additional useful keyboard shortcuts include Shift+Alt+F, this shortcut quickly
formats our code; Ctrl+E erases the current line, much faster than highlighting the
line and hitting backspace. Sometimes we import a class into our code and later
decide not to use it, some of us delete the lines where the class is used but forget to
delete the import line at the top of the source file, NetBeans will generate a warning
about the unused import, hitting Ctrl+Shift+I will delete all unused imports in one
fell swoop, plus it will attempt to add any missing imports.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[43]

One last thing worth mentioning, even though it is not strictly a keyboard shortcut, a
very useful feature of the NetBeans editor is that left-clicking on a method or variable
while pressing Ctrl will turn the method or variable into a hyper link. Clicking on that
hyper link will result in NetBeans taking us to the method or variable declaration.

Understanding NetBeans visual cues
In addition to offering keyboard shortcuts, code templates, and code completion,
NetBeans offers a number of visual cues that allow us to better understand our code
at a glance. Some of the most useful are illustrated in the following screenshot:

When there is a warning in our code NetBeans will alert us in two ways, it will
underline the offending line with a squiggly yellow line, and it will place the icon
shown below in the left margin of the offending line.

The light bulb in the icon indicates that NetBeans has a suggestion on how to fix the
problem, moving the caret to the offending line and hitting Alt+Enter as discussed in
the previous section will result in NetBeans offering one or more ways of fixing the
problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with NetBeans

[44]

Similarly, when there is a compilation error, NetBeans will underline the offending
line with a red squiggly line, and place the icon shown below on the left margin of
said line.

Again the light bulb indicates that NetBeans has suggestions on how to fix the
problem, hitting Alt+Enter in the offending line will allow us to see the suggestions
that NetBeans has.

NetBeans not only provides visual cues for errors in our code, it also provides other
cues, for example, placing the caret next to an opening or closing brace will highlight
both the opening and closing brace, as shown in the doSomething() method in the
above screenshot.

If one of our methods overrides a method from a parent class, the icon shown below
will be placed in the left margin next to the method declaration.

The icon is an upper case "O" inside a circle, the O, of course, stands for override.

Similarly, when one of our methods is an implementation of one of the interfaces
that our class implements, the icon shown below will be placed in the left margin
of the method declaration.

The icon is an uppercase I inside a green circle, which stands for implements.

NetBeans also provides visual cues in the form of fonts and font colors. For example,
static methods and variables are shown in italics, member variables are shown in
green, and Java reserved keywords are shown in blue, all of the above cues can be
seen in the screenshot at the beginning of this section.

Another nice feature of the NetBeans editor is that highlighting a method or variable
highlights it everywhere it is used in the current open file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[45]

Summary
In this chapter, we provided a brief history of how Java EE came into existence.
We also explained how to obtain and install NetBeans for the different platforms
it supports.

Additionally, we explained how to set up NetBeans with third party Java EE
application servers and with third party Relational Database Systems, including
how to register a JDBC driver for the RDBMS in question.

We also built and deployed our first Java EE application by using one of the sample
projects included by NetBeans.

Finally we covered some of the NetBeans features such as code completion, code
templates, keyboard shortcuts, and visual cues that allow us to do our job as
software developers more effectively.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications
with Servlets and JSPs

In this chapter we will be covering how to develop Java EE web applications taking
advantage of the Servlet API. We will also see how to develop Java Server Pages
(JSPs) to better separate application business logic from presentation. Some of the
topics covered in this chapter include:

•	 Developing JavaServer Pages for display of dynamic web content
•	 Developing servlets for server-side processing of Java web applications
•	 Securing Web Applications
•	 Extracting common markup into JSP fragments

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[48]

Creating our first web application
NetBeans provides a web category for web applications. To create a new web
application, we need to create a new project; click on File | New Project (or press
ctrl+shift+N simultaneously), then select Java Web as the project category, and
Web Application under Projects.

After clicking Next>, we need to select a project name for our project. As we type
the name for our project, the project location, project folder, and context path are
updated automatically. Although we can override default values for these fields if
we wish, it is always a good idea to use them since this makes our projects more
maintainable as developers familiar with NetBeans defaults will know the values for
these fields without having to look them up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Clicking on the Next> button takes us to the next page in the New Web
Application wizard.

At this stage in the wizard we select what server our application will be deployed
to, as well as the Java EE version to use and the context path (the "root" URL) for our
application. Default values are usually sensible.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[50]

In most of the examples in this book, we will be using
GlassFish as the application server. NetBeans 7.0 bundles both
GlassFish and Tomcat. In the above screenshot we selected
GlassFish in the server drop down.

Clicking the Next> button takes us to the next page in the wizard.

Developing web applications using nothing but servlets and JSPs typically results
in having to code a lot of repetitive functionality "by hand". Several web application
frameworks have been developed over the years to automate a lot of the repetitive
functionality. JavaServer Faces (JSF) is the standard web application framework for
Java EE. It is covered in detail in Chapter 4.

For this particular application we will not be using any framework, we should click
on the Finish button to create our new project.

At this point NetBeans creates a simple, but complete Java web application. The
newly created project contains a single JSP, that is automatically opened in the
NetBeans editor. Since the project is a complete Java web application, we can deploy
it immediately, we can do so by right clicking on the project name and selecting Run
from the resulting pop up menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

At this point the integrated GlassFish application server and the integrated JavaDB
RDBMS are automatically started. Tabs for both of them, plus another tab for the
build process to execute our project are created in the NetBeans output window.
The Java DB tab will display the contents of the database's log file, similarly, the
GlassFish tab will display the contents of the application server's log file, and the
build process tab will display the output of the NetBeans generated build script for
our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[52]

A few seconds later, the application is deployed; at this point the default web
browser opens and displays the project's JSP file.

The generated JSP is very simple, if we examine its source we can see that it consists
almost entirely of standard HTML tags.

<%--
Document : index
Created on : Aug 20, 2010, 9:23:43 PM
Author : heffel

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

<title>JSP Page</title>
</head>
<body>

<h1>Hello World!</h1>
</body>

</html>

The <%-- and --%> tags delineate JSP comments, therefore everything between
those two tags is ignored by the JSP compiler. These types of comments will not
be rendered on the page. Additionally, we can use standard HTML comments,
delineated by <!-- and -->, these type of comments will be placed on the rendered
page and, just like with standard HTML pages, they will only be visible by viewing
the source of the rendered page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

The next line we see that isn't standard HTML is a JSP page directive. JSP page
directives define attributes that apply to the entire page. A JSP page can have more
than one page directive, and each directive defines one or more page attributes.
The contentType attribute sets the mime type and, optionally, the character set for
the page. The pageEncoding attribute sets the character encoding the page uses to
render itself.

We can see all valid attributes (and their descriptions) for the page directive by
typing <%@page and then hitting ctrl+space; rather than repeating this information
here, readers are encouraged to see it "live" in NetBeans by performing this action.

We will now write our own web application using NetBeans' generated code and
markup as a base.

Modifying NetBeans' generated code
In this section we will develop a simple web application. The application will be a
simple survey asking software developers what programming languages they are
familiar with. We need to develop two pages, an input page where the information
from the user will be collected, and an output page where the information entered by
the user will be displayed. The output page will serve as a confirmation page where
the user can verify that his or her input was collected properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[54]

Developing the input page
NetBeans has a palette where we can drag and drop many HTML and JSP elements
into the page. For all HTML and JSP elements, regardless of whether they are
available in the palette or not, NetBeans offers code completion.

We need to modify our page so that it has an appropriate header and title and some
instructions for the user.

Changing the title and header is trivial; we simply need to modify the body of the
tags that were already in the page. We would like to display the instructions inside
an HTML <p> tag. We can of course type the tag directly or we can type the opening
angled bracket and hit Ctrl+space to invoke code completion, we can then select the
tag from the list.

At this point the page should look like this:

<%--
Document : index
Created on : Aug 20, 2010, 9:23:43 PM
Author : heffel

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

<head>
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">
<title>Developer Survey</title>

</head>
<body>

<h1>Welcome To The Developer Survey</h1>
<p>Please indicate which programming languages you are

familiar with.</p>
</body>

</html>

Modifications to the page are highlighted. As most readers are probably aware, all
HTML input fields need to be nested inside an HTML form, therefore we need to
add a form tag to our page. We can either type the HTML directly into the page, or
we can drag and drop the form from the NetBeans palette into the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[56]

After dragging the form element from the palette and dropping it into the page the
following window pops up:

At this point we need to enter an action for the form, the action is the URL that will
be executed when the form is submitted. In this case we will execute a JSP called
output.jsp. We also need to select a method to use for the HTTP request generated
when our form is submitted; valid methods are GET and POST. In this case we will
use the default GET method; had we selected POST, we would also have had to se-
lect an encoding for the form. Unless our form has a file upload field, the encoding
should always be the default application/x-www-form-urlencoded. One more field
we can optionally enter is the name for our form.

GET and POST are generally used for different reasons; GET methods are
typically used for retrieving data or for bookmarkable pages and POST
methods are typically used for modifying data.

After dropping the form into the page and formatting the code (shift+alt+F), its
markup should now look like this:

<%@page contentType="text/html" pageEncoding="UTF-8"%> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<title>Developer Survey</title>
</head>
<body>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

<h1>Welcome To The Developer Survey</h1>
<p>Please indicate which programming languages you are

familiar with.</p>
<form action="output.jsp">
</form>

</body>
</html>

The easiest way to lay out input fields in an HTML form is to place them in a table.
HTML table is one of the elements that can be dragged and dropped from the
NetBeans palette to the page, after doing so the following window pops up:

In the previous screenshot we can select the properties for our table. In this case we
want a table with seven rows, two columns, a border size of zero, default width, and
cell spacing and cell padding of zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[58]

After selecting the table properties and clicking OK, the markup for our table is
placed in the location where we dropped it.

Notice that NetBeans automatically adds a <thead> element to our table. In this
particular case it is not needed therefore we will delete it. At this point we need to
add input fields to our form. Again we can either type them directly or drop them
from the palette into the appropriate location on the page.

After dragging an HTML Text Input element and dropping it into the appropriate
location in the page the following window pops up:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

In this window we can enter a name for our field (entering a name is a good practice
since that name will later be used to retrieve the value of the field). We can optionally
enter an initial value for the field. Additionally we can select the type of the input
field, our options are: text (for standard text fields), password (for password fields,
fields of this type will not display characters as they are typed into the field, instead
either asterisks or dots will be shown, depending on the browser), and hidden (fields
that are not displayed on the rendered page but are part of the page's markup).

Additionally, we can set the initial state of our field to either disabled or read
only, plus we can select a width for our input field. Initial state and width are only
applicable when the type is either text or password.

After dropping our component into its proper place in the page, selecting its
properties and clicking on the OK button, and then entering some text in the
adjacent table cell to be used as a label for our field, the markup for our page now
looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[60]

At this point we need to add checkboxes for our developers to select what
programming languages they are familiar with.

Unsurprisingly, dropping a checkbox element into the page results in a window
prompting us to enter properties for the checkbox to pop up.

Again we should enter a name for our checkbox, since this name will be used to get
the value of the checkbox after the form is submitted. We should also enter a value
for the checkbox, this value will only be present in the request object created when
the form is submitted and if the checkbox is selected when submitting the form.

After adding additional checkboxes for different programming languages and
entering their corresponding labels, the markup for the page should now look
like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

Notice that the name for each checkbox is the same. The reason for this is that when
the page is submitted, the values of all selected checkboxes will be retrieved as an
array of Strings from the HTTP request. We will talk about this in detail when we
discuss the output page.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[62]

The last thing we need to do is to add a submit button to our page. After dropping
the button element from the palette into the page, we are prompted to enter
properties for the button.

In this window we can enter the button's label.

We can also select a type: submit buttons submit a form, reset buttons reset a form's
values to what they were when the page was loaded, standard buttons are typically
used to fire JavaScript events. Since our button will be used to submit a form, the
appropriate type for our button is submit.

We can also set the button's initial state to be disabled, doing this would result in the
button being grayed out and the users would be unable to submit the form.

We could optionally enter a name for our button, in most cases this is not necessary
for submit buttons. The only case where entering a name for a submit button would
be useful would be if a form had more than one submit button, and different actions
needed to take place depending on what button was pressed. In a case like this, each
button would have the same name, this name would then become a parameter in the
HTTP request, the value for this parameter would be the label of the button that was
pressed to submit the form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

We now have a fully functional (although admittedly not too elegant) page.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[64]

With this our input page is ready, we can view the way it is displayed in the browser
by right-clicking on it and selecting Run File (or by pressing Shift+F6).

At this point both GlassFish and JavaDB start up if they weren't already started, our
application is automatically deployed and our page is displayed in the browser. If
GlassFish was already started, all we need to do is reload the page on the browser,
the modifications are automatically deployed in the background as we work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

The page now renders properly in the browser. Before the form input can be
processed successfully, we need to develop a page that will process it and display
an appropriate message.

Developing the output page
In order to develop our output page, we need to create a new JSP file, NetBeans can
assist us by providing a file we can use as a starting point. To create a new JSP, we
can right click on the project and select New | JSP.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[66]

We are then prompted to enter additional information for our page.

In this particular case we only need to enter the File Name and accept all the defaults.

Notice that we shouldn't enter the file name extension for our JSP
since NetBeans will automatically append the appropriate extension
to the file name.

We could optionally enter additional information for our page such as what project
to use (provided we had more than one web project open, which isn't the case in
our example), a folder to place our page (the selected folder must be under the Web
Pages folder, in our example there are no folders in this location, therefore we are
unable to select a folder).

The Created File field is not editable and is automatically populated based on the
choices we made on the previous fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

We are then given the option of creating a JSP file using standard syntax (default), a
JSP using XML syntax, or a JSP fragment. In our experience, most JSPs are developed
using standard syntax, and NetBeans provides us with a lot more help if we choose
this syntax. An alternative syntax for JSP files is the XML syntax, this syntax is less
popular than standard syntax and, other than code completion, NetBeans doesn't
offer a lot of help when working with this syntax, for this reason we chose to use
standard syntax for our pages.

We are also given the option of creating a JSP segment. JSP segments (or fragments)
are pages containing common markup that is contained in many pages in an
application. JSP fragments typically contain navigation menus, header information,
and so on. They can then be included dynamically into JSPs in the application.
The advantage of JSP fragments is that these common markups can be maintained
separately instead of having to update several JSPs in the application. We will cover
JSP fragments later in this chapter.

After entering all appropriate data in the New JSP File pop up window, NetBeans
generates a JSP file which we can use as a starting point. We need to modify this file
so that it displays the data that was entered in the previous page.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[68]

As we can see, this page is composed of both static HTML elements and JSP
expressions and scriptlets. As can be seen in the above screenshot, NetBeans
automatically highlights both JSP expressions and scriptlets, making it easy to
spot the dynamic parts of our JSP at a glance.

JSP expressions are enclosed in <%= and %> delimiters. Inside these delimiters we
can place any valid Java expression returning a value. The value is automatically
converted to a String and displayed on the page. To simplify expressions, JSPs
contain a number of implicit objects. One of these implicit objects is request, this
object contains the HTTP request that was generated when navigating to the page.
The first JSP expression on our output page uses the implicit request object. It is
used to retrieve the value of the request parameter named "fullName". Notice that
the String we passed to this method matches the name of the text input field used
to collect the user's full name in the previous page. When that page is submitted, a
request parameter is automatically generated with this name and the user entered
input as its value. Invoking this method allows us to retrieve the data that the user
entered.

Hitting Ctrl+space between <%= and %> or <% and %> delimiters results in all implicit
objects available to JSP pages being displayed.

The following table briefly describes all implicit JSP objects.

Implicit
Object Implicit Object Type Implicit Object Description

application javax.servlet.
ServletContext

This object can have attributes attached
that are visible across user sessions.

config javax.servlet.
ServletConfig

Typically used to obtain initialization
parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

Implicit
Object

Implicit Object Type Implicit Object Description

exception java.lang.Throwable Provides access to the exception that was
thrown that led to the page being invoked.
This implicit object is only accessible if the
page directive's isErrorPage attribute is
set to true.

jspContext javax.servlet.jsp.
JspContext

Provides methods for setting, retrieving,
and removing attributes from the different
scopes (page, request, session, application).

out javax.servlet.jsp.
JspWriter

Used to output text on the page.

page java.lang.Object Returns a reference to the current JSP. This
implicit object is not typically used by JSP
page authors.

pageContext javax.servlet.jsp.
PageContext

Provides all functionality provided by
jspContext plus additional methods
specific to a servlet environment.

request javax.servlet.
ServletRequest

Commonly used to obtain HTTP request
parameters and attributes.

response javax.servlet.
ServletResponse

Contains several methods to manipulate
the HTTP response sent to the browser.
Can be used to add HTTP headers, cookies,
etc.

session javax.servlet.http.
HttpSession

Typically used to set and retrieve attributes
that are specific to each user session.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[70]

After typing an implicit object followed by a dot, NetBeans will present a list of all
available methods for that object, along with a description of each method.

This feature can be used both as a learning tool so that we can see what functionality
is available, and as a reference for more experienced developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[71]

In addition to JSP expressions, our page contains JSP scriptlets. Scriptlets can contain
any arbitrary Java code and have access to all implicit objects. In our example, the
first scriptlet obtains the values of the request parameter named "progLang", this
is the name we used on the input JSP for all checkboxes. Using the same name for
several checkboxes has the effect of creating a request parameter whose value is an
array of String objects containing the values of the checkboxes that were checked.
Our JSP obtains this array and assigns it to a variable named selectedLanguages,
it then iterates through this array and outputs the value to the page as an unordered
list (bullet points).

Notice that the scriptlets can be "interrupted", to add static content or expressions
inside them. In our example, there is both a conditional and a loop started in the
first scriptlet, then there is some static markup to generate an item in the list and an
expression to display the current element in the list. The next scriptlet closes both the
conditional and the loop.

At this point, we are ready to test the new page, one very nice feature of NetBeans is
that it deploys our code in the background automatically as we work, therefore there
is no need to redeploy our application, it should be now "ready to go" without any
action on our part. After we enter some data in the input page and hit submit, we
should see the output page rendered in the browser.

Assuming the user entered David Heffelfinger as the full name and selected Java and
Groovy from the checkboxes, the following data should be displayed on the screen:

We have now completed a simple but complete application using JSPs.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[72]

Servlet development
Although the application developed in the previous section was fairly easy to
develop, the resulting code isn't very maintainable. One of the JSPs has both
business logic and presentation logic embedded in it. It is considered a best practice
for JSPs to have only presentation logic, and keep the business logic elsewhere.

One common way to approach this problem is to use the Model-View-Controller
(MVC) design pattern. This pattern provides a clean separation of concerns,
providing artifacts that solely act as data (model), while other artifacts are
solely responsible for displaying the data (view) and another artifact or artifacts
is responsible for manipulating the data and transferring control to the view
(controller). In Java web applications, JSPs typically act as view, servlets act as
controllers, and custom JavaBeans act as the model.

In this section we will modify the application we developed previously so that it
follows this pattern.

Adding a Servlet to our Application
NetBeans provides functionality that allows us to easily create a servlet. In order to
create our servlet, we need to go to File| New File, choose Web from the Categories
list, then Servlet from the File Types list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[73]

When we click on Next>, we should enter a class name and package for our servlet.

In the next page in the servlet wizard, we are given the opportunity to specify a logical
name for our servlet, as well as an URL pattern that will be used to execute our servlet.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[74]

We can also add initialization parameters for our servlets, these parameters can be
read by our servlet by invoking the getInitParameter() method defined in the
javax.servlet.GenericServlet class. All servlets in a web application extend
javax.servlet.http.HttpServlet, which in turn extends javax.servlet.
GenericServlet, therefore this method is available to all of our servlets through
inheritance. This method takes the initialization parameter as a String object and
returns its value as a String. In our particular servlet we don't need initialization
parameters therefore we don't need to enter any in the NetBeans servlet wizard.

Clicking on the Finish button creates our servlet. It used to be the case that every Java
web application had to contain a web.xml deployment descriptor. As of Java EE 6,
this deployment descriptor is optional in many cases, as the configuration information
that used to be specified in web.xml can now be specified through the @WebServlet
annotation, NetBeans uses this annotation by default when generating servlets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[75]

NetBeans creates a servlet using the class name and package we specified in the
wizard. The generated servlet contains a processRequest() method that will be
executed every time the servlet receives an HTTP GET or an HTTP POST request
from the browser. This method takes an instance of javax.servlet.http.
HttpServletRequest and an instance of javax.servlet.HttpServletResponse
as parameters. These parameters are equivalent to the request and response implicit
objects in JSPs.

The processRequest() method is a NetBeans specific method that is generated
when we use the NetBeans servlet wizard to create a method. The reason this
method is created is because in most cases we would like the servlet to execute the
same code regardless of if the servlet received an HTTP GET or an HTTP POST
request from the browser. These two requests are handled by the doGet() and
doPost() methods, respectively, these methods are inherited from the javax.
servlet.http.HttpServlet class, which is the parent class of all the servlets in a
Java web application.

Notice at the bottom of our class we can see that there is some code in our servlet
that has collapsed (using NetBeans code folding feature). By clicking on the plus
sign next to the collapsed code we can expand it and examine it.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[76]

As we can see, the doPost() and doGet() methods for our servlet simply invoke
the generated processRequest() method, passing along the request and response
parameters. If we wish our servlet to handle only POST request, we should delete
the generated doGet() method; similarly, if we wish the servlet to handle only GET
request, the doPost() method should be deleted.

We need our servlet to process the data entered by the user in the application's input
page, then invoke the output page, which will be modified to obtain its data from an
attribute in the HTTP request.

In our example we modified the processRequest() method of our servlet so that
it creates an instance of a JavaBean called SurveyData and populates it with values
from the request parameters.

SurveyData is a very simple JavaBean with two private properties and
corresponding getters and setters. Since it is so simple, it is not shown, it
is part of this book's code download. This bean's role is to be the model in
our MVC architecture.

The instance of SurveyData is then stored as a request attribute by invoking the
setAttribute() method in the request object. Request attributes are visible as long
as no new HTTP request is generated from the application.

We can navigate to other pages by forwarding the request and its attributes will be
preserved. Redirecting the HTTP response through the sendRedirect() method
in the HttpServletResponse() interface, clicking on a link, submitting a page, or
entering an URL directly in the browser's location field are all actions that generate
a new request, causing previous request attributes to be lost.

The URL used as a parameter to sendRedirect() can be a page on any server,
Forwarding, on the other hand, is limited to pages or resources in the same server
as the one where the servlet or JSP doing the forwarding is deployed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[77]

Objects can also be stored by a servlet as attributes at the session or application
scope. Had we wished to store the SurveyData instance as a session attribute,
we would have added the following line to the processRequest() method:

request.getSession().setAttribute("surveyData", surveyData);

The getSession() method of the javax.servlet.http.HttpServletRequest
interface returns an instance of javax.servlet.http.HttpSession representing
the user's session. Session attributes are visible to all pages in a user's session, and
are preserved across requests.

Storing the instance of SurveyData at the application scope would have been
accomplished by the following line in the processRequest() method:

getServletContext().setAttribute("surveyData", surveyData);

The getServletContext() method is defined in javax.servlet.GenericServlet,
which is the parent class of javax.servlet.http.HttpServlet, that in turn is the
parent class of every servlet in a web application. This method returns an instance
of javax.servlet.ServletContext. Storing an object as an attribute of the servlet
context makes it visible across user sessions; therefore all users in the application
have access to the attribute.

Request, session, and application attributes can be retrieved by invoking
the getAttribute() method. This method exists in HttpServletRequest,
HttpSession, and ServletContext. In all instances it takes a String parameter
indicating the name of the attribute to obtain, and returns an instance of java.lang.
Object, which then needs to be cast to the appropriate type. If there is no attribute of
the specified name, the method returns null.

The last thing we need to do in our example is to forward the request to
the output JSP, this is accomplished by obtaining an instance of javax.
servlet.RequestDispatcher, this instance is obtained by invoking the
getRequestDispatcher() method of javax.servlet.http.HttpServletRequest,
this method has a single parameter, which is a String indicating the relative or
absolute URL of the page or servlet we wish to navigate to. In our example we are
using the relative URL of output.jsp, we know the URL is relative because all
absolute URLs begin with a forward slash (/). Once we have an instance of javax.
servlet.RequestDispatcher, we simply invoke its forward() method to navigate
to the desired page.

We need to make one minor modification to the input JSP page so that it invokes our
servlet when its form is submitted.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[78]

The line:

<form action="output.jsp">

Needs to be modified as follows:

<form action="ControllerServlet" method="post">

What we did was change the value of the action attribute of the HTML <form>
element to be the URL of our servlet. We defined this URL in the servlet wizard
when we were creating our servlet, it is defined as the value of the urlPatterns
attribute of the generated @WebServlet annotation.

@WebServlet(name = "ControllerServlet", urlPatterns = {"/
ControllerServlet"})
public class ControllerServlet extends HttpServlet {
…
}

Additionally, we added a method attribute to the <form> element, and gave it a
value of post. This step wasn't strictly necessary, however, by default a form uses
a get method, and HTTP GET requests have a disadvantage, parameter names and
values are shown in the browser's location text field, and malicious users might
attempt to break our application by modifying the displayed URL by giving invalid
values to the request parameters. HTTP POST requests have no such disadvantage;
therefore it is a good idea to use POST requests whenever possible.

We also need to make a few modifications to the output JSP so that it retrieves values
from the JavaBean that is stored.

The first thing we need to do is to add a <jsp:useBean> tag to our JSP. This tag can
be either typed in directly, or can be dragged from the palette and dropped into the
page. Dragging and dropping the tag into the page results in the following window
to popping up:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[79]

The value of the ID field must match the value that was used to store the bean as
a request attribute. The value of the Class field must be the fully qualified name of
the bean's type. The value of the Scope field must be the scope we wish to retrieve
the bean from; valid values include page, request, session, or application. The scope
where the bean is placed affects when and where the bean can be accessed, the
following table summarizes all valid scopes.

Scope Description
page Bean is only accessible in the current page, including any JSP page

fragments included in the page.
request Bean is only accessible within a single HTTP request, usually from

the page to be displayed after the request is processed.
session Bean is accessible across requests in a single HTTP session, typically

this means there is a single instance of the bean per user of the
application.

application Bean is accessible across HTTP sessions, typically this means there is
a single instance of the bean accessible to all users of the application.

After filling out all fields, NetBeans inserts the following markup code in the location
where we dropped the component:

<jsp:useBean id="surveyData" scope="request"
class="com.ensode.nbbook.model.SurveyData" />

The next thing we need to do is replace the JSP expression retrieving the "fullName"
request parameter with the <jsp:getProperty> tag. This tag retrieves the value of
a JSP property. Again we can either type the tag in the appropriate location, or drag
it from the palette and drop it into the page. As usual, NetBeans pops up a window
when the tag is dropped into the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[80]

The Bean Name drop-down options show all valid beans in the page, the value for
this field must match the bean's ID from the <jsp:useBean> tag. After we select one
the Property Name drop-down is populated with all properties in the bean. Once we
select the appropriate bean and property, NetBeans generates the following markup
code:

<jsp:getProperty name="surveyData" property="fullName" />

The value of the name attribute matches the value we selected in the Bean Name
drop-down, and the value of the property attribute matches the values selected
in the Property Name drop-down.

The last change we need to make to the page is to modify the scriptlet so that the
array containing the programming languages selected by the user is obtained from
the bean instead of directly from the HTTP request.

To accomplish this, the line:

String[] selectedLanguages =
request.getParameterValues("progLang");

Needs to be changed to:

String[] selectedLanguages =
surveyData.getProgLangList();

Notice that the bean's ID (surveyData, in our case) can be used in scriptlets as a
variable name.

After implementing all of the above changes, our output page now looks like this:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<jsp:useBean id="surveyData" type="com.ensode.nbbook.model.SurveyData"

scope="request"/>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">
<title>Thank You!</title>

</head>
<body>

<h2>Thanks for taking our survey</h2>

<p>
<jsp:getProperty name="surveyData"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[81]

property="fullName"/>
,you indicated you are familiar with the

following programming languages:</p>

<%
String[] selectedLanguages =

surveyData.getProgLangList();
if (selectedLanguages != null) {

for (int i = 0; i < selectedLanguages.length;
i++) {

%>

<%= selectedLanguages[i] %>

<%}
}
%>

</body>

</html>

We can execute our application by right-clicking on the project and selecting Run
(or simply by reloading the page), at this point the application will be deployed and
opened automatically in the default browser.

With one minor exception, it should behave exactly like it did before we introduced
the servlet. The one exception is that the URL displayed on the browser's location
text field when the form is submitted is the servlet's URL. The reason for this is
that the URL displayed in the browser does not change when the HTTP request is
forwarded, like we did in our servlet.

We have now successfully re-architected our application to use the industry standard
Model-View-Controller design pattern. We followed standard practices in Java web
applications of having JavaBeans serve as the model, JSPs serving as the view, and a
servlet serving as the controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[82]

Securing web applications
It is a common requirement to only allow certain users to access certain pages in a
web application. Before a web application can be secured, a security realm needs to
be set up in the application server where the application will be deployed. Security
realms are essentially collections of users and security groups.

Each security realm allows the application server to obtain security information
from some sort of permanent storage. This security information could be stored
in a simple flat file, a relational database, an LDAP repository, or any other kind
of persistent storage. Configuring the application server to obtain the security
information from any kind of persistent storage allows us as application developers
not to have to worry about the specific implementation. We simply configure our
application to use a defined security realm for authentication.

Each user can belong to one or more security groups. Secured pages in a web
application are only accessible by certain security groups.

The procedure of setting up a security realm varies from application server to
application server. In this section we will use a pre-configured GlassFish security
realm called file. Consult your application server documentation for information on
how to configure security realms.

There are four different ways we can authenticate a user. When accessing a page
using Basic Authentication, a browser pop up window is displayed asking the user
to enter his credentials.

The advantage of this approach is that it is the easiest to implement. Disadvantages
of this approach include the fact that by default passwords are not encrypted, and
that the login page is not very elegant. Another disadvantage of this approach is that
there is no way for the user to log out, other than closing the browser window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[83]

The second approach we can use for authentication is to use Digest Authentication,
this approach works much like basic authentication, with the exception that pass-
words are encrypted when sent to the server.

Digest authentication is not in widespread use, and many application
servers do not support it, therefore its use is discouraged.

The third approach we can use to authenticate users is to use a client side certificate.
These certificates are issued by certificate authorities such as Verisign or Thawte.
Client side certificates are essentially a file in the user's hard drive. The user's
browser needs to be configured to use the client side certificate for authentication.
Although applications using client-side certificates tend to be very secure, they are
not very common due to the expense and lack of convenience of issuing client-side
certificates.

The fourth and most common approach to user authentication is to use form-based
authentication. When using this type of authentication, we need to develop a JSP or
HTML page used to collect user credentials. The advantages of this approach include
the ability to make login pages as elaborate or as simple as we wish; additionally, the
user name and password can be easily encrypted by setting up the page to use the
HTTPS (HTTP over SSL).

Implementing form-based authentication
To implement form-based authentication, a few steps need to be followed:

1. A login page needs to be created.
2. A login error page needs to be created, this page will be displayed when a

user enters incorrect credentials.
3. The web application needs to be configured to use a security realm for

authentication.

Implementing the login page
The first step to follow to implement form-based authentication is to create a login
page. A fairly simple and "bare bones" login page is shown in the following listing:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[84]

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Login</title>
</head>
<body>
<p>Please enter your username and password to access the application</
p>
<form method="POST" action="j_security_check">
<table cellpadding="0" cellspacing="0" border="0">

<tr>
<td align="right">Username: </td>
<td>
<input type="text" name="j_username">

</td>
</tr>
<tr>

<td align="right">Password: </td>
<td>
<input type="password" name="j_password">
</td>

</tr>
<tr>

<td></td>
<td><input type="submit" value="Login"></td>

</tr>
</table>
</form>
</body>
</html>

Every login page created for form-based authentication must contain an HTML
form with a method of POST and an action of j_security_check. Every Java
EE-compliant application server will have a security servlet already deployed on
installation, this servlet is mapped to the j_security_check URL, as such, its
doPost() method is executed when the form is submitted.

Each form-based authentication login page must also have two additional fields:
a text field named j_username, and a password field named j_password. The
security servlet will then check that these values match those in the security realm
when the form is submitted. Needless to say, the form needs a submit button so
that user-entered credentials can be sent to the servlet.

We need a way to display an authentication error if the user enters incorrect
credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[85]

Implementing a login error page
The next step we need to do to implement form-based authentication is to develop
a page to be displayed when login fails. A common practice is to allow the user to
attempt to log in again from the error page, this practice is followed in our login
error page.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<title>Login Error</title>

</head>
<body>

There was an error logging in. Please try again.

<form method="POST" action="j_security_check">
<table cellpadding="0" cellspacing="0" border="0">

<tr>
<td align="right">Username: </td>
<td>
<input type="text" name="j_username">

</td>
</tr>
<tr>

<td align="right">Password: </td>
<td><input type="password" name="j_password"></td>

</tr>
<tr>

<td></td>
<td><input type="submit" value="Login"></td>

</tr>
</table>

</form>
</body>

</html>

If a user enters incorrect credentials when attempting to log in to our application,
he/she will automatically be directed to this page. In our particular implementation
of the login error page, we chose to display an error message and allow the user to
try to log in again, a fairly common practice.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[86]

Configuring our application for form-based
authentication
When an unauthenticated user attempts to access a secured page, our application
must redirect the user to the login page. Once the user has successfully authenticated
through the application's security realm, the user is presented with the page he/she
was trying to access. If the user does not successfully authenticate, the application
must direct the user to our login error page. All of this needs to be configured in the
application's web.xml deployment descriptor.

As previously mentioned, the Servlet 3.0 specification introduces several annotations
that minimize the need for a web.xml deployment descriptor, however web.xml is
still needed for securing web applications. To add a web.xml deployment descriptor
to our application, we need to right-click on the project then select New | Other,
then select the Web category and Standard Deployment Descriptor (web.xml) from
the File Types list.

After clicking Next >, and then Finish to select all the defaults the file will be created
for us.

By default, NetBeans immediately opens the web.xml deployment descriptor in a
visual editor. After clicking the Security button in the toolbar, we can enter security
information for our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[87]

In the Login Configuration section, we need to choose the type of authentication
the application will use. For form-based authentication, we also need to indicate
the login and login error pages.

In the Security Roles section, we add security roles for our web application.

Security roles can be added by clicking on the Add... button.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[88]

We can then add a role name and an optional description. After clicking the
OK button, we can see our newly added security role in the NetBeans web.xml
visual editor.

Our application requires two security roles, admin and user, the proce-
dure to add each security role is identical, therefore adding the user role
is not shown.

Next, we need to specify what roles have access to what pages. We can do this by
clicking on the Add Security Constraint button.

It is recommended to modify the default for the Display Name field, giving it a
descriptive value. We then need to specify the pages that belong to our security
constraint, we do this by clicking on the Add... button under the Web Resource
Collection section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[89]

We then need to provide a Resource Name, an optional Description and URL
Pattern(s) for the pages belonging to our security constraint. A common practice
is to group all pages belonging to a security constraint under a sub folder of the
Web Pages folder, a practice we followed in our example, all administrative pages
are under the admin folder, therefore the URL pattern to access them is /admin/*,
meaning any URL beginning with /admin, after the context root of our application.

In order to allow only authorized users to view our protected pages, we need to
check the Enable Authentication Constraint checkbox and enter the role(s) that are
authorized to view the page in the Role Name(s) field.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[90]

In our application we will have a single JSP named admin.jsp in the admin folder,
this JSP will only be accessible after the user enters a valid username/password
combination.

<%@page contentType="text/html" pageEncoding="UTF-8"%> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
<title>Admin Page</title>
</head>
<body>
<h2>Admin Page</h2>
<p>
Had this been a real admin page, you would have been able
to administer the system from here!
</p>
</body> </
html>

GlassFish Specific Security Configuration
The configuration presented in the previous section is part of the Java EE
specification, and, as such, must take place regardless of what application server
we are using to deploy our application. Application server vendors may optionally
require additional steps. In this section we will cover the steps needed to deploy
on GlassFish, the Java EE application server bundled with NetBeans; consult your
application server documentation for additional security configuration information.

When deploying our application to GlassFish, we need to modify glassfish -web.
xml, a GlassFish-specific deployment descriptor. We can create this deployment
descriptor by going to File | New, selecting the GlassFish category and the
GlassFish Descriptor file type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[91]

glassfish-web.xml can be found under the Configuration Files folder in our
project. The file opens in the NetBeans visual glassfish-web.xml editor. After
opening this file and clicking on the Security tab, we can modify the security role
mappings for our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[92]

NetBeans automatically detects the security role names in web.xml and fills Security
Role Name text field. Then we need to enter one or more groups to be assigned to
this role. Groups can be added by clicking the Add Group... button and entering the
group name, which must match the name of a security group defined in the security
realm our application is using for authentication.

The last thing we need to do to finish configuring application security, is to create
our users and groups in the security realm used by our application. To do this with
the pre-configured file realm in GlassFish, we need to open the GlassFish admin
console by going to the Services window, expanding the Servers node, then right-
clicking on the GlassFish Server 3, and selecting View Admin Console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[93]

In the GlassFish console, we need to expand the Configuration node, followed by
Security, followed by Realms, then click on the file realm.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[94]

We can add users by clicking on the Manage Users button.

We need to enter the following information for our user, a User ID, one or more
groups, and a password. The groups our user belongs to must match one of the
group names we used in the application's sun-web.xml deployment descriptor.
After entering this data and clicking on the OK button, we are now ready to test
our application's security.

After deploying our application and pointing the browser to a protected page
(http://localhost:8080/simplewebapp/admin/admin.jsp in our example),
the user is automatically directed to the application's login page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[95]

After entering the correct credentials we are allowed to access the protected page.

JSP fragments
In a typical web application, most pages share certain common areas such as a
navigation menu, a header, footer, and so forth. Since these areas must be identical
across pages, maintaining them can be a tedious process since every change in one
of these areas must be done in each and every page in the application. To avoid this
situation in Java web applications, we can create JSP fragments that can be included
in every page. This way if we need to make a change, we only need to do it in the JSP
fragment.

In the previous section, we created a login form on both the login.jsp and
loginerror.jsp pages. If we wish to change the look of this login form, we would
have to do it twice, once in each page. This form is a perfect candidate to be extracted
to a JSP fragment.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[96]

Creating a JSP fragment in NetBeans
To create a JSP fragment in NetBeans, we simply need to go to File | New File, select
Web as the category, then JSP as the file type. We then fill out all the information in
the New JSP File window as usual, making sure to check the Create as JSP Segment
checkbox.

NetBeans suggests placing the JSP fragment under WEB-INF/jspf, the reason for
this is that any files under the WEB-INF folder are not directly accessible via the web
browser. Since JSP fragments are not full JSPs, most of the time they won't render
properly in a web browser by themselves, therefore it is a good idea to follow
NetBeans' suggestion.

NetBeans will automatically create the WEB-INF/jspf folder for us if it
doesn't already exist.

At this point, NetBeans generates our page with some trivial content meant to be
replaced with something else.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[97]

In our case what we want to do is extract the form used in both login.jsp and
loginerror.jsp into the page fragment.

We simply copied the form from login.jsp and pasted it into the JSP fragment.

The next thing we need to do is modify login.jsp and loginerror.jsp to use the
JSP fragment by replacing the HTML form with a JSP include directive. The modified
version of login.jsp is shown next.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Login</title>
</head>

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications with Servlets and JSPs

[98]

<body>
<p>Please enter your username and password to access the application</
p>
<%@ include file="WEB-INF/jspf/loginform.jspf" %>
</body>
</html>

The include directive inserts the contents of the JSP fragment into our page. The
value of its file attribute is a relative path to the file we want to include. When the
page is rendered in the browser, the contents of the included file are placed where
we placed our include directive.

Ctrl+space code completion works between the double quotes for the file
attribute.

After making this change in loginerror.jsp, we have successfully extracted the
common markup between both pages in to a single JSP fragment. Our application
will behave exactly as it did before, but it is now more maintainable since changes to
the HTML form have to be done only once.

Summary
In this chapter we covered how to develop JavaServer Pages (JSPs) to display both
static and dynamic content in a web browser.

We also saw how to implement the Model-View-Controller design pattern by using
JavaBeans as the model component, JSPs as the view and servlets as controllers.

Additionally, we learned how to secure web applications via form-based
authentication. We also covered how to extract common markup across pages into
a single JSP fragment, easing maintenance of web applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality
with JSTL and Custom Tags

In the previous chapter, we covered how to write applications using Servlets
and JSPs using NetBeans. In this chapter we will see how NetBeans allows us to
easily use the JSP Standard Tag Library (JSTL) to build JSPs that are readable and
maintainable, by relying less on JSP scriptlets.

The topics covered in this chapter include:

•	 NetBeans support for Core JSTL tags that, among other things, allows to
implement conditional logic and loops in JSPs without resorting to scriptlets

•	 NetBeans support for SQL JSTL tags that allow us to insert, retrieve, or
update data in a relational database

•	 Using NetBeans to create JSP tags that can help us create more maintainable
JSPs by abstracting common markup into a single file

The Java Standard Tag Library (JSTL) allows us to add functionality to our pages
without having to rely on scriptlets, that tend to create pages that are hard to
maintain.

Core JSTL tags allow us to control how pages are displayed, for example, by
conditionally rendering segments of the page or iterating through a collection of
objects to dynamically generate markup from said collection.

SQL JSTL tags allow us to access a database and run SQL queries by simply adding
some tags to our JSPs.

Since using JSTL allows us to avoid scriptlets, our pages become more maintainable
and easier to read. NetBeans allows us to use both Core JSTL tags and SQL JSTL tags
by simply dragging items from the NetBeans palette into our JSPs.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[100]

Core JSTL tags
NetBeans allows us to easily use three core JSTL tags:

•	 The <c:if> tag, used to conditionally render segments of a page
•	 The <c:choose> tag, that allows us to render part of a page differently

based on a Boolean condition
•	 The <c:forEach> tag, that allows us to iterate through an instance of a class

implementing java.util.Collection or through an array

These tags can be dragged from the NetBeans palette into our page.

By convention, the prefix of c is used for JSTL core tags. The value of the uri
attribute is a Unique Resource Identifier (URI) that will let our page know where to
find the custom tags. Each tag library defines its URI in a tag library descriptor file.
For JSTL core tags, the value of the uri attribute must always be http://java.sun.
com/jsp/jstl/core.

Conditionally displaying part of a page with
the <c:if> tag
The JSTL <c:if> tag allows us to conditionally display or hide part of a page, based
on a Boolean condition. With NetBeans, all we need to do to add a JSTL <c:if> tag
to one of our JSP pages is to drag the JSTL If item from the palette to the location in
our page where we wish to place the tag.

After dragging the JSTL If item to our page, NetBeans prompts us for additional
information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

The value of the Condition field must be enclosed in ${}, this denotes this value as a
JSTL expression. In our particular example, we are looking for a request parameter
named displayConditionalText, whose value is true. If (and only if) the request
parameter is present and has the expected value, the text inside the <c:if> tag will
be rendered in the generated HTML page from our JSP.

In the above screenshot, param is a JSTL implicit object to obtain the value of a
request parameter, param.displayConditionalText is equivalent to request.
getParameter("displayConditionalText"), as we can see, using the implicit
object allows us to save quite a bit of typing, and it makes our expression a lot more
readable. There are a lot of JSTL implicit objects, the most common ones are param,
applicationScope, sessionScope, requestScope, and pageScope. As we already
saw, param allows us to easily retrieve request parameters, the others in the list
allow us to retrieve attributes in the application, session, request, and page scopes,
respectively, they all use the dot notation we saw in the param implicit object, with
the key used to store the attribute following the dot, and return the object attached to
the appropriate scope with the said key.

To see all implicit JSTL objects, simply invoke code completion (Ctrl
+space) between the two curly braces in a JSTL expression (${})
in the NetBeans JSP editor.

Back to our example, the Variable Name field is optional; if entered, it will be used
to store the value of the conditional expression in a Boolean variable. The Scope field
is also optional, if a value is selected, this will be the scope of the variable entered
in the Variable Name field; if no value is selected for the Scope field, and a value is
entered for the Variable Name field, then the variable will have a default scope of
page.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[102]

After filling out the fields in the Insert JSTL If window as shown in the screenshot
and clicking OK, the following markup is generated in our page.

<c:if test="${param.displayConditionalText == 'true'}"
var="textDisplayed" scope="session">
</c:if>

Additionally, NetBeans adds a taglib directive at the top of the JSP markup. The
taglib directive tells our JSP that we will be using custom tags in the page. For core
JSTL tags, the taglib directive looks like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

We, of course need to add some markup between the <c:if> and </c:if> tags,
whatever we add between these two tags will only be rendered if the condition
inside the test attribute is true.

After adding some markup both before, inside and after the <c:if> tag, the body of
our page now looks like this:

<body>
<h2>Hello World!</h2>
<p>
This paragraph will always be displayed.
</p>
<c:if test="${param.displayConditionalText == 'true'}"
var="textDisplayed" scope="session">
<p>
This paragraph will only be displayed if the request parameter named
"displayConditionalText" has a value of "true".
</p>
</c:if>
<p>
This paragraph will also always be displayed.
</p> </body>

We can see how the page is displayed in the browser by right-clicking on it and
selecting Run File from the resulting pop up menu.

Please note that if we haven't deployed our project, NetBeans
may complain about the JSTL libraries not being present. To
solve this issue, we simply need to right-click on our project
and click Deploy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

Since the request parameter used in the <c:if> tag condition was not present, the
markup in its body was not rendered. Modifying the URL so that the parameter is
there and has the expected value results in the conditional markup being rendered.

Displaying mutually exclusive markup with
the <c:choose> tag
One disadvantage of the <c:if> JSTL tag discussed in the previous section is
that there is no way to display markup if (and only if) the expression in its test
attribute evaluates to false. If we need this kind of functionality, we need the JSTL
<c:choose> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[104]

Just as with the <c:if> tag, we can drag and drop the JSTL Choose item from the
NetBeans palette into our page.

After dropping the JSTL Choose item into the appropriate location in our page, we
are prompted for additional information.

The JSTL <c:choose> tag needs to have one or more nested <c:when> tags, and
optionally, a <c:otherwise> tag. In the Insert JSTL Choose window we indicate
how many <c:when> tags we need, and if we need a <c:otherwise> statement.

After filling out the fields in the Insert JSTL Choose window as shown in the
screenshot, the following markup is generated in our page:

<c:choose>
<c:when test="">
</c:when>
<c:when test="">
</c:when>
<c:otherwise>
</c:otherwise>

</c:choose>

We of course need to fill the body and the value of the test attribute for each
<c:when> tag, and the body of the <c:otherwise> tag. After doing just that and
adding some additional markup both before and after the <c:choose> tag, the body
of our page now looks like this:

<body>
<h2>Hello World!</h2>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[105]

<p>
This paragraph will always be displayed.

</p>
<p>

<c:choose>
<c:when

test="${param.displayConditionalText == '1'}">
This paragraph will only be displayed if the request
parameter named "displayConditionalText" has a value
of "1".

</c:when>
<c:when

test="${param.displayConditionalText == '2'}">
This paragraph will only be displayed if the request
parameter named "displayConditionalText" has a value
of "2".

</c:when>
<c:otherwise>

This paragraph will only be displayed if the request
parameter named "displayConditionalText" is either not
present or has a value different from "1" or
"2".

</c:otherwise>
</c:choose>

</p>
<p>

This paragraph will also always be displayed.
</p>

</body>

When executing the JSP by right-clicking on it and selecting Run File, no request
parameter is added to the URL, therefore we see the text inside the <c:otherwise>
tag displayed in the rendered page.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[106]

Modifying the URL so that it has the displayConditionalText request parameter
and one of the expected values results in the corresponding markup being rendered
in the page.

Just like the JSTL <c:if> tag, the JSTL <c:when> tag has access to all JSTL implicit
objects.

In our examples we have been using the equality logical operator (==) to compare
two objects. This operator is equivalent to the equals() method in java.lang.
Object. There are several other operators that can be used in JSTL expressions; the
following table summarizes the most commonly used ones:

Operator type Operators
Arithmetic +, -, *, / (or div), % (or mod)
Logical && (or and), || (or or), ! (or not), empty
Relational == (or eq), > (or gt), < (or lt), >= (or ge), <= (or le)

All of these operators should be intuitive to any moderately experienced Java
programmer. Notice that many of the operators have both symbolic and textual
versions. The reason for the textual versions is that they do not invalidate XML
pages, allowing us to use JSTL in XHTML or any other XML markup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[107]

Iterating through arrays or collections with
the <c:forEach> tag
Many times it is necessary to repeatedly generate markup that is almost identical,
a typical example is the need to generate table rows, the only difference between
the markup for each row is the contents of each cell, other than that the markup is
identical. In cases like this, it is useful to iterate through an array or collection of
objects, generating the required markup in each iteration.

For cases like this, JSTL provides the <c:forEach> tag, just like tags previously
discussed in this chapter, the <c:forEach> tag can be dragged from the NetBeans
palette and dropped into our page.

After dropping the JSTL For Each item into the appropriate location in our page,
we are prompted for additional information.

The value of the Collection text field must be a JSTL expression resolving to either
a class implementing the java.util.Collection interface, or to an array. In our
example, we are retrieving an ArrayList attached to the session scope with the
name customerList.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[108]

The value of the Current item of the Iteration text field is the name we wish to use
to refer to the current iteration item inside the body of the tag. In our example, we
chose to name the current item customer.

Although we typically wish to iterate through the whole collection or array, the
JSTL <c:forEach> tag allows us to specify the index of the element in the array or
Collection to begin iterating from, where the first element has an index of 0. To do
this, we need to check the Fixed Number of Iterations checkbox, and specify the index
of the element we wish to start iterating from as the value of the Begin text field.

Similarly, if we wish to stop iterating at a specific element in the array or collection,
we can specify the index of the element we wish to end iterating by entering its index
as the value of the End text field.

If we don't wish to process every item in the array or collection we are iterating
through, and instead we wish to process every other item, or every three items, and
so on, we can specify this by entering a value for the Step text field. For example, if
we wished to process every other item, we would enter a value of 2 for this field.

After filling out the fields of the Insert JSTL Field window as shown in the above
screenshot, and clicking on OK, the following markup is added to our page:

<c:forEach var="customer" items="{sessionScope.customerList}">
</c:forEach>

We then modify the page, by adding a scriptlet to create the ArrayList we are
iterating through and adding it as a session attribute, plus adding some markup
inside the body of the <c:forEach> tag, as well as before and after the tag.

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@page import="java.util.ArrayList" %>
<%@page import="com.ensode.nbbook.CustomerBean" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%

ArrayList<CustomerBean> customerList = new
ArrayList<CustomerBean>();

customerList.add(new CustomerBean("David", "Heffelfinger"));
customerList.add(new CustomerBean("Jeff", "Wu"));
customerList.add(new CustomerBean("Jacqueline", "Smith"));

session.setAttribute("customerList", customerList);
%>
<html>

<head>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[109]

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

<title>JSP Page</title>
</head>
<body>

<h2>Hello World!</h2>
<table border="1" cellpadding="1" cellspacing="0">

<thead>
<tr>

<th>First Name</th>
<th>Last Name</th>

</tr>
</thead>
<tbody>

<c:forEach var="customer"
items="${sessionScope.customerList}">
<tr>

<td>${customer.firstName}</td>
<td>${customer.lastName}</td>

</tr>
</c:forEach>

</tbody>
</table>

</body>
</html>

Notice at the top of the JSP, the ArrayList we attach to the session instances of a
class called CustomerBean. This class is a simple JavaBean with two properties,
firstName and lastName. In the body of the <c:forEach> tag, we access the getter
methods for these properties by simply entering the name of the property after the
name we gave for the current item in the list (customer). For example, to invoke
the getFirstName() getter method in CustomerBean, we simply need to type
${customer.firstName} inside the body of the <c:forEach> tag. This notation
allows us to easily invoke getter methods in JavaBeans from JSTL expressions. The
notation can be used with any expression that resolves to a JavaBean, it is not limited
to the body of a <c:forEach> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[110]

As we have seen before, the easiest way to deploy our web application and execute
our file in the browser is to right-click anywhere in the file and select Run File from
the resulting pop up menu.

All table rows are generated by iterating through the collection. The values we
see in each cell are the values of the firstName and lastName of each instance of
CustomerBean in the ArrayList we iterated through.

SQL JSTL tags
JSTL includes an SQL tag library that allows us to quickly and easily write web
applications that interact with a relational database. NetBeans supports the most
commonly used tags in the SQL tag library, allowing us to use these tags by simply
dragging them from its palette into our JSP pages.

All JSTL tags are supported in NetBeans, however, only a subset of them
is available in the NetBeans palette to be dropped in our JSPs. For tags not
included in the palette, we simply need to type the appropriate tag in the
page markup. Code completion is available for all JSTL tags.

Although SQL JSTL tags allow us to quickly create web applications that interact
with a database, they tend to create applications that are hard to maintain, since they
mix database access with display logic. For this reason, these tags are suitable for
prototyping and for "throwaway" applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[111]

In order to successfully use the SQL JSTL tags, we need to create a connection pool
and data source in the application server we are using to deploy our application.
NetBeans comes pre-configured with a sample database, and the integrated
GlassFish application server included with NetBeans comes with a datasource to
access this sample database out of the box. In this section we will be using the sample
database and its corresponding datasource. In Chapter 5 we will explain how to
configure NetBeans and GlassFish to interact with a relational database that hasn't
been pre-configured.

Before we can interact with a relational database through the JSTL SQL tags, we
need to configure our application to have access to the data source providing access
to the appropriate relational database. We can accomplish this by adding a resource
reference in our application's web.xml deployment descriptor.

Since web.xml is optional in Java EE 6, NetBeans does not generate it by
default. To add a web.xml deployment descriptor to our project, we simply
need to right-click on the project node, select New | Other, then select Standard
Deployment Descriptor (web.xml) file type from the Web category.

After clicking Next>, we can click on OK on the following window to generate the
deployment descriptor.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[112]

Once we have our web.xml, we are ready to add our datasource reference. When
creating our web.xml, NetBeans automatically opens it using the built-in web.xml
editor.

We can add the resource reference by clicking on the Add... button under Resource
References.

For our purposes, all we need to do is add a value for the Resource Name text field,
the value of this field must be the JNDI (Java Naming and Directory Interface)
name of the data source we wish to use with our application, in our specific example,
this JNDI name is jdbc/sample.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[113]

After entering the resource name for our datasource, saving, then clicking on OK, we
can see it listed in the Resource References section of our application's web.xml.

At this point we are ready to use the JSTL SQL library.

Retrieving database data with the <sql:query>
tag
The first JSTL SQL tag that we will cover is the <sql:query> tag. This tag allows us
to execute an SQL SELECT statement, and store it in an object implementing the
javax.servlet.jsp.jstl.sql.Result interface. We can then iterate through this
object with the standard JSTL <c:forEach> tag.

The javax.servlet.jsp.jstl.sql.Result interface defines a number of methods
that we can call from a <c:forEach> tag in order to display database data on the
page. These methods are outlined in the following table:

Method Name Description
getColumnNames() Returns an array of String objects containing the column

names in the result set.
getRowCount() Returns an int indicating the number of rows in the result

set.
getRows() Returns an array of java.util.SortedMap objects. Each

element in the array represents a row in the result set. Keys in
each SortedMap are String objects containing the column
names, values are objects representing the value for the
column in the current row.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[114]

Method Name Description
getRowsByIndex() Returns a bi-dimensional array of Objects representing the

rows and columns of the result set.
isLimitedByMaxRows() Returns a Boolean indicating if the maximum number of rows

in the result set was limited by the maxRows attribute of the
<sql:query> tag.

As we can see, all methods defined in the javax.servlet.jsp.jstl.sql.Result
interface are getter methods that conform to the JavaBean specification, therefore
these methods can be accessed as JavaBean properties from JSTL tags.

The easiest way to add an <sql:query> tag to one of our JSPs is to simply drag the
DB Query item from the NetBeans palette into our page.

After dropping this item into our page, we are prompted for additional information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[115]

The Variable Name field is the name that will be given to the variable that will hold
the result set generated by our query. The Scope field is the scope where this variable
will be stored, the variable can be stored on any valid scope (page, request, session,
or application). The Data Source field is for the JNDI name of the data source we
will be using to obtain a connection to the database, this data source must be added
as a resource reference to our web application's web.xml deployment descriptor, as
explained in the previous section.

After entering appropriate values for all fields and clicking on OK, the following
markup is generated in our page:

<sql:query var="allRows" dataSource="jdbc/sample">
SELECT name, city, state FROM customer

</sql:query>

The values of the var and dataSource attributes of the tag correspond to the values
we entered in the Variable Name and Data Source fields in the Insert DB Query
window. Since page scope is the default scope, we don't see an attribute defining the
variable scope, had we picked a scope different from page, NetBeans would have
added a scope attribute to the tag, containing the scope for the variable as its value
(i.e. scope="session").

We then need to add some logic to our page to traverse the result set, this is typically
done through the <c:forEach> tag. After adding the required markup, the body of
our page now looks like this:

<body>
<h2>Hello World!</h2>
<sql:query var="allRows" dataSource="jdbc/sample">

SELECT name, city, state FROM customer
</sql:query>
<table border="1">

<thead>
<tr>

<th>Name</th>
<th>Location</th>

</tr>
</thead>
<tbody>

<c:forEach var="currentRow"
items="${allRows.rows}">
<tr>

<td>${currentRow.name}</td>
<td>${currentRow.city},

${currentRow.state}

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[116]

</td>
</tr>

</c:forEach>
</tbody>

</table>
</body>

Notice how we dynamically generate table rows with the <c:forEach> tag.

After deploying our application we can see the resulting page.

The technique illustrated in this example is very common. Frequently a <sql:query>
tag is used, followed by a <c:forEach> tag used to generate a database table from
the result set. Since the technique is so common, NetBeans provides an item in its
palette to generate both the <sql:query> tag and the <c:forEach> tag, including
the static markup for the table just before and after the <c:forEach> tag. To take
advantage of this functionality, we simply drag the DB Report item from the
NetBeans palette into our page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[117]

After dropping the DB Report item into our page, we get a window that is very
similar to the one we get when dropping the DB Query item. After entering values for
the Variable Name, Scope, Data Source, and Query Statement fields, the following
markup is generated in the location where we dropped the DB Report item.

<sql:query var="result" dataSource="jdbc/sample">
SELECT name, city, state FROM customer

</sql:query>

<table border="1">
<!-- column headers -->
<tr>

<c:forEach var="columnName"
items="${result.columnNames}">
<th><c:out value="${columnName}"/></th>

</c:forEach>
</tr>
<!-- column data -->
<c:forEach var="row" items="${result.rowsByIndex}">

<tr>
<c:forEach var="column" items="${row}">

<td><c:out value="${column}"/></td>
</c:forEach>

</tr>
</c:forEach>

</table>

Notice that the generated <c:forEach> tags dynamically generate the table header
by invoking the getColumNames() method of the javax.servlet.jsp.jstl.
sql.Result interface as a JavaBean property. Similarly, the bi-dimensional array
returned by the getRowsByIndex() method is used to traverse the result set and
display its contents on the page.

Modifying database data with the
<sql:update> tag
The JSTL <sql:update> tag allows us to modify database data either through SQL
INSERT, UPDATE, or DELETE statements. Just like other JSTL tags we have discussed
so far, the easiest way to use this tag with NetBeans is to drag the appropriate item
from the NetBeans palette into our page.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[118]

Inserting database data
To execute an INSERT statement, we can drag the DB Insert item from the NetBeans
palette into our page.

After dropping the DB Insert item into our page, we are prompted for additional
information.

The value of the Variable Name field is a variable of type java.lang.Integer that
will hold the number of rows that were inserted into the database after the INSERT
statement was executed.

The Scope field must contain the scope where the value of the Variable Name field
will be stored.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[119]

The Data Source field must contain the JNDI name of the data source used to obtain
a database connection. This data source must be added as a Resource Reference to
our application's web.xml deployment descriptor as explained earlier in this chapter.

Finally, the value of the Insert Statement field allows us to specify the SQL INSERT
statement to be executed.

After entering the appropriate data for all fields in the Insert DB Insert window,
the following markup is generated in our page:

<sql:update var="insertedRows" dataSource="jdbc/sample">
INSERT INTO customer (customer_id, name,
discount_code,zip) values
(((select max(customer_id) from customer) + 1),
'Ensode Technology, LLC', 'H', '22030')

</sql:update>

The attributes and the body of the generated <sql:update> tag get populated
from the data we entered in the Insert DB Insert window.

We can add a DB Report item from the NetBeans palette, so that we can see the
value we inserted into the database. After doing so, the body of our page looks
like this:

<body>
<h2>Hello World!</h2>
<sql:update var="insertedRows" dataSource="jdbc/sample">

INSERT INTO customer (customer_id, name,
discount_code, zip) values
(((select max(customer_id) from customer) + 1),
'Ensode Technology, LLC', 'H', '22030')

</sql:update>

<sql:query var="result" dataSource="jdbc/sample">
SELECT customer_id, name, discount_code, zip FROM
customer where name like ?
<sql:param value="Ensode%" />

</sql:query>

<table border="1">
<!-- column headers -->
<tr>

<c:forEach var="columnName" items="${result.columnNames}">
<th><c:out value="${columnName}"/></th>

</c:forEach>
</tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[120]

<!-- column data -->
<c:forEach var="row" items="${result.rowsByIndex}">

<tr>
<c:forEach var="column" items="${row}">

<td><c:out value="${column}"/></td>
</c:forEach>

</tr>
</c:forEach>

</table>
</body>

Notice that inside the body of the <sql:query> tag we added an <sql:param>
tag, this tag is used to dynamically substitute items in the WHERE clause of the SQL
SELECT statement in the tag, similar to the way the java.sql.PreparedStatement
interface works. In the query, question marks are used to indicate parameters that
need to be substituted with <sql:param> tags. Should our query have multiple
parameters (for example, when the values of two or more columns are used in its
WHERE clause), we can use a question mark for each parameter in the query. The
body of the <sql:query> tag must have a <sql:param> tag for each question mark
in the query, the first <sql:param> will contain the value for the first question mark,
the second one will contain the value for the second question mark, and so forth.
The value attribute of the <sql:param> tag can contain a String literal or a JSTL
expression.

By deploying our application and pointing the browser to our page (or simply
right-clicking on the page and selecting Run File), we can see the <sql:update>
tag in action.

Every time we reload our page, a new row is added to the database, and the table on
the page is updated accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[121]

Updating database data
As we mentioned earlier, the <sql:update> tag can be used for executing both SQL
INSERT and UPDATE statements in the database. The easiest way to use this tag to
execute an SQL UPDATE statement is to drag the DB Update item from the NetBeans
palette into our page.

In addition to being used to insert rows into a database table, the <sql:update>
tag can be used to modify existing rows in the database table. The main difference
is that an SQL UPDATE statement is used in its body, as opposed to an SQL INSERT
statement.

Like most JSTL SQL tags discussed so far, the easiest way to create an <sql:update>
statement that updates existing rows in a database table is to drag the DB Update
item from the NetBeans palette into our page.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[122]

After doing so, we are prompted for the usual additional information.

Here we see the same fields we saw when we were using this tag to insert a row into
a database table. In this case the Variable Name field indicates the number of rows
that were updated by the UPDATE statement. When clicking on the OK button, the
following markup is generated in the location where we dropped the DB Update
palette item:

<sql:update var="updatedRows" dataSource="jdbc/sample">
UPDATE customer
SET zip = '22033'
WHERE name LIKE ?

</sql:update>

Since we have a parameter in our query, we need to add a <sql:param> tag inside
our <sql:update> tag:

<sql:update var="updatedRows" dataSource="jdbc/sample">
UPDATE customer
SET zip = '22033'
WHERE name LIKE ?
<sql:param value="Ensode%"/>

</sql:update>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[123]

Just as we did in our last page, we can add a DB Report item from the NetBeans
palette so that we can visually inspect the effect of the <sql:update> tag. After
doing so, the body of our page looks like this:

<body>
<h2>Hello World!</h2>
<sql:update var="updatedRows" dataSource="jdbc/sample">

UPDATE customer
SET zip = '22033'
WHERE name LIKE ?
<sql:param value="Ensode%"/>

</sql:update>

<sql:query var="result" dataSource="jdbc/sample">
SELECT customer_id, name, discount_code, zip
FROM customer where name like ?
<sql:param value="Ensode%" />

</sql:query>

<table border="1">
<!-- column headers -->
<tr>

<c:forEach var="columnName"
items="${result.columnNames}">
<th><c:out value="${columnName}"/></th>

</c:forEach>
</tr>
<!-- column data -->
<c:forEach var="row" items="${result.rowsByIndex}">

<tr>
<c:forEach var="column" items="${row}">

<td><c:out value="${column}"/></td>
</c:forEach>

</tr>
</c:forEach>

</table>
</body>

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[124]

After deploying our application and opening our page in the browser, we can see the
results of our SQL UPDATE statement.

As we can see, the zip codes for all rows we inserted earlier were modified by our
SQL UPDATE statement.

Deleting database data
The <sql:update> tag can be used to delete data from the database. This can be
done by placing an SQL DELETE statement inside its body. With NetBeans, we can
simply drag the DB Delete item from the NetBeans palette into our page.

After doing so, we are asked for the usual additional information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[125]

In this case the Variable Name field will hold the number of rows that were deleted,
the Scope and Data Source fields hold the scope for the Variable Name field and the
JNDI name for the data source to be used to connect to the database, respectively.
The Delete Statement field contains the SQL DELETE statement we will use to
delete data from the database, notice in our example, we used a question mark as a
placeholder for an <sql:param> tag.

After clicking on the OK button, the following markup is generated in our page:

<sql:update var="deletedRows" dataSource="jdbc/sample">
DELETE FROM customer
WHERE name LIKE ?

</sql:update>

In order to substitute the question mark with the appropriate value, we need to add
an <sql:param> tag inside the <sql:update> tag.

<sql:update var="deletedRows" dataSource="jdbc/sample">
DELETE FROM customer
WHERE name like ?
<sql:param value="Ensode%"/>

</sql:update>

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[126]

Just as we did in previous examples, we will drag the DB Report item from the
NetBeans palette into our page, so that we can see the effect the DELETE statement
had in the database. After doing so, the body of our page now looks like this:

<body>
<h2>Hello World!</h2>
<sql:update var="deletedRows" dataSource="jdbc/sample">

DELETE FROM customer
WHERE name like ?
<sql:param value="Ensode%"/>

</sql:update>

<sql:query var="result" dataSource="jdbc/sample">
SELECT customer_id, name, discount_code, zip FROM customer

where name like ?
<sql:param value="Ensode%" />

</sql:query>

<table border="1">
<!-- column headers -->
<tr>

<c:forEach var="columnName" items="${result.columnNames}">
<th><c:out value="${columnName}"/></th>

</c:forEach>
</tr>
<!-- column data -->
<c:forEach var="row" items="${result.rowsByIndex}">

<tr>
<c:forEach var="column" items="${row}">

<td><c:out value="${column}"/></td>
</c:forEach>

</tr>
</c:forEach>

</table>
</body>

After executing our page by right-clicking on it and selecting Run File from the pop
up menu, we can see the results of our DELETE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[127]

Since we deleted all rows matching the criteria in the WHERE clause of the
<sql:query> tag generated by the DB Report item we dragged into our page,
all we see in the rendered page is a table containing only column headers.

Closing remarks about JSTL
We covered all the JSTL tags supported by NetBeans through the drag and drop
functionality. Additional JSTL tags exist, however they aren't used very frequently,
and therefore are not included in the NetBeans palette. NetBeans certainly supports
code completion for these tags. For more information about JSTL, see the JSTL site at
http://www.oracle.com/technetwork/java/index-jsp-135995.html.

Custom JSP tags
Sometimes we need to add very similar snippets of HTML to our pages. For
example, we might have a calendar component used to input all dates in our system,
or we might have a specific format for all address input fields in our application.

Although we can certainly copy and paste the code throughout all JSP pages that
we need in our application, this approach is not very desirable, since, if we need to
make a change to the common code, we need to go through all the pages and make
individual modifications. When using JSPs, we can create custom JSP tags. These JSP
tags allow us to create the HTML code we need in one place, then we simply use the
tag in any page that requires it. NetBeans has great support for helping us develop
custom JSP tags.

Creating a JSP tag is not much different to creating a JSP. To create a JSP tag, a
tag file is created, it needs to be placed under the WEB-INF/tags folder in our
application, or in any subdirectory of this directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[128]

To create a custom JSP tag file in NetBeans, we need to go to File | New File..., select
the Web category, and the Tag File file type.

After clicking Next>, we are presented with additional choices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[129]

Entering the tag file name into the first field will result in the value of the Created
File field to be filled automatically, default values for all other fields are sensible and
in most cases there is no need to modify them.

At this point, NetBeans creates an initial tag file that we can use as a starting point.

<%@tag description="put the tag description here"
pageEncoding="UTF-8"%>

<%-- The list of normal or fragment attributes can be specified here:
--%>
<%@attribute name="message"%>

<%-- any content can be specified here e.g.: --%>
<h2>${message}</h2>

Tag files can contain one or more tag directives. The tag directive is similar to
the page directive in a JSP. The generated tag directive contains two attributes, a
description attribute used to describe the purpose of the tag, and a pageEncoding
attribute used to set the page encoding of the tag.

The attribute directive allows us to specify what attributes may be sent from the
JSP using our tag.

Using the above markup as a starting point, we will now create a tag file that will
generate an HTML table containing a series of input fields for entering an address:

<%@tag description="Address Input Field" pageEncoding="UTF-8"%>
<jsp:useBean id="addressBean" scope="session"
class="com.ensode.netbeansbook.AddressBean"/>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/c<%-- The list
of normal or fragment attributes can be specified here: --%>
<%@attribute name="addressType" required="true" %>

<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td>Line 1: </td>
<td>
<input type="text" size="20"
name="${addressType}_line1"
id="${addressType}_line1"
value="${addressBean.line1}"/>
</td>
</tr>
<tr>
<td>Line 2: </td>
<td>

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[130]

<input type="text" size="20"
name="${addressType}_line2"
id="${addressType}_line2"
value="${addressBean.line2}"/>

</td>
</tr>
<tr>

<td>City: </td>
<td>
<input type="text" size="20"

name="${addressType}_city"
id="${addressType}_city"
value="${addressBean.city}"/>

</td>
</tr>
<tr>

<td>State: </td>
<td>
<select name="${addressType}_state"
id="${addressType}.state">
<option value=""></option>
<option value="AL"

<c:if test="${addressBean.state == 'AL'}">
selected</c:if>>Alabama

</option>
<option value="AK"

<c:if test="${addressBean.state == 'AK'}">
selected</c:if>>Alaska

</option>
<option value="AZ"

<c:if test="${addressBean.state == 'AZ'}">
selected</c:if>>Arizona

</option>
<option value="AR"

<c:if test="${addressBean.state == 'AR'}">
selected</c:if>>Arkansas</option>

<option value="CA"
<c:if test="${addressBean.state == 'CA'}">

selected</c:if>>California
</option>

</select>
</td>

</tr>
<tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[131]

<td>Zip: </td>
<td><input type="text"
name="${addressType}_zip"
id="${addressType}.zip"
value="${addressBean.zip}" />
</td>
</tr> </
table>

Notice that a tag file is not much different from a JSP, it can use JSTL and other
tag libraries, it has access to the same implicit objects that a JSP has access to. In
our example we use the <jsp:useBean> tag to access a JavaBean of type net.
ensode.netBeansbook.AddressBean, this is a simple JavaBean containing a default
argument constructor and a few properties.

Since the AddressBean is so simple, its code is not shown, however it is
available as part of this book's code download.

Our tag file also uses the JSTL core tag library to implement some conditional logic.

As we mentioned earlier, a tag file can contain one or more attributes. Our tag file
contains a single simple attribute, named addressType, this attribute is a String we
use to append to the names of all input fields in the tag file. The reason we do this is
to allow a single JSP to use multiple instances of our tag, allowing fields generated
by each tag in the page to have a unique name. Tags can be optional or required, to
make a tag required the required attribute of the attribute directive is used, setting
its value to true, since not passing the addressType attribute to our tag would
potentially generate duplicate input field names and IDs in a single page, we made
this attribute required in our custom address tag.

Notice the comment generated by NetBeans states that normal or fragment attributes
can be defined. Fragment attributes allow the page using our tag to send snippets of
HTML code to our tag, fragment attributes are defined

<%@attribute name="myattribute" fragment="true"%>

Setting the fragment attribute to true indicates that this attribute is a fragment
attribute.

To render the fragment attribute in our tag, the <jsp:invoke> standard action:

<jsp:invoke fragment="myattribute"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[132]

The JSP using our tag file would need to send the fragment via the <jsp:fragment>
action.

<prefix:tagname>
<jsp:attribute name="myattribute">
<!-- Any HTML or JSP markup can be put here -->
</jsp:attribute> </
prefix:tagname>

The rest of our example generates an HTML table with input fields and tables (for
simplicity and brevity, only US addresses are supported, and only a small subset of
US states are used as drop down options).

A JSP invoking our tag would need to include our tag library via the taglib
directive:

<%@ taglib prefix="ct" tagdir="/WEB-INF/tags/" %>

Our custom tag library would consist of all custom tags placed in the WEB-INF/tags
directory in our web application. For our custom tags, we used the tagdir attribute
of the taglib directive to indicate the location of our tags.

All of our tags must be either directly under WEB-INF/tags or in a subdirectory of WEB-
INF/tags. A custom tag library consists of all custom tags under a single directory.

Our tag can then be invoked by placing the following markup in the JSP file:

<ct:address addressType="home"/>

The following JSP illustrates how to use our custom tag.

<%@page contentType="text/html" pageEncoding="UTF-8"%> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<%@ taglib prefix="ct" tagdir="/WEB-INF/tags/" %>
<%@ page import="com.ensode.netbeansbook.AddressBean" %> <!
DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd"> <%
AddressBean addressBean = new AddressBean();

addressBean.setAddressType("home");
addressBean.setLine1("123 Tennis Ct");
addressBean.setCity("Phoenix");
addressBean.setState("AZ");
addressBean.setZip("85001");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[133]

session.setAttribute("addressBean", addressBean);
%>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">
<title>JSP Page</title>

</head>
<body>

<form>
<ct:address addressType="home"/>
<table cellpadding="0" cellspacing="0" border="0">

<tr>
<td style="width:65px;"></td>
<td>

<input type="submit" value="Submit"/>
</td>

</tr>
</table>

</form>
</body>

</html>

In the above JSP, we create an instance of our Address bean and set values for some
of its properties. We then set this bean as a session attribute, so that our custom tag
can pick it up from as before <jsp:useBean> tag. In the JSP markup, we have a JSP
form using our custom tag, plus an additional submit button.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing JSP Functionality with JSTL and Custom Tags

[134]

We run our project, and can see how our custom tag renders on the browser.

All of the form input fields were generated by our custom tag.

Custom JSP tags can contain a body (our example tag does not have one), in which
case the JSP markup invoking our tag would look like the following example:

<prefix:sometag>
Hello there! </
prefix:sometag>

If our tag contains <jsp:attribute> actions, we need to place its body between
<jsp:body> and </jsp:body> tags.

Any HTML or JSP markup can be placed in the body of our tag. Our tag renders its
body by placing a <jsp:doBody> action in the location where we wish to render its
body.

Summary
In this chapter we covered how to use NetBeans graphical tools to add JSTL tags
to our JSP pages. We saw how JSTL can enhance JSP functionality while at the
same time making our JSPs more readable by minimizing the use of scriptlets.

We also saw how to develop our own custom JSP tags to encapsulate JSP markup
and functionality, and how NetBeans can generate an initial tag file, that we can
use as a starting point to develop our own custom tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications
using JavaServer Faces 2.0

In the previous two chapters we covered how to develop web applications in Java
using Servlets and JSPs. Although a lot of legacy applications have been written
using these APIs, most modern Java web applications are written using some kind of
web application framework. The standard framework for building web applications
is Java Server Faces (JSF). In this chapter we will see how using JSF can simplify web
application development.

The following topics will be covered in this chapter:

•	 Creating a JSF project with NetBeans
•	 Laying out JSF tags by taking advantage of the JSF <h:panelGrid> tag
•	 Using static and dynamic navigation to define navigation between pages
•	 Using the NetBeans New JSF Managed Bean wizard to create a JSF managed

bean
•	 Implementing custom JSF validators
•	 How to easily generate JSF 2.0 templates via NetBeans wizards
•	 How to easily create JSF 2.0 composite components with NetBeans

Introduction to JavaServer faces
Before JSF existed, most Java web applications were typically developed using
non-standard web application frameworks such as Apache Struts, Tapestry, Spring
Web MVC, or many others. These frameworks are built on top of the Servlet and JSP
standards, and automate a lot of functionality that needs to be manually coded when
using these APIs directly.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[136]

Having a wide variety of web application frameworks available (at the time of
writing, Wikipedia lists 31 Java web application frameworks, and this list is far
from exhaustive!), often resulted in "analysis paralysis", that is, developers often
spend an inordinate amount of time evaluating frameworks for their applications.

The introduction of JSF to the Java EE specification resulted in having a standard
web application framework available in any Java EE compliant application server.

We don't mean to imply that other web application frameworks
are obsolete or that they shouldn't be used at all. However, a lot of
organizations consider JSF the "safe" choice since it is part of the standard
and should be well supported for the foreseeable future. Additionally,
NetBeans offers excellent JSF support, making JSF a very attractive choice.

Strictly speaking, JSF is not a web application framework per se, but a component
framework. In theory, JSF can be used to write applications that are not web-based,
however, in practice JSF is almost always used for this purpose.

In addition to being the standard Java EE component framework, one benefit of JSF
is that it provides good support for tools vendors, allowing tools such as NetBeans
to take advantage of the JSF component model with drag and drop support for
components.

Developing our first JSF application
From an application developer's point of view, a JSF application consists of a series
of XHTML pages containing custom JSF tags, one or more JSF managed beans, and
an optional configuration file named faces-config.xml.

faces-config.xml used to be required in JSF 1.x, however, in JSF 2.0,
some conventions were introduced that reduce the need for configuration.
Additonally, a lot of JSF configuration can be specified using annotations,
reducing, and in some cases, eliminating the need for this XML configura-
tion file.

Creating a new JSF project
To create a new JSF project, we need to go to File | New Project, select the Java Web
project category, and Web Application as the project type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[137]

After clicking Next>, we need to enter a project name, and optionally change other
information for our project, although NetBeans provides sensible defaults.

On the next page in the wizard, we can select the server, Java EE version, and context
path of our application. In our example we will simply pick the default values.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[138]

On the next page of the new project wizard, we can select what frameworks our web
application will use.

Unsurprisingly, for JSF applications we need to select the JavaServer Faces
framework.

When clicking on Finish, the wizard generates a skeleton JSF project for us,
consisting of a single facelet file called index.xhtml, a web.xml configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[139]

web.xml is the standard, optional configuration file needed for Java web
applications, this file became optional in version 3.0 of the Servlet API, which was
introduced with Java EE 6. In many cases, web.xml is not needed anymore, since
most of the configuration options can now be specified via annotations. For JSF
applications, however, it is a good idea to add one, since it allows us to specify the
JSF project stage.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

<context-param>
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>

</context-param>
<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>
<session-config>

<session-timeout>
30

</session-timeout>
</session-config>
<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

As we can see, NetBeans automatically sets the JSF project stage to Development,
setting the project stage to development configures JSF to provide additional
debugging help not present in other stages. For example, one common problem
when developing a page is that while a page is being developed, validation for
one or more of the fields on the page fails, but the developer has not added an
<h:message> or <h:messages> tag to the page (more on this later). When this
happens and the form is submitted, the page seems to do nothing, or page navigation
doesn't seem to be working. When setting the project stage to Development, these
validation errors will automatically be added to the page, without the developer
having to explicitly add one of these tags to the page (we should, of course, add
the tags before releasing our code to production, since our users will not see the
automatically generated validation errors).

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[140]

The following are the valid values for the javax.faces.PROJECT_STAGE context
parameter for the faces servlet:

•	 Development
•	 Production
•	 SystemTest
•	 UnitTest

As we previously mentioned, the Development project stage adds additional
debugging information to ease development. The Production project stage focuses
on performance. The other two valid values for the project stage (SystemTest and
UnitTest), allow us to implement our own custom behavior for these two phases.
The javax.faces.application.Application class has a getProjectStage()
method that allows us to obtain the current project stage. Based on the value of this
method, we can implement the code that will only be executed in the appropriate
stage. The following code snippet illustrates this:

public void someMethod() {
FacesContext facesContext = FacesContext.getCurrentInstance();
Application application = facesContext.getApplication();
ProjectStage projectStage = application.getProjectStage();

if (projectStage.equals(ProjectStage.Development)) {
//do development stuff

} else if (projectStage.equals(ProjectStage.Production)) {
//do production stuff

} else if (projectStage.equals(ProjectStage.SystemTest)) {
// do system test stuff

} else if (projectStage.equals(ProjectStage.UnitTest)) {
//do unit test stuff

}
}

As illustrated in the snippet above, we can implement the code to be executed in any
valid project stage, based on the return value of the getProjectStage() method of
the Application class.

When creating a Java Web project using JSF, a facelet is automatically generated.

The generated facelet file looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[141]

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

<title>Facelet Title</title>
</h:head>
<h:body>

Hello from Facelets
</h:body>

</html>

As we can see, a facelet is nothing but an XHTML file using some facelets-specific
XML name spaces. In the automatically generated page above, the following
namespace definition allows us to use the "h" (for HTML) JSF component library:

xmlns:h="http://java.sun.com/jsf/html"

The above namespace declaration allows us to use JSF specific tags such as <h:head>
and <h:body> which are a drop in replacement for the standard HTML/XHTML
<head> and <body> tags, respectively.

The application generated by the new project wizard is a simple, but complete JSF
web application. We can see it in action by right-clicking on our project in the project
window and selecting Run. At this point the application server is started (if it wasn't
already running), the application is deployed and the default system browser opens,
displaying our application's default page.

Modifying our page to capture user data
The generated application, of course, is nothing but a starting point for us to create a
new application. We will now modify the generated index.xhtml file to collect some
data from the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[142]

The first thing we need to do is add an <h:form> tag to our page. The <h:form> tag
is equivalent to the <form> tag in standard HTML pages. After typing the first few
characters of the <h:form> tag into the page, and hitting Ctrl+Space, we can take
advantage of NetBeans' excellent code completion.

After adding the <h:form> tag and a number of additional JSF tags, our page now
looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>
<title>Registration</title>
<h:outputStylesheet library="css" name="styles.css"/>

</h:head>
<h:body>

<h3>Registration Page</h3>
<h:form>

<h:panelGrid columns="3"
columnClasses="rightalign,leftalign,leftalign">

<h:outputLabel value="Salutation: " for="salutation"/>
<h:selectOneMenu id="salutation" label="Salutation"

value="#{registrationBean.salutation}" >
<f:selectItem itemLabel="" itemValue=""/>
<f:selectItem itemLabel="Mr." itemValue="MR"/>
<f:selectItem itemLabel="Mrs." itemValue="MRS"/>
<f:selectItem itemLabel="Miss" itemValue="MISS"/>
<f:selectItem itemLabel="Ms" itemValue="MS"/>
<f:selectItem itemLabel="Dr." itemValue="DR"/>

</h:selectOneMenu>
<h:message for="salutation"/>

<h:outputLabel value="First Name:" for="firstName"/>
<h:inputText id="firstName" label="First Name"

required="true"
value="#{registrationBean.firstName}" />

<h:message for="firstName" />
<h:outputLabel value="Last Name:" for="lastName"/>
<h:inputText id="lastName" label="Last Name"

required="true"
value="#{registrationBean.lastName}" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[143]

<h:message for="lastName" />

<h:outputLabel for="age" value="Age:"/>
<h:inputText id="age" label="Age" size="2"

value="#{registrationBean.age}"/>
<h:message for="age"/>

<h:outputLabel value="Email Address:" for="email"/>
<h:inputText id="email" label="Email Address"

required="true"
value="#{registrationBean.email}">

</h:inputText>
<h:message for="email" />

<h:panelGroup/>
<h:commandButton id="register" value="Register"

action="confirmation" />
</h:panelGrid>

</h:form>
</h:body>

</html>

The following screenshot illustrates how our page will be rendered at runtime:

All JSF input fields must be inside an <h:form> tag. The <h:panelGrid> helps us
to easily lay out JSF tags on our page. It can be thought of as a grid where other JSF
tags will be placed. The columns attribute of the <h:panelGrid> tag indicates how
many columns the grid will have, each JSF component inside the <h:panelGrid>
component will be placed in an individual cell of the grid. When the number of
components matching the value of the columns attribute (three in our example) has
been placed inside <h:panelGrid>, a new row is automatically started.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[144]

The following table illustrates how tags will be laid out inside an <h:panelGrid>
tag:

First Tag Second Tag Third Tag
Fourth Tag Fifth Tag Sixth Tag
Seventh Tag Eighth Tag Ninth Tag

Each row in our <h:panelGrid> consists of an <h:outputLabel> tag, an input field,
and an <h:message> tag.

The columnClasses attribute of <h:panelGrid> allows us to assign CSS styles
to each column inside the panel grid, its value attribute must consist of a comma
separated list of CSS styles (defined in a CSS stylesheet). The first style will be
applied to the first column, the second style will be applied to the second column, the
third style will be applied to the third column, so on and so forth. Had our panel grid
had more than three columns, then the fourth column would have been styled using
the first style in the columnClasses attribute, the fifth column would have been
styled using the second style in the columnClasses attribute, so on and so forth.

If we wish to style rows in an <h:panelGrid>, we can do so with its rowClasses
attribute, which works the same way that the columnClasses works for columns.

Notice the <h:outputStylesheet> tag inside <h:head> near the top of the page, this
is a new tag that was introduced in JSF 2.0. One new feature that JSF 2.0 brings to the
table is standard resource directories. Resources such as CSS stylesheets, JavaScript
files, images, and so on, can be placed under a top level directory named resources,
and JSF tags will have access to those resources automatically. In our NetBeans
project, we need to place the resources directory under the Web Pages folder.

We then need to create a subdirectory to hold our CSS stylesheet (by convention,
this directory should be named css), then we place our CSS stylesheet(s) on this
subdirectory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[145]

The CSS stylesheet for our example is very simple, therefore it is not shown.
However, it is part of the code download for this chapter.

The value of the library attribute in <h:outputStylesheet> must match the
directory where our CSS file is located, and the value of its name attribute must
match the CSS file name.

In addition to CSS files, we should place any JavaScript files in a subdirectory called
javascript under the resources directory. The file can then be accessed by the
<h:outputScript> tag using "javascript" as the value of its library attribute and
the file name as the value of its name attribute.

Similarly, images should be placed in a directory called images under the resources
directory. These images can then be accessed by the JSF <h:graphicImage> tag,
where the value of its library attribute would be "images" and the value of its name
attribute would be the corresponding file name.

Now that we have discussed how to lay out elements on the page and how to access
resources, let's focus our attention on the input and output elements on the page.

The <h:outputLabel> tag generates a label for an input field in the form, the value
of its for attribute must match the value of the id attribute of the corresponding
input field.

<h:message> generates an error message for an input field, the value of its for field
must match the value of the id attribute for the corresponding input field.

The first row in our grid contains an <h:selectOneMenu>. This tag generates an
HTML <select> tag on the rendered page.

Every JSF tag has an id attribute, the value for this attribute must be a string
containing a unique identifier for the tag. If we don't specify a value for this
attribute, one will be generated automatically. It is a good idea to explicitly state the
ID of every component, since this ID is used in runtime error messages. Affected
components are a lot easier to identify if we explicitly set their IDs.

When using <h:label> tags to generate labels for input fields, or when using
<h:message> tags to generate validation errors, we need to explicitly set the value
of the id tag, since we need to specify it as the value of the for attribute of the
corresponding <h:label> and <h:message> tags.

Every JSF input tag has a label attribute. This attribute is used to generate
validation error messages on the rendered page. If we don't specify a value for
the label attribute, then the field will be identified in the error message by its ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[146]

Each JSF input field has a value attribute, in the case of <h:selectOneMenu>,
this attribute indicates which of the options in the rendered <select> tag will be
selected. The value of this attribute must match the value of the itemValue attribute
of one of the nested <f:selectItem> tags. The value of this attribute is usually a
value binding expression, that means that the value is read at runtime from a JSF
managed bean. In our example, the value binding expression #{registrationBean.
salutation} is used. What will happen is at runtime JSF will look for a managed
bean named registrationBean, and look for an attribute named salutation on
this bean, the getter method for this attribute will be invoked, and its return value
will be used to determine the selected value of the rendered HTML <select> tag.

Nested inside the <h:selectOneMenu> there are a number of <f:selectItem> tags.
These tags generate HTML <option> tags inside the HTML <select> tag generated
by <h:selectOneMenu>. The value of the itemLabel attribute is the value that the
user will see while the value of the itemValue attribute will be the value that will be
sent to the server when the form is submitted.

All other rows in our grid contain <h:inputText> tags, this tag generates an HTML
input field of type text, which accept a single line of typed text as input. We
explicitly set the id attribute of all of our <h:inputText> fields, this allows us to
refer to them from the corresponding <h:outputLabel> and <h:message> fields.
We also set the label attribute for all of our <h:inputText> tags, this results in
more user-friendly error messages.

Some of our <h:inputText> fields require a value, these fields have their required
attribute set to true, each JSF input field has a required attribute, if we need to
require the user to enter a value for this attribute, then we need to set this attribute to
true. This attribute is optional, if we don't explicitly set a value for it, then it defaults
to false.

In the last row of our grid, we added an empty <h:panelGroup> tag. The purpose
of this tag is to allow adding several tags into a single cell of an <h:panelGrid>.
Any tags placed inside this tag are placed inside the same cell of the grid where
<h:panelGrid> is placed. In this particular case, all we want to do is to have an
"empty" cell in the grid so that the next tag, <h:commandButton>, is aligned with the
input fields in the rendered page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[147]

<h:commandButton> is used to submit a form to the server. The value of its value
attribute is used to generate the text of the rendered button. The value of its action
attribute is used to determine what page to display after the button is pressed.

In our example, we are using static navigation. When using JSF static navigation,
the value of the action attribute of a command button is hard-coded in the markup.

When using static navigation, the value of the action attribute of
<h:commandButton> corresponds to the name of the page we want to navigate to,
minus its .xhtml extension. In our example, when the user clicks on the button, we
want to navigate to a file named confirmation.xhtml, therefore we used a value of
"confirmation" for its action attribute.

An alternative to static navigation is dynamic navigation. When using dynamic
navigation, the value of the action attribute of the command button is a value
binding expression resolving to a method returning a String in a managed
bean. The method may then return different values based on certain conditions.
Navigation would then proceed to a different page depending on the value of the
method.

As long as it returns a String, the managed bean method executed when using
dynamic navigation can contain any logic inside it, and is frequently used to save
data in a managed bean into a database.

When using dynamic navigation, the return value of the method executed when
clicking the button must match the name of the page we want to navigate to (again,
minus the file extension).

In earlier versions of JSF, it was necessary to specify navigation rules in faces-
config.xml, with the introduction of the conventions introduced in the previous
paragraphs, this is no longer necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[148]

Creating our managed bean
JSF managed beans are standard JavaBeans that are used to hold user-entered data
in JSF applications.

In order to create a new managed bean, we need to go to File | New File..., select
JavaServer Faces from the category list, and JSF Managed Bean from the file type list.

On the next screen in the wizard, we need to enter a name for our managed bean, as
well as a package:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[149]

Most default values are sensible and in most cases can be accepted. The only one we
should change if necessary is the Scope field.

Managed beans can have different scopes. A scope of request means that the bean
is only available in a single HTTP request. Managed beans can also have session
scope, in which case they are available in a single user's HTTP session. A scope of
application means that the bean is accessible to all users in the application, across
user sessions. Managed beans can also have a scope of none, which means that
the managed bean is not stored at any scope, but is created on demand as needed.
Additionally, managed beans can have a scope of view, in which case the bean is
available until the user navigates to another page. View scoped managed beans are
available across Ajax requests.

We should select the appropriate scope for our managed bean, in our particular
example, the default request scope will meet our needs.

After finishing the wizard, a boilerplate version of our managed bean is created in
the specified package.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[150]

The generated managed bean source simply consists of the annotated managed bean
class containing a single public no argument constructor.

package com.ensode.jsf.managedbeans;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class RegistrationBean {

/** Creates a new instance of RegistrationBean */
public RegistrationBean() {
}

}

The @ManagedBean annotation marks the class as a JSF managed bean. By default,
the managed bean name defaults to the class name (RegistrationBean, in our case)
with its first character switched to lower case (registrationBean, in our case). If we
want to override the default name, we can do it by specifying a different name in the
NetBeans New JSF Managed Bean wizard, or by simply setting the name attribute
of @ManagedBean to the desired value. In general, sticking to the defaults allows for
more readable and maintainable code therefore we shouldn't deviate from them
unless we have a good reason.

With the addition of any Java class annotated with @ManagedBean in our project,
we no longer need to register FacesServlet in web.xml as the JSF runtime in the
application server will automatically register the servlet.

The @RequestScoped annotation designates that our managed bean will have a
scope of request. Had we selected a different scope when creating the managed
bean with the NetBeans wizard, it would have been annotated with the appropriate
annotation corresponding to the selected scope. Session scoped managed beans
are annotated with the @SessionScoped annotation. Application scoped managed
beans are annotated with the @ApplicationScoped annotation. Managed beans with
a scope of "none", are annotated with the @NoneScoped annotation. View scoped
managed beans are annotated with the @ViewScoped annotation.

At this point, we need to modify our managed bean by adding properties that will
hold the user-entered values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[151]

Automatic Generation of Getter and Setter Methods
Netbeans can automatically generate getter and setter methods for our
properties. We simply need to click the keyboard shortcut for "insert
code", which defaults to Alt+Insert in Windows and Linux, then select
Getters and Setters.

package com.ensode.jsf.managedbeans;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class RegistrationBean {

/** Creates a new instance of RegistrationBean */
public RegistrationBean() {
}
private String salutation;
private String firstName;
private String lastName;
private Integer age;
private String email;

//getters and setters omitted for brevity }

Notice that the names of all of the bean's properties (instance variables) match the
names we used in the page's value binding expressions. These names must match so
that JSF knows how to map the bean's properties to the value binding expressions.

Implementing the confirmation page
Once our user fills out the data on the input page and submits the form, we want to
show a confirmation page displaying the values that the user entered. Since we used
value binding expressions on every input field on the input page, the corresponding
fields on the managed bean will be populated with user-entered data. Therefore all
we need to do in our confirmation page is display the data on the managed bean via
a series of <h:outputText> JSF tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[152]

We can create the confirmation page via the New JSF File wizard.

We need to make sure the name of the new file matches the value of the action
attribute in the command button of the input page (confirmation.xhtml) so that
static navigation works properly.

After modifying the generated page to meet the requirements, it should look
like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

<title>Confirmation Page</title>
<h:outputStylesheet library="css" name="styles.css"/>

</h:head>
<h:body>

<h2>Confirmation Page</h2>
<h:panelGrid columns="2"

columnClasses="rightalign-bold,normal">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[153]

<h:outputText value="Salutation: "/>
<h:outputText

value="#{registrationBean.salutation}" />
<h:outputText value="First Name:"/>
<h:outputText value="#{registrationBean.firstName}" />
<h:outputText value="Last Name:"/>
<h:outputText value="#{registrationBean.lastName}" />
<h:outputText value="Age:"/>
<h:outputText value="#{registrationBean.age}"/>
<h:outputText value="Email Address:"/>
<h:outputText value="#{registrationBean.email}" />

</h:panelGrid>
</h:body>

</html>

As we can see, our confirmation page is very simple. It consists of a series of
<h:outputText> tags containing labels and value binding expressions bound to our
managed bean's properties. The JSF <h:outputText> tag simply displays the value
of the expression of its value attribute on the rendered page.

Executing our application
We are now ready to execute our JSF application. The easiest way to do so is to
right-click on our project and click on Run in the resulting pop up menu

At this point GlassFish (or whatever application server we are using for our project)
will start automatically, if it hadn't been started already, the default browser will
open and it will automatically be directed to our page's URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[154]

After entering some data on the page, it should look something like the following
screenshot:

When we click on the Register button, our RegistrationBean managed bean is
populated with the values we entered into the page. Each property in the field will
be populated according to the value binding expression in each input field.

At this point JSF navigation "kicks in", and we are taken to the confirmation page.

The values displayed in the confirmation page are taken from our managed bean,
confirming that the bean's properties were populated correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[155]

JSF validation
Earlier in this chapter we discussed how the required attribute for JSF input fields
allows us to easily make input fields mandatory.

If a user attempts to submit a form with one or more required fields missing, an error
message is automatically generated.

The error message is generated by the <h:message> tag corresponding to the invalid
field. The string "First Name" in the error message corresponds to the value of the
label attribute for the field, had we omitted the label attribute, the value of the field's
id attribute would have been shown instead. As we can see, the required attribute
makes it very easy to implement mandatory field functionality in our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[156]

Recall that the age field is bound to a property of type Integer in our managed
bean. If a user enters a value that is not a valid integer into this field, a validation
error is automatically generated.

Of course, a negative age wouldn't make much sense. However, our application
validates that user input is a valid Integer with essentially no effort on our part.

The email address input field of our page is bound to a property of type String
in our managed bean. As such, there is no built in validation to make sure that the
user enters a valid email address. In cases like this, we need to write our own custom
JSF validator.

Custom JSF validators must implement the javax.faces.validator.Validator
interface. This interface contains a single method named validate(), this method
takes three parameters, an instance of javax.faces.context.FacesContext, an
instance of javax.faces.component.UIComponent containing the JSF component
we are validating, and an instance of java.lang.Object containing the user-entered
value for the component. The following example illustrates a typical custom validator:

package com.ensode.jsf.validators;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[157]

import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

@FacesValidator("emailValidator")
public class EmailValidator implements Validator {

public void validate(FacesContext facesContext,
UIComponent uIComponent, Object value) t
ValidatorException {
Pattern pattern = Pattern.compile("\\w+@\\w+\\.\\w+");
Matcher matcher = pattern.matcher(
(CharSequence) value);
HtmlInputText htmlInputText =
(HtmlInputText) uIComponent;
String label;
if (htmlInputText.getLabel() == null ||
htmlInputText.getLabel().trim().equals("")) {
label = htmlInputText.getId();
} else {
label = htmlInputText.getLabel();
}

if (!matcher.matches()) {
FacesMessage facesMessage =
new FacesMessage(label +
": not a valid email address");

throw new ValidatorException(facesMessage);
}
} }

In our example, the validate() method does a regular expression match against the
value of the JSF component we are validating. If the value matches the expression,
validation succeeds, otherwise, validation fails and an instance of javax.faces.
validator.ValidatorException is thrown.

The primary purpose of our custom validator is to illustrate how to write
custom JSF validations, and not to create a foolproof email address val-
idator. There may be a valid email address that doesn't validate using
our validator.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[158]

The constructor of ValidatorException takes an instance of javax.faces.
application.FacesMessage as a parameter. This object is used to display the error
message on the page when validation fails. The message to display is passed as a
String to the constructor of FacesMessage. In our example, if the label attribute
of the component is not null nor empty, we use it as part of the error message,
otherwise we use the value of the component's id attribute. This behavior follows
the pattern established by standard JSF validators.

Our validator needs to be annotated with the @FacesValidator annotation. The
value of its value attribute is the ID that will be used to reference our validator in
our JSF pages.

Once we are done implementing our validator, we are ready to use it in our pages.

In our particular case, we need to modify the email field to use our custom validator.

<h:inputText id="email" label="Email Address"
required="true" value="#{registrationBean.email}">

<f:validator validatorId="emailValidator"/>
</h:inputText>

All we need to do is nest a <f:validator> tag inside the input field we wish to have
validated using our custom validator. The value of the validatorId attribute of
<f:validator> must match the value of the value attribute in the @FacesValidator
annotation in our validator.

At this point we are ready to test our custom validator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[159]

When entering an invalid email address into the email address input field and
submitting the form, our custom validator logic was executed and the String we
passed as a parameter to FacesMessage in our validator() method is shown as
the error text by the <h:message> tag for the field.

Facelets templating
One advantage that Facelets has over JSP is its templating mechanism. Templates
allow us to specify page layout in one place, then we can have template clients
that use the layout defined in the template. Since most web applications have
consistent layout across pages, using templates makes our applications much more
maintainable, since changes to the layout need to be made in a single place. If at one
point we need to change the layout for our pages (add a footer, or move a column
from the left side of the page to the right side of the page, for example), we only need
to change the template, and the change is reflected in all template clients.

NetBeans provides very good support for facelets templating. It provides several
templates "out of the box", using common web page layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[160]

We can then select from one of several predefined templates to use as a base for our
template or simply to use it "out of the box".

NetBeans gives us the option of using HTML tables or CSS for layout. For most
modern web applications, CSS is the preferred approach. For our example we will
pick a layout containing a header area, a single left column, and a main area.

After clicking on Finish, NetBeans automatically generates our template, along with
the necessary CSS files.

The automatically generated template looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[161]

<link href="./resources/css/default.css" rel="stylesheet"
type="text/css" />

<link href="./resources/css/cssLayout.css" rel="stylesheet"
type="text/css" />

<title>Facelets Template</title>
</h:head>

<h:body>
<div id="top" class="top">

<ui:insert name="top">Top</ui:insert>
</div>
<div>

<div id="left">
<ui:insert name="left">Left</ui:insert>

</div>
<div id="content" class="left_content">

<ui:insert name="content">Content</ui:insert>
</div>

</div>
</h:body>

</html>

As we can see, the template doesn't look much different from a regular Facelets file.

Adding a Facelets template to our project
We can add a Facelets template to our project simply by clicking on File | New File,
then selecting the JavaServer Faces category and the Facelets Template file type.

Notice that the template uses the following namespace: xmlns:ui="http://java.
sun.com/jsf/facelets". This namespace allows us to use the <ui:insert> tag, the
contents of this tag will be replaced by the content in a corresponding <ui:define>
tag in template clients.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[162]

Using the template
To use our template, we simply need to create a Facelets template client, which can
be done by clicking on File | New File, selecting the JavaServer Faces category and
the Facelets Template Client file type.

After clicking on Next >, we need to enter a file name (or accept the default), and
select the template that we will use for our template client.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[163]

After clicking on Finish, our template client is created.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets">

<body>
<ui:composition template="./template.xhtml">

<ui:define name="top">
top

</ui:define>

<ui:define name="left">
left

</ui:define>

<ui:define name="content">
content

</ui:define>
</ui:composition>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[164]

As we can see, the template client also uses the xmlns:ui="http://java.sun.com/
jsf/facelets" namespace. In a template client, the <ui:composition> tag must
be the parent tag of any other tag belonging to this namespace. Any markup outside
this tag will not be rendered; the template markup will be rendered instead.

The <ui:define> tag is used to insert markup into a corresponding <ui:insert>
tag in the template. The value of the name attribute in <ui:define> must match the
corresponding <ui:insert> tag in the template.

After deploying our application, we can see templating in action by pointing the
browser to our template client URL.

Notice that NetBeans generated a template that allows us to create a fairly elegant
page with very little effort on our part. Of course, we should replace the markup in
the <ui:define> tags to suit our needs.

Here is a modified version of our template, adding markup to be rendered in the
corresponding places in the template:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<body>

<ui:composition template="./template.xhtml">

<ui:define name="top">
<h2>Welcome to our Site</h2>

</ui:define>

<ui:define name="left">
<h3>Links</h3>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[165]

<h:outputLink value="http://www.packtpub.com">
<h:outputText value="Packt Publishing"/>

</h:outputLink>

<h:outputLink value="http://www.ensode.net">
<h:outputText value="Ensode.net"/>

</h:outputLink>

<h:outputLink value="http://www.ensode.com">
<h:outputText value="Ensode Technology,
LLC"/>

</h:outputLink>

<h:outputLink value="http://www.netbeans.org">

<h:outputText value="NetBeans.org"/>
</h:outputLink>

<h:outputLink value="http://www.glassfish.
org">

<h:outputText value="GlassFish.org"/>
</h:outputLink>

<h:outputLink
value="http://www.oracle.com/technetwork/
java/javaee/overview/index.html">
<h:outputText value="Java EE 6"/>

</h:outputLink>

<h:outputLink value="http://www.oracle.com/
technetwork/java/index.html">

<h:outputText value="Java"/>
</h:outputLink>

</ui:define>
<ui:define name="content"> <p>

In this main area we would put our main text,
images, forms, etc. In this example we will simply
use the typical filler text that web designers
love to use.

</p>
<p>

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[166]

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nunc venenatis, diam nec tempor dapibus, lacus erat
vehicula mauris, id lacinia nisi arcu vitae purus. Nam vestibulum
nisi non lacus luctus vel ornare nibh pharetra. Aenean non lorem
lectus, eu tempus lectus. Cras mattis nibh a mi pharetra ultricies.
In consectetur, tellus sit amet pretium facilisis, enim ipsum
consectetur magna, a mattis ligula massa vel mi. Maecenas id arcu a
erat pellentesque vestibulum at vitae nulla. Nullam eleifend sodales
tincidunt. Donec viverra libero non erat porta sit amet convallis enim
commodo. Cras eu libero elit, ac aliquam ligula. Quisque a elit nec
ligula dapibus porta sit amet a nulla. Nulla vitae molestie ligula.
Aliquam interdum, velit at tincidunt ultrices, sapien mauris sodales
mi, vel rutrum turpis neque id ligula. Donec dictum condimentum arcu
ut convallis. Maecenas blandit, ante eget tempor sollicitudin, ligula
eros venenatis justo, sed ullamcorper dui leo id nunc. Suspendisse
potenti. Ut vel mauris sem. Duis lacinia eros laoreet diam cursus nec
hendrerit tellus pellentesque.

</p>
</ui:define>

</ui:composition>
</body>

</html>

After making the above changes, our template client now renders as follows:

As we can see, creating Facelets templates and template clients with NetBeans is a
breeze.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[167]

Composite components
A very nice JSF 2.0 feature is the ability to easily write custom JSF components. With
JSF 2, creating a custom component involves little more than creating the markup for
it, with no Java code or configuration needed. Since custom components are typically
composed of other JSF components, they are referred to as composite components.

We can generate a composite component by clicking on File | New, selecting the
JavaServer Faces category and the JSF Composite Component file type.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[168]

After clicking on Next >, we can specify the file name, project, and folder for our
custom component.

To take advantage of JSF 2.0's automatic resource handling and conventions, it is
recommended that we don't change the folder where our custom component will
be placed.

When we click on Finish, NetBeans generates an empty composite component
that we can use as a base to create our own.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:cc="http://java.sun.com/jsf/composite">

<!-- INTERFACE -->
<cc:interface>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
</cc:implementation>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[169]

Every JSF 2.0 composite component contains two sections, an interface and an
implementation.

The interface section must be enclosed inside a <cc:interface> tag. In the interface,
we define any attributes that our component will have.

The implementation section contains the markup that will be rendered when we use
our composite component.

In our example, we will develop a simple component which we can use to enter the
addresses. That way, if we have to enter several addresses in an application, we can
encapsulate the logic and/or display in our component. If later we need to change
the address entry (to support international addresses, for example), we only need
to change our component and all address entry forms in our application will be
updated automatically.

After "filling in the blanks", our composite component now looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:cc="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<!-- INTERFACE -->
<cc:interface>

<cc:attribute name="addrType"/>
<cc:attribute name="managedBean" required="true"/>

</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>

<h:panelGrid columns="2">
<f:facet name="header">

<h:outputText value="#{cc.attrs.addrType} Address"/>
</f:facet>
<h:outputLabel for="line1" value="Line 1"/>
<h:inputText id="line1" value="#{cc.attrs.managedBean.
line1}"/>
<h:outputLabel for="line2" value="Line 2"/>
<h:inputText id="line2" value="#{cc.attrs.managedBean.
line2}"/>
<h:outputLabel for="city" value="City"/>
<h:inputText id="city" value="#{cc.attrs.managedBean.
city}"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[170]

<h:outputLabel for="state" value="state"/>
<h:inputText id="state" value="#{cc.attrs.managedBean.
state}" size="2" maxlength="2"/>
<h:outputLabel for="zip" value="Zip"/>
<h:inputText id="zip" value="#{cc.attrs.managedBean.zip}"
size="5" maxlength="5"/>

</h:panelGrid>
</cc:implementation>

</html>

We specify attributes for our component via the <cc:attribute> tag. This tag has a
name attribute used to specify the attribute name, and an optional required attribute
that we can use to specify if the attribute is required.

The body of the <cc:implementation> tag looks almost like plain old JSF markup,
with one exception, by convention, we can access the tag's attributes by using the
#{cc.attrs.ATTRIBUTE_NAME} expression to access the attributes we defined in
the component's interface section. Notice that the managedBean attribute of our
component must resolve to a JSF managed bean. Pages using our component must
use a JSF expression resolving to a managed bean as the value of this attribute.
We can access the attributes of this managed bean by simply using the familiar
.property notation we have used before, the only difference here is that instead of
using a managed bean name in the expression, we must use the attribute name as
defined in the interface section.

Now we have a simple but complete composite component, using it in our pages is
very simple.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html"
xmlns:ezcomp="http://java.sun.com/jsf/composite/ezcomp">

<h:head>
<title>Address Entry</title>

</h:head>
<h:body>

<h:form>
<h:panelGrid columns="1">

<ezcomp:address managedBean="#{addressBean}"
addrType="Home"/>

<h:commandButton value="Submit" action="confirmation"
style="display: block; margin: 0
auto;"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[171]

</h:panelGrid>
</h:form>

</h:body>
</html>

By convention, the namespace for our custom components will always be
xmlns:ezcomp="http://java.sun.com/jsf/composite/ezcomp". This is why it is
important not to override the default folder where our component will be placed, as
doing so breaks this convention. NetBeans provides code completion for our custom
composite components, just like it does for standard components.

In our application, we created a simple managed bean named addressBean. It is a
simple managed bean with a few properties and corresponding getters and setters,
therefore it is not shown (it is part of this chapter's code download). We use this
bean as the value of the managedBean attribute of our component. We also used an
addressType of "Home", this value will be rendered as a header for our address
input component.

After deploying and running our application, we can see our component in action:

As we can see, creating JSF 2.0 composite components with NetBeans is a breeze.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing Web Applications using JavaServer Faces 2.0

[172]

Summary
In this chapter we saw how NetBeans can help us easily create new JSF projects
by automatically adding all required libraries.

We saw how we can quickly create JSF pages by taking advantage of NetBeans'
code completion.

Additionally, we saw how we can significantly save time and effort by allowing
NetBeans to generate JSF 2.0 templates, including generating the necessary CSS to
easily create fairly elegant pages.

Finally, we saw how NetBeans can help us develop JSF 2.0 custom components.

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications
with PrimeFaces

One of the advantages of JSF is that it is very easy to develop custom components.
As such, several open source component libraries have been developed. One of
these component libraries is PrimeFaces. PrimeFaces allows us to develop elegant
web applications with little effort. As of version 7.0, PrimeFaces is bundled with
NetBeans.

Our first PrimeFaces project
To use PrimeFaces in our project, we simply need to create a Java Web application
project as usual. When we pick the JavaServer Faces Framework, we need to click on
the Components tab and select PrimeFaces 2.2.1 as our component suite.

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[174]

When our project is created, NetBeans will add the required libraries to our project,
PrimeFaces tags will autocomplete in our project's JSF pages.

When selecting PrimeFaces as our JSF component suite, NetBeans creates a sample
page using PrimeFaces components when our project is created. The markup for the
file looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:p="http://primefaces.prime.com.tr/ui"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>Facelet Title</title>

</h:head>
<h:body>

<h:form>
<p:commandButton value="Hello from PrimeFaces"

onclick="dlg1.show();" type="button"
/>

<p:dialog header="PrimeFaces Dialog" widgetVar="dlg1"
width="500">
For more information visit <a href="http://primefaces.
org">

http://primefaces.org.
</p:dialog>

</h:form>
</h:body>

</html>

Except for a few PrimeFaces-specific components, the page looks like a regular
Facelets page.

Notice the PrimeFaces namespace, xmlns:p="http://primefaces.prime.com.tr/ui" is
automatically added to the <html> tag. This namespace is necessary in order to use
PrimeFaces components in our pages. By convention, PrimeFaces tags use a prefix of p.

The first PrimeFaces component we see in our page is <p:commandButton>, this
component is similar to the standard JSF command button component, but provides
certain advantages over the standard command button, such as rendering nicely
without us having to manually apply CSS stylesheets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[175]

The other PrimeFaces component we see in our page is <p:dialog>, this component
renders as a popup that can overlay other components on the page. The value of its
widgetVar attribute can be used to access the component from other components on
the page. The Dialog component provides a client-side JavaScript API for this purpose.
The most commonly used functions of this client API are show() and hide(), used to
display or hide the dialog on the page. We can see the client API in action as the value
of the onclick attribute of the commandButton we discussed earlier.

When we run our application, we can see the automatically generated page in action.

When we click on the button, the dialog is displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[176]

Clicking on the link inside the dialog takes us to the PrimeFaces web site.

As we can see, PrimeFaces allows us to create elegant web applications with
very little effort on our part. Next, we will see how to take advantage of several
PrimeFaces components to greatly ease and simplify the work we need to do to
create our web applications.

Using PrimeFaces components in our
JSF applications
In this section, we will discuss how to use some simple PrimeFaces components to
save us work when developing our JSF applications. The following page is a simple
customer data entry page:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[177]

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:p="http://primefaces.prime.com.tr/ui"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">

<ui:composition template="./template.xhtml">
<ui:define name="top">

<h2>Customer Information Data Entry</h2>
</ui:define>

<ui:define name="content">
<h:form>

<p:messages/>
<p:panel header="Enter Customer Information">

<h:panelGrid columns="2">
<h:outputLabel for="firstName" value="First
Name"

styleClass="requiredLbl"/>
<h:inputText id="firstName" label="First Name"

value="#{customer.firstName}"
required="true"/>

<h:outputLabel for="middleName" value="Middle
Name"

styleClass="optionalLbl"/>
<h:inputText id="middleName" label="Middle
Name"

value="#{customer.middleName}"/>
<h:outputLabel for="lastName" value="Last
Name"

styleClass="requiredLbl"/>
<h:inputText id="lastName" label="Last Name"

value="#{customer.lastName}"
required="true"/>

<h:outputLabel for="birthDate" value="Date of
Birth"

styleClass="optionalLbl"/>
<p:calendar id="birthDate"

value="#{customer.birthDate}"
showOn="button"
inputStyle="width:100px;"
navigator="true"/>

<h:panelGroup/>
<p:commandButton

value="Submit"
action="#{customerController.
saveCustomer}"

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[178]

ajax="false"/>
</h:panelGrid>
</p:panel>
</h:form>
</ui:define>
</ui:composition> </
html>

In our example, we took advantage of NetBean's Facelet Template
generation, that way we can get some very nice CSS styles for "free",
refer to the previous chapter for details on NetBeans' Facelets Tem-
plate capabilities.

When we run our project, the above markup is rendered on the browser as shown in
the following screenshot:

The first new PrimeFaces component we used on our page was the <p:messages>
component. This component can be used as a drop-in replacement for the standard
JSF <h:messages> component. The advantage of <p:messages> over <h:messages>
is that with <p:messages>, error messages are nicely formatted by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[179]

Similar to <p:messages>, PrimeFaces has a <p:message> component that can be
used as a drop-in replacement for the standard JSF <h:message> component (not
shown in the example). Just like <h:message>, <p:message> should be used when
we wish to show validation errors next to the field whose value did not validate, as
opposed to showing the message at the top of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[180]

The other new PrimeFaces component we see in this example is <p:calendar>. This
calendar can be used for date input fields. When the user clicks on the icon generated
by this component, a nice calendar widget pops up, where the user can select the
date to enter by pointing and clicking.

The PrimeFaces calendar component is very customizable. By default, it renders as a
text field, and when the user clicks on this text field, the calendar widget pops up. In
our example, we set the showOn attribute to button, this has the effect of rendering
a calendar icon next to the text field, which gives a visual indication that this is a
special field, and also allows users to enter dates manually if they prefer to do so.

By default, the month and year dropdowns are not rendered, this makes it
cumbersome to enter dates that are far in the future or in the past (default day is
always the present date). To get around this, we can set the navigator property to
true like we did in our example.

Additionally, we can control the appearance of the text input field generated by
using the inputStyle or inputStyleClass attributes of <p:calendar>. The
inputStyle attribute value must be a valid inline CSS, where the value of the
inputStyleClass attribute must be the name of a CSS class defined in one of our
CSS stylesheets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[181]

The last new PrimeFaces component we used in our page is <p:commandButton>,
by default, this component renders a button that triggers AJAX requests to update
parts of our page without doing a full page request. This component can also be
used as a drop-in replacement for the standard JSF <h:commandButton> component.
To do this, we need to set its ajax property to false, which is what we did in our
example. The advantage of using <p:commandButton> as a drop-in replacement
for <h:commandButton> is that <p:commandButton> is nicely rendered by default,
without the need for us to create custom CSS styles for our buttons.

When clicking on the button in our example, the user is directed to a confirmation
page.

We didn't use any new PrimeFaces components in the confirmation page, therefore
we won't be discussing it. Its markup can be found in this chapter's download
(confirmation.xhtml).

Tabbed views
Frequently, HTML forms have several fields that would typically result in very
long forms. It is common to divide a form into two or more tabs, that way the page
looks less overwhelming to the user. Normally, creating a page with tabs requires
some HTML and JavaScript tricks, however, PrimeFaces includes a <p:tabView>
component we can use to easily generate tabs, the following example illustrates how
to use this component:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[182]

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:p="http://primefaces.prime.com.tr/ui"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="./template.xhtml">
<ui:define name="top">

<h2>Customer Information Data Entry</h2>
</ui:define>

<ui:define name="content">
<h:form>

<p:messages/>
<h:panelGrid columns="1" style="width: 100%">

<p:tabView>
<p:tab title="Personal Information">

<h:panelGrid columns="2">
<h:outputLabel for="firstName"
value="First Name"

styleClass="requiredLbl"/>
<h:inputText id="firstName"
label="First Name"

value="#{customer.
firstName}"
required="true"/>

<h:outputLabel for="middleName"
value="Middle Name"

styleClass="optionalLbl"/>
<h:inputText id="middleName"
label="Middle Name"

value="#{customer.
middleName}"/>

<h:outputLabel for="lastName"
value="Last Name"

styleClass="requiredLbl"/>
<h:inputText id="lastName" label="Last
Name"

value="#{customer.
lastName}"
required="true"/>

<h:outputLabel for="birthDate"
value="Date of Birth"

styleClass="optionalLbl"/>
<p:calendar id="birthDate"

value="#{customer.
birthDate}"
showOn="button"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[183]

inputStyle="width:100px;"
navigator="true"/>

</h:panelGrid>
</p:tab>
<p:tab title="Address">

<h:panelGrid columns="2">
<h:outputLabel for="line1" value="Line
1"

styleClass="requiredLbl"/>
<h:inputText id="line1"

value="#{customer.
addrLine1}"
required="true"/>

<h:outputLabel for="line2" value="Line
2"

styleClass="optionalLbl"/>
<h:inputText id="line2"

value="#{customer.
addrLine2}"/>

<h:outputLabel for="city" value="City"

styleClass="requiredLbl"/>
<h:inputText id="city"

value="#{customer.
addrCity}"
required="true"/>

<h:outputLabel for="state"
value="State"

styleClass="requiredLbl"/>
<h:selectOneMenu id="state"
required="true"

value="#{customer.addrState}">
<f:selectItem itemValue=""
itemLabel=""/>
<f:selectItem itemValue="AL"

itemLabel="Alabama"/>
<f:selectItem itemValue="AK"

itemLabel="Alaska"/>
<f:selectItem itemValue="AZ"

itemLabel="Arizona"/>
<f:selectItem itemValue="AR"

itemLabel="Arkansas"/>
<!-- other states omitted for

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[184]

brevity -->
</h:selectOneMenu>

<h:outputLabel for="zip" value="Zip"

styleClass="requiredLbl"/>
<h:inputText id="zip"

value="#{customer.
addrZip}"
required="true"/>

</h:panelGrid>
</p:tab>
<p:tab title="Phone Numbers">

<h:panelGrid columns="2">
<h:outputLabel for="homePhone"
value="Home"/>
<p:inputMask id="homePhone"

mask="(999)-999-9999"
value="#{customer.
homePhone}"
size="12"
styleClass="optionalLbl"/>

<h:outputLabel for="mobilePhone"
value="Mobile"/>

<p:inputMask id="mobilePhone"
mask="(999)-999-9999"
value="#{customer.
mobilePhone}"
size="12"
styleClass="optionalLbl"/>

<h:outputLabel for="workPhone"
value="Work"/>
<p:inputMask id="workPhone"

mask="(999)-999-9999"
value="#{customer.
workPhone}"
size="12"
styleClass="optionalLbl"/>

</h:panelGrid>
</p:tab>

</p:tabView>
<p:commandButton

value="Submit"
action="#{customerController.saveCustomer}"
ajax="false"/>

</h:panelGrid>
</h:form>

</ui:define>
</ui:composition>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[185]

As we can see in the above example, the root component for a tabbed interface is
<p:tabView>; nested inside this component there must be one or more <p:tab>
components. Each <p:tab> contains the input fields that will be in the corresponding
tab. <p:tab> has a title attribute that will be rendered as the title for the tab.

When we execute our project we can see the tab component in action.

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[186]

By clicking on each tab we can see the corresponding components.

Alert readers may have noticed that we used a new PrimeFaces component in the
third tab. <p:inputMask> allows us to prevent users from entering badly formatted
data. In our example, we used it for every telephone number input field. The
following screenshot shows <p:inputMask> in action:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[187]

As we can see in the screenshot, as soon as the user clicks on an inputMask component,
the expected format is automatically displayed. All the user needs to do is "fill in the
blanks" to have the input correctly formatted. In our case, we are expecting a phone
number in the format (xxx)xxx-xxxx, where x is an integer value. When we define
our mask, the number 9 represents any numeric value, the letter a represents any
alphabetic character, and the asterisk (*) represents an alphanumeric character.

For our formatting, we gave the mask an attribute of <p:inputMask> the value of
(999)-999-9999, which resulted in the desired mask.

As we can see, using <p:inputMask> allows us to enforce correctly formatted data
without having to rely on JSF validation.

Back to our tab discussion, when the user clicks on the submit button at the bottom
of the page, data in all tabs is submitted, and is treated as a single <h:form>
submission, at this point, the JSF lifecycle "kicks in" as usual.

Wizard interfaces
In addition to using tabs, another common way of dividing long forms is by using
wizards. Wizards are useful whenever we need the users to fill in input fields in a
specific order. In our previous example, we had no way to force the user to enter
address information before entering phone number information. This prevents us
from validating that the phone numbers entered correspond to the geographical area
in the address. To solve this problem we can use a wizard interface, which can be
done easily with the PrimeFaces' <p:wizard> component. The following example
illustrates how to use this component:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:p="http://primefaces.prime.com.tr/ui"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="./template.xhtml">
<ui:define name="top">

<h2>Customer Information Data Entry</h2>
</ui:define>

<ui:define name="content">
<h:form>

<h:panelGrid columns="1" style="width: 100%">

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[188]

<p:wizard>
<p:tab title="Personal Information"

id="personalInfo">
<p:panel header="Personal Information">

<p:messages/>
<h:panelGrid columns="2">

<h:outputLabel for="firstName"
value="First Name"

styleClass="requiredLbl"/>
<h:inputText id="firstName"

label="First Name"
value="#{customer.
firstName}"
required="true"/>

<h:outputLabel for="middleName"
value="Middle Name"

styleClass="optionalLbl"/>
<h:inputText id="middleName"

label="Middle Name"
value="#{customer.
middleName}"
/>

<h:outputLabel for="lastName"
value="Last Name"

styleClass="requiredLbl"/>
<h:inputText id="lastName"

label="Last Name"
value="#{customer.

lastName}"
required="true"/>

<h:outputLabel for="birthDate"
value="Date of

Birth"

styleClass="optionalLbl"/>
<p:calendar id="birthDate"

value="#{customer.
birthDate}"
showOn="button"

inputStyle="width:100px;"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[189]

navigator="true"/>
</h:panelGrid>

</p:panel>
</p:tab>

<!-- Phone Number tab omitted for
brevity →

<p:tab title="Confirmation" id="confirmation">
<p:messages/>
<h:panelGrid columns="2">

<h:outputText value="First Name"

styleClass="optionalLbl"/>
<h:outputText id="firstNameTxt"

value="#{customer.
firstName}" />

<h:outputText value="Middle Name"

styleClass="optionalLbl"/>
<h:outputText id="middleNameTxt"

value="#{customer.
middleName}"/>

<h:outputText value="Last Name"

styleClass="optionalLbl"/>
<h:outputText id="lastNameTxt"

value="#{customer.
lastName}" />

<h:outputText value="Date of Birth"

styleClass="optionalLbl"/>
<h:outputText id="birthDateTxt"

value="#{customer.

formattedBirthDate}" />

<h:outputText value="Home Phone"

styleClass="optionalLbl"/>
<h:outputText id="homePhoneTxt"

value="#{customer.
homePhone}" />

<h:outputText value="Mobile Phone"

styleClass="optionalLbl"/>
<h:outputText id="mobilePhoneTxt"

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[190]

value="#{customer.
mobilePhone}" />
<h:outputText value="Work Phone"
styleClass="optionalLbl"/>
<h:outputText id="workPhoneTxt"
value="#{customer.
workPhone}" />

<h:panelGroup/>
<h:inputHidden value="#{customer.
addrState}"/>
<p:commandButton id="submitButton"
value="Submit"
actionListener=
"#{customerController.saveCustomer}"
ajax="false"/>
</h:panelGrid>
</p:tab>
</p:wizard>
</h:panelGrid>
</h:form>
</ui:define>
</ui:composition> </
html>

Some of the wizard pages or "tabs" in the above example were omitted
for brevity. Refer to the code download for this chapter for the complete
listing.

As we can see, generating a wizard interface with PrimeFaces is easy. All we need to
do is use the <p:wizard> component, then nest a <p:tab> component for each step
in the wizard. Markup inside each <p:tab> component is standard JSF.

In the last tab, we added a <p:commandButton> component to submit the data to
the server The value of the actionListener attribute of the commandButton is a
method in our CustomerController managed bean.

package com.ensode.primefacesdemo.managedbeans;

import java.io.Serializable;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped; im-
port javax.faces.event.ActionEvent; import
javax.faces.application.FacesMessage; import
javax.faces.context.FacesContext;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[191]

@ManagedBean
@SessionScoped
public class CustomerController implements Serializable {

/** Creates a new instance of CustomerController */
public CustomerController() {
}

public void saveCustomer(ActionEvent actionEvent) {
//In a real application, we would save the data,
//In this example we simply show a message.
FacesMessage facesMessage = new FacesMessage(

"Data Saved Successfully");
facesMessage.setSeverity(FacesMessage.SEVERITY_INFO);

FacesContext.getCurrentInstance().addMessage(null,
facesMessage);

}
}

As we can see, the saveCustomer() method simply adds a faces message that is
displayed as a confirmation message in our page. In a real application, we of course
would save the data to a database.

At this point we are ready to see the wizard component in action.

www.it-ebooks.info

http://www.it-ebooks.info/

Elegant Web Applications with PrimeFaces

[192]

Notice that the wizard component automatically adds a Next button at the bottom
right, clicking this button takes us to the next page in the wizard.

As expected, at this point the wizard component generates both a Previous and a
Next button.

As we navigate to the wizard and reach the last page, when we click on the Submit
button we see the confirmation message generated by the saveCustomer() method
in our CustomerController managed bean. This message is rendered by the
<p:messages> components, which takes care of nicely styling it without us having to
explicitly use any CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[193]

More information
In this chapter we only scratched the surface of the PrimeFaces' capabilities. A
PrimeFaces component showcase, illustrating all PrimeFaces components can be
found at http://www.primefaces.org/showcase/ui/home.jsf. For additional
information on PrimeFaces, visit http://www.primefaces.org.

Summary
In this chapter we provided an introduction to the PrimeFaces JSF component library
that has been included with NetBeans since version 7.0. We saw how PrimeFaces
allows us to easily develop elegant looking, AJAX-enabled applications with little
effort. Some of the major PrimeFaces components discussed include the Tab View
component, which allows us to easily divide our pages into tabs. We also saw how
to use the PrimeFaces wizard component, which allow us to easily create wizard like
interfaces in our web applications.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases
through the Java Persistence

API
The Java Persistence API (JPA) is an Object Relational Mapping API. Object
Relational Mapping tools help us automate mapping Java objects to relational
database tables. Earlier versions of J2EE used Entity Beans as the standard approach
for Object Relational Mapping. Entity Beans attempted to keep the data in memory
always synchronized with database data, a good idea in theory, however, in practice
this feature resulted in poorly performing applications.

Several Object Relational Mapping APIs were developed to overcome the limitations
of Entity Beans, such as Hibernate, iBatis, Cayenne, and Toplink among others.

With Java EE 5, Entity Beans were deprecated in favor of JPA. JPA took ideas from
several object relational mapping tools and incorporated them into the standard. As
we will see in this chapter NetBeans has several features that make development
with JPA a breeze.

The following topics will be covered in this chapter:

•	 Creating our first JPA entity
•	 Interacting with JPA entities with EntityManager
•	 Generating forms in JSF pages from JPA entities
•	 Generating JPA entities from an existing database schema
•	 JPA named queries and JPQL
•	 Entity relationships
•	 Generating complete JSF applications from JPA entities

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[196]

Creating our first JPA entity
JPA entities are Java classes whose fields are persisted to a database by the JPA API.
JPA entities are plain old Java objects (POJOs), as such, they don't need to extend any
specific parent class or implement any specific interface. A Java class is designated as
a JPA entity by decorating it with the @Entity annotation.

In order to create and test our first JPA entity, we will be creating a new web
application using the JavaServer Faces framework, in this example we will name
our application jpaweb, as with all of our examples, we will be using the bundled
GlassFish application server.

Refer to Chapter 4 for instructions on creating a new JSF
project.

To create a new JPA Entity, from the new file dialog select the Persistence category
and Entity Class as the file type.

After doing so, NetBeans presents the New Entity Class wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

At this point, we should specify the values for the Class Name and Package fields
(Customer and com.ensode.jpaweb in our example).

Projects using JPA require a persistence unit. This persistence unit is defined in a
file called persistence.xml. When we create our first JPA entity for the project,
NetBeans detects that no persistence.xml exists and automatically checks the
checkbox labeled Create Persistence Unit. The next step in the wizard allows us to
enter the necessary information to create the persistence unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[198]

The Create Persistence Unit wizard will suggest a name for our persistence unit, in
most cases the default can be safely accepted.

JPA is a specification for which several implementations exist. NetBeans supports
several JPA implementations including EclipseLink, Toplink Essentials, Hibernate,
KODO, and OpenJPA; since the bundled GlassFish application server includes
EclipseLink as its default JPA implementation. It makes sense to take this default
value for the Persistence Provider field when deploying our application to
GlassFish.

Before we can interact with a database from any Java EE application, a database
connection pool and data source need to be created in the application server.

A database connection pool contains connection information that allows us to
connect to our database, such as the server name, port, and credentials. The
advantage of using a connection pool instead of directly opening a JDBC connection
to a database is that database connections in a connection pool are never closed, they
are simply allocated to applications as they need them. This results in performance
improvements since the operations of opening and closing database connections are
expensive in terms of performance.

Data sources allow us to obtain a connection from a connection pool by obtaining an
instance of javax.sql.DataSource via JNDI, then invoking its getConnection()
method to obtain a database connection from a connection pool. When dealing
with JPA, we don't need to directly obtain a reference to a data source, it is all done
automatically by the JPA API, but we still need to indicate the data source to use in
the application's Persistence Unit.

NetBeans comes with a few data sources and connection pools pre-configured,
we could use one of these pre-configured resources for our application. However,
NetBeans also allows us to create these resources "on the fly", which is what we will
be doing in our example.

To create a new data source we need to select the New Data Source... item from the
Data Source combo box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[199]

A data source needs to interact with a database connection pool. NetBeans comes
preconfigured with a few connection pools out of the box, but just as with data
sources, it allows us to create a new connection pool "on demand". In order to do
this, we need to select the New Database Connection... item from the Database
Connection combo box.

NetBeans includes JDBC drivers for a few Relational Database Management
Systems (RDBMS) such as JavaDB, HSQLDB, MySQL, PostgreSQL and Oracle
"out of the box". JavaDB is bundled with both GlassFish and NetBeans, therefore
we picked JavaDB for our example, and this way we avoid having to install an
external RDBMS.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[200]

For RDBMS systems that are not supported out-of-the-box, we need to
obtain a JDBC driver and let NetBeans know of its location by selecting
New Driver from the Name combo box. We then need to navigate to the
location of a JAR file containing the JDBC driver. Consult your RDBMS
documentation for details.

JavaDB is installed in our workstation, therefore the server name to use is
localhost. By default, JavaDB listens to port 1527, therefore that is the port we
specify in the URL. We wish to connect to a database called jpaintro, therefore
we specify it as the database name. Since the jpaintro database does not exist yet,
we pass the attribute create=true to JavaDB, this attribute is used to create the
database if it doesn't exist yet. The user name and password we specify above will
be automatically added to the newly created schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

Every JavaDB database contains a schema named APP, since each user by default
uses a schema named after his/her own login name. The easiest way to get going
is to create a user named APP and select a password for this user.

Once we have created our new data source and connection pool, we can continue
configuring our persistence unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[202]

It is a good idea to leave the Use Java Transaction APIs checkbox checked. This will
instruct our JPA implementation to use the Java Transaction API (JTA) to allow the
application server to manage transactions. If we uncheck this box, we will need to
manually write the code to manage transactions.

Most JPA implementations allow us to define a table generation strategy. We can
instruct our JPA implementation to create tables for our entities when we deploy
our application, to drop the tables then regenerate them when our application is
deployed, or not create any tables at all. NetBeans allows us to specify the table
generation strategy for our application by clicking the appropriate value in the
Table Generation Strategy radio button group.

When working with a newly created development database, it is a good
idea to select the Drop and Create table generation strategy. This will
allow us to add, remove, and rename fields in our JPA entity at will
without having to make the same changes in the database schema. When
selecting this table generation strategy, tables in the database schema will
be dropped and recreated every time we deploy our application, therefore
any data previously persisted will be lost.

Once we have created our new data source, database connection, and persistence
unit, we are ready to create our new JPA entity.

We can do so by simply clicking on the Finish button. At this point NetBeans
generates the source for our JPA entity.

JPA allows the primary field of a JPA entity to map to any column
type (VARCHAR, NUMBER, etc). It is a best practice to have
a numeric surrogate primary key, that is, a primary key that
serves only as an identifier and has no business meaning in the
application. Selecting the default Primary Key Type of long will
allow for a wide range of values to be available for the primary
keys of our entities.

package com.ensode.jpaweb;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Customer implements Serializable {
private static final long serialVersionUID = 1L;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

public Long getId() {
return id;
}

public void setId(Long id) {
this.id = id;
}

//Other generated methods (equals(), hashCode(), toString())
omitted for brevity
}

As we can see, a JPA entity is a standard Java object, there is no need to extend any
special class or implement any special interface. What differentiates a JPA entity
from other Java objects are a few JPA-specific annotations.

The @Entity annotation is used to indicate that our class is a JPA entity. Any object
we want to persist to a database via JPA must be annotated with this annotation.

The @Id annotation is used to indicate what field in our JPA entity is its primary key.
The primary key is a unique identifier for our entity. No two entities may have the
same value for their primary key field. This annotation can be placed just above the
getter method for the primary key class, this is the strategy that the NetBeans wizard
follows; it is also correct to specify the annotation right above the field declaration.

The @Entity and the @Id annotations are the bare minimum two annotations that
a class needs in order to be considered a JPA entity. JPA allows primary keys to
be automatically generated. In order to take advantage of this functionality, the @
GeneratedValue annotation can be used, as we can see, the NetBeans generated JPA
entity uses this annotation. This annotation is used to indicate the strategy to use to
generate primary keys. All possible primary key generation strategies are listed in
the following table:

Primary Key Generation Strategy Description
GenerationType.AUTO Indicates that the persistence provider will

automatically select a primary key generation strategy.
Used by default if no primary key generation strategy
is specified.

GenerationType.IDENTITY Indicates that an identity column in the database table
the JPA entity maps to must be used to generate the
primary key value.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[204]

Primary Key Generation Strategy Description
GenerationType.SEQUENCE Indicates that a database sequence should be used to

generate the entity's primary key value.
GenerationType.TABLE Indicates that a database table should be used to

generate the entity's primary key value.

In most cases, the GenerationType.AUTO strategy works properly, therefore it is
almost always used, for this reason the New Entity Class wizard uses this strategy.

When using the sequence or table generation strategies, we might have to
indicate the sequence or table used to generate the primary keys. These can
be specified by using the @SequenceGenerator and @TableGenerator
annotations, respectively. Consult the Java EE 6 JavaDoc at http://
download.oracle.com/javaee/6/api/ for details.

Adding persistent fields to our entity
At this point, our JPA entity contains a single field, its primary key, admittedly not
very useful. We need to add a few fields to be persisted to the database.

package com.ensode.jpaweb;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Customer implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;
private String firstName;
private String lastName;

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getFirstName() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

return firstName;
}

public void setFirstName(String firstName) {
this.firstName = firstName;
}

public String getLastName() {
return lastName;
}

public void setLastName(String lastName) {
this.lastName = lastName;
} }

In this modified version of our JPA entity, we added two fields to be persisted to
the database; firstName will be used to store the user's first name, lastName will
be used to store the user's last name. JPA entities need to follow standard JavaBean
coding conventions, this means that they must have a public constructor that takes
no arguments (one is automatically generated by the Java compiler if we don't spec-
ify any other constructors), and all fields must be private, and accessed through
getter and setter methods.

Automatically generating getters and setters
In NetBeans, getter and setter methods can be generated automatically,
simply declare new fields as usual then use the "insert code" keyboard
shortcut (default is alt+insert) then select Getter and Setter from the
resulting pop up window, then click on the check box next to the class
name to select all fields, then click on the Generate button.

Before we can use JPA persist our entity's fields into our database, we need to write
some additional code.

Creating a DAO
It is a good idea to follow the Data Access Object (DAO) design pattern whenever
we write code that interacts with a database. The DAO design patterns keep all
database access functionality in DAO classes. This has the benefit of creating a clear
separation of concerns, leaving other layers in our application, such as the user
interface logic and the business logic, free of any persistence logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[206]

NetBeans can help us generate JPA controller classes from existing entities. These
JPA controller classes follow the DAO design pattern. To generate a JPA controller
class, we simply need to select the Persistence category and select the JPA Controller
Classes from Entity Classes file type from the New File dialog.

In the next step in the wizard, we need to select the entity classes we wish to
generate JPA controller classes for.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[207]

We then need to specify the project and package for our JPA controller classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[208]

After clicking Finish, our JPA controller class is successfully generated.

package com.ensode.jpaweb;

import com.ensode.jpaweb.exceptions.NonexistentEntityException;
import java.io.Serializable;
import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Query;
import javax.persistence.EntityNotFoundException;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;
import javax.transaction.UserTransaction;

public class CustomerJpaController implements Serializable {

public CustomerJpaController(UserTransaction utx,
EntityManagerFactory emf) {

this.utx = utx;
this.emf = emf;

}
private UserTransaction utx = null;
private EntityManagerFactory emf = null;

public EntityManager getEntityManager() {
return emf.createEntityManager();

}

public void create(Customer customer) {
EntityManager em = null;
try {

em = getEntityManager();
em.getTransaction().begin();
em.persist(customer);
em.getTransaction().commit();

} finally {
if (em != null) {

em.close();
}

}
}

public void edit(Customer customer) throws
NonexistentEntityException, Exception {

EntityManager em = null;
try {

em = getEntityManager();
em.getTransaction().begin();
customer = em.merge(customer);
em.getTransaction().commit();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[209]

} catch (Exception ex) {
String msg = ex.getLocalizedMessage();
if (msg == null || msg.length() == 0) {

Long id = customer.getId();
if (findCustomer(id) == null) {

throw new NonexistentEntityException(
"The customer with id " + id +
" no longer exists.");

}
}
throw ex;

} finally {
if (em != null) {

em.close();
}

}
}

public void destroy(Long id) throws NonexistentEntityException {
EntityManager em = null;
try {

em = getEntityManager();
em.getTransaction().begin();
Customer customer;
try {

customer = em.getReference(Customer.class, id);
customer.getId();

} catch (EntityNotFoundException enfe) {
throw new NonexistentEntityException("The customer
with id " + id +
" no longer exists.", enfe);

}
em.remove(customer);
em.getTransaction().commit();

} finally {
if (em != null) {

em.close();
}

}
}

public List<Customer> findCustomerEntities() {
return findCustomerEntities(true, -1, -1);

}
public List<Customer> findCustomerEntities(int maxResults,

int firstResult) {
return findCustomerEntities(false, maxResults, firstResult);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[210]

private List<Customer> findCustomerEntities(boolean all,
int maxResults, int firstResult) {

EntityManager em = getEntityManager();
try {

CriteriaQuery cq = em.getCriteriaBuilder().createQuery();
cq.select(cq.from(Customer.class));
Query q = em.createQuery(cq);
if (!all) {

q.setMaxResults(maxResults);
q.setFirstResult(firstResult);

}
return q.getResultList();

} finally {
em.close();

}
}

public Customer findCustomer(Long id) {
EntityManager em = getEntityManager();
try {

return em.find(Customer.class, id);
} finally {

em.close();
}

}

public int getCustomerCount() {
EntityManager em = getEntityManager();
try {

CriteriaQuery cq = em.getCriteriaBuilder().createQuery();
Root<Customer> rt = cq.from(Customer.class);
cq.select(em.getCriteriaBuilder().count(rt));
Query q = em.createQuery(cq);
return ((Long) q.getSingleResult()).intValue();

} finally {
em.close();

}
}

}

As we can see, NetBeans generates methods to create, read, update, and delete
JPA entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[211]

The method to create a new entity is called create(), it takes an instance of our JPA
entity as its sole argument. This method simply invokes the persist() method on
EntityManager, that takes care of persisting the data on the JPA entity to the database.

For reading, several methods are generated, the findCustomer() method takes the
primary key of the JPA entity we wish to retrieve as its sole parameter, then invokes
the find() method on EntityManager to retrieve the data from the database
and returns an instance of our JPA entity. Several overloaded versions of the
findCustomerEntities() method are generated, these methods allow us to retrieve
more than one JPA entity from the database. The version of this method that does all
the "real work" is the one containing the following signature:

private List<Customer> findCustomerEntities(boolean all, int
maxResults, int firstResult)

The first parameter is a Boolean that we can use to indicate if we want to retrieve
all values in the database. The second parameter allows us to specify the maximum
number of results we wish to retrieve, and the last parameter allows us to indicate
the first result we wish to retrieve. This method uses the Criteria API that was
introduced in JPA 2.0 to build a query programmatically. If the value of the all
parameter is false, then this method sets the maximum number of results and the
first results by passing the appropriate parameters to the setMaxResults() and
setFirstResult() method in the Query object.

The method to update existing entities is called edit(), it takes an instance of
our JPA entity as its sole parameter. This method invokes the merge() method on
EntityManager, which updates the data in the database with the data in the JPA
entity it receives as a parameter.

The method to delete an entity is called destroy(), it takes the primary key of
the object to delete as its sole parameter. It first checks to see if the object exists in
the database, if it doesn't, this method throws an exception, otherwise, it deletes
the corresponding row from the database by invoking the remove() method on
EntityManager.

At this point we have all the code we need to persist our entity's properties in the
database, all we need to do to perform CRUD operations involving our JPA entity
is invoke methods on the generated JPA controller from our code.

Automated Generation of JPA Entities
In many projects, we will be working with an existing database schema created
by a database administrator. NetBeans can generate JPA entities from an existing
database schema, saving us a lot of potentially tedious work.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[212]

In this section, we will be using a custom database schema, in order to create
the schema, we need to execute an SQL script that will create the schema and
populate some of its tables. In order to do this, we need to go to the Services
window, right-click on JavaDB, then select Create Database....

We then need to add the database information in the Create Java DB Database
wizard.

At this point, we can open the SQL script by going to File | Open File..., then
navigating to its location on our disk and opening it.

The file name of our script is create_populate_tables.sql, it is
included as part of the source bundle for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[213]

Once we have opened the SQL script, we need to select our newly created connection
from the Connection combo box, then click on the following icon to execute it:

Our database will now have a number of tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[214]

To generate JPA entities from an existing schema such as the one we just created,
we need to create a new project, then right-click on the project, and then select the
Persistence category and the Entity Classes from Database file type from the New
File dialog.

NetBeans allows us to generate JPA entities from pretty much any kind of
Java project, in our example we will be using a Web Application project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[215]

At this point we can either select an existing data source, or, as we did in the
previous example, create one "on the fly". In our example we created a new one,
then selected the database connection we created earlier in this section.

Once we have created or selected our data source, we need to select one or more
tables to generate our JPA entities. If we wish to create JPA entities for all tables, we
can simply click on the Add All>> button.

After clicking on Next>, NetBeans gives us the opportunity to change the names
of the generated classes, although the defaults tend to be sensible. We should also
specify a package for our classes, and it is a good idea to check the Generate Named
Query Annotations for Persistent Fields checkbox. We can also optionally generate
JAXB (Java API for XML Binding) annotations and create a persistence unit.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[216]

Named Queries are explained in detail in the next subsection.

In the next screen in the wizard, we can select how associated entities will be fetched
(eagerly or lazily), by default. The default behavior is selected, which is to fetch "one
to one" and "many to one" relationships eagerly, and "one to many" and "many to
many" relationships lazily.

Additionally, we can select what collection type to use for the "many" side of a
"one to many" or "many to many" relationship. The default value is java.util.
Collection, other valid values are java.util.List and java.util.Set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[217]

Checking the Fully Qualified Database Table Names checkbox results in adding the
catalog and schema elements of the table being mapped to the @Table annotation for
each generated entity.

Checking the Attributes for Regenerating Tables results in the generated @Column
annotations having attributes such as length, which specifies the maximum length
allowed in the column; nullable, which specifies if null values are allowed in the
column; precision and scale, which specify the precision and scale of decimal
values, respectively. Checking this attribute also adds the uniqueConstraints
attribute to the generated @Table annotation to specify any unique constraints
that apply to the table, if necessary. When clicking on Finish, NetBeans generates
JPA entities for all tables in the database. Our database contained a table named
CUSTOMER table, let's take a look at the generated Customer JPA entity.

package com.ensode.jpa;

//imports removed for brevity
@Entity
@Table(name = "CUSTOMER")
@NamedQueries({

@NamedQuery(name = "Customer.findAll",
query = "SELECT c FROM Customer c"),

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[218]

@NamedQuery(name = "Customer.findByCustomerId",
query = "SELECT c FROM Customer c WHERE c.customerId =

:customerId"),
@NamedQuery(name = "Customer.findByFirstName",
query = "SELECT c FROM Customer c WHERE c.firstName =

:firstName"),
@NamedQuery(name = "Customer.findByMiddleName",
query = "SELECT c FROM Customer c WHERE c.middleName =

:middleName"),
@NamedQuery(name = "Customer.findByLastName",
query = "SELECT c FROM Customer c WHERE c.lastName = :lastName"),
@NamedQuery(name = "Customer.findByEmail",
query = "SELECT c FROM Customer c WHERE c.email = :email")})

public class Customer implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@Basic(optional = false)
@NotNull
@Column(name = "CUSTOMER_ID")
private Integer customerId;
@Size(max = 20)
@Column(name = "FIRST_NAME")
private String firstName;
@Size(max = 20)
@Column(name = "MIDDLE_NAME")
private String middleName;
@Size(max = 20)
@Column(name = "LAST_NAME")
private String lastName;
//@Pattern(regexp="[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.

[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?", message="Invalid email")//
if the field contains email address consider using this annotation to
enforce field validation

@Size(max = 30)
@Column(name = "EMAIL")
private String email;
@OneToMany(mappedBy = "customerId")
private Collection<CustomerOrder> customerOrderCollection;
@OneToMany(mappedBy = "customerId")
private Collection<Address> addressCollection;
@OneToMany(mappedBy = "customerId")
private Collection<Telephone> telephoneCollection;

//Constructors, getters, setters and other automatically generated

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[219]

//methods (equals,() hashCode() and toString() omitted for
brevity.
}

As we can see, NetBeans generates a class decorated with the @Entity annotation,
that marks the class as a JPA entity. Notice that NetBeans automatically decorated
one of the fields with the @Id annotation, based on the primary key constraint in
the table used to generate the JPA entity. Notice that no primary key generation
strategy is used, we either need to populate the primary key ourselves, or add the
@GeneratedValue annotation manually.

Notice the @Table annotation, this is an optional annotation that indicates what table
our JPA entity maps to. If the @Table annotation is not used, then our entity will map
to a table having the same name as the entity class (case insensitive). In our particular
example, the @Table annotation is redundant, but there are cases where it is useful.
For example, some database schemas have tables named in plural (i.e. CUSTOMERS),
but it makes sense to name our entities in singular (Customer). Additionally, the
standard naming convention for database tables containing more than one word is to
use underscores to separate words (i.e. CUSTOMER_ORDER) where in Java the standard
is to use camel case (i.e. CustomerOrder), the @Table annotation allows us to follow
established naming standards in both the relational database and the Java worlds.

Named Queries and JPQL
Next, we see the @NamedQueries annotation (this annotation is only generated if we
click on the Generate Named Query Annotations for Persistent Fields checkbox
of the New Entity Classes from Database wizard). This query contains a value
attribute (the attribute name can be omitted from the code since it is the only
attribute in this annotation). The value of this attribute is an array of @NamedQuery
annotations, the @NamedQuery annotation has a name attribute, which is used to give
it a logical name (by convention, the JPA entity name is used as part of the query
name, as we can see in the generated code, the New Entity Classes from Database
wizard follows this convention), and a query attribute, which is used to define a Java
Persistence Query Language (JPQL) query to be executed by the named query. JPQL
is a JPA-specific query language, its syntax is similar to SQL. The New Entity Classes
from Database wizard generates a JPQL query for each field in our entity. When the
query is executed, a List containing all instances of our entity that match the criteria
in the query will be returned. The following code snippet illustrates this process.

import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.Query;

public class CustomerDAO {

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[220]

public List findCustomerByLastName(String someLastName)
{

//code to lookup EntityManager omitted for brevity

Query query =
em.createNamedQuery("Customer.findByLastName");

query.setParameter("lastName", someLastName);
List resultList = query.getResultList();
return resultList;

}
}

Here we see a DAO object containing a method that will return a list of Customer
entities for customers whose last name equals the one provided in the method's
parameter. In order to implement this, we need to obtain an instance of an object of
type javax.pesistence.Query, as we can see in the above code snippet, this can
be accomplished by invoking the createNamedQuery() method in EntityManager,
passing the query name (as defined in the @NamedQuery annotation) as a parameter.
Notice that the named queries generated by the NetBeans wizard contain strings
preceded by a colon (:). These strings are named parameters, named parameters are
"placeholders" we can use to substitute for appropriate values.

In our example, we set the lastName named parameter in JPQL query with the
someLastName argument passed to our method.

Once we have populated all parameters in our query, we can obtain a List of all
matching entities by invoking the getResultList() method in our Query object.

Going back to our generated JPA entity, notice that the wizard automatically placed
the @Id annotation in the field mapping to the table's primary key. Additionally, each
field is decorated with the @Column annotation, which allows us to follow standard
naming conventions in both the relational database and Java worlds. In addition to
allowing us to specify what column each field maps to, the @Column annotation has
a nullable attribute that allows us to specify if the column accepts null values or
not. As we can see, the wizard automatically sets nullable to false for the entity's
primary key field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[221]

Bean Validation
Bean validation, comes from Java Specification Request (JSR) 303, is a new addition
to the Java EE specification. Bean validation is implemented as a set of annotations
in the javax.validation package. The NetBeans JPA generation wizard takes
full advantage of Bean Validation, adding Bean Validation annotations to any
appropriate fields based on the column definitions of the tables we are using to
generate our entities.

In our Customer entity, we see some Bean Validation annotations. The customerId
field is decorated with the @NotNull annotation, which, as its name implies, prevents
the field from accepting a null value.

Several fields in the Customer entity are decorated with the @Size annotation. This
annotation specifies the maximum number of characters a bean's property may
accept. Again the NetBeans wizard obtains this information from the tables used to
generate our entity.

Another Bean Validation annotation we can use is the @Pattern annotation. This
annotation is meant to make sure that the value of the decorated field matches a
given regular expression.

Notice that right above the email property of the Customer annotation, the wizard
added the @Pattern annotation and commented it out. The reason for this is that
the wizard noticed that the name of the table column was EMAIL, and suspected
(but couldn't verify), that this table is meant to store email addresses. Therefore
the wizard added the annotation with a regular expression used to match email
addresses, but since it couldn't be sure that this table is indeed meant to store email
addresses, it commented out this line of code. This property is indeed meant to store
email addresses, therefore we should uncomment this automatically generated line.

Entity Relationships
There are several annotations we can use in JPA entities to define relationships
between them. In our Customer entity shown above, we can see that the wizard
detected several one to many relationships in the CUSTOMER table, and automatically
added the @OneToMany annotation to define these relationships in our entity. Notice
that each field annotated with the @OneToMany annotation is of type java.util.
Collection, the Customer is the "one" side of the relationship, since a customer can
have many orders, many addresses (street, mail, etc), or many telephone numbers
(home, work, cell, etc.). Notice that the wizard uses generics to specify the type of
objects we can add to each collection. Objects in these collections are the JPA entities
mapping to the corresponding tables in our database schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[222]

Notice that @OneToMany annotation has a mappedBy attribute, this attribute is
necessary since each of these relationships is bi-directional (we can access all
addresses for a customer, and for a given address, we can obtain what customer it
belongs to). The value of this attribute must match the name of the field on the other
side of the relationship. Let's take a look at the Address entity to illustrate the other
side of the customer-address relationship.

package com.ensode.jpa;

//imports omitted for brevity

@Entity
@Table(name = "ADDRESS")
@NamedQueries({

@NamedQuery(name = "Address.findAll",
query = "SELECT a FROM Address a"),
@NamedQuery(name = "Address.findByAddressId",
query = "SELECT a FROM Address a WHERE a.addressId = :addressId"),
@NamedQuery(name = "Address.findByAddrLine1",
query = "SELECT a FROM Address a WHERE a.addrLine1 = :addrLine1"),
@NamedQuery(name = "Address.findByAddrLine2",
query = "SELECT a FROM Address a WHERE a.addrLine2 = :addrLine2"),
@NamedQuery(name = "Address.findByCity",
query = "SELECT a FROM Address a WHERE a.city = :city"),
@NamedQuery(name = "Address.findByZip",
query = "SELECT a FROM Address a WHERE a.zip = :zip")})

public class Address implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@Basic(optional = false)
@NotNull
@Column(name = "ADDRESS_ID")
private Integer addressId;
@Size(max = 100)
@Column(name = "ADDR_LINE_1")
private String addrLine1;
@Size(max = 100)
@Column(name = "ADDR_LINE_2")
private String addrLine2;
@Size(max = 100)
@Column(name = "CITY")
private String city;
@Size(max = 5)
@Column(name = "ZIP")
private String zip;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[223]

@JoinColumn(name = "US_STATE_ID",
referencedColumnName = "US_STATE_ID")
@ManyToOne
private UsState usStateId;
@JoinColumn(name = "CUSTOMER_ID",
referencedColumnName = "CUSTOMER_ID")
@ManyToOne
private Customer customerId;
@JoinColumn(name = "ADDRESS_TYPE_ID",
referencedColumnName = "ADDRESS_TYPE_ID")
@ManyToOne
private AddressType addressTypeId;

//constructors, getters, setters, equals(), hashCode() and
toString()
//methods deleted for brevity. }

Notice that the Address entity has a customerId field, this field is of type Customer,
the entity we were just discussing.

We admit that a more appropriate name for this field would have been
customer, the New Entity Classes from Database names the field based
on the column name in the database. This is one small disadvantage of
using the wizard to generate JPA entities. Of course we are free to rename
the field and the corresponding getter and setter methods, additionally;
we would have to change the value of the mappedBy attribute of the @
OneToMany annotation on the other side of the relationship.

Noticed that the field is decorated with a @ManyToOne annotation. This annotation
marks the "many" side of the one to many relationship between Customer and
Address. Notice that the field is also decorated with the @JoinColumn annotation.
The name attribute of this annotation indicates the column in the database our entity
maps to that defines the foreign key constraint between the ADDRESS and CUSTOMER
tables. The referencedColumnName attribute of @JoinColumn is use to indicate the
primary key column of the table on the "one" side of the relationship (CUSTOMER, in
our case).

In addition to one-to-many and many-to-one relationships, JPA provides annotations
to denote many-to-many, and one-to-one relationships. In our schema, we have
many-to-many relationships between the CUSTOMER_ORDER and ITEM tables, since an
order can have many items, and an item can belong to many orders.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[224]

The table to hold orders was named CUSTOMER_ORDER since the word
"ORDER" is a reserved word in SQL.

Let's take a look at the CustomerOrder JPA entity to see how the many-to-many
relationship is defined:

package com.ensode.jpa;

//imports deleted for brevity
@Entity
@Table(name = "CUSTOMER_ORDER")
@NamedQueries({
@NamedQuery(name = "CustomerOrder.findAll",
query = "SELECT c FROM CustomerOrder c"),
@NamedQuery(name = "CustomerOrder.findByCustomerOrderId",
query = "SELECT c FROM CustomerOrder c WHERE "
+ "c.customerOrderId = :customerOrderId"),
@NamedQuery(name = "CustomerOrder.findByOrderNumber",
query = "SELECT c FROM CustomerOrder c WHERE "
+ "c.orderNumber = :orderNumber"),
@NamedQuery(name = "CustomerOrder.findByOrderDescription",
query = "SELECT c FROM CustomerOrder c WHERE "
+ "c.orderDescription = :orderDescription")}) public
class CustomerOrder implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@Basic(optional = false)
@NotNull
@Column(name = "CUSTOMER_ORDER_ID")
private Integer customerOrderId;
@Size(max = 10)
@Column(name = "ORDER_NUMBER")
private String orderNumber;
@Size(max = 200)
@Column(name = "ORDER_DESCRIPTION")
private String orderDescription;
@JoinTable(name = "ORDER_ITEM", joinColumns = {
@JoinColumn(name = "CUSTOMER_ORDER_ID",
referencedColumnName = "CUSTOMER_ORDER_ID")},
inverseJoinColumns = {
@JoinColumn(name = "ITEM_ID",
referencedColumnName = "ITEM_ID")})
@ManyToMany

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[225]

private Collection<Item> itemCollection;
@JoinColumn(name = "CUSTOMER_ID",
referencedColumnName = "CUSTOMER_ID")
@ManyToOne
private Customer customerId;

//constructors, getters, setters, equals(), hashCode(), toString()
//omitted for brevity

}

Notice that the CustomerOrder entity has a property of type java.util.Collection
named itemCollection. This property holds all items for the order. Notice that
the field is decorated with the @ManyToMany annotation, this annotation is used to
declare a many-to-many relationship between the CustomerOrder and Item JPA
entities. Notice that the field is also annotated with the @JoinTable annotation, this
annotation is necessary since a join table is necessary in a database schema whenever
there is a many-to-many relationship between tables. Using a join table allows us to
keep the data in the database normalized.

The @JoinTable annotation allows us to specify the table in the schema that is
used to denote the many-to-many relationship in the schema. The value of the
name attribute of @JoinTable must match the name of the join table in the schema.
The value of the joinColumns attribute of @JoinColumn must be the foreign key
relationship between the join table and the owning side of the relationship. We
already discussed the @JoinColumn annotation when discussing one-to-many
relationships. In this case, its name attribute must match the name of the column in
the join table that has the foreign key relationship, and its referencedColumnName
attribute must indicate the name of the primary key column on the owning side of
the relationship. The value of the inverseJoinColumns attribute of @JoinTable
has a similar role as its joinColumns attribute, except it indicates the corresponding
columns for the non-owning side of the relationship.

The side of the many-to-many relationship containing the above annotations is
said to be the owning side of the relationship. Let's look at how the many-to-many
relationship is defined in the non-owning side of the relationship, which, in our case
is the Item JPA entity.

package com.ensode.jpa;

//imports omitted for brevity

@Entity
@Table(name = "ITEM")
@NamedQueries({

@NamedQuery(name = "Item.findAll",
query = "SELECT i FROM Item i"),
@NamedQuery(name = "Item.findByItemId",

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[226]

query = "SELECT i FROM Item i WHERE "
+ "i.itemId = :itemId"),
@NamedQuery(name = "Item.findByItemNumber",
query = "SELECT i FROM Item i WHERE "
+ "i.itemNumber = :itemNumber"),
@NamedQuery(name = "Item.findByItemShortDesc",
query = "SELECT i FROM Item i WHERE "
+ "i.itemShortDesc = :itemShortDesc"),
@NamedQuery(name = "Item.findByItemLongDesc",
query = "SELECT i FROM Item i WHERE "
+ "i.itemLongDesc = :itemLongDesc")})

public class Item implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@Basic(optional = false)
@NotNull
@Column(name = "ITEM_ID")
private Integer itemId;
@Size(max = 10)
@Column(name = "ITEM_NUMBER")
private String itemNumber;
@Size(max = 100)
@Column(name = "ITEM_SHORT_DESC")
private String itemShortDesc;
@Size(max = 500)
@Column(name = "ITEM_LONG_DESC")
private String itemLongDesc;
@ManyToMany(mappedBy = "itemCollection")
private Collection<CustomerOrder> customerOrderCollection;

//constructors, getters, setters, equals() and hashCode()
//methods omitted for brevity.

}

As we can see, the only thing we need to do on this side of the relationship is to
create a Collection property, decorate it with the @ManyToMany annotation, and
specify the property name in the other side of the relationship as the value of its
mappedBy attribute.

In addition to one-to-many and many-to-many relationships, it is possible to create
one-to-one relationships between JPA entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[227]

The annotation to use to indicate a one-to-one relationship between two JPA entities
is @OneToOne. Our schema doesn't have any one-to-one relationship between tables,
therefore this annotation was not added to any of the entities generated by the
wizard.

One-to-one relationships are not very popular in database
schemas, all data in a single entity is typically kept in a single
table, since nevertheless JPA supports one-to-one relationships
in case it is needed.

The procedure to indicate a one-to-one relationship between two entities is similar
to what we have already seen. The owning side of the relationship must have a field
of the type of the JPA entity at the other side of the relationship, this field must be
decorated with the @OneToOne and @JoinColumn annotations.

Suppose we had a schema in which a one-to-one relationship was defined between
two tables named PERSON and BELLY_BUTTON, this is a one-to-one relationship since
each person has one belly button and each belly button belongs to only one person
(the reason the schema was modeled this way instead of having the columns relating
to the BELLY_BUTTON table in the PERSON table escapes me, but bear with me, I'm
having a hard time coming up with a good example!).

@Entity
public class Person implements Serializable {
@JoinColumn(name="BELLY_BUTTON_ID")
@OneToOne
private BellyButton bellyButton;

public BellyButton getBellyButton(){
return bellyButton;

}

public void setBellyButton(BellyButton bellyButton){
this.bellyButton = bellyButton;

}
}

If the one-to-one relationship is unidirectional (we can only get the belly button
from the person), this would be all we have to do. If the relationship is bidirectional,
then we need to add the @OneToOne annotation on the other side of the relationship,
and use its mappedBy attribute to indicate the other side of the relationship.

@Entity
@Table(name="BELLY_BUTTON")
public class BellyButton implements Serializable(

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[228]

{
@OneToOne(mappedBy="bellyButton")
private Person person;

public Person getPerson(){
return person;

}
public void getPerson(Person person){

this.person=person;
}

}

As we can see, the procedure to establish one-to-one relationships is very similar to
the procedure that is used to establish one-to-many and many-to-many relationships.

Once we have generated JPA entities from a database, we need to write additional
code containing business and presentation logic, alternatively, we can use NetBeans
to generate code for these two layers.

Generating JSF applications from JPA
entities
One very nice feature of NetBeans is that it allows us to generate JSF applications
that will perform Create, Read, Update, and Delete (CRUD) operations from
existing JPA entities. This feature, combined with the ability to create JPA entities
from an existing database schema as described in the previous section, allows us to
write web applications that interact with a database in record time.

To generate JSF pages from existing JPA entities, we need to right-click on the
project, select File | New File, then select the JavaServer Faces category and
the JSF Pages from Entity Classes file type.

In order for us to be able to generate JSF pages from existing JPA entities,
the current project must be a Web Application project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[229]

After clicking on Next>, we need to select one or more JPA entities. We would
typically want to select all of them, they can easily be selected by clicking on the
Add All>> button.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[230]

The next page in the wizard allows us to specify a package for newly created JSF
managed beans. Two types of classes are generated by the wizard, JPA Controllers
and JSF Classes, we can specify packages for both of these individually.

We are also given the opportunity to specify a folder for the JSF pages to be created,
if we leave this field blank, pages will be created in our project's Web Pages folder.

The value of the Session Bean Package and JSF Classes Package text fields default
to the package where our JPA entities reside. It is a good idea to modify this default
since placing the JSF managed beans in a different package separates the data access
layer classes from the user interface and controller layers of our application. After
clicking on Finish, a complete web application that can perform CRUD operations
will be created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[231]

As we can see, NetBeans generates a folder for each of our entities under the Web
Pages folder of our application. Each of the folders has a Detail, Edit, List, and New
XHTML files. These files are JSF pages using Facelets as their view technology. The
Detail page will display all properties for a JPA entity, the Edit page will allow users
to update information for a specific entity, the List page will display all instances of a
specific entity in the database, and the New page will provide functionality to create
new entities.

The generated application is a standard JSF application. We can execute it by simply
right-clicking on the project and selecting Run. At that point the usual things
happen, the application server is started if it wasn't up already, the application is
deployed, and a web browser window is opened displaying the welcome page for
our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[232]

As we can see, the welcome page contains a link corresponding to each of our JPA
entities. The links will display a table displaying all existing instances of our entity
in the database. When we click on the Show All Customer Items, the following page
is shown:

Since we haven't inserted any data to the database yet, the page displays the message
(No Customer Items Found). We can insert a customer into the database by clicking
on the Create New Customer link.

Notice how an input field is generated for each property in our entity, which in turn
corresponds to a column in the database table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[233]

As we can see, an input field was generated for the primary key field of
our entity. This field is only generated if the JPA entity does not use a
primary key generation strategy.

After entering some information on the page and clicking on the Save link, the data
is saved, or the form is cleared and the message Customer was successfully created.
is shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Databases through the Java Persistence API

[234]

We can see our newly created customer by clicking on Show All Customer Items.

At this point we can see our newly created customer in the list of customers on this
JSP. Notice that the page has links to View, Edit, and Destroy (delete) the entity.

Let's say we would want to add an address for our customer, we could do so by clicking
on the Index link, then clicking on Show All Address Items, then on New Address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[235]

The Address entity is at the "one" end of several one-to-many relationships, notice
how a combo box is generated for each one of the entities at the "many" end. Since
we wish to assign this address to the customer we just added, we attempt to select a
customer from the CustomerId combo box.

A better name could be used for the CustomerId field, the reason this is
the label for the combo box is because it matches the property name on
the Address JPA entity, which in turn could have a better name such
as customer. Recall that all entities on this project were automatically
generated from an existing database schema.

Clicking on the combo box reveals a cryptic, almost undecipherable (from the users'
point of view anyway) label for our customer. The reason we see this label is because
the labels generated for each item in the combo box come from the toString()
method of the entities used to populate it. We can work around this issue by modify-
ing the toString() method so that it returns a user-friendly String suitable to use
as a label.

As we can see, the generated code from NetBeans wizards could certainly use some
tweaking, such as modifying the toString() methods of each JPA entity so that it
can be used as a label, modifying some of the property names on the entities so that
they make more sense to us developers, modifying the labels on the generated JSF
pages so that they are more user-friendly, and last but not least, the pages themselves
are not very visually appealing. It would be a good idea to modify them so that
they don't look so plain. Nevertheless, as we can see we can have a fully working
application completely created by a few clicks of the mouse. This functionality
certainly saves us a lot of time and effort (just don't tell your boss about it).

Summary
In this chapter, we saw the many ways in which NetBeans can help us speed up
development of applications taking advantage of the Java Persistence API (JPA).

We saw how NetBeans can generate new JPA classes with all required annotations
already in place.

Additionally, we covered how NetBeans can automatically generate code to persist
a JPA entity to a database table.

We also covered how NetBeans can generate JPA entities from an existing database
schema, including the automated generation of JPQL named queries and validation.

Finally, we saw how NetBeans can generate a complete JSF application from existing
JPA entities.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business
Tier with Session Beans

Most enterprise applications have a number of common requirements such as
transactions, security, scalability, and so forth. Enterprise JavaBeans (EJBs) allow
application developers to focus on implementing business logic, while not having to
worry about implementing these requirements. There are two types of EJBs, Session
Beans and Message-Driven Beans. In this chapter we will be discussing Session
Beans, this type of EJB greatly simplify server side business logic implementation.
In the next chapter we will discuss Message-Driven Beans, which allow us to easily
implement messaging functionality in our applications.

Previous versions of J2EE included Entity Beans as well, as of Java EE 5,
Entity Beans have been deprecated in favor of the Java Persistence API.

The following topics will be covered in this chapter:

•	 Introduction to Session Beans
•	 Creating a Session Bean with NetBeans
•	 EJB transaction management
•	 Implementing aspect oriented programming with interceptors
•	 EJB timer service
•	 Generating Session Beans from JPA entities

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[238]

Introducing Session Beans
Session Beans encapsulate business logic for enterprise applications. It is a good
idea to use session beans when developing enterprise applications, since we as
application developers can focus on developing business logic, and not worry
worry about other enterprise application requirements such as scalability, security,
transactions, so on.

Even though we as application developers don't directly implement
common enterprise application requirements such as transactions and
security, we can configure these services via annotations.

There are two types of session beans stateless session beans and stateful session
beans. The difference between the two of them is that stateful session beans maintain
conversational state with their client between method invocations, whereas stateless
session beans do not.

Creating a session bean in NetBeans
Session Beans can be created in three types of NetBeans projects, Enterprise
Application, EJB Module, and Web Application. EJB Module projects can contain
only EJBs, whereas Enterprise Application projects can contain EJBs along with their
clients, which can be web applications or "standalone" Java applications. The ability
to add EJBs to web applications is a new feature introduced in Java EE 6. Having this
ability allows us to simplify packaging and deployment of web applications using
EJBs. We can now package the web application code and the EJB code in a single
WAR file, whereas with previous versions of Java EE and J2EE, we had to create an
EAR (Enterprise Application) file.

When deploying enterprise applications to the GlassFish application server included
with NetBeans, it is possible to deploy standalone clients as part of the application
to the application server. These standalone clients are then available via Java Web
Start (http://java.sun.com/products/javawebstart/); this feature also allows us
to easily access EJBs from the client code by using the annotations. True standalone
clients executing outside the application server require JNDI lookups to obtain a
reference to the EJB.

To create an Enterprise Application project, go to File | New Project, select the
Enterprise category, then Enterprise Application:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[239]

After clicking on Next>, we need to enter a project name.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[240]

Usually the defaults for Project Location and Project Folder are sensible; therefore it
makes sense to leave them alone.

In the next screen, we need to select the modules to be included in our enterprise
application. Create EJB Module and Create Web Application Module are selected
by default, in our example we will create an application client module and won't
be creating a web application module, therefore we need to uncheck and check the
corresponding checkboxes.

When choosing to create an application client module, the package of the main class
defaults to the project name, in lowercase. This package name does not conform
to standard Java package naming conventions, that by default start with a domain
name "backwards" (com.companyname for a domain name of companyname.com).
Therefore it is a good idea to modify this default to a value that does conform to the
standard convention.

Once we click on Finish, we should see three new projects in our Project window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

In our example, SessionBeanIntro is our enterprise application project,
SessionBeanIntro-app-client is our application client module, and
SessionBeanIntro-ejb is our EJB module.

We are going to need a Java Class Library project down the line (more on that later),
so we might as well create it now.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[242]

In the next step in the wizard, we simply name our project and click on Finish.

Now that we have created our projects, it is time to create our first session bean.
We can do so by right-clicking on the EJB module and selecting the Enterprise
JavaBeans category and the Session Bean file type from the New File wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[243]

We now need to specify a number of options:

•	 It is a good idea to override the default name given to our session bean.
•	 We need to specify the package for our session bean.
•	 We need to specify the session bean type, stateless, stateful, or singleton:

	° Stateful session beans maintain conversational state with the client
(which simply means that the values of any of their member variables
are in a consistent state between method calls).

	° Stateless session beans don't maintain conversational state, for this
reason they perform better than stateful session beans.

	° Singleton session beans are a new type of session bean introduced in
Java EE 6. A single instance of each singleton session bean is created
when our application is deployed. Singleton session beans are useful
to cache frequently read database data.

•	 We need to specify if our session bean will have a remote interface, which is
used for clients executing in a different JVM than our bean, a local interface,
which is meant for clients running in the same JVM as our bean, or both a
remote and a local interface.

A new feature of Java EE 6 is that local interfaces are optional. Therefore it isn't
necessary to create any interface for our session beans if it will only be accessed by
clients executing in the same JVM.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[244]

Our example bean does not need to maintain a conversational state with its clients,
therefore we should make it a stateless session bean. Its only client will be executing
in a different JVM, therefore we need to create a remote interface, and we don't need
to create a local interface.

When creating a local interface, NetBeans requires us to specify a client library in
which the remote interface will be added. This is the reason we had to create a java
class library earlier. Our client library is selected by default.

After selecting all the appropriate options and clicking on Finish, our session bean
is created in the EJB module project and the remote interface is created in the client
library project.

The generated code for our session bean is simply an empty class with the @
Stateless annotation already added.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[245]

Notice that our bean implements the remote interface, which at this point is an
empty interface with the @Remote annotation added. This annotation was added
because we chose to create a remote interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[246]

The reason we need to have a remote and/or optional local interface is because
session bean clients never invoke the bean's methods directly, instead they obtain a
reference of a class implementing their remote and/or local interface and invoke the
methods on this class. Beginning with Java EE 6, it is no longer necessary to create
a local interface; the application server can generate one automatically when the
application is deployed.

The remote and/or local interface implementation is created automatically by the
EJB container when we deploy our bean. This implementation does some processing
before invoking our session bean's method. Since the methods need to be defined
both on the interface and our bean, typically we would need to add the method
signature to both the bean and its remote and/or local interface. However, when
working with session beans in NetBeans, we can simply right-click on the bean's
source code and select Insert Code | Add Business Method, this will result in the
method being added to both the bean and the remote/local interface.

Doing this results in a window popping up, prompting us for the method name,
return type, parameters, and the interface(s) where the method should be added
(remote and/or local).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[247]

In our example we will add a method named echo that takes a String as a parameter
and returns a String. Since our bean only has a remote interface, the radio buttons
for Local and Both are grayed out.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[248]

After entering the appropriate information, the method is added both to the bean
and its remote interface.

The default implementation will simply return null. For this simple example we will
simply modify it to return the string "echoing:" concatenated with the parameter that
was passed.

At this point we have a simple, but complete stateless session bean.

Accessing the bean from a client
Now it is time to focus our attention to the client. For remote clients, the client project
needs to use the Java Class Library project containing the remote interface.

Adding the class library project is very simple, we simply need to right-click on the
Libraries node in the project and select Add Project....

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[249]

We then need to select the project we want to add as a library.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[250]

The Java Class Library project is now added to the Libraries node or our EJB
client project.

At this point, we are ready to invoke our EJB method. The client code needs to obtain
a reference to an instance of a class implementing the remote interface for our bean.
When using NetBeans, this is very easy, we simply need to right-click on the client
code (com.ensode.sessionbeanintro.Main in the application client project in our
example) and select Insert Code... | Call Enterprise Bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[251]

At this point we are shown a list of all open projects that have EJBs in them. We need
to select the bean we wish to access from one of these projects.

If our bean had both a local and remote interface, we would have been given the
choice to select the appropriate one. However, since it only has a remote interface,
the option to select a local interface is disabled. In our particular example, even if we
had the option of selecting a local interface, the correct option would have been to
select the remote interface since our client will be executing in a different JVM from
the server, and local interfaces are not accessible across JVMs.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[252]

At this point a member variable of type EchoRemote (our bean's remote interface)
is added to the client, this variable is annotated with the @EJB annotation. This
annotation is used to inject the instance of the remote interface at runtime.

In the previous versions of J2EE, it was necessary to perform a JNDI
lookup to obtain a reference to the home interface of the bean, and
then use the home interface to obtain a reference to the remote or local
interface. As we can see, the procedure to obtain a reference to an EJB has
been greatly simplified in Java EE.

Now we simply need to add a call to the echo() method on the remote interface,
and our client will be complete.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[253]

Executing the client
We can execute our client by simply right-clicking on the Enterprise Application
Project and selecting Run. After a few seconds, we should see an information dialog
displaying the output of the session bean's method.

Clients deployed this way take advantage of Java Web Start technology. Java Web
Start Applications run on the client workstation, however, they can be executed
from an URL. The webstart URL for NetBeans enterprise application client
modules defaults to the Enterprise project name, followed by the application client
module name. In our example, the URL would be http://localhost:8080/
SessionBeanIntro/SessionBeanIntro-app-client. We can verify this by
pointing the browser to this URL. The application client will be executed after a
brief wait.

Session bean transaction management
As previously mentioned, one of the advantages of Enterprise JavaBeans is that they
automatically take care of transactions. However, there is still some configuration
that we need to do in order to better control transaction management.

Transactions allow us to execute all the steps in a method or, if one of the steps fails
(for instance, an exception is thrown), roll back the changes made in that method.

Primarily what we need to configure is our bean's behavior if one of its methods is
called while a transaction is in progress. Should the bean's method become part of
the existing transaction? Should the existing transaction be suspended, and a new
transaction created just for the bean's method? We can configure this behavior via
the @TransactionAttribute annotation.

The @TransactionAttribute annotation allows us to control how an EJB's methods
will behave both when invoked while a transaction is in progress, and when invoked
when no transaction is in progress. This annotation has a single value attribute
that we can use to indicate how the bean's method will behave in both of these
circumstances.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[254]

The following table summarizes the different values that we can assign to the
@TransactionAtttibute annotation:

@TransactionAttribute value Method invoked
while a transaction
is in progress

Method invoked while no
transaction is in progress

TransactionAttributeType.
MANDATORY

Method becomes
part of the existing
transaction.

TransactionRequired
Exception is thrown.

TransactionAttributeType.
NEVER

RemoteException
is thrown.

Method is executed without
any transaction support.

TransactionAttributeType.
NOT_SUPPORTED

Client transaction
is temporarily
suspended, the
method is executed
without transaction
support, and then the
client transaction is
resumed.

Method is executed without
any transaction support.

TransactionAttributeType.
REQUIRED

Method becomes
part of the existing
transaction.

A new transaction is created
for the method.

TransactionAttributeType.
REQUIRES_NEW

Client transaction
is temporarily
suspended, a new
transaction is created
for the method,
and then the client
transaction is
resumed.

A new transaction is
created for the method.

TransactionAttributeType.
SUPPORTS

Method becomes
part of the existing
transaction.

Method is executed without
any transaction support.

The @TransactionAttribute annotation can be used to decorate the class
declaration of our Enterprise JavaBean, or it can be used to decorate a single
method. If used to decorate the class declaration, then the declared transaction
behavior will apply to all methods in the bean, where when used to decorate a
single method, the declared behavior will affect only the decorated method. If a
bean has an @TransactionAttribute annotation both at the class level and at
the method level, the method level annotation takes precedence. If no transaction
attribute is specified for a method, then TransactionAttributeType.REQUIRED
attribute is used by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[255]

The following example illustrates how to use this annotation.

package com.ensode.sessionbeanintro.ejb;

import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;

@Stateless
public class EchoBean implements EchoRemote {

@TransactionAttribute(
TransactionAttributeType.REQUIRES_NEW)

public String echo(String saying) {
return "echoing: " + saying;

}
}

As we can see, we simply need to decorate the method to be configured with the @
TransactionAttribute annotation with the appropriate TransactionAttributeType
enumeration constant as a parameter to configure transactions for a single method.
As we mentioned before, if we wish for all of our methods to use the same transaction
strategy, we can place the @TransactionAttribute annotation at the class level.

Implementing aspect oriented
programming with interceptors
Sometimes we wish to execute some logic just before and/or just after a method's
main logic executes. For example, we might want to measure the execution time of a
method to track down performance problems, or we might want to send a message
to a log every time we enter and leave a method, to make it easier to track down
bugs or exceptions.

The most common solution to these kind of problems is to add a little bit of code at
the beginning and end of every method, implementing the logic to profile or log in
each method. This approach has several problems: the logic needs to be implemented
several times, if we later wish to modify or remove the functionality; we need to
modify several methods.

Aspect Oriented Programming is a paradigm that solves the above problems by
providing a way to implement the logic to be executed just before and/or just after a
method's main logic in a separate class. EJB 3.0 introduced the ability to implement
aspect oriented programming via interceptors.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[256]

Implementing aspect oriented programming via interceptors consists of two
steps: coding the interceptor class and decorating the EJBs to be intercepted
with the @Interceptors annotation.

Implementing the interceptor class
An interceptor is a standard Java class, it must have a single method with the
following signature:

@AroundInvoke
public Object methodName(InvocationContext invocationContext) throws
Exception

Notice that the method must be decorated with the @AroundInvoke annotation,
which marks the method as an interceptor method. The InvocationContext
parameter can be used to obtain information from the intercepted method, such as
its name, parameters, the class that declares it, and more. It also has a proceed()
method that is used to indicate when to execute the method logic.

The following table summarizes some of the most useful InvocationContext
methods. Refer to the Java EE 6 JavaDoc (accessible within NetBeans by going to
Help | JavaDoc References | Java EE 6 - DRAFT).

Method name Description
getMethod() Returns an instance of java.lang.reflect.Method that can

be used to introspect the intercepted method.
getParameters() Returns an array of Objects containing the parameters passed to

the intercepted method.
getTarget() Returns the object containing the method being invoked,

return value is java.lang.Object.
proceed() Invokes the method being intercepted.

The following example illustrates a simple interceptor class.

package com.ensode.sessionbeanintro.ejb;

import java.lang.reflect.Method;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;

public class LoggingInterceptor {

@AroundInvoke
public Object logMethodCall(

InvocationContext invocationContext)
throws Exception {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[257]

Object interceptedObject =
invocationContext.getTarget();
Method interceptedMethod =
invocationContext.getMethod();

System.out.println("Entering " +
interceptedObject.getClass().getName() + "." +
interceptedMethod.getName() + "()");

Object o = invocationContext.proceed();

System.out.println("Leaving " +
interceptedObject.getClass().getName() + "." +
interceptedMethod.getName() + "()");

return o;
} }

The above example sends a message to the application server log just before and just
after an intercepted method is executed. The purpose of implementing something
like this would be to aid in debugging applications.

For simplicity, the above example simply uses System.out.
println to output messages to the application server log. A real
application more than likely would use a logging API such as the
Java Logging API or Log4j.

The first thing we do in our interceptor method is to obtain a reference to the object
and method being intercepted. We then output a message to the log indicating
the class and method being invoked, this code is executed just before we let the
intercepted method execute, which we do by invoking invocationContext. pro-
ceed(). We store the return value of this method in a variable, and then add some
additional logic to be executed just after the method finishes. In our example, we
simply send an additional line of text to the application server log. Finally our
method returns the return value of invocationContext.proceed().

Decorating the EJB with the @Interceptors
annotation
In order for an EJB's method to be intercepted, it must be decorated with the
@Interceptors annotation, this annotation has a single class array attribute.
This attribute contains all the interceptors to be executed before and/or after
the method call.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[258]

The @Interceptors annotation can be used at the method level, in which case it
applies only to the method it decorates, or at the class level, in which it applies to
every method in the bean.

The following example is a new version of our EchoBean session bean, slightly
modified to have its echo() method intercepted by the LoggingInterceptor,
that we wrote in the previous section.

package com.ensode.sessionbeanintro.ejb;

import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.interceptor.Interceptors;

@Stateless
public class Echo implements EchoRemote {

// Add business logic below. (Right-click in editor and choose
// "Insert Code > Add Business Method")

@Interceptors({LoggingInterceptor.class})
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public String echo(String saying) {

return "echoing: " + saying;
}

}

Notice that the only change we had to make to our session bean was to add the @
Interceptors annotation to its echo() method. In this particular case, the class
array attribute has a single value, which is the LoggingInterceptor class we
defined above. This has the effect of executing all the code in the interceptor's
logMethodCall() method before the invocationContext.proceed() call just
before the method is executed, and all the code after the invocationContext.
proceed() call just after the method ends. In our example, we are using a single
interceptor for our bean's method. If we need our method to be intercepted by
more than one interceptor, we can do that by adding additional interceptor classes
between the curly braces in the @Interceptors annotation, the list of interceptors
between the curly braces must be separated by commas.

At this point we are ready to test our interceptor. In NetBeans, we can simply
right-click on the project in the Projects window and select Run. After doing so,
we should see the output of the interceptor's logMethodCall() in NetBean's
GlassFish output window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[259]

EJB timer service
Stateless session beans and Message-Driven Beans (another type of EJB discussed
in the next chapter) can have a method that is executed automatically at regular
intervals. This functionality is useful in case we want to execute some logic
periodically (once a week, every day, every hour, and so on) without having to
explicitly call any methods. This functionality is achieved by the EJB Timer Service.

In order to use the EJB timer service, we need to use the @Schedule annotation to
specify when our method will be called. The following example illustrates how to
use the EJB timer service:

package com.ensode.ejbtimer.ejb;

import java.util.Date;
import javax.ejb.Stateless;
import javax.ejb.LocalBean;
import javax.ejb.Schedule;

@Stateless
@LocalBean
public class EJBTimerDemo {

// Add business logic below. (Right-click in editor and choose
// "Insert Code > Add Business Method")
@Schedule(hour = "*", minute = "*", second = "*/30")
public void logMessage() {

System.out.println("logMessage() method invoked at: "
+ new Date(System.currentTimeMillis()));

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[260]

In this example, we decorated one of the methods in our EJB with the @Schedule
annotation. We used a value of "*" for its hour attribute to specify that the method
should be invoked every hour. We used the vale of "*" for the minute attribute as
well to specify that the method should be invoked every minute. Finally, we used the
value of "*/30" for its second attribute to specify that the method should be invoked
every 30 seconds.

The @Schedule annotation uses a syntax similar to the cron utility commonly found
in Unix and Unix-like operating systems such as Linux. Refer to http://www.
unixgeeks.org/security/newbie/unix/cron-1.html for a good introduction
to cron.

After deploying and executing our project in NetBeans, we should see the following
output in the GlassFish output console:

Generating session beans from JPA
entities
One very nice NetBeans feature is that it allows generation of stateless session beans
from existing JPA entities, the generated session beans act as DAOs (Data Access
Objects). This feature, combined with the ability to generate JPA entities from an
existing database schema, allows us to completely generate the data access layers of
our application without having to write a single line of Java code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[261]

To take advantage of this functionality, we need to create an EJB project (File | New
Project, select Enterprise from the Categories list, then select EJB Module from the
Projects list), or use the EJB project from an Enterprise Application project, and add
some JPA entities to it, either by manually coding them or by generating them from
an existing schema as discussed in Chapter 6.

Once we have some JPA entities in the project, we need to go to File | New, select
Persistence from the categories list, and Session Beans For Entity Classes from the
File Types list.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[262]

The next screen in the wizard allows us to select the existing JPA entity classes in the
project we want to generate session beans. In most cases, they should be generated
for all of them by simply clicking on the Add All button.

The last screen in the wizard allows us to specify the project, package, and whether
we want to generate local and/or remote interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[263]

After clicking on Finish, the session beans are created and placed in the package we
specified.

All of the generated session bean extends AbstractFacade, an abstract class that
is also generated by the Session Beans for Entity Classes wizard. This abstract
class contains a number of methods that allow us to perform CRUD (Create, Read,
Update, Delete) operations on our entities.

package com.ensode.ejbdao.sessionbeans;

import java.util.List;
import javax.persistence.EntityManager;

public abstract class AbstractFacade<T> {

private Class<T> entityClass;

public AbstractFacade(Class<T> entityClass) {
this.entityClass = entityClass;

}

protected abstract EntityManager getEntityManager();

public void create(T entity) {
getEntityManager().persist(entity);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[264]

public void edit(T entity) {
getEntityManager().merge(entity);

}

public void remove(T entity) {
getEntityManager().remove(getEntityManager().merge(entity));

}

public T find(Object id) {
return getEntityManager().find(entityClass, id);

}

public List<T> findAll() {
javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();

cq.select(cq.from(entityClass));
return getEntityManager().createQuery(cq).getResultList();

}

public List<T> findRange(int[] range) {
javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();

cq.select(cq.from(entityClass));
javax.persistence.Query q = getEntityManager().

createQuery(cq);
q.setMaxResults(range[1] - range[0]);
q.setFirstResult(range[0]);
return q.getResultList();

}

public int count() {
javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();

javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
cq.select(getEntityManager().getCriteriaBuilder().count(rt));
javax.persistence.Query q = getEntityManager().

createQuery(cq);
return ((Long) q.getSingleResult()).intValue();

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[265]

As we can see, AbstractFacade is not much more than a facade to EntityManager,
wrapping its calls inside a session bean gives us all of its advantages, such as
transaction management and distributed code. The generated create() method
is used to create new entities, the edit() method updates an existing entity, the
remove() method deletes an existing entity. The find() method finds an entity with
the given primary key, and the findAll() method returns a List of all entities in
the database. The findRange() method allows us to retrieve a subset of the entities
in the database; it takes an array of int as its sole parameter. The first element in this
array should have the index of the first result to retrieve, and the second element
should have the index of the last element to retrieve. The count() method returns
the number of entities in the database, it is similar to a select count(*) from
TABLE_NAME in standard SQL.

Like we previously mentioned, all of the generated session beans extend
AbstractFacade, let's look at one of these generated EJBs.

package com.ensode.ejbdao.sessionbeans;

import com.ensode.ejbdao.entities.Customer;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
public class CustomerFacade extends AbstractFacade<Customer> {

@PersistenceContext(unitName = "EjbDaoPU")
private EntityManager em;

protected EntityManager getEntityManager() {
return em;

}

public CustomerFacade() {
super(Customer.class);

}

}

As we can see, the generated session beans are very simple. They simply include an
instance variable of type EntityManager and take advantage of resource injection to
initialize it. They also include a getEntityManager() method meant to be called by
the parent class so that it has access to this session bean's EntityManager instance.
Additionally, the session bean's constructor invokes the parent class constructor,
which via generics initializes the entityClass instance variable on the parent class.

We are of course free to add additional methods to the generated session beans. For
example, sometimes it is necessary to add a method to find all entities that meet
specific criteria, such as finding all customers with the same last name.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Business Tier with Session Beans

[266]

One disadvantage of adding methods to the generated session beans
is that if for any reason they need to be regenerated, we will lose our
custom methods and they will need to be re-added. In order to avoid this
situation, it is a good idea to extend the generated session beans and add
additional methods in the child classes (as of Java EE 5, session beans can
extend one another), this will prevent our methods from being "wiped
out" if we ever need to regenerate our session beans.

Summary
In this chapter, we gave an introduction to session beans, and explained how
NetBeans can help us speed up session bean development. We covered how
Enterprise JavaBeans in general and session beans in particular, allow us to easily
implement transaction strategies in our enterprise applications. We also covered
how we can implement Aspect Oriented Programming (AOP) with session beans
via interceptors. Additionally, we discussed how session beans can have one of
their methods invoked periodically by the EJB container by taking advantage of
the EJB Timer Service. Lastly, we covered how NetBeans can help speed up the
implementation of the data access layer of our applications by generating session
beans implementing the Data Access Object (DAO) design pattern automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency
Injection (CDI)

Contexts and Dependency Injection (CDI) is a new addition to the Java EE
specification. CDI can be used to simplify integrating the different layers of a Java
EE application. For example, CDI allows us to use a session bean as a managed bean,
allowing us to take advantage of EJB features such as transactions directly in our
managed beans.

In this chapter we will cover the following topics:

•	 Introduction to CDI
•	 Qualifiers
•	 Stereotypes
•	 Interceptor Binding Types

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[268]

Introduction to CDI
All we need to do to take advantage of Contexts and Dependency Injection features
in our Web Application projects is to click on the checkbox labeled Enable Contexts
and Dependency Injection on the second page of the New Web Application wizard.

In most cases will want to use the JSF 2.0 framework as well, since typically CDI
applications use JSF as their user interface component framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[269]

Clicking on the Enable Contexts and Dependency Injection checkbox has the effect
of creating a file called beans.xml and placing it in the WEB-INF directory of our web
application. The generated beans.xml file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://

java.sun.com/xml/ns/javaee/beans_1_0.xsd">
</beans>

When our application is deployed, the presence of this file indicates to the
application server that our application is CDI-enabled.

Typically, just like standard JSF applications, CDI applications use Facelets as their
view technology. The following example illustrates typical markup for a CDI page:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

<title>Create New Customer</title>
</h:head>

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[270]

<h:body>
<h:form>

<h3>Create New Customer</h3>
<h:panelGrid columns="3">

<h:outputLabel for="firstName" value="First Name"/>
<h:inputText id="firstName"

value="#{customer.firstName}"/>
<h:message for="firstName"/>

<h:outputLabel for="middleName" value="Middle Name"/>
<h:inputText id="middleName"

value="#{customer.middleName}"/>
<h:message for="middleName"/>

<h:outputLabel for="lastName" value="Last Name"/>
<h:inputText id="lastName" value="#{customer.

lastName}"/>
<h:message for="lastName"/>

<h:outputLabel for="email" value="Email Address"/>
<h:inputText id="email" value="#{customer.email}"/>
<h:message for="email"/>
<h:panelGroup/>
<h:commandButton value="Submit"

action="#{controller.navigateToConfirmation}"/>
</h:panelGrid>

</h:form>
</h:body>

</html>

As we can see, the above markup doesn't look any different than the markup used
for a JSF application not using CDI. The above page renders as follows (shown after
entering some data):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[271]

In our page markup, we have JSF components using Unified Expression Language
expressions to bind themselves to managed bean properties and methods. In this
case, however, the managed beans are not JSF managed beans but CDI managed
beans. Let's take a look at the customer bean first.

package com.ensode.model;

import java.io.Serializable;
import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class Customer implements Serializable {

private String firstName;
private String middleName;
private String lastName;
private String email;

public Customer() {
}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getMiddleName() {
return middleName;

}

public void setMiddleName(String middleName) {
this.middleName = middleName;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[272]

public String getLastName() {
return lastName;
}

public void setLastName(String lastName) {
this.lastName = lastName;
}

public String getEmail() {
return email;
}

public void setEmail(String email) {
this.email = email;
} }

The @Named annotation marks this class as a CDI named bean. By default, the bean's
name will be the class name with its first character switched to lowercase (In our
example, the name of the bean is "customer", since the class name is Customer). We
can override this behavior if we wish, simply by passing the desired name to the
value attribute of the @Named annotation, as follows:

@Named(value="customerBean")

A CDI named bean's methods and properties are accessible via Facelets, just like
a regular JSF managed bean.

Facelets is the default view technology for JSF 2.0. Refer to Chapter 4
for details.

Just like JSF-managed beans, CDI named beans can have one of the several scopes,
the above named bean has a scope of request, as denoted by the @RequestScoped
annotation.

Scope

Annotation Description
Request @RequestScoped Request scoped beans are shared through

the duration of a single request. A single
request could refer to an HTTP request, an
invocation to a method in an EJB, a web
service invocation, or sending a JMS message
to a message-driven bean.

Session @SessionScoped Session scoped beans across all requests in
an HTTP session. Each user of an application
gets their own instance of a session scoped
bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[273]

Scope Annotation Description
Application @ApplicationScoped Application scoped beans live through the

whole application lifetime. Beans in this
scope are shared across user sessions.

Conversation @ConversationScoped The conversation scope can span multiple
requests, but is typically shorter than the
session scope.

Dependent @Dependent Dependent scoped beans are not shared, any
time a dependent scoped bean is injected, a
new instance is created.

As we can see, CDI has equivalent scopes to all JSF scopes. Additionally CDI adds
two additional scopes. The first CDI-specific scope is the conversation scope, which
allows us to have a scope that spans across multiple requests, but is shorter than
the session scope. The second CDI-specific scope is the dependent scope, which
is a pseudo scope. A CDI bean in the dependent scope is a dependent object of an-
other object; beans in this scope are instantiated when the object they belong to is
instantiated, and destroyed when the object they belong to is destroyed.

Our application has two CDI named beans. We already discussed the customer
bean, the other CDI named bean in our application is the controller bean.

package com.ensode.controller;

import com.ensode.model.Customer;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

@Named
@RequestScoped
public class Controller {

@Inject
private Customer customer;

public Customer getCustomer() {
return customer;
}

public void setCustomer(Customer customer) {
this.customer = customer;
}

public String navigateToConfirmation() {
//In a real application, we would save new customer
// data to database here.

return "confirmation";
} }

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[274]

In the above class, an instance of the Customer class is injected at runtime, this is
accomplished via the @Inject annotation, this annotation allows us to easily use
dependency injection in CDI applications.

The navigateToConfirmation() method in the above class is invoked when the
user clicks on the Submit button on the page. navigateToConfirmation() works
just like an equivalent method in a JSF managed bean would, that is, it returns
a string, and based on the value of this string the application navigates to an
appropriate page. Just like with JSF, by default the target page's name is the return
value of this method plus an XHTML extension. For example, if no exceptions are
thrown in the navigateToConfirmation() method, the user is directed to a page
named confirmation.xhtml.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

<title>Success</title>
</h:head>
<h:body>

New Customer created successfully.
<h:panelGrid columns="2" border="1" cellspacing="0">

<h:outputLabel for="firstName" value="First Name"/>
<h:outputText id="firstName" value="#{customer.
firstName}"/>

<h:outputLabel for="middleName" value="Middle Name"/>
<h:outputText id="middleName" value="#{customer.
middleName}"/>

<h:outputLabel for="lastName" value="Last Name"/>
<h:outputText id="lastName" value="#{customer.lastName}"/>

<h:outputLabel for="email" value="Email Address"/>
<h:outputText id="email" value="#{customer.email}"/>

</h:panelGrid>
</h:body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[275]

Again, there is nothing special we need to do to access the named bean's properties
from the above markup, it works just as if the bean was a JSF-managed bean. The
above page renders as follows:

As we can see, CDI applications work just like JSF applications, however, CDI
applications have several advantages over JSF. For example, like as we previously
mentioned, CDI beans have additional scopes not found in JSF. Additionally, using
CDI allows us to decouple our Java code from the JSF API. Also, like we mentioned
previously, CDI allows us to use session beans as named beans.

Qualifiers
In some instances the type of the bean we wish to inject into our code may be an
interface or a Java superclass, but we may be interested in injecting a subclass or a
class implementing the interface. For cases like this, CDI provides qualifiers we can
use to indicate the specific type we wish to inject into our code.

A CDI qualifier is an annotation that must be decorated with the @Qualifier
annotation. This annotation can then be used to decorate the specific subclass or
interface. In this section, we will develop a Premium qualifier for our customer bean,
premium customers could get perks, such as discounts, not available to regular
customers.

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[276]

Creating a CDI qualifiers with NetBeans is very easy, all we need to do is go to
File | New, select the Contexts and Dependency Injection category and the
Qualifier Type file type.

In the next step in the wizard, we need to enter a name and a package for our qualifier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[277]

After these two simple steps, NetBeans generates the code for our qualifier.

package com.ensode.qualifier;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Premium {
}

Qualifiers are standard Java annotations, they typically have retention of runtime
and can target methods, fields, parameters, or types. The only difference between
a qualifier and a standard annotation is that qualifiers are decorated with the @
Qualifier annotation.

Once we have our qualifier in place, we need to use it to decorate the specific
subclass or interface implementation.

package com.ensode.model;

import com.ensode.qualifier.Premium;
import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
@Premium
public class PremiumCustomer extends Customer {

private Integer discountCode;

public Integer getDiscountCode() {
return discountCode;

}

public void setDiscountCode(Integer discountCode) {
this.discountCode = discountCode;

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[278]

Once we have decorated the specific instance we need to qualify, we can use our
qualifiers in the client code to specify the exact type of dependency we need.

package com.ensode.controller;

import com.ensode.model.Customer;
import com.ensode.model.PremiumCustomer;
import com.ensode.qualifier.Premium;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

@Named
@RequestScoped
public class PremiumCustomerController {

private static final Logger logger = Logger.getLogger(
PremiumCustomerController.class.getName());

@Inject
@Premium
private Customer customer;

public String saveCustomer() {

PremiumCustomer premiumCustomer = (PremiumCustomer) customer;

logger.log(Level.INFO, "Saving the following information \n"
+ "{0} {1}, discount code = {2}",
new Object[]{premiumCustomer.getFirstName(),

premiumCustomer.getLastName(),
premiumCustomer.getDiscountCode()});

//If this was a real application, we would have code to save
//customer data to the database here.

return "premium_customer_confirmation";
}

}

Since we used our @Premium qualifier to decorate the customer field, an instance
of PremiumCustomer is injected into that field, since this class is also decorated
with the @Premium qualifier.

As far as our JSF pages go, we simply access our named bean as usual using its
name.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[279]

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>Create New Premium Customer</title>

</h:head>
<h:body>

<h:form>
<h3>Create New Customer</h3>
<h:panelGrid columns="3">

<h:outputLabel for="firstName" value="First Name"/>
<h:inputText id="firstName"

value="#{premiumCustomer.firstName}"/>
<h:message for="firstName"/>

<h:outputLabel for="middleName" value="Middle Name"/>
<h:inputText id="middleName"

value="#{premiumCustomer.middleName}"/>
<h:message for="middleName"/>

<h:outputLabel for="lastName" value="Last Name"/>
<h:inputText id="lastName"

value="#{premiumCustomer.lastName}"/>
<h:message for="lastName"/>

<h:outputLabel for="email" value="Email Address"/>
<h:inputText id="email"

value="#{premiumCustomer.email}"/>
<h:message for="email"/>

<h:outputLabel for="discountCode" value="Discount
Code"/>
<h:inputText id="discountCode"

value="#{premiumCustomer.discountCode}"/>
<h:message for="discountCode"/>

<h:panelGroup/>
<h:commandButton value="Submit"

action="#{premiumCustomerController.
saveCustomer}"/>

</h:panelGrid>
</h:form>

</h:body>
</html>

In this example, we are using the default name for our bean, which is the class name
with the first letter switched to lowercase.

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[280]

At this point, we are ready to test our application.

After submitting the page we can see the confirmation page.

Stereotypes
A CDI stereotype allows us to create new annotations that bundle together several
CDI annotations. For example, if we needed to create several CDI named beans with
a scope of session, we would have to use two annotations in each of these beans,
namely @Named and @SessionScoped. Instead of having to add two annotations to
each of our beans, we could create a stereotype, and then annotate our beans with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[281]

To create a CDI stereotype in NetBeans, we simply need to create a new file, selecting
the Contexts and Dependency Injection category and the Stereotype file type.

We then need to enter a name and package for our new Stereotype.

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[282]

At this point, NetBeans generates the following code:

At this point, we simply need to add the CDI annotations that we want the classes
annotated with our stereotype to use. In our case, we want them to be named beans
and have a scope of session, therefore we add the @Named and @SessionScoped
annotations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[283]

Now we can use our stereotype in our own code.

package com.ensode.beans;

import com.ensode.stereotype.NamedSessionScoped;
import java.io.Serializable;

@NamedSessionScoped
public class StereotypeClient implements Serializable {

private String property1;
private String property2;

public String getProperty1() {
return property1;

}

public void setProperty1(String property1) {
this.property1 = property1;

}

public String getProperty2() {
return property2;

}

public void setProperty2(String property2) {
this.property2 = property2;

}
}

We annotated the above class with our NamedSessionScoped stereotype, which is
equivalent to using the @Named and @SessionScoped annotations.

Interceptor Binding Types
One of the advantages of EJBs is that they allow us to easily do Aspect Oriented
Programming (AOP) via interceptors. CDI allows us to write Interceptor Binding
Types, which let us bind interceptors to beans without having the beans depend
directly on the interceptor. Interceptor Binding Types are annotations which
themselves are annotated with @InterceptorBinding.

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[284]

Creating an interceptor binding type in NetBeans consists of simply creating a new
file, selecting the Contexts and Dependency Injection category, and the Interceptor
Binding Type file type.

We then need to enter a class name and select or enter a package for our new
interceptor binding type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[285]

At this point, NetBeans generates the code for our interceptor binding type.

The generated code is fully functional; we don't need to add anything to it. In order
to use our interceptor binding type, we need to write an interceptor and annotate it
with our interceptor binding type.

package com.ensode.interceptor;

import com.ensode.interceptorbinding.LoggingInterceptorBinding;

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[286]

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;

@LoggingInterceptorBinding
@Interceptor
public class LoggingInterceptor {

private static final Logger logger = Logger.getLogger(
LoggingInterceptor.class.getName());

@AroundInvoke
public Object logMethodCall(InvocationContext invocationContext)

throws Exception {

logger.log(Level.INFO, new StringBuilder("entering ").append(
invocationContext.getMethod().getName()).append(
" method").toString());

Object retVal = invocationContext.proceed();

logger.log(Level.INFO, new StringBuilder("leaving ").append(
invocationContext.getMethod().getName()).append(
" method").toString());

return retVal;
}

}

As we can see, other than being annotated with our interceptor binding type, the
above class is a standard interceptor, just like the ones we use with EJB session beans
(refer to Chapter 7 for details).

In order for our interceptor binding type to work properly, we need to register the
above interceptor in beans.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">

<interceptors>
<class>com.ensode.interceptor.LoggingInterceptor</class>

</interceptors>
</beans>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[287]

As can be seen above, all we need to do to register our interceptor is to use the
<interceptor> tag in beans.xml, with one or more nested <class> tags containing
the fully qualified names of our interceptors.

The final step before we can use our interceptor binding type is to annotate the class
to be intercepted with our interceptor binding type.

package com.ensode.controller;

import com.ensode.interceptorbinding.LoggingInterceptorBinding;
import com.ensode.model.Customer;
import com.ensode.model.PremiumCustomer;
import com.ensode.qualifier.Premium;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

@LoggingInterceptorBinding
@Named
@RequestScoped
public class PremiumCustomerController {

private static final Logger logger = Logger.getLogger(
PremiumCustomerController.class.getName());

@Inject
@Premium
private Customer customer;

public String saveCustomer() {

PremiumCustomer premiumCustomer = (PremiumCustomer) customer;

logger.log(Level.INFO, "Saving the following information \n"
+ "{0} {1}, discount code = {2}",
new Object[]{premiumCustomer.getFirstName(),

premiumCustomer.getLastName(),
premiumCustomer.getDiscountCode()});

//If this was a real application, we would have code to save
//customer data to the database here.

return "premium_customer_confirmation";
}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts and Dependency Injection (CDI)

[288]

At this point we are ready to use our interceptor, after executing the above code, and
examining the GlassFish log, we can see our interceptor binding type in action.

The lines entering saveCustomer method and leaving saveCustomer method were
added to the log by our interceptor, which was indirectly invoked by our interceptor
binding type.

Summary
In this chapter, we covered NetBeans support for Contexts and Dependency Injection
(CDI), a new Java EE API introduced in Java EE 6. We provided an introduction
to CDI, and explained additional functionality that the CDI API provides over
standard JSF. We also covered how to disambiguate CDI injected beans via CDI
Qualifiers. Additionally, we covered how to group together CDI annotations via
CDI Stereotypes. Finally, we saw how CDI can help us with Aspect-Oriented
Programming via Interceptor Binding Types.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and
Message Driven Beans

The Java Messaging Service (JMS) is a standard Java EE messaging API that allows
loosely coupled, asynchronous communication between Java EE components.

NetBeans includes good support to aid us in creating applications that take
advantage of the JMS API, generating a lot of necessary boilerplate code, allowing
us to focus on the business logic of our application.

We will cover the following topics in this chapter:

•	 Introduction to JMS
•	 Creating an enterprise project to take advantage of JMS
•	 Creating JMS resources from NetBeans
•	 Implementing a JMS message producer
•	 Implementing a JMS message consumer
•	 Processing JMS messages with message driven Beans

Introduction to JMS
The Java Messaging Service (JMS) is a standard Java EE API that allows loosely
coupled, asynchronous communication between Java EE components. Applications
taking advantage of JMS do not interact directly with each other, instead JMS
message producers send messages to a destination (JMS Queue or Topic), and JMS
consumers receive messages from the said destinations.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[290]

There are two messaging domains that can be used when working with JMS, the
Point To Point (PTP) messaging, in which a JMS message is processed by only one
message receiver, and Publish/Subscribe (pub/sub) messaging, in which all message
receivers subscribed to a specific topic receive and process each message for said
topic. JMS applications using the PTP messaging domain use message queues as
their JMS destinations, where applications using pub/sub use message topics.

The following diagram illustrates the JMS architecture:

When working with JMS we need to obtain a reference to a connection factory, either
via JNDI or via dependency injection. From this connection factory we can create a
JMS session, that in turn can be used to create JMS messages.

When developing code to send messages to a JMS destination, we need to create a
JMS message producer from the JMS session. In turn, we use this message producer
to send messages to the destination.

When developing code to receive messages from a JMS destination, we need to
create a message consumer from the JMS session. We can then use this message
consumer to retrieve messages from our JMS destination.

Creating the project and JMS resources
We will be creating a new Enterprise Application project for our example.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[291]

In our example, we will be adding an EJB module and an Application Client module.

Any type of Java EE module can be a JMS message producer and/or
consumer by simply invoking methods from the JMS API, we chose
to create an EJB module since later in the chapter we will be creating
a Message Driven Bean (MDB), that is a type of EJB. We chose an ap-
plication client since it is one of the simplest modules that can be added
to an enterprise application, allowing us to focus on JMS code without
having to worry about writing lots of extraneous code. However, in real
applications, it is common to have web applications or Session Beans act
as JMS message producers, with an MDB acting as the consumer.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[292]

Now that we have created our project, we need to add a couple of necessary JMS
resources, a JMS destination (Queue or Topic), and a JMS connection factory. When
using GlassFish as our application server, we can create these resources directly
from NetBeans.

Creating a JMS destination
JMS destinations are an intermediate location where JMS producers place messages,
and JMS consumers retrieve them. When using the Point To Point (PTP) Messaging
Domain, JMS destinations are message queues, where with the Publish/Subscribe
Messaging Domain, the destination is a message topic.

In our example we will be using the PTP messaging domain, therefore we need
to create a message queue, and the procedure to create a message topic is almost
identical.

In order to create a message queue, we need to click on File | New File, select
GlassFish from the Categories list, and JMS Resource from the File Types list.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[293]

We then need to enter a JNDI name for our queue, in our example, we simply
picked the default name jms/MyQueue, and accepted the default resource type of
javax.jms.Queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[294]

JMS message queues require a Name property, in our example we simply chose to use
the JNDI name of our queue (minus the jms/ prefix) as the value of this property.

The options under the Connector Resource section in the New JMS Re-
source wizard are connection factories that can be used to obtain a JMS
Queue or Session. With Java EE it is simpler to have the JMS Queue or
Session injected directly into the code rather than obtaining it through a
connection factory.

At this point we have created a JMS queue to act as a JMS destination for our
application; we also need to create a JMS connection factory. The JMS queue and
connection factory will not actually be created until we deploy our project.

The first few steps in creating a connection factory are exactly the same as the ones
we used for creating the queue (File | New File, select GlassFish and JMS Resource,
then click Next>).

At this point we simply need to select javax.jms.ConnectionFactory as the resource
type and enter a suitable JNDI name for our connection factory.

Selecting javax.jms.ConnectionFactory as the resource type has the advantage of
allowing us to use this resource to create connections for both queues and topics.
If we only need to create one or the other, we can select to create a resource of type
javax.jms.TopicConnectionFactory or javax.jms.QueueConnectionFactory as
appropriate. However, choosing javax.jms.ConnectionFactory allows more flexibility.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[295]

At this point we can simply click on Finish, or we can click on Next to assign
additional properties to our connection factory, however this step is not necessary
for connection factories.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[296]

NetBeans adds the GlassFish resources we created to a file called glassfish-
resources.xml. When we deploy our project to GlassFish, it reads this file and
creates the resources defined in it. We can see the content of this file by expanding
the Server Resources node in the Projects view and double-clicking on its name.

Sending messages to a message destination
Once we have created our connection factory and destination (queue or topic),
we need to write some code to send messages to it.

In our example, we will use the application client to send messages to the queue.
NetBeans can generate a lot of the necessary boilerplate code automatically. In order
to generate this code, the connection factory and destination to be used need to be
created in the server, recall we mentioned in the previous section that GlassFish JMS
resources created with NetBeans aren't actually created until we deploy our project.
In order for these resources to be available to our application client, we need to
deploy the project to have these resources created.

After we have deployed our project, we can generate the JMS code opening the main
class (Main.java) for the application client project, right-clicking on its source, and
selecting Insert Code, then selecting Send JMS Message from the resulting pop up
window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[297]

At this point we need to select a message destination and connection factory.

NetBeans detects the different destinations in the server, and provides them in
a drop down list. It also makes a best guess at the JNDI name of the connection
factory, that, in our case, turns out not to be correct. The above screenshot shows
the corrected connection factory JNDI name.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[298]

At this point NetBeans generates two methods in our code, a method to send a JMS
message to our destination, and another method to create it. Additionally, it injects
the necessary resources, the messaging destination and connection factory, into our
code via the @Resource annotation.

In our example, the name of the method used to create messages is
createJMSMessageForjmsMyQueue() (the exact method name will vary depending
on the name of our JMS destination), it returns an instance of a class implementing
javax.jms.Message, which all JMS message types must implement, and takes two
parameters, an instance of a class implementing javax.jms.Session, and an object
containing the message data.

javax.jms.Message has several subinterfaces that are part of the standard Java EE
API, in most cases, we use one of the subinterfaces to send messages, instead of using
a direct implementation of javax.jms.Message. The following table summarizes all
of the standard Java EE subinterfaces:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[299]

Subinterface Description
BytesMessage Used to send an array of bytes as a message.
MapMessage Used to send name-value pairs as messages. The names must be

String objects, the values must be either primitive types or Java
objects.

ObjectMessage Used to send serializable objects as messages. A serializable object is
an instance of any class that implements java.io.Serializable.

StreamMessage Used to send a stream of Java primitive types as a message.
TextMessage Used to send a String as a message.

Of the above message types, TextMessage and ObjectMessage are the most fre-
quently used. We will use TextMessage for our example, using other message
types is very similar.

Consult the Java EE JavaDoc for details on the APIs for each of the
message types. Java EE JavaDoc can be found at http://download.
oracle.com/javaee/6/api/.

Notice that the createJMSMessageforjmsMyQueue() method is invoked
by the generated sendJMSMessageToMyQueue(), we are expected
to invoke sendJMSMessageToMyQueue() as opposed to invoking
createJMSMessageForjmsMyqueue() directly. In our example, we do this in
the main method of our application.

After adding this invocation, our main() method looks like this:

At this point we have a complete application that will send messages to our message
queue. We can deploy the project and execute it, however, we haven't written any
code to retrieve messages yet, which is the next step we need to take. However,
before moving on, let's go through the generated sendJMSMessageToMyQueue()
method so that we can better understand how it works.

The first thing the method does is to obtain a JMS connection by invoking
the createConnection() method on the injected instance of javax.jms.
ConnectionFactory, and assigning it to a local variable of type javax.jms.
Connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[300]

After the JMS connection is created, the method obtains a JMS session by invoking
the createSession() method on the Connection object. The createSession()
method has two parameters, the first parameter is a Boolean indicating if the created
session is transacted. Transacted sessions allow the code sending messages to a
JMS destination to send several messages as part of a transaction. To send several
messages as part of a transaction, the JMS client sends messages to the queue as
usual, then invokes the commit() method on the JMS session. By default, the code
generated by NetBeans does not create a transacted JMS session, but we can override
this by simply changing the value of the first parameter in createSession() to
true.

The second parameter of the createSession() method indicates how JMS messages
will be acknowledged by the message receiver. There are three valid values for this
parameter, all three are defined as constants in the javax.jms.Session interface.
The value of the second parameter to createSession() is ignored when creating a
transacted session.

Acknowledge Mode Description
Session.AUTO_ACKNOWLEDGE When using this mode, the JMS session will auto-

acknowledge message receipt for the client.
Session.CLIENT_ACKNOWLEDGE When using this mode, message receivers must

explicitly invoke the acknowledge() method
defined in javax.jms.Message in order to ac-
knowledge receipt of a message.

Session.DUPS_OK_ACKNOWLEDGE When using this mode, the JMS session will lazily
acknowledge message receipts on behalf of the JMS
client. Using this acknowledge mode may result in
some messages being delivered more than once, but
it can improve performance by eliminating some
of the work the session must do in order to avoid
duplicate message deliveries.

Of the three acknowledge modes, Session.AUTO_ACKNOWLEDGE is the most
commonly used, since it slightly reduces the amount of work to be done by
application developers. NetBeans uses this mode by default in the generated code,
but we are free to modify the generated code as necessary to meet our requirements.

After creating a JMS session, the next thing the generated code does is to create a JMS
message producer by invoking the createProducer() method on the JMS session
object. This method takes a JMS destination as its sole parameter, unsurprisingly, in
the generated code the injected message queue is sent as a parameter to this method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[301]

The last thing this method does is to actually send the message to the message
queue. This is done by invoking the send() method on the javax.jms.
MessageProducer instance obtained in the previous line. This method takes an
instance of a class implementing javax.jms.Message or one of its subinterfaces
as a parameter, in the generated code, the generated method to create the message
(createJMSMessageForjmsMyQueue() in our example) is invoked inline, since this
method's return value is of the appropriate type.

Notice that most of the body of the generated method to send JMS messages is
enclosed in a try/finally block. Most of the lines inside the try block have the
potential of throwing a JMSException, if this happens, the code attempts to close the
JMS session and connection, which is the exact same thing that needs to be done if the
code ends normally, therefore it makes sense to put this code in the finally block.

Although it is possible to write standalone applications that can retrieve messages
from a messaging destination, most Java EE applications rely on message driven beans
for this task, and NetBeans makes it very easy to generate message driven beans.

Processing JMS messages with message
driven Beans
In order to create a message driven bean, we need to right-click on our EJB project
and select File | New, then select the Enterprise JavaBeans category and the
Message-Driven Bean file type.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[302]

In the resulting dialog window, we need to enter a name, package, and select a JMS
destination for the message driven bean.

Once we have entered all the required information, our message driven bean is
created in the specified package.

package com.ensode.mdb;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.MessageListener;

/**
*
* @author heffel
*/
@MessageDriven(mappedName = "jms/myQueue", activationConfig = {

@ActivationConfigProperty(propertyName = "acknowledgeMode",
propertyValue = "Auto-acknowledge"),
@ActivationConfigProperty(propertyName = "destinationType",
propertyValue = "javax.jms.Queue")})

public class MessageReceiver implements MessageListener {

public MessageReceiver() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[303]

}

@Override
public void onMessage(Message message) {
} }

In the generated code, all we need to do is implement the body of the onMessage()
method, and deploy our project. The onMessage() method will process any mes-
sages on the JMS destination our message-driven bean is receiving messages from.

We can write any arbitrary code in the onMessage() method, the possibilities are
endless, however, this method is typically used to save data from the message into a
database, or to write some output into a log. In our example, we will simply send the
contents of the message to the stdout log of our application server.

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage) message;
try {
System.out.println("Received message:" +
textMessage.getText());
} catch (JMSException ex) {
Logger.getLogger(
MessageReceiverBean.class.getName()).log(
Level.SEVERE, null, ex);
} }

Notice that we had to cast the message parameter to the actual subinterface that was
sent to the message destination, which in our case is javax.jms.TextMessage. To
obtain the message contents, we invoked the getText() method of TextMessage,
this method throws JMSException, because of this, we had to wrap its invocation in
a try/catch block.

NetBeans will remind us that we need to catch JMSException by
underlining the offending code with a wiggly red line, by hitting
Alt+Enter at the offending line we can have NetBeans generate the try/
catch block automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Messaging with JMS and Message Driven Beans

[304]

At this point we are ready to try our application. We can do so by simply right-clicking
on our Enterprise Application Project and selecting Run, at this point the application
will be deployed, and the application client project will be executed, sending a message
to our message queue. Our EJBs will also be deployed, and the application server will
automatically assign one to process the message sent to the queue. We can see the
output of the message driven bean in the application server log.

As we can see, NetBeans automates most of the "grunt work" needed to write
applications taking advantage of the JMS API, leaving us to only write the business
logic part that is specific to our application.

Before moving on, let's discuss the code that NetBeans generates in our
Message Driven Beans. Notice that the generated class is decorated with the
@MessageDriven annotation, this annotation marks our class as a Message
Driven Enterprise JavaBean.

The mappedName attribute of the @MessageDriven annotation should contain the
JNDI name of the JMS destination (queue or topic) that our message driven bean
will be assigned to.

The value of the activationConfig property must be an array of
@ActivationConfigProperty annotations. The @ActivationConfigProperty
annotation is used to specify values for certain properties, it has a propertyName
attribute used to specify the property name, and a propertyValue attribute used
to specify the property value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[305]

When developing message driven beans, we use @ActivationConfigProperty
annotations to specify the acknowledge mode of the bean (see explanation in the
previous section). The destination type of the JMS destination the bean is assigned
to, can be javax.jms.Queue when using point to point messaging domain, or
javax.jms.Topic when using the publish/subscribe messaging domain.

In addition to the annotations, we should also notice that the generated message
driven bean implements javax.jms.MessageListener, which has a single method,
onMessage(), all message driven beans must implement this interface.

Summary
In this chapter we covered how to develop messaging applications using the JMS
API with NetBeans. We talked about how to configure the application server by
adding JMS resources directly from NetBeans. We also covered how NetBeans can
generate most of the code necessary to send a JMS message, leaving the application
developers to simply "fill in the blanks", and write only the business logic part that
is specific to our application. Similarly, we covered how NetBeans can generate most
of the code necessary to receive a JMS message from a Message Driven Bean, again
leaving only the business logic part of our application to be written by hand.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with
JAX-WS

Web services allow us to develop functionality that can be accessed across a network.
What makes web services different from other similar technologies such as EJBs is
that they are language and platform independent, that is to say, for example, a web
service developed in Java may be accessed by clients written in other languages, and
vice versa.

In this chapter we will cover the following topics:

•	 Introduction to web services
•	 Creating a simple web service
•	 Creating a web service client
•	 Exposing EJBs as web services

Introduction to web services
Web services allow us to write functionality that can be accessed across a network in
a language- and platform-independent way.

There are two different approaches that are frequently used to develop web services,
the first approach is to use the Simple Object Access Protocol (SOAP), the second
approach is to use the Representational State Transfer (REST) protocol. NetBeans
supports creating web services using either approach. SOAP web services are
covered in this chapter. RESTful web services are covered in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[308]

When using the SOAP protocol, web service operations are defined in an XML
document called a Web Services Definition Language (WSDL) file. After creating
the WSDL, implementation of web services is done in a proper programming
language such as Java. The process of creating a WSDL is complex and error
prone, fortunately, when working with Java EE, a WSDL can be automatically
generated from a web service written in Java when this web service is deployed to
the application server. Additionally, if we have a WSDL file available, and need to
implement the web service operations in Java, NetBeans can automatically generate
most of the Java code for the implementation, creating a class with method stubs for
each web service operation. All we need to do is to implement the actual logic for
each method, all the "plumbing" code is automatically generated.

Creating a simple web service
In this section, we will develop a web service that performs conversion of units of
length. Our web service will have an operation that will convert inches to centimeters,
and another operation to do the opposite conversion (centimeters to inches).

In order to create a web service, we need to create a new web application project, in
our example, the project name is UnitConversion. We can create the web service by
right-clicking on our project and selecting File | New File, then selecting the Web
Services category and Web Service as our file type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[309]

After clicking Next>, we need to enter a name and package for our web service.

After clicking Finish, our web service is created, the source code for our web service
is automatically opened.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[310]

As we can see, NetBeans automatically generates a simple "Hello World" web
service. The class level @WebService annotation marks our class as a web service.
The method level @WebMethod annotation marks the annotated method as a web
service operation; its operationName attribute defines the name of the web service
operation, this is the name to be used by the web service clients. The @WebParam
annotation is used to define the properties of the web service operation parameters.
In the generated web service, the name attribute is used to specify the name of the
parameter in the WSDL that is generated when the web service is deployed.

NetBeans allows us to modify our web services via a graphical interface. We can simply
add and/or remove web service operations and parameters by pointing and clicking,
and the corresponding method stubs and annotations are automatically added to our
web service's code. To access the graphical web service designer, we simply need to
click on the Design button at the top right of the web service source code.

The first thing we need to do is to remove the automatically generated operation,
all we need to do to accomplish this is to click on the Remove Operation button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[311]

To add a web service operation, we simply need to click on the Add Operation...
button and fill in the blanks in the resulting window.

Our web service will have two operations, one to convert from inches to centimeters
and another one to convert centimeters to inches, both of these operations will
take a single parameter of type double, and return a double value. After clicking
on the Add Operation... button we can enter the required information for the
inchesToCentimeters operation.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[312]

We then need to do the same for the centimetersToInches operation (not shown),
after doing so our design window will show the newly added operations.

In addition to adding operations to our web service, we can control quality of service
settings for it by simply selecting or unselecting checkboxes in the design window.

Web services transmit data as XML text messages between the web service and its
client. Sometimes, it is necessary to transmit binary data such as images. Binary data
is normally inlined in the SOAP message, by using MTOM (Message Transmission
Optimization Mechanism), binary data is sent as an attachment to the message,
making the transmission of binary data more efficient. When using NetBeans, we can
indicate that we wish to use MTOM by simply checking the Optimize Transfer Of
Binary Data (MTOM) checkbox in the design window.

Checking the Reliable Message Delivery checkbox allows us to indicate that we
want to make sure that messages are delivered at least once and not more than once.
Enabling reliable message delivery allows our applications to recover from situations
where our messages may have been lost in transit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[313]

Clicking on the Secure Service checkbox results in security features; such
as encrypting messages between the client and server; and requiring client
authentication, to be enabled for our web service.

Web service security can be configured by clicking on the Advanced ... button
and selecting the appropriate security options in the resulting window.

We can see the generated method stubs by clicking on the Source tab.

Now all we need to do is to replace the generated body of the methods in the class
with the "real" bodies, deploy our application, and our web service will be good to
go. In our case, all we need to do is divide the inches by 2.54 to convert from inches
to centimeters, and multiply the centimeters by 2.54 to convert them to inches.

Once we have replaced the method bodies with the actual required functionality,
we are ready to deploy our web service, which can be done by right-clicking on our
project and selecting Deploy.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[314]

Testing our web service
At this point we should notice a Web Services node in our Projects window.
If we expand it we should see our newly developed web service.

If we deploy our web service to the GlassFish application server included with
NetBeans, we can test it by simply right-clicking on it in the Projects window and
selecting Test Web Service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[315]

Here we can test our web service's methods by simply entering some values in the
text fields and clicking on the appropriate button. For example, entering 2.54 in the
second text field and clicking on the button labeled centimetersToInches results in
the following page being displayed in the browser:

At the top of the page we can see the parameters that were passed to the method,
along with the return value. At the bottom of the page we can see the "raw" SOAP
request and response.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[316]

Developing a client for our web service
Now that we have developed our web service and tested it to verify that it works
properly, we are going to create a simple client that will invoke our web service.
A web services client can be any kind of Java project, such as a standard Java
application, a Java ME application, a web application, or an enterprise project. To
keep our client code simple we will create a Java Application project for our client.

Once we have created our project, we need to create a new web service by creating a
new file, selecting the Web Services category and the Web Service Client file type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[317]

In the next step in the wizard, we need to select the radio button labeled Project if it
is not selected already, then click on Browse and select one of the web services we
created in our web services project. The URL for the generated WSDL file for the web
service we selected will automatically be added to the corresponding text field.

Notice that we can develop web service clients for web services we didn't
develop ourselves. In order to do this we simply select the Local File
radio button to use a WSDL file in our hard drive, or the WSDL URL
radio button to use a WSDL that is published online.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[318]

At this point, a new node labeled Web Service References is added to our project.
Expanding this node all the way reveals the operations we defined in our web
services project.

Typically, writing a web services client involves some amount of "boilerplate" code,
however, when using NetBeans, we can simply drag the web service operation we
wish to invoke to our code. This results in generating all necessary boilerplate code,
and leaving us to simply specify which parameters we want to send to the web
service. Dragging the inchesToCentimeters operation from the Projects window to
the main class of our web services client project results in the following code being
generated:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[319]

As we can see, a method called inchesToCentimeters() (the name of the web
service operation we dragged to the source code) is automatically added. This
method in turn invokes a couple of methods in a class called UnitConversion_
Service. This class (and several others) is automatically generated when we drag the
web service operation to our code. We can see the generated classes by expanding
the Generated Sources (jax-ws) node in our project window.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[320]

The getUnitConversionPort() method of UnitConversion_Service returns an
instance of the UnitConversion class that is generated from the WSDL and is similar to
the identically named class we wrote in our web service project. The method generated
when we drag the web service operation to our code invokes this method, then invokes
the inchesToCentimeters() method on the UnitConversion instance that is returned.
All we need to do is invoke the generated method from the main method in our code.
After making this simple modification, our code now looks like this:

At this point, we are ready to execute our web services client code; we should see
the following output in the console:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[321]

Exposing EJBs as web services
In our previous web service example, we saw how we can expose a Plain Old Java
Object (POJO) as a web service by packaging it in a web application and adding a
few annotations to it. This makes it very easy to create web services deployed in a
web application.

When working with an EJB module project, we can have stateless session beans
exposed as web services, this way they can be accessed by clients written in
languages other than Java. Exposing stateless session beans as web services has the
effect of allowing our web services to take advantage of all the features available to
EJBs, such as transaction management and aspect-oriented programming.

There are two ways we can expose a session bean as a web service, when creating
a new web service in an EJB module project, the web service will automatically be
implemented as a stateless session bean. Additionally, existing session beans in an
EJB module project can be exposed as a web service.

Implementing new web services as EJBs
In order to implement a new web service as an EJB, we simply need to create the
web service in an EJB module project by right-clicking on the project and selecting
New | Web Service.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[322]

In the web services wizard, we need to enter a name for our web service, a package
where our web service implementation code will be created, and select the Create
Web Service From Scratch radio button, then click Finish to generate our web
service. At this point we should see the web service source code.

Notice that the generated session bean does not implement neither a local nor
remote business interface, it is simply decorated with the @WebService annotation,
its methods are decorated with the @WebMethod annotation, and each parameter
is decorated with the @WebParam annotation. The only difference between the
generated code for this web service and the one for the previous example is that
the generated class is a stateless session bean, therefore it can take advantage of EJB
transaction management, aspect-oriented programming, and other EJB features.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[323]

Just as with regular web services, a web service implemented as a session bean can
be designed using the NetBeans visual web service designer. In our example, after
removing the automatically generated operation and adding two operations, our
web service visual designer looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[324]

Clicking on the Source tab reveals the newly generated methods, along with all
appropriate annotations.

Once we deploy our project, our web service can be accessed by clients just like
any other web service. It makes no difference to the client that our web service
was implemented as a session bean.

Exposing existing EJBs as web services
The second way we can expose EJBs as web services is to expose an existing EJB as
a web service. In order to do this, we need to create a web service as usual by going
to File | New | Web Service, then enter a name and a package for our web service
and select the Create Web Service from Existing Session Bean radio button, then we
need to select the session bean to expose as a web service by clicking on the Browse...
button and selecting the appropriate bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[325]

When we click on Finish, our new web service is created and its source code is
automatically opened.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[326]

As we can see, creating a web service from an existing session bean results in a new
stateless session bean being created. This new session bean acts as a client for our
existing EJB (as evidenced by the ejbRef instance variable in our example, which is
annotated with the @EJB annotation).

By clicking on the Design button at the top, we can see the visual designer for our
newly created web service.

EJBs can also be exposed as web services from a web application project, in which
case the generated web service will be a POJO annotated with the @WebService,
@WebMethod, and @WebParam annotations, with pass-through methods invoking
the corresponding methods on the EJB being exposed as a web service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[327]

Creating a web service from an existing
WSDL
Normally, creating SOAP web services requires the creation of a Web Services
Definition (WSDL) file. The process of creating a WSDL is complex and error
prone, but thankfully Java EE frees us from having to create a WSDL file by hand,
since it gets generated automatically whenever we deploy a web service into our
application server.

However, sometimes we have a WSDL file available, and we need to implement its
operations in Java code. For these cases, NetBeans provides a wizard that creates a
Java class with method stubs from an existing WSDL.

In order to do so, we need to create a new file, select the Web Services category, and
Web Service from WSDL as the file type.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[328]

We then need to enter a name, package and existing WSDL for our web service.

A web service will then be generated with method stubs for all operations defined in
the WSDL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[329]

At this point we simply need to add the method bodies for all the generated methods.

In this example, we used the WSDL that was generated from our previous example,
which is redundant since we already have implementations for all the operations.
However, the procedure illustrated here applies to any WSDL file, either in the local
file system or deployed in a server.

www.it-ebooks.info

http://www.it-ebooks.info/

SOAP Web Services with JAX-WS

[330]

Summary
In this chapter, we explored NetBeans' support for Web Service development,
including how to expose a POJO's methods as web services and how NetBeans
automatically adds the required annotations to our web services.

We covered how NetBeans aids us in creating web service clients by generating most
of the required boilerplate code, leaving us to simply initialize any parameters to be
passed to our web service's operations.

Additionally we covered how to expose EJB methods as web service operations, and
how NetBeans supports and makes it easy to expose both new and existing EJBs as
web services.

Finally, we saw how NetBeans can help us implement a web service from an
existing WSDL file, located either on our local file system or deployed on a server,
by generating method stubs from said WSDL.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with
JAX-RS

Representational State Transfer (REST) is an architectural style in which web
services are viewed as resources and can be identified by Uniform Resource
Identifiers (URIs).

Web services developed using the REST style are known as RESTful web services.
Java EE 6 adds support to RESTful web services through the addition of the Java API
for RESTful Web Services (JAX-RS). JAX-RS has been available as a standalone API
for a while, it became part of Java EE in version 6 of the specification.

One very common use of RESTful web services is to act as a frontend to a database,
that is, RESTful web service clients can use a RESTful web service to perform CRUD
(Create, Read, Update, Delete) operations in a database. Since this is such a common
use case, NetBeans includes outstanding support for this, allowing us to create
RESTful web services that act as a database frontend with a few simple mouse clicks.

Here are some of the topics we will cover in this chapter:

•	 Generating RESTful web services from an existing database
•	 Testing RESTful web services using tools provided by NetBeans
•	 Generating a RESTful web service client code for our RESTful web services

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[332]

Generating a RESTful web service from
an existing database
To create a RESTful web service from an existing database, in a web application
project, we simply need to select File | New, then pick the Web Services category
and the RESTful Web Services From Database file type.

In the next step in the wizard, we need to pick a datasource and select one or more
tables to generate our web service. In our example, we will generate a web service for
the CUSTOMER table of the customerdb database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[333]

In the next step in the wizard, we need to enter a package for our web service code.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[334]

We then need to pick a Resource Package, or simply accept the default value of
service, it is a good idea to enter a package name that follows standard package
naming conventions.

When we click on Finish, a window pops up asking us how we want to register
REST resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[335]

We are presented with three options:

•	 Generate a subclass of javax.ws.rs.core.Application
•	 Do nothing, then manually write some code or configuration to register

JAX-RS resources
•	 Generate a web.xml deployment descriptor with the appropriate

configuration

In most cases we want to pick the first option since one of the major benefits of
Java EE 6 over previous versions is reduced reliance on configuration files such as
web.xml. The do nothing option requires us to manually configure our RESTful
web services, and the web.xml option uses the older way of configuring JAX-RS
via this deployment descriptor.

In most cases, the Add Jersey Library (JAX-RS reference implementation)
to project classpath checkbox should be checked, since this option auto-
matically adds the required JAX-RS libraries to our project.

Analyzing the generated code
The wizard discussed in the previous section creates a JPA entity for each chosen
table, plus an AbstratFacade class and a Facade class for each generated JPA entity.
The generated code follows the Facade design pattern, in essence, each Facade class
is a wrapper for JPA code.

See http://en.wikipedia.org/wiki/Facade_pattern for more
information on the Facade design pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[336]

The generated Facade classes are deployed as RESTful web services and can be
accessed as such:

The AbstractFacade class serves as a parent class for all other Facade classes:

package com.ensode.netbeansbook.jaxrs.service;

import java.util.List;
import javax.persistence.EntityManager;

public abstract class AbstractFacade<T> {
private Class<T> entityClass;

public AbstractFacade(Class<T> entityClass) {
this.entityClass = entityClass;

}

protected abstract EntityManager getEntityManager();

public void create(T entity) {
getEntityManager().persist(entity);

}

public void edit(T entity) {
getEntityManager().merge(entity);

}

public void remove(T entity) {
getEntityManager().remove(getEntityManager().merge(entity));

}

public T find(Object id) {
return getEntityManager().find(entityClass, id);

}

public List<T> findAll() {
javax.persistence.criteria.CriteriaQuery cq =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[337]

getEntityManager().getCriteriaBuilder().createQuery();
cq.select(cq.from(entityClass));
return getEntityManager().createQuery(cq).getResultList();

}

public List<T> findRange(int[] range) {
javax.persistence.criteria.CriteriaQuery cq =

getEntityManager().getCriteriaBuilder().createQuery();
cq.select(cq.from(entityClass));
javax.persistence.Query q =

getEntityManager().createQuery(cq);
q.setMaxResults(range[1] - range[0]);
q.setFirstResult(range[0]);
return q.getResultList();

}

public int count() {
javax.persistence.criteria.CriteriaQuery cq =

getEntityManager().getCriteriaBuilder().createQuery();
javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
cq.select(getEntityManager().getCriteriaBuilder().count(rt));
javax.persistence.Query q =

getEntityManager().createQuery(cq);
return ((Long) q.getSingleResult()).intValue();

}

}

As we can see, AbstractFacade has an entityClass variable that gets set to the
appropriate type via generics by its child classes. It also has methods to create, edit,
remove, find, and count entities. The body of these methods is standard JPA code
and should be familiar by now.

As we mentioned earlier, the wizard generates a Facade for each generated
JPA entity, in this example we picked a single table (CUSTOMER), therefore a
single JPA entity was created, the Facade class for this JPA entity is called
CustomerFacadeRest.

package com.ensode.netbeansbook.jaxrs.service;

import com.ensode.netbeansbook.jaxrs.Customer;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[338]

import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;

@Stateless
@Path("com.ensode.netbeansbook.jaxrs.customer")
public class CustomerFacadeREST extends AbstractFacade<Customer> {

@PersistenceContext(unitName = "jaxrsPU")
private EntityManager em;

@java.lang.Override
protected EntityManager getEntityManager() {

return em;
}

public CustomerFacadeREST() {
super(Customer.class);

}

@POST
@Override
@Consumes({"application/xml", "application/json"})
public void create(Customer entity) {

super.create(entity);
}

@PUT
@Override
@Consumes({"application/xml", "application/json"})
public void edit(Customer entity) {

super.edit(entity);
}

@DELETE
@Path("{id}")
public void remove(@PathParam("id")
Integer id) {

super.remove(super.find(id));
}

@GET
@Path("{id}")
@Produces({"application/xml", "application/json"})
public Customer find(@PathParam("id")
Integer id) {

return super.find(id);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[339]

@GET
@Override
@Produces({"application/xml", "application/json"})
public List<Customer> findAll() {

return super.findAll();
}

@GET
@Path("{from}/{to}")
@Produces({"application/xml", "application/json"})
public List<Customer> findRange(@PathParam("from")
Integer from, @PathParam("to")
Integer to) {

return super.findRange(new int[]{from, to});
}

@GET
@Path("count")
@Produces("text/plain")
public String countREST() {

return String.valueOf(super.count());
}

}

As evident by the @Stateless annotation, the generated class is a stateless session
bean. The @Path annotation is used to identify the Uniform Resource Identifier
(URI) that our class will serve requests for. As we can see, several of the methods
in our class are annotated with the @POST, @PUT, @DELETE, and @GET annotations.
These methods will be automatically invoked when our web service responds to
the corresponding HTTP requests. Notice that several of the methods are annotated
with the @Path annotation as well, the reason for this is that some of these methods
require a parameter, for example, when we need to delete an entry from the
CUSTOMER table, we need to pass the primary key of the corresponding row as a
parameter. The format of the value attribute of the @Path annotation is "{varName}",
the text between the curly braces is known as a path parameter. Notice that the
method has corresponding parameters that are annotated with the @PathParam
annotation.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[340]

Testing our RESTful web service
Once we deploy our project, we can make sure that the web service was
deployed successfully by expanding the RESTful Web Services node on our
project, right-clicking on our RESTful web service and selecting Test Resource Uri.

This action will invoke the findAll() method in our service (since it is the only
method that doesn't require a parameter), the generated XML response will
automatically open in the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[341]

There is only one row in the CUSTOMER table of our database, the XML response for
our web service displays the data in this row.

We can also easily test other methods in our web service by right-clicking on the
project and selecting Test RESTful Web Services.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[342]

After doing this, a page similar to the following will automatically open in
the browser:

By clicking on our web service at the left, and then selecting GET(application/xml)
from the drop down menu labeled Choose method to test, then clicking on Test
results in an HTTP GET request being sent to our RESTful web service returns an
XML response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[343]

Unsurprisingly, the XML we see here is identical to the one that we saw earlier.

Our RESTful web service can produce or consume either XML or JSON (JavaScript
Object Notation). This can be seen in the values for each of the @Produces and
@Consumes annotations in our code.

If we can see the JSON representation of the result of the findAll() method, all we
need to do is select GET(application/json) and click on the Test button.

We can also insert, read, or modify a single record by selecting the appropriate HTTP
request and passing the appropriate parameters. The corresponding method in our
RESTful web service will be automatically called.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[344]

Now that we have verified our RESTful web service was deployed successfully, the
next step is to implement a client application that uses our service. But before doing
so let's take a look at the NetBeans generated ApplicationConfig class, which can
be seen by expanding the Generated Sources (rest) node in the project view.

The source code for this class looks like this:

package org.netbeans.rest.application.config;
/**
* This class is generated by the Netbeans IDE,
* and registers all REST root resources created in the project.
* Please, DO NOT EDIT this class !
*/
@javax.ws.rs.ApplicationPath("resources")
public class ApplicationConfig extends javax.ws.rs.core.Application {
}

As we can see, the body of this class is empty, the purpose of this class is to configure
JAX-RS, and therefore no actual code needs to be generated. The only requirement
is that the class extends javax.ws.rs.core.Application and for the class to be
annotated with the @javax.ws.rs.ApplicationPath annotation. This annotation
is used to specify the base URI of all paths specified by the @Path annotation in our
RESTful web services classes. NetBeans by default uses a path named resources for
all RESTful web services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[345]

Developing a RESTful web service client
NetBeans provides a wizard that can automatically generate client code that invokes
our RESTful web service methods via the corresponding HTTP requests.

To generate this client code, we simply need to click on File | New File, then select
the Web Services category and RESTful Java Client as the file type.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[346]

In the next step in the wizard, we need to enter a class name and a package name for
our JAX-RS client.

We then need to select the RESTful web service that our client will consume, in
our case we need to select the From Project radio button under Select the REST
resource, then click on the button labeled Browse....

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[347]

We then simply need to select the RESTful web service we developed earlier.

At this point, NetBeans generates the following code:

package com.ensode.glassfishbook.jaxrsclient;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.UniformInterfaceException;
import com.sun.jersey.api.client.WebResource;

/** Jersey REST client generated for REST resource:CustomerFacadeREST
[com.ensode.netbeansbook.jaxrs.customer]

* USAGE:<pre>
* NewJerseyClient client = new NewJerseyClient();
* Object response = client.XXX(...);
* // do whatever with response
* client.close();
* </pre>
* @author heffel
*/
public class NewJerseyClient {

private WebResource webResource;
private Client client;
private static final String BASE_URI =

"http://localhost:8080/jaxrs/resources";

public NewJerseyClient() {
com.sun.jersey.api.client.config.ClientConfig config = new

com.sun.jersey.api.client.config.DefaultClientConfig();

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[348]

client = Client.create(config);
webResource =

client.resource(BASE_URI).path(
"com.ensode.netbeansbook.jaxrs.customer");

}

public void remove(String id) throws UniformInterfaceException {
webResource.path(java.text.MessageFormat.format("{0}",

new Object[]{id})).delete();
}

public String countREST() throws UniformInterfaceException {
WebResource resource = webResource;
resource = resource.path("count");
return resource.accept(

javax.ws.rs.core.MediaType.TEXT_PLAIN).get(String.class);
}

public <T> T findAll_XML(Class<T> responseType)
throws UniformInterfaceException {
WebResource resource = webResource;
return resource.accept(
javax.ws.rs.core.MediaType.APPLICATION_XML).get(responseType);

}

public <T> T findAll_JSON(Class<T> responseType)
throws UniformInterfaceException {
WebResource resource = webResource;
return resource.accept(

javax.ws.rs.core.MediaType.APPLICATION_JSON).get(
responseType);

}

public void edit_XML(Object requestEntity)
throws UniformInterfaceException {
webResource.type(
javax.ws.rs.core.MediaType.APPLICATION_XML).

put(requestEntity);
}

public void edit_JSON(Object requestEntity)
throws UniformInterfaceException {
webResource.type(

javax.ws.rs.core.MediaType.APPLICATION_JSON).put(
requestEntity);

}
public void create_XML(Object requestEntity)

throws UniformInterfaceException {
webResource.type(

javax.ws.rs.core.MediaType.APPLICATION_XML).post(
requestEntity);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[349]

}

public void create_JSON(Object requestEntity)
throws UniformInterfaceException {
webResource.type(

javax.ws.rs.core.MediaType.APPLICATION_JSON).post(
requestEntity);

}

public <T> T findRange_XML(Class<T> responseType, String from,
String to) throws UniformInterfaceException {
WebResource resource = webResource;
resource = resource.path(

java.text.MessageFormat.format("{0}/{1}",
new Object[]{from, to}));

return resource.accept(
javax.ws.rs.core.MediaType.APPLICATION_XML).get(

responseType);
}

public <T> T findRange_JSON(Class<T> responseType,
String from, String to) throws UniformInterfaceException {
WebResource resource = webResource;
resource = resource.path(

java.text.MessageFormat.format("{0}/{1}",
new Object[]{from, to}));

return resource.accept(
javax.ws.rs.core.MediaType.APPLICATION_JSON).get(
responseType);

}

public <T> T find_XML(Class<T> responseType, String id)
throws UniformInterfaceException {
WebResource resource = webResource;
resource = resource.path(java.text.MessageFormat.format("{0}",

new Object[]{id}));
return resource.accept(

javax.ws.rs.core.MediaType.APPLICATION_XML).get(
responseType);

}

public <T> T find_JSON(Class<T> responseType, String id)
throws UniformInterfaceException {
WebResource resource = webResource;
resource = resource.path(java.text.MessageFormat.format("{0}",

new Object[]{id}));
return resource.accept(

javax.ws.rs.core.MediaType.APPLICATION_JSON).get(
responseType);

}

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[350]

public void close() {
client.destroy();

}

}

As we can see, NetBeans generates wrapper methods for each of the methods in our
RESTful web service. NetBeans generates two versions of each method, one that
produces and/or consumes XML, and another one that produces and/or consumes
JSON (JavaScript Object Notation). As we can see, each method uses generics so that
we can set the return type of these methods at run time.

The easiest and most straightforward way of using these methods is to use Strings,
for example, we can invoke the find_XML(Class<T> responseType, String id) as
follows:

public class Main {
public static void main(String[] args) {

NewJerseyClient newJerseyClient = new NewJerseyClient();
String response = newJerseyClient.find_XML(

String.class, "1");

System.out.println("response is: " + response);

newJerseyClient.close();
}

}

The above invocation will return a String containing an XML representation of the
values in the row with ID of 1 in the database, executing the above code we should
see the following output:

response is: <?xml version="1.0" encoding="UTF-8" standalone
="yes"?><customer><customerId>1</customerId><email>bnorris@
example.com</email><firstName>Bruce</firstName><lastName>Norris</
lastName><middleName></middleName></customer>

We can then parse and manipulate this XML as usual.

Additionally, we can send data to our web service in XML format, all we need to
do is create a String with the appropriate XML and pass it to one of the generated
methods. For example, we could insert a row into the database by using the
following code:

package com.ensode.glassfishbook.jaxrsclient;

public class Main1 {

public static void main(String[] args) {
NewJerseyClient newJerseyClient = new NewJerseyClient();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[351]

String xml = "<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"yes\"?>"

+ "<customer>"
+ "<customerId>2</customerId>"
+ "<email>jjones@example.com</email>"
+ "<firstName>John</firstName>"
+ "<lastName>Jones</lastName>"
+ "<middleName>Jason</middleName>"
+ "</customer>";
newJerseyClient.create_XML(xml);

newJerseyClient.close();
}

}

In the client code above, we generate XML formatted so that our RESTful web service
can understand it, then pass it to the create_XML() method in the generated client
class. This class in turn invokes our web service which inserts a row in the database.

We can verify that the data was inserted successfully by querying the database.

www.it-ebooks.info

http://www.it-ebooks.info/

RESTful Web Services with JAX-RS

[352]

As we can see, the data in the database matches the data in the XML string we
generated.

Summary
In this chapter, we covered some of the powerful RESTful web service generation
capabilities that NetBeans offers. We saw how NetBeans allows us to easily generate
a RESTful web service from an existing database schema. We also saw how we
can easily test our web services using tools provided by NetBeans and GlassFish.
Additionally, we saw how to generate a web service client with a few clicks of the
mouse. Finally we saw how we can invoke our web service functionality with a few
simple method calls.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Enterprise
Applications with the
NetBeans Debugger

Debuggers help us test and debug applications. NetBeans includes a debugger
that can help us seamlessly debug all of our Java applications, including enterprise
applications. In this appendix we will cover the NetBeans debugger, highlighting
features that make our lives as Java EE developers easier.

Debugging enterprise applications
Typically debugging enterprise Java EE applications is a somewhat complicated
process, our application server needs to be started in the "debug mode". The procedure
for doing this is different depending on the application server, but typically involves
passing some command line parameters to the shell script or executable that starts the
application server. Our code must also be compiled with debugging enabled; this is
usually done by either setting a parameter on the IDE or passing some arguments to
the javac executable. Also, our debugger must be "attached" to the application server
so that it can "see" the code running in a separate JVM.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Enterprise Applications with the NetBeans Debugger

[354]

Thankfully all of the steps described in the previous paragraph are automated
when using NetBeans with the bundled GlassFish application server. When using
this combination, all we need to do is open our Enterprise Application Project then
right-click on it and select Debug, at this point the application server is started in
debug mode (or restarted in debug mode if it was already running in standard
mode), the application is deployed and the debugger is automatically attached to
the application server.

We will use a simple application involving JSF, CDI, and JPA to illustrate NetBeans
debugging capabilities.

When persisting data in JPA entities, we either need to set the primary key explicitly
when inserting a new row in the database, or we need to set automatic primary
key generation using the @GeneratedValue annotation. In our example we will use
neither approach, this will make our application break when inserting new rows.
Here is the relevant code for the JPA entity:

package com.ensode.nbbook.buggywebapp.entitity;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlRootElement;

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[355]

@Entity
@Table(name = "CUSTOMER")
public class Customer implements Serializable {

private static final long serialVersionUID = 1L;
@Id
@Basic(optional = false)
@NotNull
@Column(name = "CUSTOMER_ID")
private Integer customerId;
@Size(max = 20)
@Column(name = "FIRST_NAME")
private String firstName;
@Size(max = 20)
@Column(name = "MIDDLE_NAME")
private String middleName;
@Size(max = 20)
@Column(name = "LAST_NAME")
private String lastName;
@Size(max = 30)
@Column(name = "EMAIL")
private String email;

public Customer() {
}

public Customer(Integer customerId) {
this.customerId = customerId;

}

//getters and setters omitted for brevity.
}

Notice that the above JPA entity does not use the @GeneratedValue annotation,
therefore the value for its primary key needs to be explicitly set before persisting
its data.

The following CDI Named bean acts as a controller in our example application, it
has a method that is meant to persist data in an instance of the Customer JPA entity.

package com.ensode.nbbook.buggywebapp.controller;

//imports omitted for brevity

@Named
@RequestScoped
@Stateful
public class CustomerController {

@PersistenceContext(unitName = "BuggyWebAppPU")

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Enterprise Applications with the NetBeans Debugger

[356]

private EntityManager em;
@Inject
private CustomerModel customerModel;

public String createCustomer() {
Customer customer = entityFromModel(customerModel);
try {

persist(customer);
return "confirmation";

} catch (Exception e) {
Logger.getLogger(getClass().getName()).log(

Level.SEVERE, "exception caught", e);
return "error";

}
}

public void persist(Object object) {
try {

em.persist(object);
} catch (Exception e) {

Logger.getLogger(getClass().getName()).log(
Level.SEVERE, "exception caught", e);

throw new RuntimeException(e);
}

}

private Customer entityFromModel(CustomerModel customerModel) {
Customer customer = new Customer();

customer.setFirstName(customerModel.getFirstName());
customer.setLastName(customerModel.getLastName());

return customer;
}

public CustomerModel getCustomerModel() {
return customerModel;

}

public void setCustomerModel(CustomerModel customerModel) {
this.customerModel = customerModel;

}

public EntityManager getEm() {
return em;

}

public void setEm(EntityManager em) {
this.em = em;

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[357]

Notice that nowhere in the above code is the primary key property in the Customer
JPA entity set. Since we are not using automatic primary key generation, and we are
not explicitly setting the primary key value, our application will throw an exception
when attempting to persist an instance of the Customer JPA entity.

If we examine the GlassFish log in the NetBeans output window, we can see the
following line:

at com.ensode.nbbook.buggywebapp.controller.CustomerController.creat
eCustomer(CustomerController.java:35)

The above line is telling us that an exception occurred on line 35 of
CustomerController.java. Therefore we need to pause our application's execution
just before that line is executed so that we can inspect the values of all relevant
variables at that point.

One central feature of debuggers is the ability to pause execution of the application
being debugged by adding breakpoints to it. When a line of code where a breakpoint
has been placed is about to be executed, the application pauses, allowing us to
inspect the values of all instance and method scoped variables in the class where the
breakpoint was placed. In NetBeans, placing a breakpoint in a line is very simple,
all we need to do is click on the left margin of the source editor right next to the line
where the breakpoint will be added, at this point the line will be highlighted in red
plus a red square icon will be placed in the left margin.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Enterprise Applications with the NetBeans Debugger

[358]

To display line numbers, right-click on the left margin and click on the
checkbox labeled Show Line Numbers.

At this point we are ready to debug our application, which we can do by simply
right-clicking on our project and selecting Debug. Doing this causes our application
to be deployed and executed as in debug mode.

We need to test our application as usual in order to get to the point where it is failing.
In our example application we simply need to execute the code until it attempts to
persist our JPA entity.

Looking at the editor, we will see that the line containing the breakpoint is now
highlighted in green, plus an arrow has been placed on the left side margin.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[359]

These changes indicate the current line in the execution path. Once the execution has
been paused, we can execute the code line-by-line in order to pin point exactly where
the problem is happening. There are two ways we can execute each line, we can either
step over the line, or step into it, the difference being when we step over, we will not
go "into" any method calls, simply going "over" the line. When we step into it, we
actually navigate inside any method calls that are being invoked in the current line.

In our example, stepping over the current line would skip the line that is actually
persisting the data, therefore the most appropriate course of action is to step into
the current line.

In NetBeans, we can step over the current line by pressing F7 or clicking on the icon:

Doing so will take us to the method being invoked in the current line, execution will
pause at this point, the next line to be executed will be highlighted in green and an
arrow will be placed next to it in the left margin.

Since there is only one executable line in this method, we know that stepping over
this line will cause the exception. We can inspect any local variables in the current
class and method by looking at the Local Variables window.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Enterprise Applications with the NetBeans Debugger

[360]

The Local Variables window can be opened by going to Window
| Debugging | Local Variables or by pressing Alt+Shift+1 on
windows and Linux systems, and Ctrl+Shift+1 on Mac OS X
systems.

By expanding the node corresponding to our customer object, we can see the values
of all of its properties. At this point we should notice that the customerId property
is null, which results in the code attempting to insert a new row with a null primary
key. At this point we have discovered the problem. Now that the problem is known,
fixing the code is trivial, in our example, the easiest way to fix it is to add the
@GeneratedValue annotation to the customerId property of our entity bean.

Summary
In this appendix we covered how to debug enterprise applications using NetBeans,
we saw how NetBeans makes debugging remote applications deployed to an
application server as simple as debugging standard Java applications.

We also saw how we can add breakpoints to pause execution of our applications
and either step into or step over each line.

Additionally we saw how we can inspect the values of all variables in scope by
looking at the Local Variables window.

www.it-ebooks.info

http://www.it-ebooks.info/

Identifying Performance
Issues with the NetBeans

Profiler
Sometimes we run into performance problems in some of our applications.
At times, identifying the code to be optimized may be trivial, but sometimes it is
not easy. Profilers are tools that can help us pinpoint performance problems in our
code. NetBeans comes with a very good profiler that we can use with our Java EE
applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Identifying Performance Issues with the NetBeans Profiler

[362]

Profiling our application
All we need to do in order to profile our application is right-click on it in the Projects
window and select Profile. At that point, the following window will pop up:

As we can see, there are several aspects of our application we can profile, such as
memory allocation and CPU usage. One of the most useful features of the NetBeans
profiler is the ability to report how long each method invocation in our application is
taking, this information is provided when we profile CPU usage.

In order to start profiling, we simply click on the Run button. At this point the
application server will be started in profiling mode, and our application will be
deployed and executed. After a few seconds the Profiler control panel will open.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[363]

At this point we can see how long each method is taking and how many times each
method has been executed by simply clicking on the Live Results button.

The Live Profiling Results window displays every method invocation, along with
the percentage of total time in the application that the method is using, and the
number of milliseconds the method takes to complete, it also shows how many times
each method has been invoked.

www.it-ebooks.info

http://www.it-ebooks.info/

Identifying Performance Issues with the NetBeans Profiler

[364]

As we can see, the NetBeans profiler can be very helpful in pinpointing areas of our
application that are having performance problems, allowing us to easily identify
these areas so that we can better focus our performance optimization efforts.

Although this information is very valuable, it is by no means the only information
we can obtain from the NetBeans profiler. We can see how much memory our
application is using by simply opening the VM Telemetry Overview window by
clicking on the VM Telemetry icon on the Profiling control panel.

After clicking the VM Telemetry Icon, the VM Telemetry window opens. This
window has three tabs:

The graph on the left tab shows (in red) the total amount of heap allocated in our
application's Java Virtual Machine. Additionally, it also shows the total amount of
heap used by our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

[365]

The graph in the middle tab is useful for detecting "memory leaks" (Java has garbage
collection, therefore in theory memory leaks are impossible. However, if we keep
references to objects that are no longer needed they are never garbage collected,
therefore a memory leak is possible). The purple line in the middle graph indicates
the amount of time the JVM spends doing garbage collection. The red line indicates
Surviving Generations. A generation is a set of objects that were created within two
garbage collection intervals. A surviving generation is a generation that survived
one or more garbage collections. We can force our application to garbage collect by
clicking on the icon in the Profiling control panel:

www.it-ebooks.info

http://www.it-ebooks.info/

Identifying Performance Issues with the NetBeans Profiler

[366]

If the graph indicates a high number of surviving generations between garbage
collections, then we might have a memory leak in our application.

The graph on the right tab of the VM Telemetry Overview window indicates the
number of active threads and the number of loaded classes in our application.

Summary
The NetBeans profiler is a very valuable tool in identifying performance problems
in our applications. It provides several useful tools to aid us in identifying poorly
performing code, as well as allow us to easily monitor memory usage and object
allocation in our applications. More information about the NetBeans profiler can be
found at http://profiler.netbeans.org/.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
@ActivationConfigProperty annotation 304
@ApplicationScoped annotation 150, 273
@AroundInvoke annotation 256
<cc:attribute> tag 170
<c:choose> tag

about 100
exclusive markup, mutual display 103-106

<cc:implementation> tag 170
<c:forEach> tag

about 100
array, iterating through 107-109
collections, iterating through 107-109

<c:if> tag
about 100
part of a page, conditonal display 100-103

<class> tags 287
@Column annotation 217
@ConversationScoped annotation 273
<c:otherwise> tag 105
<c:when> tag 104, 106
@DELETE annotation 339
@Dependent annotation 273
@Entity annotation 203
@FacesValidator annotation 158
<form> element 78
<f:selectItem> tags 146
<f:validator> tag 158
@GeneratedValue annotation 203, 219, 354
@GET annotation 339
<h:body> tag 141
<h:commandButton> 146
<h:commandButton> component 181
<h:form> tag 142
<h:graphicImage> tag 145

<h:label> tag 145
<h:messages> 178
<h:messages> tag 139
<h:outputScript> tag 145
<h:outputStylesheet> tag 144, 145
<h:panelGrid> tag 143
<h:selectOneMenu> tag 145, 146
<html> tag 174
@Id annotation 203
@Inject annotation 274
@Interceptors annotation

using, for decorating EJB 258
<interceptor> tag 287
@JoinColumn annotation 223
@JoinTable annotation 225
</jsp:body> tag 134
<jsp:body> tag 134
<jsp:getProperty> tag 79
<jsp:useBean> tag 78, 80, 131
@ManagedBean annotation 150
@ManyToMany annotation 225
@ManyToOne annotation 223
@MessageDriven annotation 304
@Named annotation 280
@NamedQueries annotation 219
@NamedQuery annotation 219
@NoneScoped annotation 150
@OneToMany annotation 221
@OneToOne annotation 227
<p:abView> component 181
@Path annotation 339
<p:calendar>

inputStyle attribute 180
inputStyleClass attribute 180

<p:commandButton> 190
<p:dialog> 175

www.it-ebooks.info

http://www.it-ebooks.info/

[368]

<p:inputMask>
about 187
mask attribute 187

<p:messages> 179
@POST annotation 339
@Premium qualifier 278
<p:tab>

about 190
title attribute 185

<p:tabView>
about 185
using, for view generation 181-187

@PUT annotation 339
<p:wizard> 187
@Qualifier annotation 275
@RequestScoped annotation 150, 272
@Resource annotation 298
@Schedule annotation 259
@SequenceGenerator annotation 204
@Session annotation 339
@SessionScoped annotation 150, 272, 280
<sql:param> tag 125
<sql:query> tag

database data, retrieving 113-117
<sql:update> tag

about 125
database data, modifying 117

@Table annotation 217
@TableGenerator annotation 204
@TransactionAttribute annotation

about 253
implementing 255
values 254

<ui:composition> tag 164
<ui:define> tag 164
<ui:insert> tag 164
@ViewScoped annotation 150
@WebMethod annotation 310, 322
@WebParam annotation 310, 322
@WebService annotation 310, 322
@WebServlet annotation 74

A
AbstractFacade 265
AbstratFacade class

about 335

entityClass variable 337
acknowledge mode

Session.AUTO_ACKNOWLEDGE 300
Session.CLIENT_ACKNOWLEDGE 300
Session.DUPS_OK_ACKNOWLEDGE 300

activationConfig property 304
Address entity 235
addressType attribute 131
AOP 283
application

profiling, NetBeans Profiler used 362-366
Application class 140
ApplicationConfig class 344
aspect oriented programming

implementing, with interceptors 255
Aspect Oriented Programming. See AOP
attribute directive 129

B
basic authentication 82
beans.xml 269
Bean validation, JPA 221
bidirectional 227
breakpoints 357

C
CDI

about 268-275
interceptor 283
stereotypes 280-283

client
developing, for web service 316-320

client side certificate 83
code completion

about 33-37
code templates

about 37, 38
forc 38
fore 38
ifelse 38
Psf 38
psvm 38
soutv 38
trycatch 38
whileit 38

columnClasses attribute 144

www.it-ebooks.info

http://www.it-ebooks.info/

[369]

commit() method 300
Common Development and Distribution

License (CDDL) 15
components, PrimeFaces

using, in JSF applications 176-181
composite components

about 167
generating 167-171

contentType attribute 53
Contexts and Dependency Injection. See

CDI
core JSTL tags

<c:choose> tag 100
<c:forEach> tag 100
<c:if> tag 100

count() method 265
createConnection() method 299
createJMSMessageforjmsMyQueue()

method 299
create() method 211, 265
createNamedQuery() method 220
createProducer() method 300
createSession() method 300
create_XML() method 351
CRUD (Create, Read, Update, Delete)

operations 228, 263
customerdb database 332
custom JSP tags

about 127, 136
creating 127-134

D
DAO

about 205, 260
creating 206-219

Data Access Object. See DAO
database data, <sql:update> tag used

deleting 124-127
inserting 118-121
modifying 118-125
updating 122, 123

debuggers 353
destroy() method 211
digest authentication 83
displayConditionalText parameter 101
doGet() method 75

doPost() method 75
doSomething() method 44
dynamic navigation 147

E
EchoBean session bean 258
echo() method 258
edit() method 265
EJB

about 237
decorating, with @Interceptors annotations

257, 258
EJBs, exposing as web services

about 321
existing EJBs, exposing as web services

324-326
new web services, implementing as EJBs

321-324
web service, creating from existing WSDL

327-329
EJB timer service

about 259
using 259, 260

enterprise applications
debugging 353-360

Enterprise JavaBeans. See EJB
EntityManager 265
entity relationships, JPA 221-228
equality logical operator (==) 106
equals() method 106

F
Facelets template

adding, to JSF project 161
using 162-166

facelets templating 159-161
faces-config.xml 136
findAll() method 265, 340
findCustomerEntities() method 211
findCustomer() method 211
findRange() method 265
first PrimeFaces project

creating 173-176
form-based authentication

about 83
GlassFish specific security configuration

www.it-ebooks.info

http://www.it-ebooks.info/

[370]

90-94
implementing 83

form-based authentication implementation
about 83
application, configuring 86-90
login error page, implementing 85
login page, implementing 83, 84

G
generation 365
GenerationType.AUTO strategy 204
getAttribute() method 77
getColumnNames() method 113
getConnection() method 198
getEntityManager() method 265
getInitParameter() method 74
getProjectStage() method 140
getRequestDispatcher() method 77
getResultList() method 220
getRowCount() method 113
getRowsByIndex() method 114, 117
getRows() method 113
getServletContext() method 77
getSession() method 77
getUnitConversionPort() method 320
GlassFish specific security configuration

 90-94
GNU Public License (GPL) 15

I
implicit JSP objects

application 68
config 68
exception 69
jspContext 69
out 69
page 69
pageContext 69
request 69
response 69
session 69

inchesToCentimeters() method 319, 320
inputStyle attribute 180
interceptor

about 283
creating 284-287

interceptor class
example 256
implementing 256, 257

interceptors 255
inverseJoinColumns attribute 225
InvocationContext methods

about 256
getMethod() 256
getParameters() 256
getTarget() 256

InvocationContext parameter 256
invocationContext.proceed() method 257
isLimitedByMaxRows() method 114

J
Java Class Library project 248
Java Development Kit (JDK) version 12
Java EE subinterfaces

BytesMessage 299
MapMessage 299
ObjectMessage 299
StreamMessage 299
TextMessage 299

Java Messaging Service. See JMS
Java Persistence API. See JPA
Java Persistence Query Language. See JPQL
Java Server Faces. See JSFs
Java Server Pages (JSPs)

developing 47
Java Standard Tag Library. See JSTL
Java Transaction API (JTA) 202
java.util.Collection 216
javax.jms.Message 298
javax.jms.MessageProducer 301
javax.jms.Session 298
javax.servlet.GenericServlet class 74
javax.servlet.http.HttpServlet class 74
JMS 289
JMS architecture

about 290
diagrammatic representation 290

JMS destination
creating 292-296

JMSException 301

www.it-ebooks.info

http://www.it-ebooks.info/

[371]

JMS messages
processing, with message driven beans

301-305
sending, to message destination 296-301

JMS project
creating 290, 292

JMS resources
creating 290, 292

JNDI (Java Naming and Directory Interface)
112

JPA
about 195
entity relationships 221-228

JPA entity
Bean validation 221
creating 196-203
DAO, creating 205-219
JPQL 219
named queries 219
persistent fields, adding 204, 205

jpaintro 200
JPQL 219, 220
j_security_check 84
JSF

about 135, 136
advantages 173

JSF application
developing 136
executing 153, 154
generating, from JPA entities 228-235
JSF validation 155-158
new JSF project, creating 136-140

JSF managed beans 136
JSF project

confirmation page, implementing 151-153
creating 136-140
Facelets template, adding 161
managed bean, creating 148-151
page, modifying for capturing user data

141-147
user data, capturing 141-147

JSF validation 155-158
JSP fragments

about 95
creating 96-98

JSTL
about 99, 127

core tags 99, 100
SQL tags 99, 110

JSTL expression 101
JSTL implicit object 101

K
keyboard shortcuts 39-43

L
Linux and Solaris

NetBeans, installing 13
LoggingInterceptor 258
logMethodCall() method 258

M
Mac OS X

NetBeans, installing 12
main() method 299
mappedName attribute 304
maxRows attribute 114
merge() method 211
message driven beans

using, for processing JMS messages 301-305
method

getColumnNames() 113
getRowCount() 113
getRows() 113
getRowsByIndex() 114
getRowsByIndex() method 117
isLimitedByMaxRows() 114
navigateToConfirmation() 274
saveCustomer() 192

Microsoft Windows
NetBeans, installing 12

MTOM (Message Transmission
Optimization Mechanism) 312

N
name attribute 310
named parameters 220
navigateToConfirmation() method 274
navigator property 180
NetBeans

about 7, 8

www.it-ebooks.info

http://www.it-ebooks.info/

[372]

bundles 10
code completion 33-37
code templates 37-39
configuring, for Java EE development 21
core JSTL tags 100
downloading 8, 9
features 7, 8, 33
history 8
installation procedure 13-16
installing 12-19
installing, for Linux and Solaris 13
installing, for Mac OS X 12
installing, for other platforms 13
installing, on Microsoft Windows 12
integrating, with third party application

server 22-24
integrating, with third party RDBMS 25
interceptor binding type, creating 284
JDBC driver, adding 25, 26
JPA 195
JSP fragments, creating 96-98
keyboard shortcuts 39-43
sample application, deploying 29-33
session beans, creating 238-248
starting 20, 21
third party RDBMS, connecting to 27-29
visual cues 43

NetBeans application
deploying 29-33

NetBeans bundles
C/C++ 10
Java EE 10
Java SE 10
PHP 10
supported platforms 11

NetBeans debugger
about 353
enterprise applications, debugging 353-360

NetBeans generated code
input page, developing 54-64
modifying 53
output page, developing 65-71

NetBeans Profiler
about 361
application, profiling 362-366

NetBeans visual cues 43, 44
New Web Application wizard 268

O
onMessage() method 303
Open Source Initiative (OSI) 15
operator type

arithmetic 106
logical 106
rational 106

P
pageEncoding attribute 53
path parameter 339
persistent fields

adding, JPA entity 204, 205
persist() method 211
Plain Old Java Object (POJO) 321
Point To Point (PTP) messaging 290
PrimeFaces 173

about 193
components, using in JSF applications 176
<h:commandButton> component 181
<h:messages> 178
<p:commandButton> 174
<p:dialog> 175
<p:messages> 179
<p:tabView> 181
<p:wizard> 187
using, in project 173-176

proceed() method 256
processRequest() method 75
propertyValue attribute 304

Q
qualifiers

about 275
code, generating 277
name, entering 276-280

R
referencedColumnName attribute 223
Relational Database Management Systems

(RDBMS) 199
remove() method 265
Representational State Transfer (REST)

protocol 307, 331

www.it-ebooks.info

http://www.it-ebooks.info/

[373]

required attribute 131
RESTful web service

client code, generating 345, 346
client, developing 345-352
generated code, analyzing 335-339
generating, from existing database 332-335
testing 340-344

RESTful web service client
developing 345-350

S
saveCustomer() method 192
scopes

application 79
page 79
request 79
session 79

security realm 82
sendJMSMessageToMyQueue() method

299
sendRedirect() method 76
servlet development

about 72
servlet, adding to web application 72-81

session beans
about 238
accessing, from client 248-252
aspect oriented programming,

implementing with interceptors 255
client, executing 253
creating, in NetBeans 238-248
generating, from JPA entities 260-265
stateful session beans 238
stateless session beans 238
types 238

session bean transaction management
 253-255

setAttribute() method
about 76

setFirstResult() method 211
setMaxResults() method 211
showOn attribute 180
Simple Object Access Protocol (SOAP) 307
SQL JSTL tags

about 110-113

database data retrieval, <sql:query> tag
used 113-117

using 111
web.xml 111, 112

stereotype
about 280
creating 281, 282
@Named annotations, adding 282
@SessionScoped annotations, adding 282
using, in code 283

stereotype
using, in code 283

SurveyData 76
Surviving Generations 365

T
tag directive 129
tag file 127
taglib directive 102
toString() method 235
TransactionAttributeType.REQUIRED

attribute 254

U
unidirectional 227
Uniform Resource Identifiers (URIs) 331
Unique Resource Identifier 100
UnitConversion class 320
UnitConversion project

creating 308, 309
web service operation, adding 311, 312

UnitConversion_Service class 319

V
validate() method 156
values, @TransactionAttribute annotation

TransactionAttributeType.MANDATORY
254

TransactionAttributeType.NEVER 254
TransactionAttributeType.NOT_SUPPORT-

ED 254
TransactionAttributeType.REQUIRED 254
TransactionAttributeType.REQUIRES_

NEW 254
TransactionAttributeType.SUPPORTS 254

www.it-ebooks.info

http://www.it-ebooks.info/

[374]

var attribute 115
VM Telemetry Icon 364
VM Telemetry Overview window 364

W
web application

creating 48-53
securing 82, 83
servlet, adding 72-81

web service
about 307
client, developing 316-320
creating 308-313
testing 314, 315

Web Services Definition Language (WSDL)
file 308, 327

web.xml 111, 139
widgetVar attribute 175
wizard interface

using 187-192

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Java EE 6 Development with NetBeans 7

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Java EE 5 Development with
NetBeans 6
ISBN: 978-1-847195-46-3 Paperback: 400 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use features of the popular NetBeans IDE to
improve Java EE development

2. Careful instructions and screenshots lead you
through the options available

3. Covers the major Java EE APIs such as JSF,
EJB 3 and JPA, and how to work with them in

NetBeans

NetBeans IDE 7 Cookbook
ISBN: 978-1-84951-250-3 Paperback: 308 pages

Over 70 highly focused practical recipes to maximize
your output with NetBeans

1. Covers the full spectrum of features offered by
the NetBeans IDE

2. Discover ready-to-implement solutions for
developing desktop and web applications

3. Learn how to deploy, debug, and test your
software using NetBeans IDE

4. Another title in Packt's Cookbook series giving
clear, real-world solutions to common practical
problems

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Java EE 6 with GlassFish 3
Application Server
ISBN: 978-1-849510-36-3 Paperback: 488 pages

A practical guide to install and configure the
GlassFish 3 Application Server and develop Java EE 6
applications to be deployed to this server

1. Install and configure the GlassFish 3 Ap-
plication Server and develop Java EE 6
applications to be deployed to this server

2. Specialize in all major Java EE 6 APIs, including
new additions to the specification such as CDI
and JAX-RS

3. Use GlassFish v3 application server and gain
enterprise reliability and performance with less
complexity

NetBeans Platform 6.9
Developer's Guide
ISBN: 978-1-849511-76-6 Paperback: 288 pages

Create professional desktop rich-client Swing ap-
plications using the world's only modular Swing
application framework

1. Create large, scalable, modular Swing
applications from scratch

2. Master a broad range of topics essential to
have in your desktop application development
toolkit, right from conceptualization to distri-
bution

3. Pursue an easy-to-follow sequential and
tutorial approach that builds to a complete
Swing application

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with NetBeans
	Introduction
	Obtaining NetBeans
	Installing NetBeans
	Microsoft Windows
	Mac OS X
	Linux and Solaris
	Other platforms
	Installation procedure

	Starting NetBeans for the first time
	Configuring NetBeans for Java EE development
	Integrating NetBeans with a third party application server
	Integrating NetBeans with a third party RDBMS
	Adding a JDBC driver to NetBeans
	Connecting to a third party RDBMS

	Deploying our first application
	NetBeans tips for effective development
	Code completion
	Code templates
	Keyboard shortcuts
	Understanding NetBeans visual cues

	Summary

	Chapter 2: Developing Web Applications with Servlets and JSPs
	Creating our first web application
	Modifying NetBeans' generated code
	Developing the input page
	Developing the output page

	Servlet development
	Adding a Servlet to our Application

	Securing web applications
	Implementing form-based authentication
	Implementing the login page
	Implementing a login error page
	Configuring our application for form-based authentication

	JSP fragments
	Creating a JSP fragment in NetBeans

	Summary

	Chapter 3: Enhancing JSP Functionality with JSTL and Custom Tags
	Core JSTL tags
	Conditionally displaying part of a page with the <c:if> tag
	Displaying mutually exclusive markup with the <c:choose> tag
	Iterating through arrays or collections with the <c:forEach> tag

	SQL JSTL tags
	Retrieving database data with the <sql:query> tag

	Modifying database data with the <sql:update> tag
	Inserting database data
	Updating database data
	Deleting database data

	Closing remarks about JSTL
	Custom JSP tags
	Summary

	Chapter 4: Developing Web Applications using JavaServer Faces 2.0
	Introduction to JavaServer faces
	Developing our first JSF application
	Creating a new JSF project
	Modifying our page to capture user data
	Creating our managed bean
	Implementing the confirmation page
	Executing our application
	JSF validation

	Facelets templating
	Adding a Facelets template to our project
	Using the template

	Composite components
	Summary

	Chapter 5: Elegant Web Applications with PrimeFaces
	Our first PrimeFaces project
	Using PrimeFaces components in our JSF applications
	Tabbed views
	Wizard interfaces
	More information
	Summary

	Chapter 6: Interacting with Databases through the Java Persistence API
	Creating our first JPA entity
	Adding persistent fields to our entity
	Creating a DAO

	Automated Generation of JPA Entities
	Named Queries and JPQL
	Bean Validation

	Entity Relationships
	Generating JSF applications from JPA entities
	Summary

	Chapter 7: Implementing the Business Tier with Session Beans
	Introducing Session Beans
	Creating a session bean in NetBeans
	Accessing the bean from a client
	Executing the client

	Session bean transaction management
	Implementing aspect oriented programming with interceptors
	Implementing the interceptor class
	Decorating the EJB with the @Interceptors annotation

	EJB timer service
	Generating session beans from JPA entities
	Summary

	Chapter 8: Contexts and Dependency Injection (CDI)
	Introduction to CDI
	Qualifiers
	Stereotypes
	Interceptor Binding Types
	Summary

	Chapter 9: Messaging with JMS and Message Driven Beans
	Introduction to JMS
	Creating the project and JMS resources
	Creating a JMS destination
	Sending messages to a message destination

	Processing JMS messages with message driven Beans
	Summary

	Chapter 10: SOAP Web Services with JAX-WS
	Introduction to web services
	Creating a simple web service
	Testing our web service
	Developing a client for our web service

	Exposing EJBs as web services
	Implementing new web services as EJBs
	Exposing existing EJBs as web services
	Creating a web service from an existing WSDL

	Summary

	Chapter 11: RESTful Web Services with JAX-RS
	Generating a RESTful web service from an existing database
	Analyzing the generated code

	Testing our RESTful web service
	Developing a RESTful web service client
	Summary

	Appendix A: Debugging Enterprise Applications with the NetBeans Debugger
	Debugging enterprise applications
	Summary

	Appendix B: Identifying Performance Issues with the NetBeans Profiler
	Profiling our application
	Summary

	Index

